
Title Hardware design of cryptographic accelerators

Author(s) Baldwin, Brian John

Publication date 2013

Original citation Baldwin, B.J., 2013. Hardware design of cryptographic accelerators.
PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2013. Brian J. Baldwin
http://creativecommons.org/licenses/by-nc-nd/3.0/

Embargo information No embargo required

Item downloaded
from

http://hdl.handle.net/10468/1112

Downloaded on 2017-02-12T13:16:07Z

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://hdl.handle.net/10468/1112

HARDWARE DESIGN OF CRYPTOGRAPHIC ACCELERATORS

by

BRIAN BALDWIN

Thesis submitted for the degree of

PHD

from the

Department of Electrical Engineering

National University of Ireland

University College, Cork, Ireland

May 7, 2013

Supervisor: Dr. William P. Marnane

“What I cannot create, I do not understand”

- Richard Feynman; on his blackboard at time of death in 1988.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Aims . 3

1.3 Thesis Outline . 6

2 Background 9

2.1 Introduction . 9

2.2 Introduction to Cryptography . 10

2.3 Mathematical Background . 13

2.3.1 Groups . 13

2.3.2 Rings . 14

2.3.3 Fields . 15

2.3.4 Finite Fields . 16

2.4 Elliptic Curves . 17

2.4.1 The Group Law . 18

2.4.2 Elliptic Curves over Prime Fields . 19

2.5 Cryptographic Primitives & Protocols . 19

2.5.1 Symmetric-Key Cryptography . 20

2.5.2 Public-Key Cryptography . 21

2.5.3 The Integer Factorisation Problem (IFP) 22

2.5.4 The Discrete Logarithm problem (DLP) 23

I

2.5.5 The Elliptic Curve Discrete Logarithm problem (ECDLP) 23

2.5.6 Digital Signatures . 24

2.5.7 Cryptographic Key Sizes . 25

2.6 Hardware Overview . 27

2.6.1 Xilinx FPGA . 28

2.6.2 Memory and DSP Blocks . 29

2.6.3 FPGA Design . 30

2.7 Microblaze . 31

2.7.1 Microblaze Architecture & Implementation 31

2.7.2 FSL Bus . 33

2.8 Hardware Architecture . 33

2.8.1 Additional Hardware . 34

2.9 Hardware Constraints . 35

2.9.1 Side Channel Attacks . 36

2.9.2 Area, Speed, Power and Energy . 36

2.10 Performance Metrics . 38

2.11 Conclusions . 39

3 Elliptic Curve Cryptography 40

3.1 Introduction . 40

3.2 Dedicated Doubling and Addition . 43

3.2.1 Affine Coordinate System . 44

3.2.2 Projective Coordinate System . 44

3.2.3 Jacobian Coordinate System . 46

3.2.4 Twisted Edwards Curves . 48

3.2.5 Extended Twisted Edwards . 50

3.2.6 Dedicated Algorithm Overview . 51

3.3 Elliptic Curve Cryptographic Processor . 52

II

3.3.1 Control . 52

3.3.2 Modular Arithmetic . 53

3.3.3 Modular Multiplication . 54

3.3.4 Modular Inversion . 56

3.3.5 Scheduling and Efficiency . 57

3.3.6 Algorithmic Cost of Field Operations 61

3.3.7 Area Results for Dedicated Doubling and Addition 63

3.4 Measuring the Power Dissipation . 64

3.4.1 Dedicated Doubling and Addition Power Results 67

3.4.2 Area-Time and Area Energy Product . 69

3.5 Power Analysis Attacks . 72

3.6 Dummy Arithmetic Instructions . 73

3.7 Unified Doubling and Addition . 74

3.8 Regular Scalar Multiplication . 76

3.8.1 Co-Z Arithmetic . 78

3.8.2 Combined Double-Add Operation . 79

3.8.3 (X,Y)-only operations . 79

3.9 Algorithmic Cost of SPA Secure Algorithms . 82

3.10 Area and Power Results for SPA Secure Algorithms 83

3.10.1 Comparing Dedicated Addition & SPA Secure Algorithms 88

3.11 Larger Key and Field Sizes . 89

3.12 Conclusions . 90

4 Hash Functions 92

4.1 Introduction . 92

4.2 Background to the SHA-3 Hash Functions . 95

4.3 Implementating SHA-3 Hash Functions . 96

4.3.1 CubeHash . 98

III

4.3.2 Shabal . 100

4.4 SHA-3 Round Two Implementations . 102

4.4.1 BLAKE . 102

4.4.2 Grøstl . 103

4.4.3 JH . 104

4.4.4 Keccak . 106

4.4.5 Skein . 107

4.5 Hash Interface . 108

4.5.1 Communications Protocol . 111

4.5.2 Padding Protocol . 112

4.6 Round Two Results . 114

4.7 Round Three Analysis . 118

4.7.1 Round Three Changes . 118

4.7.2 Comparing Different Round Results . 119

4.7.3 SHA-3 Power and Energy . 120

4.8 Comparison with Other Work . 123

4.8.1 Comparison of Round Three Results . 126

4.9 Conclusions . 130

5 Cryptographic Processor 132

5.1 Introduction . 132

5.2 Background to Signature Algorithms . 135

5.2.1 The Elliptic Curve Digital Signature Algorithm 136

5.2.2 ECDSA Domain Parameters . 137

5.3 Implementing ECDSA . 138

5.3.1 Key Pair Generation . 138

5.3.2 Signature Generation . 139

5.3.3 Signature Verification . 139

IV

5.3.4 ECDSA Implementation Options . 140

5.4 Random Key Generation . 141

5.4.1 Entropy . 142

5.4.2 Fortuna . 143

5.4.3 Random Number Generator Block . 144

5.5 Crypto Processor Using Microblaze . 147

5.5.1 Hash Block . 147

5.5.2 Elliptic Curve Processor Block . 150

5.5.3 Coordinate Conversion . 150

5.6 Implementing ECC in Software and Co-Design 153

5.6.1 Dedicated Software Results . 154

5.6.2 Instruction Set Extensions . 155

5.7 ECDSA Design . 158

5.7.1 ECDSA Results . 160

5.8 ECDSA Comparison . 161

5.9 Conclusions . 163

6 Conclusions 164

6.1 Contributions of this Thesis . 164

6.2 Future Research Directions . 167

A Appendix - Elliptic Curve Cryptography 170

A.1 Double-and-Add Algorithms . 170

A.2 Edwards Curves . 173

A.3 Co-Z Algorithms . 175

A.4 Point Doubling Formulæ with Update in Homogeneous Coordinates. 178

A.5 Full Coordinate Recovery . 180

A.6 Point Doubling and Tripling with Co-Z Update 181

V

A.7 Full Power, Energy and Timing Results . 182

B Appendix - Hash Functions 185

B.1 Round Two Hash Function Implementation Results 185

B.2 Round Two Hash Function Results . 187

B.3 Round Three FPGA Power and Timing Results 193

VI

List of Figures

1.1 Cost-Performance-Security Tradeoff . 2

1.2 Hierarchical Model for Elliptic Curve Based Cryptography 4

2.1 Point Operations on an Elliptic Curve . 18

2.2 Microblaze Processor . 32

2.3 Sasebo GII . 34

2.4 Microblaze Design on XUPV5 . 35

2.5 SPA analysis using FPGA . 37

3.1 Elliptic Curve Processor . 53

3.2 Modular Adder-Subtracter . 54

3.3 Modular Multiplier . 56

3.4 Clock Count for Dedicated Doubling and Addition 63

3.5 Power Wrapper . 66

3.6 Average Power Dissipation . 68

3.7 Area-Time Product . 70

3.8 Area-Energy Product . 71

3.9 Estimated Dynamic Versus Measured Results 72

3.10 Clock Count for SPA Secure Doubling and Addition 84

3.11 Average Dynamic Power . 86

3.12 SPA Resistant Area-Time Product . 87

3.13 SPA Resistant Area-Energy Product . 87

VII

3.14 SPA Reistant Estimated Versus Measured Results 88

3.15 Area-Time Product: 192, 256 & 521 . 90

4.1 Generic Hash Function Internals . 93

4.2 Cubehash Compression Function . 99

4.3 Shabal . 100

4.4 Blake Architecture . 103

4.5 Grøstl P/Q Permutation . 104

4.6 JH Architecture . 105

4.7 Keccak f(1600) Architecture . 107

4.8 Skein Architecture . 108

4.9 Hash Wrapper . 109

4.10 Padding Block . 114

4.11 256-bit Wrapper Throughput-Area . 118

4.12 Average Power Dissipation at 25MHz . 122

4.13 Area-Energy Product . 123

5.1 Security in the TCP/IP stack . 133

5.2 Digital Signature Process . 136

5.3 Elliptic Curve Digital Signature Algorithm . 137

5.4 Fortuna Generator . 143

5.5 Fortuna Flow Diagram . 145

5.6 Cryptographic Processor using Microblaze . 148

5.7 Timing Diagram for Microblaze I/O . 149

5.8 Microblaze with Hardware Multiplier . 156

5.9 Microblaze Signature Platform . 159

B.1 256-bit Long 32-bit Bus Padding Hardware . 187

B.2 256-bit Short 32-bit Bus Padding Hardware . 187

VIII

B.3 512-bit Long 32-bit Bus Padding Hardware . 188

B.4 512-bit Short 32-bit Bus Padding Hardware . 188

B.5 256-bit Long 32-bit Bus Padding Software . 189

B.6 256-bit Short 32-bit Bus Padding Software . 189

B.7 512-bit Long 32-bit Bus Padding Software . 190

B.8 512-bit Short 32-bit Bus Padding Software . 190

B.9 256-bit Long Ideal-Bus Padding Software . 191

B.10 256-bit Short Ideal-Bus Padding Software . 191

B.11 512-bit Long Ideal Bus Padding Software . 192

B.12 512-bit Short Ideal Bus Padding Software . 192

IX

List of Tables

2.1 ECRYPT II Security Level Recommendations (2010) 26

2.2 NIST Security Recommendations (2011) . 27

2.3 Area logic resources in one CLB per FPGA Type 29

2.4 Total Area logic resources per FPGA Type . 30

2.5 FSL Bus Signals . 33

3.1 Operation Count for Double-and-Add . 51

3.2 Multiplier Efficiency for Dedicated Doubling and Addition 60

3.3 Clock cycle count for Dedicated Doubling and Addition 62

3.4 Dedicated Doubling and Addition Area Results 64

3.5 FPGA Power and Timing Results for Double-and-Add 67

3.6 Operation Count for twisted Edwards . 75

3.7 Operation Usage for Various Co-Z Addition Formulæ 81

3.8 Multiplier Efficiency for SPA Secure Algorithms 83

3.9 Clock Cycle Count per SPA Secure Algorithm 84

3.10 SPA Secure Power and Timing Results . 85

3.11 256 & 521 Area-Time, Area-Energy Product . 89

4.1 Hash Function Internals . 97

4.2 CubeHash Implementation Results . 99

4.3 Shabal Implementation Results . 101

4.4 Wrapper Interface . 111

X

4.5 Hash Interface . 112

4.6 Padding Schemes per SHA-3 Type . 113

4.7 Hash Function Timing Results . 116

4.8 Hash Function Implementation Results . 117

4.9 SHA-3 Round 2 & 3 Results Comparison . 120

4.10 FPGA Power and Timing Results for SHA-3 at 24MHz 121

4.11 Comparison of SHA-3 Round 3 Implementations 128

4.12 Power Comparison of SHA-3 Implementations 129

5.1 Wrapper Interface for Hash and ECC . 149

5.2 Conversion for co-Z addition formulæ . 151

5.3 Software Results . 154

5.4 Microblaze FPGA usage . 156

5.5 Microblaze Results . 157

5.6 ECDSA Total Area Usage . 160

5.7 ECDSA Timing using Grøstl & ML (XY) . 161

5.8 Comparison of ECDSA and Core Functionality for FPGA 162

A.1 FPGA Power and Timing Results for Double-and-Add 182

A.2 SPA Secure Power and Timing Results . 184

B.1 Full Hash Round Two Area & Frequency Results 186

B.2 Full FPGA Power and Timing Results for SHA-3 at 24MHz 193

XI

List of Algorithms

1 Double-and-Add . 44

2 Point Addition in Projective Coordinates . 46

3 Point Doubling in Projective Coordinates . 46

4 Point Addition in Jacobian Coordinates . 47

5 Point Doubling in Jacobian Coordinates . 47

6 Point Doubling in twisted Edwards Coordinates 49

7 Point Addition in twisted Edwards Coordinates 50

8 Point Doubling in Extended twisted Edwards Coordinates 50

9 Point Addition in Extended twisted Edwards Coordinates 51

10 Montgomery Multiplication . 55

11 Montgomery Inverse (Phase 1) . 58

12 Montgomery Inverse (Phase 2) . 59

13 Double-and-Add-Always . 74

14 Unified Addition in twisted Edwards Coordinates 75

15 Unified Addition in Extended twisted Edwards Coordinates 75

16 Montgomery Ladder . 76

17 Joye’s Double-Add . 76

18 Montgomery ladder with Xo-Z Addition Formulæ 78

XII

19 Montgomery Ladder with (X,Z)-Only Co-Z Addition Formulæ 79

20 Joye’s Double-Add Algorithm with Co-Z Addition formulæ 80

21 Joye’s Double-Add Algorithm with Co-Z Addition Formulæ (II) 80

22 Montgomery Ladder with (X, Y)-Only Co-Z Addition Formulæ 81

23 Left-to-Right Signed-Digit Algorithm with (X, Y)-Only co-Z addition formulæ . 81

24 ECDSA Signature Generation . 138

25 ECDSA Signature Verification . 140

26 Generate Blocks . 144

27 Generate Random Data . 146

28 Point Doubling in Affine Coordinates . 171

29 Point Addition in Affine Coordinates . 171

30 Point Doubling in Projective Coordinates . 171

31 Point Addition in Projective Coordinates . 172

32 Point Addition for twisted Edwards . 173

33 Point Doubling for twisted Edwards . 173

34 Point Addition for Extended twisted Edwards . 173

35 Point Doubling for Extended twisted Edwards 174

36 Unified twisted Edwards Point Operation . 174

37 Extended Unified twisted Edwards Point Operation 174

38 Co-Z Addition with Update (ZADDU) . 175

39 Conjugate Co-Z Addition (ZADDC) . 175

40 Out-of-Place Differential Addition-and-Doubling 1 (AddDblCoZ1) 176

41 Out-of-Place Differential Addition-and-Doubling 2 (AddDblCoZ2) 176

42 Out-of-Place Differential Addition-and-Doubling 3 (AddDblCoZ3) 176

43 Co-Z Doubling-Addition with Update (ZDAU) 176

44 (X, Y)-Only Co-Z Conjugate-Addition–Addition with Update (ZACAU′) 177

XIII

45 Out-of-Place (X : Y : Z)-Recovery 1 . 180

46 Out-of-Place (X : Y : Z)-Recovery 2 . 180

XIV

Abstract

With the rapid growth of the Internet and digital communications, the volume of sensitive elec-

tronic transactions being transferred and stored over and on insecure media has increased dramat-

ically in recent years. The growing demand for cryptographic systems to secure this data, across

a multitude of platforms, ranging from large servers to small mobile devices and smart cards,

has necessitated research into low cost, flexible and secure solutions. As constraints on architec-

tures such as area, speed and power become key factors in choosing a cryptosystem, methods for

speeding up the development and evaluation process are necessary.

This thesis investigates flexible hardware architectures for the main components of a cryptographic

system. Dedicated hardware accelerators can provide significant performance improvements when

compared to implementations on general purpose processors. Each of the designs proposed are

analysed in terms of speed, area, power, energy and efficiency. Field Programmable Gate Arrays

(FPGAs) are chosen as the development platform due to their fast development time and reconfig-

urable nature.

Firstly, a reconfigurable architecture for performing elliptic curve point scalar multiplication on

an FPGA is presented. Elliptic curve cryptography is one such method to secure data, offering

similar security levels to traditional systems, such as RSA, but with smaller key sizes, translating

into lower memory and bandwidth requirements. The architecture is implemented using differ-

ent underlying algorithms and coordinates for dedicated Double-and-Add algorithms, twisted Ed-

wards algorithms and SPA secure algorithms, and its power consumption and energy on an FPGA

XV

measured. Hardware implementation results for these new algorithms are compared against their

software counterparts and the best choices for minimum area-time and area-energy circuits are

then identified and examined for larger key and field sizes.

Secondly, implementation methods for another component of a cryptographic system, namely hash

functions, developed in the recently concluded SHA-3 hash competition are presented. Various

designs from the three rounds of the NIST run competition are implemented on FPGA along

with an interface to allow fair comparison of the different hash functions when operating in a

standardised and constrained environment. Different methods of implementation for the designs

and their subsequent performance is examined in terms of throughput, area and energy costs using

various constraint metrics.

Comparing many different implementation methods and algorithms is nontrivial. Another aim

of this thesis is the development of generic interfaces used both to reduce implementation and

test time and also to enable fair baseline comparisons of different algorithms when operating in a

standardised and constrained environment.

Finally, a hardware-software co-design cryptographic architecture is presented. This architecture

is capable of supporting multiple types of cryptographic algorithms and is described through an

application for performing public key cryptography, namely the Elliptic Curve Digital Signature

Algorithm (ECDSA). This architecture makes use of the elliptic curve architecture and the hash

functions described previously. These components, along with a random number generator, pro-

vide hardware acceleration for a Microblaze based cryptographic system. The trade-off in terms

of performance for flexibility is discussed using dedicated software, and hardware-software co-

design implementations of the elliptic curve point scalar multiplication block. Results are then

presented in terms of the overall cryptographic system.

XVI

Associated Publications

• B. Baldwin, R. Moloney, A. Byrne, G. McGuire and W. P. Marnane, A Hardware Analysis

of Twisted Edwards Curves for an Elliptic Curve Cryptosystem, Proceedings of the 5th

International Workshop on Reconfigurable Computing: Architectures, Tools and Applica-

tions, -ARC ’09, vol. 5453 of LNCS, pp. 355-361, 16th-18th March 2009. Cryptology

ePrint Archive, Report 2009/001, 2009.

• B. Baldwin, A. Byrne, M. Hamilton, N. Hanley, R. P. McEvoy, W. Pan and W. P. Marnane,

FPGA Implementations of SHA-3 Candidates:CubeHash, Groestl, Lane, Shabal and

Spectral Hash, Euromicro Symposium on Digital Systems Design -DSD ’09, pp. 783-790,

27th-29th August 2009.

• D. V. Bailey, B. Baldwin, L. Batina, D. J. Bernstein, G. Van Damme, G. De Meulenaer,

J. Fan, T. Güneysu, F. Gurkaynak, T. Kleinjung, N. Mentens, C. Paar, F. Regazzoni, P.

Schwabe and L. Uhsadel, The Certicom Challenges ECC2-X, Workshop on Special Pur-

pose Hardware for Attacking Cryptographic Systems, -SHARCS ’09, September 2009.

• B. Baldwin, W. P. Marnane and R. Granger, Reconfigurable Hardware Implementation of

Arithmetic Modulo Minimal Redundancy Cyclotomic Primes for ECC, Reconfigurable

Computing, FPGAs, International Conference on, -Reconfig ’09, pp. 255-260, 9th-11th

December 2009.

XVII

• B. Baldwin and W. P. Marnane, An FPGA Technologies Area Examination of the SHA-3

Hash Candidate Implementations, Cryptology ePrint Archive, Report 2009/603, 2009.

• B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill and W. P. Marnane,

A Hardware Wrapper for the SHA-3 Hash Algorithms, 21st Irish Signals and Systems

Conference, ISSC ’10, pp. 1-6, 23rd-24th June 2010. Cryptology ePrint Archive, Report

2010/124, 2010.

• B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill and W. P. Marnane,

FPGA Implementations of the Round Two SHA-3 Candidates, The Second SHA-3 Can-

didate Conference, 23rd-24th August 2010.

• B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill and W. P. Marnane,

FPGA Implementations of the Round Two SHA-3 Candidates, 20th International Con-

ference on Field Programmable Logic and Applications -FPL ’10, pp. 400-407, 31 August

- 2 September 2010.

• B. Baldwin and W. P. Marnane, Yet Another SHA-3 Round 3 FPGA Results Paper, Cryp-

tology ePrint Archive, Report Report 2012/180, 2012.

• B. Baldwin, R.R. Goundar, M. Hamilton and W. P. Marnane, Co-Z ECC scalar multiplica-

tions for hardware, software and hardware-software co-design on embedded systems,

vol.2, no.4, pp. 221-240, Journal of Cryptographic Engineering, 2012.

XVIII

Acronyms

AEP Area-Energy Product

AES Advanced Encryption Standard

AHS Advanced Hash Standard

ALM Adaptive Logic Modules

ALU Arithmetic Logic Unit

ANSI American National Standards Institute

API Application Program Interfaces

ASIC Application Specific Integrated Circuit

ATHENa Automated Tool for Hardware EvaluatioN

ATP Area-Time Product

BRAM BlockRAM

BSB Base System Builder

CBC Cipher-Block Chaining

CBC-MAC Cipher Block Chaining Message Authentication Code

CLB Configurable Logic Blocks

CPU Central Processing Unit

DDR Double Data Rate

DES Data Encryption Standard

DL Discrete Logarithm

XIX

DLP Discrete Logarithm Problem

DPA Differential Power Analysis

DRBG Deterministic Random Bit Generators

DSA Digital Signature Algorithm

DSP Digital Signal Processing

EEA Extended Euclidean Algorithm

EC Elliptic Curve

ECC Elliptic Curve Cryptography

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

ECP Elliptic Curve Processor

ECRYPT European Network of Excellence for Cryptology

EDK Embedded Design Kit

EOM End Of Message

FIFO First In, First Out

FIPS Federal Information Processing Standard

FPGA Field-Programmable Gate Array

FSL Fast Simplex Link

FSM Finite State Machine

GC&CS Government Code and Cypher School

GCHQ Government Communications Headquarters

HAIFA Hash Iterative Framework

HMAC Keyed-Hash Message Authentication Code

I/O Input/Output

IC Integrated Circuit

IP Internet Protocol

IEC International Electrotechnical Commission

XX

IEEE Institute of Electrical and Electronics Engineers

IF Integer Factorization

IFP Integer Factorisation Problem

IP Intellectual Property

ISO International Organization for Standardization

IV Initialisation Vector

LAB Logic Array Blocks

LBS List-Based Scheduling

LE Logic Elements

LMB Local Memory Bus

LSB Least Significant Bit

LUT Look-Up Tables

MAC Message Authentication Codes

MDS Maximum Distance Separable

NIST National Institute of Standards and Technology

NLFSR Non-Linear Feedback Shift Register

NP-hard Non-Deterministic Polynomial-Time Hard

NRBG Non-Deterministic Random Bit Generators

OPB On-chip Peripheral Bus

PA Point Addition

PD Point Doubling

PGP Pretty Good Privacy

PKC Public Key Cryptography

PowerPC Performance Optimization With Enhanced RISC Performance Computing

P-P-R Post-Place-and-Route

PPR Project Peripheral Repository

PRNG Pseudo Random Number Generator

XXI

RAM Random-Access Memory

RBG random bit generators

RISC Reduced Instruction Set Computing

RNG Random Number Generator

ROM Read-Only Memory

SASEBO Side-channel Attack Standard Evaluation Board

SCA Side Channel Attack

SDK Software Development Kit

SET Secure Electronic Transaction

SHA Secure Hash Algorithm

SIS Signals Intelligence Section

S/MIME Secure/Multipurpose Internet Mail Extensions

SOP Sum Of Products

SOC System On a Chip

SPA Simple Power Analysis

SPN Substitution-Permutation Network

SUPERCOP System for Unified Performance Evaluation

Related to Cryptographic Operations and Primitives

TPA Throughput Per Unit Area

UBI Unique Block Iteration

VHDL VHSIC hardware description language

VHSIC Very-High-Speed Integrated Circuits

XBX eXternal Benchmarking eXtension

XCL Xilinx Cache Link

XML Extensible Markup Language

XPS Xilinx Platform Studio

XXII

Declaration

I hereby state that all of the work undertaken in his thesis is original in content and was carried out

by the author. Work carried out by others has been duely acknowledged in the thesis. The work

presented has not been accepted in any previous application for a degree.

Signed:

Date: .

Acknowledgements

First and foremost, this thesis is dedicated to Fiona and Cormac. Thanks for brightening up my

days, supporting me throughout, and generally being the most wonderful people I know.

Submission of this Ph.D. thesis would not have been possible without the help and support of a

number of people. Both those who helped and supported me to get work and research done and

those who provided an occasional sanity check and made the journey both worthwhile and fun

(quite often the same people). I cannot thank you all enough for making it an experience worth

having.

I would like to thank Liam Marnane for giving me the opportunity to study for a Ph.D. under his

supervision, Bob Savage in EMC for encouraging me to take the first step, Gary McGuire and

Elva OSullivan and the rest of the people at the Claude Shannon Institute for Discrete Mathemat-

ics, Coding, Cryptography and Information Security and Science Foundation Ireland for providing

the means and support to perform the work contained within.

Thanks also to the rest of the UCC Cryptography research group, Neil, Andy, Mark, Rob, Mau-

rice, Weibo, who were always willing to take time out to sit down and help work stuff out, proof

read, or offer comments and propose solutions.

XXIV

A lot of thanks also to the rest of the postgrads in the Department of Electrical and Electronic

Engineering at UCC for making my time here both enjoyable and rewarding. There are too many

to name (but here goes; Dan, Paul, Sean, Dave, Steve, Kieran, James, Eoin, Niamh, Orla, Aiden,

Niall, Donagh, Declan, Simon, Brendan, Megan, Andrey, Philip, Sunil and Rehan amongst oth-

ers). I am truly grateful for all of the good, bad and indifferent times we all shared. Special thanks

to Jason Hannon for all the advice, LaTeX or otherwise, down through the years.

Thanks to my fellow postgrads (and postdocs) at CSI, for making me feel welcome and looking

after me at all the meetings and events we shared. Richard, John, Cathy, Naomi, Geoff, Danny,

Alison, Ezekiel, Manuel, Fernando, Rob, Jens and of course Luis to name but a few.

Thanks also to all the faculty, technical and administrative staff of UCC for their assistance over

the years especially Rita, Ralph, Geraldine, Niamh and Mary.

Thanks to the EMC team Clariion guys, Ken, Joe, Rob, Fiachra, Paul Foley, Paul, Noel, Des et al.

for continuing to include me in their social events long after I left the place.

Thanks to Karl, Dara, Adam and Tom, for being general sounding boards and proof readers.

Always willing to read over stuff, listen to rants, offer suggestions and go for occasional pints

whenever the need arose.

Finally, thanks to my parents and sisters for their unwavering support and encouragement down

through the years.

XXV

1
Introduction

1.1 Motivation

With the rapid growth of the Internet and digital communications, the need for protecting files and

other information stored on, and transmitted between computers has become of vital importance.

Part of the requirement for trusted computing are cryptographic algorithms, used as network secu-

rity measures to protect data during transmission. The successful deployment of these electronic

systems for cloud computing and virtual private networks (VPN), data communications, mobile

commerce, internet banking and public-key infrastructures (PKI) amongst others, is dependent on

the effectiveness of the underlying security.

1.1. MOTIVATION

Cryptography, the study and practice of secret or secure data communication in the presence of

adversarial third parties, and cryptanalysis, the study of breaking the same secret or secure mes-

sages, as subjects have been studied for many centuries. While initially being the preserve of

governments, advances in technology and communication in the latter half of the last century has

resulted in cryptography becoming a widespread tool in the public domain, through the use of

third party security management and corporate data access and storage. Systems such as personal

computers, smart cards, wireless mobile phone and smartphone technology, along with network

appliances including web servers, firewalls, routers and gateways all depend on cryptography in

their day to day general use.

SECURITY

Serial Parallel

COST

PERFOR−

MANCE

K
ey

 L
en

gt
h

R
ounds − Field Size

Architecture

(LOW)

POWER

AREA
QUALITY

DESIGN

THROUG−

HPUT

Figure 1.1: Cost-Performance-Security Tradeoff

This rapid growth in communication technology also makes information more easily accessed and

available to abuse. Perceived private information can be exposed by eavesdroppers. Data can be

fraudently altered for the benefit of adversaries. Systems can be hacked to perform operations

other than those intended by their owners. As such, it is vital that these communication systems

2

1.2. THESIS AIMS

be made secure through the use of cryptography.

In addition to these security concerns is the use of these security algorithms in resource constrained

environments such as smart cards. Low power, more functionality, high speed in real-time systems

and longer battery life all add additional requirements which need to be considered in current and

future secure communications applications. Figure 1.1 describes the Cost-Performance-Security

Tradeoff modified from [1]. Any design involves tradeoff and the metrics are all interrelated.

Therefore it is usually the case that enhancing one metric will comes at a cost of another metric.

It is very difficult to optimize all design goals at the same time. For example, using a pipelining

technique can be used to provide high throughput and inbuilt security against side-channel attacks

but at a cost of area and complexity.

1.2 Thesis Aims

The primary aim of this thesis is to analyse and develop flexible hardware which can be used as

components of a cryptographic system, thereby allowing a basic implementation of information

security applications such as such as digital signatures, message authentication codes (MACs), and

other forms of authentication, such as key exchange, the purpose of which include, confidentiality,

authentication, integrity and non-repudiation. Figure 1.2 shows a generic overview of a model

for an elliptic curve based cryptosystem. High performance in the top three layers is directly

dependent on the efficiency in computation of the bottom three layers. This thesis examines and

implements each of these layers, along with the primitives defined in layer four and attempts to

find the best algorithms and implementations for efficient use in the top two layers.

Cryptographic algorithms can be implemented in hardware or software. There have been recent

increases in data rate speeds, along with an ongoing increase both in the size and the mathemat-

ical complexity of security protocols, as cryptanalysis becomes more feasible due to the amount

and availability of better and cheaper hardware following Moore’s law [2]. While it is relatively

easy to implement cryptographic algorithms in software, difficulties arise. Some systems require

3

1.2. THESIS AIMS

2 − Elliptic Curve

Arithmetic

3 − Elliptic Curve

1 − Finite Field

Arithmetic

Operations

5 − Cryptographic

4 − Cryptographic

Primitives

Protocols

6 − Application

Scalar Multiplication

Point Addition Point Doubling Point Halving

Addition Subtraction Inversion Multiplication

Cryptography

Elliptic Curve Key Generation Hash
Key Verification Number Generators

Pseudo−Random

Functions

Key Exchange Digital Signature
Transport Layer

Security (TLS)
Authentication

Secure Communications Firewall e−Commerce e−money S
ix

−
la

y
e

r M
o

d
e

l fo
r a

n
 E

llip
tic

 C
u

rv
e

 B
a

s
e

d
 C

ry
p

to
s
y
s
te

m

Figure 1.2: Hierarchical Model for Elliptic Curve Based Cryptography

a large number of transactions in a short space of time, i.e. network routers, firewalls and cloud

computing, while other devices require resource constrained systems, i.e. smartphones and smart-

cards.

Dedicated hardware to perform cryptographic operations can help to alleviate both of these needs

at the same time. It can achieve high system performance while still maintaining good security

at low power. A dedicated circuit will have a lower power consumption than a general purpose

processor. In this way, mathematically complex and time consuming calculations can be offloaded

to dedicated hardware blocks thus reducing processor usage and potential bottlenecks. Both of

these factors combine to offer potential savings that could offset the initial cost of the design of

dedicated hardware.

One particular disadvantage of dedicated hardware is in its inherent rigid structure. Custom hard-

ware tends to perform one particular function. In modern systems, cryptographic advances due to

faster [3] or more secure algorithms [4,5], or inherent weaknesses found in current systems [6–8],

can result in costly (both in development time and in deployment and roll-out) systems being

4

1.2. THESIS AIMS

superceded by the next technology advance after a shelf-life of only a few years. Therefore, flex-

ibility, while being less efficient than dedicated hardware, is also a major requirement for any

commercially viable system to allow both new algorithms and protocols to be easily implemented,

while also maintaining support for existing and even legacy systems.

One such method to allow this flexibility is through the use of Field Programmable Gate Arrays

(FPGA). FPGAs are an attractive choice for implementing cryptographic algorithms as they allow

rapid prototyping of designs, and can be re-programmed in-place when adopting security protocol

upgrades. Another aim of this thesis is to implement cryptographic designs, (i.e. layer 2 and

3 of Figure 1.2), which can be quickly and easily configured to support various area or speed

implementations dependent on the availability of resources and the particular metrics required.

This can be achieved through the reconfigurable logic of FPGAs.

Power analysis attack can provide detailed information by observing the power consumption of

a hardware device. These attacks are roughly categorized into simple power analysis (SPA) and

differential power analysis (DPA). Algorithmically secure countermeasures such as dummy arith-

metic operations, unified formulæ and regular structures can be used to reduce the information

available to an attacker. Some of these security methods used in elliptic curve cryptography are

examined in this thesis.

While security is the most important criterion for a new cryptographic function, performance is

arguably almost as important. Analysis of these cryptographic functions and algorithms in the

literature tend to be examined and reported on almost exclusively in software. The metrics and

computation cost used for software are often quite different to those used in hardware. A third

aim of this thesis is to examine various new algorithms used in elliptic curve cryptography and

hash functions for use in hardware, (i.e. layer 4 from Figure 1.2). An analysis of these designs

for throughput, area, and energy is performed for differing key sizes (the size of the key is directly

related to the security of the system; the larger the key size, the greater the security level) and

design variants; where different versions of the same base design present higher security or higher

speed options. Speed increases due to parallelisation is also examined.

5

1.3. THESIS OUTLINE

Comparing many different implementation methods and algorithms is nontrivial. Another aim

of this thesis is the development of generic interfaces used both to reduce implementation and

test time and also to enable fair baseline comparisons of different algorithms when operating in a

standardised and constrained environment.

Another benefit to using FPGAs is that it allows the use of microprocessors, embedded in the

FPGA architecture, also known as System on Chip (SOC). These SOCs include additional general

purpose registers, instruction sets, interfaces to the external world and shift units, along with more

advanced features and peripherals to allow a further tailoring of the design to the required speci-

fications in a hardware-software co-design environment. This method allows the computationally

intensive components, i.e. the cryptographic algorithms, to be implemented in hardware, while

the non computationally intensive components, i.e. control, data processing, padding etc., which

are better suited to software are performed by the systems host processor, thereby allowing a full

cryptographic system on a single chip. A fourth aim of this thesis is to present a cryptographic

processor which uses cryptographic IP cores, comprised of the previously defined cryptographic

algorithms, implemented on a Xilinx Virtex-5 FPGA. An example application, namely the Elliptic

Curve Digital Signature Algorithm (ECDSA), is presented to demonstrate the functionality of the

system, based on layer 5 of Figure 1.2.

1.3 Thesis Outline

This section outlines the structure of the remainder of the thesis. Chapter 2 provides a short intro-

duction to cryptography, and presents a brief history of the subject. The mathematical background

necessary for the rest of the thesis is introduced here. More specifically, the mathematics be-

hind public key cryptography (PKC), part of the main focus of this work, is described here. This

includes groups, rings, fields, finite fields and elliptic curves. Following this, some example pro-

tocols are presented, used both to differentiate between public key cryptography and other types

of symmetric key cryptography, and also to show how these public key cryptography schemes are

6

1.3. THESIS OUTLINE

used. Finally, a brief description of cryptographic key sizes is presented and the different security

levels provided by them is discussed. The platform tools used to form the underlying technology

used in this work are also presented here. Field Programmable Gate Array (FPGA) integrated

circuits are described along with the technology which underpins them. The Microblaze soft-core

virtual microprocessor is also described here along with the Sasebo GII cryptographic evaluation

board and the Xilinx XUPV5-LX110T Evaluation Platform. Constraints associated with hardware

implementations are examined and the concept of side channel attacks is introduced along with

various countermeasures relevant to this work. An outline of trade-offs between area, speed, power

and energy is presented. Some performance metrics used in the thesis are also presented here.

Chapter 3 examines the performance of various elliptic curve algorithms on a reconfigurable ellip-

tic curve processor. It begins with a description of the classic Double-and-Add method for point

scalar multiplication, and examines different coordinate systems which can be used. Next a spe-

cial form of curve is described, the twisted Edwards and extended twisted Edwards. These curves

can perform point scalar multiplication faster than standard curves and can be made unified for

additional security. The processor used for the various algorithms and implementations is intro-

duced and the methods to design it are described. The underlying modular arithmetic is presented

and different configurations of the processor are investigated. A method for measuring the power

dissipation on this elliptic curve processor is described and timing, area and power results are pre-

sented. A brief look at simple power analysis (SPA) is next performed and it is shown how the

algorithms examined so far are susceptible to this type of simple side channel attack. Following

on from this, various SPA secure methods are then examined, namely dummy arithmetic instruc-

tions, unified doubling and addition and regular algorithms. The algorithmic cost and area, energy

and timing results of these SPA secure algorithms is examined and some further observations are

made. The best performing algorithms are then selected for further analysis with larger key and

field sizes based on NIST specifications. Additional power, energy area and timing results were

acquired and comparisons between the differing security levels were made.

Chapter 4 examines an implementation method for the SHA-3 hash functions. It begins with a

7

1.3. THESIS OUTLINE

brief overview of cryptographic hash functions and the timeline of the recently concluded SHA-3

competition. It then examines the different types of hash functions accepted for the competition

and examines some implementation methods and area-speed trade offs. Some example implemen-

tations are also presented. Next, an overview of the algorithm and a description of the implemen-

tation methodology for the finalist designs is explored. A standard wrapper, used to interface the

designs is also presented here. Results for implementations of the round two of the competitions

designs are presented and metrics used for selecting one particular hash function over another are

discussed. The updated round three variants of the competition are next presented along with an

examination of any changes to the metrics due to these updates. Finally, a comparison against the

current state of the art is presented and conclusions are made.

Chapter 5 presents a cryptographic architecture that is capable of supporting multiple types of

cryptographic algorithms and architectures. This architecture provides support for the underlying

field operations performed by Elliptic Curve Cryptography (ECC) along with the curve param-

eters, algorithm used, number of arithmetic units and key size, thus enabling flexibility in the

selection of both the underlying algorithm, the security level and the area-throughput require-

ments. Additionally, the cryptographic architecture can also support all of the SHA-3 algorithms

and their variants. These cryptographic blocks can then be used along with ancillary components

as building blocks to build bigger cryptographic protocols. Further examination is performed

regarding coordinate conversion between domains and coordinate systems. Software only and

hardware-software co-design implementations are presented and compared against the dedicated

hardware implementation. An overview of a commonly used application for performing public

key cryptography, namely the Elliptic Curve Digital Signature Algorithm (ECDSA), is presented.

Another component of ECDSA, the random key generator, is presented and an implementation

method using a pseudo random number generator, Fortuna, is described. Results for the ECDSA

are presented and compared against the current state of the art.

Chapter 6 concludes the thesis. The main contributions of the thesis are summarised and some

suggestions for future research directions are outlined.

8

2
Background

2.1 Introduction

This chapter provides a background to the work presented in this thesis. It is subdivided into

four main sections. In Section 2.2, a short introduction to cryptography is presented. Subsequent

sections explore the mathematical background and the hardware used for the work. Finally, a

short analysis of security and constraints, along with a presentation of some measurement metrics

to allow comparison between designs is performed.

An elliptic curve system consists of four main layers, the finite field layer, the elliptic curve point

operation layer, the scalar multiplication layer and the protocol layer. The mathematical back-

2.2. INTRODUCTION TO CRYPTOGRAPHY

ground of the first layer, the finite field layer is presented in Section 2.3.

Section 2.4 presents an overview of elliptic curve cryptography, and provides a mathematical

background for the second layer, the elliptic curve point operation layer, including the group law

for defining points over an elliptic curve. Point representation and an introduction to coordinate

systems are also presented here.

Section 2.5 describes the final two layers of an elliptic curve system, the scalar multiplication

layer and the protocol layer. Symmetric-Key and Public-Key cryptography is described. The

Integer FactorisationProblem (IFP), the Discrete Logarithm problem (DLP) and the Elliptic Curve

Discrete Logarithm problem (ECDLP) are defined. A short analysis of cryptographic key sizes is

also presented. Digital Signature protocols are discussed, making use of the topics presented in

previous sections of this chapter. Finally, the security levels of the different types of cryptographic

algorithms are compared both in terms of broad design, security level and cryptographic keysizes.

Subsequent sections present an overview of the hardware. Section 2.6 provides an overview of the

platform tools used, namely FPGAs. The platform on which the cryptosystems are evaluated and

the tools used to do so are introduced. Section 2.7 describes the Microblaze soft-core processor

and the Xilinx Embedded Design Kit (EDK) used to generate it. The Sasebo GII cryptographic

evaluation board and the XUPV5-LX110T Evaluation Platform are presented in Section 2.8, upon

which, most implementation testing was done. Section 2.9 examines the constraints associated

with the hardware implementations. Side channel analysis of cryptographic systems and its coun-

termeasures are examined. A brief description of the trade-off between area, speed, power and

energy is also presented. In Section 2.10, some metrics are developed as a method of comparing

the different designs presented in this thesis. Conclusions are presented in Section 2.11.

2.2 Introduction to Cryptography

Cryptography provides the means of securing the communication between two parties across an

insecure channel. While there is evidence of the ancient Egyptians and Babylonians scribes delib-

10

2.2. INTRODUCTION TO CRYPTOGRAPHY

erately transforming ancient writings as a form of showing off their knowledge, the Spartans [9]

were the first to make use of cryptography for military purposes through the use of the skytale,

a staff of wood of fixed dimensions (the key), around which a strip of leather (the ciphertext), is

wrapped, and the message is written. Only with an identical staff can the message be decoded. The

Greeks wrote the earliest text on secret communication (and indeed the word cryptography itself

is an amalgamation the Greek words, secret and writing), On the Defense of Fortified Places by

Aeneas the Tactician [10]. This text contained details on replacing vowels of plaintext by specific

dots and forms of stenography (hidden writing) through the use of punching holes in a document

above the letters which spelled out the secret code. As it is unclear whether these systems were

ever actually used, the first attested use of a substitution cipher comes from the Romans, namely

Julius Caesar and his Caesar cipher [11] in which each letter in the plaintext is replaced by a letter

some fixed number of positions down the alphabet. This is known as a monoalphabetic substitu-

tion where the same key is always bound to the same plaintext. Cryptology was also extensively

used in the Arabic world (the word cipher for example, is arabic), and the fourteen volume Subh

al-a ’sha [9] included the section considering the concealment of secret messages within letters.

Frequency analysis of letters is also attributed to them.

Following this period of time, from around the 15th century was a stagnation and even a steady

decline of the use of cryptography as past methods were forgotten, and it was not until well into the

16th century that it again began to achieve significance in matters of state. The Renaissance was

the next period of significant growth, with a number of people making contributions. One such

person was Alberti, inventor of the polyalphabetic cipher, where both the plaintext and ciphertext

equivalents are changed in relation to each other, through the use of the Alberti Cipher Disk [12].

Another, Trithemius, wrote Stenographia, and Polygraphia thus introducing polyalphabetic sub-

stitution or the shifting of letters every substitution line [13], i.e. (a, b, . . .y, z), (b, c, . . .y, z, a),

(c, d, . . .z, a, b) etc. A third person of note was Belaso, whose book La cifra del. Sig. Gio-

van Batista Belaso proposed the use of a literal, easily memorable and easily changeable key [12].

While these three polyalphabetic solutions form the basics of modern day cryptography, they were

11

2.2. INTRODUCTION TO CRYPTOGRAPHY

at the time rejected as being too time consuming and prone to errors by the cryptographers of the

day in favour of the standard (and even at that time insecure) monoalphabetic method, and so were

forgotten until their re-discovery in the 19th century.

In the 19th century, the advance in technology, such as the telegraph and the computing machine

reinvigorated the need for security and ciphers in messages. Previous complaints about errors

in messages encrypted using polyalphabetic ciphers no longer applied as these could be quickly

fixed and resent by telegraph, whereas before a message could take weeks or months to be hand

delivered. This continued to be the case up to, and including World War I, with various wheel,

cylinder and disk based ciphers used, similar to the Alberti disk. However, at this point in the 20th

century, the use of machinery allowed the more widespread use of printing cipher machines by

people with only a basic understanding of their mathematical operation.

The Second World War, arguably the most exciting time for cryptography and cryptanalysis in the

history of the world, saw the battle in the Atlantic between the Axis, comprising Germany with

the Enigma machine, an electro mechanical rotary based cipher machine which implemented a

polyalphabetic substitution cipher through repeated changes of the electrical path through a se-

ries of replaceable rotors, versus the cryptanalysts of British intelligence’s Government Code and

Cypher School (GC&CS) at Bletchley Park set up to break the enigma codes, codename Ultra [14].

In the Pacific, a similar intelligence battle was raging between the United States Army’s Signals

Intelligence Section (SIS) with their cryptanalysis project, codename Magic, and the Japanese Pur-

ple encryption scheme [9]. In both cases the cryptanalysts succeeded and contributed greatly to

Allied success in defeating the U-boats in the Battle of the Atlantic in the case of Ultra, and learned

in advance of the Japanese attack on Pearl Harbour in the case of Magic. Winston Churchill told

Britain’s King George VI after World War II: ’It was thanks to Ultra that we won the war’.

After the Second World War, due to the success of cryptography, it was seen as a dangerous

weapon and fell within the remit of various governmental intelligence and military organisations.

It was not until the 1970s, with the advent of computers and the internet, that need for ordinary

people and companies to secure their data became increasingly important. It is here we begin a

12

2.3. MATHEMATICAL BACKGROUND

description of the work in this thesis, as this was the starting point of modern cryptography. Mod-

ern cryptography is heavily based on computer and mathematical theory. Advances in electronics

and computers allow for more complex ciphers and cryptanalysis. Modern cryptographic algo-

rithms are designed around computational hardness assumptions, making it theoretically possible

to break any cryptographic system, but practically infeasible to do so. These schemes are therefore

termed computationally secure. Mathematical advances and better computing technology require

these solutions to be continually adapted both in mathematical complexity and in increased secret

key sizes to maintain adequate levels of security.

2.3 Mathematical Background

In this section a variety of basic algebraic structures that play roles in the generation and analysis

of sequences used in communications and cryptography is presented. A mathematical background

of the underlying layers are briefly examined, namely, groups, rings, fields, finite fields and elliptic

curves.

2.3.1 Groups

Groups are among the most basic building blocks of modern algebra. They are commonly used to

model symmetry in structures or sets of transformations. They are also building blocks for more

complex algebraic constructions such as rings, fields, vector spaces, and lattices.

A group is a set (G, ∗) with a distinguished element e (called the identity) and a binary operation

on G. This group operation is typically called addition or multiplication, denoted ∗ and satisfies

the following laws:

• Associative law; The order of the group operation does not matter.

• a ∗ (b ∗ c) = (a ∗ b) ∗ c, ∀(x, y, z) ∈ G.

• Identity law; G has an identity (unity) element, 1.

13

2.3. MATHEMATICAL BACKGROUND

• a ∗ 1 = 1 ∗ a = a ∀a ∈ G.

• Inverse law; For each element e of G, there exists an element e−1.

• e ∗ e−1 = e−1 ∗ e = 1.

The group G is said to be commutative or abelian if the composition law is commutative:

a ∗ b = b ∗ a, ∀(a, b) ∈ G (2.1)

The order of a group G, denoted |G|, is its cardinality as a set. An element e ∈ G is of finite order

if the group contains a finite number of elements. The element e in this case is called a generator

or primitive element if the order of e is equal to the number of elements in the group G,and G is

cyclic. The order of the element e is the least positive integer, a such that ea = e ∗ e ∗ · · · ∗ e = 1.

Otherwise e is of infinite order.

The order of the above element e also divides the number of elements in G. If G is a group, then

a subset H ⊆ G is a subgroup if it is a group with the same operation as G and the same identity

as G. i.e., the number of elements of a subgroup divides the number of elements of the group.

2.3.2 Rings

Rings involve algebraic structures with two interrelated operations. For example, addition and

multiplication of integers, rational numbers, real numbers, and complex numbers, AND and XOR

of Boolean valued functions, and addition and multiplication of n× n matrices of integers, etc.

A ring (R,+, .) consists of a set, R, along with two binary operations called (+) and (.) (unlike a

group which has just one operation), namely addition and multiplication. The ring R is said to be

commutative or abelian if it satisfies the following properties for all (a, b, c) ∈ R:

• Commutativity; a.(b.c) = (a.b).c ∀(a, b, c) ∈ R.

• R has an Additive Identity element, OOO such that

14

2.3. MATHEMATICAL BACKGROUND

• a+OOO = OOO + a = a ∀a ∈ R.

• Associativity; The order of the group operation does not matter.

• a+ (b+ c) = (a+ b) + c ∀(a, b, c) ∈ R.

• R has a Multiplicitive Identity element, 1, with 1 6= 0 such that

• a.1 = 1.a = a ∀a ∈ R.

• Distributivity; . is distributive over +.

• a.(b+ c) = (a.b) + (a.c); (a+ b).c = (a.c) + (b.c) ∀(a, b, c) ∈ R.

• Inverse; For each element e of R, there exists an element e−1.

• e.e−1 = e−1.e = 1, where 1 is called the (invertible) unit element.

2.3.3 Fields

Fields are rings where every nonzero element is a multiplicative inverse unit. A field (F,+, .)

consists of a set, F, along with two binary operations, namely addition and multiplication, along

with an additive identity element, OOO, and a multiplicitive identity element, 1. As an algebraic

structure, every field is a ring, but not every ring is a field. The main difference being that fields

allow for division (though not division by zero), while a ring need not possess multiplicative

inverses.

The set must satisfy the following properties:

• Commutativity; (F,+, .) is a commutative ring such that every nonzero element is invert-

ible.

• Inverse; all nonzero elements are invertable.

A subset H of a field F is a subfield of F if H is itself a field with respect to the operations of F .

In such a case, F is said to be an extension field of H . if H 6= F we say that H is a proper subfield

of F. A field containing no proper subfields is known as a prime field.

15

2.3. MATHEMATICAL BACKGROUND

Due to the fact that F is a field, all nonzero coefficients have an inverse and standard polynomial

division can be performed. Therefore, if g(x) and h(x) 6= 0 are polynomials in F[x], then there

exists two polynomials q(x) (the quotient) and r(x) (the remainder) in F[x] such that:

g(x) = q(x)h(x) + r(x),

where degree(r) < degree(h).

r(x) = g(x) mod h(x),

q(x) = g(x) div h(x).

(2.2)

2.3.4 Finite Fields

A finite field is a field F which contains a finite number of elements. Finite fields are also referred

to as Galois fields after the French mathematician Évariste Galois, who showed that the order of a

finite field must be equal to the power of a prime p, and are denoted either Fq or GF(q). It can be

shown that any finite field contains q = pm elements, for some prime p and some positive integer

m and is isomorphic, i.e. indistinguishable, for Fq. Since finite fields have cyclic groups, they

enable algebraic constructions with finite alphabets.

The prime p is known as the characteristic of the field. The characteristic of any field is either 0 or a

prime number. In cryptography, the two most studied fields are prime fields, G(Fq); q = p, where

p is a prime, and binary extension fields (finite fields of characteristic two), GF(2m); q = 2m. The

work in this thesis focuses on the prime field.

While binary fields algorithms are considered to have better performance over their prime field

counterparts for hardware based implementations, it can be shown that higher level protocol im-

plementations, e.g. digital signature generation and verification using the ECDSA, results in a

similar area and power performancei between the two fields [15]. For a review of GF(2m) and its

implementation in hardware, the interested reader is referred to [16].

iBinary fields are however still faster and therefore more energy efficient.

16

2.4. ELLIPTIC CURVES

2.4 Elliptic Curves

Elliptic curve cryptography (ECC) was established as a form of public key cryptosystem in 1985

independently by Miller [17] and Koblitz [18]. An elliptic curve E defined over a field F is defined

as the set of points (x, y), with coordinates in Fq in an equation (in this case Weierstraß) of the

form:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.3)

with a1, . . . , a4, a6 ∈ F; δ 6= 0 , where δ is the discriminant (i.e. which shows the nature of the

roots) of E , and the coefficients a1, . . . , a4, a6 are the elements of F. The group of points on an

elliptic curve contains all of these points (x, y) along with a special point at infinity,OOO, the additive

identity of the group. i.e. if H is any extension field of F, then the set of H-rational points on E

is:

E(H) = {(x, y) ∈ H.H : y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0} ∪ {OOO} (2.4)

The number of points on the curve is called the order of the curve and is defined as #E(Fq) =

q+1− t, where t is the Trace of Frobenius and |t| ≤ 2
√
q (approximated as #E(Fq) ≈ q) [19]. If

t is a multiple of the characteristic q, the curve is supersingular. Otherwise, it is non supersingular

or ordinary. The basic operations of Elliptic Curve Cryptography are point scalar computations of

the form:

Q = [k] g = g + g + · · ·+ g
︸ ︷︷ ︸

k times

(2.5)

The order of the group, g, is the smallest integer n such that [n]g = OOO, the identity element. In a

cyclic group, the order of the group is the same as the order of the generator g as defined in Sec-

tion 2.3.1. Repeated addition of points on an elliptic curve is known as point scalar multiplication.

17

2.4. ELLIPTIC CURVES

2.4.1 The Group Law

For point addition (PA), the chord-and-tangent rule [20] is used for adding two points on the curve

E , to give a third point. Together with this addition operation, the set of points over the curve form

an abelian group withOOO as the identity. This is illustrated here in Figure 2.1(a) over a field of real

numbers.

P

P

T

P = P +P

y

x

1

2

3 1 2

(a) Point Addition

P

= P2P

T

+P

x

y

(b) Point Doubling

Figure 2.1: Point Operations on an Elliptic Curve

A line is drawn through P1 = (x1, y1) and P2 = (x2, y2), two distinct points on the elliptic curve.

Where this line intersects the elliptic curve at a third point, T , a reflection about the x-axis is made

to give the third point P3 = (x3, y3).

For a large k this can be quite slow. Therefore a second group operation on the elliptic curve is

introduced. Point doubling (PD) is a special case of point addition in which the two input points

are the same. In this case a tangent is drawn to the point on the curve. This line intersects the

curve at exactly one other point, T . Again, a reflection along the x-axis is made to give the point

[2]P . This is shown in Figure 2.1(b).

18

2.5. CRYPTOGRAPHIC PRIMITIVES & PROTOCOLS

2.4.2 Elliptic Curves over Prime Fields

Elliptic Curves over prime fields, Fp, where p is a large prime, consists of the integers 0, 1, . . . , p−

1 with all arithmetic operations, addition, multiplication, inversion etc. performed modulo p. The

Weierstraß equation defined in 2.3 can be simplified down to the short Weierstraß equation. If the

characteristics of H > 3 then:

(x, y)⇒ x− 3a21 − 12a2
36

,
y − 3a1x

216
− a31 + 4a1a2 − 12a3

24

transforms E to the curve

y2 + xy = x3 + ax2 + b (2.6)

Where a, b ∈ H ; δ = −16(4a3 + 27b2).

A point addition,P3(x3, y3) = P1(x1, y1)+P2(x2, y2), can be described algebraically as follows:

x3 = (
y2 − y1
x2 − x1

)2 − x1 − x2 and y3 = (
y2 − y1
x2 − x1

).(x1 − x3)− y1 (2.7)

A point doubling, P3(x3, y3) = [2]P1(x1, y1), can also be described algebraically as:

x3 = (
3x21 + a

2y1
)2 − 2x1 and y3 = (

3x21 + a

2y1
).(x1 − x3)− y1 (2.8)

where . is equivalent to modulo multiplication, a ∗ b mod p.

The equations given here for Weierstraß, 2.3 and 2.6 are represented by (x, y), given in affine

coordinates [19]. In Chapter 3, the different coordinate systems and their implementations are

explored in greater detail.

2.5 Cryptographic Primitives & Protocols

A cryptographic protocol details the steps and components required for a security-related function

using cryptographic methods. Schneier [21] defines a protocol as a series of steps, involving two

19

2.5. CRYPTOGRAPHIC PRIMITIVES & PROTOCOLS

or more parties designed to accomplish a task. Everyone involved in the protocol must know

the protocol and all of the steps to follow, and must agree to follow it. The protocol must be

unambiguous and must be complete. Most Importantly for cryptographic protocols, it should not

be possible to do more or learn more than what is specified in the protocol.

2.5.1 Symmetric-Key Cryptography

Symmetric-key cryptography, which would also be in layer 4 of Figure 1.2, involves the use

of secret cryptographic keys for the encryption and decryption of data. The study of modern

symmetric-key cryptography relates mainly to the study of block ciphers, stream ciphers, mes-

sage authentication codes (MAC) and their applications. The cryptographic keys for encryption

and decryption may be identical or there may be a simple transformation to select between the

keys. As such, the keys require a shared secret between two or more parties to ensure privacy.

This requirement that both parties have access to the secret key is one of the main drawbacks of

symmetric key encryption.

A block cipher is the modern form of a polyalphabetic cipher, in which individual parts of the

message would be encrypted differently, first proposed by Alberti in 1467 [12]. Modern block

ciphers are based on the concept of an iterated product cipher. Product ciphers, as suggested by

Shannon [22], involve combining multiple simple operations, usually through the use of a feistel

scheme [23], substitutions and permutations, as a means of improving the security. Block ciphers

take a block of plaintext data and a key, carry out encryption over multiple rounds, using different

subkeys derived from an original key and output a block of ciphertext data. The strength of a

block cipher is entirely dependant on the secrecy of the key value. Block ciphers are not secure

cryptosystems themselves (by modern standards, it is unacceptable for the encryption of a single

plaintext to always be the same), but may be used in a mode of operation such as Cipher-block

chaining (CBC) mode [24] to implement secure encryption through the use of data partitioning,

randomisation and padding of variable length messages. The better known block ciphers include

DES [25], Triple DES and AES [26].

20

2.5. CRYPTOGRAPHIC PRIMITIVES & PROTOCOLS

Stream ciphers, use a key but no plaintext input, and produce a pseudorandom output stream. To

encrypt with a stream cipher, the output is combined with the plaintext, as in the one-time pad.

RC4 [21] is an example of a well-known stream cipher. A MAC is used to authenticate messages.

It uses a key and an arbitrary-length message to be authenticated, and outputs a tag. This tag value

is used to verify both a message’s data integrity as well as its authenticity, by allowing trusted

verifiers to detect any changes to the message content. The verifiers are trusted by also having a

copy of the secret key. An example of a MAC is the HMAC [27]. They can also be constructed

from block ciphers, such as the CBC-MAC [21].

2.5.2 Public-Key Cryptography

In 1976, Whitfield Diffie and Martin Hellman [28] proposed the notion of public-key cryptography

in which two different but mathematically related keys are used, a public key and a private key

(although in 1997, it was publicly disclosed that asymmetric key algorithms were developed by

Ellis, Cocks, and Williamson at the Government Communications Headquarters (GCHQ) in the

UK in 1973, but were kept classified [29]). Deriving the private key from the corresponding

public key is equivalent to solving a computational problem that is believed to be intractable. A

user, Alice, generates a key pair and releases their public key while maintaining the secrecy of

their private key. Any other person, Bob, with access to this public key can use it to encrypt their

own data, to allow secure transmission across an unsecure channel, monitored by an eavesdropper,

Eve. The message can only be decrypted by the user with the private key, i.e. Alice. Compared

to Symmetric-key cryptography, this method allows the ability to transfer keys across unsecure

channels while still maintaining the security of the encryption.

The Diffe-Hellman Key Exchange is used as an example to describe the operation of public key

cryptography:

• Alice and Bob agree on a group G, with generator g such that for any number n in the group,

there is an integer k which satisfies n = gk, i.e. g is primitive mod n

• Alice chooses a random large integer a and sends to Bob: A = ga mod n

21

2.5. CRYPTOGRAPHIC PRIMITIVES & PROTOCOLS

• Bob chooses a random large integer b and sends to Alice: B = gb mod n

• Alice computes: ka = Ba mod n

• Bob computes: kb = Ab mod n

• Since both ka and kb are equal to gab mod n, both Alice and Bob arrive at the same value

As it can be seen from above, any Eve, listening in on the channel cannot compute the value (as

they only have access to the values n, g, A and B), unless they can compute the discrete logarithm,

discussed further in section 2.5.4. An eavesdropper can however spoof their identity, for example

in a man-in-the-middle attack [21]. In this situation, Eve, intercepts the public key belonging to

Alice, ka and replaces it with her own key, ke, which is sent on to Bob. Bob, assumes that ke is

Alices public key and replies; thereby establishing a shared key with Eve gbe. Eve then replies to

Alice to also acquire gae. It is now trivial for Eve to intercept messages between Alice and Bob,

access the contents of the message and then forward it on using either gae or gbe.

A method of protecting against this type of man-in-the-middle attack is through the use of digital

signatures, discussed further in Section 2.5.6.

2.5.3 The Integer Factorisation Problem (IFP)

In 1978, Ronald Rivest, Adi Shamir, and Len Adleman invented RSA [30], another public-key

system.

• Two distinct prime numbers of the same bit length, p and q are chosen at random.

• n is computed, where n = pq

• ϕ(n) = (p− 1)(q − 1) is computed where ϕ is Eulers totient

• An integer a is chosen such that a and ϕ(n) are coprime

• b is calculated, where b = a−1 mod ϕn

22

2.5. CRYPTOGRAPHIC PRIMITIVES & PROTOCOLS

• Set a as the public key and b as the private key

The RSA equation is given as:

kab = k mod n, ∀k (2.9)

Assuming that a and b are large enough, then the problem of determining the private key b from

the public key (n, a) is computationally equivalent to the problem of determining the factors p and

q of n. This is otherwise known as the Integer Factorisation Problem (IFP).

2.5.4 The Discrete Logarithm problem (DLP)

The discrete logarithm problem is defined as the problem of determining k such that [k]g = Q,

given g and Q using Equation 2.5. Described another way, given b mod p and bn mod p, find n.

Computing the exponentiation modulo the group order, (i.e. the encryption of) [k]g, can be per-

formed efficiently i.e. in polynomial time. The strength of the DLP comes from the inverse

operation; finding the logarithm is deemed intractable, i.e. computable in exponential time, and is

considered to be roughly equivalent to the difficulty of the IFP. The Diffe-Hellman key exchange

described in Section 2.5.2 is based on this problem.

2.5.5 The Elliptic Curve Discrete Logarithm problem (ECDLP)

The principles of the DLP can be applied to elliptic curves, resulting in the ECDLP.

Given an elliptic curve, E defined over a finite field Fq, a point P ∈ E(Fq) of order n, and a point

Q ∈ E(Fq) determine the integer n ∈ [0, . . .k, . . .n − 1] such that Q = k[P]

Q = [k]P = P + P + · · ·+ P
︸ ︷︷ ︸

k times

(2.10)

The operation Q = k[P], is referred to as a point scalar multiplication. Similar to the DLP,

computing Q = k[P] can be performed in polynomial time, while the inverse operation is deemed

NP-hard (non-deterministic polynomial-time hard) (although no mathematical proof of this exists).

23

2.5. CRYPTOGRAPHIC PRIMITIVES & PROTOCOLS

Given a small enough k, a brute force attack can be used to calculate the sequence of points of

P until k is found, however this is considered intractable once sufficiently large primes are used.

There are other attack methods uses to reduce the time taken or the complexity of the ECDLP,

however again, these are infeasable when using a large prime. The Pollard Rho [31] and the

Pohlig-Hellman [32] are two such attacks.

Since the ECDLP appears to be significantly harder than the DLP, the strength per key bit is sub-

stantially greater in elliptic curve systems than in conventional discrete logarithm systems. Thus,

smaller parameters can be used in ECC than with DL systems but with equivalent levels of security.

The advantages that can be gained from smaller parameters include speed (faster computations)

and smaller keys and certificates. These advantages are especially important in environments

where processing power, storage space, bandwidth, or power consumption is constrained.

2.5.6 Digital Signatures

It was described in Section 2.5.2 how the Diffe-Hellman Key Exchange is susceptible to man-in-

the-middle attacks. To counter these types of attacks, Diffie and Hellman also proposed the use of

a signature scheme [28]. The Digital Signature Algorithm (DSA) was proposed in August 1991,

by NIST and was specified in FIPS-186 [33] in May 1994. Its security is based on the intractability

of the discrete logarithm problem described in Section 2.5.4. By first signing the message with

their private key, prior to encrypting it with the recipients public key, the receiver can verify the

authenticity of the message using the senders public key. Essentially, the sender performs the

digital equivalent of a handwritten signature.

Johnson [34], defines a digital signature as a number dependent on some secret known only to the

signer (the signers private key), and, additionally, on the contents of the message being signed.

Signatures must be verifiable if a dispute arises as to whether an entity signed a document, an

unbiased third party should be able to resolve the matter equitably, without requiring access to

the signers private key. Digital signatures should be essentially unforgeable [35], and are used to

provide:

24

2.5. CRYPTOGRAPHIC PRIMITIVES & PROTOCOLS

• data Integrity; The assurance that data has not been altered by unauthorized or unknown

means.

• data origin authentication; The assurance that the source of data is as claimed.

• non-repudiation; The assurance that an entity cannot deny previous actions or commit-

ments.

The digital signature schemes can be classified according to the hard underlying mathematical

problem which forms the basis of their security:

• Integer Factorization (IF) schemes, which base their security on the intractability of the

integer factorization problem. e.g. RSA [30] and Rabin [36] signature schemes.

• Discrete Logarithm (DL) schemes, which base their security on the intractability of the

(ordinary) discrete logarithm problem in a finite field. e.g. ElGamal [37], and DSA [33]

signature schemes.

• Elliptic Curve (EC) schemes, which base their security on the intractability of the elliptic

curve discrete logarithm problem. e.g. ANSI X9.62 [38], FIPS 186-3 [33], IEEE 1363-

2000 [39] and ISO/IEC 15946-2 [40].

The Elliptic Curve Digital Signature Algorithm (ECDSA) along with its implementation are pre-

sented in Chapter 5.

2.5.7 Cryptographic Key Sizes

There are many different parameters which need to be chosen with care to ensure that an encryp-

tion scheme is resistant to all known attacks. This work only ensures that the size of the prime field

and the key size are sufficiently large as to be representative of this security metric. The interested

reader is referred to Chapter 4 of [19] for a full list of the other parameters and their generation.

As discussed earlier in this section, in symmetric key cryptography, the size of the key is directly

related to the security of the system, whereby, the larger the key size, the greater the security level.

25

2.5. CRYPTOGRAPHIC PRIMITIVES & PROTOCOLS

Table 2.1: ECRYPT II Security Level Recommendations (2010)

Discrete Logarithm Elliptic

Level Protection Symmetric Asymmetric Key Group Curve Hash

1 Attacks in real-time by individuals 32 - - - - -

Only acceptable for authentication tag size

2 Very short-term protection against small organizations 64 816 128 816 128 128

Should not be used for confidentiality in new systems

3 Short-term protection against medium organizations, 72 1008 144 1008 144 144

medium-term protection against small organizations

4 Very short-term protection against agencies, 80 1248 160 1248 160 160

long-term protection against small organizations

Smallest general-purpose level,

2-key 3DES restricted to 240 plaintext/ciphertexts,

protection from 2009 to 2012

5 Legacy standard level 96 1776 192 1776 192 192

2-key 3DES restricted to 106 plaintext/ciphertexts,

protection from 2009 to 2020

6 Medium-term protection 112 2432 224 2432 224 224

3-key 3DES, protection from 2009 to 2030

7 Long-term protection 128 3248 256 3248 256 256

Generic application-independent recommendation,

protection from 2009 to 2040

8 Foreseeable future 256 15424 512 15424 512 512

Good protection against quantum computers,

unless Shors algorithm applies

For asymmetric key cryptography, the standard benchmark is RSA, and in public-key cryptogra-

phy, two algorithms are considered to offer equivalent security (in a cryptographic sense), if the

work needed to break them is the same using a given resource [41]ii. As such, Table 2.1 presents

the recommendations for the minimum keysize required (in bits) data as defined by the Ecrypt

II [42] network of excellence in cryptology. The table gives eight levels of security, with level 5

being the current standard acceptable level of security. The second column presents the protection

being offered, while the rest present a symmetric key size from which equivalent asymmetric key

sizes are built. Column 3 presents the equivalent security in bits for a private key scheme. Col-

umn 4 indicates the bits required in RSA. Column 5 and 6 indicate the bits required in a system

based on the DLP in a finite field for both key and field size. Column 7 gives the bits required

for systems based on the ECDLP, while column 8 gives the recommended bit sizes for the SHA-2

hash algorithm. It can be immediately seen that the advantage ECC gives in size when compared

iiThe security strength represents the amount of work (i.e. the number of operations) that is required to break a

cryptographic algorithm or system. It is dependent on time complexity, computational resources, memory/data and the

possibility that certain specific attacks to that algorithm may provide computational advantages.

26

2.6. HARDWARE OVERVIEW

to RSA, and how this advantage grows as the security level increases.

Table 2.2: NIST Security Recommendations (2011)

Minimum Discrete Logarithm Elliptic (SHA)

Date Strength Symmetric Asymmetric Key Group Curve Hash

2010 80 2TDEA 1024 160 1024 160 224,256,384,512

2011 - 2030 112 3TDEA 2048 224 2048 224 224,256,384,512

> 2030 128 AES-128 3072 256 3072 256 256,384,512

>> 2030 192 AES-192 7680 384 7680 384 384,512

>>> 2030 256 AES-256 15360 512 15360 512 512

For comparison, Table 2.2 gives the NIST recommended minimum key sizes [41]. The first col-

umn indicates the timeframe that the level of security is likely to cover. Columns 2 and 3 give

the symmetric security level along with the symmetric algorithm required to provide this cover.

The subsequent columns again present the equivalent RSA, DLP, ECDLP and SHA-2 security

provided. The analysis from both groups is fairly similar with level 5 and 6 from Table 2.1 being

comparable to rows 1, 2 and 3 from Table 2.2.

2.6 Hardware Overview

Next, the different hardware used in this thesis is described. A Field Programmable Gate Array

(FPGA) is an integrated circuit which is user programmable; as opposed to an Application Specific

Integrated Circuit (ASIC), which is customised by the manufacturer for a particular use. FPGAs

are an attractive choice for implementing cryptographic algorithms, because of their low cost in

prototyping relative to ASICs. FPGAs are flexible when adopting security protocol upgrades,

as they can be re-programmed in-place, and FPGAs also allow rapid prototyping of designs. The

downsides however are they are larger in area and higher in power usage when compared to ASICs.

An FPGA can be described as an array of configurable logic blocks and interconnects, all of

which can be programmed by the user to describe combinational and sequential logic circuitry.

The components and connections which make up these logic blocks however, vary to a greater or

lesser degree between different manufacturers, and even between different families of the same

manufacturer.

27

2.6. HARDWARE OVERVIEW

Xilinx [43] and Altera [44] FPGAs are the two FPGA products used for the implementations of

the hash functions. The two basic measurement standards of an FPGA in the case of a Xilinx

device are Configurable Logic Blocks (CLB) or Slices, and for an Altera device they are, Logic

Array Blocks (LAB), Adaptive Logic Modules (ALMs) or Logic Elements (LEs).

For a more indepth description of the different types of FPGAs, ASICs and microprocessors, the

interested reader is invited to examine Chapter 3 of [16], or from the author [45].

2.6.1 Xilinx FPGA

Configurable logic blocks (CLB) are organized in an array and are used to build combinatorial and

synchronous logic designs. Each CLB element is tied to a switch matrix to access the general rout-

ing matrix. A CLB element comprises a number of similar slices, with fast local feedback within

the CLB. These slices are split into columns with independent carry logic chains and common

shift chain.

Each slice includes a number of multi-input Look-Up Tables (LUT), carry logic, arithmetic logic

gates, wide function multiplexers and storage elements, namely D-type flip-flops. CLBs can be

configured to operate as either a logic or a memory element. When operating as a logic element,

the LUTs are programmed to operate as combinational logic, with a 1-bit register, or as a variable-

tap shift register. As a memory element, each LUT is configured as an 2n× 1-bit Distributed RAM

block, where n is the number of inputs to the LUT. The slices also contains logic that combines

function generators to provide multiplexing, sum of products (SOP) chains, shift registers and

tri-state buffers used to drive on-chip buses.

In most cases, Xilinx CLBs share a similar make-up. There are distinctions though, as certain

families are designed for different specific purposes. For example, the Virtex-II Pro can use each

LUT as a 16× 1-bit RAM. Others come with a specific designation; ’L’ denoting a low power

version for example. The underlying technology is quite similar however. For the Spartan-3

onward, slices are seperated into those which include built-in RAM resources (SLICEM) and

those which do not (SLICEL), with two of the four slices in a CLB being SLICEM and two being

28

2.6. HARDWARE OVERVIEW

SLICEL. This allows each CLB to operate both as logic or memory.

The exception to this is the newer Virtex-5 and Virtex-6 families. They incorporate larger LUTs in

their CLB, and as such, can achieve more varied functionality than the previous generation FPGAs

(at a greater monetary cost). SLICEM logic for the Virtex-5 and Virtex-6 can be configured as 64-

bit Distributed RAM. While the Virtex-5 [46] was the main FPGA technology used in this work,

some implementations were also performed and comparisons were made a using the Spartan-

3 [47] and as such it is included here. Table 2.3 summarizes the logic resources in one CLB for

each of the target FPGA types.

Table 2.3: Area logic resources in one CLB per FPGA Type

FPGA Slices LUTs LUTs Storage Distributed Shift

Type 4-input 6-input Elements RAM (bits) Registers (bits)

Spartan 3 4 8 - 8 4x16 4x16

Virtex 5 2 - 8 8 4x16 2x64

All of the CLBs in a given FPGA device are identical and each CLB (or slice equivalent) can

be implemented in one of the configurations listed above. For the Distributed RAM and Shift-

Registers columns, the values given refer to the number of bits that one slice (or SLICEM) LUT

can be configured to store. For example, each Spartan-3 SLICEM LUT can be configured as

a 1 × 16-bit shift register, with 4 SLICEM LUTs per CLB, thereby allowing 4 × 16-bit shift

registers per CLB. These can also be configured in a smaller number of larger shift registers.

2.6.2 Memory and DSP Blocks

Some Xilinx FPGA devices also incorporate large block memory resources (BRAM) and dedi-

cated multiplier or DSP blocks.

The BRAM complements the distributed memory resources that provide shallow RAM structures

implemented using the CLBs. Implementing using BRAM (for example, S-boxes), can improve

the clock frequency while also reducing the number of slices required. Note the BRAM usage

does not show up in the CLB area result and so must be taken into account separately.

29

2.6. HARDWARE OVERVIEW

For the two devices, the Spartan-3 contains dedicated 18× 18-bit, twos complement signed mul-

tipliers. The Virtex-5 has an equivalent DSP block (DSP48E). In this case, each DSP48E slice

contains a 25 × 18 multiplier, an adder, and an accumulator. Table 2.4 summarizes the total area

per device type used in this work in slice and block memory available. The Spartan-3 device pre-

sented here is the XC3S5000 and two different Virtex-5 FPGAs are used; the XC5VLX50, used

on the SASEBO-GII cryptographic evaluation board [48], detailed further in Section 2.8, and the

XC5VLX110T, used on the Xilinx XUPV5-LX110T Evaluation Platform [49], detailed further in

Section 2.8.1.

Table 2.4: Total Area logic resources per FPGA Type

Slices BRAM BRAM Dedicated DSP Max User

(Blocks) (Kb) Multipliers Blocks i/o’s

xc3s5000 33,280 104 1,872 104 0 633

xc5vlx50 7,200 144 1,728 0 32 560

xc5vlx110t 17,280 444 5,328 0 64 680

2.6.3 FPGA Design

The Xilinx ISE Design Suite 12.3 [50] was used as the toolkit for the designs presented here

and VHDL (Very High Speed Integrated Circuit Hardware Description Language) was chosen to

implement the designs. The interested reader is directed to [51] for further information on VHDL.

The Synthesis tool takes the VHDL code and maps it to the physical components (i.e. the CLBs,

Slices and BlockMemory described in Section 2.6.1) of the target FPGA.

An initial synthesis determines that the circuit is error free and behaving correctly. Once this is

confirmed, post-place-and-route (P-P-R) is performed which maps the logic to the target FPGA

and returns a more accurate area and timing result. A bit-file is then generated which can be

downloaded to the FPGA, allowing it to perform the circuitry assigned to it by the VHDL. Further

information on architecture, implementation and optimization can be found in [51,52].

30

2.7. MICROBLAZE

2.7 Microblaze

A microprocessor incorporates the functions of a computer’s central processing unit (CPU) on a

single integrated circuit (IC). Microprocessors available for use in Xilinx FPGAs can be broken

down into two broad categories; soft-core and hard-core. Hard-core microprocessors, for exam-

ple the IBM PowerPC (Performance Optimization With Enhanced RISC Performance Comput-

ing) [53], are embedded into the fabric of certain FPGAs, namely some members of the Virtex-II

Pro, Virtex-4 and Virtex-5 FPGA families. These hard-core processor blocks cannot be removed

from the chip irrespective of whether they are used or not in any particular design. This method is

also known as System on a Chip (SOC).

The Microblaze [54], a soft-core virtual microprocessor, is a 32-bit Harvard RISC (Reduced In-

struction set Computer) architecture optimised for Xilinx FPGAs. It is designed using predefined

blocks, called cores, in the general-purpose memory and logic fabric an FPGA. Using this method

of adding cores as necessary, a specific microprocessor can be created containing only the blocks

required, thereby only using as much space as is necessary on the FPGA. It was selected for use in

the work presented in the thesis over other hard-core microprocessors due to its availability on the

Virtex-5 devices used (see Section 2.8). The MicroBlaze is highly configurable, allowing a specific

set of features to be applied to a design in addition to the FPGA hardware blocks implemented in

VHDL.

2.7.1 Microblaze Architecture & Implementation

The basis of the microblaze architecture is a single issue 3-stage pipeline, thirty-two 32-bit general

purpose registers, 32-bit instruction word with three operands and two addressing modes, a 32-bit

address bus, an ALU a shift unit and two levels of interrupt. This base design can then be be added

to with more advanced features, such as a barrel shifter, divider, multiplier, floating point unit, Fast

Simplex Link (FSL) interface etc. to allow a tailoring of the design to the required specifications.

Figure 2.2 gives a visual representation of the microblaze system, with the white items comprising

the base design and the shaded items showing some optional features.

31

2.7. MICROBLAZE

Register File

32X32b

Decode

Purpose

Special

Registers

Instruction

Bus

IF

Bus

IF

bus interface

Instruction−side

bus interface

Data−side

D
−

C
a

c
h

e

I−
C

a
c
h

e

FPU

Divider

Multiplier

Shift

Barrel

Shift

ALU
Counter

Program

Instruction

Buffer

Cache

Target

Branch

ITLB UTLB DTLB

Memory Management Unit (MMU)

ILMB

IXCL

IOPB DOPB

DXCL

DLMB

FSL

Figure 2.2: Microblaze Processor

The processor has up to three interfaces for memory accesses; Local Memory Bus (LMB) to pro-

vides single cycle access to on-chip dual port BRAM, the IBM On-chip Peripheral Bus (OPB) to

provide a connection between on-chip and off-chip peripherals and memory, and Xilinx Cache-

Link (XCL) for use with specialised external memory controllers. Microblaze also supports up to

eight FSL ports, each with one master and one slave FSL interface.

Xilinx Embedded Design Kit (EDK) [55] is a suite of tools and Intellectual Property (IP) that

enables a user to design an embedded processor system for implementation. It mainly comprises

of two main sections:

• Xilinx Platform Studio (XPS): The development environment used for designing the hard-

ware portion of the embedded processor system.

• The Software Development Kit (SDK): An integrated development environment, comple-

mentary to XPS, that is used for C/C++ embedded software application creation and verifi-

cation. SDK is built on the Eclipse open-source framework

32

2.8. HARDWARE ARCHITECTURE

2.7.2 FSL Bus

The Fast Simplex Link (FSL) [56] is a uni-directional point-to-point communication channel bus

used to perform fast communication between the Microblaze processor pipeline and user devel-

oped custom hardware accelerators (co-processors). This provides a mechanism for unshared and

non-arbitrated communication mechanism, thus allowing fast transfer of data words between mas-

ter and slave implementing the FSL interface. Table 2.5 gives the I/O signals used by the FSL.

Table 2.5: FSL Bus Signals

Signal IO Description

FSL Clk in Synchronous clock

FSL Rst in System reset, should always come from FSL bus

FSL S Clk in Slave asynchronous clock

FSL S Read in Read signal, requiring next available input to be read

FSL S Data out Input data. Multiple of 32-bit

FSL S Control out Control Bit, indicating the input data are control word

FSL S Exists out Data Exist Bit, indicating data exist on the input FSL bus

FSL M Clk in Master asynchronous clock

FSL M Write in Write signal, enabling writing to output FSL bus

FSL M Data in Output data. Multiple of 32-bit

FSL M Control in Control Bit, indicating the output data are control word

FSL M Full out Full Bit, indicating output FSL bus is full

The input and output are read in 32-bit blocks and requires two clock cycles, a read and an ac-

knowledge, per block. FIFO buffers read and release the data and are set prior to runtime.

2.8 Hardware Architecture

The hardware used to test the various algorithms, was implemented on the Xilinx Virtex-5 FPGA

and evaluated on the SASEBO-GII cryptographic evaluation board [48], as presented in Figure 2.3.

The SASEBO GII evaluation board comprises of:

• Two Xilinx FPGAs:

– A cryptographic FPGA : XC5VLX50 -FF324 (Virtex-5 series).

33

2.8. HARDWARE ARCHITECTURE

Figure 2.3: Sasebo GII

– A control FPGA : XC3S400A-4FTG256 (Spartan-3A series).

• An onboard 24Mhz clock. An external clock input is also supported.

• External power source supplying the on-board power regulators and the FPGAs.

2.8.1 Additional Hardware

The Microblaze designed for this work mostly uses a stripped down version, necessitated by size

constraints and a lack of external RAM, on the main Virtex-5 XC5VLX50 device used on the

SASEBO. However, some testing was also completed for comparison purposes on the Xilinx

XUPV5-LX110T Evaluation Platform [49], which uses a Virtex-5 XC5VLX110T, and allows full

use of the Microblaze components. The maximum clock frequency of the Microblaze when im-

plemented on this board is 125MHz. The board contains 256MB DDR2 RAM that the Microblaze

can access through an external memory controller. The implemented design uses the DDR2 RAM

for storing some of the code sections, the heap and stack are placed in 64kB of BRAM internal to

the FPGA. The general setup of the system is shown in Figure 2.4. In comparison, the SASEBO

34

2.9. HARDWARE CONSTRAINTS

design comprises the base Microblaze, an XPS timer, a clock generator, BRAM and some ancillary

components.

Microblaze

Virtex 5 FPGA

BRAM

external memory controller

DDR2 RAM

xps_timer

plb bus

plb bus

plb bus

Figure 2.4: Microblaze Design on XUPV5

The description given above is necessarily short and the interested reader is directed to [54,55,57]

for a complete description of the Microblaze and its components.

2.9 Hardware Constraints

As a final overview in this section, some constraints and trade offs are examined. Whether neces-

sitated by security, the throughput required for a system, or the size limitations associated with a

particular device, constraints are required to achieve the best performance for any particular met-

ric at the cost of others. Here, a brief description of side channel attacks along with some design

constraints are presented.

35

2.9. HARDWARE CONSTRAINTS

2.9.1 Side Channel Attacks

One element to take into account when designing a public key cryptosystem is the security of

the system. Implementations can leak sensitive information during the execution of a compu-

tation [58], and this may lead to a release of secret information, no matter how mathematically

secure the system may be.

A side channel attack (SCA) is any attack based on information gained from the physical imple-

mentation of a cryptosystem, rather than brute force or theoretical weaknesses in the algorithms.

This method consists of monitoring some side channel information, such as the power consump-

tion emmisions [59], and using the data emitted to deduce, or partially deduce, the inner workings

of the system [60] through the leaked information, such as timing information, power consumption

or electromagnetic leaks, in some cases making recovery of the key a trivial matter.

Power analysis attacks can be grouped into two categories, simple power analysis (SPA) and dif-

ferential power analysis (DPA) [59]. Simple power analysis (SPA) involves visually interpreting

power traces from an oscilliscope while Differential power analysis (DPA) is a more advanced

form of power analysis which statistically analyses data collected from multiple runs of crypto-

graphic operations. As such, in order to carry out such an attack, the attacker needs physical access

to the device running the cryptographic algorithm. Smart cards are particularly vulnerable to this

type of attack as the attacker normally has unlimited access. There are several countermeasures

available to prevent such an attack. Since this work is concerned with elliptic curve implementa-

tions we only concern ourselves with the mathematical countermeasures applicable to them, such

as the various algorithms presented in Chapter 3. An example of an FPGA under SPA attack is

shown in Figure 2.5. The different instructions being processed can clearly be observed on the

oscilliscope measuring the power line.

2.9.2 Area, Speed, Power and Energy

Along with the surge in demand for smaller and smaller handheld computerised devices such as

smart phones and smart cards, is the demands for longer battery life, more functionality, higher

36

2.9. HARDWARE CONSTRAINTS

Figure 2.5: SPA analysis using FPGA

speeds and lower power. All of which are critical design constraints, and in many occasions a

trade off is needed to select the best ratio of one to another.

The energy consumed by an electronic circuit when performing a computation is equal to the

product of the average power and the computation time. Therefore, to minimise the energy a

designer must attempt to reduce both the power consumption and the calculation time (speed).

Dedicated hardware to perform elliptic curve operations can help to alleviate both of these needs

at the same time. A small dedicated circuit will have a lower power consumption than a large,

general purpose processor. Also, by exploiting parallelisation in the design the circuit will also be

able to reduce the computation time. However care must be taken, as there comes a point where the

addition of extra parallelisation leads to a decrease in the efficiency, and results in a small increase

in speed at the cost of large increase of area. Both of these factors combine to offer potential

energy savings that could offset the initial cost of the design of dedicated hardware. Through the

careful examination of the Area-Time and Area-Energy tradeoff, where Power P and Energy E

are defined by:

P = IV, (2.11)

37

2.10. PERFORMANCE METRICS

E = PAvgT, (2.12)

where V is the voltage, I is the current, PAvg is the average power and T is the time.

Although the Xilinx ISE Design Suite provides its own power estimation tool, XPower Analyzer,

to measure the power consumption of FPGA devices, the estimated values derived by the tool are

considered to be not particularly accurate and estimation errors have been shown to range from

17.5%-200% [61]. Therefore, for accuracy, all power and energy results are measured from the

hardware.

2.10 Performance Metrics

As a method of comparing the different designs presented in this thesis, some metrics were devel-

oped. The area-time product (ATP) was calculated to get a representation of any speed decrease

relative to the increase in design size. This gives a more accurate representation of the cost in

relation to the overall system. The area-energy product (AEP) was calculated using the power to

give a representation of the energy increase against the increase in size. The power generally in-

creases with an increase in area, however the energy costs are reduced due to the calculation being

performed faster. This shows the best increase in area for a decrease in energy. In both cases, the

lower the value, the better the performance.

Another standard metric used to allow a baseline comparison between designs, namely the area-

speed trade-off, is the throughput per unit area (TPA) metric. Analysing the throughput per slice

of the architectures, determines which designs make the most efficient use of FPGA area.

The throughput is calculated as follows:

Throughput =
Bits in a message block×Maximum clock frequency

Clock cycles per message block
(2.13)

Along with these metrics, the area, computation speed, number of clock cycles, power and en-

ergy measurements are all used to describe the relative costs and benefits of each of the designs

38

2.11. CONCLUSIONS

presented in this thesis.

2.11 Conclusions

This chapter has provided the background information necessary for the rest of the thesis. The

concept of cryptography was introduced and a short background of its history was presented.

It was shown that an elliptic curve system consists of four main layers, the finite field layer, the

elliptic curve point operation layer, the scalar multiplication layer and the protocol layer. Each of

these layers of elliptic curve cryptography were presented and described, along with the mathe-

matical background necessary to understand them.

A description of cryptographic primitives and protocols was given. Symmetric-Key and Public-

Key cryptography were described. The Integer Factorisation Problem (IFP), the Discrete Loga-

rithm problem (DLP) and the Elliptic Curve Discrete Logarithm problem (ECDLP) were defined

and how they are used in protocols was described. A short analysis of cryptographic key sizes was

also presented.

The platform tools used to form the underlying technology were described with a short introduc-

tion to FPGAs and the Microblaze soft-core processor along with the Xilinx Embedded Design

Kit used to generate it. The Sasebo GII cryptographic evaluation board and the Xilinx XUPV5-

LX110T Evaluation Platform were presented, upon which, most implementation testing was done.

Constraints associated with hardware implementations were examined and the concept of side

channel attacks was introduced along with various countermeasures relevant to this work. Trade-

offs between area, speed, power and energy were also presented and some metrics were defined

which allow a baseine comparison between the different implementations presented in the thesis.

39

3
Elliptic Curve Cryptography

3.1 Introduction

It was seen in Chapter 2 that finite field arithmetic underpins all elliptic curve based cryptosys-

tems. The efficiency of the system will depend in large part on the efficiency with which addition,

multiplication, squaring and division/inversion can be performed in the underlying field. An as-

sumption is often made that metrics and operations associated with software easily port over and

compare to their hardware equivalents [20, 62]. While for the general case this is true, there are

certain aspects specific to hardware, which provides a benefit for using it. Hardware is generally

much faster than software, requires no additional processing power on the part of the computer

3.1. INTRODUCTION

and generally has more integrity than software-based encryption since it usually operates as a

stand alone unit whereas software based solutions tend to share resources. Indeed the inverse is

also true and software provides benefits of its own; much simpler to deploy and is relatively easy

to extend access to various users.

However, there are some specific differences between implementing any particular algorithm in

hardware or in software. For example, on FPGAs, RAM blocks are used to hold the coordinates

and results from particular calculations. Remarked in various literatures [63, 64] is the use of as

minimal as possible temporary registers for resource constrained systems. This is not so relevant

on FPGAs, as through the use of these blocks of RAM (BRAM), the minimum number of BRAM

available for any pb = 192, where pb is the field size in bits, is identical for any number of

addresses between 2 and 1024.

Another difference between hardware and software, specifically for prime field (Fp) arithmetic

in this case, is the use of squarings. Squarings are relatively straightforward in software, and

indeed in binary extension fields, GF(2m), where a dedicated squarer can be significantly more

efficient in terms of both time and area, and essentially comprises of a two step process of inserting

interleaved zeros followed by a reduction [16, 65]. In Fp a squaring is essentially equivalent to a

multiplication, and as such, multiplication architecture tends to be used to perform field squaring

simply by setting the two inputs of the multiplier to the same value, rather than implementing a

specific squaring architecture, which would result in extra area for only a minor computation time

increase.

However, results presented for the current state of the art algorithms tend to be based on the cost

in software [20, 66] and distinctions are made between multiplications and squarings. Taking an

example from the previous chapter for point addition and point doubling as given in Equation 2.7

and Equation 2.8, it can be seen that the computations involve multiplications (M), squarings (S)

inversions (I), additions (add) and subtractions (sub). In the context where p is a large prime, it is

often assumed for software that:

• The inversion cost is I ≈ 10M.

41

3.1. INTRODUCTION

• The squaring cost is S ≈ 0.8M.

• The addition cost is equal to the subtraction cost and only takes a few clock cycles, add ≈

sub.

While these costs are architecture reliant in a hardware based system, they are in general equiv-

alent. For the work presented in this thesis, a multiplication takes pb clock cycles, where pb is

the field size in bits and squarings are seen as equivalent to multiplications. It is also stated nu-

merous times in the literature [63, 64, 67]) that field addition and subtraction costs are generally

ignored as being negligable in comparison to multiplications or inversions. This is in general true

in a one-to-one conversion, however, as shown in [68], these operations are not insignificant for

hardware devices, especially when taken alongside other relatively small but numerous operations.

The additions and subtractions presented here take between 2− 4 clock cycles.

While these differences between software and hardware would all appear to be minor, the numer-

ous calculations required to be performed over a large prime field can result in some significant

differences between results reported in the literature for software based implementations and ac-

tual implemented hardware performance.

This chapter examines the performance of various elliptic curve algorithms for prime field (Fp)

arithmetic on a reconfigurable elliptic curve processor (ECP). The underlying modular arithmetic

is presented and different parallel configurations of the processor are investigated in an attempt to

select the best performing algorithms for a hardware based system.

The rest of the chapter is presented as follows. Section 3.2 describes the various forms of dedicated

point doubling and point addition algorithms, namely the Double-and-Add algorithm, specifically

in a number of differing coordinate systems, continuing on from the introduction provided in 2.4.2.

Section 3.2.4 describes a new form of special curve, namely the twisted Edwards. Recent updates

to this type of curve in the form of the extended twisted Edwards are also examined.

Section 3.3 then describes the reconfigurable elliptic curve processor in detail and presents meth-

ods for modular arithmetic along with methods for performing the scheduling and calculating the

efficiency. Finally, the algorithmic cost of these algorithms and their cost in area for the elliptic

42

3.2. DEDICATED DOUBLING AND ADDITION

curve processor are examined for differing numbers of multipliers in parallel.

Section 3.4 describes a method and circuitry for examining the power dissipation and for calcu-

lating the energy and computation time for the various algorithms.

Section 3.5 then goes on to further describe power analysis attacks and how the algorithms ex-

amined so far are susceptible to this type of side channel attack. Various power analysis attack

secure methods are then examined, namely dummy arithmetic instructions in Section 3.6, unified

doubling and addition in Section 3.7 and regular algorithms in Section 3.8. The algorithmic cost

and area, energy and timing results of these SPA secure algorithms are examined in Section 3.9

and Section 3.10.

Section 3.11 then expands on the top performing algorithms and examines the performance for

larger key and field parameters, examining the additional cost associated with security for the

current and forseeable future based on NIST specifications. Finally conclusions are presented in

Section 3.12.

3.2 Dedicated Doubling and Addition

The Double-and-Add algorithm is the classic method for evaluating scalar multiplication, Q =

k[p]. It works on the relation that

k[p] = 2([
k

2
]p); k = even,

k[p] = (2([
k

2
]p) + p); k = odd.

(3.1)

Iterating the process yields a scalar multiplication algorithm, left to right scanning scalar k. This

algorithm is also known as the left-to-right binary method and is presented in Algorithm 1. This

Double-and-Add algorithm requires bk − 1 point doubling operations where bk is the bit length of

the key, and w(k) point additions, where w(k) is the Hamming weight of the key.

43

3.2. DEDICATED DOUBLING AND ADDITION

Algorithm 1: Double-and-Add

input : p ∈ E(Fq); k =
∑nk−1

i=0 ki2
i

output: Q = [k]p ∈ E(Fq)

Initialise: Q = p;

for i← nk − 2 to 0 do

Q = 2Q –point double (PD);

if Ki = 1 then
Q = Q+ p –point addition (PA)

end

end

3.2.1 Affine Coordinate System

Elliptic point representation in two coordinates, (x, y), is called affine representation. Simplifying

equations 2.7 and 2.8 to equations 3.2 and 3.3 for (PA) and (PD) respectively, it is obvious that

the computational cost in affine coordinates for the point addition (PA) formula for this type of

representation comprises one inversion and three multiplications, 1I, 2M, 1S and 6add while the

point doubling (PD) formula comprises one inversion and four multiplications, 1I, 2M, 2S and

4addi.

λ = (
y2 − y1
x2 − x1

)

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1.

(3.2)

λ = (
3x21 + a

2y1
)

x3 = λ2 − 2x1

y3 = λ(x1 − x3)− y1.

(3.3)

Clearly, for both PA and PD the field Inversion will be the dominant calculation and as such

the most costly operation. To avoid the need to compute these costly inversions, other coordinate

systems can be used.

3.2.2 Projective Coordinate System

One such coordinate system is projective coordinates, which uses the set of three points (X, Y, Z).

Using this method, inversion can be avoided, albeit at the cost of extra additions. Conversions from

iAs stated earlier in the introduction M = S in Fp and as such are interchangeable. Where necessary, they will be

referred to specifically as M

44

3.2. DEDICATED DOUBLING AND ADDITION

and to affine coordinates are made and occur only once, at the beginning and the end of a point

scalar multiplication. To convert from affine to projective coordinates, it is sufficient to set the Z

coordinate equal to one.

(x, y) 7→ (X, Y, 1) (3.4)

The cost of conversion back to affine from projective is two multiplications and an inversion.

(
X

Z
,
Y

Z
) 7→ (x, y) (3.5)

As such, the projective form of the Weierstraß equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (3.6)

defined over a field k is

E : Y 2Z + a1XYZ + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3 (3.7)

For standard projective coordinates, after re-labelling a4 = a, a6 = b, the short Weierstraß equa-

tion can be defined [20]:

y2 = x3 + ax + b (3.8)

The projective form of the short Weierstraß equation defined over k is

Y 2 = X3 + aXZ2 + bZ3 (3.9)

The point at infinity OOO corresponds to (0:1:0), and the negative of (X : Y : Z) is (X : −Y : Z).

The points of the line at infinity do not correspond to any of the affine points.

The equations governing PA and PD in projective coordinates using the Double-and-Add method

are given in Algorithms 2 and 3 respectively. Each PA requires 12M, 2S and 7add. Each PD

requires 8M, 5S and 13add.

45

3.2. DEDICATED DOUBLING AND ADDITION

Algorithm 2: Point Addition in Projective Coordinates

input : P (X1, Y1, Z1);

Q(X2, Y2, Z2) ∈ Fq

output: P +Q(X3, Y3, Z3) ∈ E(Fq)

A = X2Z1 −X1Z2, B = Y2Z1 − Y1Z2,
C = B2Z1Z2 − A3 − 2A2X1Z2,

X3 = AC,
Y3 = B(A2X1Z2 − C)− A3Y1Z2,

Z3 = Z1Z2A
3

Algorithm 3: Point Doubling in Projective Coordinates

input : P (X1, Y1, Z1) ∈ Fq

output: [2]P (X3, Y3, Z3) ∈ E(Fq)

A = 3X2
1 + a4Z

2
1 , B = Y1Z1,

C = X1Y1B,D = A2 − 8C,

X3 = −2BD,
Y3 = A(4C −D)− 8Y1B

2,

Z3 = 8B3

The full breakdown for the Double-and-Add algorithms, directly used to generate the instruc-

tion set schedule for the elliptic curve processor described in Section 3.3 are described in Ap-

pendix A.1.

3.2.3 Jacobian Coordinate System

Another commonly used coordinate system is Jacobian coordinates. The point at infinityOOO corre-

sponds to (1 : 1 : 0), and the negative of (X : Y : Z) is (X : −Y : Z). Conversion from Jacobian

to affine coordinates is trivial and again it is sufficient to set the Z coordinate equal to one.

(x, y) 7→ (X, Y, 1) (3.10)

The cost of conversion back to affine from projective is four multiplications and two inversions.

(
X

Z2
,
Y

Z3
) 7→ (x, y) (3.11)

46

3.2. DEDICATED DOUBLING AND ADDITION

The Jacobian form of the short Weierstraß equation, Equation 3.8, defined over k is

Y 2 = X3 + aXZ4 + bZ6 (3.12)

The equations governing PA and PD in Jacobian projective coordinates using the Double-and-Add

method are given in Algorithms 4 and 5 respectively. Each PA requires 12M, 4S and 7add. Each

PD requires 6M, 4S and 13add.

Algorithm 4: Point Addition in Jacobian Coordinates

input : P (X1, Y1, Z1);

Q(X2, Y2, Z2) ∈ Fq

output: P +Q(X3, Y3, Z3) ∈ E(Fq)

A = X1Z
2
2 , B = X2Z

2
1 ,

C = Y1Z
2
2 , D = Y2Z

3
1 ,

E = B −A, F = D −C,

X3 = −E3 − 2AE2 + F 2,
Y3 = −CE3 + F (AE2 −X3),

Z3 = Z1Z2E

Algorithm 5: Point Doubling in Jacobian Coordinates

input : P (X1, Y1, Z1) ∈ Fq

output: [2]P (X3, Y3, Z3) ∈ E(Fq)

A = 4X1Y
2
1 , B = 3X2

1 + a4Z
4
1 ,

X3 = −2A+ B2,
Y3 = −8Y 4

1 + B(A−X3),

Z3 = 2Y1Z1E

It can be seen from the standard projective algorithms, Algorithms 2 and 3, and the Jacobian

projective algorithms, Algorithms 4 and 5, thatPD in standard projective has more multiplications

than Jacobian, but less for PA. Therefore, a key with a low Hamming weight (and therefore less

point additions when compared to point doubles), would be better suited to Jacobian coordinates.

However, the extra multiplications in the Jacobian PD, would somewhat offset this saving.

47

3.2. DEDICATED DOUBLING AND ADDITION

3.2.4 Twisted Edwards Curves

In 2007, Edwards [69] introduced an addition law on the curves

x2 + y2 = c2(1 + x2y2), ∀c ∈ k (3.13)

where k is a field of characteristic not equal to 2. He showed that if k is algebraically closed, then

every elliptic curve over k is isomorphic to a curve of this form. If k is finite this is not necessarily

true, and in fact holds only in a very limited number of cases.

In [3], Bernstein and Lange generalised this addition law to the curves

x2 + y2 = 1 + dx2y2, ∀d ∈ k \ {0, 1} (3.14)

More generally, they considered

x2 + y2 = c2(1 + dx2y2) (3.15)

where c, d ∈ k with cd(1− c4.d) 6= 0. However, any such curve is isomorphic to one of the form

x2 + y2 = 1 + d′x2y2 for some d′ ∈ k (3.16)

so it is assumed that c = 1. These curves are referred to as Edwards curves.

Bernstein and Lange showed that if k is finite, a large class of elliptic curves over k (all those

which have a point of order 4) can be represented in Edwards form. To describe the addition law

in more general terms, recall from Section 2.4.1 that for standard operations on the points on any

elliptic curve, such as adding, doubling or tripling points, usually, given two points P and Q on

an elliptic curve, the point P +Q is directly related to the third point of intersection between the

curve and the line that passes through the two points. For Edwards curves this is not the case. The

curve expressed in Edwards form has degree 4, so drawing a line provides not 3 but 4 points of

48

3.2. DEDICATED DOUBLING AND ADDITION

intersection on the curve.

In [70], Bernstein et al. introduced the twisted Edwards curves

ax2 + y2 = 1 + dx2y2 (3.17)

where a, d ∈ k are distinct and non-zero, and showed that every elliptic curve with a representation

in Montgomery form [4] is birationally equivalent to a twisted Edwards curve. The projective form

of twisted Edwards are used to again avoid inversion.

These curves are not entirely compliant with standard specifications as NIST [71] only gives one

elliptic curve over a prime field for each size, i.e., the curves P-256, P-384 and P-521. There are

as yet no officially recommended curves in Edwards or twisted Edwards form from the standards

bodiesii. However, these special form curves (also including Montgomery curves [4] and Hessian

curves [73, 74]) have performance advantages over general elliptic curves [3] in relation to faster

scalar multiplication and faster PA and PD.

Algorithm 6: Point Doubling in twisted Edwards Coordinates

input : P (X1, Y1, Z1) ∈ Fq

output : [2]P (X3, Y3, Z3) ∈ E(Fq)

Ensure: (X1 : Y1 : Z1) with Z1 6= 0 satisfy aX2Z2 + Y 2Z2 = Z4 + dX2Y 2

X3 = 2X1Y1(2Z
2
1 − Y 2

1 − aX2
1),

Y3 = (Y 2
1 − aX2

1)(Y
2
1 + aX2

1),
Z3 = (Y 2

1 + aX2
1)(2Z

2
1 − Y 2

1 − aX2
1).

Note that the projective twisted Edwards curve has two singular points, (1 : 0 : 0) and (0 : 1 : 0),

and the addition law is not defined at these points. An implementation of Edwards or twisted

Edwards curve - based cryptography should not allow either of these points as inputs. For standard

projective twisted Edwards, each PA requires 11M and 8add as shown in Algorithm 6, while the

PD requires 7M and 7add as shown in Algorithm 7. as given in Appendix A.2.

iiThe curve parameters used in this work for twisted Edwards are taken from the literature, namely [66,70,72]

49

3.2. DEDICATED DOUBLING AND ADDITION

Algorithm 7: Point Addition in twisted Edwards Coordinates

input : P (X1, Y1, Z1);
Q(X2, Y2, Z2) ∈ Fq

output : P +Q(X3, Y3, Z3) ∈ E(Fq)
Ensure: (X2 : Y2 : Z2) with Z2 6= 0 and T2 = X2Y2/Z2 satisfy

aX2Z2 + Y 2Z2 = Z4 + dX2Y 2

X3 = (X1Y2 − Y1X2)(X1Y1Z
2
2 +X2Y2Z

2
1),

Y3 = (Y1Y2 + aX1X2)(X1Y1Z
2
2 −X2Y2Z

2
1),

Z3 = Z1Z2(X1Y2 − Y1X2)(Y1Y2 + aX1X2).

3.2.5 Extended Twisted Edwards

In [72], Hisil presented homogeneous projective coordinate building on work presented in [70] on

twisted Edwards curves. He examined homogeneous projective, inverted coordinate, extended ho-

mogeneous projective and mixed coordinate systems. Using this system each point is represented

with four coordinates, (X, Y, T, Z) instead of the standard (X, Y, Z). This auxiliary coordinate T ,

results in a speedup over standard twisted Edwards curves and is defined as T = XY/Z. While

this additional coordinate system results in an increase to the complexity of the point doubling

formula, the cost of the point addition formula decreases and consequently the dedicated addition

can be performed much faster. In this work, the extended homogeneous projective coordinates are

examined.

Algorithm 8: Point Doubling in Extended twisted Edwards Coordinates

input : P (X1, Y1, T1, Z1) ∈ Fq

output : [2]P (X3 : Y3 : T3 : Z3) ∈ E(Fq)

Ensure: (X1 : Y1 : T1 : Z1) with Z1 6= 0 and T1 = X1Y1/Z1 satisfy

aX2Z2 + Y 2Z2 = Z4 + dX2Y 2

X3 = 2X1Y1(2Z
2
1 − Y 2

1 − aX2
1),

Y3 = (Y 2
1 − aX2

1)(Y
2
1 + aX2

1),
T3 = 2X1Y1(Y

2
1 − aX2

1),

Z3 = (Y 2
1 + aX2

1)(2Z
2
1 − Y 2

1 − aX2
1).

The projective twisted Edwards, requires 9M and 7add for each PA, and requires 8M and 7add

for each PD as given in Algorithm 8 and Algorithm 9. The full breakdown for the twisted and

50

3.2. DEDICATED DOUBLING AND ADDITION

Algorithm 9: Point Addition in Extended twisted Edwards Coordinates

input : P (X1, Y1, T1, Z1);
Q(X2, Y2, T2, Z2) ∈ Fq

output : P +Q(X3, Y3, T3, Z3) ∈ E(Fq)
Ensure: (X2 : Y2 : T2 : Z2) with Z2 6= 0 and T2 = X2Y2/Z2 satisfy

aX2Z2 + Y 2Z2 = Z4 + dX2Y 2

X3 = (X1Y2 − Y1X2)(T1Z2 + Z1T2),

Y3 = (Y1Y2 + aX1X2)(T1Z2 − Z1T2),
T3 = (T1Z2 + Z1T2)(T1Z2 + Z1T2),

Z3 = (X1Y2 − Y1X2)(Y1Y2 + aX1X2).

extended twisted Edwards algorithms used to generate the instruction set schedule are given in

Appendix A.2.

3.2.6 Dedicated Algorithm Overview

As a synopsis of each of the Double-and-Add algorithms in different coordinate systems covered

so far, along with the twisted Edwards algorithms, Table 3.1 gives the calculation cost for PA and

PD, where A = Affine, P = Projective, J = Jacobian, tE = twisted Edwards and eE = extended

twisted Edwards. The cost is given in multiplications and squarings in columns 2 and 5, and in

multiplication only in columns 3 and 6.

Table 3.1: Operation Count for Double-and-Add

Point Addition Point Double

Coordinate M and S M only Coordinate M and S M only

A+ A 7→ A 1I 2M 1S 6add 1I 3M 6add [2]A 7→ A 1I 2M 2S 4add 1I 4M 4add
P + P 7→ P 12M 2S 7add 14M 7add [2]P 7→ P 8M 5S 13add 13M 13add
J + J 7→ J 12M 4S 7add 16M 7add [2]J 7→ J 6M 4S 13add 10M 13add

tE + tE 7→ tE 10M 1S 7add 11M 7add [2]tE 7→ tE 3M 4S 7add 7M 7add
eE + eE 7→ eE 9M 7add 9M 7add [2]eE 7→ eE 4M4S 7add 8M 7add

It can be seen from Table 3.1 that the affine coordinates have relatively few multiplications in

comparison to the others but both PA and PD involve a costly inversion. The projective Double-

and-Add has less multiplications for the PA than the Jacobian, but more multiplications for the

PD. By contrast, both the twisted Edwards and extended twisted Edwards require less multiplica-

51

3.3. ELLIPTIC CURVE CRYPTOGRAPHIC PROCESSOR

tions than the projective and Jacobian, with the twisted Edwards requiring 2M more for addition

and 1M less for doubling than the extended twisted Edwards. It should also be noted that both vari-

ants of Edwards require an additional multiplication by a constant, d, for PD. For PA, standard

twisted Edwards requires two additional multiplications by constants, while the extended variant

requires one. These constants can be set to low values to achieve additional speedup.

There are many more projective coordinate systems, such as LópezDahab, Chudnovsky, and in-

deed many other mixed coordinate systems. The interested reader is directed to [19] for further

information on these curves.

3.3 Elliptic Curve Cryptographic Processor

Next, hardware was developed to implement the various algorithms. The elliptic curve crypto-

graphic processor (ECP), shown in Figure 3.1, is of a similar design to the one used in [75]. It can

be modified to perform any number of different algorithms in Fq. It consists of control circuitry,

BlockRAM for storage of results and a user defined number of computation units, namely field

multipliers, squarers, inversions, adders and subtracters for the operations described in previously,

all generated for FPGA using the Xilinx ISE 12.3 design suite.

This generic architecture is used in the thesis to perform baseline comparisons between each of

the different elliptic curve algorithms and allows the development of a performance based ranking

system describing the hierarchy of the different algorithms.

3.3.1 Control

The controller section consists of an finite state machine (FSM), an instruction set stored in ROM,

the register for storage and manipulation of the key value and associated logic. The ROM block

was generated with Xilinx BlockROM and contains the instructions necessary to run a particular

algorithm, namely the address locations in RAM to be accessed and the particular computation

units required for each particular control step. Using this method, only minor changes to the FSM

52

3.3. ELLIPTIC CURVE CRYPTOGRAPHIC PROCESSOR

8

UNIT

3

UNIT

L

UNIT

2

UNIT

1

8

8

3 sel Address

Decoder

Address

Decoder

3 load

3 ctrl

p
b

p
b

p
b

addr
8

2
we

RAM

sel(3) sel(L)

dindata_in

sel(0)

data_out

.............

sel(2)sel(1)

dout B
dout A

ROM

addr

Controller

Figure 3.1: Elliptic Curve Processor

and the target algorithm instructions need to be changed to generate the ECP for any particular

algorithm; thereby allowing for accurate comparison of the different implementations.

3.3.2 Modular Arithmetic

The adder and subtracter circuitry is generated using single clock carry propagate adders, and is

defined as the computation of S = A + B(mod p). For modular addition, the modular addition

operation adds A and B in the first adder and subtracts the modulus p from the sum. To subtract

the modulus from the intermediate result, the modulus is bitwise inverted and added to (A + B)

with the carry-in set to 1, thus performing a two’s complement subtraction. The carry-out of the

second adder controls which intermediate result is the correct result. If (A + B) is in the correct

range, the result of the first adder is the correct result. Otherwise, the result from the second adder

is correct. For modular subtraction, B is bitwise inverted and added to A with the carry in set to 1.

If the carry-out of this adder is low, the modulus p is added to give an output in the correct range.

The architecture is shown in Figure 3.2, and the circuit performs an addition or subtraction in four

clock cycles, comprising two clocks for the additions and two clocks for move operations from

and to the RAM.

These arithmetic units are connected to the ECP as shown in Figure 3.1. The instruction set stored

53

3.3. ELLIPTIC CURVE CRYPTOGRAPHIC PROCESSOR

0 1

0 1

0 1

10

Cin

Cin

Pb+1

Pb

Pb+1 Pb

pBASel

Pb+1

Pb+1

Cout

Cout

R

Figure 3.2: Modular Adder-Subtracter

in ROM selects the address locations in the RAM along with any arithmetic units required to

perform the calculations for a given step. When the calculations are completed, the result is stored

back in RAM. It is clear from the diagram that any number of these units can be added in parallel

to the circuit, at a cost of additional area and a larger ROM address bus to allow selection between

them.

3.3.3 Modular Multiplication

For modular multiplication, again designed using carry propagate adders and following the process

described in the Montgomery multiplication algorithm [76], the binary number can be computed

while avoiding the need to perform a division by the modulus.

The result of a Montgomery multiplication is out by a factor of 2−pb+2, where pb is the field size

in bits. Due to the large number of multiplications required for calculation by the elliptic curve

processor, it is more cost effective to initially convert all values to the Montgomery domain. At

54

3.3. ELLIPTIC CURVE CRYPTOGRAPHIC PROCESSOR

Algorithm 10: Montgomery Multiplication

input : A =
∑pb

i=0 ai2
i;B =

∑pb
i=0 bi2

i;M =
∑pb

i=0 pi2
i

output: R = AB2−pb+2(mod p)

Initialise: R← 0; bpb + 1← 0
for i← 0 to pb + 1 do

qi = Ri−1 + biA(mod p)
Ri = (Ri−1 + qiM + biA)/2

end

the beginning of a point scalar multiplication, the input points are converted to the Montgomery

domain and all subsequent arithmetic operations are carried out in this domain. The final result of

the point scalar multiplication is then converted back to the integer domain. The number is Mont-

gomery multiplied by 22pb+2(mod p) for conversion to the Montgomery domain. For conversion

from the Montgomery domain, the number is Montgomery multiplied by 1. The Montgomery

modular product is defined as:

R = Mont(A,B, p) = AB2−pb+2(mod p) (3.18)

where Mont is a Montgomery multiplication. The original proposal of Montgomery has a con-

ditional subtraction at the end of the algorithm. In this work, the number of iterations performed

is pb + 2 in order to bound the output in the range [0, 2p− 1] for multiplicands up to twice the

modulus [77]. This allows it to be used as an input to further multiplications without the need for

the conditional subtraction.

The Architecture is shown in Figure 3.3 and Montgomery multiplication is performed according

to Algorithm 10. The inputs to the first adder are BiA and the previous result Ri−1. qip is added

to the sum of the first adder if the LSB of the sum, qi, is equal to 1. A shift register scans each bit

of B for BiA and the final result is right shift divided by 2. The circuit performs a multiplication

in pb + 2 cycles, inclusive of move operations.

55

3.3. ELLIPTIC CURVE CRYPTOGRAPHIC PROCESSOR

Cin

Cin Cout

Cout

R i−1

A pB

R

Pb+3

Pb+3
Pb+3

Pb+3

Pb+3

"0"

Pb+3

SHIFT

Pb+3

Figure 3.3: Modular Multiplier

3.3.4 Modular Inversion

The Extended Euclidean Algorithm (EEA) forms the basis for computing inversion using the

Montgomery inverse [78]. The Montgomery modular inverse of an integer A ∈ [1, m − 1] is

given by

R = A−12k (mod M)

where k is the bit length of the modulus. The methods presented by Crowe [78] and Kaliski [79]

of breaking the algorithm into two distinct phases, as shown in Algorithms 11 and 12 are used in

this work.

For Phase 1:

• The While loop performs the EEA.

56

3.3. ELLIPTIC CURVE CRYPTOGRAPHIC PROCESSOR

• For each iteration of the EEA:

– The U
2 and V

2 variables are compared, and subtracted dependent on which value is

greater.

– A switch variable is used to determine whether the variables RSa or RSb should be

doubled in each operation.

• Continue until V = 0.

• The final steps perform a modular correction to bring the output into the correct range

[1,M − 1].

– RSb is subtracted from RSa, performing a conditional subtraction of the modulus.

– M is added to the result if a negation of the result is necessary.

• Following this, the output should be R = −A−12t, where R ∈ [1, 2M − 1] and t is the

number of iterations performed.

• t is dependent on A and M , and is in the range [k, 2k].

For Phase 2:

• The output from phase 1 is doubled 2k − t times.

• This gives a final output R = A−12k (mod M).

The total amount of clock cycles for phase 1 is t + 2 and the total amount of clocks for phase 1

and 2 together is 2t− k + 2. Again, similar to Montgomery multiplication, it is more practical to

leave the result in the Montgomery domain and convert back to the integer domain at the end of

the calculation.

3.3.5 Scheduling and Efficiency

The schedule, defines the time-steps during which operations are to be executed. As such it di-

rectly controls the throughput, and therefore the speed of an algorithms calculation. Similarly,

57

3.3. ELLIPTIC CURVE CRYPTOGRAPHIC PROCESSOR

Algorithm 11: Montgomery Inverse (Phase 1)

input : A ∈ [1,M − 1],M, gcd(A,M) = 1

output: R = A−12t (mod M), k ≤ t ≤ 2k

U ⇐M, V ⇐ A,RSa⇐ 1, RSb ⇐ 0, t⇐ 0, switch⇐ 0;

while (V > 0) do

if (U0 = 0) then

U ⇐ U
2 − 0;

if (switch = 0) then
RSb ⇐ 2(RSa);

else

RSb ⇐ 2(RSb); switch⇐ 1;

end

else if (V0 = 0) then

V ⇐ V
2 − 0;

if (switch = 0) then
RSb ⇐ 2(RSb);

else

RSb ⇐ 2(RSa); switch⇐ 0;

end

else if (U2 > V
2) then

U ⇐ U
2 − V

2 ;

if (switch = 0) then
RSb ⇐ 2(RSa);

else

RSb ⇐ 2(RSa);RSa⇐ RSa +RSb; switch⇐ 1;

end

else if (V2 ≥ U
2) then

V ⇐ V
2 − U

2 ;

if (switch = 0) then
RSb ⇐ 2(RSb);

else

RSb ⇐ 2(RSa);RSa⇐ RSa +RSb; switch⇐ 0;

end

t⇐ t+ 1

end

RSa ⇐ RSa −RSb;

if (RSa < 0) then
RSa ⇐ RSa +M ;

else

R⇐ RSa;

end

58

3.3. ELLIPTIC CURVE CRYPTOGRAPHIC PROCESSOR

Algorithm 12: Montgomery Inverse (Phase 2)

input : R and t from Phase 1

output: R = A−12k (mod M)

RSa ⇐ R;

for i = 0 to 2k − t do

RSa ⇐ R;

if (RSa ≥M) then

RSa ⇐ RSa −M ;

end

by examining the scheduling of multipliers working in parallel, the area-speed tradeoff can be

optimised, and the best-fit number of multipliers for each particular algorithm can be selected.

A list-based scheduling (LBS) technique [80] was adopted here. In list scheduling, the number

of functional units of each type are constrained and each control step, processed sequentially,

attempts to choose the optimum operation to perform, subject to resource constraints. The LBS

maintains a list of operations whose predecessors have already been scheduled. At each time step

of the algorithm, operations are scheduled to the arithmetic units until the available resources are

exhausted. Once an operation, or set of operations have been scheduled at a given time step, the

list is updated. The process continues until all operations are scheduled. It can be clearly seen from

Table 3.2, that a schedule which allows a number of multipliers to operate in parallel can reduce the

number of multiplication stages required, thereby improving the speed of the algorithms execution.

Although the ECP can be configured to run any number of multipliers in parallel, some operations

in a particular formula are dependent on the results of other operations, which creates a limit

to the amount of parallelism that can be exploited. This leads to redundancy in the design, as

a point is reached where the addition of extra multipliers leads to a decrease in the efficiency,

and results in a small increase in speed at the cost of a large increase in area. The efficiency is

defined as the number of multiplication operations that can be run in parallel at each particular time

stage, in relation to the overall number of multipliers available for parallel processing for a time

stage. Parallel addition or subtraction results in a saving of only 4 clock cycles, therefore making

59

3.3. ELLIPTIC CURVE CRYPTOGRAPHIC PROCESSOR

Table 3.2: Multiplier Efficiency for Dedicated Doubling and Addition

Algorithm no. of no. of Mult. no. of Inv. Eff. no. of Mult. no. of Inv. Eff.

mults Stages Stages % Stages Stages %

Point Doubling Point Addition

Affine 1 4 1 100 3 1 100

Double 2 4 1 50 3 1 50

and 3 4 1 33 3 1 33

Add 4 4 1 25 3 1 25

Projective 1 13 0 100 14 0 100

Double 2 7 0 92 7 0 100

and 3 5 0 86 6 0 77

Add 4 4 0 81 4 0 87

Jacobian 1 10 0 100 16 0 100

Double 2 6 0 83 8 0 100

and 3 5 0 66 6 0 88

Add 4 5 0 50 5 0 80

Dedicated 1 8 0 100 13 0 100

Twisted 2 4 0 100 7 0 92

Edwards 3 3 0 88 5 0 86

4 3 0 66 5 0 65

Dedicated 1 9 0 100 10 0 100

Extended 2 5 0 90 5 0 100

Twisted 3 4 0 75 4 0 83

Edwards 4 3 0 75 3 0 83

the parallelisation of additions or subtractions not area-speed cost effective. As such, referring

back to Figure 3.1, the arithmetic units would normally comprise single addition, subtraction and

inversersion blocks and multiple multiplier blocks.

As stated in Section 3.3.1, the minimum number of BRAM required for any pb = 192 is identical

for any number of addresses between 2 and 1024. Not being constrained by a finite amount of

register/RAM address locations, the scheduler was allowed as many addresses as necessary to suit

the best schedule. This was between 16 and 25 for each of the algorithms under investigation here.

It can be seen from Table 3.2, using the Jacobian Double-and-Add algorithm as an example, that

when there is only 1M operating for all 10 Multiplication stages in PD, the efficiency is at 100%,

i.e. always in use. Similarly forPA the 1M is used for all 16 multiplicationstages. Two multipliers

60

3.3. ELLIPTIC CURVE CRYPTOGRAPHIC PROCESSOR

in parallel operate at 83%, so the number of Multiplication stages is reduced to 6 for PD. For

PA, both multipliers are used 100% of the time, halving the number of stages to 8. For 3M,

the efficiency begins to decrease with the number of stages for PD only reducing by one to 5

and for PA only reducing by two to 6. For 4M, there is no reduction for PD and only one

multiplication stage is reduced for PA with the efficiencies dropping to 50% and 80% for PD

and PA respectively.

It is clear from Table 3.2 that the Double-and-Add in affine coordinates cannot be speeded up any

further by the addition of extra multipliers. It is also seen that as multipliers in parallel are added

to the Jacobian and projective coordinates, the efficiency of any more than three multipliers in

parallel does not result in significant speedup in the designs, and in some cases there is a general

reduction in efficiencies for four multipliers.

The efficiency of the parallelisation of dedicated extended twisted Edwards can be seen from the

table. With the standard 1M , the dedicated PD twisted Edwards has one less multiplication stage

than the extended twisted Edwards, but three extra multiplication stages for PA. An increase

in parallelisations leads to an increased performance in both, resulting in the extended twisted

Edwards having, at 3M , a similar performance to the standard twisted Edwards. However at 4M,

it has three multiplication stages for a PD and a PA compared to standard twisted Edwards which

while also having three multiplication stages for a PD has five for a PA.

From this point on, the worst performing algorithms deduced from Table 3.2 can be excluded

since clearly they will not perform adequately when implemented. These would include all of the

parallel affine implementations with performances of 50% or less. The Jacobian for 4M also has

relatively poor efficiency for PD but is retained due to adequate performance for PA.

3.3.6 Algorithmic Cost of Field Operations

It was stated in Section 3.2 that field addition and subtraction costs are generally ignored as being

negligable in comparison to multiplications or inversions. This is in general true in a one-to-one

conversion, i.e. 4 clock cycles for an add versus pb+2 clock cycles for a multiplication. However,

61

3.3. ELLIPTIC CURVE CRYPTOGRAPHIC PROCESSOR

Table 3.3: Clock cycle count for Dedicated Doubling and Addition

Algorithm Hardware no. of Mult. no. of Inv. no. of other Total no. of Mult. no. of Inv. no. of other Total

Multipliers clks clks clks clks clks clks clks clks

Point Doubling Point Addition

Affine 1 776 391 72 1232 582 391 55 1021

Projective 1 2522 0 175 2697 2716 0 160 2879

Double 2 1358 0 157 1515 1358 0 139 1497

and 3 970 0 151 1121 1164 0 136 1300

Add 4 776 0 148 924 776 0 130 906

Jacobian 1 1940 0 148 2088 3104 0 178 3282

Double 2 1164 0 136 1300 1552 0 154 1706

and 3 970 0 133 1103 1164 0 148 1312

Add 4 970 0 133 1103 970 0 145 1152

Dedicated 1 1552 0 106 1658 2522 0 151 2673

Twisted 2 776 0 94 870 1358 0 133 1491

Edwards 3 582 0 91 673 970 0 127 1097

4 582 0 91 673 970 0 127 1097

Dedicated 1 1746 0 117 1863 1940 0 126 2066

Extended 2 970 0 105 1075 970 0 111 1081

Twisted 3 776 0 102 878 776 0 108 884

Edwards 4 582 0 99 681 582 0 105 687

as shown in [68], these operations are not insignificant for hardware devices, especially when

taken alongside other relatively small (but numerous) operations, e.g. move operations. Table 3.3

gives the full cost in clock cycles for each algorithm, subdivided into the cost of the multiplications

and the cost of the other operations using the curve parameters secp192r1 [81]. This is also shown

graphically in Figure 3.4 for an equal Hamming weight message. The dotted lines signify the M

and I calculations only while the solid lines represent the full number of clock cycles required

inclusive of additions, subtractions and move operations (×1000).

While for the single multiplier, adder, subtracter circuit, the ratio of multiplier clocks to other

clocks is on average approximately 14 : 1, it is also clear that as the number of multiplier clocks

reduce due to the scheduling of additional multipliers, the impact of the other clocks attain much

more significance. This can be clearly seen from Figure 3.4. For example, in the case of Jacobian

for four multipliers, the ratio is approximately 7 : 1, thereby giving a big impact on the overall

speed of the algorithm. The results here reflect the previous table where the total final clock count

for the extended twisted Edwards with 4M is approximately 685 for a PA or a PD. The standard

twisted Edwards PD has an additional cost of approximately 400 extra clock cycles per point

addition operation than the extended twisted Edwards using the auxiliary coordinate T .

62

3.3. ELLIPTIC CURVE CRYPTOGRAPHIC PROCESSOR

1 2 3 4

2

3

4

5

6

7

8

N
u

m
b

e
r

o
f

C
lo

c
k
 C

y
c
le

s

Number of Parallel Multiplers

 Affine

 AffineM

 Projective

 ProjectiveM

 Jacobian

 JacobianM

 TwEdwards

 TwEdwardsM

 ExTwEdwards

 ExTwEdwardM

Figure 3.4: Clock Count for Dedicated Doubling and Addition

Again, the data presented in Table 3.3 and Figure 3.4 can be used to exclude a number of designs

from further study by examining the performance of the clock cycle count, and predicting how the

final set of results should be expected to perform relative to each other. The full examination of

the Jacobian clock count shows that the performance increase from 3M to 4M is negligible and

so can be excluded. It can also be seen that an increase from 3M to 4M results in no decrease in

clock cycles for the standard twisted Edwards and so while it would appear to outperform most of

the other algorithms this 4M variant can also be excluded as it underperforms in relation to its 3M

counterpart.

3.3.7 Area Results for Dedicated Doubling and Addition

Next, the area of the ECC algorithms was examined for a key and field size of 192 bits. For cases

where average results were to be measured, randomly generated keys each of Hamming weight

of k/2 were used. The number of Occupied Slices is the complete and full measurement of the

63

3.4. MEASURING THE POWER DISSIPATION

FPGA area in Slices. The Slice Registers and Slice LUTs are secondary area measurements used

simply to give a deeper breakdown of the area. The main differences in circuitry between the

different algorithms is in the control section. As such, there is very minimal divergence in area

measurements, mainly due to how the compiler performed the routing (with the only change being

in the instruction set). Obviously, the area increases as more multipliers are added. For affine

coordinates, only the 1M case is examined as the addition of extra multipliers does not result

in any speedup as previously shown. The area here is also higher due to the additional inverter

circuitry. Similarly, the Jacobian and standard twisted Edwards for 4M have been omitted.

The Block RAM, used to generate the RAM and ROM blocks is measured seperately. In all cases

the instruction set BROM requires a single 18K block, while the BRAM address block require

five 36K blocks and a single 18K block.

Table 3.4: Dedicated Doubling and Addition Area Results

Mult. Algorithm Occupied Slice Slice Algorithm Occupied Slice Slice

Units Slices Reg LUT Slices Reg LUT

1 Affine D&A 1470 3605 5416 - - - -

1 Projective 965 2611 3593 Dedicated 955 2610 3600

2 Double 1551 3195 4565 Extended 1470 3195 4577

3 and 1643 3779 5158 Twisted 1672 3779 5175

4 Add 2012 4364 6128 Edwards 1800 4364 6139

1 Jacobian 973 2609 3618 Dedicated 1167 2609 3598

2 Double 1449 3195 4563 Twisted 1470 3195 4577

3 Add 1643 3779 5158 Edwards 1672 3779 5175

3.4 Measuring the Power Dissipation

The aim of this section was to measure the power and energy consumption of the architecture

described in Section 3.2 when implementing the various different algorithm and coordinate com-

binations. The target implementation platform was the SASEBO-GII cryptographic evaluation

boardiii and results were measured using randomly generated keys each of Hamming weight of

iiiAlthough the SASEBO-GII using the Xilinx Virtex-5 was used to perform the testing, the results obtained through-

out should be equivalent for any different FPGA device.

64

3.4. MEASURING THE POWER DISSIPATION

k/2 to measure iterations of each of the algorithms from post initial data load to algorithm com-

plete. The onboard Sasebo 24Mhz clock was used and an external power supply was directly

connected for the core voltage of the cryptographic FPGA via an external power meter, namely

the Agilent N6705A. Results were taken from both this meter and a Lecroy Waverunner 104Xi os-

cilliscope, measured across the Sasebo’s 1 ohm shunt resistor on the Vcore line and were generated

as follows:

resistor = 1;

meanResistorV oltageDrop = mean(trace);

calculatedCurrent = meanResistorV oltageDrop/resistor;

resistorPower = calculatedCurrent2 × resistor;

meanFpgaV oltage = suppliedV oltage−meanResistorV oltageDrop;

meanFpgaPower = meanFpgaV oltage× calculatedCurrent;

checkFpgaPower = meanFpgaPower + resistorPower

energy = sum((time(end)− time(1))×meanFpgaPower)

(3.19)

In order to obtain a realistic measurement of the power consumption, the circuit must be provided

with appropriate inputs. An IO interface between a host computer and the Sasebo board requires

additional control circuitry. In order to minimise testing time, a test wrapper was created for the

EC processor in place of an IO interface. A diagram of this wrapper is shown in Figure 3.5

The test wrapper, implemented on the Virtex-5 cryptographic FPGA on the Sasebo, consists of a

ROM, counter and FSM. The ROM contains the inputs to the processor i.e the input point P =

(x, y), the curve parameters and the scalar k. The input point and curve parameters need only be

read into the processor once. Then the FSM will load in a scalar k and start the processor. When

the processor has completed the calculation it will load in another scalar and repeat the process.

The wrapper FSM continues on a loop, performing point scalar multiplications with each value of

k. There are two input pins to the wrapper. The reset pin allows the wrapper and EC processor

65

3.4. MEASURING THE POWER DISSIPATION

CLK

RST

Key_LD

Addr

Done

RAM_Addr

LD

Key_En

LD Done

Output

Data_in Data_out

AddrCount
En

Cnt_En

DOUT

EC PROCESSOR

ROMCOUNTER

FSM

RST

RSTReg_RSTRST

Figure 3.5: Power Wrapper

to be reset. It is connected to a switch on the board. The clock pin allows an external oscillator

to clock the design (however, the results presented here are for the onboard Sasebo 24Mhz clock).

The start and end trigger signal is routed to an output pin. This is used to trigger the oscilloscope

to capture the current waveform as the EC processor performs a calculation. The cost of the

wrapper in terms of FPGA resources is only two BRAM and a few hundred slices. This cost is

low in comparison to the cost of the EC processor. It is also noted that the wrapper overhead is

constant for each of the algorithm and coordinate choices and therefore will not bias any particular

set of choices. With the wrapper and the EC processor implemented on the cryptographic FPGA,

the current drawn can be measured via a shunt resistor. This allowed the average current to be

measured. This is the current of interest when considering energy consumption.

It is noted that the very act of measurement will alter the current drawn by the FPGA due to the

voltage drop across the Sasebo’s 1 ohm shunt resistor on the Vcore line which is connected in

series. However, experimental measurement found that this voltage drop was very small and that

for all the designs tested the voltages supplied to the FPGA remained within the recommended

operating levels as specified in [82].

66

3.4. MEASURING THE POWER DISSIPATION

3.4.1 Dedicated Doubling and Addition Power Results

The results generated are given in Table 3.5. Columns 3 gives the reading from the power meter.

Both the current and the power supplied use the same values due to the voltage being 1V and

P = I × V . Subsequent columns give the results calculated using Equation 3.19. Column 4

gives the mean power (µ), while the final two columns present the time taken to perform a full

calculation of the algorithm and the energy expended to perform that calculation. In both cases,

the lower the value, the better the result, with the best results in each category highlighted in bold.

Table 3.5: FPGA Power and Timing Results for Double-and-Add

Algorithm Mult. Supplied µ FPGA Calc. Energy

Units Current-Power Power Time

mA - mW mW mS mJ

Affine D&A 1 151.9 120.2 13.9 1.7

Projective 1 150.0 119.5 32.6 3.9

Double 2 157.2 124.0 17.8 2.2

and 3 164.8 130.0 13.9 1.8

Add 4 171.3 132.4 10.8 1.4

Jacobian 1 148.9 118.8 25.4 3.0

Double 2 156.3 123.5 16.9 2.1

Add 3 164.5 130.2 13.8 1.8

Twisted 1 150.7 119.2 23.6 2.8

Edwards 2 157.1 123.4 12.7 1.6

Dedicated 3 165.6 130.4 9.6 1.2

Extended 1 148.2 118.8 22.8 2.7

Twisted 2 156.2 123.4 12.8 1.7

Edwards 3 164.6 129.7 10.4 1.3

Dedicated 4 167.5 131.1 8.0 1.1

Immediately obvious from the table is that the mean power is similar, regardless of the algorithm,

for each of the four multiplier units. However the energy differs betweem them due to the com-

putation time difference. Indeed it is also clear from the results that there is a strong correlation

between the calculation time and the energy. As such, either metric could be used to categorise

the algorithms. It can also be seen from the table that the affine coordinates give quite good tim-

ing and energy results when compared to the other coordinate systems for 1M for a key with an

67

3.4. MEASURING THE POWER DISSIPATION

average Hamming weight. However, as it does not scale with parallelisation, it is overtaken in

both the calculation time and energy usage by the other coordinate systems by additional parallel

multipliers. The Jacobian coordinates initially are faster for 1M with more energy efficiency than

the projective coordinates, but the latter makes better use of parallelisation to overtake the former

in timing, albeit at a greater cost in energy. The standard twisted Edwards perform best at 2M

and 3M, but the extended twisted Edwards give the best performance at 4M and indeed the best

performance overall.

1

2

3

4

0 110 112 114 116 118 120

Quiescent Power (mW)

N
u

m
b

e
r

o
f

M
u

lt
ip

lie
rs

(a) Quiescent Power

Affine D&A 1M

Proj. D&A 1M

Jac. D&A 1M

Tw. Edw. 1M

Ext. tw Edw. 1M

Proj. D&A 2M

Jac. D&A 2M

Tw. Edw. 2M

Ext. tw Edw. 2M

Proj. D&A 3M

Jac. D&A 3M

Tw. Edw. 3M

Ext. tw Edw. 3M

Proj. D&A 4M

Ext. TW Edw. 4M

0 2 4 6 8 10 12 14

Average Dynamic Power (mW)

X
 A

x
is

 T
it
le

(b) Dynamic Power

Figure 3.6: Average Power Dissipation

Figures 3.6(a) and 3.6(b) show the average power dissipation for the results, giving the quiescent

power and the dynamic power. The quiescent power is the power that the board is drawing when

the design is programmed and the clock is connected but reset is held active, thereby preventing

any switching from occurring in the circuit. It is a measure of the standby power drawn by the

FPGA. The larger the amount of logic resources used, the higher the quiescent power. By contrast,

the dynamic power is the power dissipated by logic switching within the FPGA. It is calculated

as the difference between the total average power and the quiescent power. The energy results

presented in Table 3.5 are calculated using the total power.

Immediately striking from the graphs is the large quiescent power compared to the dynamic power.

This is mainy due to the fact that the quiescent power encompasses all of the components on

68

3.4. MEASURING THE POWER DISSIPATION

the Sasebo board, while the dynamic power increase is due only to the operation of the Virtex

5 cryptographic FPGA. Also noticeable is that while the dynamic power is small for a single

multiplier, it increases as additional multipliers are added. This is due to the fact that in each

architecture, the critical path is through the long carry propagate adders (CPA) as described in

Section 3.3.2. These adders are implemented on FPGA using long carry chains in the CLBs

organised in columns. The ripple effect of adding two inputs (and a carry) with these adders

creates a large amount of switching activity. It is also due in part to the additional switching due

to the larger circuit area.

As seen in Figure 3.6(b), the average dynamic power differs between the different algorithms. This

is due in part to both the multiplier efficiency as shown in Table 3.2, i.e. how often the multipliers

are operational, and the multiplier usage as shown in Table 3.3, i.e. how long the multipliers are

operational. Examining the designs individually shows that the affine double and add has a large

average power due to the inverter, the projective version has the next highest average dynamic

power for 1, 2 and 4M. The reduction at 3M is mostly due to the drop off in efficiency for three

multipliers. The Jacobian variant follows a similar pattern to the the projective, with a slightly

lower power in most cases. The standard twisted Edwards give the highest average power at 3M

due to the relative high efficiency at this setup as seen by the calculation time in Table 3.5. While

the extended twisted Edwards efficiency is high throughout, its multiplier usage is also quite low,

thereby resulting in the lowest average power throughout.

3.4.2 Area-Time and Area Energy Product

It can be seen from Figure 3.6(b) and Table 3.5 that a high average power does not necessarily

result in a high energy result. Indeed, with three multipliers, the twisted Edwards results in the

highest average power usage but the lowest energy usage due to its shorter calculation time relative

to the other designs. As a method of further comparing the designs examined so far, the metrics

from Section 2.10 were used. The area-time product (ATP) was calculated to get a representation

of any speed decrease relative to the increase in size. This gives a more accurate representation

69

3.4. MEASURING THE POWER DISSIPATION

of the cost that each increase in multiplier has in relation to the overall system. The area-energy

product (AEP) was calculated using the dynamic power to give a representation of the energy

increase against the increase in size. The power naturally increases with an increase in area,

however the energy costs are reduced due to the calculation being performed faster. This therefore

shows the best increase in area for a decrease in energy. In both cases, the lower the value, the

better the performance. These are shown graphically in Figure 3.7 and Figure 3.8.

1 2 3 4

14

16

18

20

22

24

26

28

30

32

A
re

a
-T

im
e

 P
ro

d
u

c
t
(m

S
.S

lic
e

(x
1

0
0

0
))

Number of Multipliers

 AffineDA

 ProjectDA

 JacobDA

 TwEd

 ExtTwEd

Figure 3.7: Area-Time Product

A number of things can be seen from Figure 3.7. Firstly, the Affine Double-and-Add gives the

best ATP for a single multiplier. This outperforms the Projective and Jacobian Double-and-Add

algorithms, however it must be noted that this result is determined on the key value, and a different

key could cause a large increase in the timing cost for the inversion. In contrast, the two twisted

Edwards algorithms outperform the Affine coordinates from 2M onward and subsequently greatly

outperform the Projective and Jacobian Double-and-Add algorithms. They have the same result

for 2M, while the standard twisted Edwards performing best for 3M and the extended twisted

70

3.4. MEASURING THE POWER DISSIPATION

1 2 3 4

60

80

100

120

140

160

180

260

280

300

A
re

a
-E

n
e

rg
y
 P

ro
d

u
c
t
(u

J
.S

lic
e

)

Number of Multipliers

 AffineDA

 ProjectDA

 JacobDA

 TwEd

 ExtTwEd

Figure 3.8: Area-Energy Product

Edwards performing best (and best overall) at 4M.

Figure 3.8 gives the AEP. It is seen that there is a general increase in the AEP for each additional

multiplier for each of the algorithms. The extended twisted Edwards and the Jacobian perform

best with a single multiplier followed closely by the affine coordinates and the standard twisted

Edwards. From 2M onwards, both twisted Edwards have much better performance when compared

to the Projective and Jacobian forms of the Double-and-Add algorithm and at 4M the extended

twisted Edwards actually shows a slight reduction in the AEP compared to its 3M equivalent.

Figure 3.9 provide a comparison between what was expected, with Figure 3.9(a) giving a reduced

graph of the clock cycle count presented in Figure 3.4, and Figure 3.9(b) giving the full set of

measured results from Figure 3.7. It can be seen in this case that the measured results do somewhat

follow the same trend as the expected results, with each algorithm in the same hierarchy from 2M

onwards, after allowing for the affine increase in area with no reduction in time. For 1M, the

Jacobian performs better than the standard Edwards due to the larger area associated with the

71

3.5. POWER ANALYSIS ATTACKS

latter.

1 2 3 4

1

2

3

4

5

6

7

8

9

N
u

m
b

e
r

o
f

C
lo

c
k
 C

y
c
le

s

Number of Multipliers

 Affine

 Projective

 Jacobian

 TwEdwards

 ExTwEdwards

(a) Expected Results

1 2 3 4

14

16

18

20

22

24

26

28

30

32

A
re

a
-T

im
e

 P
ro

d
u

c
t
(x

1
0

0
0

)

Number of Multipliers

 AffineDA

 ProjectDA

 JacobDA

 TwEd

 ExtTwEd

(b) Measured Results

Figure 3.9: Estimated Dynamic Versus Measured Results

In conclusion, it has been shown that the basic elliptic curve processor design with a single mul-

tiplier gives good performance using the affine coordinates. Even though affine gives a larger

average power and area due to the inverter circuitry, its computation time is sufficiently fast com-

pared to the other double and add algorithms that it outperforms the others in area-time, and the

other Double-and-Add algorithms in area-energy. For multipliers in parallel, the two Edwards

special form curves outperform the standard curves, and the speed advantages over general elliptic

curves in relation to faster scalar multiplication are clear to see from the area-time and area-energy

products. However, all of these algorithms are susceptible to power analysis attacks as is described

in Section 3.5.

3.5 Power Analysis Attacks

It was shown in Section 2.9.1 that simple and differential power analysis (SPA and DPA) [59]

attacks measure leaked power consumption of a cryptographic device. From this leaked data, an

attacker tries to deduce the inner workings of the algorithm, and in so doing, deduce the hidden

information. SPA works on the premise that the amount of power drawn from a circuit is dependent

72

3.6. DUMMY ARITHMETIC INSTRUCTIONS

(indirectly) on the operation being performed. As such, various data can be gleaned, such as the

Hamming weight, individual bits or bit sequences and memory addressing. Avanzi states in [83]

that observing a single trace of leaked emissions, one can reconstruct the sequence of elementary

instructions performed by the processor, and thus infer the sequence of group operations. In an

elliptic or hyperelliptic curve implementation with distinguishable group addition and doubling,

and with a simple double-and-add scalar multiplication scheme, it is possible to reconstruct the

secret scalar just from the observed sequence of distinct group operations.

Section 3.2 described dedicated doubling and addition formulæ standard algorithms for perform-

ing scalar multiplication, whereby the binary algorithm scans the bits and performs a point dou-

bling operation for every bit. If a bit is a “1”, it also performs a point addition operation. These

algorithms, while being simple and efficient, are susceptible to power analysis attacks as defined

above since the power trace for a point doubling is different from that of a point addition.

To reduce this side channel attack (SCA), some methods of making the observable information

independent of the secret scalar are examined. The following sections describe some of these

methods, namely dummy arithmetic instructions, unified formulas and regular algorithms and

again attempts to find the best performance algorithm when implemented in hardware.

3.6 Dummy Arithmetic Instructions

One such method of ensuring SPA resistance is the Double-and-Add-Always [84] algorithm, given

in Algorithm 13, where a dummy point operation is completed for every “0” bit, thus making

a regular succession of point doublings followed by point additions. This dummy arithmetic

operation method is universal and works for all groups, making them homogenous.

However, while securing against SPA, an increase in calculation time and hardware resources is

also introduced. In certain situations, such as elliptic curves in affine coordinates, where the PA

and PD operations are quite similar, this method is quite attractive as the cost overhead of the

dummy operations is minimal. For other coordinate systems where PA and PD differ greatly, it

73

3.7. UNIFIED DOUBLING AND ADDITION

Algorithm 13: Double-and-Add-Always

input : p ∈ E(Fq); k =
∑nk−1

i=0 ki2
i

output: Q = [k]p ∈ E(Fq)

Initialise: Q = p

for i← nk − 2 to 0 do

Q[0] = 2Q[0]

Q[1] = Q[0] + p
Q[0] = Q[ki]

end

can be a quite expensive protective measure. Also, it has been proven that dummy point operations

can be insecure against fault attacks [85,86], i.e. introducing faults into a device in order to produce

an erroneous output.

3.7 Unified Doubling and Addition

The unified approach, suitable for elliptic curves, involves using the same set of formulas in the

scalar multiplications for both point addition and point multiplication. The main benefit of this

type of operation is that there are no dummy operations, thus making them secure against fault

attacks. There can however be a reduction in speed, compared to the standard algorithms, due to

the nature of the unified formulas. As such, certain representations of the Weierstraß elliptic curve

can perform much faster than others, and other non-Weierstraß curves may not profit at all [60].

Along with an increase in calculation speed, an additional advantage of Edwards and twisted

Edwards curves is that the addition laws defined on them can be made unified, i.e., a single addition

formula can be used to add points and double points, with no exception for the identity. [3].

The unified versions of both the standard twisted Edwards and the extended twisted Edwards are

examined, and compared against the standard curves using dummy arithmetic and regular scalar

formulæ. Algorithm 14 give the unified formula for standard twisted Edwards, while Algorithm 15

for extended twisted Edwards.

The unified single point operation, processes the same formula for both PA and PD, thereby giving

74

3.7. UNIFIED DOUBLING AND ADDITION

Algorithm 14: Unified Addition in twisted Edwards Coordinates

input : P (X1, Y1, Z1);
Q(X2, Y2, Z2) ∈ Fq

output: P +Q(X3, Y3, Z3) ∈ E(Fq)

X3 = Z1Z2(X1Y2 +X2Y1)(Z
2
1Z

2
2 − dX1X2Y1Y2),

Y3 = Z1Z2(Y1Y2 − aX1X2)(Z
2
1Z

2
2 + dX1X2Y1Y2),

Z3 = (Z2
1Z

2
2 − dX1X2Y1Y2)(Z

2
1Z

2
2 + dX1X2Y1Y2).

Algorithm 15: Unified Addition in Extended twisted Edwards Coordinates

input : P (X1, Y1, T1, Z1);

Q(X2, Y2, T2, Z2) ∈ Fq

output : P +Q(X3, Y3, T3, Z3) ∈ E(Fq)

Ensure: Z2 6= 0 and T2 = X2Y2/Z2 satisfy aX2Z2 + Y 2Z2 = Z4 + dX2Y 2

X3 = (X1Y2 + Y1X2)(Z1Z2 − dT1T2),
Y3 = (Y1Y2 − aX1X2)(Z1Z2 − dT1T2),
T3 = (X1Y2 + Y1X2)(Y1Y2 − aX1X2),

Z3 = (Z1Z2 − dT1T2)(Z1Z2 + dT1T2),

it the same power trace for either operation, at a cost of 12M and 7add per point operation. The

extended unified formula performs better at 9M and 7add. Comparing this against the dedicated

twisted Edwards formulæ from Section 3.2.4, as shown in Table 3.6, shows an increase of 2M

for the standard twisted Edwards and only an additional multiplication by a constant, d, for the

extended case.

Table 3.6: Operation Count for twisted Edwards

Point Addition Unified

Coord. M and S M only M and S M only

tE 10M 1S 1d 7add 11M 7add 11M 1S 2d 7add 12M 7add
eE 9M 1d 7add 9M 7add 9M 2d 7add 9M 7add

The full breakdown for the Edwards algorithms, directly used to generate the instruction set for

the elliptic curve processor are described in Appendix A.2.

75

3.8. REGULAR SCALAR MULTIPLICATION

3.8 Regular Scalar Multiplication

Using scalar multiplication algorithms which use a fixed sequence of group operations, indepen-

dent of the scalar, is another method of protecting against SSCA. Two such binary algorithms,

which provide efficient regular scalar multiplication without the use of dummy operations are

the Montgomery ladder [4], given in Algorithm 16 and the Joye Double-and-Add [5], given in

Algorithm 17.

Algorithm 16: Montgomery Ladder

input : P ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N

output: Q = kP

R0 ← O, R1 ← P

for i = n− 1 down to 0 do

b← ki, R1−b ← R1−b +Rb, Rb ← 2Rb

end

return R0

Algorithm 17: Joye’s Double-Add

input : P ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N

output: Q = kP

R0 ← O, R1 ← P
for i = 0 to n − 1 do

b← ki, R1−b ← 2R1−b +Rb

end

return R0

Each iteration of the Montgomery ladder performs a PA followed by a PD, so to an attacker, the

side channel information is viewed as an alternating series of doublings and additions. There is of

course a performance penalty associated with this similar to the Double-and-Add-Always along

with adding to the storage requirements, as stated earlier, an important constraint in software.

Alternatively, the Joye Double-and-Add, while also repeating a pattern of doublings and additions,

requires only two point registers, and so is a cheaper memory alternative in software compared to

the Montgomery ladder.

76

3.8. REGULAR SCALAR MULTIPLICATION

In [87], Meloni proposed adding two points while sharing the same Z coordinate, thereby allowing

faster addition. The key observation in Meloni’s addition is that the computation of R = P +Q

yields for free an additional representation for P . This operation is referred to as the ZADD

operation.

Goundar et al. [63,88,89] introduced the co-Z operationsZADDU requiring 7M (5M+2S+6add),

and conjugate co-Z addition and denoted ZADDC (for ZADD conjugate), using the efficient

caching technique described in [90, 91]. The total cost for the ZADDC operation is 9M (6M +

3S + 15add).

Furthermore, Hutter et al. [64] presented a co-Z version of x-coordinate only formulæ referred to

as differential addition-and-doubling and denoted as AddDblCoZ. These formulæ take two input

points, P = (X1, Z) and Q = (X2, Z) on EH, sharing the same Z-coordinate, and outputs a pair

of points, their addition P ′ = P + Q = (X ′
1, Z

′) and doubling Q′ = 2Q = (X ′
2, Z

′), sharing

the same Z-coordinate. The cost of this formula is 15M (11M+ 4S + 1Ma + 1M4b + 14add) as

detailed in [64].

They optimise this formula by replacing the multiplication expression X1X2 with the equivalent

(X2
1 +X2

2 − (X1 −X2)
2)/2 and later multiplied with a factor of 2. The cost of this optimisation

is 14M (9M+ 5S+ 1Ma + 1M4b + 14add).

They further optimise the formula for cases where the curve parameters a and b are dynamic by

initialising three additional coordinates Ta = aZ2, Tb = 4bZ3 and TD = xDZ to finally obtain

algorithm 6 in [64]. The given formula reduces the memory by one register and increases the

performance by 1M if Ma = Mb = 1M . The cost of this is 15M (10M+ 5S+ 13add).

The full algorithms can be found in Appendix A.3 and the interested reader is referred to [63,64,

88,89] for an in-depth explanation on how to efficiently carry out these computations using co-Z

arithmetic for elliptic curves.

77

3.8. REGULAR SCALAR MULTIPLICATION

3.8.1 Co-Z Arithmetic

In the original Montgomery ladder, registers R0 and R1 are respectively initialised with point at

infinityOOO and input point P . Since OOO is the only point with its Z-coordinate equal to 0, assuming

that kn−1 = 1, the loop counter is started at i = n − 2 and R0 is initialised to P and R1 to 2P .

Next, ensure that the representations of P and 2P have the same Z-coordinate. This is achieved

through the use of the DBLU which requires 6M (1Mul + 5Squ).

Putting together the DBLU algorithm with ZADDU and ZADDC (from Appendix A.3), the im-

plementation depicted in Algorithm 18 is obtained for the Montgomery ladder.

Algorithm 18: Montgomery ladder with Xo-Z Addition Formulæ

input : P = (xP , yP) ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N with kn−1 = 1

output: Q = kP

(R1, R0)← DBLU(P)
for i = n− 2 down to 0 do

b← ki, (R1−b, Rb)← ZADDC(Rb, R1−b)
(Rb, R1−b)← ZADDU(R1−b, Rb)

end

return R0

In Algorithm 19, the main loop of the Montgomery ladder is replaced by the differential addition-

and-doubling formulæ of Hutter et al. Their algorithm (i.e. algorithm 3 in [64]) is modified by

substituting the initialisation step for (X,Z)-only coordinate of a new efficient formula referred

to as doubling addition with update in homogeneous coordinates, and denoted DBLUH, which

requires 9M (4M + 5S). The notation DBLUH
∗ refers to X and Z coordinates only (excludes Y

coordinate) and the cost of which is 8M (3M+ 5S).

The function recoverfullcoordinates recovers the full projective coordinates of the output point

Q = kP , from the x-coordinates R0 = (X1, Z) and R1 = (X2, Z) at the end of the Montgomery

ladder, details of which appear in Appendix A.3.

78

3.8. REGULAR SCALAR MULTIPLICATION

Algorithm 19: Montgomery Ladder with (X,Z)-Only Co-Z Addition Formulæ

input : P = (xP , yP) ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N with kn−1 = 1

output: Q = kP

(X1, X2, Z)← DBLUH
∗(P)

for i = n− 2 down to 0 do

b← ki, (X2−b, X1+b, Z)← ADC(X2−b, X1+b, Z)

end

Q←recoverfullcoordinates(X1, X2, Z)

return (Q)

3.8.2 Combined Double-Add Operation

A point doubling-addition is the evaluation of R = [2]P+Q. This can be done in two steps as T ←

P+Q followed by R← P+T . If P and Q have the same Z-coordinate, this requires 14M (10M+

4S) by two consecutive applications of the ZADDU function.The resulting algorithm ZDAU (co-

Z double-add with update) operation only requires 9M+7S and is detailed in Appendix A.3. The

triple of P = (X1 : Y1 : 1) can be evaluated as [3]P = P + [2]P using co-Z arithmetic [92].

The combined ZDAU operation immediately gives rise to an alternative implementation of Joye’s

double-add algorithm. The resulting algorithm is presented in Algorithm 21 Compared to the first

implementation (Alg. 20), from a software perspective, the cost per bit now amounts to 9M+ 7S

instead of 11M + 5S, an obvious speedup using the S = 0.8M metric. In hardware however,

both require 16M, and so the scheduling of the algorithm will be the deciding factor for which

algorithm is the faster.

3.8.3 (X,Y)-only operations

The co-Z Montgomery ladder can be rewritten so as only to process X- and Y -coordinates. Op-

eration ZACAU′iv is defined as the combination of operation ZADDC′ followed by operation

ZACAU′. This is used to obtain an (X, Y)-only implementation of the Montgomery ladder, Al-

gorithm 22. Using this formula, the cost per bit amounts to 14M (8M+ 6S).

(X, Y)-only co-Z operations can also be used with left-to-right signed-digit algorithms. Specifi-

ivThe prime symbol ′ is used to denote operations that do not involve the Z-coordinate.

79

3.8. REGULAR SCALAR MULTIPLICATION

Algorithm 20: Joye’s Double-Add Algorithm with Co-Z Addition formulæ

input : P = (xP , yP) ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N with k0 = 1

output: Q = kP

b← k1,

(R1−b, Rb)← TPLU(P)
for i = 2 to n − 1 do

b← ki,
(Rb, R1−b)← ZADDU(R1−b, Rb)

(R1−b, Rb)← ZADDC(Rb, R1−b)

end

return R0

Algorithm 21: Joye’s Double-Add Algorithm with Co-Z Addition Formulæ (II)

input : P = (xP , yP) ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N with k0 = 1
output: Q = kP

b← k1,

(R1−b, Rb)← TPLU(P)
for i = 2 to n − 1 do

b← ki,
(R1−b, Rb)← ZDAU(R1−b, Rb)

end

return R0

cally, a ZADDU′ followed by a ZADDC′ can be performd to obtain an (X, Y)-only double-add

operation with a co-Z update: ZDAU′. The total cost of this operation is 14M (8M + 6S). The

complete algorithm is detailed in Algorithm 23 [67,89], or from the author [93].

Table 3.7 gives a summary of scalar multiplication algorithms which are implemented on co-Z ad-

dition formulæ. Not taken into account in the designs presented here, and indeed for the Edwards

curves, are cases where speed-up is acquired by setting certain curve parameters to constants, such

as those described in [66, 94, 95]. While the existence of these are acknowledged, the aim of this

work is to determine the underlying performance of the general case. As such, these optimised

cases are not examined here. For further reading on the above three methods of mathematically

securing algorithms against SPA attacks, the interested reader is directed to the 2005 paper by

Avanzi [83] and the Lange chapter on mathematical countermeasures of [20].

80

3.8. REGULAR SCALAR MULTIPLICATION

Algorithm 22: Montgomery Ladder with (X, Y)-Only Co-Z Addition Formulæ

input : P = (xP , yP) ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N with kn−1 = 1
output: Q = kP

(R1, R0)← DBLU′(P)
C ← (X(R0)−X(R1))

2

for i = n− 2 down to 1 do

b← ki, (Rb, R1−b, C)← ZACAU′(Rb, R1−b, C)

end

b← k0
(R1−b, Rb)← ZADDC′(Rb, R1−b), (xP , yP)← P
Z ← xPY (Rb)(X(R0)−X(R1)), λ← yPX(Rb)

(Rb, R1−b)← ZADDU′(R1−b, Rb)

return(λZ)
2X(R0), (

λ
Z)

3Y (R0))

Algorithm 23: Left-to-Right Signed-Digit Algorithm with (X, Y)-Only co-Z addition for-

mulæ

input : P = (xP , yP) ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N≥3 with k0 = kn−1 = 1
output: Q = kP

(R0, R1)← TPLU′(P) for i = n − 2 down to 1 do

b← ki ⊕ ki+1, R1 ← (−1)bR1, (R0, R1)← ZDAU′(R0, R1)
end

R1 ← (−1)1+k1R1

(xP , yP)← P

λ← yPX(R1)
xP Y (R1)

return (λ2X(R0), λ
3Y (R0))

Table 3.7: Operation Usage for Various Co-Z Addition Formulæ

Algorithm Main op. Other op.

Left-to-right algorithms:

Mont. ladder co-Z addition (Alg. 18) ZADDC, ZADDU DBLU

Mont. ladder (X,Z)-only (Alg. 19) AddDblCoZ DBLUH
∗, recoverfullcoordinates

Mont. ladder (X, Y)-only (Alg. 22) ZACAU′ DBLU′, ZADDC′, ZADDU′

Signed-digit (X, Y)-only (Alg. 23) ZDAU′ TPLU′

Right-to-Left algorithms:

Joye’s double-add co-Z I (Alg. 20) ZADDU, ZADDC TPLU
Joye’s double-add co-Z II (Alg. 21) ZDAU TPLU

81

3.9. ALGORITHMIC COST OF SPA SECURE ALGORITHMS

3.9 Algorithmic Cost of SPA Secure Algorithms

Table 3.8 gives the efficiency costs for the SPA secure algorithms based on their response to par-

allelisation. This response, based on the count of the clock cycles, allows a general comparison

of how each of the algorithms are expected to perform independent of the technology used. The

table shows that the Double-and-Always-Add algorithm responds well to parallelisation. It is clear

from the table that while the Joye II algorithm would appear to have a better computation time in

software due to the ratio of S to M, in a hardware based system with an equal number of M, the

Joye I algorithm appears to make more efficient use of parallelisation. In the case of the Joye

I and the Montgomery Ladder co-Z algorithms, neither the ZADDC or the ZADDU algorithm

benefits greatly from parallelisation. Similarly the algorithms for Joye II and Signed Digit also do

not benefit much. The Montgomery Ladder XZ algorithms perform better with increased paral-

lelisation. Contrasting against the Edwards algorithms; the unified twisted Edwards, the standard

algorithm does not perform so well, while the extended twisted Edwards algorithm makes best use

of parallelisation of all the algorithms with 91% multiplier usage for 2M to 4M.

The clock count associated with this is given in Table 3.9. Again, it is seen that the algorithms

with the lowest clock counts, such as the AddDblCoZ and extended twisted Edwards algorithms

will give the best time performance. It is also seen that the algorithms associated with the Joye I

and the Montgomery Ladder co-Z, namely the ZADDC and ZADDU, fail to give any speed-up

from 3M to 4M. As such, the 4M case can be omitted in both cases. Similarly the difference in

clock cycles between the ML (X,Z)1 and ML (X,Z)2 are minimal for the AddDblCoZ algorithm

for 3M and 4M. As such, both of these algorithms are merged going forward for the 3M and 4M

cases, with the best results given.

For the ML (X,Z)3, there is no reduction in clock cycles from 3M to 4M for the AddDblCoZ3,

however, there is a speed-up for the second part of the algorithm, the recoverfullcoordinates2,

so this algorithm is kept.

A graphical representation similar to that of Figure 3.4 is again presented. Figure 3.10 gives a

ballpark estimate of the expected hierarchy of the SPA secure algorithms based on their clock

82

3.10. AREA AND POWER RESULTS FOR SPA SECURE ALGORITHMS

Table 3.8: Multiplier Efficiency for SPA Secure Algorithms

Algorithm no. of no. of Mult Eff. no. of Mult Eff.

Mult. Stages % Stages %

PD-PAdummy PD-PA

Double 1 26 100 26 100

and 2 13 100 13 100

Always 3 9 96 9 96

Add 4 8 81 8 81

Standard Extended

Unified 1 14 100 11 100

Twisted 2 9 77 6 91

Edwards 3 7 66 4 91

4 6 58 3 91

ZADDU (Alg. 38) ZADDC (Alg. 38)

ML co-Z 1 7 100 9 100

(Alg. 18) 2 4 87 5 90

Joye I 3 3 77 3 100

(Alg. 20) 4 3 58 3 75

ZDAU (Alg. 43) ZDAU′

Joye II 1 15 100 14 100

(Alg. 21) 2 9 88 8 87

SD (X,Y) 3 7 76 6 77

(Alg. 23) 4 6 66 5 70

AddDblCoZ1 (Alg. 40) AddDblCoZ2 (Alg. 41)

ML (X,Z) 1 17 100 16 100

(Alg. 19) 2 9 94 8 100

3 6 94 6 88

4 5 85 5 80

AddDblCoZ3 (Alg. 42) ZACAU′ (Alg. 44)

ML (X,Z) 1 15 100 14 100

(Alg. 19) 2 8 93 7 100

ML (X,Y) 3 5 100 5 93

(Alg. 22) 4 5 75 4 87

cycle count. From this it would seem that the unified extended twisted Edwards should perform

strongly compared to the rest and the Double and Always Add should perform worst.

3.10 Area and Power Results for SPA Secure Algorithms

The area results for the dummy algorithm, regular algorithms and unified algorithms are omitted

due to them being very similar to those given for the dedicated case in Table 3.4. In most cases the

M requires between 900 and 1200 occupied slices and increases by approximately 200 slices per

additional multiplier. The instruction set BROM requires a single 18K block, while the BRAM

address block requires five 36K blocks and a single 18K block. In the case of the Double and

Always Add, an additional 36K block is required.

83

3.10. AREA AND POWER RESULTS FOR SPA SECURE ALGORITHMS

Table 3.9: Clock Cycle Count per SPA Secure Algorithm

Hardware No. of Mult. No. of other Total No. of Mult. No. of other Total No. of Mult. No. of other Total

Multipliers clks clks clks clks clks clks clks clks clks

PD-PAdummy Standard tw Ed Extended tw Ed

1M 5044 320 5364 2716 148 2864 2134 135 2269

2M 2522 281 2803 1746 133 1879 1164 120 1284

3M 1746 269 2015 1358 127 1485 776 114 890

4M 1552 266 1818 1164 124 1288 582 111 693

ZADDU ZADDC ZDAU

1M 1358 103 1461 1746 141 1887 3104 264 3368

2M 776 94 870 970 129 1099 1746 243 1989

3M 582 91 673 582 123 705 1358 237 1595

4M 582 91 673 582 123 705 1164 235 1398

AddDblCoZ1 AddDblCoZ2 recoverfullcoordinates1

1M 3298 215 3513 3104 206 3310 2328 146 2474

2M 1746 191 1937 1552 182 1734 1164 128 1292

3M 1164 182 1346 1164 176 1340 970 125 1095

4M 970 179 1149 970 176 1143 776 122 898

AddDblCoZ3 recoverfullcoordinates2 ZACAU′

1M 2910 197 3107 2522 155 2677 2716 292 3008

2M 1552 176 1728 1358 137 1495 1358 271 1629

3M 970 167 1137 970 131 1101 970 265 1235

4M 970 167 1137 776 128 904 776 262 1038

1 2 3 4

1.0

1.5

2.0

2.5

3.0

3.5
5.0

5.5

N
u

m
b

e
r

o
f

C
lo

c
k
 C

y
c
le

s

Number of Parallel Multipliers

 JoyeII

 JoyeI

 M.L.CoZ

 M.L.XZ1

 M.L.XZ2

 M.L.XZ3

 M.L.XY

 S.D.

 DandAlw.Add

 Tw.Ed.

 Ext.tw.Ed.

Figure 3.10: Clock Count for SPA Secure Doubling and Addition

84

3.10. AREA AND POWER RESULTS FOR SPA SECURE ALGORITHMS

Table 3.10 gives the timing, power and energy results. The results in bold again represent the

lowest and best values for each set of parallelisation case. The Double-and-Always-Add, while

being the slowest at 1M performs quite well for parallelisation and the speedup performance is

quite acceptable at 4M. The Signed Digit algorithm performs best with the lowest computation

time and energy for the standard 1M case. The Montgomery ladder (XY) gives the best results

for the 2M case, while the Montgomery ladder (XZ) for three multipliers in parallel. For four

multipliers, the extended twisted Edwards and the Montgomery ladder (XY) have the same energy

usage, but the extended twisted Edwards has a faster computation time.

Table 3.10: SPA Secure Power and Timing Results

No of. Alg. Suppl. µ Calc. Energy No of. Alg. Suppl. µ Calc. Energy

Mult. I-P Power Time Mult. I-P Power Time

mA - mW mW mS mJ mA - mW mW mS mJ

1 Double 150.6 119.8 42.3 5.1 1 Twisted 148.8 119.7 33.8 4.1

2 and 157.3 123.8 22.0 2.7 2 Edwards 154.7 123.3 22.2 2.7

3 Always 163.9 129.0 15.8 2.0 3 Unified 165.1 130.6 17.5 2.3

4 Add 169.1 132.1 14.2 1.9 4 168.5 156.6 15.2 2.0

1 Extended 148.7 119.5 26.8 3.2 1 Montgomery 148.9 119.2 26.6 3.2

2 Twisted 154.5 123.6 15.1 1.9 2 Ladder Co-Z 158.1 124.8 15.6 2.0

3 Edwards 165.3 130.8 10.5 1.4 3 163.5 129.1 10.9 1.4

4 Unified 169.1 131.9 8.1 1.1 1 Joye’s 150.1 119.6 26.7 3.2

1 Joye’s 151.3 119.8 26.8 3.2 2 Double-Add I 157.3 123.9 15.7 1.9

2 Double-Add 157.7 123.7 15.8 2.0 3 164.2 129.7 11.0 1.4

3 with Co-Z 163.9 129.4 12.7 1.6 1 Montgomery 147.3 119.0 26.5 3.2

4 Addition II 169.3 131.9 11.1 1.5 2 Ladder(X,Z)1 155.3 123.7 13.9 1.7

1 Montgomery 147.5 119.0 24.9 3.0 1 Montgomery 147.4 118.8 28.1 3.3

2 Ladder 155.6 124.1 13.9 1.7 2 Ladder 155.1 123.6 15.5 1.9

3 (X,Z) 2 163.1 129.1 9.1 1.2 3 (X,Z) 3 162.3 127.7 10.8 1.4

4 169.2 132.0 9.1 1.2 4 169.1 132.0 9.1 1.2

1 Montgomery 148.7 119.4 24.1 2.9 1 Signed 147.3 119.0 23.6 2.8

2 Ladder 156.0 124.4 13.0 1.6 2 Digit 155.8 124.2 14.2 1.8

3 (X,Y) 167.4 131.7 9.9 1.3 3 164.6 129.9 11.0 1.4

4 169.8 132.2 8.3 1.1 4 170.2 132.2 9.5 1.3

Figure 3.11(a) presents the dynamic power results for 1M and 3.11(b) for 2M. The quiescent

power remains the same as that shown in Figure 3.6(a). Similar to the non SPA secure algo-

rithms, the average power increases as more multipliers are added. While the Joye algorithms

start off with a relatively high dynamic power, this reduces compared to the other algorithms for

subsequent parallelisation. The Montgomery Ladder (XZ) algorithms in comparison have lower

average power throughout. The Double and Add Always and the Edwards algorithms remain

relatively high throughout.

85

3.10. AREA AND POWER RESULTS FOR SPA SECURE ALGORITHMS

D&A Always 1M
ML CoZ 1M

Joye I 1M
Joye II 1M

ML XZ (1) 1M
ML XZ (2) 1M
ML XZ (3) 1M

ML XY 1M
SD 1M

Tw. Edw. 1M
Ext. tw. Edw. 1M
D&A Always 2M

ML CoZ 2M
Joye I 2M
Joye II 1M

ML XZ (1) 2M
ML XZ (2) 2M
ML XZ (3) 2M

ML XY 2M
SD 2M

Tw. Edw. 2M
Ext. tw. Edw. 2M

0 1 2 3 4 5 6 7

1 & 2 Multiplier Dynamic Power (mW)

(a) 1 & 2 Multipliers

D&A Always 3M

ML CoZ 3M

Joye I 3M

Joye II 3M

ML XZ (2) 3M

ML XZ (3)3M

ML XY3M

SD 3M

Tw. Edw. 3M

Ext. tw. Edw. 3M

D&A Always 4M

Joye II 4M

ML XZ (2) 4M

ML XZ (3) 4M

ML XY 4M

SD 4M

Tw. Edw. 4M

Ext. tw. Edw. 4M

0 9 10 11 12 13

3 & 4 Multiplier Dynamic Power (mW)

(b) 3 & 4 Multipliers

Figure 3.11: Average Dynamic Power

Figures 3.12 and 3.13 give the Area-Time product and Area-Energy product. It can be seen from

the Area-Time product graph that the Signed Digit algorithm performs best for 1M. The Mont-

gomery ladder (XY) gives the top performance for 2M. The third iteration of the Montgomery

ladder (XZ) is lowest for 3M, with the extended twisted Edwards slightly outperforming the Mont-

gomery ladder (XY) at 4M. Most of the rest show similar time performance metrics, with the

Double-and-Always-Add and the standard unified Edwards both being outliers on the graph. In

this case the Area-Energy product shows similar results, except for the fact that The second it-

eration of the Montgomery ladder (XZ) is lowest for 3M and the Montgomery ladder (XY) and

extended twisted Edwards both show a reduction in the AEP for 4M from 3M.

Figure 3.14 shows again a comparison between the expected and measured results, in this case for

the SPA resistant algorithms. It is seen that the different sets of results deviate somewhat more than

those presented in Figure 3.9. For 1M it is clear that both of the unified twisted Edwards algorithms

are expected to perform better than they actually do. Examining the measured results shows that

the standard unified Edwards gives equivalent performance levels to that of the Double and Always

Add. However, excluding the Edwards algorithms results in the best and worst performers for each

M stage being equivalent between the expected and measured graphs, and the hierarchy of the rest

of the algorithms roughly conform between the two. Based on the metrics and results presented

86

3.10. AREA AND POWER RESULTS FOR SPA SECURE ALGORITHMS

1 2 3 4

14

16

18

20

22

24

26

28

30

32

34

44
48

A
re

a
-T

im
e

 P
ro

d
u

c
t
(m

S
.S

lic
e

 x
1

0
0

0
)

Number of Multipliers

 JoyeII

 JoyeI

 M.L.CoZ

 M.L.XZ1

 M.L.XZ2

 M.L.XZ3

 M.L.XY

 S.D.

 DandAlw.A

 Tw.Ed.

 Ext.tw.Ed.

Figure 3.12: SPA Resistant Area-Time Product

1 2 3 4

60

80

100

120

140

160

180

200

220

240

260

340

350

360

370

A
re

a
-E

n
e

rg
y
 P

ro
d

u
c
t
(u

J
.S

lic
e

)

Number of Parallel Multipliers

 JoyeII

 JoyeI

 M.L.CoZ

 M.L.XZ1

 M.L.XZ2

 M.L.XZ3

 M.L.XY

 S.D.

 DandAlwA

 TwEdUnif

 ExtTwEdUnif

Figure 3.13: SPA Resistant Area-Energy Product

87

3.10. AREA AND POWER RESULTS FOR SPA SECURE ALGORITHMS

here, it has been shown that it should be possible, as long as care is taken, to estimate their relative

performance based on their expected performance. This can be used to reduce test times through

an analysis of the expected performance in the case of future algorithms.

1 2 3 4

1.0

1.5

2.0

2.5

3.0

3.5
5.0

5.5

N
u

m
b

e
r

o
f

C
lo

c
k
 C

y
c
le

s

Number of Parallel Multipliers

 JoyeII

 JoyeI

 M.L.CoZ

 M.L.XZ1

 M.L.XZ2

 M.L.XZ3

 M.L.XY

 S.D.

 DandAlw.Add

 Tw.Ed.

 Ext.tw.Ed.

(a) Expected Results

1 2 3 4

14

16

18

20

22

24

26

28

30

32

34

44
48

A
re

a
-T

im
e

 P
ro

d
u

c
t
(x

1
0

0
0

)

Number of Multipliers

 JoyeII

 JoyeI

 M.L.CoZ

 M.L.XZ1

 M.L.XZ2

 M.L.XZ3

 M.L.XY

 S.D.

 DandAlw.A

 Tw.Ed.

 Ext.tw.Ed.

(b) Measured Results

Figure 3.14: SPA Reistant Estimated Versus Measured Results

3.10.1 Comparing Dedicated Addition & SPA Secure Algorithms

A recap is made here and the relative performances of the dedicated addition algorithms are com-

pared against the SPA secure algorithms. Recalling Table 3.5, along with Figure 3.6(a) and Fig-

ure 3.6(b) it is seen that in most cases, there is only a slight increase in the iteration time between

the different sets of algorithms, which naturally results in only a slight increase in the energy costs.

Indeed the best performing dedicated addition algorithm, the extended twisted Edwards at with an

ATP at 4M of 14.7 and an AEP at 1M of 54.4 is roughly equivalent to the Montgomery Ladder

(XY) and the extended twisted Edwards, both with an ATP at 4M of 14.8 and the Signed Digit at

1M with an AEP of 59.8. As long as care is taken when choosing the correct algorithm, it can be

seen that some particular SPA secure algorithms can perform as well as, if not better, than some

of the non SPA secure variants through the correct use of scheduling and parallelisation.

88

3.11. LARGER KEY AND FIELD SIZES

3.11 Larger Key and Field Sizes

It was described earlier that the hardware can be configured by the user for any characteristic p,

and field extension m, as well as the respective memory sizes. In this work so far, a field size (pb)

and a key size (k) of 192, defined by ECRYPT II [42] as the current standard (protection from

2009 to 2020), are used throughout for each of the target algorithms using the curve parameters

secp192r1 [81].

Table 3.11: 256 & 521 Area-Time, Area-Energy Product

Alg. Key & Area Time ATP Energy AEP

Field (Slices) (mS) (Slice.mS) (mJ) (Slice.mJ)

SD (X,Y) - 1M 256 1641 41.0 67281 6.9 11388

(Alg. 23) 521 3310 161.2 533572 30.0 99452

ML (X,Y) - 2M 256 1828 22.1 40398.8 3.9 7147

(Alg. 22) 521 3985 83.8 333943 16.3 65226

ML (X,Z) - 3M 256 2049 15.5 31759.5 2.7 5696

(Alg. 19)(Alg.42&46) 521 4032 59.3 239097.6 11.9 48182

ML (X,Y) - 4M 256 2284 13.8 31519.2 2.5 5755

(Alg. 22) 521 4893 50.2 245628.6 10.3 50593

Next, the best results for each of the SPA secure parallel cases v are taken and implemented for a

field size and a key size of 256 (protection from 2009 to 2040; defined by NIST [41] as equivalent

security to AES-128 [26]) using curve parameters secp256r1 [81], and a field size and a key size

of 521 (protection for the foreseeable future) using curve parameters secp521r1 [81] to examine

larger more secure implementations and to allow an analysis of scaling.

The results are presented in Table 3.11 and the AT product for all three cases is graphed in Fig-

ure 3.15. Evident from Table 3.11 compared with Table 3.4 is the fact that the area is essentially

doubled in each case (additionally, the BRAM stays the same for the 256 case but increases to six-

teen 36K blocks for the 521). The time and the energy required to process each algorithm is also

approximately ×2 between 192 and 256, but increases to ×4 between 256 and 521. Table 3.11

and Figure 3.15 also show how each of the algorithms roughly scale equivalently with the larger

key and field sizes. While there is no significant change in order between the algorithms for the

vThe unified extended twisted Edwards, while having equivalent results with the Montgomery ladder (XY) in the

4M case were excluded on the grounds that there is as yet no recommended curves in Edwards or twisted Edwards form

89

3.12. CONCLUSIONS

-10

0

10

20

30

40

50

60

70

80

90

100

110

120

521-bit256-bit192-bit

A
re

a
-T

im
e

 P
ro

d
u

c
t
(x

1
0

0
0

)

Field Size

 SigDigXY.1M

 ML.XY.2M

 ML.XZ.3M

 ML.XY.4M

Figure 3.15: Area-Time Product: 192, 256 & 521

different key and field sizes, as the computations become larger it is clear that the differences in

ATP between the algorithms also increases.

3.12 Conclusions

In this chapter a number of algorithms and parallel hardware implementations for them were pre-

sented. Initially dedicated point doubling and point addition algorithms were examined for dif-

ferient coordinate systems for the Double-and-Add algorithm. A reconfigurable elliptic curve

processor was then presented and methods for performing modular addition and multiplication

were described. Next, the aforementioned algorithms were implemented on this processor and

observations were made. It was shown that the affine coordinate system performs best for a circuit

containing a single multiplier, however, this did not scale well with additional multipliers and was

overtaken at 3M in computation time and energy usage by its projective and Jacobian equivalents.

90

3.12. CONCLUSIONS

Performing best of these dedicated point doubling and point addition algorithms were curves of a

special form, the twisted Edwards and the extended form of the twisted Edwards.

A brief look at power analysis attacks was then performed and how the algorithms examined

so far are susceptible to this type of side channel attack. Following on from this, various SPA

secure methods were then examined, namely dummy arithmetic instructions, unified doubling and

addition and regular algorithms. The algorithmic cost and area, energy and timing results of these

SPA secure algorithms were examined and some further observations were made. A comparison

of the expected and measured results was performed and it was shown that the heirarchy of results

in the expected case can be used to estimate how the measured results should roughly perform

relative to each other and can be used to alleviate test time. It was also shown that through careful

selection of the algorithm, along with through good use of parallelisation and scheduling, that

some SPA secure algorithms can be made to perform as well as, or even better than their non SPA

secure equivalents.

The best performing algorithms were then selected for further analysis with larger key and field

sizes based on NIST specifications. Additional power, energy area and timing results were ac-

quired and comparisons between the differing security levels were made.

91

4
Hash Functions

4.1 Introduction

Cryptographic hash functions are another type of cryptographic primitive from layer 4 of the

hierarchical model shown in Figure 1.2. This chapter examines an implementation method for the

SHA-3 hash functions [96]. Different implementation options are examined, a wrapper used to

interface to the designs is described, and area, throughput and power results are presented.

A hash function H maps a message x of variable length to a string of fixed length. The process

of applyingH to x is called ‘hashing’, and the outputH(x) is called the ‘message hash’ or ‘mes-

sage digest’. Cryptographic hash functions are hash functions that possess the following specific

4.1. INTRODUCTION

properties [23]:

• Pre-image Resistance. This requirement means that for a given hash value y, it should be

computationally infeasible for an adversary to find an input x such that H(x) = y. Pre-

image resistance is also known as ‘one-wayness’.

• Second Pre-image Resistance. This implies that for a given input x1, it should be compu-

tationally infeasible to find another input x2, such that H(x1) = H(x2). This property is

also known as ‘weak collision resistance’.

• (Strong) Collision Resistance. It should be computationally infeasible for an adversary to

find any two distinct inputs x1 and x2, such thatH(x1) = H(x2).

E
x
p

a
n

s
io

n

M
e

s
s
a

g
e

P
a

d
d

in
g

&

E
x
p

a
n

s
io

n

Compression

Function

P
a

rs
in

g

m

H i

n

0H

Salt

Counter

Length

Variable

Message

i−1H
cf

H
a

s
h

Length

Digest

Fixed

F
in

a
lis

a
ti
o

n

Figure 4.1: Generic Hash Function Internals

Figure 4.1 shows an overview of a generic hash function. A hash algorithm essentially consists

of three stages: message padding and parsing; expansion; and compression. The binary message

to be processed is appended and padded until it reaches the required bit length. The counter and

salt are additional inputs, used in some hash functions to further obfuscate the input; for example,

in HAIFA (Hash Iterative Framework) [97] based designs, a counter is fed in with the message,

whereas, for Merkle-Damgård [98] [99], it is not.

The resultant padded message is parsed into m-bit blocks. These message blocks are passed

individually to the message expansion stage where various rotations and shifting of the data blocks

takes place.

93

4.1. INTRODUCTION

The n-bit blocks from the message expansion stage are then passed to the hash compression func-

tion, or the hash core, fC . The output of the compression function is a p-bit intermediate hash

value Hi. A number of iterations, or rounds, of the compression function are then performed with

the round data, Hi, further rotated and shifted using the hash expansion stage before being re-

input to the compression function, fC . The hash compression algorithm then repeats and begins

processing another block from the message padding stage. After all m-bit data blocks have been

processed, the output is formed by a concatenation of the final hash values up to the digest size

required.

The rest of the chapter is structured as follows. Section 4.2 begins with a brief overview of cryp-

tographic hash functions and the SHA-3 competition.

Section 4.3 briefly described the characteristics of the hash functions and examines different im-

plementation options using example designs from the SHA-3 competition. Following this is a brief

description of the round two and subsequent round three hash designs and their implementation

methodologies in Section 4.4.

Section 4.5 presents the hash wrapper used to interface to the designs presented here. The inter-

face, communications and padding protocols for the round two implementations used in this work

are then presented.

Section 4.6 presents area and throughput results for each round two design, and gives a brief

synopsys of how the best results selected here compare with those selected by NIST for the third

round of the competition.

Section 4.7 gives an overview of the round three designs and begins by comparing the differences

between the round two and round three variants. This section also contains updated area, timing,

power and energy results for each of the designs.

Section 4.8 provides a comparison of the work presented here against the current state of the art.

Finally, Section 4.9 concludes this chapter.

94

4.2. BACKGROUND TO THE SHA-3 HASH FUNCTIONS

4.2 Background to the SHA-3 Hash Functions

The family of Secure Hash Algorithms (SHA) [100] began in 1993 when the National Institute

of Standards and Technology (NIST) published the Secure Hash Standard. This version, known

as SHA-0, was withdrawn by the National Security Agency (NSA) and replaced in 1995 by the

SHA-1 algorithm after it was found to be insecure [6–8]. Both algorithms produce message hashes

of length 160 bits. In 2002, NIST published three new hash functions with longer hash lengths:

SHA-256, SHA-384 and SHA-512. In 2004, SHA-224 was added to the standard, and these four

algorithms form the SHA-2 family of hash functions [101]. Although the standard still includes the

SHA-1 hash function, its security has been compromised through cryptanalytic attacks. The trend

in the cryptographic community was to move away from using older hash functions like SHA-1,

towards newer functions like those in the SHA-2 family [102]. However, when insecurities were

found following attacks against reduced versions of the SHA-2 family [103], the National Institute

of Standards and Technology (NIST) started a competition for a new hash algorithm [96], namely

SHA-3, similar to the former AES effort [26], with the intention of developing a more secure

family of hash functions.

The contest initially received 64 submissions from designers worldwide. 51 of these designs pro-

gressing through to round one of the contest which began on November 1st 2008. Approximately

a year was given for each round of the competition, with round one being used to examine the

security of the applicants. Round two candidates were announced on July 24th of 2009 and the

number of competing designs were reduced to 14 [104].

For round two, the NIST competition specifications [96], 6.C, Round 2 Technical Evaluation gave

the criteria for hardware and software testing; ”Round 2 testing by NIST will be performed on

the required message digest sizes” and ”the calculation of the time required to compute message

digests for various length messages”.

On December 9th 2010, round two was completed and the field was reduced further to 5 competing

designs, BLAKE, Grøstl, JH, Keccak and Skein for round three [105]. Finally, on October 2nd

2012, Keccak was selected as the winner of the SHA-3 hash function competition [106].

95

4.3. IMPLEMENTATING SHA-3 HASH FUNCTIONS

4.3 Implementating SHA-3 Hash Functions

The initial 64 submissions recieved by NIST were accepted solely on being complete and proper

submissions. Other factors, such as security, cost, and algorithm and implementation characteris-

tics of the candidates did not enter the review process prior to the first round, nor did cryptanalysis

or performance data of a submission impact the acceptance of the first-round candidates. How-

ever, NIST stated in the status report at the end of the first round [104], after selecting 14 of these

designs for round two, that there were many candidate algorithms with new and interesting de-

signs, and with unique features that are not present in the SHA-2 family of hash algorithms and

felt that the diversity of designs will provide an opportunity for cryptographers and cryptanalysts

to expand the scope of ideas in their field, and it will also be less likely that a single type of attack

will eliminate the bulk of the candidates remaining in the competition.

From an implementation point of view, it was clear that this diversity of designs would require

significantly different design methodologies. Each hash function would need to be tailored differ-

ently to achieve its best results. While some of the round two designs contained similar features

(and indeed shared some basic components), no two designs could be implemented using the same

methodology. Table 4.1 gives the constructions of the round two SHA-3 hash functions and their

variants as well as the various inputs and state sizes in bits. The Structure loosely defines the hash

function overview. The Type describes the design of the hash functions. The Counter, Message

and Salt all form the inputs to the hash functions, while the State describes the internal size of

each of the hash functions. As the {224} variant is almost identical to the {256} and similarly, the

{384} to the {512} these values are omitted. The only notable differences being Keccak, where

the message size increases to 1152-bits for {224} and 832-bits for {384}, and Luffa, where the

state size decreases to 1024-bits for {384}. Also, each of the hash functions and their variants

have an initial vector (IV) as part of the input, but for the SHA-3 competition each of these IV’s

are fixed to a specific value throughout, and as such they are not considered as part of the input but

rather as stored constants within each hash function itself.

Due to the large number of differing designs, a standard metric was needed to allow a baseline

96

4.3. IMPLEMENTATING SHA-3 HASH FUNCTIONS

Table 4.1: Hash Function Internals
224/256 384/512

Design Structure Type Counter Message Salt State Counter Message Salt State

SHA-2 Merkle-Damgård Add-XOR-Rotate 64 512 0 512 128 1024 0 1024

Blake HAIFA Add-XOR-Rotate 64 512 128 512 128 1024 256 1024

BMW Iterative Add-XOR-Rotate 64 512 - 2048 64 1024 - 4096

Cubehash Iterative Add-XOR-Rotate - 256 - 1024 - 256 - 1024

Echo HAIFA AES based 64 1536 128 2048 64 1536 128 2048

Fugue Iterative AES based 64 32 - 96 64 32 - 1148

Grøstl Iterative AES based 64 512 - 512 64 1024 - 1024

Hamsi Conc-Permute Serpent based 64 32 - 512 64 64 - 1024

JH Iterative Block Cipher based 128 512 - 1024 128 512 - 1024

Keccak Sponge Add-XOR-Rotate - 1088 - 1600 - 576 - 1600

Luffa Sponge S-box based - 256 - 768 - 256 - 1280

Shabal Iterative Add-XOR-Rotate - 512 - 1408 - 512 - 1408

SHAvite-3 HAIFA AES based 64 512 256 256 128 1024 512 512

SIMD Iterative Block Cipher based 64 512 - 512 64 1024 - 1024

Skein UBI Add-XOR-Rotate 96 512 - 512 96 512 - 512

comparison between them. The goal decided upon was to explore area-speed trade-offs in the

implementations of the hash functions, and to compare the efficiency of the designs by examining

the throughput per unit area (TPA) metric as described in Section 2.10. High-throughput hash

function implementations are beneficial in network server applications, for example. Analysing

the throughput per slice of the architectures, determines which hash function implementations

make the most efficient use of FPGA area. The throughput is calculated as follows:

Throughput =
Bits in a message block×Maximum clock frequency

Clock cycles per message block

Within each of these hash architectures, various area-speed trade-offs were investigated through

an exploration of the design space in an attempt to find the best throughput for the least amount

of area used. Selecting implementation and performance metrics is nontrivial. It was described

in Section 2.6 how resources in FPGA differ not only between different vendors, but also be-

tween different families of the same vendor. Results for a particular hash function architecture

on different FPGA platforms cannot be directly compared, since any two platforms have different

underlying technologies. As such, dedicated resources specific to a particular FPGA family or

vendor were not used in the analysis. All implementions were performed using only slice logic,

i.e. distributed memory blocks used instead of BRAM blocks etc. Using this methodology, diffi-

97

4.3. IMPLEMENTATING SHA-3 HASH FUNCTIONS

cult comparisoni is avoided, and a single value can be allocated to a result (e.g. area in slices). A

wrapper interface was designed to enable fair comparison of the different hash functions when op-

erating in a standardised and constrained environment. Starting from a basic iterative architecture

various implementation methods were examined, some examples of which are:

• Loop Unrolling. This involves running multiple rounds of a loop in the same clock cycle.

The number of loops to be completed will decrease with each unroll, however the area will

increase and the critical path will get longer, causing a reduction in the maximum frequency

and thus reducing the clock speed.

• Parallelised Design. In some designs, e.g. Grøstl, the permutations are identical except

for the execution of the AddRoundConstant step, where different round constants are used.

Therefore, when implementing fC , one design choice is to compute Q in parallel by repli-

cating the hardware for P .

• Interleaved Design. This approach is the opposite of above, and re-uses the hardware for

P to compute Q, resulting in extra clock cycles but a lower area.

Two examples of this examination method are presented in Sections 4.3.1 and 4.3.2 for the 256-bit

versions of Cubehash and Shabal as updated versions of those presented in [107].

4.3.1 CubeHash

CubeHash was submitted by Bernstein to the SHA-3 contest [108]. FPGA implementations of

the CubeHash compression function, fC , were designed. The rotation and swapping operations

are implemented in hardware by simply re-labelling the relevant signals. Since the state comprises

1024 bits, the same architecture can be used to produce message digests with any of the lengths re-

quired for SHA-3. Therefore, a CubeHash8/32-256 implementation will have the same throughput

and throughput per slice performance as a CubeHash8/32-512 implementation.

iSuch as comparing BRAM and CLB area results as described in Section 2.6.2.

98

4.3. IMPLEMENTATING SHA-3 HASH FUNCTIONS

C

ROT 7 SWAP

SWAP

ROT 11 SWAP

SWAP
512

512 512

512

B

A’

’

A

B

f

Figure 4.2: Cubehash Compression Function

The critical path through the compression function, consists of two modulo 232 additions and two

XOR operations, as indicated by the heavy lines in Figure 4.2. The compression function is used

r = 8 times for each message block Mi (i.e. for each message byte in this case, since b = 1).

CubeHash architectures were investigated where fC is unrolled by various degrees. The lowest

area design iteratively uses a single fC unit and takes 8 clock cycles to process a single message

block, and the highest area design uses a chain of four fC units in series to process a single message

block in two clock cycles. The results are shown in Table 4.2. Note that the figures quoted for

each design include the initial XOR of the message block with the state, and also include the area

of the output register that stores the result of the last fC calculation in the chain.

Table 4.2: CubeHash Implementation Results

Architecture Area Max. Freq. #Cycles TP TP-Area

(slices) (MHz) (Mbps) (Mbps/slice)

Iterative 1025 166.66 17 2509.7 2.45

Virtex-5 2×-unrolled 1440 55.14 13 1085.8 0.75

4×-unrolled Congested Design

As expected, the critical path of each design increases with the degree of unrolling. However each

increase in the critical path is greater than the corresponding benefit of a decrease in the number

of clock cycles, so an overall increase in throughput (TP) is not obtained. The iterative design

provides the best TP-Area result. The longer critical paths in the unrolled designs are caused

by routing delays between the long chains of adders on the FPGA. Indeed a 4× unrolled design

99

4.3. IMPLEMENTATING SHA-3 HASH FUNCTIONS

results in a congested design, where the design exceeds the available resources or the compiler

fails to optimise the design during place-and-route. A comparison with other Cubehash designs

shows that other groups, such as Matsuo et al. [109,110] and Homsirikamol et al. [111] also chose

to present iterative design implementations.

4.3.2 Shabal

Shabal was submitted by the Saphir research project to the SHA-3 contest [112]. Shabal, Fig-

ure 4.3(a), uses a sequential iterative hash construction, to process messages in blocks of ℓm = 512

bits, as shown in Figure 4.3(b).

A
B

Cout

Bout

Aout

P

C−M

B+M
M

B

C

W
Α⊕

(a) Hash

1

V

U

A

139 15

B

80 15

15

0 11

C

150

M

0 6

(b) Compression Function (P)

Figure 4.3: Shabal

The Shabal compression function is based on a Non-Linear Feedback Shift Register (NLFSR)

construction. The precomputed initialisation vector (IV) was used to remove the configuration

stage and thus remove the initial two message block from the latency. When designing Shabal, the

XOR, addition and subtraction operations were all implemented in parallel. In the permutationP ,

the rotation operations were implemented through simple wiring. In order to realise the central part

of the permutation, a shift-register based approach was adopted, where the state words are shifted

along chains of 32-bit registers. The multiplication operations U and V form the non-linear part

of the NLFSR; these were implemented using the shift-then-add method. Once the shift registers

100

4.3. IMPLEMENTATING SHA-3 HASH FUNCTIONS

have been loaded with the appropriate initial values, the central permutation result is calculated

after 48 clock cycles. The final part of the permutation P adds words from the A and C states.

For these modulo 232 additions, two design choices were investigated. In the first design, the

NLFSR is used together with a single adder to compute A[0]⊞ C[3], and the result is fed back to

A[15]. Note that the direction in which the C word is shifted must be reversed. This design takes

a further 36 clock cycles to produce the final result. The second design for this stage of P expands

the addition into 12 × 3 series additions, e.g. A[0] ← A[0]⊞ C[3] ⊞ C[15] ⊞ C[11]. Using this

approach, the final result is computed without requiring any extra clock cycles, but at the expense

of area for 35 additional adders.

Table 4.3: Shabal Implementation Results

Final Additions Area Max. Freq. #Cycles TP TP-Area

in P (slices) (MHz) (Mbps) (Mbps/slice)

Virtex-5 Series 2119 222.22 86 1322.9 0.624

Parallel 2512 143.47 50 1469.1 0.584

The area, timing and throughput results for Shabal are shown in Table 4.3. In the lower-area

implementations, the critical path is within the NLFSR construction, from register A[11] to reg-

ister B[15]. The higher-area implementations have a longer critical path, due to the three series

additions used to compute the final result. However, these higher-area implementations still at-

tain better throughputs than the lower-area implementations, due to the lower number of clock

cycles required. Both designs have similar throughput per slice metrics, with the lower-area im-

plementation more efficient on the Virtex-5 platform (it is also noted here that the higher-area

implementation was found to be more efficient on a Spartan-3 platform). While some designers

implemented similar methods to the ones presented here [110, 111], others such as Julien Francq

and Céline Thuillet [113] unfolded Shabal a number of times and found their best result at an

unfolding factor of 3. So while the work presented here found the best results to be for the low

area approach, it is seen that further examination of the design space can result in improvements

to the throughput and throughput-area.

101

4.4. SHA-3 ROUND TWO IMPLEMENTATIONS

4.4 SHA-3 Round Two Implementations

Next follows a brief overview of some of the SHA-3 hash functions. An overview of the algorithm

is first presented followed by a description of the architecture used to implement the design. While

the work presented here [114,115] discusses results for all four hash variants (224, 256, 384, 512)

of all of the round two hash designs, attention in this section is focused on the five designs which

were selected for round three of the competition; Blake, Grøstl, JH, Keccak and Skein. Here

follows a brief description of the make-up and implementation of those designs emphasized for

the second round of the competition.

4.4.1 BLAKE

Algorithm: The BLAKE hash function was developed by Aumasson et al. [116]. It uses the

HAIFA iteration mode. A large inner state is initialised using a counter and a salt along with

the input message. The data block is then injectively updated by message-dependent rounds, and

finally compressed to return the next chain value. The inner state of the compression function is

represented as a 4 × 4 matrix of words. A round comprises updating this matrix; first, all four

columns are updated independently, followed by four disjoint diagonals. In the update of each

column or diagonal, two message words are input according to a round-dependent permutation.

Each round is parametrized by predefined constants. After the sequence of rounds, the state is

reduced to half its length with feedforward of the initial data block and the salt. It is based on

LAKE [117] and ChaCha [118] and uses a wide pipe construction where the size of the internal

state is significantly larger than the size of the output.

Architecture: For the implementation of BLAKE the compression function was further subdi-

vided into two identical sections, to allow re-use of the component blocks and thereby reducing

the area. This subdivision increases the latency of the hash permutation to complete a round from

two to four clock cycles, but reduces the critical path from four adders to two adders thus increas-

ing the maximum frequency of the permutation. For the larger variant which requires 32 clocks

102

4.4. SHA-3 ROUND TWO IMPLEMENTATIONS

V1

V2

V3

V0

V5

V4

V0

V1

V2

V3

V4

V5

V14

V15 V15

V14

BA C D

ROM BLOCKS

INIT

V

IV

CHAIN

Message

Salt

Count

H

Figure 4.4: Blake Architecture

to load a 1024 bit message, it ensures there is no delay where the hash function needs to wait for

loading to complete. Figure 4.4 shows the modified design where V is the compression function.

The Adders and XORs are generated using standard operators (using the ’+’ operator of the

IEEE.std logic unsigned package) and the rotation operations were implemented through sim-

ple wiring, with multiplexers to select the particular subround rotation. The 16 constants required

by the initialisation and round stages are stored in distributed ROM.

4.4.2 Grøstl

Algorithm: Grøstl was submitted by Gauravaram et al. [119]. It is an iterated hash function with

a compression function built from two fixed, large, distinct permutations using a wide-trail design

strategy. Grøstl uses components from the AES [26]; the same S-box is used and the diffusion

layers are constructed in a similar manner to those of the AES. Similar to BLAKE, Grøstl is

a so-called wide-pipe construction. The initial message is padded and split into n-bit message

blocks and each message block is processed sequentially. The compression function maps two

inputs of n-bits each to an output of n-bits. The first input is called the chaining input, and the

second input is called the message block. The compression function is based on two underlying

n-bit permutations P and Q. In the Grøstl permutations, a total of four round transformations

103

4.4. SHA-3 ROUND TWO IMPLEMENTATIONS

are defined for each permutation; AddRoundConstant, SubBytes, ShiftBytes and MixBytes. The

output transformation truncates the final bits to the required digest size.

Round

XTime512 512

8 8

512

X4Time

[15,8]

[7,0]

[23,16]

[31,24]

[39,32]

[47,40]

[55,48]

[63,56]

64

64
8

512

8

512

8 8

AddRoundConstant SubBytes ShiftBytes MixBytes

Constant

Figure 4.5: Grøstl P/Q Permutation

Architecture: The architecture for the P and Q permutations of Grøstl is illustrated in Figure 4.5.

The first stage in each permutation is the AddRoundConstant block which simply performs an

XOR on one byte of the ℓ-bit input state. The round constants are stored in distributed memory

on the FPGA. The SubBytes stage transforms the state, byte by byte, using the AES S-box gen-

erated using distributed ROM. The ShiftBytes transformation was realised in hardware by simply

re-labelling the bytes of the state. MixBytes is the final stage of the permutation function, and

processes each column of the state matrix separately and in parallel using combinational logic. An

output register was used to store the state at the output of the MixBytes transformation.

The compression function fG for the Grøstl implementation consists of two permutation functions,

P and Q. Permutations P and Q are identical except for the execution of the AddRoundConstant

step, where different round constants are used. Therefore, the design choice in this case was to

compute Q in parallel by replicating the hardware for P . Two XOR arrays are required to complete

the compression function for the input to P , and for the final output Hi.

4.4.3 JH

Algorithm: The hash function JH, was developed by Hongjun Wu [120]. Its compression func-

tion is constructed from a bijective function (a block cipher with constant key) and the generalized

AES design methodology is used to design large block ciphers from small components. The com-

104

4.4. SHA-3 ROUND TWO IMPLEMENTATIONS

pression function combines a 1024-bit previous hash block (Hi−1), a 512-bit message block (Mi)

to produce a 1024-bit hash block (Hi). The compression function (CFJH) is applied to each

message block, Mi. The bijective function consists of 35 rounds, each consisting of an S-box, lin-

ear transformation and permutation, and a single final round consisting of just the S-box. The JH

block cipher combines the most important features of AES, namely the substitution-permutation

network (SPN) and Maximum Distance Separable (MDS) code, and Serpent [121], namely SPN

and bit-slice implementation.

256

sb
o

x

m
d

s

p
er

m

1024

sb
o

x

m
d

s

p
er

m

512

H

IV

M

IV

Figure 4.6: JH Architecture

Architecture: JH uses the same design for all four variants and is based on simple components.

Two 4-bit S-boxes are used; the selected table depending on the value of a round constant. It can

also be viewed as a 5-bit to 4-bit substitution. The linear transformation implements a (4, 2, 3)

maximum distance separable (MDS) code over Fq(2
4), and the permutation shuffles the output

according to three distinct smaller permuations. The 256-bit round constants can be generated

either in parallel with the data path or pre-computed and stored in memory where they can be

re-used. In the design presented, the full 1024-bit data state is operated on at once. Each round

completes in one clock cycle. The 256-bit sub-key state is calculated in parallel, as illustrated in

Figure 4.6.

105

4.4. SHA-3 ROUND TWO IMPLEMENTATIONS

The S-box and linear transformation functions are implemented as combinational logic as out-

lined in the submission documentation, and the grouping and permutation functions are rewiring

circuits. In the round constant data path, only the S-box corresponding to select bit ’0’ is required.

Three registers are required for data storage, one each for the round constant, message block and

data block respectively.

4.4.4 Keccak

Algorithm: Keccak, submitted by Bertoni et al. [122] is a hash function based on the sponge

construction [123]. The design philosophy underlying Keccak is the hermetic sponge strategy [124],

where, a (cryptographic) sponge function is a class of algorithms with finite internal state that take

an input bit stream of any length and produce an output bit stream of any desired length, during

an absorbing stage and a squeezing phase. The Keccak sponge function is built from three com-

ponents; a state memory, S, a function, f , of fixed length that permutes or transforms the state

memory and a padding function. The sponge construction state memory is divided into two sec-

tions, bitrate, R of size r-bits, and capacity C of size c-bits. After padding of the initial message,

the first r-bit block is XORed with R, and S is replaced by f(S). This repeats until all padded

blocks are ’absorbed’. The R portion of the state memory provides the output in ’squeezed’ out

blocks of r-bits during the squeezing phase. The sum r + c determines the width of the keccak-f

permutation used in the sponge construction and for the SHA-3 competition is selected by the

designers to be 1600. The Keccak hash function uses five functions θ, ρ, π, χ and ι, which are

consecutively computed during each round. The functions θ, χ and ι are designed using XOR,

AND and NOT operations, while ρ and π provide the permutations.

Architecture: The NIST submissions use the same KECCAK-f permuation for all variants, with

different capacity (c), bitrate (r) and diversifier (d) values, where smaller digest sizes have a greater

bitrate. The five steps of the permutation consist of addition and multiplication operations inFq(2).

The full round computes in a single clock cycle, and an extra clock is required for loading in of

106

4.4. SHA-3 ROUND TWO IMPLEMENTATIONS

1600

θ π ιρ χ

constants

1600

1600

2

select ctr

HM

Figure 4.7: Keccak f(1600) Architecture

the message. The padded message of length r is loaded in by XOR’ing it with r bits of the state.

The 64-bit round constants are defined as the output of a linear feedback shift register and can

be pre-computed or generated as required. In the design, presented here in Figure 4.7, they are

pre-computed and stored in distributed ROM. Only one register is required and is used to store the

state value. The HDL implementation provided in the specification documentation was used as a

reference for the permutation steps in the design.

4.4.5 Skein

Algorithm: Skein was submitted by Ferguson et al. [125] and Skein-512 is the primary proposal

of the Skein family of algorithms. It is based on the Threefish algorithm, a tweakable block

cipher [126]. A Unique Block Iteration (UBI) chaining mode takes in the chain value, the message

and a ’Tweak’ defined by an 128-bit configuration string derived from the message counter and

UBI constants as shown in Figure 4.8(a). The Threefish algorithm has 72 rounds consisting of

four sets of four MIX functions followed by a permutation of the eight 64-bit words. Each MIX

function consists of a single addition, a rotation by a constant, and an XOR. The rotation constants

repeat every eight rounds. The key schedule generates the subkeys from the chain and a tweak. A

finalisation UBI stage consisting of a null message, a Tweak and the previous chain.

107

4.5. HASH INTERFACE

UBI

UBI

UBI

Message

Config

Out

CFG

MSG

0

0

(a) UBI

PLAINTEXT

PERMUTE

SUB

KEY

(b) Threefish 512 Round

Figure 4.8: Skein Architecture

Architecture: For this design of Skein-512 four rounds of threefish were unrolled, Figure 4.8(b).

In this way, a UBI message block of Skein takes 18 clocks for the rounds to complete, plus 5 for

preprocessing and data loading. The precomputed IV was used to remove the configuration stage

and thus remove the initial message block from the latency. Each subsequent message block

and the output block are calculated identically. The tweak, which ensures each message block

is different, is generated by the counter in the padding.The Adders and XORs were generated

in a generic fashion and the rotation operations were implemented through simple wiring, with

multiplexers to select the particular subround rotation.

4.5 Hash Interface

Cryptographic hash functions have many information security applications, such as digital signa-

tures, message authentication codes (MACs), and other forms of authentication, the purpose of

which is:

• Confidentiality. Privacy.

• Authentication. Who created or sent the data and password verification.

108

4.5. HASH INTERFACE

• Integrity. Confidence that the data has not been altered.

• Non-repudiation. The order is final, and it was sent at a certain time or sequence.

The purpose of the Hash function in these applications is to produce a fingerprint. It is usually

used as one part of an overall security system. As such, along with a standard metric of TPA to

allow a baseline comparison between the different designs, a standard interface was also required

to enable fair comparison of the different hash functions when operating in a standardised and

constrained environment.

The work next presents a wrapper [127] that can be used to interface between any particular

hash function algorithm and the outside world where the padding is included in the wrapper as

opposed to the hash function block itself. In this way, ’fully autonomous’ designs can be easily

and efficiently inserted inside the wrapper thereby allowing fast testingii. It allows re-use of any

padding scheme used in multiple hash functions which cuts down on design time. It also alleviates

any issues concerning designs which do not take into account bandwidth limitations or extra area

or timing due to external stages such as loading, initialisation and finalisation.

ack_in

Controller

Register
Shift

Output

Unit

Padding

Input
Shift

Register

lb
_
h
_
in

ac
k
_
h
_
in

d
p
_
h
_
in

d
p
_
h
_
o
u
t

ac
k
_
h
_
o
u
t

sel_in

m

mes_in

3

d_in w
Hash Block

d_out

d

hash_out

w

2sel_outctr_en

ctr_cl

dp_in

lb_in lb_out

dp_out

ack_out

Figure 4.9: Hash Wrapper

iiSpeed estimate for the algorithms required by NIST were simply defined as; at a minimum, the number of clock

cycles required to generate one message digest, and set up the algorithm [96] Section 6.B.

109

4.5. HASH INTERFACE

Figure 4.9 shows a block diagram of the interface architectureiii. It comprises an input register

which includes any padding required, an output parallel load shift-register and control circuitry.

The input data can be set to any size, w, but for a representation of a real world communications

system, it is set to 32-bits, a standard word size such as that used in the FSL bus. The input shift-

register reads in and stores these w-bit values to the size required, m, which is the message block

size of the hash function under test. If a message ends prior to this register being completely filled,

padding is added to the partial message to bring it to the required size. The output shift-register

performs a similar task, holding the hashed message digest of size d, while the output bus reads it

out w bits at a time. The control circuitry synchronises the shift register operation, padding, and

all communication signals.

Because of the different design methods and message sizes that comprise all the hash functions, as

shown previously in Table 4.1, a number of user defined constants are specified at the top level of

the implementation code and as such can be easily modified by the user to synthesize the message

size and padding scheme necessary to run a particular hash function. These constants are defined

as:

• The hash function required.

• The counter size required for message length addition during padding.

• The message digest size required.

• The input message block size of the hash function.

The hash function for a given digest size is then synthesized according to these constants. As

stated earlier, each of the hash functions and their variants have an initial vector (IV) as part of the

input, but for the SHA-3 competition each of these IV’s are fixed to a specific value throughout,

and as such they are not considered as part of the input but rather as stored constants within each

hash function itself.

iiiNote that variants on the design shown here were also developed which include extra bus lines from the control

block to the hash function block where necessary, i.e. for designs which require counter or salt values to be input as

part of the message.

110

4.5. HASH INTERFACE

The performance of the implementations on Virtex-5 were based on the following targets: the data

bus was defined to be 32-bits wide and the padding explicitly included as part of the hardware

interface block. Both decisions were shown to have an impact on the latency, throughput and area

of the different hash function implementations. The results presented are post-place and route.

4.5.1 Communications Protocol

Table 4.4 defines the various communication signals between the wrapper and the external world.

It can be seen from Figure 4.9 that the communications protocol between the hash function and

wrapper, as well as between the wrapper and the outside world is similar to that suggested by

Gaj [128]. It differs however in the fact that a user wishing to hash a message does not need to do

any preprocessing to their plaintext before sending the message, such as adding message length

data, but only needs to set an end of message (EOM) signal high, in this case defined as a last

block lb in signal either simultaneously with the last block of the message or at any time after

transmission of the last message block.

Table 4.4: Wrapper Interface

Signal IO Description

clk in Global clock

rst in Global reset, Active HIGH. Initialises the

circuitry to begin hashing a new message

d in in The input bus

dp in in Data present on the input bus

ack in out Data present on the input bus has been read

lb in in Data present on the input bus is the

last block of the message to be hashed

d out out The output bus

dp out out Data present on the output bus

ack out in Data present on the output bus has been read

lb out out Data present on the output bus is the last

block of the hashed message

While there is valid data on the line, a data present dp in flag is set high. To avoid the need to

transmit a count of the number of valid message bits in the input block, and thus needing to know

111

4.5. HASH INTERFACE

the lengths of message sections prior to transmission, the data present signal is set high when all

of the data on the input bus are valid message bits, i.e. each message blocks read in is of size

w. When the wrapper reads in the data on d in it acknowledges that the data has been read in

by setting ack in high. It is then ready to receive the next block of data. Conversely, when the

message digest is ready to be read out on the output bus, dp out is set high by the function wrapper.

This data will remain on the output bus until a return acknowledge ack out is received. The system

then returns to its initial state in preparation for the next hash message.

Table 4.5 defines the various communication signals between the hash function and the wrapper.

These closely mirror the external signal lines, and in most cases perform equivalent functions

between the hash block and the interface as the externals do between the interface and the outside

world. However, there is no lb out equivalent as the hashed digest, d, is output to the output

shift-register as one complete block.

Table 4.5: Hash Interface

Signal IO Description

clk in Global clock

rst in Global reset Active HIGH

mes in in Data-in bus

dp h in in Valid data on Data-in bus

Set when buffer-in shift-register is full

ack h in out Data present on Data-in bus has been read

lb h in in Last block is present on Data-in bus

Inclusive of padding where required

hash out out Data-out bus

ack h out in Data present on Data-out bus has been read.

dp h out out Message digest is present on Data-out bus

4.5.2 Padding Protocol

There are many different padding schemes utilised by the designers of the hash functions, and

in some cases varying padding schemes between the different sizes of the same hash function.

Table 4.6 gives a brief outline of the various padding schemes used by the different round two

112

4.5. HASH INTERFACE

Table 4.6: Padding Schemes per SHA-3 Type

Design Padding Scheme

SHA224/256 1, 0’s until congruent (448 mod 512), 64-bit message length

SHA384/512 1, 0’s until congruent (896 mod 1024), 128-bit message length

Blake224 1, 0’s, until congruent (448 mod 512), 64-bit message length

Blake256 1, 0’s, until congruent (447 mod 512), 1, 64-bit message length

Blake384 1, 0’s, until congruent (895 mod 1024), 128-bit message length

Blake512 1, 0’s, until congruent (894 mod 1024), 1, 128-bit message length

BMW224/256 1, 0’s until congruent (448 mod 512), 64-bit message length

BMW384/512 1, 0’s until congruent (960 mod 1024), 64-bit message length

Cubehash 1, 0’s until a multiple of 256 (256 = 8 * b, b=32)

Echo224/256 1, 0’s until congruent (1392 mod 1536), 16-bit message digest, 128-bit message length

Echo384/512 1, 0’s until congruent (880 mod 1024), 16-bit message digest, 128-bit message length

Fugue 0’s until a multiple of 32, 64-bit message length

Grøstl224/256 1, 0’s until congruent (448 mod 512), 64-bit block counter

Grøstl384/512 1, 0’s until congruent (960 mod 1024), 64-bit block counter

Hamsi224/256 1, 0’s until a multiple of 32, 64-bit message length

Hamsi384/512 1, 0’s until a multiple of 64, 64-bit message length

JH 1, 0’s until congruent (384 mod 512), 128-bit message length, min 512-bits added

Keccak224 1, 0’s until a multiple of 8, append 8-bit representation of 28,

append 8-bit representation of 1152/8, 1, 0’s until a multiple of 1152

Keccak256 1, 0’s until a multiple of 8, append 8-bit representation of 32,

append 8-bit representation of 1088/8, 1, 0’s until a multiple of 1088

Keccak384 1, 0’s until a multiple of 8, append 8-bit representation of 48,

append 8-bit representation of 832/8, 1, 0’s until a multiple of 832

Keccak512 1, 0’s until a multiple of 8, append 8-bit representation of 64,

append 8-bit representation of 576/8, 1, 0’s until a multiple of 576

Luffa 1, 0’s until a multiple of 256

Shabal 1, 0’s until a multiple of 512

SHAvite3-224/256 1, 0’s until congruent (432 mod 512), 64-bit message length, 16-bit digest length

SHAvite3-384/512 1, 0’s until congruent (880 mod 1024), 128-bit message length, 16-bit digest length

Simd224/256 0’s until a multiple of 512, extra block with message length

Simd384/512 0’s until a multiple of 1024, extra block with message length

Skein 0’s if multiple of 8, else 1, 0s, until a multiple of 512

candidates.

As can be seen from Table 4.6, similarities between most of the different padding schemes allow

for generation of a generic block for variants of Merkle-Damgård strengthening [23] padding

schemes, as well as paddings types of all-zeros or one-and-trailing-zeros.

Figure 4.10 shows the block diagram of the padding unit used to implement some of the padding

schemes. The input word w is read into a multiplexor and combined with the m− w least signif-

icant bits of the current register value. If no input value is available on the input bus, the current

113

4.6. ROUND TWO RESULTS

register value is held, or if the message is fully read in, the appropriate padding bits are appended.

Input blocks consisting of just counter values and/or padding bits are also catered for. For example

in the case of Fugue, the register is filled twice more, firstly with all zeros, followed by an m-bit

representation of the number of message blocks. In the case of Shabal, the extra message block

simply consists of 100 . . .0 of the size m. Note that not all hash functions require extra message

blocks.

ctr_cl

D Q

clk

&

&

w)(d_out

w)(d_out

w)(d_out

counter m

m

3

"100...00"

"000..00"

d_in w

w

w

m

m d_out

sel_in

111

110

101

100

011

010

001

000

m

"000..00"

"100...00"

m

m

"000..00"

"100...00"

m−c

("100...00")

("000...00")

& (d_in)

&

&

m−c

c

ctr_en

Figure 4.10: Padding Block

4.6 Round Two Results

Next, the round two results are examined. All of the round two algorithms were designed using

the wrapper described in Section 4.5 and implemented on the Xilinx Virtex-5 (xc5vlx50-3ff324)

FPGA and evaluated on the SASEBO-GII cryptographic evaluation board [48]. A brief definition

and presentation of the clock cycle count required to perform a hash is discussed followed by area,

frequency and throughput results for each of the round two hash functions and their variants.

Table 4.7 gives the clock count for the various designs. As can be seen from the table, some

hash designs require extra time to load in the padding scheme, while others have finalisation

stages comprising a number of rounds. For calculating the throughput, as the size of the message

114

4.6. ROUND TWO RESULTS

to be hashed increases, these padding and finalisation stages will have less of an impact on the

overall calculation time. However for short messages, they have a big impact. A short message is

therefore defined as the time required to process the padding, initialisation, a single message

block and finalisation, and a long message as just the time to process the message block. Note

that each hash function operates over the state size given in Table 4.1, and so designs with smaller

state sizes will require a larger number of rounds to hash the same amount of data as a design with

a large state size. This is also reflected in the throughput.

The larger state sizes however are affected by the loading latency as explained in Section 4.5.

Where the time required to hash the message is larger than the time required to load the message

this only affects the initial message loading, but in cases where the load latency is longer than the

hash latency (denoted ∗ in Table 4.7), there will be a delay as the hash waits for data to load. In this

scenario the clock count for the throughput needs to take this additional delay into consideration.

Not given here is the output message load time, which in all cases is the hash digest size/output

bus size.

The area, frequency and throughput results, as presented in Equation 2.13 given are inclusive

of the wrapper with TP-s using Table 4.7’s clock count for a short message, and TP-l using

the clock count for a long message where the padding and finalisation stages will have little

impact on the message. SHA-2 is presented as the benchmark to compare the others against. The

full area, frequency and throughput results inclusive and exclusive of the wrapper are presented

and compared in Appendix B.1 to allow a comparison of the designs exclusive of the padding

implemented in hardware or constrained by a fixed size input bus.

The bar graphs, shown in Figure 4.11(a) and Figure 4.11(b) present a graphical representation

of throughput/area results for both long and short messages for 256-bit, inclusive of the wrap-

per. Appendix B.2 presents the hash results for the 512-bit cases along with results for padding

implemented in software both inclusive and exclusive of the wrapper.

The performance of the hash functions in each of the scenarios presented in Appendix B.2 for

throughput-area, compared to SHA-2 is used as a metric to determine best design. All scenarios

115

4.6. ROUND TWO RESULTS

Table 4.7: Hash Function Timing Results

Hash 32-bit load Extra Padding Message Round Long Msg Final Final Short Msg

Design #Cycles Padding #Cycles Rounds #Cycles #Cycles Rounds #Cycles #Cycles

SHA224/256 16 0 0 64 1 65 0 0 65

SHA384/512 32 0 0 80 1 81 0 0 81

Blake224/256 16 0 0 10 4 40 0 0 40

Blake384/512 32 0 0 14 4 56 0 0 56

BMW224/256∗ 16 0 0 1 4 4 1 3 7

BMW384/512∗ 32 0 0 1 4 4 1 3 7

Cubehash 8 0 0 16 17 17 160 161 178

Echo224/256∗ 48 0 0 8 1 8 1 1 9

Echo384/512∗ 32 0 0 10 1 10 1 1 11

Fugue224/256 1 2 1 1 7 7 13 91 98

Fugue384 1 2 1 1 10 10 20 180 190

Fugue512 1 2 1 1 13 13 22 264 277

Grøstl224/256∗ 16 0 0 10 1 10 0 0 10

Grøstl384/512∗ 32 0 0 14 1 14 0 0 14

Hamsi224/256 1 3 1 3 2 6 6 24 31

Hamsi384/512 2 3 1 6 2 12 12 48 61

JH 16 1 1 35 1 38 0 0 38

Keccak224∗ 36 0 0 24 1 25 0 0 25

Keccak256∗ 34 0 0 24 1 25 0 0 25

Keccak384∗ 26 0 0 24 1 25 0 0 25

Keccak512 18 0 0 24 1 25 0 0 25

Luffa224/256∗ 16 0 0 8 1 8 1 8 16

Luffa384∗ 16 0 0 8 1 8 2 16 24

Luffa512∗ 16 0 0 8 1 8 2 16 24

Shabal 16 0 0 1 50 50 3 150 200

SHAvite3-224/256 16 0 0 12 3 36 1 1 37

SHAvite3-384/512 32 0 0 14 4 56 (70) 1 1 71

Simd224/256 16 1 1 4 8 32(41) 0.5 4 36(45)

Simd384/512 32 1 1 4 8 32(41) 0.5 4 36(45)

Skein 16 0 0 18 22 22 18 22 44

were considered in the analysis to enable a fair and full comparison, allowing equal weighting

for both specific and generic bus sizes along with padding implemented directly in hardware or

in software. Examining which designs outperform SHA-2 reveal some interesting conclusions.

Three designs consistently outperform SHA-2 for all of the categories; Keccak, Grøstl and JH.

The next best designs according to these metrics were Echo, Cubehash, Skein, Luffa and Blake.

NIST stated in [104] that cost is of particular concern for constrained platforms, and Echo is a

good deal larger in area than most of the other designs as shown in Table 4.8. Indeed NIST cited

this large area as one of the reasons for excluding it from round three [105]. An argument can

be made to exclude Luffa on the grounds that, while although performing adequately, it is very

similar to Keccak, the other sponge construction, but does not perform as well. Excluding these

116

4.6. ROUND TWO RESULTS

Table 4.8: Hash Function Implementation Results

Hash Area Max.Freq TP-l TP-l/Area TP-s TP-s/Area

Design (slices) (MHz) (Mbps) (Mbps/slice) (Mbps) (Mbps/slice)

SHA-2-256 1019 125.06 985 0.966 985 0.966

SHA-2-512 1771 100.04 1264 0.713 1264 0.713

BLAKE-32 1653 91.34 1169 0.707 1169 0.707

BLAKE-64 2888 71.04 1299 0.449 1299 0.449

BMW-256∗ 5584 14.30 457 0.081 457 0.081

BMW-512∗ 9902 8.98 287 0.028 287 0.028

Cubehash 1025 166.66 2509 2.447 239 0.233

ECHO-256∗ 8798 161.21 5158 0.58 5158 0.58

ECHO-512∗ 9130 166.66 8000 0.876 8000 0.876

Fugue-256 2046 200 914 0.446 60 0.029

Fugue-384 2622 200.08 640 0.244 33 0.012

Fugue-512 3137 195.81 481 0.153 22 0.007

Grøstl-256∗ 2579 78.06 2498 0.968 2498 0.968

Grøstl-512∗ 4525 113.12 3619 0.799 3619 0.799

Hamsi-256 1664 67.19 358 0.215 69 0.041

Hamsi-512 7364 14.93 79 0.01 15 0.002

JH 1763 144.11 1941 1.1 1941 1.1

Keccak-224∗ 1971 195.73 6263 3.17 6263 3.17

Keccak-256∗ 1971 195.73 6263 3.17 6263 3.17

Keccak-384∗ 1971 195.73 3063 1.55 3063 1.55

Keccak-512 1971 195.73 4509 2.28 4509 2.28

Luffa-256∗ 2796 166.66 2666 0.953 2666 0.953

Luffa-384∗ 4233 166.75 2668 0.63 1778 0.42

Luffa-512∗ 4593 166.66 2666 0.58 1777 0.58

Shabal 2512 143.47 1469 0.584 367 0.146

SHAvite3-256 3776 82.27 1170 0.309 1138 0.301

SHAvite3-512 11443 63.66 931 0.081 918 0.08

SIMD-256 24536 107.2 1338 0.054 1338 0.054

SIMD-512 44673 107.2 2677 0.059 2677 0.059

Skein-512 3027 83.57 1945 0.706 973 0.353

two designs leaves Keccak, Grøstl, JH, Cubehash, Skein and Blake. Five of these six were selected

for round three of which Cubehash was disqualified on potential security issues [129–131]. It is

also interesting to note that each of these selected designs has a completely different structure or

type (as given in Table 4.1) to every other round three selected design.

117

4.7. ROUND THREE ANALYSIS

Keccak-256

Keccak-224

Cubehash

Luffa

JH

Groestl

SHA-2

BLAKE-32

Skein-512

Shabal

ECHO

Fugue

SHAvite3

Hamsi

BMW

SIMD

0.0 0.5 1.0 1.5 2.0 2.5 3.0

32-bit Input-Output Bus

Padding in Hardware

Throughput/Area (Mbps/slice)

2
2

4
/2

5
6

 H
a

s
h

 D
e

s
ig

n
 L

o
n

g
 M

e
s
s
a

g
e

(a) Long Message Wrapper

Keccak-256

Keccak-224

JH

Groestl

SHA-2

Luffa

BLAKE-32

ECHO

Skein-512

SHAvite3

Cubehash

Shabal

BMW

SIMD

Hamsi

Fugue

0.0 0.5 1.0 1.5 2.0 2.5 3.0

32-bit Input-Output Bus

Padding in Hardware

Throughput/Area (Mbps/slice)

2
2

4
/2

5
6

 H
a

s
h

 D
e

s
ig

n
 S

h
o

rt
 M

e
s
s
a

g
e

(b) Short Message Wrapper

Figure 4.11: 256-bit Wrapper Throughput-Area

4.7 Round Three Analysis

For the round three hardware implementations presented here, minor changes were made to the

finalist designs implemented here to bring them more in line with results from other developers.

This necessitated some changes to the round two wrapper design. While the fixed size of the bus

was unchanged, it was decided to implement the padding in software. This allowed for a com-

parison with other groups, most of which neglected padding in their calculations. Methods were

initially tested whereby the first message block defined the message size and counter, however this

led to both an unnecessary extra latency in the load time along with extra logic increasing both the

complexity and the area. As such, software was generated in C to generate the padding prior to

the message being loaded to the hash function.

4.7.1 Round Three Changes

Of the five designs selected for round three of the competition; Blake, Grøstl, JH, Keccak and

Skein, the designers were allowed to tweak the round two versions with minor changes.

For Blake, the number of rounds for the 224 and 256-bit digest versions was changed from 10

to 14 and the number of rounds for the 384 and 512-bit digest versions was changed from 14 to

118

4.7. ROUND THREE ANALYSIS

16. The BLAKE naming convention was also changed from BLAKE-28, BLAKE-32, BLAKE-

48, and BLAKE-64 to, respectively, BLAKE-224, BLAKE-256, BLAKE-384, and BLAKE-512.

These extra rounds result in an increase in timing for the Blake designs and a slight change to the

area due to routing.

For round three Grøstl, new Shift Values were selected. In the original Grøstl-224/256, the trans-

formation ShiftBytes was used in both P512 and Q512. In the round three version, different Shift-

Bytes values are used in Q512. An equivalent update is applied to Grøstl-384/512 and Q1024. New

Round Constants were also selected. In the original Grøstl-224/256, the round constants C[i] of

P512 and Q512 used in the transformation AddRoundConstant in round i were sparse with only a

single byte value different from zero. In the tweaked Grøstl-224/256, additional round constants

are added for P512 and additional round constants are added for Q512 along with an xor by FF.

Similar tweaks are applied to Grøstl-384/512 round constants. These updates appear to result in

no significant increase in the timing or area.

In the case of JH, the number of rounds is changed from 35.5 to 42 rounds. This tweak results in

an increase in the timing due to the additional rounds but a decrease in the area as the additional

circuitry required for the final half block is removed.

For Keccak, the padding rule has been shortened and simplified. The new padding rule is the

pad10*1 rule. This update only affects the padding, and as such the timing and area results remain

the same.

The only change to the Skein hash function is in the key schedule parity constant where the Skein

tweak constant is changed. This tweak results in no change to timing and area results.

4.7.2 Comparing Different Round Results

The new implementations of the round three designs and their round two counterparts are pre-

sented for Post-Place and-Route results in Table 4.9. Both long and short messages produce the

same TP and TPA results with the exception of Skein where the throughput reduces to 1117.9 and

1190.2 for round two and round three respectively. The biggest contrast between the tweaked de-

119

4.7. ROUND THREE ANALYSIS

signs is in the 512 variant of Blake where the additional rounds from the tweak result in a reduced

TPA. Blake-256 does also have a reduced throughput but a similar TPA to that of Blake-32. Inter-

estingly, round three JH, while having a reduced area at a cost of an increased number of rounds,

results in an almost identical TPA as that of the round two version. Round three JH has the lowest

area of all of the implementations. All of the other round three designs remain similar to their

round two equivalents. Hence, confident analysis of round two holds.

Table 4.9: SHA-3 Round 2 & 3 Results Comparison

Algorithm Round Area Max.Freq TP TP/Area

(slices) (MHz) (Mbps) (Mbps/slice)

Blake-256 2 1584 119.2 1525.7 0.963

3 1568 118.5 1444.5 0.921

Grøstl-256 2 4124 210.3 6732.1 1.632

3 3137 200.8 6427.2 2.048

JH-256 2 1752 313.5 4224.2 2.411

& 512 3 1426 311.7 3546.6 2.487

Keccak-256 2 1551 244.4 7820.8 5.042

3 1551 246.0 7872.0 5.075

Skein-256 2 2842 101.2 2355.8 0.828

& 512 3 2718 102.2 2380.4 0.875

Blake-512 2 2757 107.0 1956.5 0.709

3 2799 102.4 1807.8 0.645

Grøstl-512 2 6675 171.1 5475.5 0.820

3 6673 167.3 5353.9 0.802

Keccak-512 2 1551 244.1 5624.0 3.620

3 1553 242.5 5588.1 3.598

4.7.3 SHA-3 Power and Energy

As an additional set of metrics on which to base the selection criteria, the power and energy results

were analysed. The updated round three designs were implemented on the SASEBO and a similar

method to that in Section 3.4 along with Equation 3.19 were used to get the timing, power and

energy measurements. The area results, presented in Table 4.9, give the Post-Place and-Route

results of the hash block as a stand-alone entity. Results were taken for both short (S) and long

(L) messages, with a short message comprising a message up to 512-bit blocks (or 1088-bit in

120

4.7. ROUND THREE ANALYSIS

Table 4.10: FPGA Power and Timing Results for SHA-3 at 24MHz

Algorithm Supplied µ FPGA Calc. Energy

Current-Power Power Time

224/256 mA - mW mW mS mJ

Blake S 169.3 138.5 4.34 0.601

Blake L 151.4 121.4 92.25 11.20

Grøstl S 263.6 203.5 2.80 0.570

Grøstl L 319.9 210.8 33.78 7.11

JH S 157.7 128.2 6.78 0.870

JH L 157.4 125.2 77.0 9.64

Keccak S 157.9 128.8 4.32 0.557

Keccak L 132.7 107.7 42.92 4.62

Skein S 226.1 182.0 3.93 0.715

Skein L 164.0 130.4 59.02 7.57

384/512

Blake S 204.5 161.9 65 1.057

Blake L 224.6 168.4 70.56 11.88

Grøstl S 440.3 229.3 4.50 1.008

Grøstl L 440.5 249.1 35.05 8.725

JH S 158.6 128.6 7.10 0.913

JH L 159.5 127.7 77.50 9.89

Keccak S 159.7 131.7 3.29 0.433

Keccak L 168.5 134.6 54.76 7.37

Skein S 239.6 189.4 4.20 0.806

Skein L 207.1 159.0 59.44 9.45

the case of Keccak), and a long message comprising a randomly selected (from the KAT values

(where available)) 11624-bit message. In both cases, the messages tested required padding, and in

the latter case a number of rounds is required to process the hash.

Table 4.10 gives the time, power and energy results for the round three designs. It is shown that for

a digest size of 256 that Grøstl has the shortest processing time for both long and short messages.

It also has the highest mean FPGA power but a low energy usage due to this short processing

time. Keccak has the lowest energy for both message types. For the 512-bit designs, Keccak has

the lowest energy and shortest processing time for short messages, while Grøstl again gives the

shortest processing time for long messages.

The average power dissipation of the processor was measured for a throughput of each of the

121

4.7. ROUND THREE ANALYSIS

designs running at the Sasebo onboard 24MHz clock frequency. The current being drawn by the

FPGA was measured for a supply voltage of 1V . These voltage and current measurements were

then used to calculate the total power consumed on both lines. The full set of power measurements

and results are presented in Appendix B.3 to allow a full analysis of the energy and iteration timing.

Blake

Groestl

JH

Keccak

Skein

0 50 100 150 200

Average Power Dissipation 256 (mW)

 Dynamic

 Quiescent

(a) 256-bit Hash

Blake

Groestl

JH

Keccak

Skein

0 25 50 75 100 125 150 175 200 225 250

Average Power Dissipation 512 (mW)

 Dynamic

 Quiescent

(b) 512-bit Hash

Figure 4.12: Average Power Dissipation at 25MHz

The average power dissipation for the 256-bit designs is shown in Figure 4.12(a) and for the 512-

bit designs in Figure 4.12(b). This is further subdivided into the quiescent power and the dynamic

power. The quiescent power is the power that the board is drawing when the design is programmed

and the clock is connected but reset is held active, thereby preventing any switching from occurring

in the circuit. It is a measure of the standby power drawn by the FPGA. The larger the amount of

logic resources used, the higher the quiescent power, a case in point being Grøstl where the area

is × 2 or 3 that of the other designs. The 512 designs quiescent power is also on average higher

than that of their 256-bit counterparts also due to larger areas. The dynamic power is the power

dissipated by logic switching within the FPGA. It is calculated as the the difference between the

total average power and the quiescent power. Skein has the highest dynamic power of the designs,

probably due to the large 64-bit adder circuitry. Similarly so for the adders in Blake. It is clear

from the graphs that the quiescent power is the dominant factor, comprising on average 86% of

122

4.8. COMPARISON WITH OTHER WORK

the total power for the hash.

Graphing the Area-Energy product for the implementations, based on the average power dissipa-

tion, in Figures 4.13(a) and 4.13(b), show that Keccak has the lowest and best Area-Energy product

for all digests and message sizes. JH again performs strongly, showing quite similar AEP results

to Keccak in the 512-bit case. Blake outperforms Skein in the 256-bit case, however the opposite

occurs for the 512-bit. Grøstl, while having good computation time and energy is penalised due to

its large area and performs worst for the AEP.

Short Msg Long Msg

5

10

15

20

A
re

a
-E

n
e

rg
y
 P

ro
d

u
c
t
(m

J
.S

lic
e

)
(x

1
0

0
0

)

Message Size

 Blake

 Grostl

 JH

 Keccak

 Skein

(a) 256-bit Hash

Short Msg Long Msg

0

5

10

15

20

25

30

35

40

45

50

55

A
re

a
-E

n
e

rg
y
 P

ro
d

u
c
t
(x

1
0

0
0

)

Message Size

 Blake

 Grostl

 JH

 Keccak

 Skein

(b) 512-bit Hash

Figure 4.13: Area-Energy Product

4.8 Comparison with Other Work

NIST stated that computational efficiency of the algorithms in hardware, over a wide range of

platforms, was to be addressed during the second round of the contest [96]. The cryptographic

research community responded by dedicating a lot of resources in performance evaluation. There

are roughly four areas which are of primary interest:

• Software implementations on typical desktop and server hardware

• Software implementations on microcontrollers

123

4.8. COMPARISON WITH OTHER WORK

• FPGA implementations

• ASIC implementations

The first two categories are comprehensively covered by benchmarking suites based on the work

of Bernstein (SUPERCOP [132]) and Wenzel-Benner et al. (XBX [133]). The implementations

come from many different designers, and all results are publicly available [132,134].

In the third and fourth categories, various research teams implemented all of the second round

candidates, and a web page called the ‘SHA-3 Zoo’ was set up by the Institute for Applied Infor-

mation Processing and Communications (IAIK) in Graz to track these hardware implementation

results [135]. Each report itself contains a fair comparison between the candidates. However, com-

paring the results between different reports is difficult, due to technological differences, varying

quality of the implementations and the variations between different hardware interfaces.

For FPGA implementations in particular, the significance of inter-report comparisons is weak.

Similar to the work presented here, several research groups attempted to improve this situation by

defining a standard interface and applying their methodology to their own implementations. Again

each methodology only applies to their own results and comparisons with other reports continues

to be difficult, due to each groups placing different emphasis on particular metrics, bus sizes and

approaches to padding and area usage. Of the different groups which fully evaluated the round

two designs for FPGA using a standard interface, each used a number of different design and

constraint metrics which they felt most fairly and accurately described a true evaluation. However,

each group formulated a different approach as to how this was to be achieved.

For example, Homsirikamol et al. [111] implemented the 256 and 512 hash variants using an

optimization toolkit called ATHENa [136] using the interface defined in [128]. ATHENa attempts

to find the optimal combination of options and seed of the implementation tools. They set the data

bus width to 64 bit where possible to ensure that the throughput would not be the limiting factor.

For the cases where a larger bus width was necessary, they used two synchronized clocks and an

internal serial-in-parallel-out register. They also assume that the padding is completed outside of

124

4.8. COMPARISON WITH OTHER WORK

the hash cores and thus will not affect the speed of the core hash function. The results presented

are post-place and route.

A second group to provide an FPGA evaluation were Kneževic̀ et al. [137] using the hash func-

tion wrapper of Kobayashi et al. [109]. They define a 16-bit data bus best suited for their target

evaluation board, the SASEBO GII. Similar to Homsirikamol et al., they leave the padding to be

completed outside of the hardware module. They compare all 256 bit version candidates. The

results presented are measured from the FPGA and include power and energy results.

Another group provided FPGA evaluations (Guo et al. [138]) using the wrapper presented in [139].

They compare all 256 bit candidates, use a 16 bit data bus and exclude the padding. The results

presented are post-place and route. They also presented estimated power results.

The Third SHA-3 Candidate Conference took place on March 22-23, 2012 and a number of groups

again implemented the round three tweaked versions of the remaining contestants. For FPGA

based designs, George Mason University [140,141] presented a comprehensive comparison of all

the candidates. They implemented each algorithm using multiple architectures based on the con-

cepts of iteration, folding, unrolling, pipelining, and circuit replication. The major performance

metrics used were throughput, area, and throughput to area ratio. Latif et al. [142] were another

group to implement all of the round three designs and also showed their results in the form of chip

area consumption, throughput and throughput per area. Similarly, Bernhard Jungk also evaluated

the designs [143] and presented results for lightweight area-efficient designs and used the area and

throughput-area metric.

Kaps et al. [144], also of George Mason University, also presented implementations on resource-

constrained platforms, adhering to an area constraint of 800 slices or 400-600 slices and one Block

RAM. This group measured the power consumption of all 256 versions of the implementations on

Spartan-3 to evaluate the efficiency of the algorithms.

The UCL crypto group in Louvain also presented resource constrained analysis of the round three

designs [145] using a similar approach to the one used in [144]. Area, throughput and efficiency

of the 512-bit variant results were obtained for Virtex-6 and Spartan-6 devices.

125

4.8. COMPARISON WITH OTHER WORK

4.8.1 Comparison of Round Three Results

To allow a snapshot of how the results presented in this thesis stand, a comparison against some

the other implementations from Section 4.8 is presented. Throughput and throughput-area was

used as the standard metric given by the other implementations. Where this was not completely

clear, the throughput metric was examined and the best estimate was used to classify the work.

The load time cycle count was also removed as none of the other designers appeared to take it into

account (although it is referenced in their respective interfaces). The number of clock cycles was

recorded using a Microblaze XPS timer as described in Section 2.8.1. The area was taken for only

the hash function without the wrapper interface at Place-and-Route and the clock frequency was

taken from the Post-Place-and-Route static timing report inclusive of the wrapper.

Table 4.11 presents area, throughput and throughput-area results for the Virtex-5 implementa-

tionsiv.

The short message metric gives a clearer more realistic set of results. While the long message met-

ric just takes into account the round time, the short message metric takes into account initialisation

and finalisation stages. For example, Skein and Grøstl both have finalisation rounds of length

equal to the round time given for long messages, thus at the very least, halving the throughput

for a single block message. JH, likewise requires two message blocks to process a single 512-bit

message, thereby doubling the process time and again halving the throughput. Therefore, it is

suggested that more weight is associated to the short message metric. However most groups only

presented results for the long message metric (probably due to the simplicity of calculation).

Gaj et al. [141] presented many results using their ATHENa (Automated Tool for Hardware Eval-

uatioN) [136] database. The best results as given in [141] are presented here. For a breakdown

of the variants and their methodologies the interested reader is directed to [140,141]. The metrics

use by Gaj would closer reflect those of long messages than the time required to process a single

message block, although finalisation clock cycles are included. Load times are not included, and

ivIn an effort to reduce clutter, only the similar Virtex-5 round three implementations were taken of the many results

presented by the different groups. Those implemented using other than slice logic, i.e. with BRAM blocks, were also

neglected due to the inability to perform fair comparison

126

4.8. COMPARISON WITH OTHER WORK

short message metrics are not given. Results including padding (as presented in the appendix) are

not considered here as other groups did not include them. The clock count here is estimated as a

metric of number of rounds is used in the documentation.

The results from Latif [142] are given for both 256 and 512-bit digests. Although it is not ex-

plicitely stated, it is clear from the paper that the results are taken for one execution of the com-

pression function, i.e. long messages, and load times are not included.

The results from Kaps [144] are only given for SHA-3 variants with 256-bit digest, as they felt that

these are the most likely variants to be used in area-constrained designs. The low area can clearly

be seen from the area column when compared against the others. Both long and short throughput

results are given, with the short messages including the load times, initialisation and finalisation,

and the long messages excluding initialisation and finalisation but including the load time. To

allow standardisation between the results, the load times were removed (where possible; in certain

cases, i.e. JH and Keccak, processing takes place during the load in cycle, and in other cases, i.e.

Blake, processing takes place during the load out cycle) and the results were recalculated in line

with the comparison.

The results from Jungk [143] are only given for SHA-3 variants with 256-bit digest. Similar

to Kaps, they are lightweight implementations. Although it is not explicitely stated, it is clear

from the paper that the results are taken for one execution of the compression function, i.e. long

messages and load times are not included.

Two things are immediately clear from Table 4.11. Firstly that the designs presented in this thesis

are not as optimised for throughput or area when compared to the others (Throughput/Area in the

case of Gaj and Latif, minimal area in the case of Jungk and Kaps), and as such, the performance

metrics show this. The other thing that is clear is that the work presented in this thesis attempts to

cover all possible implementation versions, whereas the other implementations, due to their nature

of being specifically tailored, are only examined and presented for their percieved optimal oper-

ating performance (i.e. 256-bit for area constrained, long message variant to present throughput).

Therefore, while the results presented here are not the most area or throughput efficient, they do

127

4.8. COMPARISON WITH OTHER WORK

Table 4.11: Comparison of SHA-3 Round 3 Implementations

256 512

Clk Count Area Max.Freq TP TPA Clk Count Area Max.Freq TP TPA

#Cycles (slices) (MHz) (Mbps) (Mbps/slice) #Cycles (slices) (MHz) (Mbps) (Mbps/slice)

Blake S 42 1118 118.5 1444.5 1.292 58 1718 102.4 1807.8 1.05

Kaps [144] 277 271 253.8 469.11 1.731 - - - - -

Blake L 42 1118 118.5 1444.5 1.292 58 1718 102.4 1807.8 1.05

Gaj [141] 14 3495 210.04 7547 2.16 272 386 148.81 560 1.45

Latif [142] 28 1382 125.55 2290 1.66 32 2582 100.02 3210 1.24

Jungk [143] 115 374 163 725 1.94 - - - - -

Kaps [144] 258 271 253.8 503.66 1.858 - - - - -

Grøstl S 10 2391 200.85 10283.5 4.3 14 4845 167.311 12237.6 2.524

Kaps [144] 720 313 317.4 225.7 0.721 - - - - -

Grøstl L 10 2391 200.85 10283.5 4.3 14 4845 167.311 12237.6 2.524

Gaj [141] 10 2971 243.724 12479 4.2 58 2336 272.777 4816 2.06

Latif [142] 10 1419 121.03 6200 4.37 14 2523 101.22 7400 2.94

Jungk [143] 160 368 305 975 2.64 - - - - -

Kaps [144] 357 313 317.4 455.2 1.45 - - - - -

JH S 45 1291 311.72 3546.6 2.74 45 1291 311.72 3546.6 2.74

Kaps [144] 1618 183 250.6 79.29 0.433 - - - - -

JH L 43 1291 311.72 3711.6 2.87 43 1291 311.72 3711.64 2.875

Gaj [141] 43 982 416.146 4955 5.05 43 992 393.546 4686 4.72

Latif [142] 42 865 287.44 3500 4.05 42 888 292.48 3570 4.02

Jungk [143] 168 377 278 847 2.24 - - - - -

Kaps [144] 800 183 250.6 160.38 0.88 - - - - -

Keccak S 25 1358 246 10705.9 7.883 25 1361 242.54 5588.1 4.10

Kaps [144] 2395 275 259.7 117.97 0.429 - - - - -

Keccak L 24 1358 246 11152 8.212 24 1361 242.54 5820.96 4.27

Gaj [141] 24 1369 294.204 13337 9.74 24 1320 317.158 7612 5.77

Latif [142] 24 1333 275.56 12490 9.37 24 1197 263.16 6320 5.28

Jungk [143] 200 379 159 864 2.29 - - - - -

Kaps [144] 2392 275 259.7 118.1 0.43 - - - - -

Skein S 46 1786 102.283 1138.45 0.637 46 1786 102.283 1138.45 0.637

Kaps [144] 4461 246 176.6 19.39 0.078 - - - - -

Skein L 19 1786 102.283 2756.25 1.543 19 1786 102.283 2756.25 1.543

Gaj [141] 19 1858 198.098 5338 2.87 19 2026 199.561 5378 2.65

Latif [142] 19 1492 113.78 3070 2.05 19 1544 113.6 3060 1.95

Jungk [143] 584 519 299 262 0.5 - - - - -

Kaps [144] 2366 246 176.6 38.21 0.155 - - - - -

tend in a lot of cases to give similar enough TPA results to those of the Throughput/Area compared

designs, and in all cases except Blake give a better TPA than the minimal area compared designs.

Similarly, Table 4.12 presents the power and energy comparison results. The only other groups

to present power results were Kaps et al. [144] for round 3 and Kneževic̀ et al. [137] and Guo et

al. [138] for round two. In all of the cases, power and energy results were only examined for

the 256-bit variant (additionally Guo only presents power and not energy results). The results

presented here can be most directly compared against the round two results of Kneževic̀, as while a

different method was used to calculate the energy, similar hardware, i.e. the Sasebo, was used. The

round three results from Kaps cannot be so directly compared against the results presented in this

128

4.8. COMPARISON WITH OTHER WORK

work, as both a different chip (Spartan-3)v and design methodology (constrained implementations)

were used. Also, only a metric for measuring the power and energy for long messages is used.

However as the only other set of round three power and energy results available, a presentation

and comparison are attempted.

Table 4.12: Power Comparison of SHA-3 Implementations

Area Power Energy AEP Area Power Energy AEP

(slices) mW nJ/bit nJ/bit.slice (slices) mW nJ/bit nJ/bit.slice

Blake S 1118 138.5 1.173 1311.4 1718 161.9 1.280 2199.0

Kneževic̀ [137] 1660 270 0.98 1626.8 - - - -

Blake L 1118 121.4 0.964 1077.7 1718 168.4 1.020 1752.3

Kneževic̀ [137] 1660 270 0.49 813.4 - - - -

Kaps [144] 631 42.9 0.486 306.6 - - - -

Guo [138] 1612 139.8 - - - - - -

Grøstl S 2391 203.5 1.110 2654.0 4845 229.3 0.984 4767.4

Kneževic̀ [137] 2616 310 1 2616 - - - -

Grøstl L 2391 210.8 0.611 1460.9 4845 249.1 0.750 3633.7

Kneževic̀ [137] 2616 310 0.25 645 - - - -

Kaps [144] 766 39.8 0.605 463.43 - - - -

Guo [138] 3308 364.36 - - - - - -

JH S 1291 128.2 1.699 2193.4 1291 128.6 1.780 2297.9

Kneževic̀ [137] 2661 250 1.6 4257.6 - - - -

JH L 1291 125.2 0.829 1070.2 1291 127.7 0.850 1097.3

Kneževic̀ [137] 2661 250 0.8 2128.8 - - - -

Kaps [144] 558 43.8 1.369 763.9 - - - -

Guo [138] 2406 225.93 - - - - - -

Keccak S 1358 128.8 0.511 693.9 1361 131.7 0.751 1022.1

Kneževic̀ [137] 1433 290 1.16 1662.2 - - - -

Keccak L 1358 107.7 0.397 539.1 1361 134.6 0.634 862.8

Kneževic̀ [137] 1433 290 0.29 415.5 - - - -

Kaps [144] 766 27.7 1.22 934.5 - - - -

Guo [138] 1556 147.99 - - - - - -

Skein S 1786 182.0 1.390 2482.5 1786 189.4 1.574 2811.1

Kneževic̀ [137] 1370 300 1.86 2548.2 - - - -

Skein L 1786 130.4 0.651 1162.6 1786 159.0 0.812 1450.2

Kneževic̀ [137] 1370 300 0.47 643.9 - - - -

Kaps [144] 766 36 3.372 2616.6 - - - -

Guo [138] 788 88.65 - - - - - -

A general rule of thumb to get the timing or energy results per bit is to divide the result by the

vThe Kaps area and throughput results presented earlier in this section are for Virtex-5 similar to this work. However

power measurements were only taken for the Spartan-3. Again, the logic only version is chosen for comparison.

129

4.9. CONCLUSIONS

message size. Table 4.12 presents the energy per bit results calculated from Table 4.10. The

Area-Energy Product is then recalculated and compared against the other implementations.

The results show that Kneževic̀ [137] and Guo [138] have a higher power result in the majority of

cases but Kneževic̀ has similar energy per bit results. This difference in results, while implemen-

tation dependent, decreases for the short messages. This is due to the fact that the power results

presented in this work, for both long and short messages are inclusive of loading, initialisation,

hashing and finalisation stages, while those of Kneževic̀ are taken just for hashing in the case of

long messages, and are exclusive of loading for short messages.

So while the results are more similar for short than for long messages, one would expect the results

presented in this work to result in lower energy for a similar throughput as the average power is

lower if all stages were included. For example, using the FSL bus requires 16 load in 32-bit

message blocks (18 in the case of Blake and 19 in the case of Skein (i.e. 512-bit input message

(16 × 32) plus 96-bit counter (3 × 32))) each of two clock cycles. load out in all cases requires

8× 2 for 256 and 16× 2 for 512. When this is added to the clock count to process a message, the

overhead results in a large additional cost (approximately ×2 extra, e.g. Skein requires 46 clock

cycles to hash a 224/256-bit message and 54 clock cycles to load the message) to the iteration time

and therefore also to the energy calculation.

The round three results from Kaps et al. [144], obviously show the lowest area and energy per

bit results, as the implementations are for area constrained devices with low power, low area and

low throughput. Only the long message metric was calculated, however, and the AEP results

show a similar enough pattern as that of this work and Kneževic̀, with Blake, Grøstl and Keccak

performing strongly.

4.9 Conclusions

In this chapter a method for examining the performance of hardware implementations of hash

functions was presented, specifically those selected for round two and round three of the SHA-3

130

4.9. CONCLUSIONS

hash competition. While some of the round two designs contained similar features, no two designs

could be implemented using the same methodology. Starting from a basic iterative architecture

various implementation methods were examined and an optimal solution was explored for each of

the hash functions.

A brief examination of the various platforms used along with an overview of the different FPGA

implementations for the round two designs was presented. This overview included the interface,

communications and padding protocols for the round two implementations used in this work. It

was shown how the interface was important not only to enable fast testing, but also to allow a

uniform and constrained environment in which all hash functions could be tested equally.

A brief description of the hash designs and their implementation methodologies was then provided

and a presentation of the results was presented. These results were then compared against the

selection process used by NIST to select the finalist designs for round three of the competition.

It was seen that the three best performing hash functions presented here, Keccak, Grøstl and JH,

were also selected by NIST as finalists. Two other strong performers Skein and Blake were also

selected for round three by NIST.

An overview was then provided of the updated designs for round three, and area, throughput, area-

throughput, timing, power and energy results of these implementations were presented. Keccak

continued to perform the best for the metrics chosen and indeed was subsequently pronounced the

overall winner of the SHA-3 competition by NIST.

Finally a comparison of the current state of the art and how it compares against the work presented

here was provided. Interestingly, it was seen that while Keccak performed best using throughput

and throughput-area metrics, its performance was not so good compared to the other designs when

implemented for area constrained systems.

131

5
Cryptographic Processor

5.1 Introduction

The Internet, while widely used, is not very well understood from a security point of view for the

average user. Complex software hides many security flaws and adversaries can actively exploit

these flaws to access supposedly secure data. Due to this complex nature, networking and inter-

net protocols have been developed along with frameworks, which allow both standardisation and

transparancy between the different layers of a network. This allows communicating entities to

use whichever algorithms provide security appropriate for any given communication. The Internet

protocol suite [146] is the set of communications protocols used for the Internet and similar net-

5.1. INTRODUCTION

works. It is commonly referred to as TCP/IP due to its two main protocols; Transmission Control

Protocol (TCP) and Internet Protocol (IP). It consists of four abstraction layers, each with its own

protocols [147,148]:

• The Link layer. Contains communication technologies for a local network.

• The Internet layer (IP), or network layer. Connects local networks

• The Transport layer (TCP). Handles host-to-host communication.

• The Application layer. Contains all protocols for specific data communications services on

a process-to-process level.

HTTP FTP SMTP

TCP

IP/IPSec

HTTP FTP SMTP

TCP

TLS or SSL

IP

Kerberos

SET

HTTP

S/MIME PGP

SMTP

UDP TCP

IP

(b) Transport Layer (c) Application Layer(a) (Inter)Network Layer

Figure 5.1: Security in the TCP/IP stack

Figure 5.1 highlights some of the various security measures in the different layers of TCP/IP. SSL

and TLS are two cryptographic protocols used to encrypt network connections at the Applica-

tion Layer for the Transport Layer, using asymmetric cryptography for key exchange, symmetric

encryption for confidentiality, and message authentication codes for message integrity. SSL was

developed by Netscape and was made publicly available in 1994 [149] and after various updates,

formed the basis of TLS [150,151] (i.e. the first version of TLS can be viewed as SSL v3.1).

The Secure/Multipurpose Internet Mail Extensions (S/MIME) [152], Pretty Good Privacy (PGP) [153]

and Secure Electronic Transaction (SET) protocols can be used to send messages confidentially

by combining symmetric-key encryption and public-key encryption. Message authentication and

133

5.1. INTRODUCTION

integrity checking is performed using digital signatures. The most important part of the protocols

from a security point of view is the secure key agreement protocol containing entity authentication

and key distribution [154–156]. NIST state that each entity in an authentication exchange must

use an approved digital signature algorithm to generate and/or verify digital signatures and each

entity acting as a claimant must be bound to a public/private key pair [157].

The goal of this chapter is to present a cryptographic architecture that is capable of supporting

multiple types of cryptographic algorithms and architectures. For a more general understanding of

the cryptosystem, an overview of a commonly used application for performing public key cryptog-

raphy, namely the Elliptic Curve Digital Signature Algorithm (ECDSA) [158], is presented. Using

this algorithm, sensitive documents are made secure by encrypting and signing in real time using

the proposed cryptographic hardware. The background theory behind the ECDSA is presented in

Section 5.2, while Section 5.3 presents the mathematical background.

Section 5.4 presents another component of ECDSA, namely the random key generation. Various

forms of entropy are proposed and a pseudo random number generator, Fortuna, is presented,

along with an implementation method.

The architecture also necessarily needs to support the underlying field operations performed by

ECC. In addition to this, the curve parameters, algorithm used, number of arithmetic units and key

size all are user definable prior to runtime, thus enabling flexibility in the selection of both the

underlying algorithm, the security level and the area-throughput requirements. Additionally, the

cryptographic architecture can also support all of the SHA-3 algorithms and their variants. These

cryptographic blocks can then be used along with ancillary components as building blocks for

cryptographic protocols, e.g. authentication, key exchange, and other cryptographic applications

as shown in layer 5 of the model in Figure 1.2. Section 5.5 describes a cryptographic processor

based on Microblaze. The insertion of the hash functions described in Chapter 4 and the elliptic

curve processor described in Chapter 3 as hardware accelerators or SOC into the Microblaze

are also described here, followed by a brief description of the additional coordinate conversions

required for converting between domains.

134

5.2. BACKGROUND TO SIGNATURE ALGORITHMS

Section 5.6 investigates the performance of the various ECC algorithms presented in Chapter 3

in software and in a hardware-software co-design implementation. This allows a comparison

between software only, hardware-software co-design and the dedicated hardware results presented

in Chapter 3.

Section 5.7 presents an implementation of the ECDSA using the previously described blocks and

results are given. Comparisons to the current state of the art are presented in Section 5.8. Finally,

Section 5.9 concludes the chapter.

5.2 Background to Signature Algorithms

In this section an example application is described to show the workings of the cryptographic

processor, namely the Elliptic Curve Digital Signature Algorithm. It was described in Section 2.5.6

that digital signature schemes provide the digital equivalent of handwritten signatures. By first

signing the message with their private key, prior to encrypting it with the recipients public key, the

receiver can verify the authenticity of the message using the senders public key. Essentially, the

sender performs the digital equivalent of a handwritten signature.

For digital signing:

• Alice computes the signature s = SAm for a message m ∈ M , where M is the set of

messages, S is the set of signatures and SA is the transformation from M to S

• Alice sends the pair (m, s)

For digital verification:

• Bob calculates the verification function VA, based on Alices public key

• Bob receives the pair (m, s) and performs the calculation r = VA(m, s)

• Bob accepts the signature and message as being from alice if r is true, and rejects if false

As well as providing security against adversaries, digital signatures are also used to provide data

origin authentication and timestamping, data integrity and non-repudiation. Alice cannot deny

135

5.2. BACKGROUND TO SIGNATURE ALGORITHMS

that she sent a message and Bob cannot change the contents of that message after receiving and

subsequently verify that it originated from Alice if it includes a valid signature.

5.2.1 The Elliptic Curve Digital Signature Algorithm

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve version of the DSA.

It was first proposed by Vanstone [158] in 1992 in response to the NIST request for public com-

ments on the first proposal for DSS. As its security is based on the computational intractability of

the ECDLP, as presented in Section 2.5.5, it is considered significantly more secure than the DSA

for an equivalent security level. The ECDSA is the most widely standardised elliptic curve based

signature scheme, used in ANSI X9.62 [38], FIPS 186-3 [71], IEEE 1363-2000 [39], ISO/IEC

15946-2 [40]. The principles of the DSA can be applied to the Elliptic Curve Digital Signature

Algorithm (ECDSA). Again, it includes a signature generation process to generate a digital signa-

ture on the data and a signature verification process to verify the authenticity of the signature, as

shown in Figure 5.2. The private key is used in the signature process, and the public key is used

in the verification process, thereby stopping fraudulent signatures.

Hash Function Hash Function

Message/DataMessage/Data

Private

Key

Public

Key

SignatureGeneration

Signature
ECC

Verification

Signature
ECC

Message DigestDigestMessage

Signature Generation Signature Verification

Valid

Invalid

Figure 5.2: Digital Signature Process

Figures 5.3(a) and 5.3(b) give an indepth description of the signature generation and signature

verfication blocks from Figure 5.2.

136

5.2. BACKGROUND TO SIGNATURE ALGORITHMS

Generate a Message Digest

Generate a Digital Signature

Obtain Additional

Information for the

Digital Signature

Process

E
C
D
S
A

Verify the Digital Signature

(Optional)

(a) Signature Generation

Signatory’s Identifier

Get the Claimed

Parameters and Public Key

Obtain the Domain

Message Digest

Generate a

Digital Signature

Verify the

Signatory’s Identity

Of the Claimed

Obtain Assurances

Paramater Validity

of Domain

Obtain Assurances

Owners Public Key

the Validity of the

Obtain Assurances of

the Private Key

the Owner Posesses

Obtain Assurance that

Action Assurance

(b) Verification & Validation

Figure 5.3: Elliptic Curve Digital Signature Algorithm

5.2.2 ECDSA Domain Parameters

The domain parameters for ECDSA consist of a suitably chosen elliptic Curve E defined over

a finite field Fq of characteristic p, and a base point P ∈ E(Fq). The domain parameters are

comprised of:

• The order of the underlying field is either q = p, an odd prime, or q = 2m.

• Having selected an underlying field Fq, a sufficiently large prime n (n > 2160) is selected.

• An indication FR (field representation), of the representation used for the elements of Fq

• A cryptographic hash function H of bitlength≤ n

• Two field elements a and b which define the equation of the elliptic curve E over Fq

137

5.3. IMPLEMENTING ECDSA

5.3 Implementing ECDSA

Before implementing ECDSA, several basic choices need to be considered:

• Type of underlying finite field Fq

• Field representation (e.g. polynomial or normal basis)

• Type of elliptic curve E over Fq

• Cryptographic hash function H

Algorithm 24: ECDSA Signature Generation

input : Domain Parameters D = (q, FR, S, a, b, P, n, h), private key d, message m
output: Signature (r, s)

Select k ∈ r[1, n− 1]

kP = (x1, y1)
x1 7→ x̄1 (conversion to integer)

r = x̄1 mod n

if r = 0 then restart

e = H(m)

s = k−1(e+ dr) mod n
if s = 0 then restart

return (r, s)

Algorithm 24 gives the ECDSA signature generation, Breaking it down into its component parts

gives:

5.3.1 Key Pair Generation

The private and public key required are generated as follows:

k ∈ r[1, n− 1]

Q = kP

(5.1)

where, k, the signer Alices A private key, is a randomly selected integer from [1, n− 1] and Q is

Alices public key. This computation requires one random integer generation and one elliptic curve

138

5.3. IMPLEMENTING ECDSA

point multiplication operation.

5.3.2 Signature Generation

To generate the signature for a message, m, Alice computes:

k ∈ r[1, n− 1]

R = [kP]x mod n

e = H(m)

s = k−1(e+ dr) mod n

(5.2)

The signature for the message m is (r, s). If s is equal to zero then Alice must restart the process.

[kP]x defines the x-coordinate of the result point of kP . Alices private key k is used as part of

the signature generation. As such, other entities cannot produce the same signature as they have

a different value for k. Message signing requires one random integer generation, one hashing

operation and elliptic curve computation operations, namely inversion, addition and two modular

multiplications.

5.3.3 Signature Verification

Algorithm 25 gives the ECDSA signature verification, where q is the field size, FR is an indication

of the basis used, a and b are two field elements that define the equation of the curve and H is a

cryptographic hash function of bitlength≤ n.

139

5.3. IMPLEMENTING ECDSA

Algorithm 25: ECDSA Signature Verification

input : Domain Parameters D = (q, FR, S, a, b, P, n, h), public key Q, message m,

signature (r, s)
output: Accept/Reject

Verify (r, s) ∈ R[1, n− 1], Reject if false;

e = H(m);

w = s−1 mod n;

u1 = ew mod n;

u2 = rw mod n;

X = u1P + u2Q;

Reject if X =∞;

x1 7→ x̄1;

v = x̄1 mod n;

if v = r then Accept;

else Reject

The verifier Bob B, verifies Alices signature (r, s) for the message m using Alices public key Q:

e = H(m)

w = s−1 mod n

u1 = ew mod n

u2 = rw mod n

X = [u1P + u2Q]x

(5.3)

If X = r then Bob accepts the signature. Otherwise it is rejected. The verification stage requires

one hashing operation and elliptic curve computation operations, namely, two point multiplica-

tions, point addition, modular inversion and two modular multiplications.

5.3.4 ECDSA Implementation Options

It is clear from above, that the main requirements for implementing ECDSA are elliptic curve

cryptography, hash functions and random number generators. In this thesis, the hardware used to

implement the designs is presented in Chapter 2, the different types of elliptic curves to be used

140

5.4. RANDOM KEY GENERATION

were presented in Chapter 3, the different types of hash functions were presented in Chapter 4, a

field size (pb) and a key size (k) of 192 are used throughout for each of the target algorithms, and

the curve parameter selected for use is secp192r1 [81].

A number of design options were examined initially. The elliptic curve processor was imple-

mented entirely in software using the Microblaze soft-core processor [54] and also in software

with a hardware multiplier. These implementations are described fully in Section 5.6. These

implementations were then compared against the previous dedicated hardware results from Chap-

ter 3. In this way, an examination is made of the performance levels associated with each design

strategy.

It was decided the hash functions were best implemented in dedicated hardware due to the large

file size associated with holding and storing large amounts of data while a message is being hashed.

Additionally, a method for random number generation was examined, allowing re-use of the pre-

viously implemented components. This is examined further in Section 5.4.

5.4 Random Key Generation

An important process in signature verification is the generation of random keys. In [159], NIST

state that A new nonzero secret random number k shall be generated prior to the generation of each

digital signature for use during the signature generation process. To generate the key material,

random data must be acquired. There are two fundamentally different strategies for generating

random bits [160]. One strategy is to produce bits non-deterministically, where every bit of output

is based on a physical process that is unpredictable; this class of random bit generators (RBG)

is commonly known as non-deterministic random bit generators (NRBGs), i.e. True Random

Number Generators. The other strategy is to compute bits deterministically using an algorithm;

this class of RBGs is known as Deterministic Random Bit Generators (DRBGs) i.e. Pseudorandom

Number (or Bit) Generators.

NRBG data is not considered truly random in a cryptographic sense. Although the literature

141

5.4. RANDOM KEY GENERATION

presents an indepth analysis of pseudorandom generators [21, 161], the generators are analysed

for statistical randomness only, and of little security benefit if an adversary knows the algorithm

used to generate the random data.

A DRBG includes a source of entropy input. A DRBG mechanism uses an algorithm (i.e. a

DRBG algorithm) that produces a sequence of bits from an initial value that is determined by a

seed that is determined from the entropy input. Once the seed is provided and the initial value is

determined, the DRBG is said to be instantiated and may be used to produce output. Because of

the deterministic nature of the process, a DRBG is said to produce pseudorandom bits, rather than

random bits. The seed used to instantiate the DRBG must contain sufficient entropy to provide an

assurance of randomness. If the seed is kept secret, and the algorithm is well designed, the bits

output by the DRBG will be unpredictable, up to the instantiated security strength of the DRBG.

5.4.1 Entropy

While the task of generating random or pseudorandom numbers from a seed is fairly simple,

acquiring the random seed and its secrecy is inherently more difficult [162]. The measure of

randomness in a message is called entropy, defined by Shannon in terms of a cryptosystem in [22,

163], and is defined as a measure of the disorder, randomness or variability in a closed system.

The most common definition of entropy for a variable X is:

H(X) := −
∑

P (X = x)log2P (X = x) (5.4)

where P (X = x) is the probability that the variable X takes on the value of x.

There have been many suggested sources of entropy. A hardware random number generator is an

apparatus that generates random numbers from a physical process, rather than an algorithm. This

typically consists of a transducer to convert some aspect of the physical phenomena to an electrical

signal, an amplifier to increase the amplitude of the random fluctuations to a macroscopic level,

and an analog to digital converter to convert the output into a digital bit. The physical process

142

5.4. RANDOM KEY GENERATION

can be derived from many sources, such as keyboard and mouse access timing, sampling from the

computers microphone or even air turbulence inside the hard drive [164].

However, each source of entropy presented in the literature results in an equal amount of discussion

and debate about the amount of actual randomness or possible insecurity associated with any

potential source [165] and tests have been developed to perform analysis of these [166].

5.4.2 Fortuna

Fortuna is a cryptographically secure DRBG devised by Niels Ferguson and Bruce Schneier [167].

Its design leaves some choices open to the implementer. It comprises four main parts:

• The Accumulator; collects 32 pools of random entropy data from various sources and uses

it to reseed the generator when enough new randomness has arrived.

• The seed file manager; maintains and stores a copy of the state of the pools to enable

immediate generation of random numbers at bootup.

• The source manager; manages the pools of source data.

• The Generator; produces pseudorandom data based on the above.

BLOCK

HASH
Pseudo−Random

Output

Random

Seed Random

Key

Next Key

COUNTER

Figure 5.4: Fortuna Generator

The Generator, shown in Figure 5.4, converts fixed-size states into arbitrarily long outputs. The

designers specify that any modern block cipher can be used, and indeed, as members of the same

team that developed the Skein hash function, present methods whereby Skein can be used as

143

5.4. RANDOM KEY GENERATION

the generator block in a PRNG [125]. This method can also be modified for other similar hash

functions containing a counter and an input, allowing them produce random data at the same speed

that they hash data. The key is changed periodically and is also changed after every data request,

so that a key compromise doesn’t endanger old outputs. Generation is shown in Algorithm 26.

Algorithm 26: Generate Blocks

input : G Generator state; modified by this function.

k Number of random blocks of data to generate.

output: r Pseudorandom. string of 16k bytes

assert : C 6= 0

Start with the empty string;

r← ǫ;

Append the necessary blocks;

for i = 1, . . . , k do

r← r‖H(k, C);
C ← C + 1;

end

return r;

There are 32 pools, P0, . . . , P31. Each entropy source distributes its entropy evenly over the pools

in a cyclic manner. The generator is reseeded every time pool P0 is large enough. One or more

pools are included in the reseed dependent on the reseed number. After a pool is used, it is reset

to an empty string. The seed file stores enough state to enable the computer to start generating

random numbers as soon as boot has occured.

5.4.3 Random Number Generator Block

The hardware implementation of the RNG block is a slightly modified (dependent on the hash

function used) version of Fortuna. For the SHA-3 hash functions, BLAKE offers a dedicated

interface for randomized hashing [116]. The advantage of randomised hashing [168] is that it

relaxes the security requirements of the hash function as the input message to the hash function

can be randomised using a fresh random value for every signature, in order to free the security

of digital signatures from relying on the collision resistance of a hash function. Grøstl also has a

144

5.4. RANDOM KEY GENERATION

randomized hashing mode [119]. As stated earlier, Skein can be used as a PRNG and computes the

output function using the state as the chaining input [125]. JH and Keccak, while not explicitely

stated in the literature, should also be able to provide adequate security for the RNG block.

Pseudo−Random

Output

Random

Key

Next Key

SEED FILE

MANAGER

SEED
FILEUpdate Seed

P0

P1
....

....

P31

Entropy Sources

SOURCE MANAGER

MANAGER

POOL
HASH

BLOCK

HASH

BLOCK
HASH

BLOCK

COUNTER

ACCUMULATOR

GENERATOR

Figure 5.5: Fortuna Flow Diagram

A description of the implementation of the Fortuna algorithm is given in Figure 5.5. The soft-

ware sections were written and compiled using Xilinx SDK and used the in-built Eclipse software

package. The source manager controls the initialisation, reseed, data generation and start and stop

functionality. The pool manager controls the management of the entropy pools. The seed file

manager updates the seed and writes a new seed to the seed file prior to exiting.

A number of modifications were made to the Fortuna algorithm as set out in the literature. Fer-

guson recommends [167] that the entropy sources be of random sizes and the data hashed while

added to the pools. As this would necessitate 32 running hash calculations for each of the pools

of entropy, and result in a substantial use of resources an alternative method was used. A similar

method to that used and shown to be statistically random in [169] was recreated here where each

pool size was kept to 256 bits and the random data was set to input in 1-byte blocks. The data is

appended to each pool producing a 264-bit string. This string is then hashed and returned to the

pool.

The key is changed periodically and no more than 1Mb of data is generated without a key change.

The generator will then change the key or check for a reseed. The key is also changed after every

data request as shown in Algorithm 27. The output is generated by a call to GenerateBlocks.

145

5.4. RANDOM KEY GENERATION

Algorithm 27: Generate Random Data

input : G Generator state; modified by this function.

n Number of random bytes of data to generate.

output: r Pseudorandom. string of n bytes

Limit the output length to reduce the statistical deviation from perfectly

random outputs. Ensure the length is not negative

assert : 0 ≤ n ≤ 220

Compute the output;

r← first-n-bytes GenerateBlocks(G, [n16]);

Switch to a new key to avoid later compromise of the output;

K ← GenerateBlocks(G, 2)

Two more blocks are then generated to get the new key, to be used the next time it is required to

generate data. Once the old key K has been erased, there is no way to recompute the result r. The

entropy, input in 1-byte blocks results in 256
8 = 32 events having to be added to pool P0 before it

can be used in a reseed.

There are five main operations used to write to the hardware hash block; (i) add random data from

entropy sources, (ii) write from a seed file, (iii) write from pools (iv) write key and (v) write next

key. The seed file of Fortuna ensures that random number generation can begin immediately at

startup, and each block of generation is as fast as the underlying hash function. Through re-use

of the hash function, the area and complexity of the design is further reduced, resulting in a cost

of two or three iterations of the hash function per output block of pseudo-random data. There is a

bottleneck due to the 32-bit FSL bus, requiring 16 clock cycles to load the hash block for the seed

and generator blocks and 18 clock cycles to load the entropy hash.

The different sources of entropy are considered outside of the scope of the work presented here and

it is sufficient to say that external dedicated hardware or software would be used for the collection

and safeguarding of these pools prior to their input to the generator blocki. It must be noted

however that using this method of not gathering the entropy internally in the FPGA could lead to

insecurity if an eavesdropper can get access to the data line between the computer and the FPGA

when the entropy is being input. Another possible source of attack is if an attacker can gain access

iFor examples of methods of performing this on FPGA see e.g. [170–173].

146

5.5. CRYPTO PROCESSOR USING MICROBLAZE

to the CPU usage of the source manager process and detect the function being performed, then

this theoretically could be used to estimate the fixed amount of data being added to the pools and

hence the pool size. The attacker could then potentially deduce when the generator is (or more

importantly, is not) reseeded, thereby deducing the state of the generator by monitoring the CPU.

5.5 Crypto Processor Using Microblaze

The Microblaze soft-core processor [54] is based on a 32-bit RISC architecture and can be imple-

mented on any of the Xilinx FPGA families. Implementing a processor on the FPGA increases

the flexibility of the overall design and makes communication with the FPGA a simple operation.

For some applications the Microblaze processor may not provide high enough performance, such

as computationally intensive parts of ECC. In this case operations that are slow to perform in

software may be performed much faster in dedicated hardware on the FPGA.

The Microblaze, described in Section 2.7 is used as shown in Figure 5.6 to build the Cryptographic

processor. The design comprises a Random Number Generator (RNG) block, a Hash block, an

Elliptic Curve Processor (ECP) block, an XPS Timer and ancillery components. There is also a

Project Peripheral Repository (PPR) where unused components are stored to allow easy switching

between specified components for a given implementation. It can also be seen how additional

blocks can be easily and quickly added to the repository, and thus to the design. For example, an

AES block would allow SSL/TLS to be implemented.

5.5.1 Hash Block

For the hardware implementations presented here, hash function based on the round three designs

as given in Chapter 4 were implemented for the Microblaze (see Section 2.7.1). The hash block

comprises a user selected hash function. The hash designs used here are the 256-bit designs, but

no changes are required to the overall Microblaze design to allow the 512-bit designs be used.

Each Hash design is stored locally in the project peripheral repository, and the IP is added prior to

147

5.5. CRYPTO PROCESSOR USING MICROBLAZE

MicroBlaze

RNG

MFSL SFSL

HASH

SFSLMFSL

ECP

MFSL SFSL

BRAM

SLMB SLMB

SFSL

SFSL

SFSL

DLMB ILMB

MFSL

MFSL

MFSL

DEBUG

DPLB SPLB

SPLB

XPS TIMERMBDE SPLB

MDM

PROJECT

PERIPHERAL

REPOSITORY

BLAKE

GROSTL

................

................

................

SKEIN

AFFINE

PROJ_D&A

..............

.............

.............

JOYE_I

HUTTER

TW_EDW.

EX_TW_ED

............

...........

...........

MB_PLB

FSL_2

FSL_1

FSL_0

MDM_BUS

Figure 5.6: Cryptographic Processor using Microblaze

runtime.

This necessitated some changes to the round two wrapper design. Firstly, due to the fixed size

of the FSL bus FIFO, it was easier to implement the padding in software. Methods were initially

tested whereby the first message block defined the message size and counter, however this led

to both an unnecessary extra latency in the load time along with extra logic increasing both the

complexity and the area. As such, software was generated in C to generate the padding prior to

the message being loaded to the hash function. The connections between the Microblaze and the

wrapper from Section 4.5.1 are shown in Table 5.1.

It was described in Section 2.7.2 that the input and output are read in 32-bit blocks on the FSL

bus and require two clock cyclesii, a read and an acknowledge, per block. Therefore each input

iiIn actuality, only the first block requires two clock cycles with subsequent blocks only requiring one. However,

in order to avoid undue complication when reading in messages of different sizes, the two clocks per message block

standard was used

148

5.5. CRYPTO PROCESSOR USING MICROBLAZE

Table 5.1: Wrapper Interface for Hash and ECC

FSL IO hash ECC

FSL CLK in clk clk

FSL RST in rst rst

FSL S DATA in d in d in

FSL S EXISTS in dp in load

FSL M FULL in ack out RAM addr en

FSL S CONTROL in lb in key en

FSL M DATA out d out d out

FSL M WRITE out dp out done

FSL S READ out ack in -

FSL M CONTROL out lb out -

message requires (MES/32) × 2 clock cycles to load, where MES is the input message size.

Also communication issues occured when loading of a new message and processing of the current

message occured simultaneously. In order to work around this, the load stage and the processing

stage were completely separated out in respect to the round two wrapper. An example description

of the timing is given in Figure 5.7.

FSL_CLK

FSL_S_EXISTS

FSL_RST

FSL_S_DATA

FSL_S_CONTROL

FSL_S_READ

FSL_M_CONTROL

FSL_M_WRITE

FSL_M_DATA

FINAL LOADINITIAL LOAD OUTPUT

Data_1 Data_2 Data_3 Data_N−1 Data_N

Out_1 Out_2 Out_3

Figure 5.7: Timing Diagram for Microblaze I/O

149

5.5. CRYPTO PROCESSOR USING MICROBLAZE

5.5.2 Elliptic Curve Processor Block

Similar to the hash block, the ECP block uses the designs from Chapter 3 again stored locally

in the project peripheral repository. As the hardware implementation of binary field operations

result in carry-free logic, these fields are better in terms of speed and area for hardware. However,

since ECDSA contains modular operations over Fq along with elliptic curve point operations, the

addition, multiplier and inversion blocks defined in Sections 3.3 can be reused.

A number of points need to be addressed here as regards the designs as presented in Chapter 3. The

designs themselves, in many cases require precomputations to get them to the required state. For

the ECDSA, the designs necessarilly begin in the affine domain and need to be converted, e.g. as

described in Section 3.2.2 and Section 3.2.3. Similarly, for the Montgomery multiplier, the values

need firstly to be converted to the montgomery domain and afterward converted back as described

in Section 3.3.3. This adds additional delays to the design. In most cases in the literature, these

precomputations are neglected from the timing results.

The IP blocks described in Section 2.7.1 were then implemented for the ECC circuitry previously

described. This involves simply defining a wrapper, also described in Table 5.1, to allow compati-

bility and some control logic and has a net result of a small increase in timing due to the coordinate

loading in 32-bit blocks, i.e. six ×2 extra clock cycles per coordinate, resulting in a mostly neg-

ligible increase when compared against the overall timing in respect to the timing results given in

Table 3.9, and a small increase in area due to the control logic.

5.5.3 Coordinate Conversion

As stated above, there is a minor conversion cost associated with converting the various algorithms

described in Chapter 3. Table 5.2 presents the different conversions required for each of the regular

scalar multiplication algorithms presented in Section 3.8.

Twisted Edwards curves are a bit more involved and require an additional conversion from Weier-

straß to twisted Edwards form along with the conversion from Jacobian projective to affine and

vica versa. To convert from Weierstraß to twisted Edwards form, letEW be a projective Weierstraß-

150

5.5. CRYPTO PROCESSOR USING MICROBLAZE

Table 5.2: Conversion for co-Z addition formulæ

Algorithm Conversion Cost

Left-to-right algorithms:

Mont. ladder co-Z addition (Alg. 18) Jacobian - affine 1I+ 4M
Mont. ladder (X,Z)-only (Alg. 19) homogenous - affine 1I+ 2M

Mont. ladder (X, Y)-only (Alg. 22) (
(
λ
Z

)2
X(R0R0R0),

(
λ
Z

)3
Y(R0R0R0)

)

1I+ 9M

Signed-digit (X, Y)-only (Alg. 23)
(
λ2X(R0R0R0), λ

3Y(R0R0R0)
)

1I+ 7M

where λ← yP X(R1R1R1)
xP Y(R1R1R1)

Right-to-Left algorithms:

Joye’s double-add co-Z I (Alg. 20) Jacobian - affine 1I+ 4M
Joye’s double-add co-Z II (Alg. 21) Jacobian - affine 1I+ 4M

form elliptic curve defined over Fq.

EW : Y 2Z = X3 + AXZ2 + BZ3

where A,B ∈ Fq, 4A3 + 27B2 6= 0. EW is birationally equivalent to the projective twisted

Edwards curve

EE : (3α+ 2t)X2Z2 + Y 2Z2 = Z4 + (3α− 2t)X2Y 2

where α ∈ Fq satisfies α3 +Aα+B = 0 and t ∈ Fq satisfies t2 = 3α2+A, provided such α and

t exist. This is precisely the condition that EW can be represented in Montgomery form [174].

The transformation from EW to EE is given by

XE = (XW − αZW) (XW + (t− α)ZW)

YE = YW (XW − (t+ α)ZW)

ZE = YW (XW + (t− α)ZW)

(5.5)

(0 : 1 : 0)W 7→ (0 : 1 : 1)E

(α : 0 : 1)W 7→ (0 : −1 : 1)E.

(5.6)

151

5.5. CRYPTO PROCESSOR USING MICROBLAZE

The transformation from EE to EW is given by:

XW = XE ((t+ α)ZE + (t− α)YE)

YW = t(Z2
E + YEZE)

ZW = XE(ZE − YE)

(5.7)

(0 : 1 : 1)E 7→ (0 : 1 : 0)W

(0 : −1 : 1)E 7→ (α : 0 : 1)W .

(5.8)

To convert back from twisted Edwards curve to Weierstraß form is more straightforward. Let EE

be the projective twisted Edwards curve over Fq with coefficients a and d, where a and d are

distinct and non-zero.

EE : aX2Z2 + Y 2Z2 = Z4 + dX2Y 2

EE is birationally equivalent to the projective Weierstraß-form elliptic curve

EW : Y 2Z = X3 + AXY 2 + BZ3,

where

A = −(a2 + 14ad+ d2)

48
, B = −(a3 − 33a2d− 33ad2 + d3)

864
,

under the transformation from EE to EW :

XW = (5a− d)XEZE + (a− 5d)XEYE

YW = 3(a− d)(Z2
E + YEZE)

ZW = 12XE(ZE − YE)

(5.9)

and

(0 : −1 : 1)E 7→ (a+ d : 0 : 6)W . (5.10)

152

5.6. IMPLEMENTING ECC IN SOFTWARE AND CO-DESIGN

The transformation from EW to EE is given by:

XE = (6XW − (a+ d)ZW)(12XW + (a− 5d)ZW)

YE = 6YW (12XW + (d− 5a)ZW)

ZE = 6YW (12XW + (a− 5d)ZW)

(5.11)

and

(0 : 1 : 0)W 7→ (0 : 1 : 1)E

(a+ d : 0 : 6)W 7→ (0 : −1 : 1)E.

(5.12)

It should be noted here that while all Edwards and twisted Edwards curves map to Weierstraß

curves, the inverse is not true, i.e. determining whether α exists is equivalent to determining

whether the curve has a twisted Edwards form. Therefore choosing curve parameters randomly

can be time costly [175]. Otherwise, if starting with a Weierstraß curve with a point of order 4,

the transformation from Bernstein and Lange [3] can be used. The formula for converting from

Weierstraß to Twisted Edwards involves 15M and 10add using constants i = 1/6, j = 1/4 and

k = −1, while for converting from Twisted Edwards to Weierstraß is 25M and 42add using

constants j = 1/48 and k = 1/864.

5.6 Implementing ECC in Software and Co-Design

In this section the performance of the various ECC algorithms presented in Section 3.8 are investi-

gated both in a software and in a hardware-software co-design implementation. These implemen-

tations are then compared against the previous dedicated hardware results from Chapter 3. In this

way, an examination is made of the performance levels associated with each design strategy.

A design for performing elliptic curve arithmetic operations was implemented on a XUPV5-

LX110T development board [49]. The maximum clock frequency of the Microblaze when im-

plemented on the board is 125MHz. The board contains 256MB DDR2 RAM that the Microblaze

can access through an external memory controller. The implemented design uses the DDR2 RAM

153

5.6. IMPLEMENTING ECC IN SOFTWARE AND CO-DESIGN

for storing some of the code sections, the heap and stack are placed in 64kB of BRAM internal to

the FPGA. This design was presented in [93].

5.6.1 Dedicated Software Results

Results are first presented for a purely software implementation where the Microblaze does not

make use of the 192, 256 or 521-bit hardware multiplier. The GNU GMP library was compiled for

the Microblaze and used to implement all of the algorithms. Table 5.3 shows the timing results for

the three different field sizes with bit-lengths of 192, 256 and 521, with the Microblaze clocked

at 125MHz. The results include all precomputations and conversion to and from affine coordi-

nates. The results are quite slow for the Microblaze in this setup. This is to be expected as the

Microblaze is not optimised in any way to perform large finite field multiplications. This software

implementation does not perform any computations in parallel and it can be seen that the relative

speed of each algorithm follows the same trend as the hardware results in Section 3.10 when only

1 multiplier was used. All of these algorithms are designed with software implementations in mind

and the results reflect this with the best result in each field size being the Left-to-right signed-digit

algorithm with (X, Y)-only co-Z (Alg. 23) algorithm.

Table 5.3: Software Results

192-bit 256-bit 521-bit

Alg. Time Time Time

(mS) (mS) (mS)

D&A (Alg. 3) 1060 1976 20330

ML co-Z (Alg. 18) 1083 2033 21220

Joye I (Alg. 20) 1085 2036 21286

Joye II (Alg. 21) 1058 1981 20157

ML (X,Z) (Alg. 19) (Alg. 40 &45) 1134 2141 22355

ML (X,Z) (Alg. 19) (Alg. 41 &45) 1056 1980 20683

ML (X,Z) (Alg. 19) (Alg. 42 &46) 991 1876 19299

ML (X,Y) (Alg. 22) 935 1753 17726

SD (X,Y) (Alg. 23) 924 1737 17668

As can be seen from the results in Table 5.3, performing large multiplications on the Microb-

laze takes a considerable number of clock cycles. This leads to a very slow computation time

154

5.6. IMPLEMENTING ECC IN SOFTWARE AND CO-DESIGN

for an Elliptic Curve point multiplication. This is particularly evident in the 521-bit case where

computation times are as long as 22 seconds.

5.6.2 Instruction Set Extensions

To improve the performance of the dedicated software system, a dedicated multiplier was imple-

mented on the FPGA. The multiplier used for this design is again the Montgomery multiplier [76]

that was used in the EC processor. Adding a multiplier for hardware acceleration instead of an EC

processor allows the Microblaze to use the hardware acceleration block to increase performance on

any ECC algorithm that use 192, 256 or 521-bit Montgomery multiplications. This type of design

is suitable when flexibility and low area are required more than absolute performance. Using the

EC processor described in Section 3.3 to implement the algorithms achieves good performance,

but the design uses a large amount of the available area on the FPGA. If a more flexible design is

required then a trade-off is made where only the large finite field multiplications are implemented

in hardware. This reduces the performance but also decreases the number of slices that are used

for accelerating elliptic curve operations.

The multiplier is connected to the Microblaze through a Fast Simplex Link (FSL). The FSL bus

supplies the clock to the multiplier, therefore the multiplier runs at the same frequency as the

Microblaze which is 100 MHz. The maximum frequency that the multiplier could run at on a

Virtex 5 FPGA is 112 MHz.

The FPGA area usage results for the entire system and the multiplier alone are shown in Table 5.4.

The multiplier is connected to the Microblaze through a Fast Simplex Link (FSL). The FSL bus is

32-bits wide and allows for very fast data transfer to and from the Microblaze through the use of

FIFOs. The FSL bus supplies the clock to the multiplier, therefore the multiplier runs at the same

frequency as the Microblaze, which is 100 MHz in the case of the 192-bit implementation and 75

MHz for both the 256-bit and 521-bit implementations. These clock frequencies are determined

by the critical path of each multiplier. A pipeline register was added to the multiplier design for the

521-bit implementation in order to reduce its critical path. This doubles the number of clock cycles

155

5.6. IMPLEMENTING ECC IN SOFTWARE AND CO-DESIGN

Microblaze

Virtex 5 FPGA

BRAM

external memory controller

DDR2 RAM

192 bit

Montgomery

Multiplier

xps_timer

plb bus

plb bus

plb bus

fsl bus

custom peripherals

Figure 5.8: Microblaze with Hardware Multiplier

it takes to perform a multiplication. A diagram of the Microblaze with the multiplier connected is

shown in Figure 5.8. The FPGA area usage results for each entire system and the multipliers alone

are shown in Table 5.4. A timer was also included in the design in order to measure computation

times.

Table 5.4: Microblaze FPGA usage

Design Area BRAM DDR2 DSP48E Freq

(Slices) RAM (MHz)

Microblaze 192-bit 3145 65× 36k 256MB 3 100

Microblaze 256-bit 3454 65× 36k 256MB 3 75

Microblaze 521-bit 3466 65× 36k 256MB 3 75

192-bit mult 334 0 0 0 100

256-bit mult 499 0 0 0 75

521-bit mult 904 0 0 0 75

Table 5.5 shows the results obtained from the Microblaze with hardware acceleration. It can be

seen from comparing Table 5.5 with Table 5.3 that the hardware multiplier reduces the compu-

tation time by on average 89-94% for the algorithms. The large reduction in computation time

is due to the fact that the hardware multiplier performs both the multiplication and Montgomery

modular reduction which are more time consuming than modular additions. The results show the

156

5.6. IMPLEMENTING ECC IN SOFTWARE AND CO-DESIGN

timing for performing a full computation of kP including all conversion to and from affine co-

ordinates and also any precomputations for each algorithm. The results assume that the point P

is unknown and therefore no values that could be precomputed and stored in RAM are used. In

both cases the Montgomery ladder with (X,Z)-only co-Z, using the (Alg. 42 & 46) and also the

(Alg. 41 & 45) variants, are the fastest algorithms and both have very similar computation times.

On average the precomputations and conversion to and from affine coordinates take about 9ms

in the 192-bit case. The precomputations are negligible in the software implementation. If the

EC processor from Chapter 3 was used as a hardware acceleration block for the Microblaze, the

precomputations alone would take longer than the actual calculation of kP .

The power consumption could not be physically measured as the design uses external DDR2

memory and the board does not allow access to the Vccint
pin of the FPGA, however, the power

consumption of this design should be higher than the EC processor used in Chapter 3 due to the

higher number of slices occupied.

Table 5.5: Microblaze Results

192-bit 256-bit 521-bit

Alg. Time Time Time

(mS) (mS) (mS)

D&A (Alg. 3) 94 228 785

ML co-Z (Alg. 18) 113 296 1053

Joye I (Alg. 20) 114 297 1094

Joye II (Alg. 21) 96 252 956

ML(X,Z) (Alg. 19) (Alg. 40 &45) 74 203 731

ML(X,Z) (Alg. 19) (Alg. 41 &45) 71 166 692

ML(X,Z) (Alg. 19) (Alg. 42 &46) 71 185 681

ML(X,Y) (Alg. 22) 97 250 928

SD(X,Y) (Alg. 23) 87 225 845

The results show, as expected, that the more computations that are performed by dedicated FPGA

slice logic, the faster the design. Using a standard Microblaze setup to perform all of the calcula-

tions is slow but may be of use in non time critical applications. For a very small increase in area

usage, the performance of the Microblaze system can be increased by a factor of ×15.

For the highest performance the dedicated EC processor described in Section 3.3 is the best choice

157

5.7. ECDSA DESIGN

as it is designed solely for elliptic curve computations and hence does not suffer from some of the

overhead of a generic processor design. As such, the hardware version explored in Section 3.3 is

the one selected for use in the ECDSA.

5.7 ECDSA Design

A design for ECDSA was implemented on Microblaze. As shown in Section 5.3, the ECDSA

requires a PRNG, a hash block and an elliptic curve block for its operations. A design was se-

lected based on the information available in Tables 3.4, 3.10, 4.9 and 4.10. This design used the

Montgomery ladder (XY), Alg. 22, using the EC processor described in Section 3.3, the round

three version of the Grøstl hash function described in Section 4.7.1, the random number generator

from Section 5.4.3 and the ancillary components described in Section 2.8.1.

For the ECC block, when using four multipliers, the extended twisted Edwards and the Mont-

gomery ladder (XY) have the same energy usage, but the extended twisted Edwards has a faster

computation time. However, the additional conversion to and from the Weierstraß to Edwards

form, as shown in Section 5.5.3 results in an additional time cost. The 192-bit design was chosen

for implementation here.

For the hash block, Grøstl has the shortest iteration time for long and short messages. Its in-built

use of a counter along with its randomized hashing mode as described in Section 5.4.3 allows it to

be re-used for the PRNG block.

In addition, the SASEBO design comprises the base Microblaze, an XPS timer, a clock generator,

BRAM and some ancillary components. This selection, gives a relatively fast design, albeit at a

cost of additional power and area. However all of these components can be easily swapped out

and replaced with any of the other designs presented in this thesis, all stored locally in the project

peripheral repository.

The most computationally intensive operation for signature generation is kP as described in Al-

gorithm 24. For signature verification, shown in Algorithm 25, it is X = u1P + u2Q. Signature

158

5.7. ECDSA DESIGN

verification is more computationally intensive due to the need to perform two elliptic curve scalar

operations, compared to only one for signature verification.

An entity wishing to sign a message must first generate a private/public key pair. The private key

is selected at random such that k ∈ r[1, n − 1]. The public key, Q = kP , is then generated

as described in Equation 5.1. The generation of the integer k is done using the random number

generator. The computation of r = [kP]x mod n described in Equation 5.2 can be completed in

any of the coordinate systems described in Chapter 3. However the obtained point, r, needs to be

converted back to affine coordinates. The computation of e = H(m) can be completed using any

of the hash functions presented in Chapter 4.

Microblaze

Generator

Number

Random

Hash

Function

Processor

Curve

Elliptic

Figure 5.9: Microblaze Signature Platform

Figure 5.9 gives the general layout of the platform for generating and verifying signatures. The

Microblaze processor is implemented to allow an easy method of communication between the

hash, ECC and RNG blocks. In addition to this, the microblaze is also used to implement padding

in the hash block and controls the entropy and managenent sections of the RNG block.

When the ECDSA processor receives a command to generate a signature, the Microblaze sends

an instruction to the hash block to hash the message and an instruction to the RNG requesting an

192-bit random integer, k. Both of these values are sent to the ECP block, where the signature is

generated. Along with the hashed message, e, and the random integer, k, the BlockRAM is loaded

with the generator point, P , and the private key, k. The (r, s) values are returned via the FSL

159

5.7. ECDSA DESIGN

bus to the Microblaze, which controls the loading of data. Similarly, for verification, the values

are again loaded along with the signature pair (r, s) to the BRAM. The operations to compute

r = [kP] are performed mod q. All other operations are performed mod n.

5.7.1 ECDSA Results

The area results for the specified design is shown in Table 5.6. It is seen that the system takes

up approximately half of the FPGA area. Additional multipliers in the ECP design do not add a

large amount of area to the overall circuit. The Grøstl hash function is however the largest user

of area of the hash functions implemented in this thesis. As such, this implementation method

should result in approximately the largest area usage of any of the combination of cryptography

blocks, assuming that the hash block is also used for the PRNG. Obviously a user using different

hash functions for the PRNG and the hash block, or indeed a block cipher in CBC mode for the

PRNG, will result in an additional area cost.

Table 5.6: ECDSA Total Area Usage

Component FF used LUT used BRAM

System 11846 24103 6

ECP 5373 7919 10

Hash 2594 11632 -

Other 2173 2632 -

Total 21986 46286 16

The critical path of the design is through the inverter in the ECP block. Therefore the maximum

operating frequency is 91 MHz. This is the standard operating frequency throughout any com-

bination of blocks used, as the inverter is a standard component used in all of the elliptic curve

processor designs for conversion to and from various domains. Table 5.7 gives the timing results

for each subsequent section.

160

5.8. ECDSA COMPARISON

Table 5.7: ECDSA Timing using Grøstl & ML (XY)

Component Calc. Time (mS)

PRNG 5.56

Hash 2.83

ECP (Gen.) 9.24

ECP (Ver.) 18.44

5.8 ECDSA Comparison

This section presents a performance comparison with other implementations of ECDSA. While

there are a lot of software implementations, the amount of results available for hardware is again

quite lacking. For example, the System for Unified Performance Evaluation Related to Crypto-

graphic Operations and Primitives (SUPERCOP) [132], an ECRYPT initiative for Benchmarking

of Cryptographic Systems measures the performance of hash functions, secret-key stream ciphers,

public-key encryption systems, public-key signature systems, and public-key secret-sharing sys-

tems, of which eBATS (ECRYPT Benchmarking of Asymmetric Systems) [176] is used to iden-

tify the most efficient public-key systems. These software implementations, while faster than

hardware, require a lot of computation power and expensive dedicated CPUs. Lenstra and Ver-

heul [177] presented analysis which concluded that for curves over Fp, software was over 2000

times more expensive than hardware.

There are also a small number of microcontroller implementations [178, 179]. In general, these

suffer from the same timing constraints as were shown in Section 5.6.2, and result in signature

generation and verification times that range in the hundreds to thousands of milliseconds.

For the FPGA and ASIC implementations, in most cases, the authors neglect the pre and post-

processing steps along with the hashing and simply give the core functionality, i.e. the scalar

multiplications for ECC. While these results can somewhat be compared to the results presented

in Chapter 3, in Table 3.5 and Table 3.10, direct comparison of the entire system performance is

difficult. Glas et al. [180] present a full ECDSA system from which comparisons can be made.

Table 5.8 presents a comparison of the results. It can be seen that the design presented here per-

161

5.8. ECDSA COMPARISON

Table 5.8: Comparison of ECDSA and Core Functionality for FPGA

Imp. Field Hardware Area Max Gen. Ver.

Size Freq. Time Time

MHz mS mS

Full ECDSA

Grøstl & ML (XY) 192 Virtex-5 21986 LUT (16 BRAM) 91 12.07 21.27

Glas et al. [180] 256 Virtex-5 14256 LUT 20 7.15 9.09

Core Functionality

McIvor et. al [181] 256 Virtex-2 Pro 15755 CLB (256 Mul) 39.5 3.84 -

Orlando and Paar [182] 192 Virtex-E 11416 LUT (35 BRAM) 40 3.0 -

Sakiyama et al. [183] 256 Spartan 3S-5000 27597 LUT 40 17.7 -

Örs et al. [184] 160 Virtex-1000E 5614 slices (est.) 91.31 (est.) 42.52 -

Vliegen et al. [185] 256 Virtex-2 Pro 2085 slices 68.17 15.76 -

forms adequately when compared against the current state of the art. For the signature generation,

the design maintains this performance level while also being completely reconfigurable. The field

operations, the curve parameters, algorithm used, number of arithmetic units and key size all are

user definable prior to runtime. A dedicated ECDSA processor could be more easily optimised

for increased speed performance, but would lose this reconfigurability. The results presented here

also greatly outperform the microcontroller implementations [178, 179]. The signature verifica-

tion results presented by Glas et al. [180] also outperform the results presented here. This is done

through a method known as Shamir’s trick [37]. Instead of computing the two scalar multipli-

cations independently in sequence, it is faster to compute them together. In the design presented

in this thesis, the instruction set ROM for the EC processor is generated prior to runtime and so

this method cannot be accomplished without the use of additional instruction set ROM blocks and

control circuitry to select between signature generation and verification instructions.

It is clear that the reconfigurable nature of the processor presented here results in reduced speed

when compared to the dedicated circuitry presented by the comparison against other ECDSA

designs. However, its benefits are from its ability to implement many additional protocols, both as

presented here and through the addition of further hardware blocks such as AES, resulting in a far

more accomplished design, albeit with a greater speed cost associated, than those it is compared

against.

162

5.9. CONCLUSIONS

5.9 Conclusions

In this chapter a cryptographic architecture that is capable of supporting multiple types of crypto-

graphic algorithms and architectures was presented. This architecture can support the underlying

field operations performed by ECC, the curve parameters, algorithm used, number of arithmetic

units and key size, thus enabling flexibility in the selection of both the underlying algorithm, the

security level and the area-throughput requirements. Additionally, the cryptographic architecture

can also support all of the SHA-3 algorithms and their variants. These cryptographic blocks can

then be used along with ancillary components as building blocks to build cryptographic protocols

along with other cryptographic algorithms, e.g. some types of random number generators, and

other cryptographic applications.

An implementation of a cryptographic protocol, the Elliptic Curve Digital Signature Algorithm,

was presented to allow a more general understanding of the cryptosystem described. Using this

algorithm, sensitive documents are made secure by encrypting and signing in real time using the

proposed cryptographic hardware. The background theory and mathematical background behind

the ECDSA was also presented.

A Microblaze processor used to build the cryptographic processor was also presented. The in-

sertion of the hash functions described in Chapter 4 and the elliptic curve processor described in

Chapter 3 into the Microblaze are also described, along with a brief description of the additional

coordinate conversions required for converting between domains.

The performance of the various algorithms presented in Chapter 3 in software and in a hardware-

software co-design implementation was investigated. This allowed a comparison between software

only, hardware-software codesign and the dedicated hardware results presented in Chapter 3.

Another part of the ECDSA, random key generation was described. Various forms of entropy

were examined and a pseudo random number generator, Fortuna, was presented, along with an

implementation method.

Finally, an implementation of the ECDSA using the previously described blocks was presented.

Results were given and comparisons to the current state of the art were presented.

163

6
Conclusions

6.1 Contributions of this Thesis

In this section the main contributions of this thesis are summarised. In Chapter 3 a reconfigurable

architecture for a cryptographic processor was introduced. This processor was used to examine

the performance of various algorithms over prime fields, Fp, for elliptic curves and a differing

number of arithmetic units supported by the processor were evaluated. Different dedicated and

doubling algorithms were examined along with a relatively new special form of curve, the twisted

Edwards. It was shown how parallel versions of the twisted Edwards and extended twisted Ed-

wards far outperform the various implementations of the Double-and-Add algorithm in different

164

6.1. CONTRIBUTIONS OF THIS THESIS

coordinate systems. This work was presented at the 5th International Workshop on Reconfigurable

Computing, ARC, in 2009 [186] and provided the first implementation results for Edwards curves

in hardware.

SPA secure algorithms were also examined and metrics were presented for selecting the fastest

algorithms for the lowest area and energy cost. Three different methods of SPA secure algorithms

were presented; dummy arithmetic instructions, unified doubling and addition and regular scalar

multiplication algorithms. Point sharing was introduced as a means of speeding up these regular

algorithms. With four multipliers operating in parallel, the best performance was achieved with

the extended twisted Edwards and the Montgomery ladder (XY) giving the same energy usage,

but the extended twisted Edwards having a faster computation time. This portion of the work was

published in the Journal of Cryptographic Engineering, JCEN, in 2012 [93]. This work presented

the first hardware results for the various Co-Z, combined double-add and (X,Y)-only algorithms

along with providing an overall comparison between them.

Additional work based on the elliptic curve processor itself was presented at the Workshop on

Special Purpose Hardware for Attacking Cryptographic Systems, SHARCS, in 2009 [187], and at

the International Conference on Reconfigurable Computing and FPGAs, ReConFig, in 2009 [188].

In Chapter 4 methods for implementing and evaluating the hash functions from the NIST run SHA-

3 competition were presented. The contest initially received sixty four submissions from designers

worldwide. Fifty one of these designs progressing through to round one of the contest which began

in November 2008. Core functionality results were presented for five of these designs during the

first round of the competition. Three of the designs implemented were selected for round two of

the competition. These results were presented at the Euromicro Symposium on Digital Systems

Design, DSD, in 2009 [107].

An interface was presented to allow a fair and consistent evaluation of each of the designs. This

wrapper was presented at the IET Irish Signals and Systems Conference, ISSC, in 2010 [127].

The first published full evaluation was carried out for each of the fourteen designs selected for

round two of the competition. This was presented at the International Conference on Field Pro-

165

6.1. CONTRIBUTIONS OF THIS THESIS

grammable Logic and Applications, FPL, in 2010 [115], and also selected by NIST to be presented

at the Second SHA-3 Candidate Conference [114]. Three of the round two designs implemented

consistently outperformed SHA-2 for all of the metrics selected; Keccak, Grøstl and JH. All of

which were selected by NIST for the final round of the competition. All five round three designs

selected by NIST were in the top eight implementations based on the work presented here.

Updated area and power results for the remaining five designs selected for the third and final round

of the competition were presented on the Cryptology ePrint Archive [189]. The eventual finalist

selected, Keccak, was consistently the top performing hardware design implemented in this work.

Additional work in this area based on an overview of the hardware used by various teams to

implement the hash functions was also presented on ePrint [45].

In Chapter 5 a cryptographic architecture that is capable of supporting multiple types of crypto-

graphic algorithms and architectures is presented. This architecture supports the underlying field

operations performed by ECC. In addition to this, the curve parameters, algorithm used, number

of arithmetic units and key size all are user definable prior to runtime, thus enabling flexibility in

the selection of both the underlying algorithm, the security level and the area-throughput require-

ments. Additionally, the cryptographic architecture can also support all of the SHA-3 algorithms

and their variants. These cryptographic blocks can then be used along with ancillary components

as building blocks to build bigger cryptographic algorithms and applications.

Implementations are presented for performing ECC scalar multiplication in dedicated microcon-

troller software, hardware and hardware-software co-design and comparisons were made. This

work was also selected for publication in the Journal of Cryptographic Engineering, JCEN, in

2012 [93]. The Elliptic Curve Digital Signature Algorithm was presented and novel implementa-

tions consisting of reconfigurable blocks implemented using the previously defined elliptic curve

algorithms and sha-3 hash algorithms were presented. A pseudo random number generator, For-

tuna, was also designed and implemented using the aforementioned blocks.

166

6.2. FUTURE RESEARCH DIRECTIONS

6.2 Future Research Directions

An immediate natural addition to the work presented in this thesis is to implement the top layer

from Figure 1.2, the application layer, and furthermore, to connect the circuitry directly to a net-

work point and perform testing and analysis in a real local area network environment. A number

of additional updates would also benefit from being implemented. These are broken down by

chapter.

The focus of Chapter 3 was to examine the performance of various algorithms used to perform

point scalar multiplication. Not taken into account in the designs presented in this thesis are cases

where speed-up is acquired by setting certain curve parameters to constants, such as those de-

scribed in [66,94,95]. While the existence of these curve parameters was acknowledged, the aim

of the work presented here was to determine the underlying performance of the general case. As

such, these optimised cases were not examined. Interesting future work would involve imple-

menting these special cases in hardware to deduce any increase in speed or decrease in energy

associated with them. Similarly, using Mersenne primes could also help to increase the speed of

the designs [23].

Chapter 4 presents methods for implementing and evaluating the hash functions from the NIST

run SHA-3 competition. The competition has recently ended with Keccak being announced the

ultimate winner. With one defined standard now selected, concentrated work can now begin to

optimise Keccak. However, NIST state [106] that all five finalists would have made acceptable

choices for SHA-3. As such, while not being the SHA-3 standard, the other four designs, Blake,

Grøstl, JH and Skein, are still acceptable for use as hash functions. While a lot of analysis has

been completed on the hash functions in various modes of operation, i.e. low power, high through-

put, etc., there is still more tweaking and different modes of operation that can be examined and

implemented to improve performance for all of the round three designs.

Chapter 5 presents a cryptographic architecture capable of supporting multiple types of crypto-

graphic algorithms and architectures. On speed-up of the cryptographic architecture, implemen-

tations using additional instruction set ROM blocks to differentiate between signature generation

167

6.2. FUTURE RESEARCH DIRECTIONS

and verification could be further examined to allow optimisations such as Shamir’s trick [37]

which allows two simultaneous point multiplications be performed, to be implemented at a cost

of additional resources. Other methods which use algorithms to increase the speed and security

and reduce complexity using combinations of mixed coordinates, non adjacent form (NAF) and

variable length sliding window could also be examined for hardware implementations, such as the

Windowing method [190], Addition Chains [191] and the Width-W NAF method [192] amongst

others.

On the security of the cryptographic architecture, some further work can also be done to improve

the security of the device. The security of the signature generation algorithm depends on several

assumptions. From the algorithm side, that; the random number, k, is securely generated; the hash

function used is cryptographically secure; and the elliptic curve discrete logarithm problem is

intractable. If any of these assumptions fail then it is possible for an adversary to forge signatures.

For the random number generator, the sources of entropy can be examined in further detail and

best fit solutions found. In the case of the hash functions, use of any of the SHA-3 implementations

is deemed by NIST to be sufficient [106]. For the ECDLP, the use of larger key and field sizes

should maintain the intractability as shown in Table 2.1 and Table 2.2. As such, future work should

also involve implementing the larger ECC variants presented in Section 3.11 for the cryptographic

architecture. While no implementation is completely secure, this, along with the use of SPA secure

algorithms should ensure adequate protection. Indeed, the co-Z formulæ also allow for the use of

projective point randomization which is a countermeasure against DPA attacks. However, since the

value of k is random and changes for every signature generated, this part of the ECDSA algorithm

is sufficiently protected against DPA attacks. For DPA attacks to be applicable the key must remain

constant for many executions of the algorithm. The main part of the ECDSA susceptible to DPA

is in the generation of the signature, specifically the computation of s = k−1(e + dr) mod n.

Since the signers private key d remains constant, and r can be obtained, this operation is open to

attack [193]. Masking the message e and the private key d offers sufficient protection and this can

be done at a cost of an extra multiplication using k.

168

6.2. FUTURE RESEARCH DIRECTIONS

From a hardware security point of view there are also many sources of attack. Since the PRNG is

partially implemented off chip, an attacker may be able to inject some bias into the entropy source.

One alternative to the method described here is to implement the entire PRNG on-chip [170–173].

External RAM in the Microblaze also presents another location for attack. Additionally, while the

work presented here concentrated on side channel protection at the algorithm level, there are many

other methods for protecting against side channel attacks, such as smoothing the power trace at a

circuit level using dual-rail logic, or through the use of controlled place and route [194–196]. All

of these methods are included in future work as a means of further protecting the circuitry from

potential adversaries. A fully secure future device should ensure that no keys should be allowed

to leave the ECDSA processor. Any sensitive information transferred off-chip to the external

RAM could be easily intercepted. The Microblaze processor should also not have any access to

private key information. In this way, for security partitioning, only the hash function block and the

Microblaze should be unsecured against all forms of attack.

Finally, it was shown that additional designs and cryptographic algorithms can easily and quickly

be added through the use of the project peripheral repository. As such, additional types of cryp-

tographic primitives and protocols not implemented in this thesis, i.e. AES [26], DES [25],

RSA [30], could be added to the overall architecture, thereby allowing further complexity in ap-

plications using this architecture.

Additionally, from a design point of view, due to the large development time associated with

the large amount of designs implemented in the thesis, further automated testing would result in

a reduced test time for the algorithms presented. Furthermore, the work presented throughout

this thesis shows that the expected results from any particular set of implementations transpired

to fairly accurately mirror the measured results. As such, it was shown that the methods used

to generate these expected results are sufficiently accurate as to negate the need for full further

testing, and thereby further alleviate test times in future cases.

169

A
Appendix - Elliptic Curve Cryptography

A.1 Double-and-Add Algorithms

The following section derives the Double-and-Add algorithms described in Chapter 3 in full. The

equations given here were directly used to generate the instruction set necessary for the ECC

processor.

A.1. DOUBLE-AND-ADD ALGORITHMS

Algorithm 28: Point Doubling in Affine Coordinates

input : P (x1, y1) ∈ Fq

output: [2]P (x3, y3) ∈ E(Fq)

x22 = x2.x2, 2x
2
2 = x22 + x22,;

A = 3x22 = 2x2 + x2, B = A+ a,;
2y2 = y2 + y2, inv2y2, λ = B/2y2,;

λ2 = λ.λ, 2x2 = x2 + x2, x3 = λ2 − 2x2,;
C = x2 − x3, D = λ.C, y3 = D − y2

Algorithm 29: Point Addition in Affine Coordinates

input : P (x1, y1);
Q(x2, y2) ∈ Fq

output: P +Q(x3, y3) ∈ E(Fq)

A = y2 − y1, B = x2 − x1, invB,;
λ = A/B, λ2 = λ.λ, C = λ2 − x1,;

x3 = C − x2, D = x1 − x3, E = D.λ, y3 = E − y1

Algorithm 30: Point Doubling in Projective Coordinates

input : P (X1, Y1, Z1) ∈ Fq

output: [2]P (X3, Y3, Z3) ∈ E(Fq)

z22 = z2.z2, a.z
2
2, x

2
2 = x2.x2;

2x22 = x22 + x22, 3x
2
2 = x22 + 2x22, A = (a.z2)

2 + (3x2)
2;

y2.z2, x2.y2, B = x2y2.y2z2,;

A2 = A.A, 2B = B + B, 4B = 2B + 2B,;
8B = 4B + 4B, C = A2 − 8B, y2z2.C,;
X3 = (y2z2.C).(y2z2.C), 4B −C,D = A(4B − C),;

y22 = y2.y2, (y2.z2)
2, 2(y2.z2)

2,;
4(y2.z2)

2, 8(y2.z2)
2, E = y22.8(y2z2)

2,;

Y3 = D −E, Z3 = 8(y2.z2)
3,

171

A.1. DOUBLE-AND-ADD ALGORITHMS

Algorithm 31: Point Addition in Projective Coordinates

input : P (X1, Y1, Z1);

Q(X2, Y2, Z2) ∈ Fq

output: P +Q(X3, Y3, Z3) ∈ E(Fq)

y2.z1, y1.z2, x2.z1, x1.z2,;

A = (y2z1).(y1z2), B = (x2z1).(x1z2), A
2 = A.A,;

B2 = B.B, B3 = 2B.B, z1.z2,;

A2.(z1z2), C = A2(z1z2)−B3, B2.(x1z2),;
D = 2(B2.(x1z2)), C −D,X3 = B.(C −D),;

E = (B2.(x1z2))− (C −D), A.E, F = B3.(y1z2),;
Y3 = AE − F, Z3 = B3.(z1z2),;

172

A.2. EDWARDS CURVES

A.2 Edwards Curves

For standard projective twisted Edwards, each PA requires 11M and 7add, while the PD requires

7M and 7add as given in Algorithm 32 and Algorithm 33.

Algorithm 32: Point Addition for twisted Edwards

input : P (X1, Y1, Z1);
Q(X2, Y2, Z2) ∈ Fq

output: P +Q(X3, Y3, Z3) ∈ E(Fq)

A = Z1Z2, B = A2, C = X1X2, D = Y1Y2,

E = dCD, F = B − E,G= B + E,
X3 = AF ((X1 + Y1)(X2 + Y2)− C −D, Y3 = AG(D− aC), Z3 = FG

Algorithm 33: Point Doubling for twisted Edwards

input : P (X1, Y1, Z1) ∈ Fq

output: [2]P (X3, Y3, Z3) ∈ E(Fq)

B = (X1 + Y1)
2, C = X2

1 , C = X1X2, D = Y1Y2, E = aC,

F = E +D,H = Z2
1 , J = F − 2H,

X3 = (B −C −D)J, Y3 = F (E −D), Z3 = FJ

The extended projective twisted Edwards, requires 9M and 7add for each PA, and requires 7M

and 7add for each PD as given in Algorithm 34 and Algorithm 35.

Algorithm 34: Point Addition for Extended twisted Edwards

input : P (X1, Y1, T1, Z1);

Q(X2, Y2, T2, Z2) ∈ Fq

output: P +Q(X3, Y3, T3, Z3) ∈ E(Fq)

A = X1.X2, B = Y1.Y2, C = Z1.T2, D = T1.Z2,

E = D +C, F = (X1 − Y1).(X2 + Y2) + B −A,G = B + aA,H = D − C,
X3 = E.F, Y3 = G.H, T3 = E.H, Z3 = F.G

Algorithm 36 give the unified formula for standard twisted Edwards, while Algorithm 37 for

extended twisted Edwards. The unified single point operation, processes the same formula for

both PA and PD, thereby giving it the same power trace for either operation, at a cost of 12M and

7add per point operation. The extended unified formula performs better at 9M and 7add.

173

A.2. EDWARDS CURVES

Algorithm 35: Point Doubling for Extended twisted Edwards

input : P (X1, Y1, T1, Z1) ∈ Fq

output: [2]P (X3, Y3, T3, Z3) ∈ E(Fq)

A = X2
1 , B = Y 2

1 , C = 2Z2
1

D = aA, E = B + A, F = B −D,G = C −E,
H = (X1 + Y1)

2 − A−B,

X3 = G.H, Y3 = E.F, T3 = F.H, Z3 = E.G

Algorithm 36: Unified twisted Edwards Point Operation

input : P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2)

output: P +Q = (X3 : Y3 : Z3)

A = Z1Z2, B = A2, C1 = aX1X2, C2 = X1Y2
D1 = Y1Y2, D2 = X2Y1, E = dC2D2, F = B − E,G= B + E

X3 = AF (C2 +D2), Y3 = AG(D1 −C1), Z3 = FG

Algorithm 37: Extended Unified twisted Edwards Point Operation

input : P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2)
output: P +Q = (X3 : Y3 : Z3)

A = (X1.X2), B = (Y1.Y2), C = dT1.T2

D = Z1.Z2, E = (X1 + Y1).(X2 + Y2)− A−B,
F = D − C,G = D + C,H = B − aA

X3 = E.F, Y3 = G.H, T3 = E.H, Z3 = F.G

174

A.3. CO-Z ALGORITHMS

A.3 Co-Z Algorithms

In this section we present some of the Co-Z operations defined in Chapter 3, presented as Alg 38–

Alg 44.

Algorithm 38: Co-Z Addition with Update (ZADDU)

Require : P = (X1 : Y1 : Z) and Q = (X2 : Y2 : Z)

Ensure : (R, P)← ZADDU(P,Q) where R← P +Q = (X3 : Y3 : Z3) and

P ← (λ2X1 : λ
3Y1 : Z3) with Z3 = λZ for some λ 6= 0

Function: ZADDU (P,Q)

C ← (X1 −X2)
2, W1 ← X1C; W2 ← X2C

D ← (Y1 − Y2)
2; A1 ← Y1(W1 −W2), X3 ← D −W1 −W2

Y3 ← (Y1 − Y2)(W1 −X3)−A1, Z3 ← Z(X1 −X2)
X1 ←W1; Y1 ← A1; Z1 ← Z3

R = (X3 : Y3 : Z3), P = (X1 : Y1 : Z1)

Algorithm 39: Conjugate Co-Z Addition (ZADDC)

Require : P = (X1 : Y1 : Z) and Q = (X2 : Y2 : Z)
Ensure : (R, S)← ZADDC(P,Q) where R← P +Q = (X3 : Y3 : Z3) and

S ← P −Q = (X3 : Y3 : Z3)

Function: ZADDC(P,Q)
C ← (X1 −X2)

2, W1 ← X1C; W2 ← X2C
D ← (Y1 − Y2)

2; A1 ← Y1(W1 −W2), X3 ← D −W1 −W2

Y3 ← (Y1 − Y2)(W1 −X3)−A1, Z3 ← Z(X1 −X2)

D ← (Y1 + Y2)
2, X3 ← D −W1 −W2

Y3 ← (Y1 + Y2)(W1 −X3)−A1

R = (X3 : Y3 : Z3), S = (X3 : Y3 : Z3)

175

A.3. CO-Z ALGORITHMS

Algorithm 40: Out-of-Place Differential Addition-and-Doubling 1 (AddDblCoZ1)

Require : X1, X2, Z, xD, a, 4b

Ensure : X ′
1, X

′
2, Z

′

Function: AddDblCoZ1(X1, X2, Z)

U = (X1 −X2)
2, V = 4X2(X

2
2 + aZ2) + 4bZ3

X ′
1 = V

[
2(X1 +X2)(X1X2 + aZ2) + 4bZ3 − xDZU

]

X ′
2 = U

[
(X2

2 − aZ2)2 − 8bZ3X2

]
, Z ′ = UV Z

Algorithm 41: Out-of-Place Differential Addition-and-Doubling 2 (AddDblCoZ2)

Require : X1, X2, Z, xD, a, 4b

Ensure : X ′
1, X

′
2, Z

′

Function: AddDblCoZ2(X1, X2, Z)

U = (X1 −X2)
2,V = 4X2(X

2
2 + aZ2) + 4bZ3

X ′
1 = V [(X1 +X2)(X

2
1 +X2

2 − U + 2aZ2) + 4bZ3 − xDZU]
X ′

2 = U
[
(X2

2 − aZ2)2 − 8bZ3X2

]
, Z ′ = UV Z

Algorithm 42: Out-of-Place Differential Addition-and-Doubling 3 (AddDblCoZ3)

Require : X1, X2, TD = xDZ, Ta = aZ2, Tb = 4bZ3

Ensure : X ′
1, X

′
2, T

′
D, T

′
a, T

′
b

Function: AddDblCoZ3(X1, X2, Z)

U = (X1 −X2)
2, V = 4X2(X

2
2 + Ta) + Tb

W = UV , T ′
D = TDW , T ′

a = TaW
2

T ′
b = TbW

3, X ′
1 = V

[
(X1 +X2)(X

2
1 +X2

2 − U + 2Ta) + Tb

]
− T ′

D

X ′
2 = U

[
(X2

2 − Ta)
2 − 2X2Tb

]

Algorithm 43: Co-Z Doubling-Addition with Update (ZDAU)

Require : P = (X1 : Y1 : Z) and Q = (X2 : Y2 : Z)

Ensure : (R,Q)← ZDAU(P,Q) where R← 2P +Q = (X3 : Y3 : Z3) and

Q← (λ2X2 : λ
3Y2 : Z3) with Z3 = λZ for some λ 6= 0

Function: ZDAU(P,Q)

C′ ← (X1 −X2)
2, W ′

1 ← X1C
′; W ′

2 ← X2C
′

D′ ← (Y1 − Y2)
2; A′

1 ← Y1(W
′
1 −W ′

2), X̂
′
3 ← D′ −W ′

1 −W ′
2

C ← (X̂ ′
3 −W ′

1)
2, Y ′

3 ← [(Y1 − Y2) + (W ′
1 − X̂ ′

3)]
2 −D′ − C − 2A′

1

W1 ← 4X̂ ′
3C; W2 ← 4W ′

1C, D ← (Y ′
3 − 2A′

1)
2; A1 ← Y ′

3(W1 −W2)
X3 ← D −W1 −W2, Y3 ← (Y ′

3 − 2A′
1)(W1 −X3)−A1

Z3 ← Z
(
(X1 −X2 + X̂ ′

3 −W ′
1)

2 − C′ − C
)
D← (Y ′

3 + 2A′
1)

2

X2 ← D −W1 −W2, Y2 ← (Y ′
3 + 2A′

1)(W1 −X2)−A1, Z2 ← Z3

R = (X3 : Y3;Z3), Q = (X2 : Y2 : Z2)

176

A.3. CO-Z ALGORITHMS

Algorithm 44: (X, Y)-Only Co-Z Conjugate-Addition–Addition with Update (ZACAU′)

Require : P ′ = (X1 : Y1) and Q′ = (X2 : Y2) for some P = (X1 : Y1 : Z) and

Q = (X2 : Y2 : Z), and C = (X1 −X2)
2

Ensure : (R′, S ′, C)← ZACAU′(P ′, Q′, C) where R′ ← (X3 : Y3) and S ′ ← (X4 : Y4)

for some R = 2P = (X3 : Y3 : Z3) and S = P +Q = (X4 : Y4 : Z4) such that

Z3 = Z4, and C ← (X3 −X4)
2

Function: ZACAU′(P ′, Q′, C)

W1 ← X1C; W2 ← X2C, D← (Y1 − Y2)
2; A1 ← Y1(W1 −W2)

X ′
1 ← D −W1 −W2; Y ′

1 ← (Y1 − Y2)(W1 −X ′
1)− A1, D ← (Y1 + Y2)

2

X ′
2 ← D −W1 −W2, Y ′

2 ← (Y1 + Y2)(W1 −X ′
2)− A1, C′ ← (X ′

1 −X ′
2)

2

X4 ← X ′
1C

′; W ′
2 ← X ′

2C
′, D′ ← (Y ′

1 − Y ′
2)

2; Y4 ← Y ′
1(X4 −W ′

2)
X3 ← D′ −X4 −W ′

2, Y3 ← (Y ′
1 − Y ′

2)(X4 −X3)− Y4, C ← (X3 −X4)
2;

Y3 ← (Y ′
1 − Y ′

2 +X4 −X3)
2 −D′ −C − 2Y4, X3 ← 4X3; Y3 ← 4Y3; X4 ← 4X4

Y4 ← 8Y4; C ← 16C

R′ = (X3 : Y3), S
′ = (X4 : Y4), C

177

A.4. POINT DOUBLING FORMULÆ WITH UPDATE IN HOMOGENEOUS

COORDINATES.

A.4 Point Doubling Formulæ with Update in Homogeneous Coordi-

nates.

A double of point P = (X1 : Y1 : Z1) on EH, denoted DBLH, is computed as 2P = (X3 : Y3 :

Z3) with

X3 = 2BD, Y3 = A(4C −D)− 8(Y1B)2, Z3 = 8B3

where A = aZ2
1 + 3X2

1 , B = Y1Z1, C = X1(Y1B), and D = A2 − 8C. The cost of it

is 6M+ 5S+ 1c. DBLH was optimised by trading one multiplication with one squaring which

results in a cost of 5M+ 6S+ 1c and is given as

X3 = 4BD, Y3 = A(4C −D)− 64(Y1B)2, Z3 = 64B3

where A = 2(aZ2
1 +3X2

1), B = Y1Z1, C = 2[(X1+Y1B)2−X2
1 − (Y1B)2], and D = A2−8C.

If Z1 = 1, the cost drops to 3M+ 5S, with

X3 = 4Y1D, Y3 = A(4C −D)− 64B, Z3 = 64Y1α

where A = 2(a+3X2
1), α = Y 2

1 , B = α2, C = 2[(X1+α)2−X2
1−B], and D = A2−8C. Notice

that together with 2P a representation of a point P is obtained having the same Z coordinate at a

cost of only one multiplication.

P̃ = (64Y1α ·X1 : 64B : 64Y1α) ∼ (X1 : Y1 : Z1) = P .

Let (P̃ , 2P) ← DBLUH(P) denote the corresponding operation, where P̃ ∼ P and Z(P̃) =

Z(2P). The cost of DBLUH operation (doubling with update) is 4M+ 5S.

Furthermore, for implementation purpose of Algorithm 19, an (X,Z)-only point doubling is

defined with an update in homogeneous coordinate, denoted as DBLUH
∗ as DBLUH

∗(P) ←

178

A.4. POINT DOUBLING FORMULÆ WITH UPDATE IN HOMOGENEOUS

COORDINATES.

(X(P̃) : X(2P) : Z(2P)) = (X1 · 64Y1α : 4Y1D : 64Y1α) . The cost of DBLUH
∗ operation is

3M+ 5S .

179

A.5. FULL COORDINATE RECOVERY

A.5 Full Coordinate Recovery

The formula for the recovery of the full projective coordinates of the output point Q = kP , from

the x-coordinates R0 = (X1, Z) and R1, Z = (X2, Z) at the end of the Montgomery ladder is

described in Alg. 45.

Algorithm 45: Out-of-Place (X : Y : Z)-Recovery 1

Require : X1, X2, TD = xDZ, Ta = aZ2, Tb = 4bZ3

Ensure : R = (X : Y : Z) = (X1 : X2 : Z)

Function: recoverfullcoordinates1(X1, X2, Z)

A = Z2, B = ZA, C = xDZ, D = 4yDX1,X1 = DX1A

X2 = 2
[
(CX1 + aA)(C +X1)−X2(C −X1)

2
]
+ 4bB, Z = DB

R = (X : Y : Z) = (X1 : X2 : Z)

Note thatD = (xD, yD) represents the invariant, input pointP , of the Montgomery ladder in affine

coordinates. The cost of this formula is 8M+ 2S+ 1Ma + 1M4b + 8add detailed in algorithm 7

of [64].

The full coordinates recovery formula given by Algorithm 19 is evaluated in Alg 46.

Algorithm 46: Out-of-Place (X : Y : Z)-Recovery 2

Require : X1, X2, TD, Ta, Tb

Ensure : R = (X : Y : Z) = (X1 : X2 : Z)

Function: recoverfullcoordinates2(X1, X2, Z)

X1 = 4yDxDT
2
DX1

X2 = X3
D[Tb + 2(TDX1 + Ta)(X1 + TD)− 2X2(X1 − TD)

2]
Z = 4yDT

3
D

R = (X : Y : Z) = (X1 : X2 : Z)

The cost of which is 10M+ 3S+ 8add as detailed in algorithm 8 of [64].

180

A.6. POINT DOUBLING AND TRIPLING WITH CO-Z UPDATE

A.6 Point Doubling and Tripling with Co-Z Update

Algorithms 18, 20, 21, 22 and 23 require a point doubling or a point tripling operation for their

initialisation. We describe here how this can be implemented.

Initial Point Doubling: The double of a point is computed using the DBLU operation below.







X(2P) = M2 − 2S,

Y(2P) = M(S − X(2P))− 8L,

Z(2P) = 2Y1

(A.1)

with M = 3B + a, S = 2((X1 + E)2 − B − L), L = E2, B = X1
2, and E = Y1

2. Since

Z(2P) = 2Y1, it follows that

(S : 8L : Z(2P)) ∼ P with S = 4X1Y1
2 and L = Y1

4

is an equivalent representation for point P . Updating point P such that its Z-coordinate is equal

to that of 2P comes thus for free [87]. Let (2P, P̃) ← DBLU(P) denote the corresponding

operation, where P̃ ∼ P and Z(P̃) = Z(2P). The cost of DBLU operation (doubling with

update) is 1M+ 5S.

Initial Point Tripling: The triple of P = (X1 : Y1 : 1) can be evaluated as 3P = P +2P using

co-Z arithmetic [92]. From (2P, P̃)← DBLU(P), this can be obtained as ZADDU(P̃ , 2P) with

5M + 2S and no additional cost to update P for its Z-coordinate becoming equal to that of 3P .

The corresponding operation, tripling with update, is denoted TPLU(P) and its total cost is of

6M+ 7S.

181

A.7. FULL POWER, ENERGY AND TIMING RESULTS

A.7 Full Power, Energy and Timing Results

Presented here are the full set of results for the dedicated and SPA secure algorithms presented in

Section 3.4.1 and Section 3.10, using Equation 3.19.

Table A.1 presents the full results for the dedicated double and add algorithms. Columns 3 and

4 give the supply data from the power meter, while subsequent columns give the results either

obtained from the oscilliscope or calculated using equation 3.19. We draw attention to the final

two columns, the former being the time taken to perform a full calculation of the algorithm and the

latter being the energy expended to perform that calculation. In both cases, the lower the value,

the better the result.

Table A.1: FPGA Power and Timing Results for Double-and-Add

Power Meter Oscilliscope

Algorithm No of. Suppl. Suppl. µ Resistor Resistor µ FPGA µ FPGA Calc. Energy

Mult. Current Power Voltage Drop Power Voltage Power Time

mA mW mV mW mV mW mS mJ

Affine D&A 1 151.9 151.9 139.8 19.5 860.2 120.2 13.9 1.7

Projective 1 150.0 150.0 138.8 19.3 861.2 119.5 32.6 3.9

Double 2 157.2 157.2 145.0 21.0 855.0 124.0 17.8 2.2

and 3 164.8 164.8 153.6 23.6 846.4 130.0 13.9 1.8

Add 4 171.3 171.3 157.1 24.7 842.9 132.4 10.8 1.4

Jacobian 1 148.9 148.9 137.8 19.0 862.2 118.8 25.4 3.0

Double 2 156.3 156.3 144.4 20.8 855.6 123.5 16.9 2.1

and 3 164.5 164.8 153.8 23.7 846.2 130.2 13.8 1.8

Add 4 169.6 169.6 156.7 24.5 843.3 132.1 13.0 1.7

Twisted 1 150.7 150.7 138.3 19.1 861.7 119.2 23.6 2.8

Edwards 2 157.1 157.1 144.4 20.8 855.5 123.4 12.7 1.6

Dedicated 3 165.6 165.6 153.8 23.8 845.9 130.4 9.6 1.2

4 168.9 168.9 156.7 24.1 843.8 131.8 9.6 1.3

Extended 1 148.2 148.2 138.3 19.0 862.2 118.8 22.8 2.7

Twisted 2 156.2 156.2 144.3 20.8 855.8 123.4 12.8 1.7

Edwards 3 164.6 164.6 154.1 23.5 846.8 129.7 10.4 1.3

Dedicated 4 167.5 167.5 156.2 24.1 844.9 131.1 8.0 1.1

It can be seen from the table that the affine coordinates give quite good timing and energy re-

sults when compared to the Projective and Jacobian coordinates for 1M for a key with an average

hamming weight. However, as it does not scale with parallelisation, it is overtaken in both the cal-

culation time and energy usage by the other coordinate systems by 4M. The Jacobian coordinates

182

A.7. FULL POWER, ENERGY AND TIMING RESULTS

start off quicker with more energy efficiency than the Projective coordinates, but the latter makes

better use of parallelisation to overtake the former in timing, albeit at a greater cost in energy.

Table A.2 gives the timing, power and energy results. The Double-and-Always-Add, while being

the slowest at 1M performs quite well for parallelisation and the speedup performance is quite

acceptable at 4M. There is very little difference in the Joye and Hutter algorithms until 4M

where the Hutter algorithms perform better. The standard unified twisted Edwards does not have

a very good speed or energy performance in comparison, however, the extended unified algorithm

performs best of the algorithms under examination at 4M.

183

A.7. FULL POWER, ENERGY AND TIMING RESULTS

Table A.2: SPA Secure Power and Timing Results

Power Meter Oscilliscope

Algorithm No of. Suppl. Suppl. µ Resistor Resistor µ FPGA µ FPGA Calc. Energy

Mult. Current Power Voltage Drop Power Voltage Power Time

mA mW mV mW mV mW mS mJ

Double 1 150.6 150.6 139.2 19.4 860.8 119.8 42.3 5.1

and 2 157.3 157.3 144.8 21.0 855.2 123.8 22.0 2.7

Always 3 163.9 163.9 152.2 23.2 847.8 129.0 15.8 2.0

Add 4 169.1 169.1 156.7 24.6 843.3 132.1 14.2 1.9

Montgomery 1 148.9 148.9 138.4 19.2 861.6 119.2 26.6 3.2

Ladder 2 158.1 158.1 146.2 21.4 853.8 124.8 15.6 2.0

with Co-Z 3 163.5 163.5 152.2 23.2 847.8 129.1 10.9 1.4

Addition 4 168.6 168.6 155.7 24.2 844.3 131.5 10.9 1.4

Joye’s 1 150.1 150.1 138.9 19.3 861.1 119.6 26.7 3.2

Double-Add 2 157.3 157.3 144.8 21.0 855.2 123.9 15.7 1.9

with Co-Z 3 164.2 164.2 153.2 23.5 846.8 129.7 11.0 1.4

Addition I 4 169.2 169.2 156.4 24.5 843.6 131.9 11.0 1.4

Joye’s 1 151.3 151.3 139.2 19.4 860.8 119.8 26.8 3.2

Double-Add 2 157.7 157.7 144.6 20.9 855.4 123.7 15.8 2.0

with Co-Z 3 163.9 163.9 152.7 23.3 847.3 129.4 12.7 1.6

Addition II 4 169.3 169.3 156.3 24.4 843.7 131.9 11.1 1.5

Montgomery 1 147.4 147.4 137.8 19.0 862.2 118.8 28.1 3.3

Ladder 2 155.1 155.1 144.5 20.9 855.5 123.6 15.5 1.9

(X,Z) 3 162.3 162.3 150.2 22.6 849.8 127.7 10.8 1.4

(Alg.40&45) 4 169.1 169.1 156.5 24.5 843.5 132.0 9.1 1.2

Montgomery 1 147.3 147.3 138.0 19.0 862.0 119.0 26.5 3.2

Ladder 2 155.3 155.3 144.6 20.9 855.4 123.7 13.9 1.7

(X,Z) 3 162.3 162.3 151.7 23.0 848.3 128.7 10.8 1.4

(Alg.41&45) 4 169.0 169.0 156.4 24.5 843.6 132.0 9.1 1.2

Montgomery 1 147.5 147.5 138.1 19.0 861.9 119.0 24.9 3.0

Ladder 2 155.6 155.6 145.2 20.9 854.8 124.1 13.9 1.7

(X,Z) 3 163.1 163.1 152.3 23.0 847.7 129.1 9.1 1.2

(Alg.42&46) 4 169.2 169.2 156.5 24.5 843.5 132.0 9.1 1.2

Montgomery 1 148.7 148.7 138.6 19.2 861.4 119.4 24.1 2.9

Ladder 2 156.0 156.0 145.6 21.2 854.4 124.4 13.0 1.6

(X,Y) 3 167.4 167.4 156.1 24.4 843.9 131.7 9.9 1.3

4 169.8 169.8 156.8 24.6 843.2 132.2 8.3 1.1

Signed 1 147.3 147.3 138.1 19.1 861.9 119.0 23.6 2.8

Digit 2 155.8 155.8 145.3 21.1 854.7 124.2 14.2 1.8

3 164.6 164.6 153.4 23.5 846.6 129.9 11.0 1.4

4 170.2 170.2 156.8 24.6 843.2 132.2 9.5 1.3

Twisted 1 148.8 148.8 139.0 19.3 861.0 119.7 33.8 4.1

Edwards 2 154.7 154.7 144.0 20.7 856.0 123.3 22.2 2.7

Unified 3 165.1 165.1 154.5 23.9 845.5 130.6 17.5 2.3

4 168.5 168.5 156.5 24.5 843.5 156.6 15.2 2.0

Extended 1 148.7 148.7 138.7 19.2 861.3 119.5 26.8 3.2

Twisted 2 154.5 154.5 144.5 20.9 855.5 123.6 15.1 1.9

Edwards 3 165.3 165.3 154.8 24.0 845.2 130.8 10.5 1.4

Unified 4 169.1 169.1 156.4 24.5 843.6 131.9 8.1 1.1

184

B
Appendix - Hash Functions

B.1 Round Two Hash Function Implementation Results

The area results for the implemented hash functions on the Xilinx Virtex-5 are presented in Ta-

ble B.1. This table should be used as an addendum to Table 4.8 The -w designation defines the

results inclusive of the wrapper, while−nw gives the hash function as a stand alone entity.

185

B.1. ROUND TWO HASH FUNCTION IMPLEMENTATION RESULTS

Table B.1: Full Hash Round Two Area & Frequency Results

Hash Area-w Max.Freq-w Area-nw Max.Freq-nw

Design (slices) (MHz) (slices) (MHz)

SHA-2-256 1019 125.06 656 125.125

SHA-2-512 1771 100.04 1213 110.09

BLAKE-32 1653 91.34 1118 118.06

BLAKE-64 2888 71.04 1718 90.90

BMW-256∗ 5584 14.30 4997 14.01

BMW-512∗ 9902 8.98 9810 10

Cubehash 1025 166.66 695 166.83

ECHO-256∗ 8798 161.21 7372 198.92

ECHO-512∗ 9130 166.66 8633 166.69

Fugue-256 2046 200 1689 200.04

Fugue-384 2622 200.08 2380 200.08

Fugue-512 3137 195.81 2596 200.16

Grøstl-256∗ 2579 78.06 2391 101.31

Grøstl-512∗ 4525 113.12 4845 123.39

Hamsi-256 1664 67.19 1518 72.41

Hamsi-512 7364 14.93 6229 16.51

JH 1763 144.11 1291 250.12

Keccak-224∗ 1971 195.73 1117 189

Keccak-256∗ 1971 195.73 1117 189

Keccak-384∗ 1971 195.73 1117 189

Keccak-512 1971 195.73 1117 189

Luffa-256∗ 2796 166.66 2221 166.66

Luffa-384∗ 4233 166.75 3740 166.75

Luffa-512∗ 4593 166.66 3700 166.75

Shabal 2512 143.47 1583 148.03

SHAvite3-256 3776 82.27 3125 109.17

SHAvite3-512 11443 63.66 9775 59.4

SIMD-256 24536 107.2 22704 107.2

SIMD-512 44673 107.2 43729 107.2

Skein-512 3027 83.57 1938 83.65

186

B.2. ROUND TWO HASH FUNCTION RESULTS

B.2 Round Two Hash Function Results

Here follows the additional Round two hash function results in graphical form as presented in

Section 4.6. the results for a 32-bit bus with padding in hardware are presented first, followed

by the same 32-bit bus with the padding in software. Finally an ideal bus, i.e. equal to the input

size required is presented. The performance of the hash functions in each of the scenarios for

throughput and throughput-area, compared to SHA-2 is used as a metric to determine best design.

Keccak-256

Keccak-224

ECHO

Luffa

Cubehash

Groestl

Skein-512

JH

Shabal

SIMD

SHAvite3

BLAKE-32

SHA-2

Fugue

BMW

Hamsi

0 1000 2000 3000 4000 5000 6000

32-bit Input-Output Bus

Padding in Hardware

Throughput (Mbps)

2
2

4
/2

5
6

 H
a

s
h

 D
e

s
ig

n
 L

o
n

g
 M

e
s
s
a

g
e

(a) Throughput

Keccak-256

Keccak-224

Cubehash

Luffa

JH

Groestl

SHA-2

BLAKE-32

Skein-512

Shabal

ECHO

Fugue

SHAvite3

Hamsi

BMW

SIMD

0.0 0.5 1.0 1.5 2.0 2.5 3.0

32-bit Input-Output Bus

Padding in Hardware

Throughput/Area (Mbps/slice)

2
2

4
/2

5
6

 H
a

s
h

 D
e

s
ig

n
 L

o
n

g
 M

e
s
s
a

g
e

(b) Throughput-Area

Figure B.1: 256-bit Long 32-bit Bus Padding Hardware

Keccak-256

Keccak-224

ECHO

Luffa

Groestl

JH

SIMD

BLAKE-32

SHAvite3

SHA-2

Skein-512

BMW

Shabal

Cubehash

Hamsi

Fugue

0 1000 2000 3000 4000 5000 6000

32-bit Input-Output Bus

Padding in Hardware

Throughput (Mbps)

2
2

4
/2

5
6

 H
a

s
h

 D
e

s
ig

n
 S

h
o

rt
 M

e
s
s
a

g
e

(a) Throughput

Keccak-256

Keccak-224

JH

Groestl

SHA-2

Luffa

BLAKE-32

ECHO

Skein-512

SHAvite3

Cubehash

Shabal

BMW

SIMD

Hamsi

Fugue

0.0 0.5 1.0 1.5 2.0 2.5 3.0

32-bit Input-Output Bus

Padding in Hardware

Throughput/Area (Mbps/slice)

2
2

4
/2

5
6

 H
a

s
h

 D
e

s
ig

n
 S

h
o

rt
 M

e
s
s
a

g
e

(b) Throughput-Area

Figure B.2: 256-bit Short 32-bit Bus Padding Hardware

187

B.2. ROUND TWO HASH FUNCTION RESULTS

ECHO

Luffa-512

Luffa-384

Keccak-512

Groestl

Keccak-384

SIMD

Cubehash

Skein-512

JH

Shabal

BLAKE-64

SHA-2

SHAvite3

Fugue-384

Fugue-512

BMW

Hamsi

0 2000 4000 6000 8000

32-bit Input-Output Bus

Padding in Hardware

Throughput (Mbps)

3
8

4
/5

1
2

 H
a

s
h

 D
e

s
ig

n
 L

o
n

g
 M

e
s
s
a

g
e

(a) Throughput

Cubehash

Keccak-512

Keccak-384

Luffa-384

Luffa-512

JH

ECHO

Groestl

SHA-2

Skein-512

Shabal

BLAKE-64

Fugue-384

Fugue-512

SHAvite3

SIMD

BMW

Hamsi

0 1 2 3 4

32-bit Input-Output Bus

Padding in Hardware

Throughput/Area (Mbps/slice)

3
8

4
/5

1
2

 H
a

s
h

 D
e

s
ig

n
 L

o
n

g
 M

e
s
s
a

g
e

(b) Throughput-Area

Figure B.3: 512-bit Long 32-bit Bus Padding Hardware

ECHO

Keccak-512

Groestl

Keccak-384

SIMD

JH

Luffa-384

Luffa-512

BLAKE-64

SHA-2

Skein-512

SHAvite3

Shabal

BMW

Cubehash

Fugue-384

Fugue-512

Hamsi

0 1000 2000 3000 4000 5000 6000

32-bit Input-Output Bus

Padding in Hardware

Throughput (Mbps)

3
8

4
/5

1
2

 H
a

s
h

 D
e

s
ig

n
 S

h
o

rt
 M

e
s
s
a

g
e

(a) Throughput

Keccak-512

Keccak-384

JH

ECHO

Groestl

SHA-2

Luffa-512

Skein-512

BLAKE-64

Luffa-384

Cubehash

Shabal

SHAvite3

SIMD

BMW

Fugue-384

Fugue-512

Hamsi

0 1 2

32-bit Input-Output Bus

Padding in Hardware

Throughput/Area (Mbps/slice)

3
8

4
/5

1
2

 H
a

s
h

 D
e

s
ig

n
 S

h
o

rt
 M

e
s
s
a

g
e

(b) Throughput-Area

Figure B.4: 512-bit Short 32-bit Bus Padding Hardware

188

B.2. ROUND TWO HASH FUNCTION RESULTS

ECHO-256

Keccak-224

Keccak-256

Luffa-256

JH

Cubehash

Groestl-256

Skein-512

SHAvite3-256

SIMD-256

Shabal

BLAKE-32

SHA-2-256

Fugue-256

BMW-256

Hamsi-256

0 1000 2000 3000 4000 5000 6000

32-bit Input-Output Bus

Padding in Software

Throughput (Mbps)

2
2

4
/2

5
6

 H
a

s
h

 D
e

s
ig

n
 L

o
n

g
 M

e
s
s
a

g
e

(a) Throughput

Keccak-224

Keccak-256

Cubehash

Luffa-256

JH

Skein-512

Groestl-256

SHA-2-256

BLAKE-32

ECHO-256

Shabal

Fugue-256

SHAvite3-256

Hamsi-256

BMW-256

SIMD-256

0.0 0.5 1.0 1.5 2.0 2.5 3.0

32-bit Input-Output Bus

Padding in Software

Throughput/Area (Mbps/slice)

2
2

4
/2

5
6

 H
a

s
h

 D
e

s
ig

n
 L

o
n

g
 M

e
s
s
a

g
e

(b) Throughput-Area

Figure B.5: 256-bit Long 32-bit Bus Padding Software

ECHO-256

Keccak-224

Keccak-256

JH

Groestl-256

Luffa-256

BLAKE-32

SHAvite3-256

SIMD-256

SHA-2-256

Skein-512

BMW-256

Shabal

Cubehash

Hamsi-256

Fugue-256

0 1000 2000 3000 4000 5000 6000

32-bit Input-Output Bus

Padding in Software

Throughput (Mbps)

2
2

4
/2

5
6

 H
a

s
h

 D
e

s
ig

n
 S

h
o

rt
 M

e
s
s
a

g
e

(a) Throughput

Keccak-224

Keccak-256

JH

Groestl-256

SHA-2-256

Luffa-256

BLAKE-32

ECHO-256

Skein-512

SHAvite3-256

Cubehash

Shabal

BMW-256

SIMD-256

Hamsi-256

Fugue-256

0.0 0.5 1.0 1.5 2.0 2.5 3.0

32-bit Input-Output Bus

Padding in Software

Throughput/Area (Mbps/slice)

2
2

4
/2

5
6

 H
a

s
h

 D
e

s
ig

n
 S

h
o

rt
 M

e
s
s
a

g
e

(b) Throughput-Area

Figure B.6: 256-bit Short 32-bit Bus Padding Software

189

B.2. ROUND TWO HASH FUNCTION RESULTS

ECHO-512

Luffa-384

Luffa-512

Keccak-512

Groestl-512

JH

SIMD-512

Keccak-384

Cubehash

Skein-512

BLAKE-64

Shabal

SHA-2-512

SHAvite3-512

Fugue-384

Fugue-512

BMW-512

Hamsi-512

0 1000 2000 3000 4000 5000 6000 7000 8000

32-bit Input-Output Bus

Padding in Software

Throughput (Mbps)

3
8

4
/5

1
2

 H
a

s
h

 D
e

s
ig

n
 L

o
n

g
 M

e
s
s
a

g
e

(a) Throughput

Cubehash

Keccak-384

Keccak-512

JH

Luffa-512

Luffa-384

Skein-512

ECHO-512

Groestl-512

SHA-2-512

Shabal

BLAKE-64

Fugue-384

Fugue-512

SHAvite3-512

SIMD-512

BMW-512

Hamsi-512

0.0 0.5 1.0 1.5 2.0 2.5

32-bit Input-Output Bus

Padding in Software

Throughput/Area (Mbps/slice)

3
8

4
/5

1
2

 H
a

s
h

 D
e

s
ig

n
 L

o
n

g
 M

e
s
s
a

g
e

(b) Throughput-Area

Figure B.7: 512-bit Long 32-bit Bus Padding Software

ECHO-512

Keccak-512

Groestl-512

JH

Keccak-384

SIMD-512

Luffa-384

Luffa-512

BLAKE-64

SHA-2-512

Skein-512

SHAvite3-512

Shabal

BMW-512

Cubehash

Fugue-384

Fugue-512

Hamsi-512

0 1000 2000 3000 4000 5000 6000 7000 8000

32-bit Input-Output Bus

Padding in Software

Throughput (Mbps)

3
8

4
/5

1
2

 H
a

s
h

 D
e

s
ig

n
 S

h
o

rt
 M

e
s
s
a

g
e

(a) Throughput

Keccak-512

JH

Keccak-384

ECHO-512

Groestl-512

SHA-2-512

Luffa-384

Luffa-512

BLAKE-64

Skein-512

Cubehash

Shabal

SHAvite3-512

SIMD-512

BMW-512

Fugue-384

Fugue-512

Hamsi-512

0.0 0.5 1.0 1.5 2.0

32-bit Input-Output Bus

Padding in Software

Throughput/Area (Mbps/slice)

3
8

4
/5

1
2

 H
a

s
h

 D
e

s
ig

n
 S

h
o

rt
 M

e
s
s
a

g
e

(b) Throughput-Area

Figure B.8: 512-bit Short 32-bit Bus Padding Software

190

B.2. ROUND TWO HASH FUNCTION RESULTS

ECHO-256

Keccak-224

Keccak-256

Luffa-256

Groestl-256

JH

Cubehash

Skein-512

BMW-256

SHAvite3-256

SIMD-256

Shabal

BLAKE-32

SHA-2-256

Fugue-256

Hamsi-256

0 5000 10000 15000 20000 25000 30000 35000 40000

Ideal Input-Output Bus

Padding in Software

Throughput (Mbps)

2
2

4
/2

5
6

 H
a

s
h

 D
e

s
ig

n
 L

o
n

g
 M

e
s
s
a

g
e

(a) Throughput

Keccak-224

ECHO-256

Keccak-256

Cubehash

Groestl-256

JH

Luffa-256

Skein-512

SHA-2-256

BLAKE-32

Shabal

Fugue-256

SHAvite3-256

BMW-256

Hamsi-256

SIMD-256

0 1 2 3 4

Ideal Input-Output Bus

Padding in Software

Throughput/Area (Mbps/slice)

2
2

4
/2

5
6

 H
a

s
h

 D
e

s
ig

n
 L

o
n

g
 M

e
s
s
a

g
e

(b) Throughput-Area

Figure B.9: 256-bit Long Ideal-Bus Padding Software

ECHO-256

Keccak-224

Keccak-256

Groestl-256

JH

Luffa-256

BLAKE-32

SHAvite3-256

SIMD-256

BMW-256

SHA-2-256

Skein-512

Shabal

Cubehash

Hamsi-256

Fugue-256

0 5000 10000 15000 20000 25000 30000 35000

Ideal Input-Output Bus

Padding in Software

Throughput (Mbps)

2
2

4
/2

5
6

 H
a

s
h

 D
e

s
ig

n
 S

h
o

rt
 M

e
s
s
a

g
e

(a) Throughput

Keccak-224

Keccak-256

ECHO-256

Groestl-256

JH

SHA-2-256

Luffa-256

BLAKE-32

Skein-512

SHAvite3-256

Cubehash

BMW-256

Shabal

SIMD-256

Hamsi-256

Fugue-256

0 1 2 3 4

Ideal Input-Output Bus

Padding in Software

Throughput/Area (Mbps/slice)

2
2

4
/2

5
6

 H
a

s
h

 D
e

s
ig

n
 S

h
o

rt
 M

e
s
s
a

g
e

(b) Throughput-Area

Figure B.10: 256-bit Short Ideal-Bus Padding Software

191

B.2. ROUND TWO HASH FUNCTION RESULTS

ECHO-512

Groestl-512

Keccak-384

Luffa-384

Luffa-512

Keccak-512

JH

SIMD-512

BMW-512

Cubehash

Skein-512

BLAKE-64

Shabal

SHA-2-512

SHAvite3-512

Fugue-384

Fugue-512

Hamsi-512

0 5000 10000 15000 20000 25000

Ideal Input-Output Bus

Padding in Software

Throughput (Mbps)

3
8

4
/5

1
2

 H
a

s
h

 D
e

s
ig

n
 L

o
n

g
 M

e
s
s
a

g
e

(a) Throughput

Keccak-384

ECHO-512

Cubehash

Keccak-512

Groestl-512

JH

Luffa-384

Luffa-512

Skein-512

SHA-2-512

Shabal

BLAKE-64

BMW-512

Fugue-384

Fugue-512

SHAvite3-512

SIMD-512

Hamsi-512

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Ideal Input-Output Bus

Padding in Software

Throughput/Area (Mbps/slice)

3
8

4
/5

1
2

 H
a

s
h

 D
e

s
ig

n
 L

o
n

g
 M

e
s
s
a

g
e

(b) Throughput-Area

Figure B.11: 512-bit Long Ideal Bus Padding Software

Groestl-512

ECHO-512

Keccak-384

Keccak-512

JH

SIMD-512

Luffa-384

Luffa-512

BLAKE-64

BMW-512

SHA-2-512

Skein-512

SHAvite3-512

Shabal

Cubehash

Fugue-384

Fugue-512

Hamsi-512

0 5000 10000

Ideal Input-Output Bus

Padding in Software

Throughput (Mbps)

3
8

4
/5

1
2

 H
a

s
h

 D
e

s
ig

n
 S

h
o

rt
 M

e
s
s
a

g
e

(a) Throughput

ECHO-512

Keccak-512

Groestl-512

JH

Keccak-384

SHA-2-512

BLAKE-64

Skein-512

Luffa-384

Luffa-512

Cubehash

Shabal

BMW-512

SHAvite3-512

SIMD-512

Fugue-384

Fugue-512

Hamsi-512

0.0 0.5 1.0 1.5 2.0 2.5

Ideal Input-Output Bus

Padding in Software

Throughput/Area (Mbps/slice)

3
8

4
/5

1
2

 H
a

s
h

 D
e

s
ig

n
 S

h
o

rt
 M

e
s
s
a

g
e

(b) Throughput-Area

Figure B.12: 512-bit Short Ideal Bus Padding Software

192

B.3. ROUND THREE FPGA POWER AND TIMING RESULTS

B.3 Round Three FPGA Power and Timing Results

Here the full FPGA Power and Timing Results for the round three SHA-3 designs are presented

in Table B.2. This table is meant as an addendum to Table 4.10

Table B.2: Full FPGA Power and Timing Results for SHA-3 at 24MHz

Power Meter Oscilliscope

Algorithm Supplied Supplied Mean Resistor Resistor Mean FPGA Mean FPGA Iteration Energy

Current Power Voltage Drop Power Voltage Power Time

224/256 mA mW mV mW mV mW µS µJ

Blake S 169.3 169.4 166.1 27.6 833.9 138.5 4.34 0.601

Blake L 151.4 151.5 141.4 20.0 858.6 121.4 92.25 11.20

Grøstl S 263.6 263.8 284.4 80.9 715.6 203.5 2.80 0.570

Grøstl L 319.9 321.0 302.0 91.2 698.0 210.8 33.78 7.11

JH S 157.7 157.7 150.9 22.8 849.1 128.2 6.78 0.870

JH L 157.4 157.3 146.7 21.5 853.3 125.2 77.0 9.64

Keccak S 157.9 158.0 151.9 23.1 848.1 128.8 4.32 0.557

Keccak L 132.7 132.8 122.7 15.1 877.3 107.7 42.92 4.62

Skein S 226.1 226.2 239.3 57.3 760.7 182.0 3.93 0.715

Skein L 164.0 164.1 154.2 23.8 845.8 130.4 59.02 7.57

384/512

Blake S 204.5 204.6 203.1 41.3 796.9 161.9 65 1.057

Blake L 224.6 224.8 214.3 45.9 785.7 168.4 70.56 11.88

Grøstl S 440.3 440.0 525.3 27.59 474.7 229.3 4.50 1.008

Grøstl L 440.5 440.5 530.5 28.14 469.5 249.1 35.05 8.725

JH S 158.6 158.7 151.6 23.0 848.4 128.6 7.10 0.913

JH L 159.5 159.6 150.2 22.6 849.8 127.7 77.50 9.89

Keccak S 159.7 159.8 156.0 24.3 844.0 131.7 3.29 0.433

Keccak L 168.5 168.6 160.3 25.7 839.7 134.6 54.76 7.37

Skein S 239.6 239.7 253.8 64.4 746.2 189.4 4.20 0.806

Skein L 207.1 207.2 198.4 39.3 801.6 159.0 59.44 9.45

193

Bibliography

[1] A. Poschmann, “Lightweight cryptography cryptographic engineering for a pervasive

world,” Ph.D. dissertation, Faculty of Electrical Engineering and Information Technology

Ruhr-University Bochum, Germany, 2009.

[2] G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, vol. 38,

no. 8, pp. 114–117, April 1965.

[3] D. J. Bernstein and T. Lange, “Faster addition and doubling on elliptic curves,” in Advances

in Cryptology - ASIACRYPT ’07, vol. 4833 of Lecture Notes in Computer Science (LNCS).

Springer-Verlag, 2007, pp. 29–50.

[4] P. L. Montgomery, “Speeding the Pollard and Elliptic Curve Methods of Factorization,”

Mathematics of Computation, vol. 48, no. 177, pp. 243–264, 1987.

[5] M. Joye, “Highly Regular Right-to-Left Algorithms for Scalar Multiplication,” in Cryp-

tographic Hardware and Embedded Systems - CHES ’07, vol. 4727 of Lecture Notes in

Computer Science (LNCS). Springer-Verlag, 2007, pp. 135–147.

[6] F. Chabaud and A. Joux, “Differential Collisions in SHA-0,” in Advances in Cryptology -

CRYPTO ’98, vol. 1462 of Lecture Notes in Computer Science (LNCS). Springer-Verlag,

1998, pp. 56–71.

194

BIBLIOGRAPHY

[7] X. Wang, Y. L. Yin, and H. Yu, “Finding Collisions in the Full SHA-1,” in Advances

in Cryptology - CRYPTO ’05, vol. 3621 of Lecture Notes in Computer Science (LNCS).

Springer-Verlag, 2005, pp. 17–36.

[8] C. D. Canniere and C. Rechberger, “Finding SHA-1 Characteristics: General Results and

Applications,” in Advances in Cryptology ASIACRYPT ’06, vol. 4284 of Lecture Notes in

Computer Science (LNCS). Springer-Verlag, 2006, pp. 1–20.

[9] D. Kahn, The Codebreakers: The Comprehensive History of Secret Communication from

Ancient Times to the Internet, 2nd ed. Simon & Schuster Inc., 1997.

[10] A. Tacticus, How to Survive Under Siege, 2nd ed., D. Whitehead, Ed. Bristol Classical

Press, 2002.

[11] G. S. Tranquillus, De vita Caesarum - The Lives of the Twelve Caesars, J. C. Rolfe, Ed.

Bill Thayer, 1913.

[12] L. B. Alberti, A Treatise on Ciphers, A. Zaccagnini, Ed. Galimberti, Torino, 1997.

[13] J. A. Reeds, “Solved: The Ciphers in Book III of Trithemius’s Steganographia,” Cryptolo-

gia, vol. 22, pp. 291–319, 1998.

[14] S. Singh, The Code Book: The Evolution of Secrecy from Mary, Queen of Scots, to Quantum

Cryptography, 1st ed. New York, NY, USA: Doubleday, 1999.

[15] E. Wenger and M. Hutter, “Exploring the Design Space of Prime Field vs. Binary Field

ECC-Hardware Implementations,” in Information Security Technology for Applications -

ISTA ’12, vol. 7161 of Lecture Notes in Computer Science (LNCS). Springer-V, 2012, pp.

256–271.

[16] F. Rodŕiguez-Henŕiquez, N. A. Saqib, A. D. Pérez, and C. K. Koc, Cryptographic

Algorithms on Reconfigurable Hardware, ser. Signals and Communication Technology.

Springer, 2007.

195

BIBLIOGRAPHY

[17] V. S. Miller, “Uses of Elliptic Curves in Cryptography,” in Advances in Cryptology -

CRYPTO ’85, vol. 218 of Lecture Notes in Computer Science (LNCS). Springer-Verlag,

1985, pp. 417–426.

[18] N. Koblitz, “Elliptic Curve Cryptosystems,” in Mathematics of Computation, vol. 48, no.

177, 1987, pp. 203–209.

[19] D. R. Hankerson, A. J. Menezes, and S. A. Vanstone, Guide to Elliptic Curve Cryptography.

Springer, 2004.

[20] R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, and K. N. F. Vercauteren, Hand-

book of Elliptic and Hyperelliptic Curve Cryptography, ser. Discrete Mathematics and Its

Applications, K. H. Rosen, Ed. Chapman & Hall/CRC, 2006.

[21] B. Schneier, Applied Cryptography, 2nd ed. John Wiley & Sons, Inc., 1996.

[22] C. E. Shannon, “Communication Theory of Secrecy Systems,” Bell System Technical Jour-

nal, vol. 28, no. 4, pp. 656–715, 1949.

[23] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography.

CRC Press, Inc., 1996.

[24] W. F. Ehrsam, C. H. W. Meyer, J. L. Smith, and W. L. Tuchman, “Message verification and

transmission error detection by block chaining,” U.S. Patent 4 074 066, April, 1978.

[25] NIST, Data Encryption Standard (DES) (FIPS–46-3), National Institute of Stan-

dards and Technology, 1999.

[26] ——, Advanced Encryption Standard (AES) (FIPS–197), National Institute of Stan-

dards and Technology, 2001.

[27] ——, The Keyed-Hash Message Authentication Code (HMAC)(FIPS PUB–198-1), Na-

tional Institute of Standards and Technology, 2008.

196

BIBLIOGRAPHY

[28] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on

Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[29] J. H. Ellis, “The History of Non-Secret Encryption,” Cryptologia, vol. 23, no. 3, pp. 267–

273, 1999.

[30] R. Rivest, A. Shamir, and L. M. Adleman, “Method for Obtaining Digital Signatures and

Public-Key Cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–126,

1978.

[31] J. Pollard, “Monte Carlo Methods for Index Computation mod p,” Mathematics of Compu-

tation, vol. 32, pp. 918–924, 1978.

[32] S. Pohlig and M. E. Hellman, “An improved algorithm for computing logarithms over GF(p)

and its cryptographic significance,” IEEE Transactions on Information Theory, vol. 24, pp.

106–110, 1978.

[33] NIST, Digital Signature Standard (DSS) (FIPS–186), National Institute of Stan-

dards and Technology, 1994.

[34] D. Johnson, A. Menezes, and S. A. Vanstone, “The Elliptic Curve Digital Signature Algo-

rithm (ECDSA),” International Journal of Information Security, vol. 1, no. 1, pp. 36–63,

2001.

[35] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme secure against

adaptive chosen-message attacks,” Siam Journal on Computing, vol. 17, no. 2, pp. 281–

308, April 1988.

[36] M. O. Rabin, “Digitalized signatures and public-key functions as intractable as factoriza-

tion,” Massachusetts Institute of Technology, Cambridge, MA, USA, Tech. Rep., 1979.

[37] T. ElGamal, “A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Log-

arithms,” IEEE Transactions on Information Theory, vol. 31, no. 4, pp. 469–472, 1985.

197

BIBLIOGRAPHY

[38] ANSI, Public Key Cryptography for the Financial Services Industry, The Elliptic Curve

Digital Signature Algorithm (ECDSA) (ANSI X9.62:2005), American National Stan-

dards Institute, 2005.

[39] IEEE, Standard Specifications For Public-Key Cryptography (IEEE 1363-2000), Insti-

tute of Electrical and Electronics Engineers, 1999.

[40] ISO/IEC, Information Technology – Security Techniques – Cryptographic Techniques based

on Elliptic Curves (15946) – Part 5: Elliptic Curve Generation, 5th ed., International Or-

ganization for Standardization and International Electrotechnical Commission, 2009.

[41] NIST, Recommendation for Key Management-Part 1(Special Publication 800-57), 3rd ed.,

National Institute of Standards and Technology, 2007.

[42] ECRYPT, ECRYPT II Yearly Report on Algorithms and Keysizes (ICT-2007-216676),

1st ed., European Network of Excellence in Cryptology II, 2010.

[43] Xilinx, “Support documentation,” http://www.xilinx.com/support/documentation/.

[44] Altera, “Support documentation,” http://www.altera.com/literature/lit-index.html.

[45] B. Baldwin and W. P. Marnane, “An FPGA Technologies Area Examination of the SHA-3

Hash Candidate Implementations,” Cryptology ePrint Archive, Report 2009/603, 2009.

[46] Xilinx, Virtex-5 Family Overview (DS 100 (V5)), February 2009.

[47] ——, Spartan-3 FPGA family: Complete data sheet, 2008.

[48] AIST and RCIS, Sidechannel Attack Standard Evaluation Board (SASEBO)., National In-

stitute of Advanced Industrial Science and Technology , Research Center for Information

Security.

[49] Xilinx, ML505/ML506/ML507 Evaluation ML507 Evaluation Platform (UG347 (v3.1.2)),

May 2011.

198

http://www.xilinx.com/support/documentation/
http://www.altera.com/literature/lit-index.html

BIBLIOGRAPHY

[50] ——, ISE Design Suite UG631 (v 12.3), 2010.

[51] P. J. Ashenden, The Designer’s Guide to VHDL. Morgan Kaufmann Publishers, 1995.

[52] S. Kilts, Advanced FPGA Design, IEEE, Ed. John Wiley & Sons, Inc., 2006.

[53] Xilinx, Embedded Processor Block in Virtex-5 FPGAs Reference Guide (UG200 (v1.8)),

2010.

[54] ——, MicroBlaze Processor Reference Guide: Embedded Development Kit (EDK

12.3)(UG081 (v11.2)), 2010.

[55] ——, EDK Concepts, Tools, and Techniques: A Hands-On Guide to Effective Embedded

System Design (UG683 EDK (v.12.2)), 2010.

[56] ——, Fast Simplex Link (FSL) Bus (DS449 (v2.11b)), 2010.

[57] R. Jesman, F. M. Vallina, and J. Saniie, MicroBlaze Tutorial: Creating a Simple Embed-

ded System and Adding Custom Peripherals Using Xilinx EDK Software Tools, Embedded

Computing and Signal Processing Laboratory - Illinois Institute of Technology, Illinois,

USA.

[58] Ç. K. Koç, T. Acar, and B. S. K. Jr., “Analyzing and Comparing Montgomery Multiplication

Algorithms,” IEEE Micro, vol. 16, no. 3, pp. 26–33, 1996.

[59] P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in Advances in Cryptology

- CRYPTO ’99, M. J. Wiener, Ed., vol. 1666 of Lecture Notes in Computer Science (LNCS).

Springer-Verlag, 1999, pp. 388–397.

[60] E. Brier and M. Joye, “Weierstraß Elliptic Curve and Side-Channel Attacks,” in Public Key

Cryptography - PKC ’02, D. Naccache and P. Paillier, Eds., vol. 2274 of Lecture Notes in

Computer Science (LNCS). Springer-Verlag, 2002, pp. 335–345.

199

BIBLIOGRAPHY

[61] D. Meidanis, K. Georgopoulos, and I. Papaefstathiou, “FPGA power consumption measure-

ments and estimations under different implementation parameters,” in Field-Programmable

Technology - FPT ’11. IEEE, 2011, pp. 1–6.

[62] S. Atay, A. Koltuksuz, H. Hisil, and S. Eren, “Computational Cost Analysis of Elliptic

Curve Arithmetic,” in Hybrid Information Technology - ICHIT ’06., November 2006, pp.

578–582.

[63] R. R. Goundar, M. Joye, and A. Miyaji, “Co-Z addition formulae and Binary Ladders on

Elliptic Curves,” in Cryptographic Hardware and Embedded Systems - CHES ’10, vol. 6225

of Lecture Notes in Computer Science (LNCS). Springer-Verlag, 2010, pp. 65–79.

[64] M. Hutter, M. Joye, and Y. Sierra, “Memory-Constrained Implementations of Elliptic

Curve Cryptography in Co-Z Coordinate Representation,” in Progress in Cryptology -

AFRICACRYPT ’11, vol. 6737 of Lecture Notes in Computer Science (LNCS). Springer-

Verlag, 2011, pp. 170–187.

[65] H. Wu, “Bit-parallel finite field multiplier and squarer using polynomial basis,” IEEE Trans-

actions on Computers, vol. 51, pp. 750–758, July 2002.

[66] D. J. Bernstein, “Explicit-formulas database,” http://hyperelliptic.org/EFD.

[67] M. Rivain, “Fast and Regular Algorithms for Scalar Multiplication over Elliptic Curves,”

Cryptology ePrint Archive, Report 2011/338, 2011.

[68] C. Giraud and V. Verneuil, “Atomicity Improvement for Elliptic Curve Scalar Multiplica-

tion,” Computing Research Repository, vol. abs/1002.4, pp. 80–101, 2010.

[69] H. M. Edwards, “A normal form for elliptic curves,” Bulletin of the American Mathematical

Society, vol. 44, no. 3, pp. 393–422, 2007.

200

http://hyperelliptic.org/EFD

BIBLIOGRAPHY

[70] D. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters, “Twisted Edwards curves,”

in Progress in Cryptology - AFRICACRYPT ’08, vol. 5023 of Lecture Notes in Computer

Science (LNCS). Springer-Verlag, 2008, pp. 389–405.

[71] NIST, Digital Signature Standard (DSS) (FIPS–186-3), National Institute of Stan-

dards and Technology, 2009.

[72] H. Hisil, K. K.-H. Wong, G. Carter, and E. Dawson, “Twisted Edwards Curves Revisited,”

in Advances in Cryptology - ASIACRYPT ’08, vol. 5350 of Lecture Notes in Computer

Science (LNCS). Springer-Verlag, 2008, pp. 326–343.

[73] N. Smart, “The Hessian Form of an Elliptic Curve,” in Cryptographic Hardware and Em-

bedded Systems – CHES ’01, vol. 2162 of Lecture Notes in Computer Science (LNCS).

Springer-Verlag, 2001, pp. 118–125.

[74] M. Joye and J. Quisquater, “Hessian Elliptic Curves and Side-Channel Attacks,” in Cryp-

tographic Hardware and Embedded Systems - CHES ’01, vol. 2162 of Lecture Notes in

Computer Science (LNCS). Springer-Verlag, 2001, pp. 402–410.

[75] A. Byrne, N. Meloni, F. Crowe, W. Marnane, A. Tisserand, and E. Popovici, “SPA resis-

tant Elliptic Curve Cryptosystem using Addition Chains,” International Journal of High

Performance Systems Architecture, vol. 1, no. 2, pp. 133–142, 2007.

[76] P. Montgomery, “Modular multiplication without trial division,” Mathematics of Computa-

tion, vol. 44, pp. 519–521, 1985.

[77] C. D. Walter, “Montgomery Exponentiation Needs no Final Subtractions,” in Electronics

Letters, vol. 35, no. 21, October 1999, pp. 1831–1832.

[78] F. Crowe, A. Daly, and W. Marnane, “Optimised Montgomery Domain Inversion on

FPGA,” in European Conference on Circuit Theory and Design - ECCTD ’05, vol. 1, 2005,

pp. 277–280.

201

BIBLIOGRAPHY

[79] B. S. Kaliski, “The Montgomery Inverse and Its Applications,” IEEE Transactions on Com-

puters, vol. 44, no. 8, pp. 1064–1065, 1995.

[80] A. M. Slla and V. Drabek, “An Efficient List-Based Scheduling Algorithm for High-Level

Synthesis,” in Euromicro Symposium on Digital Systems Design - DSD ’09. IEEE Com-

puter Society, 2002, pp. 316–323.

[81] Certicom, Recommended Elliptic Curve Domain Parameters SEC-2, 1st ed., Standards for

Efficient Cryptography Group (SECG), September 2000.

[82] Xilinx, Virtex-5 Data Sheet: DC and Switching Characteristics, ds202 (v3.6) ed., Novem-

ber 2007.

[83] R. M. Avanzi, “Side Channel Attacks on Implementations of Curve-Based Cryptographic

Primitives,” Cryptology ePrint Archive, Report 2005/017, 2005.

[84] J. S. Coron, “Resistance Against Differential Power Analysis for Elliptic Curve Cryptosys-

tems,” in Cryptographic Hardware and Embedded Systems - CHES ’99, vol. 1717 of Lec-

ture Notes in Computer Science (LNCS). Springer-Verlag, 1999, pp. 292–302.

[85] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The Sorcerer’s Ap-

prentice Guide to Fault Attacks,” Proceedings of the IEEE, vol. 94, no. 2, pp. 370–382,

2006.

[86] C. Aumüller, P. Bier, P. Hofreiter, W. Fischer, and J.-P. Seifert, “Fault attacks on RSA with

CRT: Concrete Results and Practical Countermeasures,” in Cryptographic Hardware and

Embedded Systems - CHES ’02, vol. 2523 of Lecture Notes in Computer Science (LNCS).

Springer-Verlag, 2002, pp. 260–275.

[87] N. Meloni, “New point addition formulæ for ECC applications,” in Workshop on Arithmetic

of Finite Fields - WAIFI ’07, C. Carlet and B. Sunar, Eds., vol. 4547 of Lecture Notes in

Computer Science (LNCS). Springer-Verlag, 2007, pp. 189–201.

202

BIBLIOGRAPHY

[88] R. R. Goundar, M. Joye, and A. Miyaji, “Co-Z addition formulæ and binary ladders on

elliptic curves,” Cryptology ePrint Archive, Report 2010/309, 2010.

[89] R. R. Goundar, M. Joye, A. Miyaji, M. Rivain, and A. Vanelli, “A Scalar multiplication on

Weierstraß elliptic curves from Co-Z arithmetic,” Journal of Cryptographic Engineering,

vol. 1, no. 2, pp. 161–176, 2011.

[90] S. Galbraith, X. Lin, and M. Scott, “A faster way to do ECC,” Workshop on Elliptic Curve

Cryptography - ECC ’08, September 2008.

[91] P. Longa and C. H. Gebotys, “Novel precomputation schemes for elliptic curve cryptosys-

tems,” in Applied Cryptography and Network Security -ACNS ’09, M. Abdalla et al., Eds.,

vol. 5536 of Lecture Notes in Computer Science (LNCS). Springer-Verlag, 2009, pp.

71–88.

[92] P. Longa and A. Miri, “New composite operations and precomputation for elliptic curve

cryptosystems over prime fields,” in Public Key Cryptography - PKC ’08, R. Cramer, Ed.,

vol. 4939 of Lecture Notes in Computer Science (LNCS). Springer-Verlag, 2008, pp.

229–247.

[93] B. Baldwin, R. R. Goundar, M. Hamilton, and W. Marnane, “Co-Z ECC Scalar Multiplica-

tions for Hardware, Software and Hardware-Software Co-Design on Embedded Systems,”

Journal of Cryptographic Engineering, vol. 2, no. 4, pp. 221–240, 2012.

[94] T. Izu, B. Möller, and T. Takagi, “Improved Elliptic Curve Multiplication Methods Resistant

against Side Channel Attacks,” in Progress in Cryptology - INDOCRYPT ’02, A. Menezes

and P. Sarkar, Eds., vol. 2551 of Lecture Notes in Computer Science (LNCS). Springer-

Verlag, 2002, pp. 296–313.

[95] H. Cohen, A. Miyaji, and T. Ono, “Efficient Elliptic Curve Exponentiation Using Mixed

Coordinates,” in Advances in Cryptology - ASIACRYPT ’98, K. Ohta and D. Pei, Eds., vol.

1514 of Lecture Notes in Computer Science (LNCS). Springer-Verlag, 1998, pp. 51–65.

203

BIBLIOGRAPHY

[96] NIST, “National Institute of Standards and Technology. [docket no.: 070911510751201]

Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash

Algorithm (SHA3) Family,” Federal Register, vol. 72, pp. 62 212–62 220, November 2007.

[97] E. Biham and O. Dunkelman, “A Framework for Iterative Hash Functions - HAIFA,” Cryp-

tology ePrint Archive, Report 2007/278, 2007.

[98] R. C. Merkle, “One way hash functions and DES,” in Advances in Cryptology - CRYPTO

’89, G. Brassard, Ed., vol. 435 of Lecture Notes in Computer Science (LNCS). Springer-

Verlag, 1989, pp. 428–446.

[99] I. Damgård, “A Design Principle for Hash Functions,” in Advances in Cryptology -

CRYPTO ’89, G. Brassard, Ed., vol. 435 of Lecture Notes in Computer Science (LNCS).

Springer-Verlag, 1989, pp. 416–427.

[100] NIST, Secure Hash Standard (FIPS–180-4), National Institute of Standards and Technol-

ogy, March 2012.

[101] ——, Secure Hash Standard (FIPS–180-1), National Institute of Standards and Technology,

April 1995.

[102] A. K. Lenstra, “Further Progress in Hashing Cryptanalysis (white paper),”

http://cm.bell-labs.com/who/akl/hash.pdf, February 2005.

[103] K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, and L. Wang, “Preimages for Step-Reduced

SHA-2,” in Advances in Cryptology - ASIACRYPT ’09, vol. 5912 of Lecture Notes in Com-

puter Science (LNCS). Springer-Verlag, 2009, pp. 578–597.

[104] NIST, “National Institute of Standards and Technology. Status Report on the First Round

of the SHA-3 Cryptographic Hash Algorithm Competition,” NIST Interagency Report, vol.

7620, September 2009.

204

http://cm.bell-labs.com/who/akl/hash.pdf

BIBLIOGRAPHY

[105] ——, “National Institute of Standards and Technology. Status Report on the Second Round

of the SHA-3 Cryptographic Hash Algorithm Competition,” NIST Interagency Report, vol.

7764, February 2011.

[106] ——, “Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Competition,”

NIST Interagency Report, vol. 7896, November 2012.

[107] B. Baldwin, A. Byrne, M. Hamilton, N. Hanley, R. P. McEvoy, W. Pan, and W. P. Mar-

nane, “FPGA Implementations of SHA-3 Candidates: CubeHash, Grøstl, LANE, Shabal

and Spectral Hash,” in Euromicro Symposium on Digital Systems Design - DSD ’09. IEEE

Computer Society, 2009, pp. 783–790.

[108] D. J. Bernstein, “CubeHash specification (2.B.1),” Submission to NIST, 2008.

[109] K. Kobayashi, J. Ikegami, S. Matsuo, K. Sakiyama, and K. Ohta, “Evaluation of Hardware

Performance for the SHA-3 candidates using SASEBO-GII,” Cryptology ePrint Archive,

Report 2010/010, 2010.

[110] S. Matsuo, M. Kneževic̀, P. Schaumont, I. Verbauwhede, A. Satoh, K. Sakiyamay, and

K. Ohtay, “How Can We Conduct ”Fair and Consistent” Hardware Evaluation for SHA-3

Candidate?” in The Second SHA-3 Candidate Conference, 2010.

[111] E. Homsirikamol, M. Rogawski, and K. Gaj, “Comparing Hardware Performance of Four-

teen Round Two SHA-3 Candidates Using FPGAs,” Cryptology ePrint Archive, Report

2010/445, 2010.

[112] E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr, A. Gouget, T. Icart,

J.-F. Misarsky, M. Naya-Plasencia, P. Paillier, T. Pornin, J.-R. Reinhard, C. Thuillet, and

M. Videau, “Shabal, a submission to NIST’s cryptographic hash algorithm competition,”

Submission to NIST, 2008.

[113] J. Francq and C. Thuillet, “Unfolding Method for Shabal on Virtex-5 FPGAs: Concrete

Results,” Cryptology ePrint Archive, Report 2010/406, 2010.

205

BIBLIOGRAPHY

[114] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and W. P. Marnane,

“Fpga implementations of the round two sha-3 candidates,” The Second SHA-3 Candidate

Conference, August 2010.

[115] ——, “FPGA Implementations of the Round Two SHA-3 Candidates,” in Field Pro-

grammable Logic and Applications - FPL ’10. IEEE Computer Society, 2010, pp. 400–

407.

[116] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan, “SHA-3 proposal BLAKE,”

Submission to NIST, 2008.

[117] J. Li and R. Karri, “Compact hardware architectures for BLAKE and LAKE hash func-

tions,” in IEEE International Symposium on Circuits and Systems - ISCAS ’10. IEEE

Computer Society, June 2010, pp. 2107–2110.

[118] D. J. Bernstein, “ChaCha, a variant of Salsa20,”

http://cr.yp.to/chacha/chacha-20080120.pdf, 2008.

[119] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M. Schläffer,

and S. S. Thomsen, “Grøstl – a SHA-3 candidate,” Submission to NIST, 2008.

[120] H. Wu, “The hash function JH,” Submission to NIST, 2008.

[121] R. Anderson, E. Biham, and L. Knudsen, “Serpent: A Flexible Block Cipher With Maxi-

mum Assurance,” in The First Advanced Encryption Standard Candidate Conference, 1998.

[122] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “Keccak specifications,” Submission

to NIST, September 2009, version 2.

[123] ——, “On the Indifferentiability of the Sponge Construction,” in Advances in Cryptology

- EUROCRYPT ’08, vol. 4965 of Lecture Notes in Computer Science (LNCS). Springer-

Verlag, 2008, pp. 181–197.

206

http://cr.yp.to/chacha/chacha-20080120.pdf

BIBLIOGRAPHY

[124] ——, “Cryptographic Sponge Functions,” sponge.noekeon.org/, January 2011.

[125] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas, and

J. Walker, “The Skein hash function family,” Submission to NIST, 2009.

[126] M. Liskov, R. L. Rivest, and D. Wagner, “Tweakable Block Ciphers,” in Advances in Cryp-

tology - CRYPTO ’02, vol. 2442 of Lecture Notes in Computer Science (LNCS). Springer-

Verlag, 2002, pp. 31–46.

[127] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and W. P. Marnane,

“A Hardware Wrapper for the SHA-3 Hash Algorithms,” in IET Irish Signals and Systems

Conference - ISSC ’10. Institution of Engineering and Technology - IET, June 2010, pp.

1–6.

[128] K. Gaj, “Hardware Interface of a Secure Hash Algorithm (SHA),”

cryptography.gmu.edu/athena/interfaces/SHA interface.pdf, October 2009.

[129] J.-P. Aumasson, E. Brier, W. Meier, M. Naya-Plasencia, and T. Peyrin, “Inside the Hyper-

cube,” Cryptology ePrint Archive, Report 2008/486, 2008.

[130] N. Ferguson, S. Lucks, and K. A. McKay, “Symmetric States and their Structure: Improved

Analysis of CubeHash,” Cryptology ePrint Archive, Report 2010/273, 2010.

[131] G. Leurent, “Quantum Preimage and Collision Attacks on CubeHash,” Cryptology ePrint

Archive, Report 2010/506, 2010.

[132] ECRYPT. eBACS: SUPERCOP (System for Unified Performance Evaluation Related to

Cryptographic Operations and Primitives). http://bench.cr.yp.to/supercop.html.

[133] C. Wenzel-Benner and J. Gräf, “XBX: eXternal benchmarking eXtension for the SUPER-

COP crypto benchmarking framework,” in Cryptographic Hardware and Embedded Sys-

tems - CHES ’10, vol. 6225 of Lecture Notes in Computer Science (LNCS). Springer-

Verlag, 2010, pp. 294–305.

207

sponge.noekeon.org/
cryptography.gmu.edu/athena/interfaces/SHA_interface.pdf
http://bench.cr.yp.to/supercop.html

BIBLIOGRAPHY

[134] D. Otte, “AVR Crypto Lib Website,” http://das-labor.org/wiki/AVR-Crypto-Lib/en.

[135] IAIK, “SHA-3 Zoo,” http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo.

[136] K. Gaj, J.-P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, and B. Y. Brewster,

“ATHENa - Automated Tool for Hardware EvaluatioN: Toward Fair and Comprehensive

Benchmarking of Cryptographic Hardware Using FPGAs,” in Field Programmable Logic

and Applications - FPL ’10. IEEE Computer Society, 2010, pp. 414–421.

[137] M. Kneževic̀, K. Kobayashiy, J. Ikegamiy, S. Matsuoz, A. Satoh, Ü. Kocobaş, J. Fan,

T. Katashita, T. Sugawarax, K. Sakiyamay, I. Verbauwhede, K. Ohtay, N. Hommax, and

T. Aokix, “Fair and Consistent Hardware Evaluation of Fourteen Round Two SHA-3 Can-

didates,” IEEE Transactions on Very Large Scale Integration Systems - TVLSI, vol. 20, no. 5,

pp. 827–840, May 2011.

[138] X. Guo, S. Huang, L. Nazhandali, and P. Schaumont, “On The Impact of Target Technology

in SHA-3 Hardware Benchmark Rankings,” Cryptology ePrint Archive, Report 2010/536,

2010.

[139] Z. Chen, S. Morozov, and P. Schaumont, “A hardware interface for hashing algorithms,”

Cryptology ePrint Archive, Report 2008/529, 2008.

[140] E. Homsirikamol, M. Rogawski, and K. Gaj, “Comparing Hardware Performance of Round

3 SHA-3 Candidates using Multiple Hardware Architectures in Xilinx and Altera FPGAs,”

ECRYPT II Hash Workshop 2011, May 2011.

[141] K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M. U. Sharif, “Comprehensive

evaluation of high-speed and medium-speed implementations of five sha-3 finalists using

xilinx and altera fpgas,” in The Third SHA-3 Candidate Conference, 2012.

[142] K. Latif, M. M. Rao, A. Aziz, and A. Mahboob, “Efficient hardware implementations and

hardware performance evaluation of sha-3 finalists,” in The Third SHA-3 Candidate Con-

ference, 2012.

208

http://das-labor.org/wiki/AVR-Crypto-Lib/en
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

BIBLIOGRAPHY

[143] B. Jungk, “Evaluation of compact fpga implementations for all sha-3 finalists,” in The Third

SHA-3 Candidate Conference, 2012.

[144] J.-P. Kaps, P. Yalla, K. K. Surapathi, B. Habib, S. Vadlamudi, and S. Gurung, “Lightweight

implementations of sha-3 finalists on fpgas,” in The Third SHA-3 Candidate Conference,

2012.

[145] S. Kerckhof, F. Durvaux, N. Veyrat-Charvillon, F. Regazzoni, G. M. De Dormale, and F.-X.

Standaert, “Compact FPGA Implementations of the Five SHA-3 Finalists,” in Smart Card

Research and Advanced Applications, vol. 7079 of Lecture Notes in Computer Science

(LNCS). Springer, 2011, pp. 217–233.

[146] IETF, IP Encapsulating Security Payload (ESP), rfc 2406 ed., Internet Engineer-

ing Task Force, 1998.

[147] ——, Requirements for Internet Hosts – Communication Layers, rfc 1122 ed., Internet En-

gineering Task Force, 1989.

[148] ——, Requirements for Internet Hosts – Application and Support, rfc 1123 ed., Internet En-

gineering Task Force, 1989.

[149] K. E. B. Hickman, The SSL Protocol version 2.0, internet draft ed., 1994.

[150] A. O. Freier, P. Karlton, and P. Kocher, The SSL Protocol version 3.0, internet draft ed.,

1996.

[151] T. Dierks and C. Allen, The TLS Protocol version 1.0, rfc 2246 ed., January 1999.

[152] IETF, Multipurpose Internet Mail Extensions (MIME). Part One: Format of Internet Mes-

sage Bodies, rfc 2045 ed., Internet Engineering Task Force, 1996.

[153] ——, OpenPGP Message Format, rfc 4880 ed., Internet Engineering Task Force, 2007.

209

BIBLIOGRAPHY

[154] M. Bellare and P. Rogaway, “Entity Authentication and Key Distribution,” in Advances

in Cryptology - Crypto ’93, vol. 773 of Lecture Notes in Computer Science (LNCS).

Springer-Verlag, 1993, pp. 239–249.

[155] S. Blake-Wilson and A. J. Menezes, “Entity Authentication and Authenticated Key Trans-

port Protocols Employing Asymmetric Techniques,” in Security Protocols Workshop -

IWSP ’97, vol. 1361 of Lecture Notes in Computer Science (LNCS). Springer-Verlag,

1997, pp. 137–158.

[156] P. Morrissey, N. P. Smart, and B. Warinschi, “A Modular Security Analysis of the TLS

Handshake Protocol,” in Advances in Cryptology - ASIACRYPT ’08, vol. 5350 of Lecture

Notes in Computer Science (LNCS). Springer-Verlag, 2008, pp. 55–73.

[157] NIST, Entity Authentication Using Public Key Cryptography (FIPS –196), National Insti-

tute of Standards and Technology, 1997.

[158] S. A. Vanstone, “Responses to NISTs Proposal,” in Communications of the ACM,

C. by John Anderson, Ed., no. 35, July 1992, pp. 50–52.

[159] NIST, Suite B Implementers Guide to FIPS 186-3 (ECDSA), National Institute of Stan-

dards and Technology, February 2010.

[160] E. Barker and J. Kelsey, Recommendation for Random Number Generation Using Deter-

ministic Random Bit Generators, special publication 800-90a ed., National Institute of Stan-

dards and Technology, January 2012.

[161] D. Knuth, The Art of Computer Programming, 3rd ed. Addison–Wesley, 2001, vol. 2,

Seminumerical Algorithms.

[162] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Cryptanalytic Attacks on Pseudorandom

Number Generators,” in Fast Software Encryption - FSE ’98, Vaudenay, Serge, Ed., vol.

1372 of Lecture Notes in Computer Science (LNCS). Springer-Verlag, 1998, pp. 168–

188.

210

BIBLIOGRAPHY

[163] C. E. Shannon, “A mathematical theory of communication,” SIGMOBILE Mob. Comput.

Commun. Rev., vol. 5, no. 1, pp. 3–55, January 2001.

[164] D. Davis, R. Ihaka, and P. Fenstermacher, “Cryptographic Randomness from Air Turbu-

lence in Disk Drives,” in Advances in Cryptology - CRYPTO ’94, vol. 839 of Lecture Notes

in Computer Science (LNCS). Springer-Verlag, 1994, pp. 114–120.

[165] D. Eastlake, J. Schiller, and S. Crocker, Randomness Requirements for Security (RFC

4086), IETF Network Working Group, 2005.

[166] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel,

D. Banks, A. Heckert, J. Dray, and S. Vo, A Statistical Test Suite for Random and Pseu-

dorandom Number Generators for Cryptographic Applications, special publication 800-22

revision 1a ed., National Institute of Standards and Technology, April 2010.

[167] N. Ferguson and B. Schneier, Practical Cryptography, C. A. Long, Ed. Wiley, 2003.

[168] S. Halevi and H. Krawczyk, “Strengthening Digital Signatures via Randomized Hashing,”

in Advances in Cryptology CRYPTO ’06, C. Dwork, Ed., vol. 4117 of Lecture Notes in

Computer Science (LNCS). Springer-Verlag, 2006, pp. 41–59.

[169] R. McEvoy, J. Curran, P. Cotter, and C. Murphy, “Fortuna: Cryptographically Secure

Pseudo-Random Number Generation In Software And Hardware,” in Irish Signals and Sys-

tems Conference - ISSC ’06. Institution of Engineering and Technology - IET, June 2006,

pp. 457–462.

[170] J. Golic, “New Methods for Digital Generation and Postprocessing of Random Data,” IEEE

Transactions on Computers, vol. 55, no. 10, pp. 1217–1229, October 2006.

[171] M. Dichtl and J. D. Golić, “High-Speed True Random Number Generation with Logic Gates

Only,” in Cryptographic Hardware and Embedded Systems - CHES ’07, vol. 4727 of Lec-

ture Notes in Computer Science (LNCS). Springer-Verlag, 2007, pp. 45–62.

211

BIBLIOGRAPHY

[172] X. Xin, J. Kaps, and K. Gaj, “A Configurable Ring-Oscillator-Based PUF for Xilinx FP-

GAs,” in Euromicro Conference on Digital System Design DSD ’11. IEEE Computer

Society, August 2011, pp. 651–657.

[173] Ç. K. Koç, Ed., Cryptographic Engineering, ser. Signals & Communication. Springer,

2009.

[174] K. Okeya, H. Kurumatani, and K. Sakurai, “Elliptic Curves with the Montgomery-Form

and Their Cryptographic Applications,” in Public Key Cryptography, vol. 1751 of Lecture

Notes in Computer Science (LNCS). Springer-Verlag, 2000, pp. 238–257.

[175] R. Moloney, G. McGuire, and M. Markowitz, “Elliptic Curves in Montgomery Form with

B=1 and Their Low Order Torsion,” Cryptology ePrint Archive, Report 2009/213, 2009.

[176] ECRYPT. ebats (ecrypt benchmarking of asymmetric systems).

http://bench.cr.yp.to/ebats.html.

[177] A. K. Lenstra and E. R. Verheul, “Selecting Cryptographic Key Sizes,” Journal of Cryptol-

ogy, vol. 14, pp. 255–293, 1999.

[178] M. Drutarovsky and M. Varchola, “Cryptographic System on a Chip based on Actel ARM7

Soft-Core with Embedded True Random Number Generator,” in Workshop on Design and

Diagnostics of Electronic Circuits and Systems - DDECS ’08. IEEE Computer Society,

2008, pp. 1–6.

[179] D. Hankerson, “Implementing Elliptic Curve Cryptography (a narrow survey),” Institute of

Computing UNICAMP Campinas, Brazil, April 2005.

[180] B. Glas, O. Sander, V. Stuckert, K. D. Müller-Glaser, and J. Becker, “Prime field ECDSA

signature processing for reconfigurable embedded systems,” International Journal on Re-

configurable Computing, vol. 5, pp. 1–12, January 2011.

212

http://bench.cr.yp.to/ebats.html

BIBLIOGRAPHY

[181] C. J. McIvor, M. Mcloone, and J. V. McCanny, “Hardware Elliptic Curve Cryptographic

Processor Over GF(p),” IEEE Transactions on Circuits and Systems, vol. 53, no. 9, pp.

1946–1957, 2006.

[182] G. Orlando and C. Paar, “A Scalable GF(p) Elliptic Curve Processor Architecture for Pro-

grammable Hardware,” in Cryptographic Hardware and Embedded Systems -CHES ’01,

vol. 2162 of Lecture Notes in Computer Science (LNCS). Springer-Verlag, 2001, pp.

356–371.

[183] K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede, “Multicore Curve-Based Crypto-

processor with Reconfigurable Modular Arithmetic Logic Units over GF(2n),” IEEE Trans-

actions on Computers, vol. 56, no. 9, pp. 1269–1282, September 2007.

[184] S. B. Örs, L. Batina, and B. Preneel, “Hardware implementation of an Elliptic Curve Pro-

cessor over GF(p),” International Journal of Embedded Systems, vol. 3, no. 4, pp. 433–443,

2003.

[185] J. Vliegen, N. Mentens, J. Genoe, A. Braeken, S. Kubera, A. Touhafi, and I. Verbauwhede,

“A compact FPGA-based architecture for elliptic curve cryptography over prime fields,”

in Application-specific Systems Architectures and Processors - ASAP ’10, July 2010, pp.

313–316.

[186] B. Baldwin, R. Moloney, A. Byrne, G. McGuire, and W. P. Marnane, “A Hardware Analysis

of Twisted Edwards Curves for an Elliptic Curve Cryptosystem,” in Applied Reconfigurable

Computing - ARC ’09, vol. 5453 of Lecture Notes in Computer Science (LNCS). Springer-

Verlag, 2009, pp. 355–361.

[187] D. V. Bailey, B. Baldwin, L. Batina, D. J. Bernstein, G. V. Damme, G. D. Meulenaer, J. Fan,

T. Güneysu, F. Gurkaynak, T. Kleinjung, N. Mentens, C. Paar, F. Regazzoni, P. Schwabe,

and L. Uhsadel, “The Certicom Challenges ECC2-X,” in Workshop on Special Purpose

Hardware for Attacking Cryptographic Systems - SHARCS ’09, September 2009.

213

BIBLIOGRAPHY

[188] B. Baldwin, W. Marnane, and R. Granger, “Reconfigurable Hardware Implementation of

Arithmetic Modulo Minimal Redundancy Cyclotomic Primes for ECC,” in International

Conference on Reconfigurable Computing and FPGAs - ReConFig ’09. IEEE Computer

Society, December 2009, pp. 255–260.

[189] B. Baldwin and W. P. Marnane, “Yet Another SHA-3 Round 3 FPGA Results Paper,” Cryp-

tology ePrint Archive, Report 2012/180, 2012.

[190] B. Möller, “Fractional windows revisited: improved signed-digit representations for effi-

cient exponentiation,” in Information Security and Cryptology - ICISC ’04, vol. 3506 of

Lecture Notes in Computer Science (LNCS). Springer-Verlag, 2004, pp. 137–153.

[191] A. Byrne, N. Meloni, F. Crowe, W. Marnane, and A. T. andE.M. Popovici, “Spa resistant

elliptic curve cryptosystem using addition chains,” International Journal of High Perfor-

mance Systems Architecture, vol. 1, no. 2, pp. 133–142, 2007.

[192] K. Okeya and T. Takagi, “The width-W NAF method provides small memory and fast el-

liptic scalar multiplications secure against side channel attacks,” in Topics in Cryptology -

CT-RSA ’03, vol. 2612 of Lecture Notes in Computer Science (LNCS). Springer-Verlag,

2003, pp. 328–343.

[193] T. S. Messerges, “Using second-order power analysis to attack DPA resistant software,” in

Cryptographic Hardware and Embedded Systems - CHES ’00, Ç. K. Koç and C. Paar, Eds.,

vol. 1965 of Lecture Notes in Computer Science (LNCS). Springer-Verlag, 2000, pp.

71–77.

[194] P. Yu and P. Schaumont, “Secure FPGA circuits using controlled placement and routing,”

in Hardware/Software Codesign and System Synthesis - CODES+ISSS. ACM, 2007, pp.

45–50.

[195] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks — Revealing the Secrets of

Smart Cards. Springer US, 2007.

214

BIBLIOGRAPHY

[196] K. Tiri and I. Verbauwhede, “A Logic Level Design Methodology for a Secure DPA Re-

sistant ASIC or FPGA Implementation,” in Design, automation and test in Europe - DATE

’04, vol. 1. IEEE Computer Society, February 2004, pp. 246–251.

215

	Introduction
	Motivation
	Thesis Aims
	Thesis Outline

	Background
	Introduction
	Introduction to Cryptography
	Mathematical Background
	Groups
	Rings
	Fields
	Finite Fields

	Elliptic Curves
	The Group Law
	Elliptic Curves over Prime Fields

	Cryptographic Primitives & Protocols
	Symmetric-Key Cryptography
	Public-Key Cryptography
	The Integer Factorisation Problem (IFP)
	The Discrete Logarithm problem (DLP)
	The Elliptic Curve Discrete Logarithm problem (ECDLP)
	Digital Signatures
	Cryptographic Key Sizes

	Hardware Overview
	Xilinx FPGA
	Memory and DSP Blocks
	FPGA Design

	Microblaze
	Microblaze Architecture & Implementation
	FSL Bus

	Hardware Architecture
	Additional Hardware

	Hardware Constraints
	Side Channel Attacks
	Area, Speed, Power and Energy

	Performance Metrics
	Conclusions

	Elliptic Curve Cryptography
	Introduction
	Dedicated Doubling and Addition
	Affine Coordinate System
	Projective Coordinate System
	Jacobian Coordinate System
	Twisted Edwards Curves
	Extended Twisted Edwards
	Dedicated Algorithm Overview

	Elliptic Curve Cryptographic Processor
	Control
	Modular Arithmetic
	Modular Multiplication
	Modular Inversion
	Scheduling and Efficiency
	Algorithmic Cost of Field Operations
	Area Results for Dedicated Doubling and Addition

	Measuring the Power Dissipation
	Dedicated Doubling and Addition Power Results
	Area-Time and Area Energy Product

	Power Analysis Attacks
	Dummy Arithmetic Instructions
	Unified Doubling and Addition
	Regular Scalar Multiplication
	Co-Z Arithmetic
	Combined Double-Add Operation
	(X,Y)-only operations

	Algorithmic Cost of SPA Secure Algorithms
	Area and Power Results for SPA Secure Algorithms
	Comparing Dedicated Addition & SPA Secure Algorithms

	Larger Key and Field Sizes
	Conclusions

	Hash Functions
	Introduction
	Background to the SHA-3 Hash Functions
	Implementating SHA-3 Hash Functions
	CubeHash
	Shabal

	SHA-3 Round Two Implementations
	BLAKE
	Grøstl
	JH
	Keccak
	Skein

	Hash Interface
	Communications Protocol
	Padding Protocol

	Round Two Results
	Round Three Analysis
	Round Three Changes
	Comparing Different Round Results
	SHA-3 Power and Energy

	Comparison with Other Work
	Comparison of Round Three Results

	Conclusions

	Cryptographic Processor
	Introduction
	Background to Signature Algorithms
	The Elliptic Curve Digital Signature Algorithm
	ECDSA Domain Parameters

	Implementing ECDSA
	Key Pair Generation
	Signature Generation
	Signature Verification
	ECDSA Implementation Options

	Random Key Generation
	Entropy
	Fortuna
	Random Number Generator Block

	Crypto Processor Using Microblaze
	Hash Block
	Elliptic Curve Processor Block
	Coordinate Conversion

	Implementing ECC in Software and Co-Design
	Dedicated Software Results
	Instruction Set Extensions

	ECDSA Design
	ECDSA Results

	ECDSA Comparison
	Conclusions

	Conclusions
	Contributions of this Thesis
	Future Research Directions

	Appendix - Elliptic Curve Cryptography
	Double-and-Add Algorithms
	Edwards Curves
	Co-Z Algorithms
	Point Doubling Formulæ with Update in Homogeneous Coordinates.
	Full Coordinate Recovery
	Point Doubling and Tripling with Co-Z Update
	Full Power, Energy and Timing Results

	Appendix - Hash Functions
	Round Two Hash Function Implementation Results
	Round Two Hash Function Results
	Round Three FPGA Power and Timing Results

