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Thesis summary 

The leukaemias are a group of diseases with differing aetiologies, 

presentations and treatments. Leukaemia can be divided into acute and 

chronic types and occur in cells of myeloid and lymphoid lineages. Acute 

leukaemias are characterised by the rapid accumulation of immature 

haematopoietic cells usually necessitating urgent treatment. Chronic 

leukaemias are characterised by the excessive build up of relatively 

mature, malignant, white blood cells and typically take months or years to 

progress. Acute myeloid leukaemia (AML) consists of a group of relatively 

well-defined haematopoietic neoplasms involving precursor cells 

committed to the myeloid line of cellular development. It is the most 

common form of acute leukaemia in adults and accounts for approximately 

80% of cases in this group. The treatment of AML has remained largely 

unchanged for the past 30 years with the nucleoside analogue cytarabine 

(ara-C) remaining the backbone of therapy. While some patients are cured 

of the disease, most will relapse. Treatment of elderly patients with AML in 

particular represents a significant challenge as many patients in this group 

have adverse prognostic features, resistant disease, and a poor ability to 

tolerate intensive conventional chemotherapy. As such, there has been an 

enormous effort in recent years to develop novel targeted therapies for 

these patients. 

 Chronic myeloid leukaemia (CML) on the other hand represents a 

tremendous success story in the era of targeted therapy. CML is a 

myeloproliferative neoplasm characterized by the dysregulated production 

of mature granulocytes. CML is associated with the Philadelphia (Ph) 

chromosome t(9;22)(q34;q11) or a related translocation resulting in the 

breakpoint cluster region-Abelson (BCR-ABL) fusion gene. The constitutive 

activity of the BCR-ABL tyrosine kinase is the primary event that drives 

CML pathogenesis and thus, serves as an ideal target for therapy. Indeed, 
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targeted inhibition of BCR-ABL with tyrosine kinase inhibitors (TKI)s has 

changed the natural history of this disease and dramatically improved the 

survivorship of patients diagnosed with CML. However, significant 

challenges in CML therapy remain including the development of drug 

resistance due to BCR-ABL kinase domain mutations, the activation of 

secondary oncogenic signalling cascades in patients with advanced 

disease and disease persistance due to presence of CML stem cells. 

Combining BCR-ABL inhibitors with agents that target other key pathways 

may offer an opportunity to more effectively treat patients that do not 

achieve successful outcomes with TKI monotherapy. 

 In normal cells the cell cycle is a tightly regulated process that 

allows faithful inheritance of the genetic material from mother to daughter 

cells. Several kinase families including cyclin dependent kinases (CDKs), 

polo like kinases (PLKs) and Aurora kinases, tightly control cell cycle 

events. The Aurora family of serine/threonine kinases is essential for 

chromosome alignment, segregation, centrosomal maturation, mitotic 

spindle formation, and cytokinesis during mitosis. Their fundamental role in 

cell cycle regulation and their aberrant expression in a broad range of 

malignancies prompted the development of small molecules that 

selectively inhibit their activity. Recent studies have revealed new insights 

into the cellular effects of Aurora kinase inhibition. Moreover, early phase 

clinical studies have shown that these agents have therapeutic efficacy. 

Section 1.8 outlines the functions of Aurora kinases in normal cell division 

and in malignancy. The chapter focuses on recent preclinical and clinical 

studies that have explored the mechanism of action and clinical effect of 

Aurora inhibitors in cancer treatment. 

 One of the most exciting reports of clinical activity of the Aurora 

kinase inhibitors has been in the setting of refractory CML. Chapter 2 

outlines the evaluation of the efficacy and mechanism of action of alisertib, 

a novel inhibitor of Aurora A kinase, in preclinical models of CML. We 

report that alisertib possessed equipotent activity against Ba/F3 cells and 
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primary CML cells expressing unmutated and mutated forms of BCR-ABL. 

Notably, this agent retained high activity against the T315I and E255K 

BCR-ABL mutations, which confer the greatest degree of resistance to 

standard therapy. Alisertib treatment disrupted cell cycle kinetics, induced 

apoptosis, caused a dose-dependent reduction in the expression of the 

large inhibitor of apoptosis protein Apollon, and produced a morphological 

phenotype consistent with Aurora A kinase inhibition. In contrast to other 

Aurora kinase inhibitors, alisertib did not significantly affect BCR-ABL 

activity. Moreover, inhibition of Aurora A with alisertib significantly 

increased the in vitro and in vivo efficacy of nilotinib. Targeted knockdown 

of Apollon sensitized CML cells to nilotinib-induced apoptosis, indicating 

that this is an important factor underlying alisertib's ability to increase the 

efficacy of nilotinib. Our collective data demonstrate that this combination 

strategy represents a novel therapeutic approach for refractory CML that 

has the potential to suppress the emergence of T315I-mutated CML 

clones.  

 Chapter 3 explores the activity of alisertib in preclinical models of 

AML. We investigate the preclinical efficacy and pharmacodynamics of 

alisertib in AML cell lines, primary AML cells, and mouse models of AML. 

We report that alisertib disrupted cell viability, diminished clonogenic 

survival, induced expression of the forkhead box O3 (FOXO3a) targets p27 

and BCL-2 interacting mediator (BIM), and triggered apoptosis. A link 

between Aurora A expression and sensitivity to ara-C was established, 

suggesting that Aurora A inhibition may be a promising strategy to 

increase the efficacy of ara-C. Accordingly, alisertib significantly 

potentiated the anti-leukaemic activity of ara-C in both AML cell lines and 

primary blasts. Targeted FOXO3a knockdown significantly blunted the pro-

apoptotic effects of the alisertib/ara-C combination, indicating that it is an 

important regulator of sensitivity to these agents. In vivo studies 

demonstrated that alisertib significantly augmented the efficacy of ara-C 

without affecting its pharmacokinetic profile and led to the induction of p27 
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and BIM. Our collective data indicate that targeting Aurora A with alisertib 

represents a novel approach to increase the efficacy of ara-C that warrants 

further investigation. 

 Many mechanisms of resistance to ara-C have been described 

including abnormal expression of transmembrane drug transporters and 

altered intracellular metabolism. Recently, aberrant kinase expression has 

emerged as a significant resistant mechanism to chemotherapy. In chapter 

4 we investigate the role of the proto-oncogene serine/threonine-protein 

(PIM) kinases in resistance to ara-C in AML. We report that the novel small 

molecule PIM kinase inhibitor SGI-1776 disrupted cell viability and induced 

apoptosis in AML. We establish a link between ara-C resistance and PIM 

over-expression. Targeting PIM with SGI-1776 sensitized resistant cells to 

ara-C and significantly increased the efficacy of ara-C therapy in an AML 

mouse xenograft model. Collectively, our data demonstrate that 

antagonizing PIM activity represents a new strategy to increase the 

therapeutic efficacy of ara-C and possibly circumvent drug resistance. 

Further investigations aimed to define the role(s) of PIM kinases in AML 

pathogenesis and evaluate the therapeutic potential of PIM kinase 

inhibition are warranted.  

 Finally, chapter 5 explores how the preclinical work outlined in this 

thesis may be translated into clinical studies that may lead to novel 

therapeutic approaches for patients with refractory myeloid leukaemia. The 

problems with the use of Aurora and PIM kinase inhibitors in humans and 

the potential approaches to circumvent these problems are also discussed.  
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1.1 Cancer  
Cancer is a group of diseases characterized by the uncontrolled growth of 

cells and the spread of these cells from their site of origin to other parts of 

the body. The incidence of cancer is increasing worldwide with over 10 

million new cases diagnosed each year with the number expected to 

increase to 20 million by 2020 (1). Our understanding of the molecular 

aberrations that characterize cancer cells has improved greatly in recent 

years heralding a new era of targeted therapy for cancer.  

 
1.1.1 Myeloid leukaemia 

The leukaemias are a group of diseases with differing aetiologies, 

presentations and treatments. There are four major types of leukaemia: 

acute lymphoblastic leukaemia (ALL), AML, chronic lymphoblastic 

leukaemia (CLL), and CML. Leukaemia is the tenth most common cancer 

in the Western countries with approximately 35,000 new cases diagnosed 

each year in the United States (2).  

 
1.1.1.1 AML 

AML consists of a group of relatively well-defined haematopoietic 

neoplasms involving precursor cells committed to the myeloid line of 

cellular development. It is the most common acute leukaemia in adults and 

accounts for approximately 80 percent of cases in this group (3). In the 

United States and Europe, the incidence has been stable at 3 to 5 cases 

per 100,000 persons (3, 4). It is the second most common haematological 

malignancy. The incidence increases with age with approximately 1.3 and 

12.2 cases per 100,000 persons for those under or over 65 years, 

respectively. The male to female ratio is approximately 5:3. 

 AML is characterized by a clonal proliferation of myeloid precursors 

with a reduced capacity to differentiate into more mature cellular elements. 

As a result, there is an accumulation of leukaemic blasts or immature 

forms in the bone marrow (BM), peripheral blood (PB), and occasionally in 
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other tissues, with a variable reduction in the production of normal red 

blood cells, platelets, and mature granulocytes. The increased production 

of malignant cells along with a reduction in these mature elements results 

in a variety of systemic consequences including anaemia, bleeding, and an 

increased risk of infection.  

 
1.1.1.2 Chronic myeloid leukaemia 

Chronic myeloid leukaemia, (CML, also known as chronic myelocytic or 

chronic granulocytic leukaemia) accounts for approximately 15 to 20 

percent of leukaemias in adults and is characterized by the dysregulated 

production of mature granulocytes, predominantly neutrophils, but also 

eosinophils and basophils (4). CML is associated with the Philadelphia 

(Ph) chromosome t(9;22)(q34;q11) or a related translocation resulting in 

the formation of the BCR-ABL fusion gene. Its encoded protein, BCR-ABL, 

functions as a constitutively active tyrosine kinase that drives disease 

pathogenesis. Over 90% of patients are diagnosed in the chronic phase of 

CML (CML-CP). If these patients are not treated with agents capable of 

affecting the natural course of the disease, the majority of these will 

progress through more advanced stages known as the accelerated phase 

of CML (CML-AP) and blast crisis (CML-BC).  

 
1.1.2 Molecular characteristics of cancer cells 

Cancer is fundamentally a genetic disease that is characterized by 

extreme complexity and heterogeneity. Despite the tremendous degree of 

diversity with respect to individual tumour types, Hanahan and Weinberg 

have proposed that there are six hallmarks features that are shared by all 

malignancies regardless of their tissue of origin (Figure 1.1) (5, 6). They 

hypothesized that these 6 “hallmarks” are acquired in a progressive 

manner over time during the evolution of a cell from a normal to a 

malignant state. Subsequent research has suggested that there are also 

two enabling characteristics that facilitate the acquisition of the 6 hallmark 
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features. Additionally, alterations in energy metabolism and immune 

evasion may represent two new candidate hallmarks that are critical to 

oncogenic transformation and disease progression (Figure 1.2) (6). Each 

of these 10 features is discussed below.  
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Figure 1.1 Acquired capabilities of cancer cells  
Most if not all cancers have acquired the same set of functional capabilities 

during their development, albeit through various mechanistic strategies. 

Reproduced with permission from Hanahan et al, Cell. 2011 Mar 

4;144(5):646-74 (6). 
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Figure 1.2 Emerging hallmarks and enabling characteristics 
of cancer cells  
An increasing body of research suggests that two additional hallmarks of 

cancer are involved in the pathogenesis of some and perhaps all cancers. 

One involves the capability to modify, or reprogram, cellular metabolism to 

support neoplastic proliferation. The second allows cancer cells to evade 

immunological destruction, in particular by T and B lymphocytes, 

macrophages, and natural killer cells. Additionally, two consequential 

characteristics of neoplasia facilitate acquisition of both core and emerging 

hallmarks. Genomic instability creates genetic alterations that drive tumour 

progression. Inflammation by innate immune cells can inadvertently 

support multiple hallmark capabilities and promote elements of 

pathogenesis related to inflammatory responses. Reproduced with 

permission from Hanahan et al, Cell. 2011 Mar 4;144(5):646-74 (6). 
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1.1.2.1 Sustained proliferative signalling 

The ability of malignant cells to continuously proliferate is one of the most 

critical traits acquired during the process of neoplastic transformation. Cell 

proliferation is normally tightly controlled and this is essential for the 

maintenance of cellular homeostasis and normal tissue function. 

Dysregulation of growth factor-mediated transduction pathways empowers 

cancer cells with the ability to control their own fates through increased 

proliferative capacity, enhanced survival potential, and altered energy 

metabolism. This can be achieved through several different mechanisms. 

Cells can establish autocrine loops for the synthesis and secretion of 

growth factors that stimulate their proliferation. In other cases, cancer cells 

may create paracrine signalling networks between themselves and their 

associated stroma to produce and secrete the growth factors they require 

(7, 8). A third possibility involves the over-expression or 

molecular/structural alteration of growth factor receptors, which renders 

them hypersensitive to their ligands or constitutively active in the absence 

of ligand-binding, respectively. Cancer cells can also lose the requirement 

of growth factor stimulation via the constitutive activation of downstream 

mediators of key signalling pathways. 

 In addition to direct and indirect hyperactivation of mitogenic 

cascades, the dysregulation of negative-feedback loops that normally 

serve as a mechanism to diminish proliferative signalling may also promote 

excessive proliferation in cancer (9-11). For example, the development of 

inactivating mutations in the phosphatase and tensin homolog (PTEN) 

tumour suppressor, which leads to elevated phosphoinositide 3-kinase 

(PI3K) activity, accelerates malignant pathogenesis, and may also promote 

drug resistance (12, 13). 

 
1.1.2.2  Evading growth suppressors 

The acquired ability to circumvent mechanisms of growth inhibition is 

nearly as important to a developing tumour as its need to sustain 
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proliferative signalling. One of the most common ways that this is achieved 

is through the loss of function of tumour suppressors. In particular, the loss 

of RB (retinoblastoma-associated) and/or p53 antagonizes mechanisms of 

growth inhibition due to their critical and complementary roles in the 

regulation of the cell cycle and apoptosis (14, 15). Another notable 

difference between normal and transformed cells is their differential 

response to contact inhibition. Cell-cell contact normally signals cells to 

stop proliferating, but tumour cells are known to be insensitive to contact 

inhibition. This is thought to be due, in part, to the loss of moesin-ezrin-

radixin-like protein (merlin), a prime regulator of contact inhibition (16) or 

the loss of function of the liver kinase B1 (LKB1) epithelial polarity protein 

(17).  

 
1.1.2.3 Resistance to cell death 

Apoptosis (discussed in section 1.5) functions as an intrinsic inhibitor of 

tumour development and progression. Therefore it is not surprising that 

tumour cells fundamentally evolve mechanisms to reduce their pro-

apoptotic potential (18, 19). As discussed below cysteine proteases with 

aspartate specificity (caspases) are instrumental to the initiation and 

execution of apoptosis. The stimulation and execution of apoptosis is 

counterbalanced by anti-apoptotic members of the B cell leukaemia-2 

(BCL-2) family of proteins (18). Tumour cells frequently upregulate their 

expression of these anti-apoptotic proteins as a means to prevent 

apoptosis that would normally be triggered by oncogenic or gentoxic 

stress. This phenomenon also plays an important role in conferring 

resistance to a wide variety of anti-cancer therapeutics. As mentioned 

earlier, the loss of p53 tumour suppressor function is another important 

event that diminishes cellular apoptotic potential.   

 
1.1.2.4 Infinite potential for replication  

Most normal cells have a limited capacity for replication that is primarily 



 29 

capped by the onset of senescence or crisis-stimulated cell death. In 

contrast, malignant cells exhibit an “immortal” phenotype that is 

characterized by a limitless ability to self-replicate. Telomere maintenance 

appears to be a critical factor underlying the ability of cells to infinitely 

replicate (20). In normal cells, telomeres become progressively shorter with 

each round of cell division and ultimately lose the capacity to protect DNA 

ends, which promotes genomic instability and cell death. Malignant cells 

are able to maintain the length of their telomeres through subsequent 

rounds of cell division by increasing their expression of telomerase, a DNA 

polymerase that adds telomere repeat segments to the ends of telomeric 

DNA. Accordingly, telomerase activity confers resistance to senescence 

and crisis-driven apoptosis. Interestingly, an assessment of the major 

telomerase components, human telomerase RNA (hTR) and human 

telomerase reverse transcriptase (hTERT) in CD34+ cells from CML 

patients and normal controls revealed that CML samples exhibited a 

statistically significant increase in telomerase activity compared to normal 

samples. Further analysis suggested that telomere homeostasis is 

disrupted during the CML-CP (explained in section 1.6.3) and that this may 

impact disease progression (21). Recent studies have demonstrated that 

antagonizing telomerase activity significantly diminishes tumourigenesis in 

genetically engineered mouse models of cancer, suggesting that 

telomerase may be an attractive therapeutic target (22).  

 
1.1.2.5 Angiogenesis 

The generation of new vasculature, or angiogenesis, is imperative for 

developing tumours to gain consistent access to nutrients and oxygen and 

is a very early event in tumourigenesis. This process is accomplished by 

triggering normally quiescent vasculature to continuously bud new vessels 

that help sustain expanding neoplastic lesions (23, 24). Notably, the 

architecture of tumour vasculature is highly convoluted and can be readily 

distinguished from that of normal tissues (24). 
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 Two of the best-characterized regulators of angiogenesis are 

vascular endothelial growth factor-A (VEGF-A) and thrombospondin-1 

(TSP-1). VEGF-A promotes angiogenic activity, whereas TSP-1, functions 

as an inhibitor of new vessel formation. VEGF expression is induced by 

hypoxia, oncogenic signalling and stromal interactions (25, 26). The 

discovery of TSP-1 and other endogenous inhibitors of angiogenesis along 

with their fundamental role in tumourigenesis provided the rational for the 

development of pharmacological inhibitors of angiogenesis for cancer 

therapy (26).  

 Although originally thought to be primarily important for the 

development and progression of solid tumours, increasing evidence has 

defined a role for angiogenesis in haematological malignancies. The BM 

microenvironment of patients with haematoligcal cancers is commonly 

more highly vascularised than that of healthy individuals. Additionally, a 

number of previous investigations have shown that BM-derived cells 

including macrophages, neutrophils, mast cells, and myeloid progenitors 

have critical functions in cancer-associated angiogenesis (27, 28). It has 

been shown that the levels of the VEGF homolog- placental-derived 

growth factor (PlGF) levels are elevated in CML and that the production of 

PlGF by BM stromal cells (BMSCs) increases the aggressiveness of this 

disease. Targeting PlGF significantly increases the survival of both 

imatinib-sensitive and -resistant CML mice and augments the anti-

leukaemic activity of imatinib, suggesting that PIGF inhibition may 

represent a new therapeutic strategy for the treatment of imatinib-resistant 

CML (29). 

 
1.1.2.6 Invasion and metastasis 

The capacity for invasion and metastasis is a fundamental aspect of 

tumour progression. The loss of the cell-cell adhesion molecule e-cadherin 

through mutational inactivation or decreased expression is a well-

characterized event that occurs in the invasion and metastasis of multiple 
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types of solid tumours (30). Intensive research has revealed that there are 

several distinct steps that occur during invasion and metastasis (31). This 

cascade is initiated by local invasion, followed by intravasation into nearby 

blood and lymphatic vessels, the journey of cancer cells through the haem-

lymphatic systems, the extravasation of cancer cells into distant tissues, 

and the formation and expansion of metastases. 

 The epithelial-mesenchymal transition (EMT) program has been 

implicated as an essential regulator of invasion and metastasis (32). This 

program is controlled at the transcriptional level by several different 

transcriptional factors including Snail, Slug, Twist, and zinc finger E-box-

binding homeobox 1/2 (Zeb 1/2). The tumour-specific mechanisms of 

regulation of these transcription factors remains unclear, but are likely 

influenced by interactions with stromal cells in the microenvironment (33). 

 
1.1.2.7 An enabling characteristic: genomic instability  

Genetic alterations underlie, at least in part, the ability of cancer cells to 

acquire all of the aforementioned 6 established hallmark features. Cancer 

cells often exhibit significantly higher rates of mutations than their normal 

counterparts. The breakdown of surveillance and repair pathways, loss of 

p53 function, and telomere maintenance are major causative factors in this 

phenomenon (34). It is likely that many of these genomic alterations confer 

growth and survival advantages to the tumour. Interestingly in preclinical 

models of CML it has been shown that BCR-ABL may directly induce 

karyotypic instability (35, 36). BCR-ABL-induced genetic instability may be 

via activation of STAT5 (37), increased homologous recombination 

mediated by RAD51 family members (38) or increased generation of 

reactive oxygen species (ROS) leading to DNA damage and double-strand 

DNA breaks (39). 
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1.1.2.8 An enabling characteristic: inflammation 

Tumour-associated inflammation has been recognized as a potentially 

important aspect of the pathogenesis of cancers for more than 20 years 

(40). The overwhelming majority of human tumours are characterized by 

the infiltration of varying degrees of immune cells (41). Inflammation can 

promote the acquisition of multiple hallmark capabilities by directly 

supplying factors that stimulate growth, survival, angiogenesis, and 

invasion/metastasis to the tumour microenvironment (42, 43). Inflammatory 

cells can release mutagenic ROS and this may contribute to genetic 

instability (43).  

 
1.1.2.9 An emerging hallmark: alterations in energy metabolism 

The persistent cell proliferation that occurs as a hallmark of cancer 

requires changes in energy metabolism to create adequate sources of 

nutrition. This phenomenon was first reported by Otto Warburg who 

observed the preferential generation of adenosine-5'-triphosphate (ATP) 

through aerobic glycolysis in malignant cells in spite of its inferior 

bioenergetic efficiency compared to oxidative phosphorylation (44, 45). 

This appears to be partially accomplished through the upregulation of the 

glucose transporter 1 (GLUT1), which significantly increases cellular 

uptake of glucose (46). Oncogene activation, loss of tumour suppressors 

(particularly p53), and hypoxia also promote glycolytic metabolism (47). 

Rapidly proliferating malignant cells may be more heavily dependent upon 

glycolysis for ATP generation than those with lower proliferative indices. 

The potential role of the PIM kinases in facilitating tumour glycolysis is 

discussed in section 1.9.4.1. Activating mutations in the glycolytic enzymes 

isocitrate dehydrogenase (IDH) 1/2 have been reported in glioma and 20% 

of cases of AML (48, 49) in a manner that is associated with elevated 

oxidation and stability of the hypoxia-inducible factors (HIF-1) transcription 

factors (50). These findings have provided the rationale for the generation 

of novel IDH inhibitors for cancer therapy. 
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1.1.2.10 An emerging hallmark: evading immune destruction 

The role of the immune system in oncogenesis and disease progression is 

complex and controversial. It is believed that immune surveillance is 

responsible for recognizing and eliminating the overwhelming majority of 

developing cancer cells and that progressing tumours have therefore 

acquired mechanisms of immune evasion. This theory is supported by the 

increased incidence of some virus-associated forms of cancer in 

immunocompromised people (51). Considering that more than 80% of all 

cases of cancer are not associated with viruses, there has been some 

doubt regarding how prominent of a role the immune system plays as a 

mechanism of tumour suppression. Recent evidence from mouse models 

suggests that the tumour suppressive functions of the immune system may 

be much more extensive than previously believed at least with respect to 

carcinogen-associated tumours (52). Correlative studies have shown that 

patients with colon and ovarian tumours that are heavily infiltrated with 

immune cells including natural killer cells and cytotoxic T lymphocytes 

have a better prognosis than those that lack such abundant killer 

lymphocytes (41). Preliminary evidence demonstrating the development of 

donor-derived tumours in some immunosuppressed organ transplant 

recipients suggests that the malignant cells may have been held in a 

dormant state in the donors by immune surveillance (53). At this time, the 

role of immune evasion in promoting malignancy remains to be fully 

elucidated. Additional research is required to determine how prevalent this 

phenomenon may be and whether it should be considered as a bona fide 

hallmark feature of cancer. 

 
1.1.3 The genetic and molecular features of CML 

 
1.1.3.1 The Philadelphia (Ph) chromosome  

CML is associated with the Ph chromosome t(9;22)(q34;q11) (54, 55) 

which results in the formation of a unique gene product (BCR-ABL) a 
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constitutively active tyrosine kinase. This deregulated tyrosine kinase is 

implicated in the development of CML and has become a primary target for 

the treatment of this disorder. The fusion gene is created by 

juxtapositioning the ABL gene on chromosome 9 (region q34) to a part of 

the BCR ("breakpoint cluster region") gene on chromosome 22 (region 

q11). The ABL gene encodes a non-receptor protein-tyrosine kinase, c-

ABL. The BCR gene on chromosome 22 spans a region of 135 kb and 

comprises 23 exons (56). Although ubiquitously expressed, BCR belongs 

to a family of genes whose functions remain unclear.  

 
1.1.3.2 Leukaemogenesis   

While the protein products of these the BCR and ABL genes have no 

intrinsic oncogenic properties by themselves, together they produce the 

BCR-ABL fusion protein that is essential for the development of CML. 

BCR-ABL promotes the development of CML by allowing uncontrolled 

proliferation of transformed cells, discordant maturation, escape from 

apoptosis and altered interaction with the cellular matrix. BCR-ABL is a 

constitutively active tyrosine kinase and induces tyrosine phosphorylation 

of a large number of cellular proteins in haematopoietic cells. As a result, a 

diverse group of intracellular signalling pathways is activated by BCR-ABL 

(57).  A central role for the BCR-ABL tyrosine kinase in the pathogenesis of 

CML has been established by the therapeutic efficacy of small molecule 

inhibitors of the ABL tyrosine kinase (discussed in section 1.6.6). Signalling 

by BCR-ABL also manifests through kinase independent pathways. 

Support for this comes from studies that have shown leukaemia stem cells 

(LSCs) to be inherently resistant to TKIs (discussed in section 1.6.6.5) (58-

60). In addition, mutations of BCR-ABL have been identified that impair 

leukaemogenesis despite preserving tyrosine kinase activity (61). DNA 

microarray analyses of CML cells and other studies have implicated many 

kinase independent pathways in the pathogenesis of CML including the 

Wnt/Beta-catenin (62), hedgehog (Hh) pathway (63) and FOXO pathway 
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(64). 

 
1.1.3.3 Progression to CML-AP and CML-BC 

The progression of CML-CP to CML-AP or CML-BC is a complex multistep 

process. While the Ph chromosome translocation may be the initiating 

event in CML, progression to CML-BC appears to require the acquisition of 

other chromosomal changes and/or dysregulation of differentiation-

regulatory genes (65, 66). These include differentiation arrest, genetic 

instability, additional chromosomal abnormalities, and inactivation of 

tumour suppressor genes. Activation of the Wnt pathway and hedgehog 

pathways may be a central feature of disease progression enabling CML 

progenitors to acquire self-renewal properties (67, 68). CML-BC is 

characterized by a shift in the level of tumour differentiation to more 

immature forms. This failure of differentiation may be mediated through 

suppression of transcription factors necessary for myeloid differentiation 

such as CCAAT-enhancer-binding proteins alpha (CEBPA) (69, 70). BCR-

ABL induces karyotypic instability facilitating the multiple genetic 

abnormalities during the progression from CML-CP to CML-BC. Some 

cases of CML-BC demonstrate loss of tumour suppressor genes. For 

example 20 to 30 percent of patients with CML-BC have deletions or 

rearrangements in the p53 tumour suppressor gene (71).  

 
1.1.4 The genetic and molecular features of AML 

The collaboration of multiple molecular alterations in haematopoietic 

precursor cells culminates in the aberrant accumulation of immature 

myeloid cells in the BM and PB with an increased proliferative capacity and 

an inability to differentiate that is characteristic of AML. The specific 

genetic alterations underlying AML are complex and heterogeneous and 

involve the constitutive activation of established oncogenes and the loss of 

function of key tumour suppressors. Efforts to identify specific 

chromosomal anomalies and translocations that occur in AML have 
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significantly increased our understanding of the pathogenesis of this 

disease. Karyotype analyses have led to the identification of certain 

recurring cytogenetic abnormalities that are of prognostic significance and 

can be used to help guide treatment decisions for individual patients (see 

Appendix B) (72). A synopsis of what is currently known regarding the 

genetic features of AML is discussed below. 

 
1.1.4.1 Alterations in genes that regulate DNA methylation 

The methylation of cytosine or adenine residues within DNA silences gene 

transcription. DNA methylation is an important process in the 

transcriptional control of cellular differentiation and its dysregulation in AML 

is thought to be a significant factor underlying the inability of AML cells to 

properly differentiate into mature cells. The disruption of normal DNA 

methylation activity in AML has been attributed to mutations in DNA 

methyltransferases (DNMTs), which as their name implies are the primary 

enzymes responsible for the methylation of DNA. Activating mutations in 

DNMTs result in the inappropriate silencing of genes that would normally 

be expressed, whereas inhibitory mutations translate into the 

loss/reduction of methylation and the aberrant expression of genes that 

should be silenced (73-76).  

 
1.1.4.2 Loss of tumour suppressor function  

In contrast to the majority of other forms of cancer, a very small minority 

(approximately 7%) of AML patients exhibit inactivating mutations in the 

p53 tumour suppressor gene at diagnosis (77, 78). However there are 

several other tumour suppressor genes whose functions are impaired in 

subsets of patients with AML. The Wilms' tumour suppressor gene 1 (WT1) 

encodes a transcriptional regulator for genes involved in cellular growth 

and maturation. Disruption of this gene may promote the proliferation of 

stem cells and disrupt cellular differentiation. Approximately 8 percent of 
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AML cases and 13 percent of patients with cytogenetically normal AML will 

harbour mutations in WT1 (79, 80).  

 
1.1.4.3 Mutational activation of RAS 

Mutations of the rat sarcoma (RAS, H-RAS, K-RAS and N-RAS) proto-

oncogenes that result in constitutive activation are a frequent event in 

many human malignancies. RAS mutations occur in approximately 25% of 

patients with AML and 35% of patients with MDS and seem to be 

disproportionately present in patients with monocytic morphology (81, 82). 

The prognostic significance of RAS mutations in AML is not completely 

understood, but may be associated with increased survival and a more 

favourable response to ara-C treatment (82).  

 
1.1.4.4 Activation of FLT3 

The fms-like tyrosine kinase-3 (FLT3) is a transmembrane tyrosine kinase 

receptor that stimulates cell proliferation when activated. Two main types 

of FLT3 mutations exist. The most common are internal tandem 

duplications (ITD) of different length that result in ligand-independent 

activation of the FLT3 receptor and a proliferative signal. Additionally point 

mutations in the activating loop of the kinase domain of FLT3 may result in 

tyrosine kinase activation of FLT3 (83, 84). Mutations/ITD of FLT3 are 

more prevalent in elderly AML patients and are associated with a poor 

prognosis and significantly shorter median survival (discussed in section 

1.7.6.3.1), most likely due to the sustained pro-survival signalling by 

downstream effectors. The importance of FLT3-ITD as a prognostic 

indicator prompted the development of several FLT3-targeted inhibitors 

(discussed in section 1.7.16).  

 
1.1.4.5 Chromosomal alterations and translocations  

Chromosomal aberrations are a very frequent event in AML (see Appendix 

B). For example, the long arms of chromosomes 5, 7, and 20 are 

commonly lost in patients with therapy-related AML and AML that has 
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progressed from MDS, and are associated with a poor prognosis (85). 

Chromosomal translocations occur even more prevalently and have two 

primary consequences. In some cases, the juxtaposition of an intact 

transcriptional element from one chromosome to an enhancer element 

from a gene on another chromosome results in the overexpression of 

specific gene products. In other cases, chromosomal translocations can 

lead to the formation of chimeric fusion proteins such as BCR-ABL in CML. 

The majority of known chromosomal translocations that occur in AML are 

of the second variety that lead to the formation of fusion genes that are not 

expressed in normal cells. The investigation of fusion genes that have 

been identified in AML has significantly increased our understanding of the 

transcriptional regulation of haematopoiesis (86). Key genes that have 

been established to be involved in translocations in AML include the core 

binding factors (CBFs), mixed-lineage leukaemia (MLL), retinoic acid 

receptor (RAR), and homeobox (HOX) genes. In many cases these genes 

have been implicated in translocations with multiple partners, thus adding 

an additional layer of complexity to the genetics of AML. CBF transcription 

factors function as heterodimeric complexes that control an array of genes 

involved in differentiation (87).  

 The t(8;21)(q22;q22) was the first recurring chromosomal 

translocation identified in AML and is associated with the FAB-M2 subtype 

(discussed in section 1.7.5.1) (88). In AML with the t(8;21), the Runt-

related transcription factor 1 (RUNX1 (previously AML1 or core binding 

factor alpha-2)) gene on chromosome 21 and the RUNX1T1 (previously 

ETO) gene on chromosome 8 form a chimeric product that regulates the 

transcription of a number of genes that are vital for haematopoietic stem 

cell and progenitor cell growth, differentiation, and function (89-91).  

 The inv(16)(p13q22) and t(16;16)(p13;q22) occur primarily in 

patients with FAB-M4Eo AML and are both correlated with a favourable 

prognosis (92). These chromosomal alterations disrupt the CBF beta 

subunit of CBF and result in the formation of a fusion protein with smooth 
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muscle myosin heavy chain, MYH11, located at 16p13 (93).  

 The MLL histomethyltransferase gene is located on chromosome 

11q23 and is frequently involved in translocations in both AML and ALL 

that are linked with a poor prognosis. MLL translocations produce fusion 

proteins that trigger the expression of several downstream effectors, (94-

98).  

 Translocations of the retinoic acid receptor-alpha (RARa) locus on 

chromosome 17 are a hallmark feature of acute promyelocytic leukaemia 

(APL, FAB-M3) (99). The t(15;17)(q22;q11-12) is the most prevalently 

observed form of RAR translocation in APL patients. These translocations 

confer APL cells sensitive to treatment with retinoic acid, which is still 

utilized as standard therapy for patients with APL (discussed in section 

1.7.9.2) (100).  

 The molecular complexity of AML creates many treatment 

challenges, but may provide a strong rationale for the development of 

personalized regimens comprised of targeted and conventional agents. 

 

1.2 Normal haematopoeisis and LSCs 
 
1.2.1 Introduction 

Haematopoiesis refers to the tightly regulated process whereby the 

circulating blood cells are formed in BM. The BM has a huge production 

capability with an estimated 1010 erythrocytes and 108 leukocytes 

produced per hour in the steady state. While production is maintained at a 

steady state in normal circumstances it can be greatly increased if needed. 

These circulating cells are immediate descendants of maturing precursors 

that arise from a smaller pool of progenitors. The progenitors in turn arise 

from an even smaller pool of haematopoietic stem cells (HSCs) that are 

believed to be mostly in a resting or non-dividing state and have the 

capacity to self-renew. 
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1.2.2 Haematopoetic stem cells 

HSCs are multipotent and have the capacity to differentiate into the cells of 

all ten blood lineages — erythrocytes, platelets, neutrophils, eosinophils, 

basophils, monocytes, T and B lymphocytes, natural killer cells and 

dendritic cells (101-103). HSCs can be divided into a long-term subset (LT-

HSC), capable of indefinite self-renewal, and a short-term subset (ST-

HSC) that self-renew for a defined interval (Figure 1.3). The self-renewal 

capacity of HSC is associated with telomerase activity (discussed in 

section 1.1.2.4). Interestingly, recent studies have demonstrated that 

normal HSCs and cancer cells share the ability to self-renew and that 

many pathways classically associated with cancer also regulate normal 

stem cell development. For example the signalling pathways that have 

been shown to date to be involved in the regulation of HSC self-renewal, 

i.e., HOX genes and Notch, Sonic hedgehog (Shh), and Wnt signalling 

pathways, are also hypothesized to be associated with oncogenesis (104-

108). For most cancers, the target cell of the transformation events is 

unknown, but evidence indicates that certain types of leukaemias arise 

from mutations that accumulate in HSCs. 

 The concept that sustained haematopoiesis originates from 

pluripotent stem cells arose from the findings that mice can be protected 

from the lethal effects of whole body irradiation by exteriorization and 

shielding of the spleen. This protective effect of shielding the spleen from 

radiation was then shown to be cell-mediated as the injection of spleen 

cells could initiate recovery and re-establish haematopoiesis in irradiated 

animals (109). Colonies of murine haematopoietic cells, referred to as 

colony forming units (CFU), were observed in the spleen of irradiated, 

transplanted recipients within 10 days after the transplant of spleen cells 

(110). Subsequent experiments using karyotypically marked donor cells 

confirmed the clonal origin of the differentiated cells in the colony, proving 

that a single pluripotent stem cell had given rise to these differentiated 

cells (111).  
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1.2.3 Identification of HSCs 

Cell surface characteristics have been used to purify or define populations 

of cells that include stem cells and progenitors. HSCs are notably CD34+ 

and CD38- (112). The CD34 antigen is expressed on HSC and 

progenitors, and CD38 is expressed on a subset of more mature 

progenitors but not on stem cells. Other surface proteins expressed on 

HSCs include CD133, c-Kit and CD150 (113-115).  

 
1.2.4 BM microenvironment and haematopoietic-stem-cell niches 

Haematopoietic progenitor cells require both cellular and soluble growth 

factor support for development and differentiation. These cellular elements 

are provided by the surrounding bone, BM stroma, and the 

microenvironment (116-118). Fibroblastoid cells, endothelial cells, and 

macrophages comprise the stromal cells that support the stem and 

progenitor cells. In addition to providing an adhesive framework for 

developing cells the fibroblastoid cells produce haematopoietic growth 

factors essential for the proliferation, survival and differentiation of HSCs 

(119). A stem-cell niche can be defined as a spatial structure in which stem 

cells are housed and maintained by allowing self-renewal in the absence of 

differentiation (114, 120, 121). 

 
1.2.5 Differentiation 

In the first step towards the myeloid lineage of haematopoietic cell 

differentiation, HSC produce the common myeloid progenitor (CMP) which 

is capable of producing cells of all myeloid lineages and is also referred to 

as the CFU-GEMM (CFU-granulocyte–erythrocyte–macrophage–

megakaryocyte) (122). Markers that can identify the CFU-GEMM include 

CD34 and HLA-DR. CD64 identifies a specific stem cell dedicated to 

granulocyte and monocyte development. This CD34, HLA-DR, and CD-64 

positive stem cell is called CFU-GM (CFU-granulocyte–macrophage) (123, 

124). Certain growth factors are required for maturing CFU-GEMM into 
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CFU-GM including stem cell factor (SCF, also called c-Kit ligand or Steel 

factor), interleukin (IL)-3, IL-6, FLT3 ligand and granulocyte-macrophage 

colony-stimulating factor (GM-CSF). CFU-GM gives rise to the more 

mature granulocyte and macrophage colony-forming units, CFU-G and 

CFU-M, respectively (125, 126).  

 Erythropoiesis begins with the differentiation of a small pool of 

pluripotent stem cells into the most primitive erythroid progenitors, which 

then develop into recognizable erythroid precursors and subsequently 

differentiate into mature erythrocytes. Erythropoietin is a growth factor 

essential for the amplification and terminal differentiation of erythroid 

progenitors and precursors. Progenitor cells committed to the 

megakaryocyte lineage differentiate into promegakaryoblasts, which in turn 

form mature megakaryocytes. Platelets are shed from megakaryocytes as 

‘blebs’ formed of their cytoplasm. Thrombopoietin is a chief stimulatory 

player in thrombopoiesis.  

 B cells are generated in the BM from common lymphoid progenitor 

(CLP) cells (127). Immature B cells then move to the spleen where they 

differentiate into mature, but naive B cells in a process referred to as 

secondary B-cell development. Mature naive B cells then migrate to lymph 

nodes where they undergo further differentiation to become highly 

specialized plasma cells producing specific antibody in response to 

antigenic stimuli. The progeny of the CLPs cells destined to form T cells 

migrate to the thymus, which is critical for their further development and 

final commitment to the T-cell lineage.  



 43 

 

Figure 1.3 Haematopoietic and progenitor cell lineages  
HSCs can be divided into LT-HSCs, highly self-renewing cells that 

reconstitute an animal for its entire life span, or ST-HSCs, which 

reconstitute the animal for a limited period. ST-HSCs differentiate into 

multipotent progenitor (MPPs), which do not or briefly self-renew, and have 

the ability to differentiate into oligolineage-restricted progenitors that 

ultimately give rise to differentiated progeny through functionally 

irreversible maturation steps. The CLPs give rise to T lymphocytes, B 

lymphocytes, and natural killer (NK) cells. The CMPs give rise to 

myelomonocytic progenitors (GMPs), which then differentiate into 

monocytes/macrophages and granulocytes, and to megakaryotic/erythroid 

progenitors (MEP), which produce megakaryocytes/platelets and 

erythrocytes. Both CMPs and CLPs can give rise to dendritic cells. All of 

these stem and progenitor populations are separable as pure populations 

by using cell surface markers. Reprinted with permission from Passegué et 

al Proc Natl Acad Sci U S A. 2003 Sep 30 (128). 
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1.2.6 LSCs 

The notion of tumourigenic LSCs emerged from several studies including 

those published by Blair and colleagues (129) and Bonnet and Dick (130) 

that showed that most leukaemic cells were unable to proliferate 

extensively and only a small, defined subset of cells was consistently 

clonogenic. In these studies, LSCs for human AML were identified 

prospectively and purified as (Thy1- (Thymocyte differentiation antigen 1), 

CD34+, CD38-) cells from various patient samples. Although these cells 

represent a small and variable proportion of the totality of the AML cells 

(0.2-1% depending on the patient), they were the only cells capable of 

transferring AML from human patients to non-obese diabetic/severe 

combined immunodeficient (NOD/SCID) mice.  

 A given leukaemia can be viewed as a newly formed aberrant 

haematopoietic tissue initiated by tumourigenic leukaemic cells that have 

kept or reacquired the capacity for indefinite proliferation through 

accumulated mutations (Figure 1.4). This concept suggests that 

leukaemias are produced by a few LSCs that undergo an aberrant and 

poorly regulated process of organogenesis analogous to that of normal 

HSCs. Both cell types have extensive proliferative potential and the ability 

to give rise to new haematopoietic tissues, normal in the first case and 

abnormal in the second. For most leukaemias, as for most cancers, the 

target cell of transforming mutations is still unknown. Because normal stem 

cells and LSCs share the ability to self-renew, as well as various 

developmental pathways, it has been postulated that LSCs are HSCs that 

have become leukaemic as the result of accumulated mutations. An 

alternative theory is that LSCs could also be a more restricted progenitor or 

even a differentiated mature cell, which would have first to reacquire the 

stem cell capability for self-renewal before becoming tumourigenic to 

accumulate additional mutations (128).  
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 Insight into the cell of origin of AML comes from observations that 

the expression of the AML1-ETO fusion transcript (discussed in section 

1.1.4.5) can be detected in leukaemic blast cells and in normal HSCs 

obtained from AML patients in remission (131, 132). However, these 

prospectively isolated AML1-ETO-expressing stem cells and their progeny 

are not leukaemic and could differentiate into normal myelo-erythroid cells 

in vitro (131). This suggests that the translocation occurred originally in 

normal HSCs and that additional mutation in a subset of these HSCs or 

their progeny subsequently led to leukaemia.  

 The clonal nature of CML and other myeloproliferative neoplasms 

was confirmed in complementary clonality studies in women with CML 

utilizing isozymes of the X-chromosome linked enzyme glucose 6-

phosphate dehydrogenase (G6PD) (133) or methylation-sensitive 

restriction fragment length polymorphisms in X-linked genes (134). The 

derivation of this clonal population from a pluripotent HSC was first 

supported by cytogenetic studies that demonstrated the Ph chromosome in 

granulocyte, monocyte, and erythroid precursors, megakaryocytes, and 

most B-lymphocytes from patients with CML (135). Subsequent findings 

supported the role of a pluripotent HSC progenitor as the cell of origin: 

BCR-ABL mRNA can be found in CD34+ (progenitor) subpopulations from 

patients with CML (136). Other studies showed that a population of 

quiescent LSCs could be isolated from the blood and BM of patients with 

untreated CML-CP using flow cytometry techniques (137). Taken together, 

these studies strongly support the hypothesis that CML is a clonal 

malignancy involving pluripotent HSCs.  
 Similar to AML, CML appears to be maintained by a pool of self-

renewing malignant cells, as assessed by their ability to transfer the 

disease upon xenotransplantation into immunodeficient mice (130). In 

CML-CP, the Ph chromosome translocation occurs in a HSC with the 

capacity for multilineage differentiation and self-renewal. The size of this 

HSC compartment, as defined by cell surface antigen expression, is 
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normal, while committed myeloid progenitors and granulocyte-macrophage 

progenitors (CFU-GM) are significantly increased in number (67). Studies 

in mouse model systems demonstrate that BCR-ABL does not confer self-

renewal capacity to committed myeloid progenitors, and sustained CML-

like leukaemia cannot be produced by transplantation of BCR-ABL-

expressing committed progenitors into recipient mice (138). This helps to 

explain why the Ph chromosome translocation is present in a pluripotent 

HSC even though CML predominantly affects the neutrophil lineage. It 

appears that stem cell origin is required for maintenance of the disease in 

the BM. Even though the BCR-ABL kinase is active in CML LSCs, CML 

LSCs exposed to TKIs are not dependent upon BCR-ABL kinase activity 

for survival but can revert to dependence on cytokines that normally 

mediate survival and proliferation (59, 139-142). 

 A number of studies have provided experimental evidence that 

LSCs are significantly less sensitive to conventional therapy than more 

differentiated malignant cells and based on this, it has been proposed that 

LSCs may be the ultimate cause of relapse and treatment failure (143, 

144) (see section 1.6.6.5). Identifying new agents and therapeutic targets 

to specifically eradicate LSCs is an important challenge of increasing 

priority. Although myeloid leukaemias are heterogeneous in terms of 

phenotype, disease progression, prognosis, and response to therapy, our 

understanding of the general mechanisms underlying leukaemic 

transformation is improving. Future investigation of such deregulated 

mechanisms in the newly identified LSCs will lead to a considerable 

increase in our understanding of the molecular mechanisms and signalling 

pathways that are affected in a given type of leukaemia. 
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Figure 1.4 Origin of the LSC  
A given leukaemia can be viewed as a newly formed abnormal 

haematopoietic tissue initiated by a few LSCs that undergo an aberrant 

and poorly regulated process of organogenesis analogous to that of 

normal HSCs. LSCs can either be HSCs, which have become leukaemic 

as the result of accumulated mutations (left), or more restricted progenitors 

(right), which have reacquired the stem cell capability of self-renewal. 

Regardless of their origin, both types of LSCs give rise to similar end-stage 

leukaemias. Reprinted with permission from Passegué et al Proc Natl Acad 

Sci U S A. 2003 Sep 30 (128).   
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1.3 The cell cycle in normal and cancer cells  
1.3.1 Introduction 

While cancer is characterized by abnormal cell proliferation, the cell cycle 

in normal cells is tightly regulated in order to maintain homeostasis and 

genomic integrity. The stages through which a cell passes between one 

cell division and the next are known as the cell cycle. It consists of an 

interphase and a mitotic (M) phase. Interphase is further subdivided into 

the G1, S and G2 phases.  DNA replication occurs during the S phase, 

whereas the G1 phase represents the gap between the end of mitosis and 

the beginning of the S phase and G2 the interval between the S phase and 

the subsequent mitotic phase. 

 Normal mitosis is a complex process that is strictly regulated to 

preserve normal DNA content and organization. Mitosis is subdivided into 

prophase, prometaphase, metaphase, anaphase and telophase. At the 

onset of prophase, chromosomes condense to form sister chromatids that 

remain bound at the centromere by a protein complex known as the 

kinetochore.  Concurrently, the centrosomes separate and migrate to 

opposite sides of the cell forming the mitotic spindle poles that act as the 

primary site of microtubule nucleation. The nuclear membrane degrades 

during prometaphase, and microtubules originating from each centrosome 

attach to the kinetochores of each chromosome. Subsequently, during 

metaphase the chromosomes convene along the metaphase plate, a line 

equidistant from the two mitotic spindle poles (145). The spindle assembly 

checkpoint (discussed in 1.3.3.5), ensures that sister chromatids are 

properly aligned to the metaphase plate before the onset of anaphase 

(146).  During anaphase, the proteins at the centromeres that attach sister 

chromatids are degraded and the shortening of kinetochore microtubules 

leads to the poleward movement of the separated chromsomes (Figure 

1.5). A reversal of the prophase and prometaphase events occurs during 

telophase when a new nuclear membrane forms around each set of 
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separated chromosomes and the cell completes division into two daughter 

cells.  
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1.3.2 Cyclins and CDKs 

Most cells in an adult organism are quiescent and enter an inactive period 

called G0, outside of the cell cycle.  In order for cells to re-enter the cell 

cycle, they must pass through a control point called the G1 restriction point 

(RP) (Figure 1.6) (147). Prior to passage through the RP, cells are 

dependent on mitogens. After passage, cells are committed to progress 

through the cell cycle without the need for external growth factors. The 

progress through the multiple steps in the cell cycle is regulated by a set of 

proteins called cyclins and their associated CDKs. Cyclin levels are 

dynamic and are determined by the balance of gene transcription versus 

protein degradation. When cyclins bind to their highly specific CDK partner 

it induces a conformational change in the catalytic subunit of CDK, 

exposing its active site. Unlike cyclins, the levels of CDKs are regulated 

predominantly at the posttranslational level and do not vary during the cell 

cycle. 

 Various cyclin-CDK complexes are present a specific points in the 

cell cycle and regulate irreversible transitions to subsequent phases of the 

cell cycle. Cyclin D along with CDK 4/6 drives progression of the cell cycle 

through G1. Additionally, cyclin D regulates the transcription of the cyclin E 

gene. Cyclin E plays a role in G1 to S transition. Cyclin A-CDK2 is 

important for S phase progression. Cyclins A, B-CDK1 directs G2 

progression and the G2 to M phase transition. 

 Cyclin-CDK complexes regulate a diverse set of proteins including 

transcriptional regulators, cytoskeletal proteins, nuclear pore, envelope 

proteins and histones proteins through phosphorylation of their substrates 

on serines and threonines. This, in turn, leads to multiple cell cycle events 

including chromosomal condensation, nuclear envelope breakdown, 

fragmentation of the Golgi apparatus, regulated gene expression and 

mitotic spindle assembly. Given that CDKs control progression through the 

cell cycle, the regulation of their activity is crucial and mediated by several 
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mechanisms: association with cyclins, association with CDK inhibitors 

(CKIs) and addition of phosphate groups that either stimulate or inhibit 

CDK activity. 
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Figure 1.6 Pattern of cyclin-CDK activity during the cell 
cycle 
Cyclin-CDK complexes (red bars) are the key regulators of the cell cycle 

phases and are involved in the checkpoint mechanisms at the transition of 

one cell cycle phase to the next. The inhibitory effect of the CKIs, p21, and 

p27, on the cyclin-CDK complexes is also shown.  
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1.3.3 Cell cycle checkpoints 

 
1.3.3.1 Introduction 

Cell cycle checkpoints ensure the fidelity of cell division in eukaryotic cells. 

These checkpoints verify that each phase of the cell cycle has been 

accurately completed before progression into the next phase. An important 

function of many checkpoints is to detect DNA damage. When damage is 

found, the checkpoint uses a signal mechanism to either stall the cell cycle 

until repairs are made or, if repairs cannot be made, to target the cell for 

destruction via apoptosis. All the checkpoints that assess DNA damage 

appear to utilize the same sensor-signal-effector mechanism. If the 

function of various checkpoints is disrupted, mutations and carcinogenesis 

can result.  

 
1.3.3.2 G1 checkpoint 

The G1 checkpoint leads to the arrest of the cell cycle in response to DNA 

damage ensuring that damaged DNA is not replicated during the S phase 

(148). The RB protein (Figure 1.7) is a major control point in the transition 

from the G1 phase to S phase via its interactions with the E2 transcription 

factor (E2F) and histone deacetylases (HDACs) (149). In the absence of 

growth stimuli, RB is hypophosphorylated, which facilitates it's binding to 

E2F and HDACs. When E2F is bound to RB, E2F becomes sequestered, 

blocking its transactivation domain and preventing E2F transcriptional 

activity. Further repression of transcription occurs via RB recruitment of 

HDACs that lead to chromatin compaction. When it is time for a cell to 

enter S phase, the cyclin D/CDK4/CDK6 complex phosphorylates RB, 

inhibiting its activity (150). This initial phosphorylation causes a 

conformational change in RB that allows the transcription of cyclin E. 

Additional phosphorylations by the cyclin E-CDK2 complex lead to the 

release of E2F and subsequent expression of E2F target genes such as 

cyclin A, thymidylate synthase and dihydrofolate reductase, all of which are 
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important for S phase progression (151). RB remains phosphorylated 

throughout S, G2, and M phases.  
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Figure 1.7 The retinoblastoma protein regulates the 
transcription factor E2F  
E2F can bind to specific DNA sequences in the promoters of E2F 

responsive genes. In the hypophosphorylated form (which occurs early in 

G1), RB binds to E2F and inactivates E2F as a transcription factor. The 

E2F/pRB complex can bind DNA, but instead of activating transcription, it 

acts as a dominant repressor complex that shuts the expression of E2F 

target genes off. Phosphorylation of pRB by cyclin/CDK complexes in mid 

to late G1 causes pRB to lose its affinity for E2F. The free E2F transcription 

factor can now activate transcription of E2F target genes leading to 

expression of proteins necessary for S phase progression.
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1.3.3.3 G2 checkpoint 

The G2 checkpoint blocks entry into M phase when DNA damage has 

occurred or when the S phase has not been correctly completed (152). 

G2/M progression is driven by the maturation-promoting factor (MPF), a 

complex of cyclin B1/CDK1 that forms during G2 and is kept inactive by 

phosphorylation of CDK1 at Thr14 and Tyr15. The entry into mitosis is 

triggered by translocation of the complex to the nucleus and activation by 

dephosphorylation by the cell division cycle 25 (CDC25) phosphatases 

(153). The role of Aurora A in the regulation of the progression from G2 to 

M is discussed in section 1.8.2.   

 DNA damage triggers the G2 checkpoint through activation one of 

two kinases, ataxia telangiectasia mutated (ATM) or ataxia telangiectasia 

and Rad3 related (ATR) (154, 155) (Figure 1.8). These kinases then 

phosphorylate either checkpoint kinase 1 (CHK1) or CHK2 kinases, which 

results in inhibition of CDC25, which in turn prevents activation of CDK1, 

through phosphorylation at Ser216 (156-158). The important roles that 

CHK1 and CHK2 play in preventing mitotic catastrophe are discussed in 

section 1.5.2. 
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 Figure 1.8 G2 checkpoint 
DNA damage activates, ATM or ATR. These kinases then phosphorylate 

either CHK1 or CHK2 kinases. CHK1/CHK2 kinases inhibit the CDC25 

phosphatase. Inhibition of CDC25 tyrosine phosphatase prevents the 

removal of inhibitory phosphate groups from CDK1. This in turn prevents 

activation of CDK1.  
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1.3.3.4 S-phase checkpoint 

The S checkpoint involves three distinct modes that share components 

and are mutually coordinated (159). The replication checkpoint is activated 

by stalling of replication forks due to nucleotide depletion or polymerase 

inhibition (160). The second is the intra-S-phase checkpoint that is 

activated when damaged DNA is detected during S-phase, outside of the 

replicons, and is therefore replication-independent. Finally, the S/M 

checkpoint prevents division before the cell has completely duplicated its 

genome (161). 

 
1.3.3.5 Mitotic checkpoint  

The mitotic checkpoint or spindle assembly checkpoint ensures correct 

chromosomal segregation during mitosis and the production of two 

genetically identical nuclei (162). Spindle microtubules attach to the 

centromere regions of the chromosomes during metaphase such that the 

sister chromatids can be pulled to opposite poles of during anaphase. The 

spindle assembly checkpoint ensures that cells will not enter anaphase, 

where chromosome segregation occurs, until all chromosomes are aligned 

at the equator and attached to the microtubules of the mitotic spindle. The 

role of Aurora B in detecting aberrant kinetochore to microtubule 

attachments is discussed in detail in section 1.8.3. Through activation of 

mitotic arrest deficient (MAD) 1/2 and other proteins, spindle defects or the 

presence of unattached kinetochores will result in inactivation of the 

anaphase promoting complex or cyclosome, (APC/C). This complex 

controls the proteasomal degradation of a number of proteins that regulate 

sister chromatid cohesion, spindle elongation, as well as cyclin B1. This is 

a prerequisite for progression of mitosis (163). Mitotic checkpoint failure 

can lead to cells exiting mitosis and entering the next S phase with a 4N 

DNA content, resulting in endoreduplication (see mitotic catastrophe 

discussed in section 1.5).  
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1.3.4 p53, p21 and p27 

As discussed earlier, p53 is a key tumour suppressor gene (164). The role 

of p53 as a tumour suppressor is to block cell cycle progression and/or to 

induce apoptosis, in response to cellular stresses such as DNA damage. 

Impaired p53 activity promotes the accumulation of DNA damage in cells, 

which leads to a cancer phenotype (165). Upstream activators of p53 

include ATM, ATR, CHK2 and RAS. Expression of p53 following DNA 

damage, leads to the transcriptional induction of the CDKN1A gene (166, 

167). Its protein product, p21, is a potent CKI that inhibits several cyclin-

CDK complexes leading to a pause in both the G1 to S and G2 to M 

transition (Figure 1.6). In particular p21 inhibits the cyclin D–CDK4 

complex through direct binding. The consequence of this inhibition of cyclin 

D–CDK4 is the absence of hyperphosphorylation of the RB protein leading 

to failure of E2F target gene expression and arrest of the cell in G1 (Figure 

1.6 and 1.7). p21 also promotes sustained G2 arrest following DNA 

damage, through inhibition of the cyclin B1/CDK1complex (168).  

 Another p53 target gene involved in the G2 arrest is the growth 

arrest and DNA damage 45 gene (GADD45). GADD45 has been shown to 

interact with and inhibit proliferating cell nuclear antigen (PCNA) and CDK1 

(169-171). Studies also show that p53 plays a critical role in preventing 

aneuploidy by blocking endoreduplication of tetraploid cells that result from 

mitotic failure (172). 

 As discussed above the spindle assembly checkpoint ensures that 

cells will not enter anaphase, where chromosome segregation occurs, until 

all chromosomes are aligned at the equator and attached to the 

microtubules of the mitotic spindle. p53 plays a critical role in preventing 

aneuploidy by blocking endoreduplication of tetraploid cells that result from 

mitotic failure (172). 

 p27 is a CKI encoded by the cyclin-dependent kinase inhibitor 1B 

(CDKN1B) gene that regulates the G0 to S phase transitions by binding to 

and regulating the activity of CDKs. It was discovered as an inhibitor of 
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cyclin E-CDK2 (173-175), but has since been shown to play dual roles to 

both promote and inhibit cell cycle progression. In G0, p27 translation and 

protein stability are maximal as it binds and inactivates nuclear cyclin E-

CDK2. In early G1, p27 also promotes assembly and nuclear import of D-

type cyclin-CDKs (176, 177). The progressive decrease of p27 in G1 

permits cyclin E-CDK2 and cyclin A-CDK2 to activate the G1 to S transition 

(178). Importantly FOXO proteins activate p27 transcription, in response to 

cytokines or promyelocytic leukaemia protein (PML) and nuclear AKT 

signalling (179, 180). 

 
1.3.5 Targeting the cell cycle for cancer therapy 

The vinca alkaloids (vinblastine and vincristine (VCR)) and taxanes 

(paclitaxel and docetaxel) are the first cancer drugs developed to 

effectively target the mitotic phase of the cell cycle (181). These agents 

directly bind to tubulin and disrupt the assembly of spindle microtubules 

during mitosis, leading to mitotic arrest followed by cell death through 

multiple mechanisms. Cancer cells can acquire resistance to these 

microtubule damaging agents through a variety of means (182). An 

alternative approach for anti-mitotic therapy is to target key regulators of 

mitotic progression, including the mitotic kinases (183).  The mitotic 

kinases are a diverse collection of serine/threonine kinases that tightly 

regulate each step of mitosis.  Collectively, the mitotic kinases control the 

activity, localization and stability of a diverse array of effector proteins (184, 

185).  An important group of kinases within the family of mitotic kinases are 

the Aurora kinases, which are a discussed in section 1.8. 

 

1.4 Apoptosis  
 
1.4.1 Introduction 

Apoptosis, a programmed form of cell death, is a highly regulated process 

that plays a role in developmental morphogenesis, control of cell numbers, 
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removal of damaged cells, and tumour suppression (186). It is 

characterized by cell shrinkage, membrane blebbing and budding, 

chromatin condenstaion, and precise fragmentation. Apoptotic cells are 

removed following phagocytosis by macrophages which recognize 

exposure of phosphatidylserine on the cell membrane.  

 Cells may be induced to undergo apoptosis by extracellular signals 

or by internal insults such as DNA damage or oxidative stress which 

activate a conserved family of aspartic acid-specific cysteine proteases 

called caspases (187). Thirteen mammalian caspases have been identified 

and can be divided into two functional groups based on their role in 

inflammation or apoptosis.  The pro-inflammatory caspases are caspases -

1, -4, -5, -11 and -12. The remainder are the pro-apoptotic caspases. The 

pro-apoptotic caspases are further subdivided into initiators (caspases -2, -

8, -9 and -10) and effectors (caspases -3, -6, -7 and -14).  Pro-apoptotic 

caspases are responsible for the dismantling of the cell during apoptosis 

(188) and their activation distinguishes this cell death programme from the 

others identified (189). Once active, these initiator caspases can cleave 

and activate downstream effector caspases (190-192). Effector caspases 

orchestrate the cell's demise through the cleavage of specific cellular 

substrates, resulting in the morphological characteristics of apoptosis. 

 
1.4.2 Intrinsic apoptotic pathway 

The intrinsic or mitochondrial apoptotic pathway is triggered in response to 

cellular stresses such as DNA damage, oxidative stress, ischemia or 

growth factor withdrawal. Disruption of the mitochondria results in 

mitochondrial membrane depolarization, loss of mitochondrial membrane 

integrity, leading to release of mitochondrial cytochrome c to the cytosol 

(Figure 1.9). In the cytosol cytochrome c binds to apoptosis protease 

activating factor 1 (APAF-1) and dATP/ATP, which triggers the formation of 

the apoptosome that activates pro-caspase-9, -3, -6 and 7 (193, 194)). 

Second Mitochondrial Activator of Caspases (SMAC) is another 
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apoptogenic protein released from mitochondria besides cytochrome c that 

binds to and inhibits inhibitor of apoptosis proteins (IAPs) (195, 196).  

 The intrinsic pathway is regulated by the B-cell lymphoma-2 (BCL-2) 

family of proteins of which pro- and anti-apoptotic members exist (Table 

1.1) (197, 198). The BCL-2 family of proteins contain at least 20 members, 

all of which contain at least one of four conserved BCL-2 homology 

domains (BH1-BH4) that regulate protein-protein interactions. The pro-

apoptotic BCL-2 proteins can be subdivided into the multi-domain (BCL-2–

associated X protein (BAX) and BCL-2 homologous antagonist/killer 

(BAK)) and BH3-only members (BIM, BCL-2-associated death promoter 

(BAD), BH3 interacting-domain death agonist (BID), BCL-2-interacting 

killer (BIK), p53 upregulated modulator of apoptosis (PUMA) and NOXA 

(latin for damage)) (Table 1.1). The functions of the BCL-2 proteins are 

linked to their ability to localize to intracellular membranes and their 

capacity to homo- and hetero-oligomerise.   

 Pro-apoptotic BH3-only-proteins induce homo-oligomerization of 

BAX and BAK in the outer mitochondrial membrane leading to 

permeabilization of mitochondria (199, 200). Without BAX and BAK, BH3-

only proteins are unable to induce apoptosis (201, 202). The anti-apoptotic 

BCL-2 family members, BCL-2, BCL-xL and myeloid cell leukaemia-1 

(MCL-1) prevent cytochrome c release by inactivating BAX and BAK, 

preventing their activation of BH3-only proteins or by regulating 

permeability transition pore opening (203-207). As discussed in section 

1.3.4, p53 promotes apoptosis in response to gentoxic stress by inducing 

the expression of key target genes (p21, p27, BAX, PUMA, NOXA, etc.) 

(208). Frequent p53 mutations, observed in cancer cells, may account for 

resistance to DNA damage inducing chemotherapeutic agents (197). 
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Anti-apoptotic 

members 

Pro-apoptotic 

members 

Pro-apoptotic members- 

BH3-only members 

BCL-2 BAX BAD 

BCL-xL BOK BIK 

BCL-w BCL -xS BID 

A1 BAK HRK 

MCL-1 BCL-GL BIM 

  BMF 

  NOXA 

  PUMA 

 

Table 1.1 BCL-2 family members 
BOK: BCL-2 related ovarian killer; BMF: Bcl-2-modifying factor; HRK: 

Harakiri BCL-2 interacting protein. 
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1.4.3 Endoplasmic reticulum (ER) stress- induced apoptosis 

The ER is another vital organelle from which apoptotic signals can 

originate.  Key functions performed by the ER include, lipid biosynthesis, 

protein folding and Ca2+ storage.  Prolonged ER stress can ultimately lead 

to cell death. By binding with the protein TNF Receptor-Associated Factor 

2 (TRAF2), serine/threonine-protein kinase/endoribonuclease (IRE1) 

activates c-Jun N-terminal Kinase signalling, at which point human 

procaspase 4 is believed to cause apoptosis by activating downstream 

caspases (209-211) (212-214) (215, 216). 

 

1.4.4 Extrinsic or death receptor-mediated pathway 

The extrinsic pathway (also known as the death receptor-mediated 

apoptotic pathway) is activated following binding of death ligands to its 

cognate death receptor expressed on the cell surface. Death receptors 

include Fas (CD95), tumour necrosis factor (TNF) and tumour necrosis 

factor-related apoptosis-inducing ligand (TRAIL). Death ligands include 

soluble factors such as TNF or membrane bound ligands such as Fas 

ligand. When death ligands bind to cell surface death receptors, the 

receptors undergo a conformational change that exposes Death Domains 

(DDs) in the cytosol. This, in turn, leads to recruitment of adaptor 

molecules to form the Death Inducing Signalling Complex (DISC). The 

function of these adaptor proteins is to transduce the death signal from the 

receptor to caspases. The intrinsic and extrinsic pathways converge in the 

activation of these executioner caspases. Cross-talk between the extrinsic 

and intrinsic pathways occurs to amplify the death signal (217, 218).   
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Figure 1.9 Apoptosis: the 'extrinsic' and 'intrinsic' 
pathways to caspase activation  
Two major apoptotic pathways are illustrated: one activated via death 

receptor activation ('extrinsic') and the other by stress-inducing stimuli 

('intrinsic'). Triggering of cell surface death receptors of the tumour 

necrosis factor (TNF) receptor superfamily, including CD95 and TRAIL-

R1/-R2, results in rapid activation of the initiator caspase 8 after its 

recruitment to a trimerized receptor-ligand complex (DISC) through the 

adaptor molecule Fas-associated death domain protein (FADD). In the 

intrinsic pathway, stress-induced apoptosis results in perturbation of 

mitochondria and the ensuing release of proteins, such as cytochrome c, 

from the inter-mitochondrial membrane space. The release of cytochrome 

c, from mitochondria is regulated in part by BCL-2 family members, with 

anti-apoptotic (BCL-2/ BCL-XL/MCL-1) and pro-apoptotic (BAX, BAK and 

tBID) members inhibiting or promoting the release, respectively. Once 

released, cytochrome c binds to apoptotic protease-activating factor 1 
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(APAF1), which results in formation of the APAF1–caspase 9 apoptosome 

complex and activation of the initiator caspase 9. The activated initiator 

caspases 8 and 9 then activate the effector caspases 3, 6 and 7, which are 

responsible for the cleavage of important cellular substrates resulting in the 

classical biochemical and morphological changes associated with the 

apoptotic phenotype. Reproduced with permission from MacFarlane et al, 

Apoptosis and disease: a life or death decision EMBO reports (2004) 5, 

674 - 67 (219). 
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1.5 Mitotic catastrophe 
 
1.5.1 Definition of mitotic catastrophe 

Mitotic catastrophe (MC) has been defined as a mechanism of cell death 

characterized by the occurrence of aberrant mitosis with the formation of 

large cells that contain multiple nuclei, which are morphologically 

distinguishable from apoptotic cells (220-222). In recent years there has 

been considerable interest in inducing MC in cancer for several reasons. 

Firstly, many cancer cells are tetraploid or aneuploid, which renders them 

intrinsically more sensitive to mitotic aberrations and accordingly more 

sensitive to the induction of MC (223). Furthermore, many 

chemotherapeutic agents that induce cell cycle-independent cell death at 

high doses are very efficient at inducing MC at lower doses (224). Lastly, 

since cancer cells are frequently deficient in cell-cycle checkpoints, they 

may be particularly susceptible to the induction of MC. 

 There has been considerable controversy in the literature as to a 

broadly accepted definition of the term MC (225). Igor Roninson defined 

MC in morphological terms, that is, as a type of cell death resulting from 

abnormal mitosis, which results in the formation of large cells with multiple 

micronuclei and decondensed chromatin (226). Micronuclei often originate 

from chromosomes or chromosome fragments that have not been 

distributed evenly between daughter nuclei, whereas two or more nuclei 

with similar or heterogeneous sizes can occur following aberrant 

karyokinesis (227). However, as MC proceeds and is followed by 

apoptosis, necrosis or cell senescence many of the morphological traits 

that characterize these processes become prominent making MC difficult 

to recognize and classify morphologically (228). An alternative approach is 

to consider MC as an oncosuppressive signalling cascade that precedes 

cell death or senescence rather than a bona fide cell death executioner 

mechanism (227).  
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1.5.2 Molecular features of MC 

The molecular events that accompany MC are not completely 

characterized and there appears to be a high degree of variability in the 

molecular cascades activated in distinct instances of MC. The levels of 

several proteins including CHK1/2, centromere protein A (CENP-A), 

MAD2 and budding uninhibited by benzimidazoles (BUB1) have been 

reported to be altered in drug-treated cells entering MC (224, 225, 229-

231). These reports suggest that antitumour drugs may deplete important 

regulators of mitosis leading to abnormal nuclear division and subsequent 

cell death.  

 In order for MC to occur, DNA-damaged cells first halt in G2/M, 

before subsequent entry into mitosis (220). Inhibition or absence of p53 

and p21, is required to bypass the G2/M checkpoint. Aberrant mitosis in 

irradiated or drug-treated cells may follow several pathways but the final 

step is usually the formation of nuclear envelopes around individual 

clusters of missegregated chromosomes (micronuclei) (232, 233). Aberrant 

mitotic entry, before the completion of DNA replication, can also result in 

MC. This requires the activation of CDK1, and it is thought that the 

premature entry of active CDK1/cyclin B1 complex (see Figure 1.6) into the 

nucleus causes premature chromatin condensation and apoptosis (234, 

235). Increased nuclear cyclin B1 has been detected in examples of MC in 

human colorectal adenocarcinoma cell lines treated with fluorouracil (236) 

and in colon cancer cells treated with doxorubicin (237). CHK2 has been 

shown to negatively regulate MC and therefore the inactivation of CHK2 

(and of its activating partners) can sensitize cells to this type of death. This 

raises the possibility that the inhibition of CHK2 (and similar enzymes) may 

sensitize cancer cells to MC induced by chemotherapy.  

 As discussed in section 1.3.4, p53 plays a key role in the polyploidy 

checkpoint. Interestingly the loss of p53 can sensitize cells to microtubule 

disrupting agents such as paclitaxel (238, 239). Following treatment with 
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spindle inhibitors, cells possessing an intact p53 system undergo a p21-

mediated G1 arrest making them relatively resistant to apoptosis induced 

by antimicrotubule agents. Cells deficient in p53 fail to undergo such a G1 

arrest (since they fail to upregulate p21) which allows endoreduplication of 

their DNA, leading to massive apoptosis (240).  

 
1.5.3 MC and apoptosis 

MC-induced apoptosis is accompanied by chromatin condensation, 

mitochondrial release of proapoptotic proteins (in particular cytochrome c), 

caspase activation and DNA degradation (225). Transfection with inhibitors 

of mitochondrial membrane depolarization such as BCL-2 and BCL-xL or 

knock out of BAX can prevent mitotic catastrophe (241-244). Conversely it 

has also been shown that inhibition of BCL-2 expression by antisense 

oligonucleotides can actually facilitate and amplify MC (245). The 

molecular links between abnormal mitosis and activation of the central 

executioner of apoptosis are beginning to be understood (Figure 1.10). In 

the situation of p53-dependent MC, the transcription of the proapoptotic 

p53 target genes BAX and PUMA may determine the induction of 

mitochondrial membrane depolarization (243, 244). In p53-independent 

MC, caspase-2 appears to be activated upstream of mitochondria (246). 

HDAC inhibition leads to the accumulation of cells with a 4N DNA content 

resulting in apoptosis, in a process that involves a primary caspase-2 

activation that cannot be inhibited by BCL-2 (247). Exactly how MC leads 

to caspase-2 activation is unclear but procaspase-2 can be activated in the 

nucleus as a result of DNA damage (248-250).  

 
1.5.4 Drugs that induce mitotic catastrophe 

Many of the anti-cancer drugs currently utilized function by inducing MC. 

These include taxanes, vinca alkaloids, as well as recently developed 

compounds such as epothilones, which mimic the activity of taxanes yet 

bind to a distinct binding site on tubulin (251). In addition, there are several 
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inducers of MC that are currently being evaluated in pre-clinical and clinical 

settings, including inhibitors of Aurora kinases (252), CHK1 (253), polo-like 

kinases (PLKs) (discussed in section 1.8) (254, 255) and survivin (256). 
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Figure 1.10 Schematic illustration of putative pathways 
leading from MC to cell death  
Premature entry into mitosis as a result of abrogated G2/M arrest in the 

presence of DNA damage or direct mitotic damage leads to arrest at the 

metaphase–anaphase transition due to spindle checkpoint and to 

catastrophic mitosis. MC cells can undergo endoreduplication and become 

polyploid. These cells can die by either necrosis or apoptosis. Cells being 

arrested at the metaphase–anaphase transition can escape mitosis 

through mitotic slippage and become tetraploid. Cells that cannot be 

arrested at the metaphase–anaphase transition due to defects in the 

spindle checkpoint also become tetraploid. These tetraploid cells either 

can arrest at G1 and die through p53-dependent apoptosis or do not arrest 

at G1 and enter S-phase (endoreplication) and die through necrosis. 

Modified and reprinted by permission from Nature Publishing Group: 

Vakifahmetoglu et al (2008).  
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1.6 Chronic myeloid leukaemia 
1.6.1 Introduction 

As discussed earlier CML is a myeloproliferative neoplasm characterized 

by the dysregulated production of mature granulocytes. It is characterized 

by the presence of the Ph chromosome t(9;22)(q34;q11), resulting in the 

BCR-ABL fusion gene and its unique gene product (BCR-ABL), a 

constitutively active tyrosine kinase that dysregulates apoptosis and 

promotes survival by modulating multiple downstream intracellular 

signalling pathways (see section 1.1.3).  

 
1.6.2 Epidemiology 

CML accounts for approximately 15 to 20 percent of leukaemias in adults 

(257). It has an annual incidence of 1 to 2 cases per 100,000, with a slight 

male predominance (4, 258). The median age at presentation is 50 years.  

Exposure to ionizing radiation is the only known risk factor (55, 259). 

 
1.6.3 Clinical features 

The clinical hallmark of CML is the uncontrolled production of maturing 

granulocytes (predominantly neutrophils), but also eosinophils and 

basophils. CML has a triphasic clinical course and progresses from CML-

CP to CML-AP and to CML-BC. Over 90% of patients are diagnosed in the 

CML-CP. If these patients are not treated with agents capable of affecting 

the natural course of the disease, the majority of these will progress 

through the remaining two stages - the CML-AP and CML-BC.  

 
1.6.4 Definition of accelerated and blast phase 

Varying definitions have been applied to CML-AP (Table 1.2) (260). The 

most frequently used criteria are from the World Health Organization 

(WHO). CML-BC, is usually defined by the presence of one or more of the 

following findings: ≥20% PB or BM blasts (263) , large foci or clusters of 

blasts on the BM biopsy (264) or extramedullary blastic infiltrates (263). 
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MD Anderson* Sokal et al• WHOΔ 

PB blasts ≥15 percent 

PB blasts + pro ≥30 percent 
PB or BM blasts ≥5 percent PB or BM blasts 10-19 percent 

PB baso ≥20 percent PB basophils ≥20 percent PB basophils ≥20 percent 

Platelets <100,000/µL not related 

to therapy 
Thrombocytopenia, not related to therapy Platelets <100,000/µL, unrelated to therapy 

Cytogenetic evolution Cytogenetic evolution 

Platelets >1 million/µL despite adequate therapy Platelets >1,000,000/µL unresponsive to therapy 

Marrow collagen fibrosis   

Anemia, unrelated to Rx   

Progressive splenomegaly 
Progressive splenomegaly and increasing WBC  

unresponsive to therapy 

WBC doubling time <5 days   

Unexplained fever   

Cytogenetic evolution 

Pelger-Huett-like neutrophils, nucleated RBCs, 

megakaryocyte fragments 
  

 
Table 1.2 Accelerated phase CML criteria 
WHO: World Health Organization; PB: peripheral blood; BM: bone marrow; pro: promyelocytes; baso: basophils; WBC: white blood cell count; RBC: red blood 

cells. 

* Kantarjian, HM, et al. Cancer 1988; 61:1441. 

• Sokal, JE, et al. Semin Hematol 1988; 25:49. 

Δ Vardiman, JW, et al. Blood 2002; 100:2292. For each of the three sets of criteria, the accelerated phase of CML is diagnosed if one or more of the listed features 

is present. Adapted from O'Dwyer, ME, et al. Blood 2002; 100:1628.
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1.6.5 Current challenges in CML therapy 

Targeted BCR-ABL inhibitors (imatinib, nilotinib and dasatinib) have 

provided dramatic clinical benefit for Ph+ leukaemias (265). They 

competitively inhibit the inactive configuration of the BCR-ABL protein 

tyrosine kinase by blocking the ATP binding site and thereby preventing a 

conformational switch to the active form (266). Although they do not cure 

the disease, they result in long-term disease control in most patients and 

thus they have become standard of care. Second-generation TKIs have 

since also been developed. Despite the advances represented by these 

therapies, there remains considerable room for improvement in outcomes, 

especially in advanced disease.  

 
1.6.6 Overview of treatment of CML 

 
1.6.6.1 Monitoring response and response criteria 

There are three principal strategies to assess response in CML (267, 268). 

Haematologic response (HR) is assessed by the white blood cell count, 

differential, and platelet count. Cytogenetic response (CyR) is assessed by 

BM biopsy. Conventional chromosomal cytogenetics or fluorescence in situ 

hybridization (FISH) (for patients with an inadequate number of 

metaphases) is used to evaluate the percentage of Ph positive cells 

present in the BM (269). Molecular response is assessed by quantitative 

real time polymerase chain reaction (qRT-PCR) of the PB. This technique 

is used to detect the presence or absence of malignant circulating cells 

that harbour the BCR-ABL gene. The definitions of responses are outlined 

in Table 1.3. 

 It is important to note that clinical trials in CML usually report best 

response level achieved at any time during follow-up. These cumulative 

response figures do not reflect the fact that many patients will achieve but 

then subsequently lose a response. Therefore, it has been suggested that 

a more informative indicator of long-term benefit would be to report on 
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responses maintained at particular landmark time-points, i.e. 3, 6, 12 and 

18 months (270, 271). Based on this means of analysis, the 5-year 

probability of patients with newly diagnosed CML-CP being in a MCyR with 

imatinib is only 62.7% (270). 

 
1.6.6.2 Failure, suboptimal response 

Treatment failure is defined by the loss of a CHR or CCyR; the presence of 

BCR-ABL kinase mutations that are poorly sensitive to imatinib; clonal 

progression of disease; or the inability to reach the certain threshold levels 

after the initiation of therapy (272). These threshold levels are CHR by 

three months, any cytogenetic response by six months, PCyR by 12 

months and CCyR by 18 months. Failure to achieve an optimal response 

occurs in up to 25 percent of CML-CP patients treated with imatinib (273). 

On the other hand secondary resistance (defined as loss of response in 

patients with an initial response to a TKI) occurs in approximately 8 percent 

of CML-CP patients treated with imatinib at two years (274) (275).
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Table 1.3 Response definitions in CML 
CHR: complete hematologic response; CCyR: complete cytogenic response; PCyR: partial cytogenetic response; Ph+: Philadelphia chromosome positive; MCyR: 
major cytogenetic response; minCyR: minor cytogenetic response; noCgR: no cytogenetic response; CMR: complete molecular response; PCR: polymerase chain 
reaction; MMR: major molecular response. Reprinted with permission from: Baccarani, M, Cortes, J, Pane, F, et al. Chronic myeloid leukaemia: an update of 
concepts and management recommendations of European LeukemiaNet. J Clin Oncol 2009; 27:604. 

Response by type Definitions 
Haematological 

WBC <10 x 109/L 
Basophils <5% 
No myelocytes, promyelocytes, myeloblasts in the differential 
Platelet count <450 x 109/L 

Complete (CHR) 

Spleen nonpalpable 
Cytogenetic  

Complete (CCyR) No Ph+ metaphases 

Partial (PCyR) 1% to 35% Ph+ metaphases 

Major (MCyR) CCyR plus PCyR 

Minor (mCyR) 36% to 65% Ph+ metaphases 

Minimal (minCyR) 66% to 95% Ph+ metaphases 

None (noCyR) >95% Ph+ metaphases 

Molecular 

Complete (CMR) 
Undetectable BCR-ABL mRNA transcripts by real time quantitative and/or nested PCR in two consecutive blood samples of 
adequate quality (sensitivity >104) 

Major (MMR) Ratio of BCR-ABL to ABL (or other housekeeping genes) ≤0.1% on the international scale 
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1.6.6.3 Imatinib 

Imatinib is a 2-phenylaminopyrimidine derivative that functions as a 

specific inhibitor of a number of tyrosine kinases including ABL, c-Kit and 

platelet-derived growth factor receptor (PDGFR) (276, 277). Imatinib 

gained approval as the initial treatment of choice for CML-CP based on 

prospective clinical trials (278-280). These trials demonstrated more 

frequent and more durable cytogenetic responses when compared with 

interferon alpha (IFNα) plus ara-C, which was the previous standard of 

care for those unable to receive haematopoietic stem cell transplantation 

(HSCT). A detailed description of the pharmacological properties of 

imatinib is available in Appendix A.  

 
1.6.6.4 Resistance in CML   

While TKIs have dramatically improved CML treatment, resistance can 

develop due to BCR-ABL kinase domain mutations, BCR-ABL 

amplification and over-expression, clonal evolution (281, 282), excretion of 

imatinib from the cell by transmembrane transporters (283), or, most 

commonly, by the development of single nucleotide mutations in BCR-ABL 

which result in amino acid substitutions that change the conformation of 

the ATP binding site (P-loop), imatinib binding site, activation loop 

(controlling kinase activation) or catalytic domain. Kinase domain 

mutations can reduce BCR-ABL flexibility and destabilize the inactive form 

necessary for imatinib binding or interrupt critical contact points for drug 

binding (282, 284). More than 50 such mutations have been described to 

date and have been associated with both primary and secondary 

resistance. In one study, amino acid substitutions at seven residues 

(M244V, G250E, Y253F/H, E255K/V, T315I, M351T, and F359V) 

accounted for 85% of all resistance-associated mutations (285). P-loop 

and T315I mutations were particularly frequent in advanced phase CML 

and Ph+ ALL patients (286). Mutations leading to clinical resistance may 
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confer novel biological properties to the BCR-ABL kinase that may affect 

disease progression (287); their appearance often accompanies 

progression from CP to AP or BC (285). While some of these mutations 

confer only mild increases in the resistance to imatinib, others produce 

profound resistance in vitro and in vivo, which cannot be overcome by 

dose increases or by the use of newer TKIs such as dasatinib and nilotinib 

(288). 

 Although both dasatinib and nilotinib are active against most of the 

known BCR-ABL mutations, some of the mutations, especially a mutation 

known as T315I, are resistant to high concentrations of both of these 

newer agents (289, 290). However ponatinib (see Appendix A), a 

multikinase inhibitor that is effective in patients with the T315I mutation has 

now been approved by the United States Food and Drug Administration 

(FDA) (291). 

 Ongoing clinical trials are evaluating the mutational status of 

patients treated with nilotinib and dasatinib and it may be possible in the 

future to tailor the choice of second line therapy according to the specific 

mutation in a given patient. In other patients, resistance may be caused by 

activation of other, non BCR-ABL-mediated signalling pathways, such as 

the sarcoma (SRC) kinases. While imatinib and nilotinib do not directly 

inhibit members of the SRC kinase family, dasatinib and bosutinib inhibit 

both BCR-ABL and SRC kinases.  

 
1.6.6.5 Disease persistence in CML 

Early studies showed that a population of quiescent LSCs can be isolated 

from the blood and BM of patients with untreated CML-CP using flow 

cytometry techniques (137). These cells regenerate BCR-ABL-positive 

haemopoiesis in immunocompromised mice upon transplantation (292). In 

vitro studies show that while imatinib is antiproliferative for CML stem cells 

it does not induce apoptosis in CML stem cells (58). Non-proliferating Ph+ 

HSC are resistant to imatinib-induced apoptosis, despite achieving similar 
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intracellular levels of imatinib to more mature CML cells. In vitro studies of 

Ph+ HSC isolated from patients show that autophagy plays a critical role 

as a survival mechanism following treatment with TKI therapy (293).  

 In patients that achieve a CCyR with imatinib or IFN the persistence 

of malignant CD34+ cells, and CD34+/CD38- cells has been shown with 

the use of RT-PCR and FISH (60, 294-296). A recent study showed that 

prolonged imatinib exposure (at least 4 years) failed to eliminate BCR-ABL 

(+) stem cells (140). Another study showed that imatinib treatment resulted 

in a biphasic decrease in BCR-ABL transcript levels, with a rapid decrease 

during the first few months of treatment, followed by a more gradual 

decrease that often continues over many years. This long-term, gradual 

decrease in the BCR-ABL levels seen in most patients is consistent with a 

continual, gradual reduction of the LSC (297). 

 The French STIM (STop IMatinib) trial reported the results of 

imatinib cessation in patients with sustained undetectable molecular 

residual disease for more than 2 years. In this study most patients (59%) 

had a molecular relapse at 1 year following cessation of imatinib (298). A 

recent study showed that BCR-ABL-expressing marrow LSCs could be 

detected in patients with CML with undetectable molecular residual 

disease sustained for over 3 years following treatment with IFN-α, imatinib 

and dasatinib (299). This persistence of residual BCR-ABL expressing 

LSCs represents a theoretical risk of recurrence even in patients with 

sustained undetectable molecular residual disease after cessation of 

therapy.  

 
1.6.7 Second generation TKIs 

 
1.6.7.1 Nilotinib  

Nilotinib (Tasigna®) is an orally administered TKI made by the Novartis 

Pharmaceuticals Corporation. Unlike dasatinib, which has a completely 

different structure to imatinib, nilotinib was methodically and rationally 
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designed to create a better topological fit in the ABL kinase domain of 

BCR-ABL resulting in enhanced BCR-ABL inhibition. Like dasatinib, its 

spectrum of inhibition also includes c-Kit and PDGFR (277). Similar to 

imatinib and dasatinib, nilotinib is unable to overcome the resistance of the 

T315I mutation (300). Nilotinib is approved by the FDA for the treatment of 

patients with newly diagnosed CML-CP or patients with CML-CP or CML-

AP that are resistant to or intolerant of imatinib. A detailed description of 

nilotinib is available in Appendix A. 

 
1.6.7.2 Dasatinib 

Dasatinib (BMS-354825; Sprycel) was originally developed as an inhibitor 

of the SRC family of kinases (301). It is active against imatinib-resistant or 

intolerant CML and inhibits both the active and inactive conformations of 

the ABL domain (302-305). An in vitro study showed that dasatinib was 

325 times more potent than imatinib in inhibiting wild type BCR-ABL and 

also has activity against BCR-ABL mutants with high levels of imatinib 

resistance, except for those with the T315I mutation (288). Dasatinb also 

inhibits a number of other important kinases including the proto-oncogene 

tyrosine-protein kinase, yes, c-Kit and PDGFR (305). Dasatinib is approved 

by the FDA for the treatment of patients with newly diagnosed CML-CP or 

patients with CML-CP, CML-AP, or CML-BC that are resistant to or 

intolerant of imatinib. A detailed description of dasatinib is available in 

Appendix A. 

 
1.6.7.3 Bosutinib 

Bosutinib (previously SKI-606) is a dual kinase inhibitor that targets both 

ABL and SRC pathways, but does not target c-Kit or PDGFR. In 

September 4, 2012, the FDA approved bosutinib for CML-CP, CML-AP or 

CML-BC in adult patients with resistance or intolerance to prior therapy. A 

detailed description of bosutinib is available in Appendix A. 
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1.6.7.4 Ponatinib  

Ponatinib is an oral BCR-ABL inhibitor that has demonstrated activity 

against the native and mutated BCR-ABL proteins, including the T315I 

mutation (291). On December 14, 2012, the FDA granted accelerated 

approval to ponatinib for the treatment of adult patients with CML-CP, 

CML-AP, CML-BC or Ph+ALL that is resistant or intolerant to prior TKI 

therapy. The approval was based on the results of multicenter, 

international, single-arm phase 2 trial of 449 patients with disease that was 

resistant or intolerant to prior TKI therapy. Preliminary results reported 

MCyR in 54% of the with CML-CP. Importantly 75% of the CML-CP 

patients with T315I mutations had MCyR following ponatinib (306). A 

detailed description of ponatinib is available in Appendix A. 
1.6.8 Choice of TKIs 

 
1.6.8.1 Initial treatment of CML-CP 

Patients with newly diagnosed CML-CP are generally treated with a TKI. 

Allogeneic HSCT may be a reasonable alternative in rare circumstances, 

such as that of a younger patient with an HLA matched sibling donor. The 

second generation TKIs, nilotinib and dasatinib, have shown improved 

clinical benefit over imatinib during the early treatment period. However 

with the current available evidence it is difficult at this time to recommend 

one TKI over another for individual patients. A choice among TKIs should 

take into consideration the drug side effect profiles and the patient's co-

morbidities.  

 
1.6.8.2 Choice of second line therapy 

Patients who progress on frontline TKI therapy should be carefully 

evaluated. Those who appear to have resistant disease should be 

questioned carefully to assure that they are taking the prescribed TKI at 

the recommended dose and schedule and avoiding other medications or 

herbal supplements which may impair efficacy (307). If resistance is 

identified, the disease phase should be re-evaluated using a complete 
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blood count with differential and a BM biopsy with cytogenetics. In addition, 

mutational analysis of BCR-ABL should be performed. A newly acquired 

mutation in BCR-ABL may trigger a change in treatment (e.g. dose 

increase, change to another TKI or HSCT) depending upon the type of 

mutation found. Mutational analysis may provide useful information 

regarding the relative sensitivity of the clone to available alternate 

therapies. The presence of the T315I mutant indicates that therapy with 

imatinib, nilotinib or dasatinib is no longer appropriate. These patients may 

be considered for a HSCT, ponatinib (if available), omacetaxine (discussed 

in section 1.6.11) or a clinical trial with an agent known to be active against 

the T315I mutation. On the other hand patients with weakly resistant BCR-

ABL kinase mutants, e.g. M351T, may benefit from imatinib dose 

escalation or switching to a second-line TKI. However the Y253H, 

E255K/V, and F359V/C/I mutations are resistant to imatinib and to a lesser 

degree to nilotinib but sensitive to dasatinib. The F317L/V/I/C, V299L, and 

T315A mutations are sensitive to nilotinib but show intermediate sensitivity 

to imatinib and dasatinib (308). Indeed this in vitro data has been borne out 

in clinical study findings. For instance, no CCyRs were observed in 

patients treated with nilotinib who had mutations in amino acids Y253, 

E255, T315, or F359 (309, 310). Similarly resistance to dasatinib has been 

associated with mutations at residues T315, F317 and V299L and these 

mutations are seen in patients developing dasatinib failure (311).  

 The differing side effect profiles of the available TKIs may lead 

certain agents to be more suitable for patients depending on their co-

morbidities. For example nilotinib may be more suitable than dasatinib for 

patients than with significant respiratory or cardiac impairment or bleeding 

diatheses. On the other hand dasatinib than be more suitable than nilotinib 

for patients with liver dysfunction, pancreatitis and cardiac conduction 

abnormalities. 
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1.6.9 Potential toxicity of TKIs on normal haematopoietic precursors 

All four currently approved TKIs inhibit c-Kit and PDGFR. As discussed 

earlier c-Kit is the receptor for SCF, a cytokine that is assumed to be 

critical for the expansion of immature human HSCs (312-314). In addition 

PDGF has been shown to be an effective cytokine for the ex vivo 

expansion of normal early stem and progenitor cells (315). However the 

inhibition of normal CD34+ cell expansion by imatinib exceeds that 

achieved by withdrawal of SCF or blocking of c-Kit by a monoclonal 

antibody suggesting that other mechanisms besides inhibition of c-Kit play 

a role in imatinib induced inhibition of normal progenitor cells (316). 

 
1.6.10 Haematopoeitic stem cell transplant 

While HSCT has been widely used in the past for the treatment of CML its 

use has declined with the emergence of TKIs. Using HLA-matched sibling 

donors, 50 to 75 percent of patients with CML transplanted in CML-CP 

achieve long-term remissions (317-321). The ability of allogeneic HSCT to 

cure CML is related to the anti-leukaemic effects of both the conditioning 

regimen and the graft versus leukaemia (GVL) effect of the donor 

lymphocytes. While myeloablative allogeneic HSCT offers potential cure to 

patients with CML it is associated with a high treatment-related mortality 

rate in older patients (322). Various reduced intensity conditioning (RIC) 

(323) or nonmyeloablative (324) HSCT regimens have been employed in 

fit older adults.  

 The prognosis for CML-AP or CML-BC is poor (particularly for 

patients previously treated with imatinib), as these phases tend to be 

relatively resistant to most forms of treatment (325-327). There is a 

significant relapse rate in patients in CML-AP or CML-BC even after 

successful treatment with imatinib, dasatinib or nilotinib and it is 

appropriate to consider transplantation in such individuals. As such, a 

reasonable plan is to initiate a search for a matched donor while 

attempting to return the patient to a second CML-CP (328) with suitable 
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candidates subsequently undergoing transplantation.  

 
1.6.11 Omacetaxine  

Omacetaxine mepesuccinate (previously known as homoharringtonine) is 

a protein synthesis inhibitor that has demonstrated activity in patients with 

CML-CP with a T315I mutation. It inhibits synthesis of proteins that 

regulate proliferation and cell growth (329) and has been approved by the 

FDA for the treatment of CM-CP or CML-AP with resistance or intolerance 

to two or more TKIs. Unlike TKIs, it has been shown to induce apoptosis in 

LSCs through down regulation of MCL-1 (330). A phase 2 trial investigated 

the use of omacetaxine in 62 patients with CML-CP resistant to an initial 

TKI who had an identified T315I mutation. Rates of CHR, MCyR, and 

CCyR were 77, 23, and 16 percent, respectively.  

 
1.6.12 Treatment of CML-AP 

Once a patient progresses from CML-CP to CML-AP their disease is much 

more difficult to control. Among patients who have not received imatinib, 

treatment options for CML-AP include TKIs and allogeneic HSCT.  

 
1.6.13 Treatment of CML-BC 

There are two major forms of CML-BC: lymphoid and myeloid. Myeloid 

blast crisis, which occurs in approximately 70 percent of cases, does not 

respond well to standard AML-induction regimens (331), although 

responses to TKIs, alone (332-334) or in combination with chemotherapy 

(335) have been noted. Lymphoid blast crisis with a B lineage 

immunophenotype accounts for approximately 30 percent of cases and 

often responds to chemotherapeutic programs used for ALL alone and in 

combination with a TKI. Since myeloid blast crisis is often refractory to 

chemotherapy, the preferred initial treatment is the use of a TKI followed 

by an allogeneic HSCT for eligible patients. Transplantation while the 

patient remains in CML-BC has poor results with less than 10 percent long-

term survival (320). A reasonable plan is an attempt to return the patient to 
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an earlier phase of disease, with suitable candidates subsequently 

undergoing allogeneic HSCT. 

 
1.6.14 Therapeutic relevance of CML stem cells 

The development of TKIs has significantly improved the outcome for 

patients with CML. Furthermore the development of more potent second 

line inhibitors of BCR-ABL allow targeting of resistant disease. However 

few patients are cured of their disease probably due to the continued 

presence of reversibly quiescent Ph+ HSC. Therefore targeting this 

population offers the potential of cure. However Ph+ HSCs do not appear to 

undergo apoptosis in the setting of BCR-ABL inhibition with imatinib or 

second generation TKIs (143, 336, 337). Therefore alternative strategies to 

target this population are of interest (338). One strategy is to use growth 

factor stimulation to enhance the cycling of quiescent Ph+ HSC. Preclinical 

studies have shown that growth factor before imatinib treatment reduces 

the number of residual nondividing CML CD34(+) cells (339). This supports 

the potential efficacy of growth factor stimulation in reducing residual 

leukaemia progenitor population in imatinib-treated patients. 

 Similarly pretreatment with the protein kinase C inhibitor bryostatin-1 

antagonises the anti-proliferative effect of imatinib, allowing greater 

efficacy against the non-cycling population (340). Other drugs that can 

potentially target Ph+ HSCs include the farnesyl transferase inhibitors, 

lonafarnib and BMS-214662 (341, 342). Other potential strategies include 

targeting the hedgehog and the Wnt signalling pathways that regulate the 

self-renewal behaviour of HSCs (68, 343) or targeting autophagy as a 

potential resistance mechanism to TKIs (293). As mentioned earlier HSCT 

is a curative strategy in CML and effectively targets the Ph+ HSC 

population. 
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1.6.15 Conclusion 

While the development of TKIs in CML has been one of the most exciting 

advances in medicine in the last twenty years significant issues remain in 

CML. Resistance to TKI inhibitor therapy occurs through various 

mechanisms some of which can be overcome with second generation 

inhibitors. Efforts are underway to improve our understanding of the 

biology of Ph+ HSCs. Targeting this quiescent population of cells offers the 

potential for a cure for CML.   

 

1.7 Acute myeloid leukaemia 
 
1.7.1 Introduction 

AML is characterized by a clonal proliferation of myeloid precursors with an 

impaired capacity to differentiate into more mature cellular elements. 

Consequently there is an accumulation of leukaemic blasts or immature 

myeloid precursors in the BM, PB, and occasionally in other tissues, with 

variable reduction in the production of normal red blood cells, platelets and 

mature granulocytes. The increased production of malignant cells along 

with a reduction in these mature elements results in a variety of systemic 

consequences including anaemia, bleeding and an increased risk of 

infection.  

 
1.7.2 Epidemiology 

As discussed in section 1.1 AML is the most common acute leukaemia in 

adults and accounts for approximately 80 percent of cases in this group (3, 

257). In the United States and Europe, the incidence has been stable at 3 

to 5 cases per 100,000 persons per year (4, 258, 344). The incidence 

increases with age with approximately 1.3 and 12.2 cases per 100,000 

persons for those under or over 65 years, respectively. It is more common 

in males than females with a male to female ratio of approximately 5:3. 
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1.7.3 Clinical features 

Patients with AML generally present with symptoms related to 

complications of pancytopaenia (eg, anaemia, neutropaenia, and 

thrombocytopaenia), including weakness and easy fatigability, infections of 

variable severity, and/or haemorrhagic findings such as gingival bleeding, 

ecchymoses, epistaxis, or menorrhagia (345). Skin involvement occurs in 

up to 13 percent of patients and is mostly found in cases with a prominent 

monocytic or myelomonocytic component (346).  

 
1.7.4 Pathological features 

 
1.7.4.1 Diagnosis 

A presumptive diagnosis of AML can sometimes be made on the presence 

of circulating myeloblasts on the PB smear but an adequate BM aspiration 

and biopsy is usually necessary. Standard testing performed on the BM or 

PB includes Wright or Wright-Giemsa staining, cytochemical reactions, 

flow cytometric analysis for phenotyping and cytogenetic analysis. In the 

current WHO classification system, blast forms must account for at least 20 

percent of the total cellularity. However the presence of certain genetic 

abnormalities are considered diagnostic of AML without regard to the blast 

count: AML with t(8;21), AML with inv(16) or t(16;16) or APL with t(15;17).  

 
1.7.4.2 Immunonophenotyping 

Flow cytometry of the PB or marrow aspirate identifies myeloblasts by 

characteristic patterns of surface antigen expression. Most cases will 

express CD34, HLA-DR, CD117, CD13, and CD33 (347) (Table 1.4). Flow 

cytometry helps distinguish APL from other subtypes of AML. In AML other 

than APL, expression of CD34 is seen in over 60% and expression of HLA-

DR in over 85% of all cases. However less than 10% of cases of non-APL 

AML are negative for both CD34 and HLA-DR as opposed to over 80% of 

cases of APL (347). Among AML cases, CD2 coexpression is almost 

exclusively restricted to French-American- British (FAB (discussed below)) 
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subtypes M3 variant and M4Eo. The most valuable markers to differentiate 

between myeloperoxidase-negative AML subtypes M0 and ALL are CD13, 

CD33, and CD117, typical of M0, and intracytoplasmic CD79a, 

intracytoplasmic CD3, CD10, and CD2, typical of B cell or T cell lineage 

ALL (348). 
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Table 1.4 Immunophenotyping of AML Cells 

Marker Lineage 
CD13 Myeloid 
CD33 Myeloid 
CD34 Early precursor 
HLA-DR Positive in most AML, negative in APL 

CD11b Mature monocytes 
CD14 Monocytes 
CD41 Platelet glycoprotein IIb/IIIa complex 
CD42a Platelet glycoprotein IX 
CD42b Platelet glycoprotein Ib 
CD61 Platelet glycoprotein IIIa 
Glycophori
n A 

Erythroid 

TdT Usually indicates ALL however,  
may be positive in M0 or M1 

CD11c Myeloid 
CD117 (c-
Kit) 

Myeloid/stem cell 
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1.7.4.3 Cytogenetic findings 

All patients with suspected AML should undergo metaphase cytogenetic 

analysis of their BM biopsy specimen. Using standard banding techniques 

approximately 50 to 60 percent of patients with newly diagnosed AML will 

demonstrate cytogenetic abnormalities (Figure 1.11). Karyotype is a key 

determinant of prognosis in AML and is often used to choose the 

appropriate post-remission therapy. Identified cytogenetic abnormalities 

can also be used to monitor for minimal residual disease (MRD) after 

treatment if a RT-PCR or FISH probe is available for the abnormality. As 

such, the 2008 WHO classification of tumours of the haematopoietic and 

lymphoid tissues uses genetic findings in addition to morphologic, 

immunophenotypic, and clinical features to define distinct subtypes of 

AML. 

 The most common abnormalities seen on karyotype are 

t(15;17)(q24.1;q21.1), trisomy 8, t(8;21)(q22;q22), 

inv(16)(p13.1q22)/t(16;16)(p13.1;q22), and 11q rearrangements. A 

complete outline of the common cytogentic abnormalities in AML is 

available in Appendix B while their prognostic significance is discussed in 

section 1.8.7.2.  
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Figure 1.11 Major cytogenetic subgroups of AML (excluding 
acute promyelocytic leukaemia) and associated gene 
mutations 
In the subgroup various, nucleophosmin (NPM1) mutations are frequently 

found in AML with 9q deletion and trisomy 8, CEBPA mutations in AML 

with 9q deletion, MLL mutations in AML with trisomy 11, and RUNX1 

mutations in AML with trisomy 13 and trisomy 21. Frequencies of the 

cytogenetic subgroups are derived from 2,654 cytogenetically 

characterized adult (≥18 years) patients with de novo or secondary AML 

entered on five AML treatment trials. Reproduced with permission from 

Döhner K, et al. Haematologica 2008;93:976-982. 
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1.7.5 Classification of AML 

 
1.7.5.1 FAB classification  

The FAB classification system divides AML into eight subtypes, M0 

through to M7, based on the type of cell from which the leukaemia 

developed and its degree of maturity (Table 1.5) (349). This is done by 

examining the appearance of the malignant cells with light microscopy 

and/or by using cytogenetics to characterize any underlying chromosomal 

abnormalities. The subtypes have varying prognoses and responses to 

therapy. Although the WHO classification (see below) may be more useful, 

the FAB system is still widely used.  

 
1.7.5.2 WHO (World Health Organisation) classification 

AML is currently classified using the WHO classification system based 

upon a combination of morphology, immunophenotype, genetics, and 

clinical features (350) (Table 1.6). It is recommended that patients with 

AML be classified according to this classification as it attempts to identify 

biologic entities with the intention that future work will elucidate molecular 

pathways that might be amenable to targeted therapies. There are four 

main groups of AML recognized in this classification system: AML with 

recurrent genetic abnormalities (11 percent), AML with MDS-related 

features (6 percent), therapy-related AML and MDS (2 percent) and AML, 

not otherwise specified (81 percent)  

 
1.7.5.2.1 AML with recurrent genetic abnormalities 

This WHO category contains AML variants that contain genetic 

abnormalities of prognostic significance including AML with t(8;21), 

inv(16)or t(16;16), t(15;17), t(9;11), t(6;9), inv(3) or t(3;3), t(1;22) 

(discussed in detail in Appendix B) and AML with mutated NPM1, CEBPA 

or FLT3.  
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1.7.5.2.2 AML with MDS-related features 

The category of AML with MDS-related features (previously called AML 

with multilineage dysplasia) is defined by cases which fit the criteria for a 

diagnosis of AML (≥20 percent blasts); without a history of prior cytotoxic 

therapy for an unrelated disease with one or more of dysplastic 

neutrophils, megakaryocytes or erythrocytes (351) or MDS-related 

cytogenetic abnormalities (e.g., monosomy 5 or del(5q), monosomy 7 or 

del(7q), isochromosome 17p, etc). Patients who have a prior history of 

MDS or have MDS-related cytogenetic abnormalities have a poor outcome 

with conventional therapy.  

 
1.7.5.2.3 Therapy-related AML and MDS 

The diagnosis of therapy-related myeloid neoplasm (t-MN) is made when 

evaluation of the PB and BM demonstrates morphologic, 

immunophenotypic, and cytogenetic changes consistent with the diagnosis 

of AML or MDS in a patient with prior exposure to cytotoxic agents.  

 
1.7.5.2.4 AML not otherwise specified  

Cases of AML that do not meet the criteria for the categories described 

above are classified as AML, not otherwise specified (NOS). These cases 

are further sub classified by morphology that is similar to that used in the 

previous FAB classification system. 
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Table 1.5 The French-American-British (FAB) 
classification system of AML  
This classification system is based on morphology to define specific 

immunotypes. 

FAB 
subtype Name Adult AML  

patients (%) 
M0 Undifferentiated acute myeloblastic 

leukaemia 
5% 

M1 Acute myeloblastic leukaemia with 
minimal maturation 

15% 

M2 Acute myeloblastic leukaemia with 
maturation 

25% 

M3 Acute promyelocytic leukaemia 10% 
M4 Acute myelomonocytic leukaemia 20% 
M4eos Acute myelomonocytic leukaemia with 

eosinophilia 
5% 

M5 Acute monocytic leukaemia 10% 
M6 Acute erythroid leukaemia 5% 
M7 Acute megakaryocytic leukaemia 5% 
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AML and related neoplasms: 
AML with recurrent genetic abnormalities 

AML with t(8;21)(q22;q22); RUNX1-RUNX1T1 
AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 
APL with t(15;17)(q22;q12); PML-RARA 
AML with t(9;11)(p22;q23); MLLT3-MLL 
AML with t(6;9)(p23;q34); DEK-NUP214 
AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1 
AML (megakaryoblastic) with t(1;22)(p13;q13); RBM15-MKL1 
Provisional entity: AML with mutated NPM1 
Provisional entity: AML with mutated CEBPA 
 

AML with myelodysplasia-related changes 
 
Therapy-related myeloid neoplasms 
 
AML, not otherwise specified 

AML with minimal differentiation 
AML without maturation 
AML with maturation 
Acute myelomonocytic leukaemia 
Acute monoblastic/monocytic leukaemia 
Acute erythroid leukaemia 
Pure erythroid leukaemia 
Erythroleukaemia, erythroid/myeloid 
Acute megakaryoblastic leukaemia 
Acute basophilic leukaemia 
Acute panmyelosis with myelofibrosis 
 

Myeloid sarcoma 
 
Myeloid proliferations related to Down syndrome 

Transient abnormal myelopoiesis 
Myeloid leukaemia associated with Down syndrome 

 
Blastic plasmacytoid dendritic cell neoplasm 
 
 
Table 1.6 WHO classification of WHO classification of 
myeloid neoplasms
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1.7.6 Prognosis in AML 

The response to treatment and overall survival (OS) of patients with AML is 

heterogeneous. A number of prognostic factors related to patient and 

tumour characteristics have been described for AML, including age, 

performance status, karyotype and the presence of absence of molecular 

abnormalities (Table 1.7) (352, 353). 

 
1.7.6.1 Clinical risk factors 

Older adults, variably defined as over age 55, 60, or 65 years have lower 

rates of achieving a complete response (CR (Table 1.8)) and shorter 

disease-free survival when compared with younger patients (354). The 

presence of comorbidities such as heart failure, renal insufficiency, 

concurrent infection and poor performance status status also predict early 

mortality and poor outcome. 

 
1.7.6.2 Karyotype 

Specific cytogenetic abnormalities in AML have considerable prognostic 

significance and affect treatment planning. Several large studies 

conducted by cooperative group efforts from the Medical Research Council 

(MRC), the Southwest Oncology Group/Eastern Cooperative Oncology 

Group (SWOG/ECOG), and the Cancer and Leukemia Group B (CALGB) 

have confirmed the prognostic relevance of pre-treatment karyotype 

(Figure 1.12) (92, 355-361). There is general agreement that t(8;21), 

inv(16), and t(15;17) predict a good outcome  and occur in 16 percent of 

cases. Normal karyotype which occurs in approximately 40 percent and 

abnormalities not described in favourable or unfavourable (20 percent of 

cases) are considered intermediate risk (361). Adverse risk abnormalities 

include: del (5q); add (5q); del (7q); add (7q); monosomies 5 or 7; inv(3); 

t(3;3); t(6;11); t(10;11); t(9;22); 17p abnormalities; complex aberrant 

karyotypes described as at least 4 unrelated abnormalities; 11q23 
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abnormalities excluding t(9;11) and excluding t(11;19); or abnormalities of 

3q excluding t(3;5). A "monosomal karyotype," defined as at least two 

autosomal monosomies or a single autosomal monosomy in the presence 

of one or more structural cytogenetic abnormalities is a better predictor of 

unfavourable risk disease than a complex karyotype (362). 
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Figure 1.12 OS in AML patients categorized into favourable, 
intermediate, and adverse cytogenetic risk  

For 5-year OS, the favourable risk group comprised 190 (17%) patients, 

the intermediate risk group 686 (61%) patients, and the adverse risk group 

248 (22%) patients. The estimated probabilities (with 95% CI) of 5-year OS 

were 55% (47%-62%), 24% (21%-27%), and 5% (3%-8%), respectively. 

The differences in OS are depicted in the figure. Reprinted with permission 

from Byrd JC, et al. Blood 2002;100:4325-4336. 
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1.7.6.3 Gene mutations 

As discussed earlier multiple AML is a heterogonous disease characterized 

by the presence of multiple molecular abnormalities. Abnormalities in 

certain genes (mutations in FLT3, NPM1, KIT) as well as gene expression 

profiles have prognostic significance in adult patients with AML (363). This 

is particularly important in patients with normal karyotypes. Some of these 

patients have better prognosis molecular abnormalities (e.g., mutations in 

CCAAT/enhancer binding protein alpha (CEBPA), mutations in the 

nucleophosmin (NPM1) gene in the absence of FLT3/ITD as well as others 

with an adverse prognosis (eg, FLT3-ITD) (Table 1.7). 

 
1.7.6.3.1 FLT3 gene 

As discussed in section 1.1.4.4 FLT3 mutations are common in AML, 

particularly in patients with normal karyotypes, and have been associated 

with poor survival in patients receiving intensive chemotherapy (364-367). 

It has been proposed that FLT3/ITD mutational status is the primary 

predictor of outcome among patients with intermediate-risk AML by 

karyotype analysis (79) and that FLT3 mutation status may be considered 

in making recommendations about the use of HSCT in first remission 

(discussed in section 1.7.12).  
 

1.7.6.3.2 Nucleophosmin gene  

Abnormalities in the nucleophosmin (NPM1) gene are found in 25 percent 

of patients with de novo AML and 50 percent of de novo AML with normal 

karyotype AML. They are associated with improved outcomes in AML 

(368-370) but concurrent abnormalities in other genes, such as FLT3, may 

reduce their prognostic benefit.  

 
1.7.6.3.3 CEBPA gene  
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The CEBPA gene encodes a transcription factor necessary for myeloid 

differentiation (371) and is found in 10 percent of patients with newly 

diagnosed AML (372). However 13 to 19 percent of patients with 

cytogenetically normal AML will have CEBPA mutations (373, 374). 

Patients with normal karyotype and CEBPA mutations have a significantly 

longer median OS that is independent of other high-risk molecular 

features. 

 
1.7.6.3.4 KIT gene  

Mutations of the KIT gene can be detected in approximately 6 percent of 

newly diagnosed AML and in 20 to 30 percent of patients with AML and 

either t(8;21) or inv(16) (79, 375, 376). Some studies suggest that KIT 

gene mutations confer a higher risk of relapse and adversely affect OS in 

those with inv(16) (375, 376) but other studies suggest that this negative 

prognostic effect is only seen among AML with t(8;21) (79). Screening for 

KIT mutations might also allow for use of TKIs such as imatinib or 

dasatinib, which have in vitro activity against some KIT mutations.  

 
1.7.7 Gene expression profiling (GEP)   

While not used routinely in practice there is interest in the use of gene 

expression profiling for the diagnosis, classification, and assessment of 

prognosis in AML. Some studies have analyzed leukaemia cells from 

patients with AML and have identified gene "signatures" that may be used 

to distinguish subsets with different outcomes (377, 378).  

 
1.7.8 Tumour characteristics 

Assessment of tumour characteristics can be used to assess patient 

outcome. Prognositc markers include the overexpression of drug efflux 

pumps, apoptosis inhibitors, or factors that lead to cell cycle progression 

(379-382). 
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Favourable factors Unfavourable factors 
Age <50 Age >60 

Karnofsky score >60 percent Karnofsky score <60 percent 

MDR 1-negative phenotype MDR 1-positive phenotype 

No antecedent hematologic disorder or 
prior chemo/radiotherapy 

Therapy-related AML, prior myelodysplastic syndrome,  
myeloproliferative or other hematologic disorder 

t(8;21), inv(16)/t(16;16), t(15;17) 
 
Complex karyotypic abnormalities, -5, -7, 3q26 aberrations,  
t(6;9), 11q23 aberrations except for t(9;11), "monosomal karyotype" 

 
NPM1 mutation, CEBPA mutation 

 
FLT3/ITD mutation  

 
 
 
Table 1.7 Prognostic factors in AML 
MDR 1: multidrug resistance protein 1 
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1.7.9 Treatment of AML 

 
1.7.9.1 Introduction 

The treatment of adult patients with AML has improved over the last 

several as evidenced by improved OS over time. However most of the 

observed progress has been among patients younger than 60 years of 

age, with smaller survival improvements among older patients (383). Much 

of the survival improvement may be attributable to enhancements in 

supportive care.  

 AML is a heterogeneous disease and the emerging prognostic 

knowledge concerning cytogenetic and molecular abnormalities are 

heralding a new era of individualized therapeutic approaches for patients. 

Identification of key molecular and cytogenetic abnormalities may allow for 

the addition of specific targeted small molecule inhibitors to cytotoxic 

chemotherapy. Moreover our appreciation of epigenetic aberrations in AML 

(see section 1.1.4.1) has led to the development of effective agents that 

target DNA methylation restoring the normal expression tumour suppressor 

genes (384). Hypomethylating agents such as azacitidine and decitabine 

are now approved for the treatment of AML and offer a less intensive 

approach for elderly patients (385, 386). Lastly our understanding of the 

properties of LSCs are now leading to new therapeutic approaches that 

target the quiescent AML stem cell population to prevent relapse (387, 

388).  

 
1.7.9.2 Treatment of APL 

APL is a biologically and clinically distinct variant of AML (see Appendix B). 

It represents an emergency and without treatment patients have a median 

survival of less than one month (389). However, with modern therapy, APL 

is associated with the highest proportion of patients who are cured of their 

disease. A key component of the initial therapy is the use of all-trans 

retinoic acid (ATRA), which promotes the terminal differentiation of 

malignant promyelocytes to mature neutrophils. The traditional central 
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dogma in anti-cancer therapy has been to inhibit malignant cell 

proliferation or induce apoptosis with cytotoxic agents such as 

chemotherapy or radiotherapy. However, the finding of differentiation 

arrest, the accumulation of APL cells blocked at the promyelocytic stage of 

granulocytic differentiation, suggested the possibility of inducing cell 

differentiation as an alternative way to treat leukaemia. Early support for 

the rationale of this approach came from the finding that myeloid 

leukaemia cells could be induced by cytokines to resume normal 

differentiation and become non-dividing mature granulocytes or 

macrophages (390, 391). Later it was reported that retinoic acid (RA) and 

to a greater extent ATRA could induce terminal differentiation of human 

APL cells in vitro (392, 393). In a clinical trial 23 out of 24 (95.8%) APL 

patients treated with ATRA went into CR without developing BM 

hypoplasia or abnormalities of clotting (394). These findings were 

confirmed in larger randomized studies (395, 396).  
 The t(15;17) translocation in APL results in the generation of the 

fusion gene and protein, the promyelocytic leukaemia retinoic acid receptor 

alpha (PML-RARα), which plays a central role in APL pathogenesis (see 

Appendix B). The PML-RARα protein has several properties. Firstly it 

creates a complex with retinoid x receptor (RXR), nuclear corepressors (N-

CoR), Sin3A, and histone deacetylase (HDAC) that represses the 

transcriptional expression of target genes (397). Secondly it acts in a 

dominant negative manner on the retinoic acid-signalling pathway which 

blocks the differentiation of myeloid cells (398); Therefore the normal 

function of PML as a growth inhibitor and regulator of apoptosis is 

disturbed when incorporated into PML-RARα complex.  

 ATRA has several mechanisms of action. The binding of ATRA to 

RAR receptors causes degradation of PML-RARα protein through the 

ubiquitin-protosome and caspase system, leading to restoration of terminal 

differentiation of promyelocytes (399, 400). Additionally, ATRA leads to 

disassociation of N-CoR from the repressive complex and recruitment of 
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CoA (coactivator) (397). As a result, the repression of transcriptional 

activation of target genes is relieved and the differentiation of 

promyelocytes is restored (Figure 1.13).  

 Arsenic trioxide (As2O3) is also effective in APL, exerting dual 

effects on APL cells. At high concentrations (0.5–1.0 µM), As2O3 induces 

apoptosis (401-403). However at lower concentrations, As2O3 can induce 

APL cells to partially differentiate along the granulocytic pathway. 

Degradation of PML-RARα in the presence of lower concentrations of 

As2O3 favours the release of differentiation arrest. In addition, acetylation 

of histones 3 and 4 probably contributes to the mechanism of the 

differentiation process (401).  

 ATRA must be combined with other agents since remissions 

induced by ATRA therapy alone are short-lived (404). The largest 

experience has been with ATRA combined with anthracycline-based 

chemotherapy but combination with arsenic trioxide can be considered for 

patients who are not candidates for anthracycline-based therapy (405).  
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Figure 1.13 Molecular biology of APL  

The PML-RARα fusion gene consists of the promyelocytic leukaemia gene 

(PML), a tumour suppressor normally found in nuclear bodies, and the 

retinoid acid receptor alpha gene (RAR), a transcription factor that is 

normally responsive to retinoid acid. The juxtaposition of these two genes 

produces a protein that does not respond to the usual form of retinoic acid. 

However, it does respond to all-trans retinoid acid, leading to restoration of 

gene transcription and thereby to cellular differentiation. Arsenic trioxide 

leads to a similar effect because it causes aggregation and degradation of 

the PML-RARA fusion protein, thereby promoting differentiation. 
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1.7.10 Induction therapy for AML 

The goal of induction therapy is to rapidly restore normal BM function and 

to reduce the leukaemic cell burden from approximately 1012 to 109 cells 

(below cytological detectable levels). Various acceptable induction 

regimens are available. The most common approach, "3 and 7," consists of 

3 days of an anthracycline (idarubicin or daunorubicin) combined with ara-

C for 7 days. Depending upon age and patient selection, 70 to 80 percent 

of younger adults achieve a CR with these regimens (406, 407). Most 

remissions come after a single course. 

 Higher dose daunorubicin may be more beneficial in younger 

patients. Two large randomized controllsed trials (RCTs) compared 

conventional-dose daunorubicin (45 mg/m2/day for 3 days) or high-dose 

daunorubicin (90 mg/m2/day for 3 days) in patients younger than 60 years 

with untreated AML (407, 408). These induction regimens were 

administered with ara-C. In both studies a higher CR rate was observed in 

the high-dose daunorubicin group (64 and 70.6%) relative to the 

conventional dose (54 and 57.3%). However, only one of the studies 

showed an improved OS. 

 
1.7.11 Consolidation therapy 

Without consolidation therapy most patients will eventually relapse. In 

patients aged 60 years or younger, treatment options for consolidation 

therapy include high-dose ara-C, autologous HSCT and allogeneic HSCT. 

In a landmark study performed by CALGB, 3 different doses of ara-C were 

evaluated in patients with AML who achieved remission after standard “3 

and 7” induction chemotherapy (409). Patients received 4 courses of ara-C 

at one of the following dosages: (1) 100 mg/m2/day by continuous infusion 

for 5 days, (2) 400 mg/m2/day by continuous infusion for 5 days, or (3) 3 

g/m2 in a 3-hour infusion every 12 hours on days 1, 3, and 5. The 

probability of remaining in continuous CR after 4 years in patients aged 60 
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years or younger was 24% in the 100 mg group, 29% in the 400 mg group, 

and 44% in the 3 g group. The outcome in older patients did not differ. On 

the basis of this study, high-dose ara-C for 3 to 4 cycles is a standard 

option for consolidation therapy in younger patients. 

 
1.7.12 Role of transplantation 

Several large trials have compared allogeneic HSCT, autologous HSCT, 

and chemotherapy without HSCT in order to define the best postremission 

therapy for young patients. Outcome after autologous HSCT is considered 

at least as good as the use of postremission chemotherapy; however, 

there has been no evidence of an improvement in outcome. Autologous 

HSCT can be considered as an alternative option for postremission 

therapy in patients with favourable and intermediate-risk cytogenetics, 

whereas it cannot be recommended in patients with high-risk cytogenetics 

(410, 411).  

 Allogeneic HSCT as a postremission strategy is associated with the 

lowest rates of relapse. As is the case in CML, the benefit is attributable to 

both the high-dose therapy of standard conditioning regimens and a potent 

GVL effect (412). However, the advantages of allogeneic HSCT are offset 

by the high transplant related mortality. Single prospective trials have 

neither shown a definitive advantage nor disadvantage in OS of allogeneic 

HSCT for patients with AML in first CR (413-415). Meta-analyses of clinical 

trials that prospectively assigned allogeneic HSCT versus alternative 

consolidation therapies for AML in first CR on an intent-to-treat donor 

versus no-donor basis show that allogeneic HSCT offers significant OS 

benefit for patients with intermediate and high risk AML (416, 417). No 

advantage has been shown for autologous or allogeneic HSCT in frontline 

treatment of patients with good-risk cytogenetics (t(8;21) or inv(16))(359, 

360, 416-419). Therefore these patients should be offered consolidation 

with high-dose ara-C as they have a good prognosis with this approach. 

Allogeneic HSCT transplantation should be reserved for patients who 
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relapse. A study by the German-Austrian AML Study Group (AMLSG) 

provided evidence that those AML patients whose molecular genetic profile 

predicts a favourable prognosis, such as cytogenetically normal AML with 

mutated NPM1 without FLT3-ITD, may also not benefit from allogeneic 

HSCT (420).  

 On the other hand patients with high-risk cytogenetics findings are 

rarely cured with chemotherapy and should be offered transplantation in 

first CR. The best approach for patients with intermediate-risk cytogenetics 

findings is controversial. Studies using newer molecular markers, such as 

FLT3, NPM1 and CEBPA are helping to define which patients with 

cytogenetically normal AML should receive standard consolidation therapy 

versus transplantation. For the remaining patients with intermediate-risk 

cytogenetics repetitive cycles of high dose ara-C are currently widely used 

but there is accumulating evidence that allogeneic HSCT is an attractive 

option for those patients who are at high risk of relapse. A beneficial effect 

has been shown for patients with normal cytogenetics and unfavourable 

molecular markers, that is, those who lack the favourable genotypes of 

mutated NPM1 or mutated CEBPA without FLT3-ITD (420). In particular, 

although evidence from prospective trials is not available, allogeneic HSCT 

should be considered in patients whose leukaemic cells have FLT3-ITD 

(420).  

 
1.7.13 Treatment of older adults 

The management of older patients with AML (particularly those older than 

75 years) is a difficult challenge. Compared to younger patients, older 

patients variably defined as > 55, >60 or > 65 have poorer performance 

status, higher incidence of multidrug resistance, lower percentage of 

favourable cytogenetics, higher percentage of unfavourable cytogenetics, 

higher treatment-related morbidity and mortality and higher incidence of 

treatment-resistant disease.  
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 Some older patients do reasonably well with standard therapy. In an 

analysis of 998 older patients treated at MD Anderson Cancer Center, age 

greater than 75 years, poor performance status, previous antecedent 

hematologic disorder, unfavourable karyotype, renal insufficiency, and/or 

treatment outside of a laminar flow room were associated with an adverse 

outcome (421). Patients with none of these risk factors had a CR rate of 

72% and median 2-year survival of 35%, whereas patients with 3 or more 

risk factors had a CR rate of 24% and a median 2-year survival of only 3%. 

Thus, some low-risk elderly patients can benefit from standard intensive 

chemotherapy. 

 The hypomethylating agents azacitidine and decitabine are also 

options for the treatment of elderly AML patients. A phase 3 randomized, 

open label study compared azacitidine with investigator selected therapy in 

358 patients with higher risk MDS or AML (385). Compared with the 

patients treated at the discretion of their physicians, those assigned to 

receive azacitidine demonstrated an improved OS (median, 24.5 versus 15 

months). Decitabine has shown promise in older patients with adverse 

cytogenetic features (386). 

 Occasionally, intensive treatment with the intent to achieve CR may 

be less advisable because of advanced patient age, debility, presence of 

significant co-existing medical problems and/or prior chemotherapy. These 

patients may be candidates for clinical trials with investigational agents that 

target typical AML molecular aberrations and that are less likely to cause 

severe cytopaenias. Some of these novel therapies such as alisertib or 

SGI-1776, discussed below, are particularly attractive for elderly patients in 

that they are available orally.  

 
1.7.14 Remission criteria 

As discussed above induction therapy for AML aims to achieve a CR in 

which the total body leukaemic cell population is reduced to below a 

cytologically detectable level. It is generally assumed that a substantial 
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burden of leukaemia cells persists undetected (i.e. MRD), leading to 

relapse within a few weeks or months if no further post-remission therapy 

(i.e. additional consolidation chemotherapy) were to be administered. CR is 

defined by the International Working Group criteria using morphologic and 

clinical data (Table 1.8).  Ascertaining whether a patient in CR is destined 

to remain clinically disease-free after post-remission therapy is limited by 

the inherent insensitivity of routine tests on the BM for detecting residual 

leukaemia and the likelihood that the small area of BM examined does not 

reflect the much larger BM compartment. Techniques employing qRT-PCR 

and multiparameter flow cytometry techniques are significantly more 

sensitive for detecting the presence or absence of MRD than morphology 

or cytogenetics.  
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Category Definition 
Complete remission (CR)* BM blasts < 5%; absence of blasts with Auer rods; absence of 

extramedullary disease; absolute neutrophil count > 1.0 × 109/L 
(1000/µL); platelet count > 100 × 109/L (100 000/µL); 
independence of red cell transfusions 

CR with incomplete 
recovery (CRi)† 

All CR criteria except for residual neutropaenia (< 1.0 × 109/L 
[1000/µL]) or thrombocytopaenia (< 100 × 109/L [100 000/µL]) 

Morphologic leukaemia-
free state‡ 

BM blasts < 5%; absence of blasts with Auer rods; absence of 
extramedullary disease; no haematologic recovery required 

Partial remission (PR) Relevant in the setting of phase 1 and 2 clinical trials only; all 
hematologic criteria of CR; decrease of BM blast percentage to 
5% to 25%; and decrease of pretreatment BM blast percentage by 
at least 50% 

Cytogenetic CR (CRc)§ Reversion to a normal karyotype at the time of morphologic CR 
(or CRi) in cases with an abnormal karyotype at the time of 
diagnosis; based on the evaluation of 20 metaphase cells from 
BM 

Molecular CR (CRm)‖ No standard definition; depends on molecular target 

Treatment failure  

    Resistant 
disease (RD) 

Failure to achieve CR or CRi (general practice; phase 2/3 trials), 
or failure to achieve CR, CRi, or PR (phase 1 trials); only includes 
patients surviving ≥ 7 days following completion of initial 
treatment, with evidence of persistent leukaemia by blood and/or 
BM examination 

    Death in aplasia Deaths occurring ≥ 7 days following completion of initial treatment 
while cytopaenic; with an aplastic or hypoplastic BM obtained 
within 7 days of death, without evidence of persistent leukaemia 

    Death from 
indeterminate cause 

Deaths occurring before completion of therapy, or < 7 days 
following its completion; or deaths occurring ≥ 7 days following 
completion of initial therapy with no blasts in the blood, but no BM 
examination available 

Relapse¶ BM blasts ≥ 5%; or reappearance of blasts in the blood; or 
development of extramedullary disease 

 
Table 1.8 Response criteria in AML 
 
* All criteria need to be fulfilled; marrow evaluation should be based on a 
count of 200 nucleated cells in an aspirate with spicules.  
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† The criterion of CRi is of value in protocols using intensified induction or 
double induction strategies, in which haematologic recovery is not awaited, 
but intensive therapy will be continued.  
‡ This category may be useful in the clinical development of novel agents 
within phase 1 clinical trials, in which a transient morphologic leukaemia-
free state may be achieved at the time of early response assessment. 
 
§ Four studies showed that failure to convert to a normal karyotype at the 
time of CR predicts inferior outcome (422-425). 
 
‖ As an example, in CBF AML low-level PCR-positivity can be detected in 
patients even in long-term remission. Normalizing to 104 copies of ABL1 in 
accordance with standardized criteria, transcript levels below 12 to 10 
copies appear to be predictive for long-term remission (426, 427). 
 
¶ In cases with low blast percentages (5-10%), a repeat marrow should be 
performed to confirm relapse. Appearance of new dysplastic changes 
should be closely monitored for emerging relapse. In a patient who has 
been recently treated, dysplasia or a transient increase in blasts may 
reflect a chemotherapy effect and recovery of hematopoiesis. Cytogenetics 
should be tested to distinguish true relapse from therapy-related 
MDS/AML. 
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1.7.15 Treatment of relapsed disease 

Patients with relapsed AML have an extremely poor prognosis. Young 

patients who have not previously undergone transplantation should be 

referred for such therapy. The chances of obtaining a second remission 

with chemotherapy correlate strongly with the duration of the first 

remission. For example in one analysis, patients with initial CR duration of 

longer than 2 years had a 73% CR rate with initial salvage therapy while 

those with an initial CR duration of 1-2 years had a CR rate of 47% with 

initial salvage therapy (428). 

 
1.7.16 Emerging treatments for AML 

Patients failing all conventional drug protocols may elect to undergo 

investigational treatment with novel agents or protocols (Table 1.9). As 

discussed in section 1.1.5 the AML phenotype results from multiple 

genetic/epigenetic lesions affecting differentiation, proliferation, and 

apoptosis. Consequently, targeting of a single aberrant protein is unlikely 

to eradicate the leukaemic clone. Furthermore, although several 

molecularly targeted therapies have been shown to be active in AML, it is 

clear from early clinical studies that most of these novel agents will need to 

be used in combination with conventional cytotoxic therapy. A number of 

the most important novel agents in AML are discussed below. 

 Clofarabine is a novel purine nucleoside analogue structurally 

similar to fludarabine and cladribine, developed with the aim of avoiding 

the neurotoxicity that limits the maximal tolerated dose of old-generation 

purine analogues. Phase 2 trials of the nucleoside analogue clofarabine, 

with or without ara-C, in patients with relapsed/refractory AML have yielded 

CR rates of 28 to 42 percent (429, 430). A phase 3 study comparing 

clofarabine with traditional 7+3 as induction in newly diagnosed older 

patients with AML is currently recruiting. 
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Clinical trials with a number of different oral FLT3 inhibitors including 

lestaurtinib (CEP701), sunitinib malate (SU11248), sorafenib and 

midostaurin (PKC412) have been initiated (431-435). Most responses were 

incomplete and transient. However, lestaurtinib and midostaurin can be 

safely combined with standard AML chemotherapy and randomized trials 

comparing chemotherapy with or without these FLT3 inhibitors are 

underway. A report of a phase 3 trial of induction chemotherapy with or 

without lestaurtinib in 224 patients with FLT3 mutation and relapsed or 

refractory AML showed that the addition of lestaurtinib lestaurtinib failed to 

increase response rates or OS (436). However correlative studies found 

that FLT3 was not inhibited in many patients suggesting that a different 

dose or schedule or more potent agents may be necessary.  

 Gemtuzumab ozogamicin (GO) is a humanized, monoclonal 

antibody against CD33 that is covalently attached by a linker to 

calicheamicin, a potent toxin that binds to double-stranded DNA and 

causes breaks. Since CD33 is almost universally expressed on AML 

myeloblasts, the antibody delivers the toxin directly to the leukaemic blasts 

(437). GO was approved by the FDA for use in patients aged 60 or older 

with CD33+ AML in first relapse who are not considered candidates for 

cytotoxic chemotherapy (438-440). The FDA has since required that GO 

be removed from the market in the United States because subsequent 

randomized trials did not confirm a clinical benefit for newly diagnosed 

patients with AML when it was combined with standard chemotherapy. 

Further studies of GO in specific patient populations are continuing. 

Unconjugated anitbodies against CD33 have also been investigated. 

Lintuzumab is an unconjugated humanized murine monoclonal antibody 

directed against CD33. It was employed in a randomized phase 3 study in 

191 patients with refractory or relapsed AML, which utilized combination 

chemotherapy (mitoxantrone, etoposide, cytarabine) with or without 

lintuzumab (441). While the addition of this agent to salvage chemotherapy 
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was safe, it did not result in significant improvement in response rate or 

survival. 

 An alternative approach is to modify the formulation of cytotoxic 

chemotherapy to improve its efficacy. For example, CPX-351 consists of a 

5:1 molar ratio of ara-C to daunorubicin enclosed in a liposome. Preclinical 

studies showed that the 5:1 molar ratio is the most synergistic ratio of 

these 2 drugs in AML cell lines. In early phase clinical studies, CRs were 

seen in patients previously exposed to ara-C and daunorubicin (442). 

Elacytarabine is a lipophilic variation of ara-C that is independent of the 

human equilibrative nucleoside transporter 1 (hENT1) protein and is not a 

substrate of deoxycytidine deaminase. As both of these are mechanisms 

of resistance to ara-C, elacytarabine has been evaluated in the relapse 

setting (443).  

 Lastly several approaches have been undertaken to modify the 

microenvironment of LSC. Interfering with BM retention and mobilization of 

LSCs by disrupting the Stromal Cell-Derived Factor 1 (SDF-1)/ C-X-C 

chemokine receptor type 4 (CXCR4) axis has demonstrated to be 

promising for future therapies in patients with AML (444). CXCR4 belongs 

to the large superfamily of G protein-coupled receptors, and is directly 

involved in a number of biological processes including organogenesis, 

haematopoiesis, and immune response (445). Grafting of HSCs is a 

complex process regulated by several signalling pathways of which the 

SDF-1/CXCR4 ligand/receptor system plays a predominant role (446). 

Furthermore, high CXCR4 expression is a known negative prognostic 

marker in AML (447). Mounting evidence indicates that mobilization of 

HSC or LSC, from their protective niches, render them vulnerable to 

chemotherapeutic treatment (448). A phase 1/2 study of mitoxantrone, 

etoposide, and cytarabine (MEC) in combination with the CXCR4 

antagonist, plerixafor, in 52 patients with relapsed and refractory AML 

reported a CR rate of 39 percent (449). 
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1.7.17 Conclusion 

The treatment of AML has not changed significantly over the last 40 years. 

However recent progress in our understanding of the biology of this 

disease and identification of driver mutations has ushered in a new era of 

molecular therapeutics. A number of molecular markers and pathways 

have been identified and may serve as potential therapeutic targets. It is 

commonly accepted that the AML phenotype results from multiple 

genetic/epigenetic lesions affecting differentiation, proliferation, and 

apoptosis. Consequently, targeting of a single aberrant protein is unlikely 

to eradicate the leukaemic clone. Finally, although several molecularly 

targeted therapies have been shown to be active in AML, it is clear from 

early clinical studies that most of these novel agents will need to be used 

in combination with conventional cytotoxic therapy.
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Table 1.9 New agents and strategies for AML

Mechanism of Action Drug 

FLT3 kinase inhibitors Lestaurtinib, sorafenib, midostaurin 

Modified Chemotherapy - Liposomal formulation 

Modified Chemotherapy - Lipid conjugate 

CPX-351 

Elacytarabine 

Conjugated monoclonal antibody  Gemtuzumab ozogamicin  

Unconjugated monoclonal antibody Lintuzumab 

CXCR4 antagonist Plerixafor 

Epigenetic modulation Azacytidine/decitabine/vorinostat 

Nucleoside Analogues Clofarabine 
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1.8 Aurora kinases 
1.8.1 Introduction 

The first Aurora kinase discovered, Aurora A, derived its name from a 

mutant form of the protein found in Drosophila melanogaster that caused 

the formation of monopolar spindles reminiscent of the aurora borealis 

(450). There are three known members of the Aurora family expressed in 

mammalian cells: Aurora A, B, and C. Aurora A and B are expressed in all 

proliferating cells, whereas Aurora C expression is mainly restricted to the 

testes and plays a role in spermatogenesis (451). Aurora A and B regulate 

a diverse array of events throughout mitosis. Aurora C functions similarly to 

Aurora B (452). The catalytic domain is highly conserved amongst all three 

Auroras, with 67-76% amino acid similarity. However, greater sequence 

diversity exists in their non-catalytic regions, allowing for variations in their 

subcellular localization, regulatory partners, and substrate specificity (453).  

 Aurora A and B are overexpressed in a wide variety of tumour types 

and their overexpression has been associated with tumourigenesis and a 

worse outcome in patients. These features, along with their vital roles in 

mitosis, make the Aurora kinases attractive targets for anti-cancer therapy. 

A number of small molecule inhibitors of Aurora kinases have 

demonstrated significant antiproliferative activity in preclinical models and 

have produced objective responses in early phase clinical trials (454-456).  

 
1.8.2 Aurora A 

In normal cells, the distribution and expression of Aurora A kinase is tightly 

regulated throughout the cell cycle with expression increasing during the 

late S phase and peaking during the G2/M transition (Figure 1.14) (457). As 

discussed in section 1.3.2, G2/M progression is triggered by translocation 

of the cyclin B-CDK1 complex to the nucleus and activation by 

dephosphorylation by CDC25. The regulation of the progression from G2 to 

M by Aurora A has been proposed to occur, in part, through the 

relocalization of cyclin B1 to the nucleus and activation of CDKs. 
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Suppression of Aurora A expression leads to G2 to M arrest, whereas 

ectopic expression abrogates the G2/M checkpoint (453). During G2, 

Aurora A forms a complex with its cofactor hBORA, and phosphorylates 

PLK1 at Thr210 (458). Subsequently, activated PLK1 phosphorylates 

CDC25 and WEE1, which induces activation of cyclin B-CDK1 complexes 

to promote mitotic entry (Figure 1.15) (459). 

 Aurora A kinase activity is also critical for the formation of a normal 

mitotic spindle. In the G2 phase, Aurora A is localized to centrosomes and 

is activated by the LIM protein Ajuba (460). Once activated, Aurora A 

phosphorylates and recruits microtubule-associated proteins (MAPs) to the 

centrosome to promote centrosome maturation (453). Aurora A is 

necessary for the recruitment of several proteins essential to the spindle 

formation including transforming acid coiled-coil protein-3 (TACC3), a MAP 

that stabilizes centrosomal microtubules; kinesin 5, a motor protein 

involved in the formation of the bipolar mitotic spindle; and γ-tubulins, the 

base structure from which centrosomal microtubules polymerize (461, 

462). Aurora A also assures proper organization and alignment of the 

chromosomes during prometaphase. It interacts directly with the 

kinetochore on each chromosome and phosphorylates and stabilizes 

HURP (hepatoma upregulated protein), which in turn stabilizes kinetochore 

fibers and ensures efficient kinetochore capture by the microtubules and 

normal inter-kinetochore tension (463, 464).  Finally, an appropriate level 

of Aurora A expression is necessary to orchestrate an exit from mitosis by 

cytokinesis. Both overexpression and inhibition of Aurora A activity lead to 

failure of cytokinesis and multinucleation (450, 465-471).   

 

 

 



 121 

Figure 1.14 Cellular localization of Aurora A and B in 
mitosis  
The level of both kinases is substantially reduced in G1 cells. By prophase, 

Aurora A (green boxes) is concentrated around the centrosomes, whereas 

Aurora B (red circles) is nuclear. In metaphase, Aurora A is on the 

microtubules near the spindle poles, whereas Aurora B is located in the 

inner centromere. In anaphase, most Aurora A is on the polar 

microtubules, but some might also be located in the spindle midzone. 

Aurora B is concentrated in the spindle midzone and at the cell cortex at 

the site of cleavage-furrow ingression. In cytokinesis, both kinases are 

concentrated in the midbody. Modified with permission from Nature 

Publishing Group: Carmena and Earnshaw (2003) (472).  
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Figure 1.15 Functions of Aurora A during late G2 and 
mitosis  

(A) In late G2, Aurora A autophosphorylates and also activates PLK1, 

which in turn promotes the binding of Aurora A to centrosomin. PLK1 is 

recruited to the centrosome by cenexin 1. While Aurora A can self-activate, 

its activity is enhanced by several cofactors, including targeting protein for 

TPX2 and BORA. Active PLK1 phosphorylates WEE1, a kinase that 

negatively regulates cyclin B-CDK1 complexes. The CDC25 phosphatases 

that antagonize WEE1 are largely inactive in G2. (B) Mitotic entry is 

triggered by a steep increase in cyclin B-CDK1 activity. On the 

centrosome, Aurora A and PLK1 promote recruitment and activation of 

CDC25B, which in turn, activates cyclin B-CDK1. Cyclin B–CDK1 

complexes further phosphorylate WEE1 and BORA, which are then 

recognized by the F-box protein β -transducin repeat containing (β-TrCP) 

that promotes polyubiquitylation (Ub) and degradation of WEE1 and 

BORA. Freed of BORA, Aurora A is then able to interact with TPX2, thus 

facilitating the role of the kinase in spindle assembly. Green phosphates 

(P) are activating, red phosphates are inhibitory and yellow phosphates 

prime a protein for degradation. Modified with permission from Nature 

Publishing Group: Lens et al (2010) (255). 
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1.8.3 Aurora B 

Aurora B is critical for correct microtubule-kinetochore attachments, the 

establishment of the spindle assembly checkpoint and cytokinesis (473-

476). Aurora B is the enzymatic core of the chromosomal passenger 

complex (CPC), so named for its precise movement from site to site at 

specific times. In the CPC, it is associated with multiple other proteins 

including inner centromere protein (INCENP), survivin, and borealin. 

INCENP forms the stabilizing core, survivin mediates binding of the CPC to 

the centromere, and borealin mediates binding of survivin to INCENP 

(452). These proteins help direct Aurora B’s activity by allowing it to be in 

the right place at the right time. The CPC is associated with the 

centomeres from prometaphase to metaphase. After chromatid separation, 

the CPC travels to the midzone to complete cytokinesis.  

 Aurora B phosphorylates histone H3 at Ser10 and Ser28 and this may 

facilitate chromosome condensation and subsequent alignment during 

mitosis (477). Cells depleted of the Aurora B kinase show only partial 

chromosome condensation at mitosis (475). Correct chromosomal 

biorientation mediated in part by the attachment of microtubules emanating 

from opposite spindle poles to the kinetochores is required for accurate 

chromosome segregation and alignment. Aberrant kinetochore to 

microtubule connections such as syntelic (each kinetochore attaches to the 

same pole) or merotelic (each pole attaches to a single kinetochore) 

attachments can result in aneuploidy and chromosomal instability if left 

unfixed (473). Aurora B ensures accurate separation of chromatids in 

multiple ways. The mitotic centromere associated kinase (MCAK) enables 

microtubule attachment to the kinetochore (478). Aurora B temporally and 

spatially regulates MCAK activity by phosphorylation of MCAK at multiple 

sites. Phosphorylation of MCAK by Aurora B targets MCAK to the 

kinetochores where its microtubule depolymerase activity severs the 

kinetochore to microtubule attachment thereby relieving inappropriate 

kinetochore-microtubule attachments (Figure 1.16) (479, 480). Disruption 
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of Aurora B or MCAK activity leads to chromosomal misalignment and 

improper kinetochore to microtubule attachment (481). Secondly, Aurora B 

recruits spindle checkpoint proteins such as MAD2 during metaphase. The 

spindle assembly checkpoint complex (discussed in section 1.3.8) detects 

incorrect kineotchore to microtubule attachments and prevents the cell 

from entering anaphase if they are present (146, 453).  

 Aurora B also plays a critical role in cytokinesis and its depletion 

results in mitotic exit without cell separation, leading to cells in the G1 

portion of the cell cycle with a doubling in the size of the normal DNA 

complement at this phase of the cell cycle (453). Depending on other 

factors, these cells may undergo additional rounds of DNA synthesis, 

resulting in polyploidy.  Aurora B-mediated phosphorylation of vimentin on 

Ser72 is necessary for normal cytokinesis as inhibition of this process 

results in long bridge-like intermediate filament structures between 

unseparated daughter cells (476). Figure 1.17 outlines the multiple 

functions of Aurora A and B in mitosis. 

 
1.8.4 Aurora C 

The expression of Aurora C is largely restricted to the testis and it 

regulates chromosome segregation during meiosis (482). Although Aurora 

C has been detected in some cancer cell lines, the involvement of Aurora 

C in the mitotic division of somatic cells or in oncogenesis is not clear.  
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Figure 1.16 Aurora B corrects chromosome misalignments 
Incorrect chromosome alignment can occur when microtubules from each 

kinetochore attach to the same pole (syntelic, top left) and when 

microtubules from each pole attach to a single kinetochore (merotelic, top 
right). Aurora B localizes the mitotic centromere associated kinase protein 

(MCAK) to the centromere where it removes incorrect kinetochore to 

microtubule attachments. Aurora B recruits checkpoint proteins to the 

spindle checkpoint that prevents cells with aberrant chromosome 

attachments form entering anaphase.
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Figure 1.17 The multiple functions of Aurora kinases during mitosis  

Aurora A helps maintain proper alignment and organization of the 

chromosomes during prometaphase. It also recruits spindle assembly 

proteins and plays a critical role in the spindle assembly process. At the 

end of mitosis, it has a role in cytokinesis. In the prophase, Aurora B 

facilitates chromosome condensation through phosphorylation of histone 

H3. During metaphase, Aurora B ensures accurate separation of 

chromatids and  prevents the cell from entering anaphase if unattached 

kinetochores exist through recruitment of spindle checkpoint proteins. 

Finally, Aurora A and B play a critical roles in cytokinesis.  
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1.8.5 Aurora kinases in malignancy 

Aurora kinases are aberrantly expressed in a variety of solid tumours 

including prostate, colon, breast, lung, prostate, head and neck and thyroid 

cancer as well as in most forms of leukaemia (483-488). High levels of 

Aurora A expression have been associated with amplification of the 

chromosomal region 20q13.2 which comprises the Aurora A kinase gene 

(AURKA) (489).  Additional mechanisms leading to Aurora A 

overexpression in malignancy include transcriptional induction and post-

translational stabilization (490, 491). In contrast to AURKA, the Aurora B 

kinase gene (AURKB) does not appear to be amplified in cancer. However, 

it is highly expressed in many tumour types including prostate as well as 

head and neck squamous cell carcinoma (486, 487).  

 There is evidence that Aurora A may function as an oncogene that 

transforms cells through the induction of genetic instability and enhanced 

survival signalling (483). Overexpression of Aurora A in mouse mammary 

epithelium led to genetic instability characterized by centrosome 

amplification, chromosome tetraploidization, premature sister chromatid 

segregation, and subsequently mammary tumour formation. These 

chromosomal abnormalities did not cause cell death possibly because 

increased Aurora A expression also induced pro-survival pathways such as 

AKT, mammalian target of rapamycin (mTOR), and nuclear accumulation 

of cyclin D1 (492). One potential mechanism of oncogenesis due to high 

Aurora A expression may be through Aurora A-mediated degradation of 

p53. As discussed in section 1.3.4, p53 is crucial for the post-mitotic 

checkpoint and induces growth arrest or apoptosis in cells exposed to 

stress. p53 function is frequently disrupted in cancers, often due to 

mutation or deletion. Aurora A has been shown to phosphorylate p53 at 

Ser315 which leads to its ubiquitination by murine double minute 2 (MDM2) 

and proteolysis (493). Therefore, ectopic expression of Aurora A may lead 

to down-regulation of the post-mitotic checkpoint response, inducing 

chromosomal instability and oncogenic transformation.  
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Aurora A may also play a role in preventing apoptosis in cancer cells by 

indirectly activating nuclear factor kappa B (NF-κB) through 

phosphorylation of its inhibitor IκB, which targets IκB for degradation (494). 

NF-κB, in turn, promotes the expression of its transcriptional target, BCL-2, 

a key anti-apoptotic protein (discussed in section 1.4.2). Overexpression of 

BCL-2 is associated with adverse prognosis in many forms of cancer as it 

diminishes cellular pro-apoptotic potential and consequently, confers drug 

resistance. Interestingly, it was recently shown that treatment with the 

Aurora kinase inhibitor VX-680/MK-0457 increases the BAX/BCL-2 ratio in 

AML cells helping to restore normal apoptosis (495). 

 Several studies including those in head and neck squamous cell 

carcinoma, ovarian cancer, neuroblastoma, and glioblastoma have shown 

that high levels of Aurora A messenger RNA in tumour specimens 

correlate with centrosome abnormalities, tumour progression and 

shortened survival (487, 496, 497). These findings support a role for 

Aurora kinases in oncogenesis. Similarly, high Aurora B expression has 

been correlated with adverse histological features and shortened survival 

in a variety of malignancies (486, 497). Ongoing clinical investigations are 

addressing the question of whether or not high Aurora kinase expression in 

tumours will serve as useful predictors of response to pharmacological 

inhibition with Aurora kinase inhibitors.  

 
1.8.6 Aurora kinase inhibitors in development 

The realization that Aurora kinases were aberrantly expressed in 

malignancies and that their overexpression was related to tumourigenesis 

spurred the development of Aurora kinase inhibitors for cancer therapy 

(Table 1.10). Many of these compounds are under investigation in clinical 

studies for cancer treatment. Early studies showed that microinjection of 

Aurora A antibodies and/or RNAi-mediated knockdown of Aurora A kinase 

led to accumulation of cells in the G2/M phase followed by apoptosis and 

was associated with in vitro and in vivo growth inhibition (457, 460, 498). 
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Targeted knockdown of Aurora A expression was shown to disrupt multiple 

mitotic events, culminating in failure of centrosome separation, monopolar 

spindle formation, and incomplete cytokinesis (466). Inhibition of Aurora B 

expression with RNAi was associated with disruption of chromosomal 

biorientation, failure of cytokinesis and disruption of the mitotic checkpoint 

(476, 499). Abrogation of the mitotic checkpoint allows cells to go through 

multiple cycles of aberrant mitosis without cytokinesis resulting in massive 

polyploidy (473, 500).  Considering this, Aurora kinase inhibitors would be 

predicted to be selectively toxic to rapidly dividing cancer cells over non-

dividing cells. 

 
1.8.6.1 Pan-Aurora kinase Inhibitors 

 
1.8.6.1.1 Hesperadin 

Hesperadin was one of the earliest compounds to demonstrate Aurora 

kinase inhibition. It is an indolinone derivative that was originally developed 

by Boehringer Ingelheim as a pan-kinase inhibitor. Subsequently, it was 

shown to inhibit Aurora B and induce a cellular and molecular phenotype 

consistent with Aurora B inhibition including a reduction in histone H3 

phosphorylation and chromosome alignment and segregation defects 

(473). Crystallography analysis showed that the indolinone moiety of 

hesperadin binds to the catalytic cleft of Aurora B (501). Hesperadin never 

entered clinical studies, but served as a useful scientific tool to examine 

the function of Aurora kinases as mitotic regulators in normal and 

malignant cells.  

 
1.8.6.1.2 ZM447439 

ZM447439 is a quinazoline derivative developed by AstraZeneca that is an 

ATP competitive inhibitor of both Aurora A and B (474). ZM447439 was 

studied preclinically in myeloid and lymphocytic leukaemia cell lines where 

it induced growth inhibition, accumulation of polyploid cells and apoptosis 

(502). ZM447439 treatment resulted in defects in chromosome 
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condensation and alignment and impairment of the spindle checkpoint, 

phenotypes indicative of Aurora B inhibition (474, 503). Similarly, other 

small molecule pan-Aurora inhibitors such as MK-0457 and PHA-680632 

induce a cellular phenotype consistent with Aurora B inhibition rather than 

Aurora A inhibition (504, 505). It has been shown that Aurora B is required 

for G2 arrest induced by Aurora A inhibition and that therefore, Aurora B 

inhibition bypasses Aurora A inhibition (506).   Consequently, it appears 

that dual inhibition of both Aurora A and B is comparable to inhibition of 

Aurora B alone. Additional studies are required to clarify this issue. 

 
1.8.6.2 MK-0457 (VX-680)  

The first Aurora kinase inhibitor to enter clinical evaluation was MK-0457 

(VX-680), initially developed by Vertex and later by Merck 

Pharmaceuticals. MK-0457 is a pyrimidine derivative that has activity 

against all three Aurora kinases (0.6, 18, 4.6 nM against aurora A, B and C 

respectively) (504). It was shown to block the proliferation of pancreatic, 

leukaemia and colon cell lines in vitro and reduced tumour volume in 

human AML and pancreatic xenograft models. As with other pan-Aurora 

kinase inhibitors, MK-0457 induced a cellular phenotype consistent with 

Aurora B inhibition where cytokinesis was prevented, cells became 

polyploid, and phosphorylation of histone H3 on Ser10 was reduced.  

 MK-0457 was also found to have activity against wild type and 

T315I mutated BCR-ABL (507). It was shown to inhibit the proliferation of 

cells expressing BCR-ABL mutations with IC50 values of 100 to 200 nM. As 

discussed in section 1.6.6.4 mutations in BCR-ABL are a significant reason 

for failure of TKI therapy in CML (277, 302, 508). In particular, the 

“gatekeeper” T315I mutation at the base of the ATP binding pocket that 

accounts for 10-15% of mutations confers resistance to imatinib, nilotinib, 

and dasatinib (509). High-resolution crystallography demonstrated that in 

contrast to imatinib, MK-0457 binds to ABL in its inactive confirmation and 

in a manner that accommodates the substitution of isoleucine for threonine 
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at residue 315 explaining its ability to inhibit the T315I mutant (510). It was 

also found to have in vitro activity against a variety of other BCR-ABL 

mutations including the dasatinib resistant V229L mutation (511). 

Subsequently, it was reported to have disease activity in 3 patients with the 

T315I mutation, 2 with CML and one with Ph+ ALL, all of whom were 

enrolled in a dose finding phase 1/2 study of MK-0457 for refractory 

haematological malignancies (509).  

 Many of the Aurora kinase inhibitors in clinical development have off 

target inhibition of other clinically relevant tyrosine kinases. MK-0457 was 

shown to be an inhibitor of FLT3 (discussed in section 1.1.4.4) (366, 504, 

507). Several other Aurora kinase inhibitors including ZM447439 and 

AS703569 have also demonstrated off target inhibition of FLT3 in vitro 

(502, 512-514). Another potential beneficial off target inhibition by MK-

0457 in vitro and in vivo is that of janus kinase 2 (JAK2). The Val617Phe 

point mutation in the JAK2 gene leads to constitutive tyrosine 

phosphorylation activity and occurs in the majority of myeloproliferative 

disorders (515). Consistent with this, MK-0457 inhibits JAK2 in vitro and 

has normalized platelet counts and induced partial remission in patients 

with JAK2V617F positive MPD and AML transformed from MPD (509, 516, 

517). Despite these promising and intriguing clinical responses the clinical 

development of MK-0457 was halted due to concerns regarding cardiac 

toxicity. 

 
1.8.6.3 Danusertib (PHA-739358) 

Danusertib is 3-aminopyrazole derivative developed by Nerviano/Pfizer 

(518). It is an ATP-competitive inhibitor of all three Aurora kinases (IC50 of 

0.013, 0.079 and 0.061 for Aurora A, B, and C, respectively). As well as 

inhibiting the Aurora family of kinases, danusertib inhibits other tumour-

related kinases such as fibroblast growth factor receptor 1 (FGFR1), 

transforming tyrosine kinase protein (TRKA), ABL and rearranged during 

transfection (RET) in the low nanomolar range. As is the case with other 
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pan-Aurora kinase inhibitors, cells treated with danusertib show 

endoreduplication and reduced phosphorylation of histone H3 (518). 

Danusertib has significant activity in preclinical models of cancer (519). 

Like MK-0457, danusertib inhibits BCR-ABL including T315I mutated BCR-

ABL and synergistically increases the efficacy of imatinib (520).  

 Danusertib has been evaluated in a number of early phase clinical 

studies using various schedules (521, 522). The most common toxicity was 

neutropaenia that was typically of short duration. Non-haematological 

toxicities reported included nausea, mucositis and alopecia (523). Phase 1 

single agent data in patients with advanced stage CML or Ph+ ALL 

resistant or intolerant of imatinib or second-generation TKI therapy was 

encouraging. The cohort of 23 resistant/relapsed patients treated (11 Ph+ 

ALL, 8 CML-BC and 4 CML-AP) showed 1 CCyR, 1 PCyR, 1 minCyR, 5 

HRs and one clinical improvement (reduction in extramedullary disease 

mass) at the time of reporting (524). Further Phase 1 and 2 trials 

evaluating danusertib as single agent or in combination for both solid 

tumours and haematological malignancies are ongoing (514). 

 
1.8.6.4 SNS-314 

SNS-314 is an ATP-competitive pan-Aurora kinase inhibitor developed by 

Sunesis. It selectively inhibits Aurora A, B, and C with an IC50 value of 9 

nM, 31 nM and 3.4 nM, respectively (85). It is synergistic when combined 

with gemcitabine and the tubulin disrupting agents, docetaxel and VCR in 

vitro and in vivo in preclinical models of colorectal carcinoma (86). It also 

has activity in mouse xenograft models of human prostate (PC-3), breast 

(MDA-MB-231), melanoma (A375) lung (H1299 and Calu-6) and ovarian 

(A2780) carcinomas (525). SNS-314 is currently being evaluated in early 

phase clinical trials. The compound appears to be well tolerated although 

objective responses have yet to be reported (526).  

 



 133 

1.8.6.5 R763/AS703569 

AS703569 (R763) is a pan-Aurora kinase inhibitor developed by Rigel 

Pharmaceuticals Inc that is orally available. (88). In addition to inhibiting 

Aurora A and B it also has activity against FLT3 kinase, VEGFR and BCR-

ABL including T315I mutated BCR-ABL. At higher concentrations it has 

activity against JAK2 kinase. Oral administration of AS703569 markedly 

reduced tumour growth in xenograft models of breast, colon, pancreatic, 

lung and ovarian cancer. MV4-11, an AML cell line, which harbours the 

FLT3-ITD mutation, was particularly sensitive to AS703569 in vitro and in 

vivo. Consistent with Aurora kinase inhibition, AS703569 led to 

endoreduplication and an increase in the DNA content of the nuclei without 

subsequent cytokinesis. In addition, the inhibition of other non-Aurora 

kinases may enhance its anti-tumour effects. Interesting in a panel of cell 

lines representing FLT3-ITD AML, there was a trend toward the bypassing 

of endoreduplication and direct induction of apoptosis. 

 A phase 1 study of AS703569 has been completed in advanced 

haematologic malignancies evaluating different potential dosing schedules 

for the drug (527). Dose-limiting toxicities were mucositis/stomatitis, severe 

neutropaenia with infection, and diarrhea. There were some responses to 

monotherapy including 2 CRs among 54 patients with AML and 1 among 3 

patients with ALL.  PRs were seen in MDS, MPD, and CML. However in 

the expansion part of this study frequent toxicities were noted 

necessitating dose reductions and subsequent lack of efficacy at these 

reduced doses. As a result the clinical development of AS703569 was 

suspended.  

 
1.8.6.6 AT9283 

AT9283 is a pyrazole-benzimidazole compound that inhibits both Aurora A 

and B equally (IC
50

 ≈  3 nM). It is being developed by ASTEX 

Pharmaceuticals. As well inhibiting Aurora A and B, AT9283 was also 

found to inhibit a number of other kinases including JAK2, FLT3, and ABL 
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(including T315I) (IC
50

 = 1−30 nM) (528). Consistent with its profile as a 

pan-Aurora kinase inhibitor, AT9283 treatment resulted in 

endoreduplication and reduction of histone H3 phosphorylation in tumour 

cells. AT9283 showed encouraging single agent activity in patients with 

refractory leukaemia (454, 529). One third of patients with refractory AML 

experienced a significant reduction in BM blasts following treatment with 

AT9283. Two patients with refractory CML had a CHR and one had a 

PCyR response after 4 cycles of treatment. Dose limiting toxicities (DLTs) 

included elevated transaminases, non-cardiac creatine kinase and lactate 

dehydrogenase rises, tumour lysis syndrome, myelosuppression and 

alopecia.  

 In a study using a panel of AML cell lines with or without mutations 

of c-KIT, FLT3 and RAS two distinct phenotypes emerged. Those driven 

by the oncogenic mutations listed above showed accumulation of cells in 

G2/M (4N) arrest followed by apoptosis characteristic of Aurora A inhibition. 

Those without these mutations developed >4N DNA content and polyploidy 

followed by apoptosis consistent with Aurora B inhibition. Authors went on 

to speculate that their findings indicated that patients with mutations in 

oncogenic signalling pathways, may prove more susceptible to inhibition 

by AT9283 due to the presence of an intact mitotic checkpoint and a 

dominant Aurora A phenotype (530). 

 
1.8.7 Aurora A-Selective inhibitors 

 
1.8.7.1 Alisertib (MLN8237)  

Alisertib is a small molecule ATP competitive reversible inhibitor of Aurora 

A that is being developed for the treatment of advanced malignancies. 

Alisertib inhibits Aurora A with an inhibition constant (Ki) of 0.43 nM. Unlike 

many other Aurora kinase inhibitors undergoing clinical evaluation it is 

approximately 200-fold more selective for Aurora A than Aurora B (IC50 = 

1534 nM) (531). Moreover, alisertib is selective for Aurora A kinase when 

compared to other kinases (at a minimum 250-fold more selective in vitro) 
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and receptors. Like its parent molecule, MLN8054, alisertib has a 

benzazapine scaffold. The clinical development of MLN8054 was stopped 

due to excess somnolence that patients experienced. Somnolence is 

significantly less of a problem with alisertib as it has less affinity for 

benzodiazapine receptors. As would be expected from its kinase inhibitory 

profile, alisertib treatment results in the formation of abnormal mitotic 

spindles, an accumulation of mitotic cells, induction of p53, p21, p27 and a 

decrease in the proliferation of a tumour cell lines grown in culture (531). 

Alisertib synergizes with docetaxol, another agent that disrupts mitosis in 

preclinical models of mantle cell lymphoma (532). Alisertib is currently 

being investigated in a large number of clinical studies in solid tumours and 

haematological malignancies. Several different formulations and dosing 

schedules have been evaluated in adult and paediatric patients.  

 Alisertib is rapidly absorbed with an overall median time to 

maximum plasma concentration (Tmax) of 2 hours (455). The overall mean 

terminal half-life following multiple dosing is approximately 19 hours (533). 

The side effects of alisertib have been similar to those observed with other 

Aurora kinase inhibitors including myelosuppression, diarrhoea, and 

alopecia. However the use of a treatment-free period for BM and 

gastrointestinal tract recovery between each cycle of drug administration 

allows repeated treatment cycles over periods extending beyond 12 to 24 

months (534, 535). Apart from alopecia, the predominant toxicities are 

largely reversible. 

 Objective responses to alisertib treatment have been observed 

across a broad range of malignancies including AML and lymphomas. In 

many cases these responses have been sustained over 6 months (536).  

In a phase 1 study of alisertib in 56 patients with advanced haematological 

malignancies, 4 patients with lymphoma and 1 patient with multiple 

myeloma had PR to therapy and a further 13 patients had prolonged SD 

(534). A phase 2 study of 48 patients with refractory aggressive non-

Hodgkin's lymphoma (NHL) has been reported on. The overall response 
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rate was 32%, but 57% of patients with T cell lymphoma responded (537). 

These promising results have prompted a phase 1/2 study of alisertib in 

combination with rituximab and VCR in B cell lymphoma and a phase 3 

registration study comparing alisertib with investigators choice in peripheral 

T cell lymphoma.  

 
1.8.8 Aurora B-Selective Inhibitors 

 
Barasertib (AZD1152) 
Barasertib is a quinazoline prodrug that is converted to the active 

metabolite barasertib -HQPA in plasma. It is the first selective Aurora B 

inhibitor to be evaluated in clinical trials. It is 1000-fold selective for 

inhibition of Aurora B over Aurora A kinase activity (Ki of 0.36 nM and 1.7 

µM for Aurora B and A respectively) (80). As expected, based on its 

inhibition of Aurora B, barasertib reduced histone H3 phosphorylation and 

induced the accumulation of polyploid cells in colorectal SW620 xenografts 

(538). Barasertib demonstrated activity in preclinical models of leukaemia 

(539). It suppressed the proliferation of leukaemia lines (MV4-11, PALL-2, 

NB4, HL-60, K562 and MOLM-13) with an IC50 ranging from 3 nM to 40 

nM. Barasertib also enhanced the activity of the tubulin depolymerizing 

agent, VCR and the topoisomerase II inhibitor, daunorubicin. Barasertib 

has activity in preclinical models of myeloma and lymphoma, both of which 

have high levels of Aurora B expression (540, 541). VCR is an important 

component of lymphoma therapy. Notably, barasertib blocks the induction 

of phospho-Aurora B by VCR and synergistically enhances its activity in 

preclinical models of lymphoma (541). Barasertib has also been explored 

as a potential radiosensitizing agent in the preclinical setting (542, 543). 

Radiation treatment leads to micronucleated cells followed by MC (544). 

Activation of the spindle checkpoint inhibits this process (225). Barasertib-

induced inhibition of Aurora-B attenuates the spindle checkpoint to 

enhance radiation-induced cell death in HCT-116 and A549 cells in vitro 

and in HCT-116 xenografts (542).  
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 Barasertib is being investigated in a number of clinical trials in solid 

tumours and AML (545). In a phase 1 study of patients with refractory solid 

tumours, barasertib was administered as a 2-hour IV infusion given weekly. 

A DLT of grade 4 neutropaenia was observed and the treatment was 

associated with prolonged SD in 5 out of 13 patients (546). Thirty-two 

patients with AML received barasertib in a phase 1 study. Haematological 

responses were reported in 8 out of 32 patients. DLT was reported as 

grade 3 mucositis/stomatitis, consistent with Aurora kinase inhibition of 

proliferating epithelial cells (545). Barasertib is currently being investigated 

in combination with low dose ara-C in patients with newly diagnosed AML.  



 138 

 

Table 1.10 Aurora kinases inhibitors in clinical development 

CML, chronic myeloid leukaemia; Ph+, Philadelphia chromosome positive; ALL, acute lymphoblastic leukaemia; SD, stable disease; SCLC, small cell 
lung cancer; NSCLC, non-small cell lung cancer: MM, multiple myeloma; NHL, non-Hodgkin's lymphoma.

Compound Company Route  Targets Clinical 

Trial 

Tumour Types Major Reported 

Toxicities 

Responses 

MK-0457  Merck I.V. Aurora A, B & C, 

FLT3, BCR-ABL 

II Solid Tumours and 

Leukaemia 

Neutropaenia CML and Ph+ ALL 

PHA-739358 Nerviano/ 

Pfizer Italia 

I.V. Aurora A, B & C 

BCR-ABL 

Trk-A & Ret 

II CML & solid tumours Neutropaenia, 

mucositis 

SCLC, ovarian cancer 

& CML 

SNS-314 Sunesis I.V. Aurora A, B & C I Solid Tumours Neutropaenia  

AT9283 Astex I.V. Aurora A & B 

 

I/II Solid Tumours and 

Leukaemia 

Neutropenia, 

Fatigue 

NSCLC, CML & AML 

R763/AS703569 Rigel/ Merck Oral Aurora A, B & C I Solid Tumours and 

leukaemia 

Neutropaenia,  

mucositis 

AML, CML and MPD 

Barasertib 

(AZD1152) 

AstraZeneca I.V. Aurora B & C II AML & solid tumours Neutropaenia AML 

MLN8054 Millennium Oral Aurora A I Solid Tumours Somnolence SD in solid tumours 

Alisertib 

(MLN8237) 

Millennium Oral Aurora A I/II/III Solid Tumours, NHL, 

AML, MM  & ALL 

Neutropaenia Ovarian & liposarcoma, 

AML, NHL and MM 
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1.9 PIM kinases 
1.9.1 Introduction 

An alternative strategy in the treatment of resistant myeloid leukaemia is to 

target pro-survival pathways such as the PIM kinase pathway. The PIM 

genes represent a small family of proto-oncogenes within the 

calcium/calmodulin kinases (CAMK) super-family and encode three 

different serine/threonine protein kinases (547). All three kinases have an 

ATP binding pocket, an active site and a kinase domain (547). The first of 

these proteins (PIM-1) was discovered in 1984 when cloning of retroviral 

integration sites in murine Moloney leukaemia virus induced lymphomas 

led to the identification of the PIM (Proviral Integration Moloney virus) gene 

locus (548).  PIM-1 and PIM-2 are 61% identical at the amino acid level 

whereas PIM-1 and PIM-3 are 77% identical (549, 550). PIM-2 was 

identified as a gene activated in secondary transplants of virus induced 

lymphomas (551). Of note, myelocytomatosis oncogene cellular homolog 

(c-myc) transgenic mice lacking PIM-1 had compensatory activation of 

PIM-2. PIM-2 is expressed with highest levels in brain and lymphoid cells 

(552).  PIM-3 was identified as a PIM-1 and PIM-2 related kinase and 

subsequently as a gene overexpressed in lymphomas developing in c-myc 

transgenic mice lacking PIM-1 and PIM-2 (553). The PIM-3 gene is located 

on chromosome 22q and is expressed with highest levels in kidney, breast, 

and brain (554). Selective activation of PIM-3 occurs in tumours of c-myc 

transgenic mice lacking PIM-1 and PIM-2 suggesting that PIM-3 can 

substitute for PIM-1 and PIM-2 (553). 

 The PIM kinases are positive regulators of cell proliferation and 

survival and consequently have the potential to significantly reduce the 

efficacy of chemotherapeutic agents. The major pro-survival pathways that 

are regulated by the PIM kinases include the Wnt pathway and the signal 

transducer and activator of transcription (STAT) 3 signalling pathway (555, 

556). Additionally PIM has also been identified as a positive regulator of 
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the NFκB pathway (557). As well as being implicated in drug resistance 

due to increased expression of pro survival pathways, PIM has also been 

implicated as an activator of drug efflux pumps (558, 559).  

 The importance of PIM kinases in normal body growth was 

underscored by the finding that PIM-1, PIM-2 and PIM-3 compound 

knockout mice had significant growth retardation. However these 

compound mice were viable and fertile suggesting that this family of 

serine/threonine kinases is important but dispensable for growth factor 

signalling (560). This may also indicate that there may be other, yet to be 

identified PIM kinases or that there is some degree of functional 

redundancy between the PIM kinases and other important cell  signalling 

pathways. 

 
1.9.2 The importance of PIM kinases in cancer 

The oncogenic potential of PIM-1 and PIM-2 is evidenced by the findings 

that transgenic mice overexpressing these kinases in the lymphoid system 

develop lymphomas (561). However these tumours developed slowly 

indicating PIM kinases are weak oncogenes. In murine BM, enforced 

expression of PIM-1 leads to increased cell turnover, prolonged survival 

(562), protection from toxin induced cell death (563) and IL-3 independent 

cell survival (564). While PIM kinases function as weak oncogenes by 

themselves their oncogenic potential is significantly enhanced in co-

operation with the c-MYC oncogene. Double transgenic mice cross-bred in 

order to express both PIM-1 and c-myc under control of the 

immunoglobulin heavy chain enhancer developed T cell lymphomas 

around birth (565). Therefore it appears that PIM-1 co-operates with c-

MYC in the formation of lymphoid tumours. Additional data supporting the 

co-operation between PIM and c-MYC comes from pre-clinical data in 

prostate cancer. Significant overexpression of PIM-1 is noted in c-myc 

transgene driven prostate tumours in mice (566). Additionally, grafting 

normal mouse prostate epithelial cells expressing exogenous PIM-1 and c-
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myc under the subrenal capsule of SCID mice results in large tumours 

compared to grafting epithelial cells expressing only PIM-1, an inactive 

kinase mutant PIM-1 or c-myc (567). Correspondingly, PIM-1 is 

overexpressed in clinical cases of lymphoma (568) and leukaemia (569). 

Overexpression has also been documented in several solid tumours 

including prostatic adenocarcinoma, bladder and oral cancers (570). 

Expression of the transmembrane serine protease hepsin and PIM-1 

together, correlate with measures of clinical outcome in prostate cancers 

(571). PIM-2 is largely expressed in both solid (adenocarcinoma and 

squamous cell carcinoma of the lung) and haematological malignancies 

(AML and ALL) whereas PIM-3 expression seems to be restricted to solid 

tumours (melanoma, pancreatic adenocarcima, gastric cancers and 

hepatomas) (570).  

 
1.9.3 Activation of PIM kinases 

PIM kinases are constitutively active and the regulation of PIM kinase 

activity is largely at the transcriptional and translational levels (572, 573). 

Binding of several ligands activates a complex network of signalling 

pathways that results in upregulation of PIM-1 mRNA (Figure 1.18). 

Because PIM-1 translation is initiated by the STAT3 and STAT5 protein, its 

production is regulated by the cytokines that regulate the STAT pathway, 

or STAT factors. These include interleukins (IL-2, IL-3, IL-5, IL-6, IL-7, IL-

12 and IL-15), prolactin, TNFα, epidermal growth factor (EGF) and IFNγ 

(547). Interestingly, PIM-1 itself can bind to negative regulators of the 

JAK/STAT pathway, resulting in a negative feedback loop. Additionally, 

hypoxia has been shown to induce PIM-1 expression, in a HIF1α-

independent manner (574, 575). PIM-1 also binds to heat shock protein 90 

(HSP90), which in turn protects it from proteasomal degradation (576). 

Furthermore, the serine/threonine protein phosphatase 2A (PP2A) has 

been shown to degrade PIM-1 (577, 578). In addition it appears that 

autophosphorylation and/or phosphorylation by as yet unknown kinases 
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might play key roles in the determining PIM kinase function. Most of the 

experimental data regarding regulation of PIM kinase expression has been 

generated using PIM-1 and little is known about the regulation of PIM-2 

and PIM-3. 
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Figure 1.18 Regulation of PIM-1 expression  

Binding of several ligands leads to activation of a complex network of 

signalling pathways that results in upregulation of PIM-1 mRNA. Binding of 

PIM-1 to HSP90 protects from proteasomal degradation. Most 

experimental data has been generated using PIM-1; very little is known 

about regulation of PIM-2 and PIM-3. There is increasing evidence for 

modification of PIM kinases through as yet unkown protein kinases and/or 

phosphatases. Reproduced with permission from Brault et al, 

Haematologica. 2010 Jun;95(6):1004-15.  
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1.9.4 Activities of PIM kinases 

 
1.9.4.1 Prevention of apoptosis 

Pro-survival signalling by PIM kinases is thought to be necessary for its 

oncogenic properties and is the primary reason for the efforts to 

therapeutically target this kinase (Figure 1.19) (579). An important finding 

was that PIM-1 co-localized with and physically interacted with the pro-

apoptotic protein BAD (discussed in section 1.4.2). This results in a 

phosphorylation of BAD on Ser112, which is a gatekeeper site for BAD 

inactivation. This suggested a direct functional role of PIM-1 in preventing 

cell death since the inactivation of BAD can enhance BCL-2 activity, 

thereby promoting cell survival (580). PIM also phosphorylates BAD on 

Ser136 and Ser155, which contribute to the inactivation of BAD (581, 582).  

 The pro-apoptotic function of BAD is regulated by growth factor 

induced signalling survival kinases that result in the phosphorylation of 

three serine residues (Ser112, Ser135, and Ser155). All three PIM kinase 

family members have been shown to phosphorylate BAD at Ser112 (572, 

580, 581, 583). This is consistent with the known ability of PIM kinases to 

promote cell proliferation and prevent apoptosis. The three PIM isoforms 

variably phosphorylate serine residues on BAD. For example, PIM-1 and 

PIM-2 can phosphorylate BAD on Ser112, Ser136, and Ser155, with 

predominance for Ser112. Conversely, PIM-3 is the least selective for 

Ser112, and mostly phosphorylates BAD on Ser136 and Ser155 (582). 

Phosphorylation of BAD on Ser112 and Ser136 induces 14-3-3 binding, 

disassociation from BCL-2 family members and transfer of BAD from the 

mitochondria to the cytosol (584). The phosphorylation of BAD on Ser112 

and Ser136 is required for phosphorylation on Ser155, which is instrumental 

for the dissociation of BAD from BCL-2. PP2A binds to and 

dephosphorylates PIM-1 leading to its ubiquitylation and proteasomal 

degradation (577). Additional mechanisms by which PIM may inhibit 

apoptosis include the phosphorylation of the proline-rich AKT substrate 1 
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and impairment of the activity of the apoptosis signalling kinase 1 (ASK1) 

(585, 586).  

 Lastly PIM kinases may promote tumour cell survival by enhancing 

glycolysis. As discussed in 1.1.2.9, tumour cells are characterized by 

aerobic glycolysis (587). Phosphorylation of BAD on Ser 155 induces 

glucokinase binding and enhances glycolysis (588). Since the PIM family 

members phosphorylate BAD, it is possible that PIM-1 and PIM-3 induced 

BAD phosphorylation may enhance glycolysis.  
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Figure 1.19 Potential downstream substrates of over-
expressed PIM-1 in haematologic malignancies   

Functionally collaborating genetic alterations such as mutated protein 

tyrosine kinases and fusion genes involving transcriptional regulators such 

as mixed lineage leukaemia (MLL) lead to constitutive activation of major 

signalling mediators, like STAT5 or HOXA9, shown to be transcriptional 

activators of PIM-1. Elevated PIM-1 levels support cellular proliferation 

through modification of cell cycle regulators, survival through modification 

of regulators of apoptosis, as well as homing and migration through 

modification of the CXCR4 chemokine receptor. Reproduced with 

permission from Brault et al, Haematologica. 2010 Jun;95(6):1004-15.  

PTK: protein tyrosine kinase; SOCS: suppressor of cytokine signalling; 

NUP: nucleoside permease; HOXA9 homeobox protein A9; PTD: partial 

tandem duplication; myb: myeloblastosis; FOXO3a: forkhead box O3a.
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1.9.4.2 Cell cycle regulation  

PIM kinases regulate multiple aspects of cell cycle progression and in 

transgenic mouse models, PIM overexpression leads to enhanced cell 

proliferation (589, 590). As discussed earlier p21 and p27 are key CKIs 

that regulate cell cycle progression. The phosphorylation of p21 is directly 

induced by PIM-1 at Thr145 and indirectly on Thr146. This results in the 

transfer of p21 to the cytoplasm and increased p21 protein stability leading 

to enhanced cell proliferation (591). All three PIM family members bind to 

and phosphorylate p27 at Thr157 and Thr198, which leads to enhanced 

binding of p27 to 14-3-3 leading to its nuclear export and proteasome-

dependent degradation (592). Consistent with this, ectopic expression of 

PIM kinases can overcome the G1 arrest mediated by p27. Additionally, 

PIM kinases suppress p27 transcription through phosphorylation and 

inactivation of the forkhead transcription factors, FOXO1a and FOXO3a 

(592). In keeping with these observations is the finding that 

pharmacological inhibition of PIM kinases induces cell cycle arrest in 

tumour cell lines, and is associated with decreased CDK2 activity and p27 

nuclear accumulation (593, 594).  

 CDC25A cell cycle phosphatase, a direct transcriptional target for c-

MYC, is a substrate for PIM-1 kinase and functions as an effector for PIM-

1, leading to activation of the cyclin D1-associated kinases, cell cycle 

progression, enhanced cellular transformation and apoptosis (595). As 

mentioned earlier CDC25C regulates the G2/M transition. PIM kinases 

seem not only to interfere with G1-S (through modification of CDC25A, p21 

and p27) but also with the G2-S transition of the cell cycle by 

phosphorylating CDC25C phosphatase (596, 597).  

 
1.9.4.3 Regulation of Myc transcriptional activity 

MYC protein is a transcription factor that activates expression of a great 

number of genes through binding on consensus sequences (enhancer box 
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sequences (E-boxes)) and recruiting histone acetyltransferases (HATs) 

(598). It is thought to regulate the expression of approximately 11% of all 

human genes increasing up to 15% depending on cell type and MYC 

expression levels (599). Both PIM-1 and PIM-2 stabilize c-MYC in vivo 

dramatically increasing its transcriptional activity. This effect is partially 

mediated by phosphorylation of c-MYC by PIM kinase on Ser329.  

 
1.9.4.4 Regulation of protein transcription 

PIM-2 has a role in the regulation of cap-dependent protein translation in 

parallel to and independently of the PI3K–AKT pathway. Upon growth 

factor signalling and nutrient availability, the mammalian target of 

rapamycin complex 1 (mTORC1) regulates protein synthesis and growth 

(600). Growth factors activate receptor tyrosine kinases that then activate 

both the PI3K–AKT pathway and the JAK–STAT pathway. AKT activation 

in turn leads to activation of the mTORC1 complex while STAT 

transcription factors will induce expression of PIM-2 (601). mTORC1 

regulates translation by phosphorylating 4E-binding protein 1 (4E-BP1) 

and ribosomal protein S6 kinase β1 (S6K1) (602). PIM-2 activity induces 

phosphorylation of 4E-BP1 through an unknown intermediate (572, 603). 

Upon phosphorylation, 4E-BP1 disassociates from eukaryotic translation 

initiation factor 4E (EIF4E) and allows the recruitment of the ribosomal 40S 

subunit and the translation initiation machinery. This is the rate-limiting 

step in cap-dependent mRNA translation. Increased activity of EIF4E 

selectively increases the translation of mRNAs that are involved in cell 

cycle, cellular growth, angiogenesis, survival and malignancy (e.g. cyclin 

D1, c-MYC, VEGF, matrix metalloprotease 9) (600).  

 As discussed below AML blast cells frequently display high levels of 

PIM-2 expression. PIM-2 has been identified as being mainly responsible 

for 4E-BP1 phosphorylation on the Ser65 residue and subsequent 

translation control in AML (604). This suggests that PIM-2 plays a role in 

an mTORC1-independent deregulation of oncogenic proteins synthesis in 
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human myeloid leukaemogenesis. Therefore inhibiting PIM-2 in AML may 

result in direct inhibition of the translation-initiating complex and represents 

an attractive therapeutic approach. 
1.9.5 PIM kinases in AML 

Early studies showed that PIM-1 is highly expressed in haematopoietic 

malignancies. In an analysis of 51 primary patient samples and 19 cell 

lines, PIM-1 was overexpressed in approximately 30% cases, particularly 

in AML and ALL. The level of PIM-1 overexpression was not related to any 

stage of cellular differentiation and was not due to gene rearrangement or 

amplification (569). PIM-1 and PIM-2 play key roles downstream of 

oncogenic protein tyrosine kinases such as BCR-ABL, FLT3-ITD, or the 

JAK2 V617F mutant (549). These effects are probably mediated through 

aberrant JAK-STAT signalling. BCR-ABL increases the expression of PIM-

1 leading to increased cell proliferation and protection from apoptosis 

(605).  

 FLT3-ITD is constitutively active, associated with poor prognosis 

and plays an important role in leukaemogenesis in AML (see section 

1.1.4.4).  Constitutively activated FLT3 up-regulates PIM-1 expression in 

leukaemia cells and PIM-1 expression is significantly down-regulated upon 

FLT3 inhibition (606). Increased expression of PIM-1 leads to resistance to 

the FLT3 inhibitor, lestaurtinib (see section 1.7.16), -mediated cytotoxicity 

and apoptosis whereas decreased PIM-1 expression sensitizes AML cells 

to cytotoxicity in response to FLT3 inhibition. As well as through activation 

of FLT3, PIM-1 expression may also occur through aberrant activation of 

HOXA9, a direct transcriptional regulator of PIM-1 (607). PIM-1 expression 

is also upregulated in AML harbouring alterations of the MLL gene such as 

the MLL/ENL or MLL/AF9 fusion genes (608). 

 As discussed in section 1.7.16, CXCR4 is important in 

haematopoiesis, and grafting of HSCs (446). Furthermore, high CXCR4 

expression is known negative prognostic marker in AML (447). 

Experiments using PIM knockout cells have shown that transplantation of 
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wild-type or PIM-2 −/− BM retrovirally expressing the FLT3-ITD mutant led 

to induction of typical lympho-myeloproliferative disease (609). In contrast, 

PIM-1 −/− BM cells were not able to reconstitute lethally irradiated 

recipients and showed a significant defect for homing to the BM and 

spleen. Furthermore, blocking PIM-1 activity with siRNAs or by a small 

molecule inhibitor impairs CXCR4 expression. PIM-1 may regulate CXCR4 

by direct phosphorylation of the Ser339 residue, which in turn may affect 

receptor internalization and surface re-expression. These observations 

suggested that PIM-1 (but not PIM-2) regulate homing and migration of 

leukaemic cells through modification of surface CXCR4 expression. 

 Similar to PIM-1, PIM-2 levels have been found in to be increased in 

primary blasts from AML patients (604, 610). As mentioned earlier PIM-2 

phosphorylates 4E-BP1 resulting in mTOR-independent translational 

control in AML cells highlighting a potential important role for PIM-2 in 

AML.  

 
1.9.6 PIM kinases as anti-cancer targets 

The over-expression of PIM kinases in various types of malignancies as 

well as their roles in the regulation of important cancer pathways have 

made PIM kinases attractive targets for novel anti cancer agents (611).  

Another attraction of targeting the PIM kinases is that the effects of PIM 

kinase inhibition in normal cells appears to be limited because triple PIM-1, 

PIM-2, and PIM-3 knock-out mice are viable and show only a limited 

number of phenotypic abnormalities including a reduction in body weight 

and slight changes in haematopoietic cell signalling (560).  

 Both PIM-1 and PIM-2 assume an active conformation in the 

reported crystal structures (573, 612). In contrast to most kinases, PIM 

kinases are catalytically active in the absence of phosphorylation and the 

crystal structures of PIM provides an explanation for this constitutive 

activity. The unphosphorylated activation segment forms a large number of 

polar interactions with the lower kinase lobe that stabilizes the observed 
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active conformation. Although PIM kinases do autophosphorylate, the 

functional consequences of these post-translational modifications are not 

known (613). Lastly the involvement of PIM kinases in the regulation of 

drug resistance suggests that PIM kinase inhibitors may be combined with 

currently available therapies to overcome resistance.  
1.9.7 Small molecule PIM kinase inhibitors 

PIM kinase inhibitors can be grouped into two main classes based on their 

binding mode (549).The first class of inhibitors are ATP-mimetic 

compounds that form a hydrogen bond with the hinge region of PIM-1. 

These compounds include the broad-spectrum kinase inhibitor 

staurosporine and its analogue K252, bisin-doyl maleinimides (BIM) and 

the PKC inhibitor LY333531 (613-616). Also flavonoids are potent 

inhibitors of PIM kinases through their multiple polar interactions with the 

hinge backbone region (617, 618).  
 The second class of PIM inhibitors does not form classical hydrogen 

bonds with the hinge region of PIM and can therefore be considered as 

ATP competitive inhibitors rather than ATP mimetic inhibitors. These 

include the imidazo[1,2-b]pyridazines, pyrazolo[1,5-a]pyrimidines and 

LY294002 (617). K00135 is an imidazo[1,2-b]pyridazines that has been 

evaluated in preclinical models of leukaemia. K00135 impairs the survival 

human AML cell lines, human primary AML cells and murine Ba/F3 cells 

that are cytokine independent due to overexpression of PIM. Consistent 

with the inhibition of PIM, K00135 inhibits the phosphorylation of known 

PIM downstream targets, such as BAD and 4E-BP1 (619).  

 
1.9.7.1 SGI-1776 

SGI-1776 is an imidazo [1,2-b]pyridazine compound, developed by 

SuperGen Inc., Dublin, CA, USA and later by Astex Pharmaceuticals, 

Dublin, CA, USA. It is a potent ATP competitive inhibitor of the PIM kinases 

with IC50 concentrations for PIM-1, PIM-2, and PIM-3 of 7, 363, and 69 nM, 

respectively (620). While it is relatively specific for PIM kinases it has some 
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activity against FLT3 (IC50 44nM) and the haspin group of mitotic kinases 

(IC50 34nM).  

 SGI-1776 has shown preclinical activity against leukaemia and solid 

tumour cell lines with IC50 values of 0.005–11.68 µM. It is orally available 

and in testing conducted by the Paediatric Preclinical Testing Program the 

median relative IC50 value paediatric cancer cell lines was 3.1 µM, with a 

range from 0.3 (Kasumi-1 (an AML cell line)) to 4.5 µM (Ramos (a Burkitt's 

lymphoma cell line)). Other sensitive cell lines included, CHLA-9 an Ewing 

sarcoma cell line, but most solid tumour and ALL cell lines were relatively 

insensitive to SGI-1776. In the same study SGI-1776 was tested against a 

large number of solid tumour xenografts using a dose of 74 mg/kg 

administered by oral gavage daily for 5 days/week for 3 weeks. SGI-1776 

induced CRs in AML xenograft models but paediatric models of solid 

tumours and ALL are relatively less sensitive to SGI-1776 (620).  

 SGI-1776 has shown significant activity in prostate cancer models. 

PIM-1 is known to be upregulated in human prostate cancer clinical 

samples and in animal models of prostate cancer (566, 571). Dose-

dependent reduction in phosphorylation of PIM substrates apoptosis such 

as p21 and BAD were observed following treatment of prostate cancer cell 

lines with SGI-1776 (559).  Consistent with this, SGI-1776 induced G1 cell 

cycle arrest and triggering of apoptosis. SGI-1776 marginally sensitized 

prostate cancer cell lines to taxane-based therapies and was active in a 

multidrug resistance 1 (MDR1) protein based taxane-refractory prostate 

cancer cell line. Interestingly, SGI-1776 was able to resensitize 

chemoresistant cells to taxane-based therapies by inhibiting MDR1 activity. 

Based on these promising findings a phase 1, dose escalation study of 

SGI-1776 was initiated in refractory prostate cancer.  

 SGI-1776 also has significant activity in preclinical models of CLL. 

PIM kinases and in particular PIM-2, are known to be overexpressed in 

CLL (621). SGI-1776 treatment of CLL cells caused a concentration-

dependent induction of apoptosis (622). Probably due to the fact that CLL 
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cells do not replicate in vitro, SGI-1776 did not affect the phosphorylation 

of PIM-1 targets such as BAD and histone H3. However SGI-1776 did 

reduce levels of total c-MYC as well as phospho-c-MYC (Ser62) and the 

inhibitor of apoptosis, MCL-1.  

 Given the central role of MYC in renal cell carcinoma (RCC), SGI-

1776 has been evaluated as a therapeutic agent in preclinical models of 

RCC (623). Treatment of RCC cell lines with SGI-1776 led to a decrease in 

phosphorylated and total c-MYC levels, which resulted in the modulation of 

c-MYC target genes (624). Sunitinib potentiated SGI-1776 activity leading 

to a further reduction in c-MYC levels and enhanced anti-cancer activity in 

vitro and in vivo.  

 A DLT of cardiac QTc prolongation was identified in the phase 1 

study of SGI-1776 in patients with refractory prostate cancer and 

lymphoma. Additional detailed cardiac and pharmacokinetic data 

evaluation of SGI-1776 in this trial has failed to demonstrate a safe 

therapeutic window to prudently continue clinical development of this 

molecule. The QTc prolongation was probably due to SGI-1776 interaction 

with the hERG (human Ether-à-go-go-Related Gene) potassium channel. 

These findings resulted in the halting of the clinical development of SGI-

1776 and Astex Pharmaceuticals are now developing a second-generation 

PIM kinase inhibitor, SGI-9481.  

 

1.10 Thesis objectives 
Despite the recent advances in the treatment of CML, resistance and 

disease persistence continues to be problematic. The Aurora kinase 

inhibitors represent a novel class of anti cancer therapy that have shown 

promise in resistant CML. Alisertib is an orally available Aurora A inhibitor 

undergoing evaluation in multiple tumour types and therefore remains an 

attractive agent for early phase investigation for patients with resistant 

CML. 
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 While our understanding of the molecular aberrations in AML have 

improved greatly recent years the standard induction treatments have 

remained unchanged. The elderly and patients with multiple co-morbid 

conditions represent a significant challange. Given their roles in cell cycle 

progression and oncogenesis the Aurora and PIM family of kinases 

represent attractive therapeutic targets in AML. Targeting aberrant kinase 

expression with small molecule inhibitors in these patients represent an 

attractive therapeutic stategy. 

 
Objective 1: To investigate the efficacy and mechanism of action of 

alisertib in preclinical models of CML that are sensitive or refractory to 

standard TKI therapy. 

Objective 2: To evaluate the activity and pharmacodynamic effects of 

alisertib in preclinical models of AML and assess its ability to augment the 

efficacy of ara-C. 

Objective 3: To evaluate the activity and pharmacodynamic effects of SGI-

1776 in preclinical models of AML and assess its ability to augment the 

efficacy of ara-C. 
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2 Chapter 2: An investigation of the activity and 
mechanism of action of alisertib in CML 
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2.1 Introduction 
As discussed earlier imatinib and the second generation TKIs, nilotinib and 

dasatinib target the constitutively active BCR-ABL tyrosine kinase in CML 

and have become standard treatment based on excellent responses 

achieved in clinical trials. However, resistance can occur through several 

mechanisms including BCR-ABL kinase domain mutations, amplification, 

overexpression, and clonal evolution (see section 1.6.6.4) (281). 

Successful strategies to overcome resistance include dose escalation or 

the use of second-generation BCR-ABL kinase inhibitors including nilotinib, 

dasatinib, bosutinib or ponatinib (277, 302, 508). However, with the 

exception of ponatinib none of these agents are effective in CML cells 

harbouring the “gatekeeper” T315I mutation at the base of the ATP binding 

pocket, which occurs in up to 20% of imatinib resistance cases (509).  

 As discussed in section 1.8, Aurora A kinase is a central mitotic 

regulator necessary for mitotic entry, mitotic spindle assembly, and 

accurate chromosome separation (453, 466, 468). The discovery that 

Aurora kinases were abnormally expressed in malignancies including 

leukaemia prompted the development of agents that inhibit their activity 

(502, 504, 625). The pan-Aurora kinase inhibitors, MK-0457 and PHA-

739358 have shown pre-clinical and clinical activity against CML 

harbouring the BCR-ABL T315I mutation (504, 520, 626, 627). The anti-

leukaemia efficacy of MK-0457 in CML was originally attributed to direct 

inhibition of BCR-ABL kinase activity (628, 629). However, a recent study 

demonstrated that the efficacy of MK-0457 at clinically relevant doses in 

BCR-ABL+ cells was primarily due to inhibition of Aurora, rather than BCR-

ABL, kinase activity (630). The development of MK-0457 was ceased due 

to problems with cardiac toxicity observed in some patients during early 

phase clinical trials with the compound. In spite of this, the clinical 

responses achieved by MK-0457 in refractory CML patients have served to 

maintain interest in targeting Aurora kinases for CML therapy and a 
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significant effort is currently being put forth to develop new agents that 

inhibit Aurora kinase activity and lack undesired cardiac side effects.  

 As discussed in section 1.8.7.1 alisertib is a competitive and 

reversible inhibitor of Aurora A kinase with an in vitro inhibition constant 

(Ki) of 0.43 nM (631). We hypothesized that alisertib -mediated inhibition of 

Aurora A kinase activity would abrogate the growth and survival of CML 

cells in a manner independent of BCR-ABL mutation status. Our results 

indicate that alisertib impairs growth, disrupts cell cycle kinetics, induces a 

cellular phenotype consistent with Aurora A kinase inhibition, and triggers 

apoptosis in CML cell lines and primary human resistant CML cells 

including those bearing the drug resistance conferring T315I mutation. 

Furthermore, alisertib significantly increases the anti-cancer activity of the 

standard agent nilotinib through a mechanism involving downregulation of 

the apoptotic and mitotic regulator, Apollon. Our collective data 

demonstrate that alisertib is a promising novel agent for the treatment of 

refractory CML that warrants further investigation. 

 
Project hypothesis 
Targeting Aurora A kinase with alisertib will lead to apoptosis and growth 

inhibition in preclinical models of CML and will potentiate the anti-

leukaemic activity of nilotinib. 

 

Project aims 
I. To determine if alisertib has in vitro and in vivo anti-leukaemia 

activity in models of CML that are sensitive and resistant to frontline 

TKI therapy.  

II. To investigate whether inhibition of Aurora kinase A activity with 

alisertib can be used as a strategy to increase the anti-leukaemia 

activity of nilotinib in preclinical models of CML.  

III. To elucidate the mechanism of action of alisertib and identify key 

pharmcodynamic regulators of sensitivity to alisertib in CML. 
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2.2 Project summary 
Alisertib is a novel inhibitor of Aurora A kinase currently under investigation 

in multiple phase 1, 2 and 3 studies. Here we report that alisertib 

possessed equipotent anti-cancer activity against Ba/F3 cells and primary 

CML cells from patients expressing unmutated and mutated forms of BCR-

ABL, including T315I and E255K. Notably, the efficacy of alisertib was 

unaffected by impairment of p53 function through RNA interference. 

Alisertib treatment disrupted cell cycle kinetics, induced mitochondrial-

dependent apoptosis, caused a dose-dependent reduction in the 

expression of the large inhibitor of apoptosis Apollon, and led to a 

morphological phenotype consistent with Aurora A kinase inhibition. In 

contrast to other Aurora kinase inhibitors, alisertib did not significantly 

affect BCR-ABL activity. Moreover, inhibition of Aurora A with alisertib 

significantly increased the in vitro and in vivo efficacy of nilotinib in CML 

cell lines and immunodeficient mice bearing K562 xenografts. Targeted 

knockdown of Apollon sensitized CML cells to nilotinib-induced apoptosis, 

indicating that this aspect of the mechanism of action of alisertib is an 

important factor underlying its ability to increase the efficacy of nilotinib. 

Our collective data demonstrate that this combination strategy represents a 

novel therapeutic approach for refractory CML that has the potential to 

suppress the emergence of T315I mutated CML clones.  

 

2.3 Materials and methods 
2.3.1 Cells and cell culture  

Ba/F3 cells engineered to express comparable levels of wild type (p210) 

BCR-ABL with and without stable shRNA p53 knockdown and T315I, 

E255K, H396P, Y253F, M351T and Q252H mutant forms of BCR-ABL, 

LAMA-84 and K562 cells were maintained in RPMI 1640 medium (Gibco, 

Life Technologies, Carlsbad, CA) supplemented with 10% fetal bovine 

serum (FBS, Atlanta Biologicals, Norcross, GA) in a humidified incubator at 

37°C with 5% CO2, 50 U/ml penicillin and 50 mg/ml streptomycin. LAMA-
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84 and K562 cells were obtained from the American Type Culture 

Collection (ATCC), Manassas, VA, USA). Ba/F3 wild type and mutated 

cells were kindly provided by Dr. Brian Druker (Oregon Health & Science 

University, Portland, OR, USA). Primary human CML cells were obtained 

from the PB of imatinib-resistant CML patients after obtaining informed 

consent in accordance with an approved institutional review board (IRB) 

protocol. PBMCs from healthy donors were purchased from Stem Cell 

Technologies (Vancouver, Canada).  

 
2.3.2 Chemicals and reagents  

Reagents were obtained from: alisertib (Millennium Pharmaceuticals, 

Cambridge, MA), nilotinib (Novartis, Basel, Switzerland), c-ABL, anti-actin, 

anti-active caspase-3, anti-phospho-Aurora A, anti-Aurora A antibodies 

phospho-BCR antibodies (Cell Signalling, Beverly, MA), anti-β tubulin 

(Sigma, St. Louis, MO), anti-Apollon antibody (Bethyl Laboratories, 

Montgomery, TX), and sheep anti-mouse-HRP and donkey anti-rabbit-HRP 

antibodies (Amersham, Pittsburgh, PA). 

 
2.3.3 Enzyme assays   

Alisertib was screened against a subset of Invitrogen’s SelectScreenTM 

kinase panel at concentrations ranging between 10 to 0.00051 mM in three 

fold serial dilutions. The Z´-LYTE® biochemical assay employs a 

fluorescence-based, coupled-enzyme format and is based on the 

differential sensitivity of phosphorylated and non-phosphorylated peptides 

to proteolytic cleavage. The peptide substrate is labeled with two 

fluorophores—one at each end—that make up a (fluorescence resonance 

energy transfer) FRET pair. A known inhibitor control standard curve, 10 

point titration, is run for each individual kinase on the same plate as the 

kinase to ensure the kinase is inhibited within an expected IC50 range 

previously determined. The enzymes screened included ABL1, ABL1 
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E255K, ABL1 G250E, ABL1 T315I, ABL1 Y253F, ABL12 and Aurora A, 

each at the respective apparent ATP Km. 

 
2.3.4 Analysis of cell cycle effects and apoptosis  

Propidium iodide (PI) staining were used in conjunction with flow cytometry 

(BD Biosciences, San Jose, CA) to examine the cell cycle effects of drug 

treatment and to measure drug-induced apoptosis by calculating the 

percentages of cells containing sub G0/G1 (fragmented apoptotic). Briefly, 

cells were treated with alisertib, nilotinib or both drugs as indicated. 

Following drug exposure, cells were washed twice in phosphate buffered 

saline (PBS) and re-suspended in a PI solution comprised of 50 µg/mL PI, 

0.1% Triton X-100 and 0.1% sodium citrate. Cells were stained in the dark 

for 1 hour and PI fluorescence was also quantified by flow cytometry (BD 

FACSCanto II). The percentages of apoptotic (sub G0/G1) cells were 

determined for each experimental condition. 

 
2.3.5 MTT assay  

Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT). Cells were cultured in 96-well plates at 

a density of 10,000 cells per well. Cells were treated with alisertib, nilotinib 

or the combination for 96 hours. Following drug treatment, MTT (0.5 

mg/ml) was added to cells and incubated for 3 hours at 37ºC. The reaction 

was stopped by addition of dimethysulfoxide (DMSO).  The purple 

formazan precipitate generated was allowed to dissolve for 1 hour on an 

orbital shaker.  The colour intensity was measured at 550 nm on a BioTek 

(Winooski, VT) microplate reader.  Cell viability was expressed relative to 

the absorbance of untreated control cells, which was taken as 100% 

viable. IC50 was determined by calculating the concentration of alisertib or 

nilotinib that caused a 50% loss of viability measured by the MTT assay. 
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2.3.6 Cell morphology 

Cell suspensions (100 µl) were cytospun in a Shandon Cytospin 2 

Cytocentrifuge (Thermo Scientific, Cheshire, UK) at 400 r.p.m. for 

2 minutes, air-dried and stained using RapiDiff (Biotech Sciences Ltd). 

Slides were visualized using Olympus BX51 system DP71 camera with 

Olympus DP3.2 software (Melville, New York, USA).  

 
2.3.7 Colony assays  

K562 and LAMA-84 cells were treated for 24 hours with the indicated 

concentrations of alisertib, nilotinib or both and then washed twice in PBS. 

The cells were incubated in Methocult methylcellulose-containing medium 

(Stem Cell Technologies, Vancouver, Canada) for 14 days in a humidified 

incubator at 37°C with 5% CO2. Colonies were washed in PBS and stained 

with 2,3,5-triphenyltetrazolium chloride (TTC). Colonies were then scored 

using an Alpha Innotech (San Leandro, CA) gel documentation system. 

 
2.3.8 Immunoblotting  

CML cells were incubated with alisertib, nilotinib or the combination for 24 

hours following which the cells were collected. Cells were collected by 

centrifugation and lysed in ice with a 1% Triton-X-100 lysis buffer 

containing 50 mM Tris–HCL pH 7.4, 1% nonyl phenoxypolyethoxylethanol 

(NP-40), 150 mM sodium chloride (NaCl), 1 mM EDTA, 0.25% Na-

deoxycholate, 1 mM Phenylmethanesulfonyl fluoride (PMSF), 1 mM 

sodium orthovanadate (Na3VO4), 1 mM sodium fluoride (NaF) a complete 

Mini protease inhibitor tablet (Roche, Indianapolis, IN, USA). Lysates were 

mixed with reducing buffer and heated to 95ºC for 5 minutes. The protein 

concentrations of each sample were determined by Bradford reagent 

(BioRad Laboratories, USA). Approximately 50  µg of total cellular protein 

from each sample were resolved on 10% sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) gels or precast 7.5–12% 

gradient gels (BioRad Laboratories, USA). Proteins were then transferred 

to nitrocellulose membranes and blocked with 5% nonfat milk (BioRad 
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Laboratories, USA) in a Tris-buffered saline solution containing 0.1% 

Tween-20 for 1 hour.  The blots were then probed overnight with the 

relevant primary antibodies (dilution at 1:1000), washed, and probed with 

species-specific secondary antibodies. All secondary antibodies were 

horseradish peroxidase-conjugated and used at 1:1000 (Amersham, 

Pittsburgh, PA). Immunoreactive material was detected by enhanced 

chemiluminescence (West Pico, Pierce, Inc., Rockville, IL) on X-ray film 

(Agfa). Membranes were re-probed with anti-tubulin antibody 1:1000 

(Sigma, St. Louis, MO).  

 
2.3.9 In vivo evaluation of alisertib and nilotinib  

K562 and Ba/F3 cells were harvested, washed in PBS, and suspended in 

a 50:50 mixture of Hank's Buffered Salt Solution (HBSS) and Matrigel (BD 

BioSciences, San Jose, CA). An in vivo model of CML was generated by 

injecting 107 K562 or Ba/F3 cells expressing wild type (p210) or T315I 

mutant forms of BCR-ABL into the flanks of female nude mice (BALB/c 

background) from Harlan (Indianapolis, IN). After tumour growth reached 

150 mm3, mice were randomly assigned to receive alisertib 20 mg/kg BID 

(n=10), nilotinib 50 mg/kg QID (n=10), vehicle control (n=10) or both 

alisertib and nilotinib (n=10) for 14 days. Mice were monitored daily and 

tumour volumes were measured twice weekly. The two longest 

perpendicular axes in the x/y plane of each xenograft tumour were 

measured to the nearest 0.1 mm by three independent observers. The 

depth was assumed to be equivalent to the shortest of the perpendicular 

axes, defined as y. Measurements were made using a digital vernier 

caliper while mice were conscious and were calculated according to 

equation: xenograft volume = xy2/2 (632). At the completion of the study, 

tumours were excised, formalin-fixed and paraffin-embedded for 

immunohistochemical analysis.  
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2.3.10 Haematoxylin and eosin (H&E) staining  

Paraffin-embedded tumour sections (4–6 µ m thick) were mounted on 

slides. Sections were deparaffinized in xylene, treated with a graded series 

of alcohol [100%, 95%, and 80% ethanol/double-distilled H2O (v/v)] and 

rehydrated in PBS (pH 7.5). Slides were then stained with haematoxylin in 

a staining dish for 1 minute. Haematoxylin was then washed off with 

distilled H2O and rinsed in 95% ethanol for 10 seconds. Fifty µl eosin was 

pipetted onto each slide for 25-30 seconds after which the slides were 

rinsed in ethanol, washed in xylene and air-dried on racks for 5 minutes. 

 
2.3.11 Terminal deoxyribonucleotide-transferase–mediated dUTP nick-end labeling 

(TUNEL) assay  

DNA fragmentation was analyzed using a colorimetric terminal 

deoxyribonucleotide transferase–mediated nick-end labeling (TUNEL) 

assay kit (Promega, Madison, WI). This method detects DNA 

fragmentation by labeling the terminal end of nucleic acids. The TUNEL 

System measures the fragmented DNA of apoptotic cells by catalytically 

incorporating fluorescein-12-dUTP at 3´-OH DNA ends using the enzyme 

Terminal Deoxynucleotidyl Transferase (TdT), which forms a polymeric tail. 

The 12-dUTP-labeled DNA can then be visualized directly by microscopy. 

The assay was carried out according to the manufacturer’s instructions. 

Images were obtained with an Olympus fluorescent microscope (Center 

Valley, PA) with a DP71 camera and a 20X objective. Percentages of 

TUNEL-positive cells were determined by manual counting of 5 random 

high-power fields per section by two investigators blinded to the treatment 

arms. The average percentage of TUNEL positive cells per high-power 

field was calculated for comparison. Image-Pro Plus software Version 6.2.1 

(MediaCybernetics, Bethesda, MD) was used for image acquisition.  

 
2.3.12 shRNA knockdown of p53  

BCR-ABL p210 Ba/F3 cells were infected with a retrovirus encoding a 

short hairpin RNA (shRNA) sequence specific for the knockdown of murine 
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p53 or an empty vector control (Santa Cruz Biotechnology). Infected cells 

were selected with constant culture in 1 µg/ml puromycin, and p53 

knockdown was confirmed by immunoblotting.   

 
2.3.13  siRNA transfection 

Apollon and Aurora kinase A SMARTpool or siCONTROL siRNA directed 

at luciferase were obtained from Dharmacon, Lafayette, CO. Cells were 

transfected with 100 nM of each siRNA according to the manufacturer’s 

protocol using the Nucleofector II according to the manufacturer’s 

instructions (Amaxa Inc., Gaithersburg, MD) (633). Transfected cells were 

incubated at 37°C for 24 hours and then treated with alisertib, nilotinib, or 

the combination for 48 hours. Efficiency of RNAi was measured at 48 

hours by immunoblotting using an anti-apollon or Aurora A antibody. Drug-

induced apoptosis was quantified by PI/FACS as described above. 

 
2.3.14 Statistical analyses  

Statistical significance of differences observed between samples was 

determined using the Student’s t test. Differences were considered 

significant in all experiments at p < 0.05. 

 
2.3.15 Combination of alisertib and nilotinib 

The interaction between alisertib and nilotinib was analyzed with the 

CompuSyn software (ComboSyn Inc., NJ, USA). Data from cell viability 

assays (MTT) were expressed as fraction of cells affected by the dose in 

drug-treated cells compared with untreated cells (control). This program is 

based on the Chou-Talalay method (634) according to the following 

equation: CI = (D)1/(Dx)1 + (D)1(D)2/(Dx)1(Dx)2, where (D)1 and (D)2 are the 

doses of drug 1 and drug 2 that have the same x effect when used alone, 

and CI is the combination index. CI < 1.0 indicates synergism; CI ≅ 1.0 

indicates an additive effect; and CI > 1.0 corresponds to an antagonistic 

effect. K562 and LAMA-84 cells were treated for 72 hours with 
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combinations of alisertib and nilotinib at a nonconstant ratio and MTT 

assays were done as previously described. CI values for each drug 

combination were obtained from three different experiments fulfilling 

experimental prerequisites of the CompuSyn program. 

 

2.4 Results 
2.4.1 Alisertib inhibits Aurora A  

Alisertib is a potent inhibitor of the Aurora A enzyme (IC50 = 2 nM) and 

demonstrated approximately 50 to 700 fold selectivity against various ABL 

isoform enzyme assays (Figure 2.1). We determined the inhibitory effects 

of alisertib on Aurora A kinase.  Exposure of cultured K562 cells to 30 nM 

alisertib reduced the kinase activity of Aurora A kinase as evidenced by 

reduced phosphorylation of Aurora A at Thr288 within its kinase activation 

loop without affecting the total levels of Aurora A (Figure 2.1). A dose of 30 

nM alisertib was chosen, as this was the lowest dose that induced 

significant growth inhibition and apoptosis of K562 or LAMA-84 cells. This 

dose is significantly higher than 2 nM, the IC50 of alisertib in the cell free 

kinase assay. A significantly higher dose of alisertib appears to be required 

to inhibit intracellular Aurora A kinase compared to that required to inhibit 

Aurora A in the cell free kinase assay.  
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Figure 2.2 Alisertib reduces Aurora kinase A 
phosphorylation  
K562 cells were treated with 30 nM alisertib for 24 hours. Protein lysates 

were subjected to SDS-PAGE, blotted, and probed with phospho- Aurora A 

(Thr288) and Aurora A antibodies. 
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2.4.2 Alisertib impairs growth and induces apoptosis in CML cell lines  

The effects of alisertib treatment on cellular viability were assessed using 

MTT assays in human CML cell lines. Alisertib inhibited the in vitro growth 

and survival of K562 and LAMA-84 cell lines with IC50 values less than 100 

nM (Figure 2.3). Pharmacokinetic analyses of alisertib concentrations in 

preclinical and phase 1 clinical studies have demonstrated that micromolar 

concentrations of this drug are achievable in plasma (455, 533). Thus, the 

concentrations of alisertib that we utilized in our experiments are relevant 

and biologically achievable. Similarly alisertib inhibited the growth and 

survival of the APL cell line, HL-60, but had little effect on normal PBMCs. 

Inhibition of the Aurora kinases results in mixed outcomes, including 

polyploidy and G2/M growth arrest. We therefore assessed the cell cycle 

distribution and apoptotic fraction (sub G0/G1) of PI-stained K562 and 

LAMA-84 cells by flow cytometry after treatment with alisertib for 48 and 72 

hours. Alisertib treatment disrupted cell cycle kinetics as evidenced by the 

accumulation of cells in G2/M phase and cells with >4N DNA prior to the 

onset of apoptosis (sub G0/G1) in a dose- and time-dependent manner 

(Figure 2.4). At 72 hours compared to 48 hours, the proportion of apoptotic 

cells (<2N DNA) increased whereas the percentage of cells with polyploid 

nuclei (>4N DNA) decreased.  
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Figure 2.4 Alisertib disrupts cell cycle kinetics causes 
time-dependent induction of DNA fragmentation  

LAMA-84 and K562 cells were treated with 30, 100 or 300 nM alisertib for 

48 hours and 72 hours. Percentages of cells with sub G0/G1DNA and > 4N 

DNA were determined by PI/FACS. n = 3 ± SD.
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2.4.3 Morphological analysis of CML cells after 48 hours of alisertib treatment 

Considering that the cell cycle analysis showed that alisertib could induce 

polyploidy and that previous studies have shown that Aurora kinase 

inhibition results in MC we examined the morphology of alisertib-treated 

cells. As discussed in section 1.5, MC is currently defined primarily by 

morphology (635). Figures 2.5 and 2.6 show representative examples of 

both treated and untreated K562 and LAMA-84 cells respectively. After 

48 hours of treatment, cells with distinct chromatin images suggestive of a 

monopolar spindles and duplicated but unseparated chromosomes were 

visible. In addition large cells with multiple micronuclei were seen. These 

features are consistent with MC. In addition to features of MC, the alisertib-

treated CML cell lines also showed a subpopulation of cells with clear 

classical apoptosis morphology: chromatin condensation, cytoplasm 

shrinkage, and the formation of apoptotic bodies. 
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Figure 2.5 Morphology of alisertib-treated K562 cells  
Cell morphology was visualised using RapiDiff staining by light microscopy 

after treatment with 100 nM of alisertib for 48 hours. Typical cytospin 

images for untreated and alisertib-treated K562 cell lines are shown. 

Alisertib treatment (100 nM) produced a distinct morphology suggestive of 

monopolar spindles, duplicated but unseparated chromosomes centrally 

located in the cell and large cells with multiple micronuclei (M). These 

features are consistent with mitotic catastrophe. In addition to mitotic 

catastrophe, K562 cells treated with alisertib show a population of cells 

with membrane blebbing and budding and chromatin condensation, 

features consistent with apoptotic morphology (A). 
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Figure 2.6 Morphology of alisertib-treated LAMA-84 cells  
Cell morphology was visualised using RapiDiff staining by light microscopy 

after treatment with 100 nM of alisertib for 48 hours. Typical cytospin 

images for untreated and alisertib-treated LAMA-84 cell lines. Alisertib 

treatment (100 nM) produced a distinct morphology suggestive of 

duplicated but unseparated chromosomes centrally located in the cell and 

large cells with multiple micronuclei (M). These features are consistent with 

mitotic catastrophe. In addition to mitotic catastrophe, LAMA-84 cells 

treated with alisertib show a population of cells with membrane blebbing 

and budding and chromatin condensation, features consistent with 

apoptotic morphology (A). 
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2.4.4 Alisertib activity is unaffected by impairment of p53 function 

Loss or mutation in the tumour suppressor gene p53 occurs in over 30% of 

cases of CML-BC (636). Inactivation of p53 has been shown to impede the 

response to tyrosine kinase inhibition and represents a mechanism of 

resistance to targeted therapy in advanced phase CML (637). The 

potential impact of loss of p53 function on cellular sensitivity to alisertib 

was evaluated by achieving stable shRNA-mediated p53 knockdown in 

Ba/F3 cells expressing p210 BCR-ABL. Cells were treated with the 

chemotherapeutic agent VCR and immunoblotting analyses of the 

expression of p53 and its direct transcriptional target, p21, were conducted 

to confirm functional p53 knockdown (Figure 2.7). Impairment of p53 

function did not affect the anti-cancer activity of alisertib, indicating that it 

may be an effective agent for patients with p53 defects (Figure 2.8).  

 

 



 175 

 

 

Figure 2.7 Establishment of BCR-ABL cells with stable p53 
knockdown Ba/F3 p210 BCR-ABL cells were stably infected with p53 

shRNA or vector control. These cells were then treated with 100 nM VCR 

for 24 hours and subjected to immunoblotting for p53 and p21 to confirm 

functional knockdown efficiency of the knockdown. Tubulin documented 

equal loading.  
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Figure 2.8 Alisertib is unaffected by impairment of p53 function  
Ba/F3 p210 BCR-ABL cells stably infected with p53 shRNA or vector 

control were treated with the indicated concentrations of alisertib for 96 

hours and viability was assessed by MTT assay. n = 3 ± SD.  
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2.4.5 Alisertib is active in Ba/F3 cells expressing mutated BCR-ABL  

To investigate the potential impact of imatinib resistance on the efficacy of 

alisertib, we treated Ba/F3 expressing unmutated BCR-ABL and the 

clinically relevant TKI resistant BCR-ABL mutants T315I, E255K, H396P, 

Y253F, M351T, and Q252H as well as K562 cells that are sensitive and 

resistant to imatinib due to differential expression of unmutated BCR-ABL 

with this agent for 96 hours. Notably, alisertib inhibited the viability of Ba/F3 

cells expressing unmutated BCR-ABL and mutated BCR-ABL (Figure 2.9) 

and imatinib-sensitive and -resistant K562 cells at similar concentrations 

(Figure 2.10).  

 We next created an animal model of T315I mutated CML by 

injecting Ba/F3 cells expressing T315I mutated BCR-ABL into the flanks of 

nude mice to investigate the in vivo efficacy of alisertib against CML cells 

bearing the T315I mutation. Tumour bearing mice were randomized into 

groups of 10 and treated orally with 20 mg/kg alisertib twice daily or vehicle 

control for 14 days. Consistent with our in vitro data, alisertib possessed 

equipotent in vivo activity against xenografts of Ba/F3 cells expressing 

wildtype and imatinib, nilotinib and dasatinib resistant T315I-mutated forms 

of BCR-ABL (Figure 2.11).  

 We subsequently determined the antileukaemic effects of alisertib 

against primary CML cells from three imatinib refractory patients, (one 

each from a patient in CML-CP, CML-BC and CML-BC harbouring the 

T315I mutation) and primary leukaemia cells from a patient with Ph+ ALL. 

As primary cells do not tend to actively proliferate in culture, higher 

concentrations of alisertib were needed to inhibit their viability compared to 

CML cell lines (534). However alisertib concentrations of up to 10,000 nM 

are achievable in the plasma of patients recieving alisertib (533). Normal 

PBMCs cultured under the same conditions were less susceptible to the 

effects of alisertib compared to the primary CML cells (Figure 2.12). 

Collectively, these results suggest that the activity of alisertib in CML cells 

is unaffected by BCR-ABL mutational status or impairment of p53 function.
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Figure 2.9   Alisertib has activity in cells expressing unmutated and 
mutated BCR-ABL  

Ba/F3 cells expressing p210 (unmutated) and T315I, E255K, H396P, 

Y253F, M351T and Q252H mutant forms of BCR-ABL were treated with 

the indicated concentrations of alisertib for 96 hours and viability was 

assessed by MTT assay. n = 3 ± SD. 
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Figure 2.10   Alisertib has activity in imatinib sensitive and resistant 
K562 cells  

Imatinib-sensitive and imatinib–resistant K562 cells were treated with the 

indicated concentrations of alisertib for 96 hours and viability was 

assessed by MTT assay. n = 3 ± SD.
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Figure 2.12 Activity of alisertib in primary CML cells and 
normal PBMCs  

Cells from healthy donors or patients (4) with BCR-ABL+ leukaemia 

including 1 patient each with: unmutated BCR-ABL, T315I-mutated BCR-

ABL, CML-BC, and Ph+ ALL and normal PBMCs were treated with alisertib 

for 96 hours and cell viability was assessed by MTT assay. 
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2.4.6 Alisertib inhibits Aurora A without significantly affecting BCR-ABL activity  

In contrast to MK-0457, alisertib is a potent inhibitor of the Aurora A 

enzyme and is approximately 50 to 700 fold more selective against Aurora 

A compared to various ABL isoforms. As mentioned earlier, there has been 

some controversy regarding whether the anti-CML activity of MK-0457, 

which is no longer being clinically developed, was due to inhibition of 

Aurora kinases, BCR-ABL, or both. In an in vitro enzyme activity assay, 

MK-0457 has been shown to potently inhibit both wild type ABL (IC50 value 

10 nM) and ABL (T315I) (IC50 value 30 nM) (507). To confirm that 

efficacious concentrations of alisertib do not significantly affect BCR-ABL 

activity, we evaluated its effect on BCR-ABL autophosphorylation and 

phosphorylation of the BCR-ABL direct substrate CRKL, which are 

accurate predictors of BCR-ABL kinase activity. Consistent with the in vitro 

enzyme assay data, immunoblotting analysis demonstrated that treatment 

of LAMA-84 and K562 cells with alisertib did not have a significant effect 

on the total levels of BCR-ABL or the levels of phospho-BCR-ABL at its 

Tyr177 autophosphorylation site (Figure 2.13). This indicates that alisertib 

induces growth inhibition and apoptosis in CML cells through a BCR-ABL-

independent mechanism. Primary CML cells isolated from patients with 

CML are non-cycling and therefore much less sensitive to the growth 

inhibitory effects of alisertib. Consequently much higher doses of alisertib 

are needed to inhibit their growth (Figure 2.11). Therefore a dose of 10 µM 

was used in the western blot analysis that confirmed the lack of effect of 

alisertib on BCR-ABL activity on primary CML cells (Figure 2.14).  
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Figure 2.13 Alisertib does not significantly affect BCR-ABL activity in 
CML cell lines  

K562 and LAMA-84 cells were treated with alisertib for 24 hours. Protein 

lysates were subjected to SDS-PAGE, blotted, and probed with phospho-

BCR (Tyr177) (Cell Signalling) and c-ABL (Cell Signalling) antibodies.  
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Figure 2.14 Alisertib treatment does not significantly affect BCR-ABL 
kinase activity in primary CML cells  

Primary CML cells obtained from a patient with unmutated BCR-ABL were 

treated with 10 µM alisertib for 24 hours. BCR-ABL autophosphorylation 

and CRKL phosphorylation were assessed by immunoblotting and probing 

with phospho-Bcr (Tyr177) (Cell Signalling) and phospho-CRKL (Tyr207) 

(Cell Signalling) antibodies. c-ABL and total CRKL antibodies were also 

purchased from Cell Signalling, Beverly, MA. Nilotinib was used as a 

positive control for BCR-ABL inhibition. 
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2.4.7 Co-treatment with alisertib and nilotinib is significantly more effective than 

either agent alone 

Patients with advanced stage CML have been hypothesized to benefit from 

non cross-resistant combinations of TKIs and agents effective against CML 

cells harbouring the T315I and E255K mutations (308, 638). Considering 

that alisertib is active against cells expressing the E255K and T315I 

mutations, we investigated whether alisertib augmented the activity of 

nilotinib, an FDA approved BCR-ABL inhibitor that is used in CML therapy. 

K562 and LAMA-84 cells were treated with 30 nM alisertib, 10 nM nilotinib, 

or the combination for 48 hours. Percentages of cells with sub G0/G1 DNA 

were quantified by PI/FACS. Co-treatment with alisertib and nilotinib 

resulted in significantly greater levels of apoptosis as determined by 

accumulation of sub G0/G1 cells (Figure 2.15). Immunoblotting analysis 

showed that the combination of these two agents induced mitochondrial-

dependent apoptosis as evidenced by processing of caspases-9 and -3 to 

their active forms indicating that they cooperate to induce mitochondrial-

dependent apoptosis (Figure 2.16).  

 The cytotoxic effects of the combination were also assessed by 

MTT assay. LAMA-84 and K562 cells were treated with alisertib, nilotinib, 

or the combination for 96 hours. Inhibition of growth and survival were 

significantly increased by combination treatment in both cell lines (Figure 

2.17). Clonogenic assays were performed to evaluate the prolonged in 

vitro effects of alisertib and nilotinib on the growth and survival of both 

LAMA-84 and K562 cells (Figure 2.18). As expected, alisertib enhanced 

the ability of nilotinib to inhibit clonogenic survival. Formal synergy analysis 

according to the Chou-Talalay method (described in section 2.3.15) in 

LAMA-84 cells determined that combinations of 30 nM alisertib and 10 nM 

nilotinib combined with various doses of nilotinib (10 nM - 1 µM) or alisertib 

(30 nM - 3 µM) all produced CIs lower than 1 (range = 0.01 - 0.4), thus 

demonstrating the synergistic anti-cancer activity of this combination 

(Table 2.1. and Figure 2.19). Similarly in K562 cells, combinations of 100 
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nM alisertib and 0.1 nM nilotinib combined with various doses of nilotinib 

(10 nM - 1 µM) or alisertib (30 nM - 3 µM) all produced combination indices 

(CI) lower than 1 (range = 0.03 - 0.97) (Table 2.2 and Figure 2.20). 

Collectively, our findings suggest that alisertib significantly enhances the 

anti-leukaemia activity of nilotinib in human CML cells. 
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Figure 2.15 Alisertib significantly increases the efficacy of nilotinib  

Alisertib potentiates the pro-apoptotic effects of nilotinib. K562 and LAMA-

84 cells were treated with 30 nM alisertib, 10 nM nilotinib or the 

combination for 48 hours. Percentages of cells with sub G0/G1 DNA were 

determined by PI/FACS. n = 3 ± SD.  
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Figure 2.16 The combination of alisertib and nilotinib 
induces mitochondrial dependent apoptosis   

K562 and LAMA-84 cells were treated with 100 nM alisertib, 30 nM 

nilotinib, or both for 24 hours. Protein lysates were subjected to SDS-

PAGE, blotted, and probed with active caspase-3 and caspase-9 

antibodies. Anti β-tubulin was used as loading control. 
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Figure 2.17 Co-treatment with alisertib and nilotinib results in 
significantly greater growth inhibition and reduction in survival than 
that achieved by either agent alone  
Cells were treated with the indicated concentrations of alisertib for 96 

hours and viability was assessed by MTT assay. Error bars indicate the 

SD. *p < 0.05 (controls vs. single agents), **p < 0.05 (single agents vs. 

combination). 
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Figure 2.18 Effects of alisertib and nilotinib on clonogenic survival  
Primary CML cells from patients in BC (n = 3), K562, and LAMA-84 cells 

were treated with alisertib, nilotinib, or both drugs for 24 hours. Cells were 

plated and scored as described in the materials and methods. Error bars 

indicate the SD. *p < 0.05 (controls vs. single agents), **p < 0.05 (single 

agents vs. combination). 
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 Alisertib (nM)  Nilotinib (nM)  
Viability  

(% Control) 
CI  

30      10      14.3      0.01 
30      30      12.9      0.02 
30      100      12.6      0.04 
30      300      12.4      0.11 
30      1000      11      0.22 

100      10      16.9      0.04 
300      10      16.2      0.09 

1000      10      15      0.23 
3000      10      12      0.40 

 

Table 2.1. Evaluation of the combination of alisertib with nilotinib in 
LAMA-84 cells  

LAMA-84 cells were treated with the indicated concentrations of alisertib 

and nilotinib for 72 hours following, which MTT assays performed. 

Calculated CIs of different double combinations for the Lama 84 cell lines 

are indicated in the table. The CI values were calculated for 3 independent 

experiments. CI < 1, CI = 1, and CI > 1 represent synergism, additivity, and 

antagonism of the 2 agents, respectively. 
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Alisertib (nM) Nilotinib (nM) 
Viability  

(% Control) 
CI  

100      0.1      71.2      0.97 
100      0.3      69      0.82 
100      1.0      64      0.55 
100      3.0      57      0.31 
100      10.0      46      0.12 
30      0.1      73      0.40 

300      0.1      3.22      0.08 
1000      0.1      2      0.07 
3000      0.1      1      0.04 

 
Table 2.2. Evaluation of the combination of alisertib with nilotinib in 
K562 cells  

K562 were treated with the indicated concentrations of alisertib and 

nilotinib for 72 hours following, which MTT assays performed. Using 

CompuSyn software (Biosoft), the analysis of the dose-effect relationship 

for alisertib and nilotinib was performed according to the median effect 

method of Chou and Talalay (634). CIs of different double combinations for 

the K562 cell lines are indicated in the table. 





 195 

2.4.8 Alisertib cooperates with nilotinib to reduce tumour burden in K562 

xenografts 

K562 xenograft studies were carried out to investigate the in vivo 

therapeutic potential of the combination of alisertib and nilotinib. Both 

agents had substantial effects on tumour burden and the combination 

resulted in significantly greater tumour growth inhibition than was achieved 

by either agent alone (Figure 2.21). Furthermore, the combination was well 

tolerated and only a modest loss in body weight was observed in the 

treated groups (Figure 2.22). Notably, the single agent in vivo effects of 

alisertib were more impressive in this K562 experiment than that we 

observed in our studies with the murine Ba/F3 models (Figure 2.11). Given 

that human and murine Aurora genes share 79% sequence homology and 

that alisertib was specifically designed to target human Aurora A kinase 

activity, it is possible that species specific differences in the potency of 

alisertib-mediated kinase inhibition could have contributed to this 

phenomenon.  

 H&E staining was used to visualize the architecture of tumours from 

each treatment group and revealed substantial differences in the 

morphology of single agent and combination-treated tumours. In particular, 

the tumours treated with the combination of alisertib and nilotinib displayed 

evidence of stromal disruption and high levels of cell death with very few 

intact CML cells remaining (Figure 2.23). This suggests that remaining 

tumours from combination treated mice were largely comprised of matrigel 

and non-viable cells/tissue and also highlights the potential therapeutic 

benefit provided by the combination over single agent treatments.  
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Figure 2.21 In vivo efficacy and tolerability of alisertib and nilotinib  
K562 cells were injected into the flanks of nude mice. Vehicle, alisertib, 

nilotinib or both were administered for 14 days. After tumour growth 

reached 150 mm3, mice were randomly assigned to receive alisertib 20 

mg/kg BID (n=10), nilotinib 50 mg/kg QID (n=10), vehicle control (n=10) or 

both alisertib and nilotinib (n=10) for 14 days. Mice were monitored daily 

and tumour volumes were measured twice weekly. N = 10 ± SD. *p < 0.05 

(controls vs. single agents), **p < 0.05 (single agents vs. combination). 
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Figure 2.22 In vivo tolerability of alisertib and nilotinib  
K562 cells were injected into the flanks of nude mice. Vehicle, alisertib, 

nilotinib or both were administered for 14 days. After tumour growth 

reached 150 mm3, mice were randomly assigned to receive alisertib 20 

mg/kg BID (n=10), nilotinib 50 mg/kg QID (n=10), vehicle control (n=10) or 

both alisertib and nilotinib (n=10) for 14 days. Animal weights were 

measured biweekly. n = 10 ± SD.  



 198 

 

 

 

Figure 2.23 Immunohistochemistry 
Tumours were stained with H&E as described in materials and methods. 

Representative images are shown from each treatment group.  
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2.4.9 Treatment with alisertib leads to a morphological phenotype consistent with 

Aurora A inhibition  

The inhibition of Aurora A causes defects in centrosome segregation, 

spindle pole organization, and chromosome congression, which can 

ultimately lead to tumour cell death via the development of deleterious 

aneuploidy (468). H&E staining of tumours obtained at the completion of 

treatment was carried out to examine the morphological changes in K562 

cells caused by treatment with alisertib. Consistent with the high number of 

in vitro aneuploid cells observed with PI/FACS analysis, the number of 

multinucleated cells visible in the alisertib-treated tumours was increased 

as compared with vehicle control indicating that alisertib causes cells to 

exit mitosis without completing cytokinesis, a process known as mitotic 

slippage (Figure 2.24 top right). Although this outcome is primarily 

associated with inhibition of Aurora B, cytokinesis failure can occur upon 

inhibition of Aurora A as well (466).  Other functional consequences of 

Aurora A inhibition that were prominent in the alisertib-treated tumours 

included an increased number of cells with monopolar mitotic spindles 

(Figure 2.24, bottom right), an elevated number of cells with chromatin 

bridging (Figure 2.24, top left), and cells with internuclear bridging (Figure 

2.24, bottom left). Taken together, these findings indicate that treatment 

with alisertib results in morphological changes in CML cells that are 

consistent with Aurora A kinase inhibition and indicative of deleterious 

aneuploidy and MC.  

 
2.4.10 Alisertib augments the in vivo pro-apoptotic effects of nilotinib   

TUNEL assays were carried out on xenograft tumour sections after 

completion of treatment to assess the degree of apoptosis induced by 

alisertib and nilotinib in vivo. Both agents induced apoptosis as indicated 

by TUNEL positivity, but the percentage of TUNEL positive cells was 

significantly greater in the combination group compared to treatment with 
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either agent alone indicating that the two agents cooperate to provoke 

apoptosis in vivo (Figure 2.25 and 2.26). 
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Figure 2.24 Treatment with alisertib leads to a 
morphological phenotype consistent with Aurora A kinase 
inhibition   

Tumours were stained with H&E. Representative images from the alisertib 

treatment group are shown. Arrows indicate the following: an elevated 

number of cells with chromatin bridging (top left), large cells with multiple 

micronuclei (top right), cells with internuclear bridging (bottom left), and 

monopolar mitotic spindles (bottom right). 
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Figure 2.25 Assessment of TUNEL-positive cells 
DNA fragmentation was analyzed using a colorimetric terminal 

deoxyribonucleotide transferase–mediated nick-end labeling (TUNEL) 

assay kit (Promega, Madison, WI). The assay was carried out according to 

the manufacturer’s instructions. Images were obtained with an Olympus 

fluorescent microscope (Center Valley, PA) with a DP71 camera and a 20X 

objective. Arrows indicate representative TUNEL positive cells.
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Figure 2.26 Quantification of TUNEL-positive cells  
Percentages of TUNEL-positive cells were determined by manual counting 

of 5 random fields per section. Image-Pro Plus software Version 6.2.1 

(MediaCybernetics, Bethesda, MD) was used for image acquisition. 

Positive cells were scored manually. Percentages of TUNEL-positive cells 

were determined by manual counting of 5 non-overlapping random high-

power fields per section by two investigators blinded to the treatment arms. 

The average percentage of TUNEL positive cells per high-power field was 

calculated for comparison. Mean ± SD, n = 5. *p < 0.05 (controls vs. single 

agents), **p < 0.05 (single agents vs. combination). 
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2.4.11 Inhibition of Aurora A activity leads to reduced expression of Apollon  

Apollon (also known as BRUCE or BIRC6, baculovirus inhibitor of 

apoptosis protein (IAP) repeats (BIR)-containing protein 6) is a very large 

(528 kDa) IAP that can be distinguished from other IAP family members by 

the presence of its ubiquitin conjugating enzyme (UCE) domains, which 

are not contained within any other IAPs (639). The UCE domains within 

Apollon allow it to reduce the pro-apoptotic potential of cells by targeting 

SMAC and caspase-9 for proteasomal degradation in addition to directly 

binding to caspases and other pro-apoptotic molecules via its BIR domain 

to prevent apoptosis in a manner similar to other IAPs (640, 641). Apollon 

is overexpressed in leukaemia and other cancers and has been linked with 

resistance to chemotherapy (639, 642). A recent investigation 

demonstrated that Apollon also has important functions during mitosis. It 

coordinates multiple events in cytokinesis and moves to the midbody ring 

during cell division where it serves as a platform for the membrane delivery 

machinery and mitotic regulators including the Aurora kinases (643). 

Apollon depletion causes defective abscission and cytokinesis-associated 

apoptosis (643).  

 Considering that Apollon is associated with Aurora kinases and has 

roles in cell division and inhibition of apoptosis, we investigated whether 

abrogation of Aurora A kinase activity would affect Apollon expression. 

Immunoblotting analysis showed that alisertib treatment resulted in a dose-

dependent reduction in the expression of Apollon and increased 

expression of the pro-apoptotic Apollon substrate, SMAC (Figure 2.27). To 

confirm that this reduction in Apollon expression is a direct consequence of 

Aurora A kinase inhibition, we used siRNA to knockdown Aurora A 

expression. This led to a very significant reduction in the levels of Apollon 

(Figure 2.28). This effect does not appear to be a general feature of mitotic 

disruption as treatment with the microtubule disrupting agents, nocodazole 
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and VCR, did not significantly decrease Apollon expression and therefore 

rather suggests a link between Aurora A activity and Apollon expression 

(Figure 2.29). 

 
2.4.12 Knockdown of Apollon sensitizes CML cells to nilotinib  

To determine whether inhibition of Apollon played a role in sensitizing CML 

cells to nilotinib, we knocked down Apollon expression in LAMA-84 cells 

using siRNA (Figure 2.30). LAMA-84 cells transfected with Apollon 

targeted siRNA and non-targeted siRNA were treated with alisertib, 

nilotinib or the combination for 48 hours and the percentages of apoptotic 

cells were determined by assessing the degree of DNA fragmentation by 

PI/FACS analysis. Nilotinib induced significantly greater levels of apoptosis 

in LAMA-84 cells treated with Apollon-targeted siRNA compared to non-

targeted controls (Figure 2.30). However alisertib and the combination of 

alisertib and nilotinib induced only minor increases in the levels of 

apoptosis in LAMA-84 cells treated with Apollon-targeted siRNA compared 

to non-targeted controls. This data suggests that inhibition of Apollon 

expression caused by alisertib treatment sensitizes CML cells to nilotinib-

induced apoptosis and provides a rationale for the combination of these 

two agents in CML. 
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Figure 2.27 Alisertib treatment results in a dose-dependent reduction 
in the large inhibitor of apoptosis protein, Apollon and increased 
expression of its substrate, SMAC  

LAMA-84 cells were treated with indicated doses of alisertib for 24 hours. 

Protein lysates were subjected to SDS-PAGE, blotted, and probed with 

Apollon and SMAC antibodies. Tubulin documented equal loading. 
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Figure 2.28 siRNA of knockdown Aurora A expression leads to a 
significant reduction in the levels of Apollon  

Aurora A SMARTpool or siCONTROL siRNA directed at luciferase were 

transfected into LAMA-84 cells using the Nucleofector II. Protein lysates 

were subjected to SDS-PAGE, blotted, and probed with Apollon and 

Aurora A antibodies. Tubulin documented equal loading. 
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Figure 2.29 General disruption of mitosis does not significantly effect 
Apollon expression  

LAMA-84 cells were treated with nocodazole, VCR, or alisertib for 24 

hours. Protein lysates were subjected to SDS-PAGE, blotted, and probed 

with an Apollon antibody. Tubulin documented equal loading. 
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Figure 2.30 siRNA knockdown of Apollon sensitizes CML cells to 
nilotinib  
Apollon SMARTpool or siCONTROL siRNA directed at luciferase were 

transfected into LAMA-84 cells using the Nucleofector II. Tubulin was used 

as a loading control. LAMA-84 cells transfected with Apollon-targeted 

siRNA and non-targeted siRNA were treated with 30 nM alisertib, 10 nM 

nilotinib or both for 48 hours and the percentage of apoptotic cells were 

determined by PI/FACS analysis. n =3 ± SD, *p < 0.05. 
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2.5 Discussion 
Resistance to TKI therapy in CML continues to be a significant problem. In 

particular, the T315I and E255K mutations in BCR-ABL confer cross-

resistance to imatinib, dasatinib, and nilotinib (308). The pan-Aurora kinase 

inhibitor MK-0457 has shown clinical activity against CML cells harbouring 

the T315I mutation (626). Early in vitro competition binding assays 

revealed that MK-0457 bound to wild type ABL1 and T315I ABL1 This 

observation led to the hypothesis that the anti-leukaemic efficacy of MK-

0457 was due to inhibition of BCR-ABL, rather than Aurora activity (628, 

629). However, a more recent investigation revealed that the efficacy of 

clinically relevant concentrations of MK-0457 was primarily due to inhibition 

of Aurora kinase activity (644). How significantly Aurora kinase inhibition 

contributes to the activity of MK-0457 in CML remains somewhat 

controversial. This matter may not be definitively resolved for MK-0457 as 

its development has been stopped due to issues with cardiac toxicity 

observed in some early phase clinical trials and will have to be addressed 

in studies with other Aurora kinase inhibitors.  

 Alisertib is a highly selective inhibitor of Aurora A and demonstrates 

little inhibition of various ABL isoforms in enzyme assays. Our data 

suggests that alisertib does not directly inhibit BCR-ABL activity, indicating 

that Aurora A kinase is a valid therapeutic target in CML. The biological 

consequences of Aurora A kinase inhibition have been intensively 

investigated in recent years. Ultimately, cells treated with Aurora A kinase 

inhibitors undergo cell death through the development of deleterious 

aneuploidy (468). Our data shows that alisertib treatment initially results in 

a significant degree of aneuploidy before cell death ensues (Figure 2.4).  

 Notably, alisertib-induced apoptosis was associated with significant 

decreases in the expression levels of Apollon. Apollon has several 

functional domains, multiple binding partners, and plays important roles in 
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the regulation of apoptosis and cell division (643, 645). As Apollon over-

expression has been associated with an unfavourable outcome and 

resistance to chemotherapy in leukaemia, we were particularly interested 

in examining whether the ability of alisertib to reduce Apollon expression 

could potentially sensitize CML cells to the standard of care agent nilotinib 

(642). Our results show that targeted knockdown of Apollon significantly 

augments the pro-apoptotic effects of nilotinib, suggesting that suppression 

of Apollon expression by alisertib may contribute to its ability to heighten 

the anti-cancer activity of nilotinib. Furthermore, it is likely that the 

reduction in Apollon expression associated with alisertib is a direct 

consequence of Aurora inhibition as targeted knockdown of Aurora A 

kinase by siRNA was associated with a significant reduction in Apollon 

expression. These findings represent a novel mechanistic approach for 

improving the efficacy of TKI therapy in CML. 

 There are two potential important clinical translations of the results 

of the current study. We have shown that alisertib is effective against cell 

lines and primary patient CML cells expressing unmutated and mutated 

forms of BCR-ABL including the highly resistant T315I mutation and that it 

has activity independent of p53 function. Therefore, alisertib may be 

clinically active as a single agent in the setting of T315I and E255K 

mutations for which the currently available TKIs are ineffective. Moreover, 

the combination of alisertib and nilotinib is effective and well tolerated in 

preclinical models of CML and represents a novel therapeutic strategy for 

advanced phase CML that is orally active and has the potential to 

suppress the emergence of CML clones expressing a range of resistant 

mutations including T315I and E255K.  

 The current treatment strategy for resistant CML involves sequential 

administration of TKIs, which is associated with the development of 

compound mutations in BCR-ABL with increased oncogenic potency (638). 

Patients with imatinib resistance have heightened genomic instability and 

in this setting combination treatment with an agent effective against cells 
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harbouring the T315I mutation and a BCR-ABL kinase inhibitor could 

possibly prevent resistance caused by kinase domain mutations in CML 

(308, 646). 

 In conclusion, this study show the Aurora A inhibitor, alisertib, has 

significant activity in preclinical models of CML. Notably, the efficacy of 

alisertib is unaffected by impairment of p53 function or the presence of 

clinically relevant BCR-ABL kinase domain mutations. Alisertib treatment 

leads to a reduction in the expression of the large inhibitor of apoptosis, 

Apollon and a morphological phenotype consistent with Aurora A kinase 

inhibition. Moreover, inhibition of Aurora A with alisertib significantly 

increases the in vitro and in vivo efficacy of nilotinib in CML cell lines and 

immunodeficient mice bearing K562 xenografts. These data provide 

rationale for a novel therapeutic approach targeting Aurora A and BCR-

ABL in CML.  
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3 Chapter 3: Targeting Aurora A in preclinical 

models of AML 
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3.1 Introduction 
As discussed earlier AML accounts for 80 percent of adult acute leukaemia 

and while outcomes have improved for younger patients the elderly are 

particularly less likely to respond to therapy (3, 354, 647, 648). 

Improvements in outcome in this age group depend on the development of 

agents targeted to the molecular abnormalities in this disease with minimal 

off target side effects (649-651). These agents on their own produce 

transient responses only but will likely improve outcome as individualized 

targeted therapy in combination with conventional treatment. A recent 

study demonstrated that elderly patients with good or intermediate risk 

cytogenetics that received therapy with low-dose ara-C had a significant 

survival advantage over patients that received supportive care. Despite 

this, no patients with unfavourable cytogenetics achieved CRs on this 

study (652). It is unclear whether elderly patients benefit from standard 

induction chemotherapy. One approach in experimental therapeutics that 

has shown promise is to selectively target the aberrant expression of 

Aurora kinases in malignancies. Given the overexpression of Aurora 

kinases in myeloid malignancies and their high proliferation rate, targeting 

of these key regulators of cell cycle progression appears to be an attractive 

therapeutic option.  

 High Aurora A and to a lesser extent Aurora B expression has been 

shown in AML cells in several studies of large numbers of patient samples 

(see section 1.8.5). As discussed in section 1.8.6, Aurora kinase inhibitor 

therapy in AML is currently being evaluated in phase 1 and 2 studies. The 

widely demonstrated in vitro effects of Aurora B (reduction in histone H3 

phosphorylation) and Aurora A inhibition (caspase activation) have been 

replicated in patient samples and modest disease activity in AML patients 

refractory to standard therapy has been demonstrated (529). To date, the 

pan-Aurora kinase inhibitor MK-0457/VX-680, the Aurora B selective 

inhibitor AZD1152, and the multi-kinase inhibitor with anti-Aurora effects 

KW-2449 have shown pre-clinical activity in models of AML (512, 539, 629, 
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653-655). Aurora A selective inhibitors have not been previously evaluated 

in preclinical models of AML.  

 Considering the dual role of Aurora A in regulating cell cycle 

progression and programmed cell death and the high basal expression of 

Aurora A in AML cells, we hypothesized that AML cells would be 

particularly sensitive to alisertib (502). To test this hypothesis, we 

investigated the efficacy and pharmacodynamic effects of alisertib in AML 

cell lines, primary AML blasts, and mouse models of AML.  

 

Project hypothesis 
Targeting Aurora A kinase with alisertib will lead to apoptosis and growth 

inhibition in preclinical models of AML and will potentiate the anti-

leukaemic activity of ara-C. 
 
Project aims 

i. To investigate the therapeutic potential of targeting Aurora 

kinase A activity with alisertib in preclinical models of AML and 

primary blasts from patients with AML.  

ii. To evaluate the relationship between Aurora A 

expression/activity and cellular sensitivity to ara-C.  

iii. To elucidate the mechanism of action of alisertib in AML and 

identify essential regulators of sensitivity to the combination of 

alisertib and ara-C. 
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3.2 Project summary  
Novel therapies are urgently needed to improve clinical outcomes for 

patients with AML. We investigated the preclinical efficacy and 

pharmacodynamics of alisertib in AML cell lines, primary AML cells, and 

mouse models of AML. Alisertib disrupted cell viability, diminished 

clonogenic survival, induced expression of the FOXO3a targets p27 and 

BIM, and triggered apoptosis. A link between Aurora A expression and 

sensitivity to ara-C was established, suggesting that Aurora A inhibition 

may be a promising strategy to increase the efficacy of ara-C. Accordingly, 

alisertib significantly potentiated the anti-leukaemic activity of ara-C in both 

AML cell lines and primary blasts. Targeted FOXO3a knockdown 

significantly blunted the pro-apoptotic effects of the alisertib/ara-C 

combination, indicating that it is an important regulator of sensitivity to 

these agents. In vivo studies demonstrated that alisertib significantly 

augmented the efficacy of ara-C without affecting its pharmacokinetic 

profile and led to the induction of p27 and BIM. Our collective data indicate 

that targeting Aurora A with alisertib represents a novel approach to 

increase the efficacy of ara-C that warrants further investigation. 

 

3.3 Materials and methods 
3.3.1 Cells and cell culture  

MV4-11, PL-21, and MOLM-13 cells were obtained from the Deutsche 

Sammlung von Mikroorganismen und Zellkulturen (DSMZ GmBH, 

Braunschweig, Germany). HL-60, OCI-AML2, SH2, SKM-1, NOMO-1 and 

KG-1 cells were obtained from the ATCC. Normal PBMCs from healthy 

donors were purchased from Stem Cell Technologies (Vancouver, 

Canada). Primary human AML cells were obtained from the BM of patients 

after obtaining informed consent in accordance with an approved IRB 

protocol. Paired HL-60 cells that are resistant and sensitive to ara-C were 

kindly provided by Dr. Kapil Bhalla (University of Kansas Cancer Center, 
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Kansas City, Kansas, USA). All cells and cell lines were maintained as 

described in section 2.3.1. 
3.3.2 qRT-PCR 

Total RNA was isolated using the RNeasy Plus Mini Kit (Qiagen Inc., 

Valencia, CA) and treated with TURBO DNA-free™ Kit (Ambion Inc., 

Foster City, CA). First-strand cDNA synthesis was performed using the 

high-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster 

City, CA). AURKA transcripts were amplified using a TaqMan® Gene 

expression assay (Applied Biosystems, Foster City, CA). Relative gene 

expression was calculated with the 2– Ct method using GAPDH as a 

housekeeping gene (656). 

 
3.3.3 Chemicals and reagents  

Reagents were obtained from: alisertib (MLN8237, Millennium 

Pharmaceuticals, Cambridge, MA, USA), ara-C (CTRC pharmacy), anti-

tubulin, anti-Aurora A, anti-Aurora B, anti-phospho-FOXO3a, anti-FOXO3a, 

anti-BIM, and anti-p27 antibodies (Cell Signalling, Beverly, MA, USA).  

 
3.3.4 Analysis of cell cycle effects and apoptosis  

Please refer to section 2.3.4. 

 
3.3.5 Analysis of drug-Induced apoptosis by caspase-3 assay 

The Active Caspase-3 Mab Apoptosis FITC kit was used in conjunction 

with flow cytometry to measure drug-induced cell death (BD Biosciences, 

San Jose, CA). Cells were treated with various concentrations of alisertib 

or ara-C for the indicated times. Following drug treatment, cells were fixed 

with 500 µl of CytoFix/CytoPerm Solution (BD Biosciences) and were 

incubated for 20 minutes in ice. After incubation, pellets were washed twice 

in 1X Perm/Wash buffer and stained with a FITC-conjugated antibody 

directed against the active form of caspase-3 for 30 minutes in the dark. 

Cells were washed twice with 1X Perm/Wash to remove unbound antibody 

and cellular fluorescence was analyzed using the FL-1H channel of a 
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FACSCanto II flow cytometer (BD Biosciences). The percentage of cells 

containing the active caspase-3 fragment was quantified using BD 

FACSDiva software.  
3.3.6 MTT assay  

Cell viability was assessed by MTT as described in section 2.3.5. Cells 

were cultured in 96-well plates at a density of 10,000 cells per well. Cells 

were treated with alisertib, ara-C or the combination for 96 hours. IC50 was 

determined by calculating the concentration of alisertib or ara-C that 

caused a 50% loss of viability measured by the MTT assay. 

 
3.3.7 Cell morphology 

Please refer to section 2.3.6. 

 
3.3.8 Colony assays  

AML cells were treated for 24 hours with the indicated concentrations of 

alisertib, ara-C or both and colony assays were performed as described in 

section 2.3.7. 

 
3.3.9 Immunoblotting  

AML cells were incubated with alisertib, ara-C or the combination for 24 

hours. Cells were collected and then lysed. For protein lysate preparation 

and Western blot method please refer to 2.3.8. Densitometric quantification 

of p-FOXO3a, FOXO3a, BIMEL, BIML, p27 and tubulin was performed 

using FluorChem HD2 software (ProteinSimple). P-FOXO3a, FOXO3a, 

BIMEL, BIML and p27 expression values were normalised to tubulin 

expression. Results are presented as the mean of ± SD of 3 independent 

experiments. 

 
3.3.10 RNA interference  

AURKA SMARTpool, AURKB SMARTpool or siCONTROL siRNA directed 

at luciferase (Dharmacon, Lafayette, CO) were transfected into AML cells 

as previously described using the Nucleofector II according to the 
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manufacturer’s instructions (Amaxa Inc., Gaithersburg, MD, USA) (633). 

Immunoblotting was utilized to assess knockdown efficiency. Transfected 

cells were treated with the indicated concentrations of ara-C for 48 hours.  

Drug-induced apoptosis was quantified by PI/FACS as described above. 

FOXO3a and control shRNA lentiviral particles were introduced into MV4-

11 cells according to the manufacturer’s protocol (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA). Stable clones were selected 

following puromycin treatment. 

 
3.3.11 Measuring alisertib and ara-C plasma levels  

Female naive CB-17 SCID mice were given a single dose of alisertib, 20 

mg/kg orally and ara-C, 50 mg/kg IP alone or in combination and sacrificed 

at various time points (1, 2, 4, 6, 8, 16 and 24 hours). Blood was drawn 

using cardiac puncture and plasma was isolated. Extractions were 

performed separately for the analysis of alisertib and ara-C, and alisertib 

and ara-C plasma concentrations were determined by liquid 

chromatography–mass spectrometry (LC/MS). For alisertib, 25 µL of each 

sample was mixed with 50 µ L of internal standard solution [13CD3
15N2] 

alisertib. The prepared samples were then extracted by solid phase 

extraction (Isolute C8 50 µm). The samples were washed, evaporated, and 

reconstituted. Ten µL of the sample solution was loaded onto a 5 µm 

Sunfire C8, 2.1 mm internal diameter x 50 mm, HPLC column (Waters, 

Milford, MA, USA). For ara-C, 25 µL of each sample was mixed with 150 

µL of internal standard solution ara-C 13C3.  The prepared samples were 

vortexed and then eluted from the plate. Ten µL of the sample solution was 

loaded onto a 5 µm Hypersil Silica, 3 mm internal diameter x 50 mm, 

HPLC column (Thermo Fisher, Hanover Park, IL, USA).  An API 4000 

LC/MS/MS (MDS Sciex) was used for detection of alisertib (m/z 

519.1→328.1), [13CD3
15N2]alisertib (m/z 526.1→329.1), ara-C (m/z 

244.2→112.1), and ara-C 13C3  (m/z 247.1→115.1). Quantification was 

based upon integrating peaks corresponding to elution of the drug and 
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internal standard in the extracted product ion chromatograms. The lower 

limit of quantitation (LLQ) for alisertib and ara-C was 5 ng/mL.  

 
3.3.12 Pharmacokinetics analysis 

Pharmacokinetic analysis of the plasma concentration data was performed 

using WinNonlin® Professional, Version 4.0 (Pharsight Corp., Mountain 

View, CA, USA).  Kinetic parameters were estimated using a non-

compartmental model. 

 
3.3.13 In vivo evaluation of alisertib and ara-C  

MOLM-13 and KG-1 cells were harvested, washed in PBS, and suspended 

in a 50:50 mixture of HBSS and Matrigel (BD Biosciences, San Jose, CA, 

USA). An in vivo model of AML was generated by injection of 107 MOLM-

13/KG-1 cells into the flanks of female nude mice. After tumour growth 

reached 150 mm3, mice were randomly assigned to receive alisertib 20 

mg/kg BID orally (n=10), ara-C 75 mg/kg three times a week (TIW) 

Intraperitoneally (n=10), vehicle control (n=10) or both alisertib and ara-C 

(n=10) for 14 days. Mice were monitored daily and tumour volumes and 

body weights were measured twice weekly as described in section 2.3.9. 

At the completion of the study, tumours were excised, formalin-fixed and 

paraffin-embedded for immunohistochemical analysis.  

 
3.3.14 Immunohistochemistry  
Paraffin-embedded tumour sections (4–6 µ m thick) were mounted on 

slides. Sections were deparaffinized in xylene, treated with a graded series 

of alcohol [100%, 95%, and 80% ethanol/double-distilled H2O (v/v)] and 

rehydrated in PBS (pH 7.5). Heat-induced epitope retrieval was performed 

by microwaving slides in a citrate buffer for 5 minutes. The slides were 

allowed to cool and endogenous peroxides were blocked with a 3% 

hydrogen peroxide solution for 10 minutes. Slides were then incubated in a 

protein block solution (5% horse and 1% goat serum in PBS) for 20 

minutes. Primary antibodies were diluted in the protein block solution and 
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placed at 4 °C overnight. After washing with PBS, slides were incubated in 

appropriate secondary antibodies (PCNA, BIM and p27 (Cell Signalling 

Technologies, Beverly, MA, USA)) for 1 hour at ambient temperature. 

Positive reactions were visualized by immersing the slides with stable 3,3'-

diaminobenzidine diaminobenzidine (Research Genetics, Huntsville, AL) 

for 10–20 minutes. The sections were rinsed with distilled water, 

counterstained with Gill's haematoxylin (Sigma, St. Louis, MO), and 

mounted with Universal Mount (Research Genetics, Huntsville, AL). 

Images were captured using an Olympus fluorescent microscope (Center 

Valley, PA) with a DP71 camera and a 20X objective. Image-Pro Plus 

software Version 6.2.1 (MediaCybernetics, Bethesda, MD) was used for 

image acquisition and quantification by densitometric analysis of BIM and 

p27 expression in five random high-power fields containing viable tumour 

cells. Percentages of PCNA-positive cells were determined by manual 

counting of 5 non-overlapping random high-power fields per section by two 

investigators blinded to the treatment arms. The average percentage of 

PCNA positive cells per high-power field was calculated for comparison. 

 
3.3.15 Statistical analyses  

Statistical significance of differences observed between samples was 

determined using the Student’s t test. Differences were considered 

significant in all experiments at p < 0.05. 

 

3.4 Results  
3.4.1 Targeting Aurora A with alisertib disrupts the viability of AML cells. 

In order to investigate the therapeutic potential of targeting Aurora A 

activity in AML, we first assessed the relative expression of the AURKA 

gene in normal PBMCs and a panel of 9 human AML cell lines using a 

qRT-PCR method. AURKA expression levels were significantly higher in all 

9 AML cell lines than in normal PBMCs (Figure 3.1). Our findings are 

consistent with a recent study that demonstrated prevalent AURKA 



 222 

overexpression in AML cells from patients (657). However normal PBMCs 

would not be expected to express high levels of Aurora A as they are not 

actively proliferating. Using alternative controls such as CD34 positive 

mononuclear cells isolated from the BMs of healthy donors may have 

yielded different results. We next treated MV4-11 cells with three 

concentrations of alisertib to examine the effects of this agent on Aurora A 

autophosphorylation as a measure of Aurora A activity. Our results showed 

that alisertib caused a dose-dependent reduction in the phosphorylation of 

Aurora A on its Thr288 auto-phosphorylation site. Our findings are 

consistent with other recent preclinical studies with alisertib and 

demonstrate that this agent effectively inhibits Aurora A activity in AML 

cells (Figure 3.2) (658, 659). We next treated 9 AML cell lines and normal 

PBMC controls with various concentrations of alisertib and quantified the 

consequential effects on cell viability by MTT assay. Clinically achievable 

concentrations of alisertib preferentially inhibited the in vitro growth and 

survival of AML cell lines as compared with normal PBMCs, indicating that 

this agent may have therapeutic selectivity (Figure 3.3). Importantly, in vitro 

treatment with alisertib also diminished the viability of primary blasts 

obtained form patients with AML (Figure 3.4) and disrupted the clonogenic 

survival of AML cells (Figure 3.5). Interestingly Aurora A expression as 

measured by qRT-PCR did not appear to correlate with sensitivity to 

alisertib as assessed by MTT assay. For example MOLM-13 cells appear 

to have relatively low expression of Aurora A (Figure 3.1), but remain very 

sensitive to alisertib treatment as assessed by MTT assay.  This is 

consistent with a recent study which showed that Aurora A expression is a 

poor predictor of response to Aurora kinase inhibitors (660). 
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Figure 3.1 Relative expression of AURKA in normal PBMCs 
and AML cell lines  

The basal expression levels of AURKA were quantified by qRT-PCR.  n = 

3 ± SD. 
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Figure 3.2 Alisertib treatment abrogates Aurora kinase A 
autophosphorylation   

MV4-11 AML cells were treated with the indicated concentrations of 

alisertib for 24 hours. The levels of phospho-Aurora A (Thr288) and total 

Aurora A were assessed by immunoblotting. 
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Figure 3.5 Treatment with alisertib inhibits clonogenic survival  
MOLM-13 and MV4-11 AML cells were treated with the indicated 

concentrations of alisertib for 24 hours. Drug was washed away and cells 

were seeded in Methocult. Colonies were scored on day 14. n = 3 ± SD.  
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3.4.2 Morphological analysis of AML cells after 48 hours of alisertib treatment 

Considering that the cell cycle analysis showed that alisertib could induce 

polyploidy and that previous studies have shown that Aurora kinase 

inhibition results in MC we examined the morphology of alisertib-treated 

cells. As discussed in section 1.5, MC is currently defined primarily by 

morphology (635). Figure 3.6 and 3.7 show representative examples of 

both treated and untreated MOLM-13 and MV4-11 cells respectively. After 

48 hours of treatment, cells with distinct chromatin images suggestive of a 

monopolar spindles and duplicated but unseparated chromosomes were 

visible. These features are consistent with MC. In addition to features of 

MC, the alisertib-treated AML cell lines also show a subpopulation of cells 

with clear classical apoptosis morphology: chromatin condensation, 

cytoplasm shrinkage, and the formation of apoptotic bodies. 
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Figure 3.6 Morphological features of alisertib-induced cell death in 
MOLM-13 cell lines  
Cell morphology was visualised using RapiDiff staining by light microscopy 

after treatment with 100 nM of alisertib for 48 hours. Typical cytospin 

images for untreated and alisertib-treated MOLM-13 cell lines are shown. 

Alisertib treatment (100 nM) produced a distinct morphology with large 

cells with multiple micronuclei (M). These features are consistent with 

mitotic catastrophe. In addition to mitotic catastrophe, MOLM-13 cells 

treated with alisertib show a population of cells with membrane blebbing 

and budding and chromatin condensation features consistent with 

apoptotic morphology (A).



 230 

 

Figure 3.7 Morphological features of alisertib-induced cell death in 
MV4-11 cell lines  
Cell morphology was visualised using RapiDiff staining by light microscopy 

after treatment with 100 nM of alisertib for 48 hours. Typical cytospin 

images for untreated and alisertib-treated MV4-11 cell lines are shown. 

Alisertib treatment (100 nM) produced a distinct morphology suggestive of 

monopolar spindles, duplicated but unseparated chromosomes centrally 

located in the cell and large cells with multiple micronuclei (M). These 

features are consistent with mitotic catastrophe. In addition to mitotic 

catastrophe, MV4-11 cells treated with alisertib show a population of cells 

with membrane blebbing and budding and chromatin condensation 

features consistent with apoptotic morphology (A). 
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3.4.3 Alisertib modulates cell cycle distribution and induces apoptosis 

Genetically or pharmacologically antagonizing the activity of Aurora kinase 

A has been reported to produce mixed effects on cell cycle dynamics 

including polyploidy and G2/M growth arrest (457, 466, 661, 662). In order 

to assess the cell cycle-related effects of alisertib, we treated MOLM-13, 

MV4-11, HL-60 and KG-1 cells with different concentrations of alisertib for 

48 hours and quantified the effects on cell cycle distribution using PI/FACS 

analysis (Figure 3.8 a, b, c, and d). These analyses showed dose-

dependent increases in the percentage of MOLM-13, MV4-11, HL-60 and 

KG-1 cells with ≥4N DNA content (Figure 3.9 a) and with sub G0/G1 

(apoptotic) DNA (Figure 3.9 b). Considering that DNA fragmentation (sub 

G0/G1 DNA) is a hallmark feature of apoptosis, we quantified the effects of 

alisertib on caspase-3 activation as a second measure of apoptosis to 

confirm the pro-apoptotic effects of this agent. Treatment with alisertib for 

48 hours led to a concentration-dependent increase in the percentages of 

cells expressing the active form of caspase-3, indicating that the induction 

of apoptosis significantly contributes to the activity of this agent (Figure 

3.10 a, b, and c). Notably, MOLM-13 cells displayed significantly greater 

sensitivity to alisertib in MTT and colony formation assays than in assays 

that directly measured apoptosis. This suggests that the unique genetic 

background of individual cell types may be important in determining the 

cellular response to Aurora A inhibition (growth inhibition, apoptosis, or 

both) and that suppression of cell proliferation and stimulation of apoptosis 

both underlie the anti-cancer activity of alisertib. 
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Figure 3.8 (a) Alisertib disrupts cell cycle dynamics and induces 
apoptosis 
MOLM-13 cells were treated with the indicated concentrations of alisertib 

for 48 hours. PI/FACS was utilized to assess drug-related effects on cell 

cycle distribution. Representative histograms are shown.  
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Figure 3.8 (b) Alisertib disrupts cell cycle dynamics and induces 
apoptosis 
MV4-11 cells were treated with the indicated concentrations of alisertib for 

48 hours. PI/FACS was utilized to assess drug-related effects on cell cycle 

distribution. Representative histograms are shown.  
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Figure 3.8 (c) Alisertib disrupts cell cycle dynamics and induces 
apoptosis 
HL-60 cells were treated with the indicated concentrations of alisertib for 

48 hours. PI/FACS was utilized to assess drug-related effects on cell cycle 

distribution. Representative histograms are shown.  
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Figure 3.8 (d) Alisertib disrupts cell cycle dynamics and induces 
apoptosis 
KG-1 cells were treated with the indicated concentrations of alisertib for 48 

hours. PI/FACS was utilized to assess drug-related effects on cell cycle 

distribution. Representative histograms are shown.  
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Figure 3.10 (b) Alisertib activates caspase-3 

MOLM-13 cells were treated with the indicated concentrations of alisertib 

for 48 hours. Active caspase-3 was quantified using a FACS-based 

method as detailed in the materials and methods. Representative 

Histograms are shown. 
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Figure 3.10 (c) Alisertib activates caspase-3 

MV4-11 cells were treated with the indicated concentrations of alisertib for 

48 hours. Active caspase-3 was quantified using a FACS-based method as 

detailed in the materials and methods. Representative Histograms are 

shown. 
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3.4.4 Alisertib induces the expression of the FOXO3a targets p27 and BIM 

The combined effects of growth inhibition/cell cycle disruption and 

apoptosis that we observed in our FACS analyses were supported by 

immunoblotting analyses, which revealed that alisertib treatment led to a 

significant rise in the levels of the CKI inhibitor, p27, and of the 

microtubule-associated BH3-only apoptotic regulator, BIM, in MV4-11 cells. 

The increased levels of p27 and BIM were correlated with a significant 

reduction in the transcriptionally inactive, cytosolically localized 

(phosphorylated) form of FOXO3a, which is an important transcriptional 

regulator of both p27 and BIM expression (Figure 3.11) (663, 664). 

Densiometry analysis shows that alisertib treatment is associated with a 

modest rise in total FOXO levels perhaps through stabilization of FOXO as 

a result of its migration from the cytosol (where it can be subject to 

ubiquitination and degradation) to the cell nucleus (Figure 3.12). 

 In order to investigate whether Aurora A and B inhibition have 

similar effects on FOXO3a phosphorylation status, we utilized siRNA to 

knockdown AURKA and AURKB expression, respectively. Our results 

showed that AURKA siRNA led to a significantly greater reduction in 

phospho-FOXO3a levels than AURKB siRNA (Figure 3.13). This suggests 

that Aurora A may play a more prominent role in the regulation of FOXO3a 

phosphorylation status than Aurora B.  
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Figure 3.11 Alisertib induces the expression of the FOXO3a targets 
p27 and BIM  

Cells were treated with the indicated concentrations of alisertib for 24 

hours. Protein lysates were subjected to SDS-PAGE and membranes were 

probed with antibodies as described in the materials and methods. Tubulin 

documented equal protein loading. 
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Figure 3.13 Aurora A preferentially regulates FOXO3a 
phosphorylation levels  
MV4-11 cells were transfected with non-targeted (NT) control siRNA, 

AURKA siRNA, or AURKB siRNA using the Nucleofector II. The effects of 

targeted Aurora A and Aurora B knockdown on the levels of p-FOXO3a 

were assessed by immunoblotting. Tubulin documented equal protein 

loading. 
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3.4.5 ara-C induces the expression of Aurora A 

A number of studies have reported a link between Aurora kinase 

expression and resistance or reduced sensitivity to anti-cancer agents 

(665-670). However, the mechanistic basis for this correlation has not been 

well investigated. We hypothesized that the stress response induced by 

cytotoxic drugs such as ara-C, a frontline agent in AML therapy, could 

result in increased expression of AURKA.  In order to explore this 

possibility, we treated AML cell lines (HL-60, MV4-11, and MOLM-13) and 

primary blasts from patients with AML (n = 3) with ara-C for 24 hours and 

quantified the effects on the expression of AURKA by qRT-PCR and 

immunoblotting (Figure 3.14 and 3.15). Our results showed that acute 

exposure to ara-C was sufficient to trigger a significant increase in AURKA 

expression in both established cell lines and primary AML cells. The exact 

mechanism by which ara-C induces AURKA expression is not known. Ara-

C typically induces S phase arrest (671, 672) and Aurora A levels are low 

in G1 and S phase and peak in the G2/M phase of the cell cycle (457). One 

possibility is that Aurora A levels increase in leukaemia cells following ara-

C treatment as a compensatory mechanism to overcome S phase arrest.   

 We next compared the expression of AURKA by qRT-PCR in paired 

ara-C sensitive and resistant cell lines. Resistance to ara-C in AML cells 

has been attributed to cytokinetic factors as well as reduced intracellular 

metabolism of ara-C. A HL-60 subline that is highly resistant to ara-C has 

been generated that is capable of proliferating in the presence of ara-C 

concentration exceeding 1 µmol/L. In contrast, the parental HL-60 line 

exhibits an ara-C IC50 of approximately 5 nmol/L (673). These resistant 

cells were generated by prolonged culture in increasing doses of ara-C 

and share numerous biological and biochemical features with the parent 

line, including: morphology; rate of growth; cloning characteristics; 

karyotype; rates of DNA, RNA, and protein synthesis. Of note they exhibit 

decreased activity of the pyrimidine salvage pathway enzyme -

deoxycytidine kinase (dCK), a common mechanism for clinical resistance 
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to ara-C. However other mechanisms of ara-C resistance are also like to 

be present in these cells. Interestingly the HL-60 ara-C resistant cell line 

had significantly higher levels of AURKA expression as measured by qRT-

PCR compared to paired ara-C sensitive HL-60 cells (Figure 3.16) 

suggesting that chronic exposure to ara-C is also associated with an 

increase in AURKA expression. 

 We next utilized siRNA to knockdown AURKA expression in MV4-11 

cells to assess whether the expression of Aurora A significantly impacted 

cellular sensitivity to ara-C (Figure 3.17, top). Direct comparison of the pro                                                                                                                                                                                                   

-apoptotic effects of ara-C in cells transfected with non-targeted control 

siRNA and Aurora A-targeted siRNA revealed that ara-C was nearly twice 

as effective at inducing apoptosis when Aurora A expression was 

diminished, suggesting that targeting Aurora A activity may be an effective 

strategy to increase the therapeutic efficacy of ara-C (Figure 3.17 bottom).
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Figure 3.14 Effects of ara-C treatment on AURKA expression  
Human AML cell lines (MOLM-13, MV4-11, and HL-60) and primary AML 

cells (n=3) were treated with ara-C for 24 hours. qRT-PCR was utilized to 

quantify the impact of drug treatment on the relative expression of AURKA. 

n = 3 ± SD, *p ≤ 0.05.  
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Figure 3.15 Ara-C causes a dose-dependent increase in 
Aurora A levels  
MV4-11 cells were treated with the indicated concentrations of ara-C for 24 

hours. Protein lysates were subjected to SDS-PAGE, blotted, and probed 

with an Aurora A specific antibody. Tubulin documented equal protein 

loading.  
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Figure 3.16 Aurora A is overexpressed in ara-C resistant 
cells   

The relative expression levels of AURKA were evaluated in paired HL-60 

cells that are sensitive and resistant to ara-C and PBMCs by qRT-PCR.   
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Drug-induced apoptosis was quantified by PI/FACS (Bottom). n = 3 ± SD, 

*p ≤ 0.05. 
3.4.6  Alisertib significantly augments the in vitro activity of ara-C 

Based on our data demonstrating that targeted knockdown of Aurora A 

significantly increased the sensitivity of MV4-11 cells to ara-C, we 

hypothesized that inhibition of Aurora A activity with alisertib would 

potentiate the anti-cancer effects of ara-C. We tested our hypothesis by 

treating AML cell lines (MV4-11, MOLM-13, HL-60, and KG-1) with 

alisertib, ara-C, or both drugs for 72 hours. Quantification of cell viability by 

MTT assay showed that alisertib cooperated with ara-C to reduce AML cell 

viability (Figure 3.18). Investigation of the effects of these agents in primary 

AML blasts confirmed that alisertib significantly increased the ability of ara-

C to disrupt AML cell viability (Figure 3.19). Colony formation assays 

demonstrated that inhibition of Aurora A activity with alisertib significantly 

enhanced the ability of ara-C to suppress the clonogenicity of AML cells 

(Figure 3.20).  

 Considering that earlier investigations have shown that Aurora A 

can function to inhibit apoptosis, we next tested whether antagonizing 

Aurora A activity with alisertib could potentiate the pro-apoptotic effects of 

ara-C. Quantification of the percentages of cells with active caspase-3 

(Figure 3.21) and with sub G0/G1 DNA content (Figure 3.22) following 48 

hours treatment with alisertib, ara-C, or both drugs revealed that the level 

of apoptosis induction was significantly greater in cells treated with alisertib 

+ ara-C than with either drug alone. These data indicate that targeting 

Aurora A with alisertib may be an effective strategy to increase the anti-

leukaemic activity of ara-C.
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Figure 3.18 Alisertib potentiates the anti-leukaemic effects of ara-C  

Human AML cell lines (MV4-11, MOLM-13, Hl-60, and KG-1) were treated 

with 100 nM alisertib, 100 nM ara-C, or the combination for 72 hours. 

Percentages of viable cells were determined by MTT assay. n = 3 ± SD, *p 

≤ 0.05 
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Figure 3.19 Alisertib potentiates the anti-leukaemic effects of ara-C  

Primary AML cells were treated with 100 nM alisertib, 100 nM ara-C, or the 

combination for 72 hours. Percentages of viable cells were determined by 

MTT assay. n = 3 ± SD, *p ≤ 0.05. 
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Figure 3.20 Alisertib and ara-C cooperate to disrupt 
clonogenic survival  
MOLM-13 and MV4-11 cells were treated 100 nM alisertib, 100 nM ara-C, 

or both for 24 hours. Drugs were washed away and cells were plated in 

methocult. Colonies were scored on day 14. n = 3 ± SD, *p ≤ 0.05.  
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Figure 3.21 (a) Alisertib augments ara-C-mediated caspase-3 
induction 
Cells were treated with alisertib, ara-C, or both drugs for 48 hours. Drug-

induced apoptosis was quantified by active caspase-3. The percentages of 

cells with caspase-3 positivity are quantified. n = 3 ± SD, *p ≤ 0.05.  
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Figure 3.21 (b) Alisertib augments ara-C-mediated caspase-3 
induction  

MOLM-13 cells were treated with alisertib, ara-C, or both drugs for 48 

hours. Drug-induced apoptosis was quantified by active caspase-3. 

Representative histograms are shown.  
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Figure 3.21 (c) Alisertib augments ara-C-mediated caspase-3 
induction  

MV4-11 cells were treated with alisertib, ara-C, or both drugs for 48 hours. 

Drug-induced apoptosis was quantified by active caspase-3. 

Representative histograms are shown.  
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Figure 3.22 (a) Alisertib augments ara-C-mediated apoptosis  

MOLM-13, MV4-11 and KG-1 cells were treated with alisertib, ara-C, or 

both drugs for 48 hours. Drug-induced apoptosis was quantified by 

PI/FACS. The percentages of cells with sub G0/G1 DNA content are 

quantified in the bottom panels. Representative histograms are shown. n = 

3 ± SD, *p ≤ 0.05. 
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Figure 3.22 (b) Alisertib augments ara-C-mediated apoptosis  

MOLM-13 cells were treated with alisertib, ara-C, or both drugs for 48 

hours. Drug-induced apoptosis was quantified by PI/FACS. Representative 

histograms are shown. n = 3 ± SD, *p ≤ 0.05. 
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3.4.7 FOXO3a is a critical regulator of cellular sensitivity to alisertib and ara-C 

FOXO3a is a member of the forkhead family of transcription factors and 

regulates the expression of a large number of target genes with critical 

roles in processes that are essential for oncogenic transformation and 

malignant pathogenesis. Phosphorylation of FOXO3a sequesters it in the 

cytosol and consequentially inhibits its transcriptional activity. Upon its 

dephosphorylation, FOXO3a translocates to the nucleus where it can 

initiate the transcription of its target genes (663, 664). Given that treatment 

with alisertib led to a significant reduction in the levels of phosphorylated 

(transcriptionally inactive) FOXO3a and the induction of the FOXO3a 

targets p27 and BIM (Figure 3.11), we hypothesized that these 

downstream effects of Aurora A inhibition may contribute to the ability of 

this agent to increase the efficacy of ara-C. In order to investigate this 

possibility, we first conducted immunoblot analyses of the levels of total 

and phosphorylated FOXO3a, p27, and BIM following treatment with 

alisertib, ara-C, or the combination of these drugs. Our results showed that 

the levels of phospho-FOXO3a and its targets p27 and BIM were more 

profoundly changed by treatment with both alisertib and ara-C as 

compared with the effects produced by either single agent treatment 

(Figure 3.23 and Figure 3.24). This suggested that the combined effects of 

these drugs on FOXO3a play an important role in regulating sensitivity to 

these agents. To determine whether FOXO3a is required for the induction 

of p27 and BIM expression in response to treatment with alisertib and ara-

C, we used a lentiviral approach to generate MV4-11 cells with stable 

shRNA-mediated knockdown of FOXO3a (Figure 3.25).  

 We next treated cells expressing non-targeted control shRNA and 

FOXO3a shRNA with alisertib, ara-C, and the combination of these drugs 

and assessed the consequential effects on the expression of p27 and BIM 

by immunoblotting. Treatment with either single agent or the combination 

of both agents led to significant increases in the expression of p27 and 

BIM. In contrast, cells expressing FOXO3a-targeted shRNA displayed only 
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minor changes in the levels of p27 and BIM following single agent and 

combination treatments (Figure 3.26). Our results demonstrate that 

FOXO3a is required for maximal induction of p27 and BIM by alisertib and 

ara-C.  

 We next evaluated the potential role of FOXO3a as a regulator of 

the efficacy of the alisertib/ara-C combination. MV4-11 cells stably 

expressing non-targeted or FOXO3a shRNA were treated with alisertib, 

ara-C, or both drugs for 48 hours and drug-induced apoptosis was 

quantified by PI/FACS. Targeted knockdown of FOXO3a blunted the pro-

apoptotic effects of alisertib/ara-C by more than 50% of what was observed 

on cells expressing control shRNA (Figure 3.27). Collectively, these data 

support a role for FOXO3a as a critical mediator of the therapeutic efficacy 

of this combination. 
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Figure 3.23 FOXO3a regulates sensitivity to the alisertib/ara-C 
combination  
Alisertib and ara-C cooperate to induce expression of the FOXO3a targets 

BIM and p27. Cells were treated for 24 hours with alisertib, ara-C, or both 

agents. Immunoblotting was utilized to assess the effects of drug treatment 

on the levels of phospho-FOXO3a, total FOXO3a, BIM, and p27. Tubulin 

documented equal protein loading. 
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Figure 3.25 Generation of MV4-11 cells with stable FOXO3a 
knockdown  
Cells were infected with non-targeted control or FOXO3a-targeted shRNA 

using a lentiviral approach. Stable cell lines were selected with puromycin 

treatment. Immunoblotting was utilized to assess knockdown efficiency. 
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Figure 3.26 FOXO3a is required for maximal induction of p27 and BIM 
by alisertib/ara-C  

MV4-11 cells expressing control or FOXO3a-targeted shRNA were treated 

with alisertib, ara-C, or both drugs for 24 hours. Protein lysates were 

subjected to SDS-PAGE and the levels of p27 and BIM were evaluated by 

immunoblotting. Tubulin documented equal protein loading. 
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Figure 3.27 Targeted knockdown of FOXO3a blunts the pro-apoptotic 
effects of the alisertib/ara-C combination  

MV4-11 cells expressing control or FOXO3a-targeted shRNA were treated 

with alisertib, ara-C, or both drugs for 48 hours. Drug-induced apoptosis 

was quantified by PI/FACS. The percentages of cells with sub G0/G1 DNA 

content are quantified. n = 3 ± SD, *p ≤ 0.05. 
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3.4.8 Alisertib potentiates the in vivo efficacy of ara-C  

Our in vitro data demonstrated that targeting Aurora A with alisertib 

enhanced the efficacy of ara-C in AML cell lines and primary blasts from 

patients with AML. In order to further investigate the therapeutic potential 

of this novel strategy, we first conducted a pharmacokinetic experiment to 

ascertain any possible effects that co-administration of alisertib may have 

on the PK profile of ara-C. Mice were given a single dose of alisertib (20 

mg/kg orally) and ara-C (50 mg/kg by intraperitoneal (IP) injection) alone or 

in combination and sacrificed at various time points. Plasma 

concentrations of ara-C and alisertib were determined using a LC/MS 

method. Pharmacokinetic parameters were estimated using a non-

compartmental model. Our results demonstrate that the addition of either 

agent did not significantly affect the pharmacokinetics of the other (Figure 

3.28).  

 We next conducted xenograft studies to investigate the in vivo 

therapeutic potential of the combination of alisertib and ara-C. MOLM-13 

and KG-1 cells were injected subcutaneously into the flanks of 

immunodeficient nude mice. Vehicle, alisertib, ara-C or the combination of 

alisertib and ara-C were administered to mice for 14 days. In both KG-1 

and MOLM-13 AML models, both alisertib and ara-C had substantial 

effects on tumour burden. The combination of both agents was well 

tolerated without a significant impact on animal body weight and resulted in 

significantly greater tumour growth inhibition than what was achieved by 

either agent alone (Figure 3.29 to 3.32).  These findings indicate that 

inhibition of Aurora A activity with alisertib may be an attractive strategy to 

heighten the anti-leukaemic activity of ara-C. 

 Our earlier in vitro assays demonstrated that FOXO3a is an 

important regulator of the therapeutic activity of the alisertib/ara-C 

combination. We utilized an immunohistochemical approach to quantify the 

impact of in vivo administration of these agents on the expression of the 

FOXO3a targets p27 and BIM and on proliferating cell nuclear antigen 
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(PCNA) as a general measure of proliferative activity. Consistent with our 

in vitro observations, the alisertib/ara-C combination was significantly more 

effective at inducing the expression of p27 and BIM and also at globally 

diminishing tumour cell proliferation than either alisertib or ara-C alone 

(Figure 3.33 to 3.38). Our collective findings indicate that inhibition of 

Aurora A activity with alisertib represents a novel approach to increase the 

growth inhibitory and pro-apoptotic effects of treatment with ara-C. 
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Figure 3.28 Alisertib does not significantly impact the 
pharmacokinetic profile of ara-C  

Female naive CB-17 SCID mice were given a single dose of alisertib (20 

mg/kg orally) and ara-C (50 mg/kg IP) alone or in combination and 

sacrificed at various time points (1, 2, 4, 6, 8, 16, and 24 hours). Blood was 

drawn using cardiac puncture and plasma was isolated. Extractions were 

performed separately for the analysis of alisertib and ara-C, and alisertib 

and ara-C plasma concentrations were determined by LC/MS/MS.  
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Figure 3.29 Alisertib augments the in vivo activity of ara-C  

MOLM-13 cells were injected into the flanks of nude mice. Vehicle, alisertib 

(20 mg/kg po BID), ara-C (75 mg/kg IP three times a week) or both drugs 

were administered for 14 days. Tumour volume was measured biweekly. n 

= 10 ± SD, *p ≤ 0.05 (controls vs. single agents, **p ≤ 0.05 (single agents 

vs. combination). 
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Figure 3.30 Alisertib augments the in vivo activity of ara-C  

KG-1 cells were injected into the flanks of nude mice. Vehicle, alisertib (20 

mg/kg po BID), ara-C (50 mg/kg IP QD for 5 days per week) or both drugs 

were administered for 14 days. Tumour volume was measured biweekly. n 

= 10 ± SD, *p ≤ 0.05 (controls vs. single agents, **p≤ 0.05 (single agents 

vs. combination). 
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Figure 3.33 Alisertib and ara-C combine to reduce cell proliferation in 
vivo 

Immunohistochemistry was carried out on tumour specimens from mice in 

each treatment group to quantify the effects of drug treatment. Cells were 

stained with PCNA was used as a general measure of tumour cell 

proliferation. Representative images are shown from each treatment group. 

Positive cells were scored manually under 20X magnification.  
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Figure 3.34 Alisertib and ara-C combine to reduce cell proliferation in 
vivo 
Immunohistochemistry was carried out on tumour specimens from mice in 

each treatment group to quantify the effects of drug treatment. Cells were 

stained with PCNA as a general measure of tumour cell proliferation. 

Percentages of PCNA-positive cells were determined by manual counting 

of 5 non-overlapping random high-power fields per section by two 

investigators blinded to the treatment arms. The average percentage of 

PCNA positive cells per high-power field was calculated for comparison. 

Mean ± SD, n = 5. *p < 0.05 (controls vs. single agents), **p < 0.05 (single 

agents vs. combination). 
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Figure 3.35 The alisertib/ara-C combination induces the expression of 
p27 in vivo  
Immunohistochemistry was carried out on tumour specimens from mice in 

each treatment group to quantify the effects of drug treatment on the 

expression of the FOXO3a target p27. Representative images are shown 

from each treatment group. 
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Figure 3.36 The alisertib/ara-C combination induces the expression of 
p27 in vivo   

Immunohistochemistry was carried out on tumour specimens from mice in 

each treatment group to quantify the effects of drug treatment on the 

expression of the FOXO3a target p27. The relative intensity of p27 

expression was measured using Image-Pro Plus software Version 6.2.1 by 

densitometric analysis of five random high-power fields containing viable 

tumour cells by two independent investigators blinded to the treatment 

arms.  Mean ± SD, n=5 Mean ± SD, n = 5, *p≤ 0.05 (controls vs. single 

agents, **p≤ 0.05 (single agents vs. combination). 
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Figure 3.37 The alisertib/ara-C combination induces the expression of 
BIM in vivo   

Immunohistochemistry was carried out on tumour specimens from mice in 

each treatment group to quantify the effects of drug treatment on the 

expression of the FOXO3a target BIM. Immunohistochemistry was carried 

out on tumour specimens from mice in each treatment group to quantify 

the effects of drug treatment on the expression of the FOXO3a target BIM. 

Representative images are shown from each treatment group.  
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Figure 3.38 The alisertib/ara-C combination induces the expression of 
BIM in vivo   

Immunohistochemistry was carried out on tumour specimens from mice in 

each treatment group to quantify the effects of drug treatment on the 

expression of the FOXO3a target BIM. The relative intensity of BIM 

expression was measured using Image-Pro Plus software Version 

6.2.1 by densitometric analysis of five random high-power fields containing 

viable tumour cells by two independent investigators blinded to the 

treatment arms.  Mean±SD, n=5 Mean ± SD, n = 5, *p≤ 0.05 (controls vs. 

single agents, **p≤ 0.05 (single agents vs. combination). 
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3.5 Discussion  
Given its intrinsic overexpression in cancer, essential functions in the 

regulation of mitosis, and potential roles in promoting drug resistance and 

disease progression, Aurora kinase A is an attractive target for cancer 

therapy.  As discussed in section 1.8.6, a number of Aurora kinase 

inhibitors that have varying degrees of activity against Aurora A are 

currently in development (674). We hypothesized that the prevalent 

overexpression of Aurora A in AML and highly proliferative nature of this 

malignancy would render it particularly sensitive to alisertib. We conducted 

a series of preclinical experiments with the aim to ascertain the 

antileukaemic activity and pharmacodynamic effects of targeting Aurora A 

with alisertib in AML cell lines, primary AML blasts, and mouse xenograft 

models of AML. 

 Our in vitro assays demonstrated that alisertib has pleiotropic 

effects in AML cells. Exposure to alisertib diminished cell viability and 

clonogenic survival, disrupted cell cycle dynamics, and induced apoptosis. 

Interestingly, our data demonstrated that cellular sensitivity to alisertib was 

not directly correlated with Aurora A expression levels in AML cells. These 

findings are consistent with those from early phase clinical trials with 

alisertib, which have also failed to show a direct relationship between 

Aurora A expression levels and sensitivity to alisertib (677). Similarly in a 

preclinical investigation of 87 cancer cell lines the expression of Aurora A 

and B were found to be weak predictors of response to Aurora kinase 

inhibitors (660). The reason for this phenomenon is unknown. It is possible 

that alisertib may achieve similar degrees of Aurora A inhibition in cells 

with relatively low, intermediate, and high basal Aurora A expression.  If 

this were the case, sensitivity to alisertib would not appear to be directly 

linked to Aurora A levels. Pharmacodynamic studies from ongoing and 

planned phase 2 and phase 3 clinical trials with alisertib may help to clarify 

this issue.  
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 FOX proteins are a family of transcription factors that play important 

roles in regulating the expression of genes involved in cell growth, 

proliferation, differentiation, and longevity (678). The defining feature of 

FOX proteins is the forkhead box, a sequence of 80 to 100 amino acids 

forming a motif that binds to DNA. They are grouped into subclasses 

(FOXA-FOXS) based on sequence conservation (679). There are four 

members of the class O: FOXO1, FOXO3, FOXO4 and FOXO6. They have 

roles in metabolism, cellular proliferation and stress tolerance. The activity 

of FOXO is tightly regulated by post-translational modifications, including 

phosphorylation, acetylation and ubiquitylation. FOXO1 plays important 

roles in regulation of gluconeogenesis, glycogenolysis by adipogenesis 

(680). FOXO3a functions as a trigger for apoptosis through upregulation of 

BIM and PUMA (681) or downregulation of anti-apoptotic proteins such as 

FADD-like IL-1beta-converting enzyme (FLICE)-inhibitory protein (FLIP). It 

is FOXO3a's role in apoptosis that most likely mediates a portion of the 

therapeutic effect of the alisertib and ara-C combination in this study.  

 The growth inhibitory and pro-apoptotic effects we observed in AML 

cells treated with alisertib were associated with significantly increased 

expression of the FOXO3a transcriptional targets p27 and BIM. Given that 

p27 is a critical component of the G2/M cell cycle transition and that BIM is 

a microtubule-associated pro-apoptotic factor, the observed induction of 

p27 and BIM expression is a predictable consequence of Aurora A 

inhibition. These findings are consistent with those of earlier investigations 

conducted in other cancer models that also demonstrated elevated p27 

and BIM levels following treatment with Aurora kinase inhibitors (628, 661). 

 Several prior studies have established a link between Aurora A 

overexpression and resistance to therapeutic agents, supporting a role for 

Aurora A in the regulation of chemosensitivity (665-670). However, it is not 

completely clear at this time whether this is an intrinsic or acquired 

relationship. We postulated that treatment with conventional cytotoxic 

agents such as ara-C could promote elevated levels of Aurora A during the 
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genotoxic stress response. Indeed, our data demonstrate that in vitro 

treatment with ara-C leads to increased expression of Aurora A in AML cell 

lines and primary blasts from patients. In order to investigate the potential 

therapeutic implications of ara-C mediated induction of Aurora A 

expression, we first utilized siRNA as a proof of principle to demonstrate 

that targeted knockdown of Aurora A significantly increased the pro-

apoptotic effects of ara-C. This suggested that Aurora A may play a 

chemoresistance role with respect to ara-C and that targeting its activity 

could be of therapeutic benefit. 

 We further investigated the potential impact of targeting Aurora A 

activity with alisertib on the efficacy of ara-C in a series of in vitro 

experiments in AML cell lines and primary AML cells. These assays 

demonstrated that alisertib significantly increased both the growth 

inhibitory and pro-apoptotic effects of ara-C. Interestingly, the combination 

of both drugs led to enhanced induction of the FOXO3a targets p27 and 

BIM compared to either single agent treatment. Our targeted knockdown 

assays demonstrated that FOXO3a expression was required for maximal 

alisertib/ara-C mediated induction of these specific targets and 

consequently, for the combination to most effectively trigger apoptosis. To 

our knowledge, this is the first report demonstrating a link between Aurora 

A kinase inhibition and FOXO3a activity. Our subsequent pharmacokinetic 

and mouse xenograft studies validated the potential therapeutic benefit of 

combining alisertib and ara-C for AML therapy. Additionally, 

immunohistochemical assays conducted with specimens obtained from 

mice treated with alisertib/ara-C established p27 and BIM as 

pharmacodynamic effectors of these agents. 

 FOXO3a has several other intriguing functions. In non 

haematopoietic cells activation of FOXO blocks cellular proliferation and 

drives cells into a quiescent state (682). Deregulation of FOXO3a is 

involved in tumourigenesis, for example translocation of this gene with the 

MLL gene is associated with secondary ALL (683). PTEN is inactivated in 
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many tumours (684) and results in AKT activation. FOXO3a can reduce 

the level of cellular oxidative stress by directly increasing mRNA and 

protein levels of manganese superoxide dismutase (MnSOD) and catalase 

(682, 685).  Reintroduction of FOXO in PTEN-negative tumours results in 

cell cycle arrest and apoptosis (686). Recent findings have also pointed to 

a role for FOXO in the growth of tumour stem cells (687). Furthermore 

simultaneous loss of FOXO1, FOXO3A and FOXO4 results in HSC 

exhaustion, possibly through an increase in oxidative stress (688). 

Therefore FOXO is important in restricting HSC proliferation and protecting 

against proliferative exhaustion. 

 Multiple layers of post-translational modifications that include 

phosphorylation, acetylation and ubiquitylation regulate the activity of FOX 

factors (689). These modifications determine the cellular localization and 

activity of FOX factors; nuclear FOX proteins act as transcriptional 

regulators whereas cytoplasmic FOX proteins are inactive and often 

subject to proteasomal degradation. FOXO3a proteins are phosphorylated 

by several upstream kinases including AKT (690), JNK (691), a dual 

specificity tyrosine-phosphorylated and regulated kinase (DYRK1A) (692) 

and IkappaB (692, 693). FOXO3a is inactivated through phosphorylation 

by AKT at Thr24, Ser256 and Ser319, which results in nuclear export and 

inhibition of transcription factor activity (694). Forkhead transcription 

factors can also be inhibited by the deacetylase sirtuin (SIRT1) (694). 

 The FOXO3a-related effects that occur downstream of Aurora A 

inhibition by alisertib are very interesting. The exact mechanism by which 

alisertib induces the expression of FOXO3a transcriptional targets remains 

to be fully elucidated. I was unable to co-immunoprecipitate Aurora A and 

FOXO3a, which indicates that FOXO3a is unlikely to be a direct Aurora A 

phospho-substrate. A previous study conducted in models of multiple 

myeloma demonstrated that alisertib treatment leads to activation of PP2A 

(662). Considering that PP2A has been shown to de-phosphorylate 

FOXO3a to its nuclear-localized transcriptionally active form, it is possible 
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that the effects of alisertib on PP2A may contribute to the FOXO3a-

mediated increased expression of p27 and BIM that we observed in 

response to alisertib treatment in our study. Alternative mechanisms for 

alisertib-induced activation of FOXO3a exist. Aurora A is known to activate 

AKT and inhibition of Aurora A leads to a reduction in phosphorylation of 

AKT (666). As discussed above, FOXO3a is phosphorylated and in turn 

inhibited by AKT (695). Therefore alisertib induced inhibition of Aurora A 

may lead to inhibition of AKT which in turn leads to reduced 

phosphorylation of FOXO3a. Additional studies are required to clarify this 

relationship mechanistically. However, considering that FOXO3a is a 

critical regulator of cell death, the ability of alisertib to increase FOXO3a 

activity may contribute to its ability to potentiate the efficacy of a broad 

range of anti-cancer agents.  

 As discussed earlier, alisertib has been evaluated in several studies 

in solid tumours and haematological malignancies (696-698). Notably, 

alisertib has also been evaluated as a single agent in a phase 2 study of 

57 patients with advanced AML or MDS (697). While objective responses 

(13% of the population) including one CR were observed in this study, it is 

likely that combination therapy with cytotoxic agents such as ara-C would 

allow greater initial disease control facilitating sustained Aurora kinase A 

inhibition.  

 Our collective data demonstrate that the combination of alisertib and 

ara-C is effective in preclinical models of AML. Based on this promising 

preclinical data, a phase 1/2 study is warranted to investigate the safety 

and activity of the alisertib/ara-C combination in patients with AML who 

would not be expected to benefit from conventional therapy.
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4 Chapter 4 Targeting PIM kinase in preclinical 
models of AML 
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4.1  Introduction 
As discussed in section 1.1.4, AML is heterogeneous disease with variable 

outcomes in response to treatment depending on a number of prognostic 

factors. The molecular and biochemical complexity of AML cells creates 

tremendous treatment challenges.  

 The PIM kinases (PIM-1, PIM-2, PIM-3) are a small family of proto-

oncogenes that have essential roles in the regulation of signal transduction 

cascades that promote cell survival, proliferation, and drug resistance (see 

section 1.9) (550, 579, 699, 700). They are frequently over-expressed in a 

wide array of malignancies (569, 621, 701, 702). A separate investigation 

demonstrated that PIM-1 directly phosphorylates the ABC transporter, 

BCRP/ABCG2, which promotes its multimerization and consequently 

confers drug resistance in human prostate cancer cells (558).  

 As discussed in section 1.1.4, FLT3-ITD is present in over 30% of 

cases of AML and is associated with poor outcome (703). Interestingly, 

FLT3 has also been shown to be a potent inducer of PIM-1 expression 

(606). PIM-1 can also directly phosphorylate FLT3 in a positive feedback 

loop, creating a feedback cycle that maintains high levels of PIM-1 

expression (704). Considering that constitutive FLT3 activity is exhibited by 

more than 30% of patients with AML and is associated with resistance to 

chemotherapy, its downstream effects on PIM-1 may promote the 

phenotype of excessive proliferation and hyperactive anti-apoptotic 

pathways that have been linked to FLT3 signalling in cancer.  Their 

fundamental roles in the regulation of processes that accelerate malignant 

pathogenesis and their prevalent overexpression in cancer make the PIM 

kinases attractive targets for therapeutic inhibition. A number of specific 

inhibitors of PIM kinase activity are currently in various stages of 

development and are discussed in section 1.9.7.  

 Although there is sufficient data in the literature establishing key 

roles for PIM kinases in multiple aspects of oncogenesis and cancer 
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progression, their potential regulation of cellular sensitivity to standard 

agents utilized in AML therapy remains to be elucidated.  As discussed in 

section 1.9, SGI-1776 is novel small molecule inhibitor of PIM kinase 

activity that has demonstrated preclinical activity in cancer models and has 

entered phase 1 clinical trials (559, 622). Considering the high basal 

expression of PIM kinases in AML cells and the functions of PIM signalling 

in the control of cell survival and proliferation, we hypothesized that SGI-

1776 would possess significant anti-leukaemic activity in AML models 

(606). 

 

Project Hypothesis 
Targeting PIM kinases with SGI-1776 will lead to apoptosis and growth 

inhibition in preclinical models of AML and will potentiate the anti-

leukaemic activity of ara-C. 

Project Aims 
I. To investigate the the efficacy and mechanism of action of the PIM 

kinase inhibitor SGI-1776 in preclinical models of AML. 

II. To evaluate the relationship between PIM kinase expression and 

cellular sensitivity to ara-C  

III. To investigate the therapeutic potential of PIM kinase inhibition as a 

novel strategy to increase the efficacy of ara-C therapy in preclinical 

models of AML. 

 
4.2 Project Summary 
Here we report that the novel small molecule PIM kinase inhibitor SGI-

1776 disrupted AML cell viability, impaired clonogenic survival, and 

induced apoptosis. Subsequent experiments established a link between 

ara-C resistance and PIM overexpression. Targeting PIM with SGI-1776 

sensitized resistant cells to ara-C and significantly increased the efficacy of 

ara-C therapy in an AML mouse xenograft model. Immunohistochemical 

analyses of tumour specimens revealed that SGI-1776 diminished BAD 
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phosphorylation and cooperated with ara-C in vivo to promote activation of 

caspase-3 and inhibit tumour cell proliferation. Collectively, our data 

demonstrate that antagonizing PIM activity represents a new strategy to 

increase the therapeutic efficacy of ara-C and possibly circumvent drug 

resistance.  

 

4.3 Materials and methods 
 
4.3.1 Cells and cell culture 

HL-60, KG-1, SKM-1, SH2, NOMO-1, and OCI-AML2 cells were obtained 

from ATCC (Manassas, VA). MV4-11, MOLM-13, and PL-21 cells were 

obtained from DSMZ (Braunschweig, Germany). Paired HL-60 cells that 

are resistant and sensitive to ara-C (described in section 3.4.5) were kindly 

provided by Dr. Kapil Bhalla. All cells and cell lines were maintained as 

described in section 2.3.1. 

 
4.3.2 Chemicals and reagents 

Reagents were obtained from: SGI-1776 (SuperGen, Inc., Dublin, CA); 

ara-C (Clinical Pharmacy at the Cancer Therapy & Research Center, San 

Antonio, TX); anti-tubulin, anti-phospho- and total AKT, anti-phospho- and 

total BAD antibodies (Cell Signalling, Beverly, MA); anti-FLT3, anti-PIM-1, 

and anti-PIM-3 antibodies (Santa Cruz Biotechnology, Santa Cruz, CA); 

anti-PIM-2 (R&D Systems, Minneapolis, MN); and sheep anti-mouse-HRP 

and donkey anti-rabbit-HRP antibodies (Amersham, Buckinghamshire, 

UK). 
 
4.3.3 Cell Viability Assay 

Cell viability was assessed by the MTT assay as described in section 

2.3.5. 
 
4.3.4 Analysis of cell cycle effects and apoptosis  

Please refer to section 2.3.4. 
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4.3.5 Detection of caspase-3 activation 

Please refer to section 3.3.5. 
4.3.6 Colony assays  

AML cells were treated for 24 hours with the indicated concentrations of 

SGI-1776, ara-C or the combination and colony assays were performed as 

described in section 2.3.7. 

 
4.3.7 Immunoblotting 

AML cells were incubated with SGI-1776, ara-C or the combination of both 

drugs for 24 hours after which the cells were collected by centrifugation 

and washed in PBS. For protein lysate preparation and Western blot 

method please refer to 2.3.8. 

 
4.3.8 qRT-PCR 

Total RNA was isolated, cDNA was synthesised and PIM-1, PIM-2, and 

PIM-3 transcripts were amplified as described in section 3.3.2. 

 
4.3.9 In vivo evaluation of SGI-1776 and ara-C  

MOLM-13 human leukaemia cells were harvested, washed in PBS, and 

suspended in a 50:50 mixture of HBSS and Matrigel (BD Biosciences, San 

Jose, CA). An in vivo model of AML was generated by injecting 107 MOLM-

13 cells into the flanks of female nude mice (BALB/c background) from 

Harlan (Indianapolis, IN). After tumour growth reached 150 mm3, mice 

were randomly assigned to receive vehicle, SGI-1776 (100 mg/kg orally 

administered 5 days for 21 days), ara-C (75 mg/kg IP injection 3 days per 

week for 21 days), or both drugs for 21 days. Mice were monitored daily 

and tumour volumes were measured twice weekly. Tumour growth and 

animal toxicity was assessed as described in 2.3.9 (520). At the completion 

of the study, tumours were excised, formalin-fixed and paraffin-embedded 

for immunohistochemical analyses.  
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4.3.10 Immunohistochemistry 

Please refer to section 3.3.14. 

 
4.3.11 TUNEL assay 

Please refer to section 2.3.11. 

 
4.3.12 shRNA interference 

FLT3 and control shRNA lentiviral particles were introduced into MV4-11 

cells according to the manufacturer’s protocol (Santa Cruz Biotechnology, 

Santa Cruz, CA, USA). Stable clones were selected following puromycin 

treatment. 

 

4.4 Results  
 
4.4.1 SGI-1776 impairs growth and induces apoptosis in AML cell lines   

In order to assess the potential therapeutic benefit achieved by inhibiting 

PIM kinase activity in AML cells, we first investigated the in vitro efficacy of 

SGI-1776 in a panel of 9 human AML cell lines (MV4-11, MOLM-13, HL-

60, KG-1, SH2, PL-21, NOMO-1, OCI-AML2, and SKM-1). Inhibition of PIM 

activity with SGI-1776 led to a dose-dependent reduction in cell viability in 

all cell lines tested as determined by MTT assay (Figure 4.1).  Interestingly, 

cell lines expressing the FLT3-ITD (MV4-11 and MOLM-13) exhibited a 

greater level of sensitivity (lower IC50s) than other AML cell lines in the 

panel that are FLT3-ITD negative.  The reduction in cell viability that we 

observed in response to treatment with SGI-1776 could be caused by a 

reduction in cell proliferation, cell death, or both. In order to better 

understand the effects of SGI-1776 on AML cells, we next conducted 

Methocult colony formation assays to quantify the impact of acute 

exposure to SGI-1776 on clonogenic survival. Three AML cell lines 

(MOLM-13, MV4-11, and HL-60) were treated for 24 hours with 100 nM, 

300 nM, or 1000 nM SGI-1776. The drug was washed away and cells were 

seeded in Methocult and incubated for 14 days. Quantification of the 
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number of colonies present under each experimental condition revealed 

that SGI-1776 significantly impaired the ability of AML cells to form 

colonies (Figure 4.2). To determine whether drug-induced apoptosis 

contributes to the mechanism of action of SGI-1776, we treated MOLM-13, 

MV4-11, and HL-60 cells with a range of concentrations of SGI-1776 for 48 

hours and assessed the effects of drug treatment on cell cycle distribution 

and percentages of cells with sub G0/G1 (apoptotic) DNA content by 

PI/FACS analysis. Our results showed that SGI-1776 disrupted cell cycle 

kinetics in a manner that was characterized by the accumulation of cells 

with G1 DNA content (Figure 4.3, 4.4 and 4.5). Quantification of the cells 

with sub G0/G1 fragmented DNA for each experimental condition showed 

that SGI-1776 caused a dose-dependent increase in apoptotic cells 

(Figure 4.6). In order to confirm the pro-apoptotic effects of SGI-1776, we 

tested the ability of SGI-1776 to activate the effecter caspase-3 using a 

flow cytometric method. These experiments demonstrated that SGI-1776 

treatment significantly increased the percentages of cells expressing active 

caspase-3 (Figures 4.7 and 4.8).  
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Figure 4.2 SGI-1776 diminishes clonogenic survival in a 
dose dependent manner  
Human AML cell lines (MOLM-13, HL-60, and MV4-11) were treated with 

the indicated concentrations of SGI-1776 for 24 hours. Drug was washed 

away and cells were plated in MethoCult methylcellulose-containing 

medium. Colonies were scored 14 days later with the assistance of an 

Alpha Innotech imaging system. n = 3,  mean ± SD.  
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Figure 4.3 SGI-1776 disrupts the cell cycle kinetics of HL-60 cells  
HL-60 Cells were treated with the indicated concentrations of SGI-1776 for 

48 hours. Cell cycle distribution was assessed by PI/FACS analysis. 

Representative histograms are shown.  
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Figure 4.4 SGI-1776 disrupts the cell cycle kinetics of MV4-11 cells  
MV4-11 Cells were treated with the indicated concentrations of SGI-1776 

for 48 hours. Cell cycle distribution was assessed by PI/FACS analysis. 

Representative histograms are shown.  
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Figure 4.5 SGI-1776 disrupts the cell cycle kinetics of MOLM-13 cells  
MOLM-13 cells were treated with the indicated concentrations of SGI-1776 

for 48 hours. Cell cycle distribution was assessed by PI/FACS analysis. 

Representative histograms are shown. 
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Figure 4.6 SGI-1776 induces dose dependent apoptosis in AML cells  
Cells were treated with the indicated concentrations of SGI-1776 for 48 

hours. Apoptosis was quantified by PI/FACS analysis of cells with 

fragmented (Sub G0/G1) DNA content. n = 3, mean ± SD.  
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Figure 4.7 SGI-1776 induces caspase-3 activation  
AML cells were treated with the indicated concentrations of SGI-1776 for 

48 hours. The effects of SGI-1776 on caspase-3 activation were 

determined using the BD Biosciences Active Caspase-3 Mab Apoptosis kit 

followed by flow cytometry. Representative histograms of MV4-11 treated 

with SGI-1776 are shown. n = 3, mean ± SD.  
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Figure 4.8 Quantification of the effects of SGI-1776 on caspase-3 
activation  

Cells were exposed to SGI-1776 for 48 hours. The percentages of cells 

expressing the active form of caspase-3 were determined using the BD 

Biosciences Active Caspase-3 Mab Apoptosis kit followed by flow 

cytometry. n=3 Mean ± SD.  
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4.4.2 SGI-1776 abrogates phosphorylation of the BH3-only protein BAD 

As discussed in section 1.9.4.1, earlier studies demonstrated that one of 

the mechanisms by which PIM kinases function to reduce the apoptotic 

potential of malignant cells is through the direct phosphorylation of the 

BH3-only apoptotic regulator BAD on its Ser112 residue. This inhibitory 

phosphorylation event neutralizes the pro-apoptotic properties of BAD and 

has been linked to drug resistance in cancer cells. In order to investigate 

whether disruption of PIM kinase activity with SGI-1776 impacted the 

levels of BAD phosphorylation, we treated MV4-11 AML cells, which 

express high basal levels of phospho-BAD with a range of concentrations 

of SGI-1776 and assessed the levels of total and phospho-BAD-Ser112 by 

immunoblotting. Our results showed that exposure to SGI-1776 led to a 

significant reduction in the phosphorylation of BAD on its Ser112 residue 

(Figure 4.9). Considering that AKT has also been shown to phosphorylate 

BAD on its Ser112 residue, we also assessed the impact of SGI-1776 

treatment on the levels of total and phospho-AKT (Thr308) as a negative 

control.  Notably, this drug-related reduction in BAD phosphorylation did 

not appear to be due to alterations in AKT activity as SGI-1776 treatment 

did not significantly affect the phosphorylation of AKT (Thr308) in MV4-11 

cells, which have constitutive AKT activity (Figure 4.9).    
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Figure 4.9 SGI-1776 abrogates phosphorylation of the BH3-only 
protein BAD (Ser112)  
MV4-11 cells were treated with SGI-1776 for 24 hours. Protein lysates 

were subjected to SDS-PAGE analysis and the impact of drug treatment 

on the relative expression levels of phosphorylated BAD (Ser11), total BAD, 

phosphorylated AKT (Thr308), and total AKT were evaluated by 

immunoblotting. Tubulin served as a loading control. 
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4.4.3 Inhibition of FLT3 contributes to the efficacy of SGI-1776 in AML 

Comprehensive in vitro kinase inhibition profiling in an earlier investigation 

of the preclinical efficacy of SGI-1776 revealed that in addition to its effects 

on the activity of PIM kinases, SGI-1776 displayed off-target effects on the 

activity of FLT3 (622). These off-target effects on FLT3 activity are most 

likely due to the structural similarities between the ATP binding sites of the 

PIM kinases and FLT3. As discussed earlier, approximately 30% of 

patients with AML have constitutive FLT3 activity due to internal tandem 

duplication (ITD) or activating mutations of the tyrosine kinase domain. 

Therefore we next attempted to determine whether FLT3 inhibition 

represents a significant component of the mechanism of action of SGI-

1776. We utilized lentiviral shRNA to stably knockdown FLT3 expression in 

the FLT3-ITD+ MV4-11 cells. Knockdown efficiency was assessed by 

immunoblotting (Figure 4.10). Cells expressing control and FLT3-targeted 

shRNA were exposed to the indicated concentrations of SGI-1776 for 72 

hours and the impact of differential FLT3 expression on cell viability was 

determined by MTT assay. Our results revealed that FLT3 knockdown 

caused a modest reduction in sensitivity to SGI-1776 (Figure 4.10). This 

suggests that although FLT3 inhibition is not the primary mechanism of 

action in AML of SGI-1776, this effect does contribute to its efficacy and 

suggests that AML patients with FLT3 activation may potentially derive a 

greater therapeutic benefit from this agent over patients with unmutated 

FLT3. 
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4.4.4 Treatment of AML cells with ara-C induces PIM-1 and PIM-3 expression  

Although PIM kinases have been shown to contribute to oncogenesis and 

disease progression through a number of different mechanisms, one of the 

most interesting potential roles of the PIM kinases within the context of 

cancer biology is its potential ability to promote drug resistance. Several 

recent studies have suggested a mechanistic link between aberrant 

expression of PIM kinases and reduced sensitivity to certain anti-cancer 

agents (705, 706). We were interested in further investigating this potential 

aspect of PIM function in a manner relevant to AML therapy. We first 

evaluated the basal expression levels of PIM-1, PIM-2, and PIM-3 in paired 

HL-60 cells that are sensitive and resistant to ara-C by immunoblotting and 

qRT-PCR. Interestingly, our results showed that the levels of PIM-1 and 

PIM-3, but not PIM-2, were significantly higher in ara-C-resistant HL-60 

cells (Figures 4.11 and 4.12). Given that the acquired resistance of these 

HL-60 cells was achieved by chronic exposure to ara-C, our results 

suggested that perhaps treatment with ara-C alone is sufficient to trigger 

increased expression of PIM kinases. In order to test this possibility, we 

treated MOLM-13 AML cells with a range of concentrations of ara-C for 24 

hours and then assessed the expression levels of PIM-1, PIM-2, and PIM-3 

by immunoblottting. Consistent with our hypothesis based on our initial 

findings regarding PIM expression in ara-C resistant HL-60 cells, acute 

treatment with ara-C led to a significant increase in the levels of PIM-1 and 

PIM-3 (Figure 4.13) We confirmed these effects by treating MOLM-13 cells 

with ara-C and utilizing qRT-PCR to assess PIM kinase expression (Figure 

4.14).  
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Figure 4.11 Ara-C resistance is linked to overexpression of PIM-1 and 
PIM-3  

The relative expression levels of PIM-1, -2, and -3 were evaluated in 

paired HL-60 cells that are sensitive and resistant to ara-C by 

immunoblotting. Tubulin documented equal loading. 
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Figure 4.13 Treatment with ara-C induces PIM-1 and PIM-3 
expression  

Cells were treated with ara-C for 24 hours. Protein lysates were subjected 

to SDS-PAGE. Immunoblotting was utilized to quantify the levels of PIM-1, 

-2, and-3. Tubulin documented equal loading.  
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Figure 4.14 Impact of ara-C treatment on PIM expression  

MOLM-13 cells were treated with ara-C for 24 hours. qRT-PCR was used 

to assess PIM-1, -2, and -3 expression levels. *Indicates a significant 

difference compared to controls, p < 0.05.  
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4.4.5 SGI-1776 increases the in vitro anti-cancer activity of ara-C  

Considering the link between ara-C treatment and upregulation of PIM 

kinase expression that we observed in AML cells and the established roles 

of PIM activity in malignant pathogenesis, we hypothesized that inhibition 

of PIM kinase activity may be a novel approach to heighten the sensitivity 

of AML cells to ara-C. To test this hypothesis, we treated AML cells with 

ara-C, SGI-1776, or the combination of ara-C and SGI-1776 for 72 hours 

and quantified the impact of drug treatment on cell viability by MTT assay. 

Our results showed that cells treated with both agents displayed 

significantly lower viability than cells treated with either single agent, 

suggesting that PIM inhibition may increase the efficacy of ara-C (Figure 

4.15). Similar to what we observed in our MTT experiments, acute 

exposure (24 hours) to the combination of SGI-1776 and ara-c was 

significantly more effective than either drug alone with respect to inhibiting 

clonogenic survival (Figure 4.16). Since our initial experiments with SGI-

1776 showed that this agent induces apoptosis and disrupts cells cycle 

kinetics in AML cells and ara-C is also known to have similar properties, 

we conducted PI/FACS analysis to assess the effects of SGI-1776, ara-C, 

and the combination of these agents on cell cycle distribution and drug-

induced apoptosis. Our data demonstrated that SGI-1776 promoted the 

accumulation of cells with G1 DNA content (Figure 4.17). The combination 

of SGI-1776 and ara-C abrogated the classical S-phase accumulation 

caused by ara-C treatment and significantly augmented the proportion of 

apoptotic (sub G0/G1) cells compared to either single agent treatment 

(Figure 4.18). 
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Figure 4.15 SGI-1776 significantly increases the in vitro 
anti-cancer activity of ara-C   

Cells were treated with the indicated concentrations of SGI-1776, ara-C, or 

both for 72 hours. Cell viability was determined by MTT assay. *Indicates a 

significant difference compared to controls or **single agent treatment, p < 

0.05.  





 312 

 

 
 

Figure 4.17 SGI-1776 and ara-C work together to disrupt cell cycle 
kinetics and induce apoptosis  
MOLM-13 cells were treated with SGI-1776, ara-C, or the combination of 

both for 48 hours. PI/FACS was used to evaluate drug-related effects on 

cell cycle distribution and apoptosis (cells with sub G0/G1 DNA content, 

gated by marker P1).  Representative histograms are shown.  
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Figure 4.18 Quantification of the combined pro-apoptotic effects of 
ara-C and SGI-1776 in AML cells  
MOLM-13 cells were treated with SGI-1776, ara-C, or the combination of 

both for 48 hours. PI/FACS was used to evaluate drug-related effects on 

cell cycle distribution and apoptosis, n = 3, mean ± SD. *Indicates a 

significant difference compared to controls or **single agent treatment, p < 

0.05.  
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4.4.6 SGI-1776 partially restores the sensitivity of ara-C resistant cells to ara-C 

treatment 

Given our in vitro findings regarding SGI-1776 and ara-C along with the 

link between PIM activity and drug resistance, we wondered whether 

targeting PIM kinase activity with SGI-1776 could be used as a strategy to 

overcome intrinsic ara-C resistance. In order to investigate this, we treated 

HL-60 ara-C sensitive and resistant cells with SGI-1776, ara-C, or both 

drugs for 72 hours and quantified the effects of drug exposure on cell 

viability by MTT assay. Our results showed that SGI-1776 partially restored 

the sensitivity of ara-C resistant cells to ara-C (Figure 4.19). These findings 

indicate that ara-C resistance is a multifaceted problem with multiple 

underlying mechanisms including PIM overexpression. Additionally, our 

data demonstrate that abrogating PIM kinase activity could possibly be 

utilized as a novel approach to improve the therapeutic efficacy of ara-C 

that may retain utility in circumstances of intrinsic ara-C resistance.  

 
4.4.7 SGI-1776 increases the in vivo anti-cancer activity of ara-C 

In order to further investigate the potential therapeutic benefit of PIM 

kinase inhibition as a new approach for the treatment of AML, we 

generated a xenograft mouse model of AML by injecting MOLM-13 human 

AML cells into the flanks of nude mice. Tumour-bearing mice were 

randomized into groups of 10 and were administered vehicle control, ara-

C, SGI-1776, or ara-C and SGI-1776 were for 21 days. Treatment with the 

combination of these two agents was well tolerated and significantly 

increased the efficacy of single agent ara-C therapy (Figures 4.20 and 

4.21). Immunohistochemical analyses of tumours from mice revealed that 

SGI-1776 significantly diminished BAD phosphorylation and cooperated 

with ara-C in vivo to promote activation of caspase-3 and inhibit tumour cell 

proliferation (PCNA expresssion) (Figures 4.22 through 4.27).  
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Figure 4.19 SGI-1776 partially restores the sensitivity of ara-C 
resistant cells to ara-C treatment  
Paired HL-60 cells that are sensitive and resistant to ara-C were treated 

with SGI-1776, ara-C, or the combination for 72 hours. The effects of drug 

treatment on cell viability were quantified by MTT assay. n = 3, mean ± SD.   
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Figure 4.20 Effects of drug treatment on tumour growth  
MOLM-13 AML cells were implanted subcutaneously into the flanks of 

nude mice. Mice with palpable tumours were randomized into groups of 10 

and treated with vehicle, SGI-1776 (100 mg/kg orally administered 5 days 

per week for 3 weeks), ara-C (75 mg/kg IP injection 3 days per week for 3 

weeks), or both drugs for 21 days. Tumour volume was monitored with 

calliper measurements. *Indicates a significant difference compared to 

controls or **single agent treatment, p < 0.05. 
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Figure 4.21 Treatment with SGI-1776 and ara-C is well 
tolerated  

Mouse weight (g) was monitored twice weekly throughout the 21-day 

treatment regimen.  
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Figure 4.22 SGI-1776 and ara-C diminish BAD phosphorylation 
(Ser112) Immunohistochemistry was utilized to assess the relative levels of 

phospo-BAD and total BAD in tumour sections obtained from animals in all 

treatment groups. Images were captured using an Olympus microscope 

with a DP71 camera and a 20X objective.  
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Figure 4.23 Quantification of the relative intratumoural expression 
levels of phospho-BAD  

Tumours were stained with either an antibody to phospho (Ser112) or total 

Bad and analysed by immunohistochemistry. The relative intensity of 

phospho-Bad expression was measured using Image-Pro Plus software 

Version 6.2.1 by densitometric analysis of five random high-power fields 

containing viable tumour cells.  Mean ± SD, n=5. *Indicates a significant 

difference compared with controls. P<0.05. No significant differences were 

observed in total Bad expression in the different treatment groups. 
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Figure 4.24 SGI-1776 and ara-C inhibit tumour cell proliferation 

Immunohistochemistry was utilized to assess the relative levels of PCNA in 

tumour sections obtained from animals in all treatment groups. Images 

were captured using an Olympus microscope with a DP71 camera and a 

20X objective.  
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Figure 4.25 Quantification of the relative intratumoural 
expression levels of PCNA  

The percentage of PCNA cells was scored manually. Percentages of 

positive cells were determined by manual counting of 5 random high-power 

fields per section by two investigators blinded to the treatment arms. The 

average percentage of positive cells per high-power field was calculated 

for comparison. Mean ± SD, n = 5. *Indicates a significant difference 

compared to controls or **single agent treatment, p < 0.05. 
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Figure 4.26 SGI-1776 and ara-C activate apoptosis  
Immunohistochemistry was utilized to assess the relative levels of active 

caspase-3 in tumour sections obtained from animals in all treatment 

groups. Images were captured using an Olympus microscope with a DP71 

camera and a 20X objective. 
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Figure 4.27 Quantification of active caspase-3 positive 
cells  Percentages of caspase-3 positive cells were determined by manual 

counting of 5 random high-power fields per section by two investigators 

blinded to the treatment arms. The average percentage of positive cells 

per high-power field was calculated for comparison. Mean ± SD, n = 5. 

*Indicates a significant difference compared to controls or **single agent 

treatment, p < 0.05.
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4.5 Discussion 
The PIM kinases have received increasing attention over the last decade 

as potential therapeutic targets for many forms of cancer due to their 

prevalent overexpression and regulation of cell proliferation and pro-

survival signal transduction pathways. These attributes arm PIM kinases 

with the potential ability to reduce the efficacy of many classes of 

chemotherapeutic agents. In addition to promoting drug resistance by 

activating downstream pro-survival/anti-apoptotic transduction cascades, 

PIM has also been recently shown to directly stimulate drug efflux pumps 

(558, 559). 

 Based on the high expression of PIM kinases in AML cells and their 

established functions in cancer biology, we hypothesized that antagonizing 

PIM activity may be an effective approach for AML therapy. We tested our 

hypothesis by investigating the efficacy and mechanism of action of a 

novel, small molecule pan-PIM kinase inhibitor, SGI-1776, in AML cell lines 

and a xenograft mouse model.  

 Our results demonstrated that SGI-1776 has a multifaceted 

mechanism of action in AML cells that is characterized by both anti-

proliferative and pro-apoptotic effects. Based on an earlier report 

demonstrating significant off-target inhibition of FLT3 by SGI-1776 (622), 

we utilized FLT3-targeted shRNA to quantify the potential contribution of 

FLT3 inhibition to the efficacy of SGI-1776 in AML cells. Our data 

demonstrated that FLT3 knockdown reduced, but did not completely 

abrogate the sensitivity of MV4-11 cells to SGI-1776, suggesting that 

FLT3-related effects do contribute to the anti-AML activity of this agent 

(Figure 4.8). This observation is further supported by our initial screening 

of the effects of SGI-1776 on the viability of a panel of 9 AML cells lines, 

which showed that the FLT3-ITD+ cell lines MOLM-13 and MV4-11 

exhibited noticeably greater sensitivity to this drug than the FLT3-ITD- cell 

lines included in our analyses (Figure 4.1).  
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 Considering that FLT3 is constitutively active in more than 30% of 

patients with AML and this phenomenon is associated with inferior 

disease-free survival and increased relapse rate, this aspect of SGI-1776’s 

mechanism merits further study. In fact, several investigational FLT3 

inhibitors have been developed as potential agents for the treatment of 

AML and other disorders that display high levels of FLT3 activity. Early 

clinical trials with these experimental FLT3 inhibitors have been largely 

disappointing due to the development of drug resistance and lack of 

sustained FLT3 inhibition as discussed in section 1.7.16. Notably, an 

earlier study suggested that PIM-1 is an important factor underlying 

resistance to FLT3 inhibitor as it can directly phosphorylate and activate 

FLT3 in a feedback loop (606). Considering these collective findings, PIM 

kinase inhibitors irrespective of their potential off-target effects on FLT3, 

may be effective for the treatment of FLT3+ AML.  

 Although, PIM kinases have been implicated in processes that 

promote drug resistance, their potential role as a regulator of sensitivity to 

standard ara-C therapy had not been previously investigated. Our study 

established a new link between ara-C treatment and elevated levels of PIM 

expression, suggesting that PIM kinases may be induced in response to 

the therapeutic stress associated with ara-C treatment in a pro-survival 

capacity. Our analyses showed that ara-C-resistant HL-60 cells 

overexpress PIM-1 and PIM-3, establishing a correlation between elevated 

PIM expression and resistance to ara-C. Of note, the sensitivity of these 

drug-resistant cells to ara-C was partially restored by co-treatment with 

SGI-1776. Our MOLM-13 xenograft experiment further validated the ability 

of SGI-1776 to augment the efficacy of ara-C and showed significant 

therapeutic benefit achieved by targeting PIM activity. This strategy was 

very well tolerated and was associated with decreased tumour cell 

proliferation, increased apoptosis, and a significant reduction in the levels 

of phospho-BAD (Ser112). These findings suggest that PIM inhibitors may 

have utility as an addition to standard AML therapy and that drugs of this 
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class may be effective for patients that are clinically refractory to ara-C or 

in elderly patients where low dose ara-C can be used as a single agent. 

Additional studies are warranted to further explore this possibility. 

 The preclinical activity of SGI-1776 in AML models was recently 

confirmed in an investigation conducted by an independent group. This 

study showed that SGI-1776 treatment disrupted the phosphorylation of 

the established PIM kinase targets, c-Myc (Ser62) and 4E-BP1 

(Thr36/Thr47). A significant reduction in the levels of the anti-apoptotic 

protein MCL-1 was observed and this was correlated with inhibition of 

global RNA and protein synthesis. A xenograft experiment conducted with 

mice bearing MV4-11 tumours demonstrated that SGI-1776 possessed 

single agent therapeutic activity that was associated with a significant 

reduction in MCL-1 expression (704).  

 SGI-1776 is the first PIM kinase inhibitor to enter phase 1 clinical 

trials for cancer therapy. Since its initial development, several other 

investigation PIM kinase inhibitors have emerged and are currently being 

evaluated in preclinical studies and phase 1 trials. One of the most 

advanced of these newer compounds is LGH447, which is being 

developed by Novartis Oncology and recently entered a phase 1 trial for 

patients with multiple myeloma. Another PIM inhibitor that has advanced 

into phase 1 trials is AZD-1208. This agent is being developed by Astra 

Zeneca and is currently being evaluated in two separate phase 1 studies 

for AML and advanced solid tumours. Preclinical studies with LGH447 and 

AZD-1208 have not yet been published. It will be vey interesting to learn 

how their mechanisms of action compare and contrast with that of SGI-

1776. 

 Collectively, our data, demonstrate that inhibiting PIM kinase activity 

represents a promising new strategy to augment the therapeutic efficacy of 

ara-C. Further investigations aimed to define the role(s) of PIM kinases in 

AML pathogenesis and evaluate the therapeutic potential of PIM kinase 

inhibition as a strategy to circumvent drug resistance are warranted. 
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5  Chapter 5 Conclusions and Future Directions 
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AML and CML represent two haematological malignancies with very 

distinct pathophysiological characteristics. Whereas CML-CP is caused by 

a single molecular aberatation (BCR-ABL), AML is a very heterogenous 

disease characterized by numerous of possible genetic abnormalities. The 

importance of BCR-ABL in the pathogenesis of CML is underscored by the 

tremendous success of targeted inhibitors of BCR-ABL. While the 

development of targeted therapy with TKIs represents one of the most 

exciting stories of translational research in recent years, most of these 

agents are not optimally effective in the setting of resistant BCR-ABL 

kinase domain mutations, in particular the T315I mutation nor do they 

successfully eliminate the CML stem cell population. New approaches are 

required for this patient population and for patients that progress to the 

advanced phases of CML. In contrast, there has been little change in our 

standard approach to AML therapy in the past 30 years despite the 

enormous improvements in our understanding of the molecular biology of 

this disease and novel therapeutic approaches are needed for patients that 

fail or are unfit for standard therapy.   

 Aberrant signalling by Ser/Thr kinases is a unifying feature of both 

CML and AML. Novel targeted therapies that inhibit specific kinases that 

are dysregulated in leukaemia have the potential to disrupt disease 

pathogenesis and augment standard therapy for patients with these 

haematological malignancies. The work outlined in this thesis explores the 

efficacy and mechanisms of action of two investigational small molecular 

inhibitors of Ser/Thr kinases (alisertib, a small molecule Aurora A kinase 

inhibitor; SGI-1776, a small molecule PIM kinase inhibitor) in human 

leukaemia cell lines, mouse models, and primary patient specimens. 

 Our preclinical investigations demonstrated that inhibition of Aurora 

kinase A activity with alisertib diminishes the viability of both CML and AML 

cells irrespective of their sensitivity to conventional therapeutic agents. 

Notably, treatment with alisertib significantly antagonized disease 
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progression in multiple mouse models of CML and AML irrespective of 

their specific genetic backgrounds. This work has now been published in 

the Journal of Cellular and Molecular Medicine and the International 

Journal of Cancer and is available in Appendices C and D. It has been 

hypothesized that leukaemias may be hypersensitive to agents that inhibit 

Aurora kinases due to their rapid rates of proliferation and high number of 

cells undergoing mitosis. Indeed, numerous objective responses including 

CRs have been observed in patients with AML in early phase clinical trials 

of Aurora kinase inhibitors. However, it is becomng increasingly clear that 

the direct disruption of mitosis does not account for all of the anti-

neoplastic effects associated with inhibition of Aurora activity. Our data 

suggest that alisertib has a multifaceted mechanism of action in leukaemia 

cells that involves the disruption of cell cycle kinetics as well as the 

induction of apoptotic cell death. The mechanistic links between drug-

induced MC and apoptosis with respect to alisertib have not been fully 

elucidated.  

 Our preliminary results have suggested a role for the protein 

phosphatase PP2A, which is induced by alisertib treatment and is known 

to dephosphoylate FOXO3a allowing it to enter the nucleus and transcribe 

for its target genes including, BIM and p27. Impairment of PP2A function 

has been reported to be associated with an adverse prognosis in AML 

(707-709) and the restoration of PP2A activity is an attractive therapeutic 

goal (710). Indeed, we have shown that treatment of AML cell lines with 

TAK-901 (a pan Aurora kinase inhibitor) is associated with significantly 

increased expression of p27 and the BH3-only pro-apoptotic protein 

PUMA. Chromatin immunoprecipitation (ChIP) assays revealed that the 

elevation in the expression of these genes caused by administration of 

TAK-901 was due to increased FOXO3a transcriptional activity. Performing 

similar experiments with alisertib treated AML cell would help confirm that 

alisertib treatment results in increased transcriptional activity of FOXO3a.  
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 Our data indicates that the bulk of the pro-apoptotic effects of 

alisertib are triggered after mitosis has been disrupted. I plan to more 

rigorously investigate the relationship between these events in a follow up 

study. In particular, it would be extremely interesting to determine how the 

effects of alisertib on the anti-apoptotic factor Apollon may be linked to MC, 

FOXO3a activation, and the execution of apoptosis. We also plan to 

investigate a potential functional relationship between Apollon and PP2A, 

which has not been previously described in the literature. Given its role as 

an inhibitor of apoptosis and intrinsic overexpression in leukaemias, the 

development of novel agents targeting Apollon activity is of great interest. 

 Our data indicate that the complex mechanisms of action of Aurora 

kinase inhibitors should be carefully considered when designing clinical 

studies to assess their safety and efficacy. The cytostatic potential of 

Aurora kinase inhibitors may yield significant clinical benefit if used 

optimally. For example, despite the modest effects on tumour regression 

observed in some clinical studies with Aurora inhibitors, their potential 

ability to induce prolonged disease stabilization could potentially translate 

into improved survival. It also appears from the available literature that 

most dose limiting toxicities reflect the effect of Aurora kinase inhibition on 

normal cells that have a high proliferation rate such as those of the 

gastrointestinal and BM tissues. To overcome this problem, various dosing 

schedules have evolved that allow for a short period of Aurora kinase 

inhibition followed by a rest period to allow for normal tissue recovery. An 

alternative strategy is to allow concurrent supportive care such as colony 

stimulating factors. Lastly, it may be possible to combine Aurora kinase 

inhibitors with agents that would not be predicted to have cross intolerance 

such as targeted BCR-ABL inhibitors like nilotinib.  

 Another important avenue for future investigation is a more 

comprehensive dissection of the specific role that Aurora A plays in 

promoting resistance to standard AML therapy. We showed that ara-C 

treatment is associated with increased expression of Aurora A and that 
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targeted knockdown of Aurora A significantly increases the efficacy of ara-

C. This suggests that Aurora A may promote resistance/reduced sensitivity 

to ara-C and thus, inhibition of Aurora A activity may be an effective 

strategy to augment the anti-leukaemic activity of ara-C. Indeed, combined 

treatment with alisertib and ara-C is associated with a greater anti-

leukaemia effect than either agent alone (chapter 3). Defining the 

mechanistic details regarding how ara-C, which is primarily active in the S 

phase of the cell cycle, promotes elevated level of a mitotic kinase (Aurora 

A) is a very challenging and clinically relevant endeavour that I plan to 

pursue.  

 Although Aurora kinase inhibitors have significant clinical activity, 

their utility as single agents may be limited. Accordingly, a number of 

studies investigating their use in combination with standard agents have 

been recently initiated. In particular, the combination of alisertib and ara-C 

may represent an attractive treatment strategy for AML. However, one 

potential limitation to this approach may be the combined cytotoxic effect 

of ara-C and alisertib on normal tissues. The combination of these agents 

was well tolerated in mouse models of AML, but phase 1 studies are 

required to more definitively assess the safety and tolerability of this 

therapeutic approach in patients with AML. While there is certainly great 

potential for the use of alisertib in myeloid leukaemias, this drug also 

appears to have significant activity in lymphoid malignancies. A safe and 

effective dosing schedule has been determined and a registration study is 

currently underway to determine its benefit in refractory peripheral T cell 

lymphoma.  

 An alternative novel target that is of significant interest in 

developmental therapeutics is the PIM family of kinases. Considering their 

functional contributions to the malignant phenotype and their 

overexpression in AML we investigated the role of a novel inhibitor of PIM 

kinases, SGI-1776, in preclinical models of AML. In chapter 5, we showed 

that SGI-1776 disrupts AML cell viability, impairs clonogenic survival, and 
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induces apoptosis. Given the role of PIM kinases in the development of 

drug resistance, we investigated whether ara-C resistance was linked to 

the overexpression of PIM. Targeting PIM with SGI-1776 sensitized ara-C 

resistant cells to ara-C and significantly increased the efficacy of ara-C 

therapy in vivo. This suggests that antagonizing PIM activity may increase 

the therapeutic efficacy of ara-C and possibly help overcome drug 

resistance. This work has now been published in the British Journal of 

Haematology and the manuscript is available in Appendix E. Previous 

studies have shown that PIM-1 phosphorylates MDR-1 (a transmembrane 

glycoprotein that transports drugs across the cell membrane) at Ser683 

which results in protection of MDR-1 from ubiquitination and proteasomal 

degradation (706). This and other mechanisms may link PIM 

overexpression to ara-C resistance. Further experiments would be needed 

to show if overexpression of PIM in AML cell lines would lead directly to 

ara-C resistance. Comparison of the expression of PIM kinases in a large 

number of patients with newly diagnosed AML who have not been exposed 

to ara-C and patients who are clinically refractory to ara-C therapy would 

also be informative. Unfortunately, the clinical development of SGI-1776 

has been halted due to concerns regarding potential cardiac toxicity. 

However, a number of other small molecule inhibitors of PIM are in early 

phase clinical development including a second-generation compound, SGI-

9481, developed by SuperGen Inc. and LGH447 being developed by 

Novartis. An attractive therapeutic strategy would be to investigate the 

safety and activity of one of these newer PIM kinase inhibitors in 

combination with ara-C in AML patients. 

 Our collective findings have shown that both Aurora A and PIM 

kinases represent promising therapeutic targets for the treatment of 

myeloid leukaemias. Inhibition of either target yields significant benefit on 

its own in preclinical models, augments the efficacy of standard therapy, 

and antagonizes mechanisms of resistance to conventional therapy. 

Considering that our data demonstrate that the downstream 
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pharmacodynamic effects of inhibition of PIM and Aurora A and have 

several commonalities, it is possible that there may be some degree of 

previously unreported functional redundancy or pathway convergence 

between these kinases. PIM kinases are constitutively active when 

expressed and have the theoretical capability to phosphorylate the sites 

within Aurora A that control its enzymatic activity. We are currently 

investigating the possibility that PIM kinases may promote increased 

Aurora A activity through direct phosphorylation and are studying the 

potential effects of PIM inhibition on mitotic progression.  

 As our understanding of the biology of myeloid leukaemias has 

improved in the past decade so too has our appreciation of the role that 

aberrant kinase expression plays in their malignant pathogenesis. In 

addition to the logical avenues for future investigation discussed above, a 

number of other important global questions remain to be fully answered.  

Whether optimal therapeutic efficacy is achieved through the inhibition of 

Aurora A, Aurora B, or both kinases simultaneously is still unclear and is 

the subject of considerable debate. One study attempted to address this 

question by evaluating the consequences of Aurora A and Aurora B 

inhibition using antisense oligonucleotides in pancreatic cancer cells (711). 

No obvious advantages to targeting both Aurora kinases concurrently were 

observed, but targeting Aurora A alone appeared to have some potential 

advantage over targeting Aurora B alone due to rapid induction of 

apoptosis and mitotic arrest. In another preclinical study, colon cancer cells 

were found to be more sensitive to Aurora B inhibition compared to Aurora 

A inhibition (712). Ongoing trials may provide new insights regarding 

whether there are any advantages to selectively targeting individual Aurora 

isoforms (625). Preliminary findings suggest that there is no simple answer 

to this question and the benefit derived from targeting individual or pan-

Aurora kinases is likely to vary depending upon the unique biology of 

individual forms of cancer. 
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 It would also be very informative to determine whether alisertib can 

induce apoptosis in myeloid stem cells. Targeting these quiescent stem 

cells offers the potential for a cure in CML and may also significantly 

improve the outcome in AML. A preliminary investigation of the activity of 

alisertib in AML stem cells has been presented in abstract form (713). This 

study found that freshly isolated CD34+/CD38- cells from individuals with 

AML expressed a greater amount of AURKA than their CD34+/CD38+ 

counterparts, as measured by real time qRT-PCR.  Alisertib treatment 

significantly inhibited proliferation and induced apoptosis of CD34+/CD38- 

AML cells, as assessed by the clonogenic assay and detection of the 

cleaved form of poly (ADP-ribose) polymerase by Western blot analysis, 

respectively. Importantly alisertib impaired engraftment of CD34+/CD38- 

AML cells in severely immunocompromised mice and prolonged their OS 

compared with vehicle treated mice. Additional studies would be required 

to investigate whether alisertib has significant activity in CML stem cells.  

 There are over 500 kinases in the human genome. Many of the 

clinically effective kinase inhibitors were initially developed to inhibit a 

single target, but were subsequently shown to inhibit a much broader 

range of kinases.  It is therefore plausible that the toxicities, 

pharmacodynamic activity and clinical responses of both Aurora and PIM 

kinase inhibitors observed in clinical studies are complemented by 

inhibition of other kinases. This is an important area of ongoing 

investigation. Although this thesis contributes to the expanding knowledge 

base of the utility and mechanism of action of Aurora and PIM kinase 

inhibitors in myeloid malignancies, more focused research is required in 

order to maximize their clinical potential. It is particularly important that we 

increase our understanding of how cancer cells become resistant to these 

agents and that we elucidate additional biomarkers predicitve of 

responsiveness to therapy. Despite the unanswered questions, the 

collective findings of this thesis research provide preclinical rationale for 

the development of effective combination stategies that will be evaluated in 
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early phase clinical trials that aim to improve outcome in myeloid 

leukaemias. It is hoped that these concerted efforts in Aurora and PIM 

kinase research will translate into novel anti-cancer strategies that will 

ultimately improve outcomes for patients with a broad range of 

malignancies.  
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Appendix A: Tyrosine kinase inhibitors in CML 
 
Imatinib 
Imatinib is a 2-phenylaminopyrimidine derivative that functions as a specific 

inhibitor of a number of tyrosine kinases including ABL (IC50 194 nM), c-Kit (IC50 

96 nM) and PDGFR (IC50 74 nM), but does not affect closely related kinases 

such as c-Fms, kinase insert domain receptor (KDR), FLT-1, TEK, and FLT -3 

(Table I) (276, 277). Inhibition of c-Kit has led to the development of imatinib in 

tumours where c-Kit activation is important such gastrointestinal stromal 

tumours and aggressive systemic mastocytosis (714, 715).  

 Imatinib gained approval as the initial treatment of choice for CML-CP 

based on prospective clinical trials (278-280). These trials demonstrated more 

frequent and more durable cytogenetic responses when compared with IFNα 

plus ara-C, which was the previous standard of care for those unable to receive 

HSCT. Comparative survival benefits have not been reported; this is principally 

because of the large number of patients who crossed over to imatinib from the 

other treatment arm.  
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Efficacy of imatinib 
The IRIS trial (International Randomized study of IFN and STI571) was a phase 

3 randomized, open-label, multicenter, crossover trial of imatinib (400 mg/day by 

mouth) versus IFNα (5 million units/m2 per day) plus ara-C (20 mg/m2 per day 

for 10 days/month) in 1106 patients with newly diagnosed CML-CP (273). On an 

intention-to-treat analysis, imatinib was significantly better than IFNα plus ara-C 

for all early endpoints studied, with the following 18-month estimates: CHR, 97% 

versus 69%, MCyR, 87% versus 35% (717), CCyR, 76% versus 14% and MMR 

39% versus 2% (717). Updated results from the IRIS trial with a median follow-

up of 60 months have shown that the results with imatinib treatment have been 

durable (265). Patients receiving imatinib as initial therapy for CML-CP had 

overall and event-free survivals of 89% and 83%, respectively. The annual rate 

of progression to CML-AP or CML-BC was 0.6% in the fifth year of therapy, 

which was lower than that seen during the first four years of treatment (1.5%, 

2.8%, 1.6%, and 0.9%, respectively). Patients who achieved a CCyR by 12 

months after initiation of imatinib had better OS without progression to CML-AP 

or CML-BC (97% versus 81%) compared with patients who did not achieve at 

least a MCyR by 12 months. 

 However it is important to note that while cumulative incidences of CCyR 

on imatinib are high the 5-year probability of remaining in MCyR while still 

receiving imatinib was only 62.7% in 204 consecutive adult patients with newly 

diagnosed CML-CP received imatinib (270). Similarly in a study of 276 patients 

with CML-CP on imatinib therapy the cumulative incidence of CCyR was 91% 

but the incidence of CCyR at 48 months into therapy was only 78%. 

 Side effects are mild or moderate. The most common adverse effects are 

oedema, nausea, muscle cramps, rash, and diarrhoea, occurring in 

approximately 60%, 55%, 50%, 30%, and 30% of patients, respectively (718). 

There is no universal definition of intolerance. In general a patient is considered 

to be imatinib intolerant when a non-haematologic toxicity of at least grade three 

recurs despite appropriate dose reductions and optimal symptomatic 
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management (273). Grading of toxicities is based on the United States National 

Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE). 

 

Nilotinib  
Nilotinib (Tasigna®) is an orally administered TKI made by the Novartis 

Pharmaceuticals Corporation. Unlike dasatinib, which has a completely different 

structure to imatinib, nilotinib was methodically and rationally designed to create 

a better topological fit in the ABL kinase domain of BCR-ABL resulting in 

enhanced BCR-ABL inhibition.  It is an aminopyrimidine derivative of imatinib, 

structurally changed to eliminate two energetically unfavourable hydrogen 

bonds with the replacement of the N-methylpiperazine ring of imatinib by a 

trifluoromethyl-substituted phenyl group (277, 719). Like dasatinib, its spectrum 

of inhibition also includes c-Kit (IC50 200 nM) and PDGFR (IC50 71 nM) (Table I) 

(277). However, unlike dasatinib, it only binds the inactive conformation of ABL 

and it does not inhibit SRC kinases (277). Unlike imatinib, nilotinib uptake does 

not involve organic cation transporter 1 (OCT-1) (720).  Altered OCT-1 

expression has been reported to be a mechanism of resistance to imatinib. 

Nilotinib’s various characteristics make it 20-30 fold more potent against BCR-

ABL expressing cells (IC50 < 30 nM) with well-documented activity against 32 of 

33 imatinib-resistant BCR-ABL mutants.  However, like imatinib and dasatinib, 

nilotinib is unable to overcome the resistance of the T315I mutation (300).  

 Nilotinib is orally bioavailable and has a half-life of approximately 15 

hours.  It should be taken 2-hours before or 1-hour after meals as food 

consumption increases its drug bioavailability.  It is metabolized by hepatic 

oxidation reactions, mainly involving the CYP3A4 pathway and therefore has 

potential to interact with CYP3A4 inhibitors and inducers (300).  

 
Efficacy of nilotinib in relapsed disease  
A phase 2, open-label study evaluated the efficacy and safety of nilotinib in 321 

patients with CML-CP who were imatinib resistant (69%) or intolerant. An 

updated analysis, with a minimum follow-up of 24 months, reported that of the 
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321 patients, 124 (39%) continue on nilotinib treatment (721). Overall, 59% of 

patients achieved a MCyR while 44% achieved a CCyR. Of patients achieving 

CCyR, 56% achieved MMR. Cytogenetic responses were durable, with 84% of 

patients who achieved CCyR maintaining response at 24 months. The OS at 24 

months was 87%. Common grade 3/4 side effects included thrombocytopaenia, 

neutropaenia, elevated lipase, hyperglycemia, hypophosphataemia, and QT 

prolongation. 

 The ENACT (Expanding Nilotinib Access in Clinical Trials) study was a 

large international open-label expanded access trial in 1422 patients with CML-

CP and imatinib resistance (60%) or intolerance. Patients were treated with 

nilotinib 400 mg twice daily. Nilotinib demonstrated significant efficacy, with 

CHR and CCyR achieved in 43% and 34% of patients, respectively. With regard 

to cytogenetic response, 45% of patients achieved a MCyR, with the majority of 

these responses (approximately 75%) being CCyR (34% overall). At 18 months, 

the PFS was 80%. Most patients achieved planned dosing of 400 mg twice daily 

and maintained the dose for greater than 12 months. Common adverse events 

included rash (28%), headache (25%), and nausea (17%). Complete efficacy 

data collection was performed in the subset of ENACT patients (n = 168) from 

France. The number of French patients achieving MCyR (54%) and CCyR 

(45%) was higher than in the overall patient population (45% and 34%, 

respectively). French patients were also monitored for molecular response by 

qRT-PCR at baseline and every 3 months thereafter. Of the French subset, 37% 

of patients achieved MMR by 12 months.  

 Nilotinib is also approved for CML-AP. A phase 1 dose-escalation study 

of nilotinib included 46 patients with imatinib-resistant CML-AP and showed 

haematologic and cytogenetic response rates of 33% and 22%, respectively 

(722). A phase 2 study examined the use of nilotinib in 119 patients with CML-

AP and imatinib resistance (81%) or intolerance (723). Patients received 

nilotinib 400 mg twice daily with escalation to 600 mg twice daily for inadequate 

response. At 24 months follow-up the rate of CHR, MCyR and CCyR was 31%, 
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32% and 21% respectively. Notably, 66% of patients who achieved a MCyR 

maintained this response at 24 months (310).  

 Nilotinib is also effective in patients with CML following imatinib and 

dasatinib failure.  A phase 2 study, evaluating the safety of nilotinib 400 mg BID 

in CML-CP, -AP, and –BC who either failed or were intolerant of both imatinib 

and dasatinib, demonstrated clinical activity in these patients (724).  In a single 

institution study, long term follow up for 14 patients receiving nilotinib following 

imatinib and dasatinib failure showed 2 patients achieving CCyR, 1 patient with 

PCyR, 5 patients with MCyR, 4 patients with CHR and 2 with no response (725). 

 

Efficacy of nilotinib as frontline therapy  
In a phase 2 pilot study evaluating the efficacy and safety of nilotinib 400 mg 

BID as first line therapy for patients with CML-CP, among 51 patients who had 

been followed for at least 3 months, CCyR and MMR are 98% and 76% 

respectively (726). The GIMEMA CML Working Party investigated the efficacy of 

nilotinib 400 mg BID in patients with early CML-CP in a multicenter phase 2 trial.  

In 72 patients, after 2 years, there was only one patient with T315I mutation who 

progressed to CML-AP.  Patients responded very rapidly with CCyR and MMR 

of 78% and 52% at 3 months.  

 In the phase 3, randomized, open-label multicenter ENESTnd (Evaluating 

Nilotinib Efficacy and Safety in Clinical Trials-Newly Diagnosed Patients) study, 

846 patients with CML-CP were randomized in a 1:1:1 ratio to receive nilotinib 

300 mg twice daily, nilotinib 400 mg twice daily or imatinib 400 mg once daily. In 

the original IRIS study, none of the patients who achieved an MMR at 12 

months with imatinib progressed to CML-AP or CML-BC. In light of this, 

attainment of a MMR at 12 months was chosen as the primary endpoint in the 

ENESTnd study. The rate of CCyR by 12 months was a secondary endpoint. At 

12 months, CCyR was 80%, 78% and 65% in these three groups respectively 

and MMR was 44%, 43% and 22%. This similar pattern of response was 

observed in a subset of patients with high Sokal risk; CCyR in this group was 

74%, 63% and 49% and the MMR was 41%, 32% and 17% respectively.  No 
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patient achieving a MMR had progression to CML-AP or CML-BC. At the time of 

the cutoff date, <1% of the patients on nilotinib had progression to AP or BC 

while progression occurred in 4% of patients on imatinib (727).  Based on this 

promising data the FDA granted accelerated approval to nilotinib for the 

treatment of adult patients with newly diagnosed CML-CP on June 17, 

2010. The recommended nilotinib dose for this indication is 300 mg orally twice 

daily.  The 300 mg twice-daily dosing regimen was chosen, as its safety profile 

appeared more favourable than that of the 400 mg twice-daily regimen, while 

the efficacy appeared comparable.  

 The data from the ENESTnd study after a minimum follow-up of 24 

months was recently published (728). By 24 months, significantly more patients 

had a MMR with nilotinib than with imatinib (71% with nilotinib 300 mg twice 

daily, 67% with nilotinib 400 mg twice daily, and 44% with imatinib). Significantly 

more patients in the nilotinib groups achieved a CMR at any time than did those 

in the imatinib group (26% with nilotinib 300 mg twice daily, 21% with nilotinib 

400 mg twice daily, and 10% with imatinib). There were fewer progressions to 

CML-AP or CML-BC on treatment, including clonal evolution, in the nilotinib 

groups than in the imatinib group (two with nilotinib 300 mg twice daily, five with 

nilotinib 400 mg twice daily, and 17 with imatinib).  

 

Efficacy of nilotinib in patients with BCR-ABL kinase domain mutations  
In patients with baseline kinase domain point mutations, the in vitro sensitivity of 

the mutant clone correlates with response.  Baseline mutation data has been 

evaluated in 288 patients with CML-CP from the phase 2 nilotinib registration 

trial. After 12 months of therapy, those with highly in vitro nilotinib-sensitive 

mutations (cellular IC50 ≤  150 nM) showed the best responses with MCyR, 

CCyR and MMR of 60%, 40% and 29% respectively, which were equivalent to 

those without baseline mutations.  These include M244V, L248V, G250E, 

Q252H, E275K, D276G, F317L, M351T, E355A, E355G, L387F and F486S 

(729, 730).  The patients who had less sensitive mutations (cellular IC50 201-

800 nM) had less favourable responses to nilotinib and none achieved CCyR. 
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These mutations include Y253H, E255K/V, and F359C/V (729-731).  Patients 

with the T315I mutation, which has IC50 > 10,000 nM (300), remain highly 

resistant to nilotinib.   

 

Safety of nilotinib 
Nilotinib is generally well tolerated.  The most common haematologic adverse 

events are neutropaenia and thrombocytopaenia. The rates of neutropenia and 

thrombocytopaenia were 10 to 12% for patients taking nilotinib in the frontline 

setting, 27% to 30% in the 2nd line setting, 44 to 51% following imatinib and 

dasatinib failure, 27% to 30% in patients with CML-AP and 62% to 67% in 

patients with CML-BC.  As would be expected, these cytopaenias correlate with 

disease phase and number of prior lines of therapy. The most common non-

haematologic adverse events are rash, headache, nausea, and pruritus.  The 

most common laboratory abnormalities include increased total bilirubin, 

increased alanine aminotransferase (ALT), increased aspartate 

aminotransferase (AST), decreased phosphate, increased glucose, increased 

lipase and increased amylase.  

 

Dasatinib 
Introduction 
Dasatinib (BMS-354825; Sprycel) was originally developed as an inhibitor of the 

SRC family of kinases (IC50 < 0.5 nM) (301) (Table II). It is active against 

imatinib-resistant or intolerant CML and inhibits both the active and inactive 

conformations of the ABL domain (IC50<1.0 nM) (302-305). An in vitro study 

showed that dasatinib was 325 times more potent than imatinib in inhibiting wild 

type BCR-ABL and also has activity against BCR-ABL mutants with high levels 

of imatinib resistance, except for those with the T315I mutation (288). In addition 

dasatinib has limited activity against the F317L mutation (302). Dasatinb also 

inhibits a number of other kinases important kinases including the proto-

oncogene tyrosine-protein kinase, yes (IC50 < 0.50 nM), c-Kit (IC50 < 5.0 nM) 

and PDGFR (IC50 28 nM) (305).  
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Efficacy of dasatinib in relapsed disease 
Three studies have evaluated the effectiveness of dasatinib in patients in CML-

CP with resistance or intolerance to prior therapy. The reported CHR and MCyR 

rates were approximately 90% and 60%, respectively. These rates are 

comparable to those observed with nilotinib. 
 A series of phase 2 studies known as START (SRC/ABL Tyrosine kinase 

inhibition Activity Research Trials) have evaluated dasatinib in various phases 

of CML. The START-C study examined the use of dasatinib 70 mg twice daily in 

387 CML-CP patients with imatinib resistance or intolerance (732). After follow 

up for a median of 15 months, rates of CHR, MCyR, and CCyR were 90%, 52%, 

and 40%, respectively. Among patients with imatinib intolerance, these same 

levels of response were seen in 94%, 80%, and 75%, respectively. Dasatinib 

was well tolerated and only 9% had to discontinue therapy due to adverse 

events. START-A, -B and -L looked at the efficacy of dasatinib in CML-AP, 

myeloid and lymphoid CML-BC, respectively. All three studies showed that 

dasatinib was effective in imatinib resistant or intolerant patients with advanced 

phase CML (733, 734). 

 A randomized phase 3 study investigated different dosing schedules of 

dasatinib in 662 patients with CML-CP who were resistant (74%) or intolerant to 

imatinib (735). Patients were randomly assigned to four dosing strategies (50 

mg twice daily, 100 mg daily, 70 mg twice daily, or 140 mg daily). There was no 

significant difference in CHR or MCyR rates among the four treatment arms. 

CHR was achieved in 86% to 92% of patients and CCyR was achieved in 41 to 

45% of patients. However, when compared with 70 mg twice daily, 100 mg daily 

dosing resulted in significantly less grade 3/4 thrombocytopaenia, fewer pleural 

effusions, fewer dose reductions or interruptions, and fewer discontinuations 

due to toxicity. Lastly, a randomized phase 2 trial showed better response rates 

with dasatinib compared with increased dose imatinib in patients who had failed 
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imatinib therapy (736). Taken together these studies support the use of 

dasatinib for the treatment of non-transplant candidates with CML-CP after the 

failure of imatinib therapy.  

 

Efficacy of dasatinib in frontline therapy 
A randomized phase 3 trial called DASISION (Dasatinib versus Imatinib Study in 

Treatment-Naïve CML-CP Patients) involved 518 patients with previously 

untreated CML-CP. It compared dasatinib 100 mg daily with imatinib 400 mg 

daily. At 12 months of follow-up, patients assigned to dasatinib therapy had 

significantly higher rates of confirmed CCyR (77% versus 66%) and MMR (46% 

versus 28%) (737). However a subsequent report demonstrated that the 

difference in CCyR had lost statistical significance by 24 months (85 versus 

82%), but that the improvement in rates of MMR (64% versus 46%) remained 

(738). Additionally there was no significant difference in PFS (94% versus 92%), 

failure-free survival (91% versus 88%), or OS (95% for both). Consistent with 

earlier experience, dasatinib therapy was associated with lower rates of nausea, 

vomiting, rash, and myalgia, but higher rates of thrombocytopaenia and pleural 

effusions than imatinib. In summary when compared with imatinib in the frontline 

setting in CML-CP, dasatinib produces faster, deeper responses with a different 

side effect profile. Dasatinib has not been directly compared with nilotinib in the 

frontline setting. Dasatinib at 100 mg once daily has been granted accelerated 

approval by the FDA for the treatment of newly diagnosed CML. 

 

Bosutinib 
Bosutinib (previously SKI-606) is a dual kinase inhibitor that targets both ABL 

and SRC pathways, but does not target c-Kit or PDGFR. In preclinical in vitro 

testing, bosutinib retained activity in cells where resistance to imatinib was 

caused by BCR-ABL gene amplification as well as in CML cell lines carrying the 

Y253F, E255K, and D276G mutations (508). 

 Bosutinib (500 mg once daily) was evaluated in a phase 1-2 trial in 288 

patients with CML-CP with imatinib resistance (69%) or intolerance (739). After 
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a median follow-up of 24 months, rates of CHR, MCyR, and CCyR were 86%, 

53%, and 41%, respectively. Of the patients achieving a CCyR, 64% attained a 

MMR. The most common severe (CTCAE grade 3/4) toxicities included diarrhea 

(9%), rash (9%), and vomiting (3%). 

 A subset analysis of this trial evaluated the 118 patients with CML-CP 

who had been initially treated with imatinib followed by dasatinib and/or 

nilotinib prior to treatment with bosutinib (740). A MCyR was seen in 32% and a 

CCyR in 24% of patients. After a median follow-up of 28.5 months, estimated 

two-year rates of PFS and OS were 73 and 83%, respectively. In summary this 

study demonstrates that more than half of patients with resistance or intolerance 

to imatinib will attain a CCyR after treatment with bosutinib but response rates 

are lower among patients who have previously received two TKIs. 

 

Ponatinib 
Ponatinib (formerly called AP24534) is a TKI that was developed using chemical 

modification of a purine scaffold (741). A carbon–carbon triple bond extends 

from the purine scaffold allowing the molecule to take up a position with no 

steric hindrance attributable to the T315I mutation. The substructure beyond the 

triple bond is quite similar to that of imatinib. Ponatinib was tested in vitro and 

inhibited a variety of tyrosine kinases, including SRC and ABL. Moreover cell-

based mutagenesis screens showed that ponatinib, when administered at 

pharmacologically realistic drug levels, suppressed the growth of all BCR-ABL 

mutant subclones (742). 

 In a phase 1 study ponatinib at higher dose levels induced CCyRs and 

MMRs in patients with CML whose disease was resistant to earlier treatment 

with two or more TKIs. In particular patients whose resistance could be 

attributed to the presence of a T315I subclone also had a response. In most 

such patients, the response seemed to be durable. Of 12 patients who had 

CML-CP with the T315I mutation, 100% had a CHR and 92% had a MCyR. Of 

13 patients with CML-CP without detectable mutations, 100% had a CHR and 

62% had a MCyR. Responses among patients with CML-CP were durable. Of 
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22 patients with CML-AP or CML-BC or Ph-positive ALL, 36% had a MHR and 

32% had a MCyR. The major side effect of this drug was dose-related 

pancreatitis, which was manageable in all cases. 

 The phase 1 study led to a recommended clinical dose of 45 mg daily. It 

was followed by the PACE (Ponatinib for CML evaluation and Ph+ ALL) trial, a 

multicenter, international, single-arm clinical trial of 449 patients with disease 

that was resistant or intolerant to prior TKI therapy. The primary endpoints were 

MCyR for patients with CML-CP and major haematologic response (MaHR) for 

patients with CML-AP, CML-BC or Ph+ALL. MaHR was defined as CHR or no 

evidence of leukaemia (NEL). Preliminary results of a phase 2 trial of ponatinib 

reported MCyR in 54% of the patients with CML-CP. Importantly 75% of the 

CML-CP patients with T315I mutations had MCyR following ponatinib (306). The 

efficacy results demonstrated a 54% MCyR rate in patients with CML-CP. For 

patients with CML-AP, CML-BC and Ph+ ALL, the MaHR rates were 52%, 31% 

and 41%, respectively. On December 14, 2012, the FDA granted accelerated 

approval to ponatinib for the treatment of adult patients with CML-CP, CML-AP, 

CML-BC or Ph+ALL that is resistant or intolerant to prior TKI therapy. 
 Lastly ponatinib functions as a multikinase inhibitor with activity against 

other tyrosine kinases, including Kit, PDFGRA, FGFR1, and FLT3 (743), and 

could therefore be useful in treating patients with these gene mutations.  
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Appendix B: Cytogenetic abnormalities in AML 
AML with t(8;21) 
AML with the t(8;21)(q22;q22); RUNX1-RUNX1T1 (previously AML1-ETO) is 

seen in approximately 7% of adults with newly diagnosed AML and is the most 

common cytogenetic abnormality in children with AML (Figure 1.12) (361). This 

translocation is most common in patients with AML-M2 but is also found in AML-

M4 (88, 744). Myeloblasts of AML with the t(8;21) have a morphologically 

distinct phenotype with indented nuclei, basophilic cytoplasm, prominent 

paranuclear hof and easily identifiable auer rods (745).  
 In AML with the t(8;21), the RUNX1 (previously AML1 or core binding 

factor alpha-2) gene on chromosome 21 and the RUNX1T1 (previously ETO or 

MTG8) gene on chromosome 8 form a chimeric product that regulates the 

transcription of a number of genes that are vital for haematopoietic stem cell 

and progenitor cell growth, differentiation, and function (89-91). 

Leukaemogenesis by RUNX1-RUNX1T1 probably results from both altered 

transcriptional regulation of normal RUNX1 target genes and activation of new 

target genes that block apoptosis and cellular differentiation pathways (746). 

 The median age in adults with t(8;21) is approximately 25 to 30 years, 

significantly younger than that for the total group of adults with AML (747, 748). 

The CR rate is uniformly high and with intensive post remission consolidation 

chemotherapy, the expected DFS exceeds two years, after which time relapses 

are uncommon (92, 361).  

 
t(15;17) translocation in APL 
APL is a unique clinicopathological entity characterized by the infiltration of the 

BM by promyelocytes in association with clinical or laboratory evidence of 

disseminated intravascular coagulation and fibrinolysis. It is characterized by the 

balanced translocation t(15;17)(q24.1;q21.1) (749). This rearrangement is seen 

in 13% of newly diagnosed AML and is highly specific for APL (749). On the 
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other hand it is not found in patients with other leukaemias or solid tumours, 

although there are rare cases of t(15;17) occurring in CML, coincident with 

development of a promyelocytic blast crisis.  

 The breakpoint on chromosome 17 occurs within the first intron of the 

RARA gene in most patients, whereas the break on chromosome 15 occurs 

within the PML gene (99, 398). The translocation results in a PML/RARA fusion 

gene that contains most of the PML coding sequences, and the DNA binding 

and ligand binding domains of the RARA gene. The PML/RARA fusion protein 

shows reduced sensitivity to retinoic acid in terms of dissociation of N-CoR, a 

ubiquitous nuclear protein that mediates transcriptional repression (398, 750). 

This leads to persistent transcriptional repression, thereby preventing 

differentiation of promyelocytes.  
 

Inv(16) and t(16;16)  
Abnormalities of chromosome 16 are seen in approximately 7% of adults with 

newly diagnosed AML (Figure 3.1) (361). Patients with inv(16)(p13.1q22) or 

t(16;16)(p13.1;q22) have a favourable prognosis with standard therapy, 

whereas those with other abnormalities of chromosome 16 do not (361). AML 

with inv(16) typically demonstrates monocytic and granulocytic differentiation 

with abnormal eosinophils in the BM (361, 751, 752). Different abnormalities in 

chromosome 16 were identified in these reports including a pericentric inversion 

of chromosome 16, inv(16)(p13.1q22) or a reciprocal translocation involving 

both chromosome 16 homologs, t(16;16)(p13.1;q22)(752, 753).  

 The inversion breakpoint at 16q22 occurs near the end of the coding 

region of the core binding factor beta (CBFΒ) gene (93), which encodes one 

subunit of the heterodimeric RUNX1/CBFΒ transcription factor (754). As 

described above, this transcription factor binds directly to an enhancer core 

motif that is present in the transcriptional regulatory regions of a number of 

genes that are critical to myeloid cell growth, differentiation, and function. A 

smooth muscle myosin heavy chain gene (MYH11) is interrupted by the 

breakpoint on 16p. A fusion protein is produced containing the 5' region of 
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CBFΒ (165 of 182 amino acids), including the domain that heterodimerizes with 

RUNX1, fused to the 3' portion of MYH11 (93, 755). The CBFB/MYH11 fusion 

protein appears to act by disrupting the function of the RUNX1/CBFB 

transcription factor, resulting in the repression of transcription (756). Patients 

with inv(16) or t(16;16) have a good response to intensive chemotherapy (92, 

361, 757). For example in one study patients with inv(16) or t(16;16) had CR 

rates and 10-year survival of 92 and 55%, respectively (361). 

 

Rearrangements of 11q23 
Rearrangements of 11q are seen in approximately 6% of young adults with 

newly diagnosed AML and up to 12% of children with AML (361). These 

rearrangements of 11q are common (35%) in patients with AML-M5 particularly 

those with poorly differentiated monoblasts (AML-M5a) (758). This association 

with M5a is particularly strong in children (759). Translocations of 11q23 involve 

the MLL gene (myeloid/lymphoid, or mixed-lineage, leukaemia) (760-763). The 

MLL protein has homology to the Drosophila trithorax gene product, a 

transcription factor that regulates embryonic development and tissue 

differentiation in this organism. MLL is a DNA-binding protein that methylates 

histone H3 lysine 4 (H3K4), and positively regulates gene expression by binding 

to open chromatin structures at the active promoter regions of various genes, 

including multiple HOX genes, that are important in haematopoietic and 

lymphoid cell development, including myelomonocytic differentiation (764-766). 

An important feature of MLL fusion proteins is their ability to efficiently transform 

haematopoietic cells into LSCs (767, 768). In addition, a molecular 

rearrangement leading to a partial tandem duplication of the MLL gene has 

been found in 11% of patients with AML and a normal karyotype and in 

approximately 90% of adults with AML who have trisomy 11 as the only 

karyotypic abnormality (769). In general, leukaemia patients with 11q23/MLL 

rearrangements, have a very dismal prognosis (770). In contrast, patients with 

t(9;11)(p22;q23) which occurs in 1% of AML cases tend to have an intermediate 

response to standard therapy (361). Balanced translocations occur in therapy 
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related AML post DNA topoisomerase II inhibitors most often involve the MLL 

gene at 11q23 (771). 

 

t(3;3) and inv(3)  
The t(3;3) and inv(3) account for approximately 1% of AML cases (361). This 

abnormality is seen in de novo AML and in therapy-related MDS/AML. 

Cytogenetic abnormalities of 3q are associated with thrombocytosis in the PB 

and increased atypical megakaryocytes in the BM of patients with AML (772-

774). The specific cytogenetic abnormalities involve bands 3q21 and 3q26.2 

simultaneously, and they include the inv(3)(q21q26.2), t(3;3)(q21;q26.2), and 

the ins(5;3)(q14;q21q26.2) (insertion of chromosomal material from 3q into 

5q).In a study of 6515 adults with newly diagnosed AML enrolled in prospective 

trials 3q abnormalities were detected in 4.4% of cases (775). Of these, 

t(3;3)/inv(3), t(3q26.2), t(3q21), and other 3q abnormalities accounted for 32, 18, 

7, and 43%, respectively. Abnormalities of 3q are associated with a poor 

prognosis with rates of CR, OS and relapse-free survival at five years of 31, 6, 

and 4%, respectively. The t(3;3) and inv(3) abnormalities seen in AML result in 

the activation of the EVI1 (MECOM) gene, located at 3q26.2 (776). EVI1 can act 

as a transcriptional activator to promote the proliferation of HSCs (eg, when 

bound to GATA2) or as a transcriptional repressor inhibiting erythroid 

differentiation (eg, when bound to GATA1). 

 

t(6;9)(p23;q34)  
AML with t(6;9)(p23;q34), DEK-NUP214, is seen in approximately 1% of 

patients with newly diagnosed AML (361). The pathological features of AML 

with the t(6;9) include basophilia, single or multilineage dysplasia, variable FAB 

morphology, a CD13+, CD33+, CD38+, CD45+, and HLA-DR+ phenotype, and 

a high incidence (71%) of FLT3-ITD. (777). The translocation results in the 

juxtaposition of DEK gene on chromosome 6 with NUP214 (also known as 

CAN) on chromosome 9. This results in the creation of a nucleoporin fusion 

protein that acts as a transcription factor and also alters nuclear transport. 
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Patients with the t(6;9)(p23;q34) typically have a poor outcome with standard 

therapy.  

 

Chromosomal gain and loss  
In addition to chromosomal translocations, there is a recurring pattern of gain or 

loss of specific chromosomes in patients with AML. Any chromosome can be 

affected, but with variable frequency. Some chromosomes are more likely to 

have a gain or loss. The most common abnormalities are gain of chromosome 8 

(trisomy 8, 13%), loss of chromosome 7 (9%), and loss of chromosome 5 (6%). 

Abnormalities of chromosomes 5 and 7 are particularly characteristic of therapy-

related AML induced by alkylating agents and/or radiation therapy and are 

associated with a poor prognosis (362). 
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The novel Aurora A kinase inhibitor MLN8237 is active 

in resistant chronic myeloid leukaemia and significantly

increases the efficacy of nilotinib
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Abstract

Novel therapies are urgently needed to prevent and treat tyrosine kinase inhibitor resistance in chronic myeloid leukaemia (CML).
MLN8237 is a novel Aurora A kinase inhibitor under investigation in multiple phase I and II studies. Here we report that MLN8237 pos-
sessed equipotent activity against Ba/F3 cells and primary CML cells expressing unmutated and mutated forms of BCR-ABL. Notably,
this agent retained high activity against the T315I and E255K BCR-ABL mutations, which confer the greatest degree of resistance to
standard therapy. MLN8237 treatment disrupted cell cycle kinetics, induced apoptosis, caused a dose-dependent reduction in the
expression of the large inhibitor of apoptosis protein Apollon, and produced a morphological phenotype consistent with Aurora A kinase
inhibition. In contrast to other Aurora kinase inhibitors, MLN8237 did not significantly affect BCR-ABL activity. Moreover, inhibition of
Aurora A with MLN8237 significantly increased the in vitro and in vivo efficacy of nilotinib. Targeted knockdown of Apollon sensitized
CML cells to nilotinib-induced apoptosis, indicating that this is an important factor underlying MLN8237’s ability to increase the efficacy
of nilotinib. Our collective data demonstrate that this combination strategy represents a novel therapeutic approach for refractory CML
that has the potential to suppress the emergence of T315I mutated CML clones.
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Introduction

Imatinib targets the constitutively active BCR-ABL tyrosine kinase
in chronic myeloid leukaemia (CML) and has become standard
treatment based on excellent responses achieved in clinical trials
[1–3]. However, imatinib resistance can occur through several
mechanisms including BCR-ABL kinase domain mutations, ampli-
fication, overexpression and clonal evolution [4]. Successful
strategies to overcome imatinib resistance include dose escalation
or the use of second-generation BCR-ABL kinase inhibitors includ-

ing nilotinib, dasatinib or bosutinib [5–7]. However, none of these
agents are effective in CML cells harbouring the ‘gatekeeper’
T315I mutation at the base of the ATP binding pocket, which
occurs in up to 20% of imatinib resistance cases.

The discovery that Aurora kinases were abnormally
expressed in malignancies including leukaemia prompted the
development of agents that inhibit their activity [8–10]. The pan-
Aurora kinase inhibitors, MK-0457 and danusertib (PHA-
739358) have shown pre-clinical and clinical activity against
CML harbouring the BCR-ABL T315I mutation [10–13]. The anti-
leukaemia efficacy of MK-0457 in CML was originally attributed
to direct inhibition of BCR-ABL kinase activity [14, 15]. However,
a recent study demonstrated that the efficacy of MK-0457 at
clinically relevant doses in BCR-ABL� cells was primarily due to
inhibition of Aurora, rather than BCR-ABL, kinase activity [16].
The development of MK-0457 was ceased due to problems with
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cardiac toxicity observed in some patients during early phase
clinical trials with the compound. In spite of this, the clinical
responses achieved by MK-0457 in refractory CML patients have
served to maintain interest in targeting Aurora kinases for CML
therapy and a significant effort is currently being put forth to
develop new agents that inhibit Aurora kinase activity and lack
undesired cardiac side effects.

Aurora A kinase is a central mitotic regulator necessary for
mitotic entry, mitotic spindle assembly and accurate chromo-
some separation [17–19]. The therapeutic potential of specifi-
cally targeting Aurora A kinase activity as an anticancer strategy
has not been rigorously investigated because all of the agents
previously designed to target Aurora kinases have significant
off-target effects on other family members and/or BCR-ABL
kinase activity. MLN8237 is a novel, highly selective ATP-
competitive and reversible inhibitor of Aurora A kinase with 
an in vitro inhibition constant (Ki) of 0.43 nM [20]. It has a
benzazepine core scaffold and is orally available. It is approxi-
mately 200-fold more selective for Aurora A kinase than the
structurally related family member, Aurora B kinase. Moreover,
MLN8237 is selective for Aurora A kinase when compared to
most other kinases and receptors. It has shown broad-spectrum
anticancer activity in preclinical models and is currently under-
going early clinical evaluation in solid tumours and heme-
lymphatic malignancies.

We suggested that MLN8237-mediated inhibition of Aurora A
kinase activity would abrogate the growth and survival of CML
cells in a manner independent of BCR-ABL mutation status. Our
results indicate that MLN8237 impairs growth, disrupts cell
cycle kinetics, induces a cellular phenotype consistent with
Aurora A kinase inhibition and triggers apoptosis in CML cell
lines and primary human resistant CML cells including those
bearing the drug resistance conferring T315I mutation.
Furthermore, MLN8237 significantly increases the anticancer
activity of the standard agent nilotinib through a mechanism
involving down-regulation of the apoptotic and mitotic regulator,
Apollon. Our collective data demonstrate that MLN8237 is a
promising novel agent for the treatment of refractory CML that
warrants further investigation.

Materials and methods

Cells and cell culture

Ba/F3 cells with wild-type (p210) BCR-ABL with and without stable shRNA
p53 knockdown and T315I, E255K, H396P, Y253F, M351T and Q252H
mutant forms of BCR-ABL, LAMA 84, K562 cells and imatinib-resistant
K562 cells were maintained as previously described [21, 22]. Primary
human CML cells were obtained from the peripheral blood of imatinib-
resistant CML patients after obtaining informed consent in accordance with
an approved institutional IRB protocol. Normal CD34� bone marrow cells
were purchased from Stem Cell Technologies (Vancouver, British
Columbia, Canada).

Chemicals and reagents

Reagents were obtained from: MLN8237 (Millennium Pharmaceuticals,
Cambridge, MA, USA), nilotinib (Novartis), anti-actin, anti-active caspase-
3, anti-phospho-Aurora A, anti-Aurora A phospho-BCR, phospho-CRKL,
and CRKL antibodies (Cell Signaling), anti-� tubulin (Sigma), anti-Apollon
antibody (Bethyl Laboratories) and sheep antimouse-HRP and donkey anti-
rabbit-HRP antibodies (Amersham).

Enzyme assays

MLN8237 was screened against a subset of Invitrogen’s SelectScreenTM

kinase panel at concentrations ranging between 10 and 0.00051 �M in 3-
fold serial dilutions. The enzymes screened included ABL1, ABL1 E255K,
ABL1 G250E, ABL1 T315I, ABL1 Y253F, ABL12 and Aurora A, each at the
respective apparent ATP Km.

Analysis of cell cycle effects and apoptosis

Apoptosis was evaluated by PI/FACS analysis of sub-G0/G1 DNA content as
previously described [21, 23].

MTT assay

Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide (MTT) assay as previously described [21].

Colony assays

K562, LAMA 84, normal CD34� bone marrow or primary CML cells were
treated for 24 hrs with the indicated concentrations of MLN8237 and nilo-
tinib and then washed twice in PBS, seeded in Methocult methylcellulose
containing medium (Stem Cell Technologies), incubated and scored as
previously described [24].

Immunoblotting

CML cells were incubated with MLN8237, nilotinib or the combination for
24 hrs. Cells were then lysed and subjected to SDS-PAGE as previously
described [24].

In vivo evaluation of MLN8237 and nilotinib

K562 and Ba/F3 cells were harvested, washed in PBS, and suspended in a
mixture of HBSS and Matrigel (BD BioSciences). An in vivo model of CML
was generated by injecting K562 or Ba/F3 cells expressing wild-type
(p210) or T315I mutant forms of BCR-ABL into the flanks of female nude
mice. After tumour growth reached 150 mm3, mice were randomly
assigned to receive MLN8237 20 mg/kg BID (n � 10), Nilotinib 50 mg/kg
once daily (n � 10), vehicle control (n � 10) or both MLN8237 and
Nilotinib (n � 10) for 14 days. Mice were monitored daily and tumour
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volumes were measured twice weekly. At the completion of the study,
tumours were excised, formalin-fixed and paraffin-embedded for immuno-
histochemical analysis.

Immunohistochemistry

Paraffin-embedded tumour sections (4–6 �m thick) were mounted on slides
and stained with haematoxylin and eosin as previously described [25].

Terminal deoxyribonucleotide-transferase–
mediated dUTP nick-end labeling assay (TUNEL)

TUNEL staining and quantification were performed as previously described [25].

shRNA knockdown of p53

Ba/F3 p210 cells were infected with a retrovirus encoding a short hairpin
RNA (shRNA) sequence specific for the knockdown of murine p53 or an
empty vector control as previously described [26].

siRNA transfection

Apollon and Aurora kinase A SMARTpool or siCONTROL siRNA directed at
luciferase (Dharmacon) were transfected into CML cells as previously
described using the Nucleofector II according to the manufacturer’s
instructions (Amaxa, Inc.) [26]. Transfected cells were treated with the
indicated concentrations of MLN8237 and nilotinib for 48 hrs. Drug-
induced apoptosis was quantified by PI/FACS as described above.

Statistical analyses

Statistical significance of differences observed between samples was deter-
mined using the Tukey–Kramer comparison test or the Student’s t-test.
Differences were considered significant in all experiments at P � 0.05.

Results

MLN8237 impairs growth, disrupts cell cycle
kinetics and induces apoptosis in CML cell lines

Treatment with MLN8237 inhibited the in vitro growth and survival
of the human K562 and LAMA 84 CML cell lines with IC50 values
less than 100 nM (Fig. 1A). Considering that inhibition of the
Aurora kinases results in mixed outcome, including polyploidy and
G2/M growth arrest, we assessed the cell cycle distribution and
apoptotic fraction (sub-G0/G1) of cells treated with MLN8237 by
propidium iodide staining and flow cytometry. MLN8237 treat-
ment disrupted cell cycle kinetics as demonstrated by the accumu-

lation of cells in G2/M phase and cells with �4N DNA prior to the
onset of apoptosis (sub-G0/G1) in a dose- and time-dependent
manner (Fig. 1B, C).

MLN8237 has in vitro and in vivo antiproliferative
effects in imatinib-resistant cells and its activity
is unaffected by impairment of p53 function

Loss or mutation of the tumour suppressor gene TP53 occurs in
over 30% of cases of CML blast crisis and can impede the
response to therapy [27–29]. We evaluated the potential impact of
loss of p53 function on cellular sensitivity to MLN8237 by achiev-
ing stable shRNA-mediated p53 knockdown in Ba/F3 cells
expressing p210 BCR-ABL. Cells were treated with the chemother-
apeutic agent vincristine and immunoblotting analyses of the
expression of p53 and its direct transcriptional target, p21, were
conducted to confirm functional p53 knockdown. Impairment of
p53 function did not significantly affect the anticancer activity of
MLN8237, indicating that it may be an effective agent for patients
with p53 defects (Fig. 2A). To investigate the potential impact of
imatinib resistance on the efficacy of MLN8237, we treated Ba/F3
expressing unmutated BCR-ABL and the clinically relevant tyro-
sine kinase inhibitor resistant BCR-ABL mutants T315I, E255K,
H396P, Y253F, M351T and Q252H as well as K562 cells that are
sensitive and resistant to imatinib due to differential expression of
unmutated BCR-ABL with this agent for 96 hrs. Notably, MLN8237
inhibited the viability of Ba/F3 cells expressing unmutated BCR-
ABL and mutated BCR-ABL and imatinib-sensitive and –resistant
K562 cells at similar concentrations (Fig. 2B) [22]. We next cre-
ated an animal model of unmutated and T315I-mutated CML by
injecting Ba/F3 cells expressing p210 or T315I-mutated BCR-ABL
into the flanks of nude mice to investigate the in vivo efficacy of
MLN8237 against CML cells bearing the T315I mutation.
Consistent with our in vitro data, MLN8237 possessed equipotent
in vivo activity against xenografts of Ba/F3 cells expressing unmu-
tated and imatinib, nilotinib and dasatinib resistant T315I-mutated
forms of BCR-ABL (Fig. 2C). We subsequently determined the
anti-leukemic effects of MLN8237 against primary CML cells from
three imatinib refractory patients, (one each from a patient in
chronic phase CML, blast crisis CML and a patient in blast crisis
harbouring the T315I mutation) and primary leukaemia cells from
a patient with Philadelphia chromosome positive acute lympho-
cytic leukaemia. MLN8237 equally inhibited the viability of primary
human CML cells from patients with unmutated and T315I-
mutated BCR-ABL (Fig. 2D). As primary cells do not tend to
actively proliferate in culture, higher concentrations of MLN8237
were needed to inhibit their viability compared to CML cell lines.
Normal peripheral blood mononuclear cells cultured under the
same conditions were less susceptible to the effects of MLN8237
compared to the primary CML cells, thus demonstrating the ther-
apeutic selectivity of this agent (Fig. 2D). Collectively, these results
suggest that the activity of MLN8237 in CML cells is unaffected by
BCR-ABL mutational status or impairment of p53 function.
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MLN8237 inhibits autophosphorylation 
of Aurora A without affecting BCR-ABL activity

We next determined the in vitro inhibitory effects of MLN8237 on
Aurora A kinase. Exposure of cultured K562 cells to 30 nM
MLN8237 reduced the phosphorylation of Aurora A kinase as
demonstrated by reduced phosphorylation of Aurora A at Thr288
within its kinase activation loop without affecting the total levels of
Aurora A (Fig. 3A). As mentioned earlier, there has been some
controversy regarding whether the anti-leukemic activity of MK-
0457, which is no longer being clinically developed, was due to

inhibition of Aurora kinases, BCR-ABL or both. In contrast to 
MK-0457, MLN8237 is a potent inhibitor of the Aurora A enzyme
(IC50 � 2 nM) and demonstrated approximately 50–700-fold
selectivity against various ABL isoform enzyme assays (Fig. 3B).
To confirm that efficacious concentrations of MLN8237 do not sig-
nificantly affect BCR-ABL activity, we evaluated its effect on BCR-
ABL autophosphorylation and phosphorylation of the BCR-ABL
direct substrate CRKL, which are accurate predictors of BCR-ABL
kinase activity. Consistent with the in vitro enzyme assay data,
immunoblotting analysis demonstrated that treatment of LAMA 84
and K562 cells with MLN8237 did not have a significant effect on
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Fig. 1 MLN8237 impairs growth, dis-
rupts cell cycle kinetics and induces
apoptosis in CML cell lines. (A) Effects
of MLN8237 on the in vitro growth and
survival of K562 and LAMA 84 human
CML cell lines. Cells were treated 
with the indicated concentrations of
MLN8237 for 96 hrs and viability was
assessed by MTT assay. n � 3 � S.D.
(B)–(C) Time-dependent induction of
DNA fragmentation. LAMA 84 and 
K562 cells were treated with 30, 100 or
300 nM MLN8237 for 48 hrs and 
72 hrs. Percentages of cells with sub-
G0-G1 DNA and �4N DNA were deter-
mined by PI/FACS. n � 3 � S.D.
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the total levels of BCR-ABL or the levels of phospho-BCR-ABL at
its Tyr177 autophosphorylation site (Fig. 3C). We conducted sim-
ilar experiments to also confirm that the concentration of
MLN8237 that we utilized for our experiments with primary patient
cells did not significantly affect BCR-ABL kinase activity (Fig. 3D).

Co-treatment with MLN8237 and nilotinib 
results in significantly greater apoptosis, growth
inhibition and reduction in clonogenic survival
than what is achieved by either agent alone

Patients with advanced stage CML have been suggested to bene-
fit from non-cross-resistant combinations of tyrosine kinase
inhibitors and agents effective against CML cells harbouring the
T315I and E255K mutations [30, 31]. Considering that MLN8237

is active against cells expressing the E255K and T315I mutations,
we investigated whether MLN8237 augmented the activity of nilo-
tinib, an FDA-approved BCR-ABL inhibitor that is used in CML
therapy. LAMA 84 and K562 cells were treated with 30 nM
MLN8237, 10 nM nilotinib or the combination for 48 hrs.
Percentages of cells with sub-G0-G1 DNA were quantified by
PI/FACS. Co-treatment with MLN8237 and nilotinib resulted in sig-
nificantly greater levels of apoptosis as determined by accumula-
tion of sub-G0-G1 cells (Fig. 4A). Immunoblotting analysis showed
that the combination of these two agents induced mitochondrial-
dependent apoptosis as demonstrated by processing of caspases-
9 and -3 to their active forms (Fig. 4B). The cytotoxic effects of the
combination were also assessed by MTT assay, which demon-
strated that inhibition of growth and survival were significantly
increased by combination treatment (Fig. 4C). Finally, clonogenic
assays were performed to evaluate the prolonged in vitro effects
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Fig. 2 MLN8237 has in vitro and 
in vivo antiproliferative effects in 
Ba/F3 cells expressing unmutated and
mutated BCR-ABL and its activity is
unaffected by impairment of p53 func-
tion. (A) Left, Ba/F3 p210 BCR-ABL
cells stably infected with p53 shRNA or
vector control were treated with 100 nM
vincristine (VCR) for 24 hrs and sub-
jected to immunoblotting for p53 and
p21 to confirm functional knockdown
efficiency. Tubulin documented equal
loading. Right, Ba/F3 p210 BCR-ABL
cells stably infected with p53 shRNA or
vector control were treated the indi-
cated concentrations of MLN8237 for
96 hrs and viability was assessed by
MTT assay. n � 3 � S.D. (B) MLN8237
has activity in cells expressing unmu-
tated and mutated BCR-ABL. Ba/F3
cells expressing p210 (unmutated) and
T315I, E255K, H396P, Y253F, M351T
and Q252H mutant forms of BCR-ABL
and imatinib-sensitive and –resistant
K562 cells were treated with the indi-
cated concentrations of MLN8237 for
96 hrs and viability was assessed by
MTT assay. n � 3 � S.D. (C) In vivo
efficacy of MLN8237. Immunodeficient
mice bearing xenografts of P210 and
T315I BCR-ABL expressing Ba/F3 cells
were administered MLN8237 (20 mg/kg
BID) daily or vehicle control. n � 10 �
S.D. (D) Activity of MLN8237 in 
primary CML cells and normal periph-
eral blood mononuclear cells. Cells
from healthy donors or patients (4)
with BCR-ABL� leukaemia including 
1 patient each with: unmutated BCR-ABL, T315I-mutated BCR-ABL, blast crisis CML and Ph� ALL were treated with MLN8237 for 96 hrs and cell viability
was assessed by MTT assay.
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of MLN8237 and nilotinib on the growth and survival of normal
CD34� bone marrow cells, primary CML cells from patients in
blast crisis, LAMA 84 and K562 cells (Fig. 4D). As expected,
MLN8237 enhanced the ability of nilotinib to inhibit the clonogenic
survival of CML cells, but had little effect on normal CD34� cells.
Collectively, these data suggest that MLN8237 significantly and
selectively enhances the anti-leukaemia activity of nilotinib in
human CML cells.

MLN8237 cooperates with nilotinib 
to reduce tumour burden in K562 xenografts

K562 xenograft studies were carried out to investigate the in vivo
therapeutic potential of the combination of MLN8237 and nilotinib.

Both agents had substantial effects on tumour burden and the
combination resulted in significantly greater tumour growth inhi-
bition than what was achieved by either agent alone (Fig. 5A).
Furthermore, the combination was well tolerated and only a mod-
est, statistically insignificant loss in body weight was observed in
the treated groups (Fig. 5A). Notably, the single agent in vivo
effects of MLN8237 were more impressive in this K562 experiment
than what we observed in our studies with the murine Ba/F3 mod-
els (Fig. 2C). Given that human and murine Aurora A genes share
79% sequence homology and that MLN8237 was specifically
designed to target human Aurora A kinase activity, it is possible
that species-specific differences in the potency of MLN8237-medi-
ated kinase inhibition could have contributed to this phenomenon.

Haematoxylin and eosin staining was used to visualize the
architecture of tumours from each treatment group and revealed

© 2010 The Authors
Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Fig. 2 Continued



J. Cell. Mol. Med. Vol XX, No XX, 2010

7

substantial differences in the morphology of single agent and com-
bination-treated tumours. In particular, the tumours treated with the
combination of MLN8237 and nilotinib displayed evidence of stro-
mal disruption and high levels of cell death with very few intact CML
cells remaining (Fig. 5B). This suggests that remaining tumours
from combination-treated mice were largely comprised Matrigel and
non-viable cells/tissue and also highlights the potential therapeutic
benefit provided by the combination over single agent treatments.

Treatment with MLN8237 in vivo leads to 
a morphological phenotype consistent 
with inhibition of Aurora A kinase

Aurora A inhibition causes defects in centrosome segregation,
spindle pole organization and chromosome congression. This 
can ultimately lead to tumour cell death via the development of
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Fig. 3 MLN8237 reduces autophospho-
rylation of Aurora A without signifi-
cantly affecting BCR-ABL activity. (A)
MLN8237 reduces Aurora kinase A
phosphorylation. K562 cells were
treated with 30 nM MLN8237 for 24 hrs.
Protein lysates were subjected to SDS-
PAGE, blotted, and probed with phos-
pho-Aurora A (Thr288) and Aurora A
antibodies. (B) Effects of MLN8237 on
the activity of selected kinases.
MLN8237 was screened against a
kinase panel as described in ‘Materials
and methods’. The ABL1 and the
related ABL2 cytoplasmic tyrosine
kinases share 89% sequence identity
and have some overlapping functions,
but are distinct in that ABL1 fuses with
BCR to form the Philadelphia chromo-
some while ABL2 does not. (C) K562
and LAMA 84 cells were treated with
MLN8237 for 24 hrs. Protein lysates
were subjected to SDS-PAGE, blotted,
and probed with phospho-BCR and c-
Abl antibodies. (D) MLN8237 treatment
does not significantly affect BCR-ABL
kinase activity in primary CML cells.
Primary CML cells obtained from a
patient with unmutated BCR-ABL were
treated with 10 �M MLN8237 for 
24 hrs. BCR-ABL autophosphorylation
and CRKL phosphorylation were
assessed by immunoblotting. Nilotinib
was used as a positive control for BCR-
ABL inhibition.
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deleterious aneuploidy [19]. Consistent with our in vitro data, the
number of multi-nucleated cells visible in the MLN8237-treated
tumours stained with haematoxylin and eosin was increased as
compared with vehicle control indicating that MLN8237 causes
cells to exit mitosis without completing cytokinesis, a process
known as mitotic slippage (Fig. 5C, second from the left).
Although this outcome is primarily associated with inhibition of
Aurora B, cytokinesis failure can occur upon inhibition of Aurora A
as well [18]. Other functional consequences of Aurora A inhibition
that were prominent in the MLN8237-treated tumours (Fig. 5C)
included an elevated number of cells with chromatin bridging (far
left), mitotic slippage (second from left), cells with internuclear
bridging (second from right) and monopolar mitotic spindles (far
right). Taken together, these findings indicate that treatment with

MLN8237 results in morphological changes in CML cells that are
consistent with Aurora A kinase inhibition and indicative of delete-
rious aneuploidy.

MLN8237 augments the 
in vivo pro-apoptotic effects of nilotinib

TUNEL assays were carried out on xenograft tumour sections after
completion of treatment to assess the degree of apoptosis
induced by MLN8237 and nilotinib in vivo. The percentage of
TUNEL� cells was significantly greater in the combination group
compared to treatment with either agent alone indicating that the
two agents cooperate to provoke apoptosis in vivo (Fig. 5D).
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Fig. 4 MLN8237 significantly increases
the efficacy of nilotinib. (A) MLN8237
potentiates the pro-apoptotic effects of
nilotinib. LAMA 84 and K562 cells were
treated with 30 nM MLN8237, 10 nM
nilotinib or the combination for 48 hrs.
Percentages of cells with sub-G0-G1

DNA were determined by PI/FACS. n �

3 � S.D. (B) The combination of
MLN8237 and nilotinib induces mito-
chondrial-dependent apoptosis. K562
and LAMA 84 cells were treated with
100 nM MLN8237, 30 nM nilotinib or
both for 24 hrs. Protein lysates were
subjected to SDS-PAGE, blotted, and
probed with active caspase-3 and cas-
pase-9 antibodies. Anti �-tubulin was
used as a loading control. (C) Co-
treatment with MLN8237 and nilotinib
results in significantly greater growth
inhibition and reduction in survival than
that achieved by either agent alone.
Cells were treated with the indicated
concentrations of MLN8237 for 96 hrs
and viability was assessed by MTT
assay. Error bars indicate the S.D. *P �

0.05 (D) Effects of MLN8237 and nilo-
tinib on clonogenic survival. CD34�

normal bone marrow (n � 3), primary
CML from patients in blast crisis (n �

3), K562 and LAMA 84 cells were
treated with MLN8237, nilotinib or both
drugs for 24 hrs. Cells were plated and
scored as described in the ‘Materials
and methods’.



J. Cell. Mol. Med. Vol XX, No XX, 2010

9

Inhibition of Aurora A activity leads to reduced
expression of the IAP and mitotic regulator
Apollon and this effect sensitizes cells to
nilotinib-induced apoptosis

Apollon (also known as BRUCE or BIRC6, baculovirus inhibitor of
apoptosis protein (IAP) repeats (BIR)-containing protein 6) is a
very large (528 kD) IAP that can be distinguished from other IAP
family members by the presence of its ubiquitin conjugating
enzyme (UCE) domains, which are not contained within any other
IAPs [32]. The UCE domains within Apollon allow it to reduce the
pro-apoptotic potential of cells by targeting Smac and caspase-9
for proteasomal degradation in addition to directly binding to cas-
pases and other pro-apoptotic molecules via its BIR domain to
prevent apoptosis in a manner similar to other IAPs [33, 34].
Apollon is overexpressed in leukaemia and other cancers and has
been linked with resistance to chemotherapy [32, 35]. A recent
investigation demonstrated that Apollon also has important func-
tions during mitosis. It coordinates multiple events in cytokinesis

and moves to the midbody ring during cell division where it
serves as a platform for the membrane delivery machinery and
mitotic regulators including the Aurora kinases [36]. Apollon
depletion causes defective abscission and cytokinesis-associated
apoptosis [36].

Considering that Apollon is associated with Aurora kinases and
has roles in cell division and inhibition of apoptosis, we investi-
gated whether abrogation of Aurora A kinase activity would affect
Apollon expression. Immunoblotting analysis showed that
MLN8237 treatment resulted in a dose-dependent reduction in the
expression of Apollon and increased expression of the pro-apop-
totic Apollon substrate, Smac (Fig. 6A). To confirm that this reduc-
tion in Apollon expression is a direct consequence of Aurora A
kinase inhibition, we used siRNA to knockdown Aurora A expres-
sion. This led to a very significant reduction in the levels of
Apollon (Fig. 6B). This effect does not appear to be a general fea-
ture of mitotic disruption as treatment with nocodazole and vin-
cristine did not significantly decrease Apollon expression and
therefore rather suggests a link between Aurora A activity and
Apollon expression (Fig. 6C).
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Fig. 5 In vivo efficacy and tolerability of
MLN8237 and nilotinib. (A) K562 cells
were injected into the flanks of nude
mice. Vehicle, MLN8237, nilotinib or
both were administered for 14 days. n
� 10 � S.D. *P � 0.00028. (B)
Immunohistochemistry. Tumours were
stained with haematoxylin and eosin as
described in ‘Materials and methods’.
Representative images are shown from
each treatment group. (C) Treatment
with MLN8237 leads to a morphologi-
cal phenotype consistent with Aurora A
kinase inhibition. Tumours were stained
with haematoxylin and eosin.
Representative images from the
MLN8237 treatment group are shown.
Arrows indicate the following: an ele-
vated number of cells with chromatin
bridging (far left), mitotic slippage
(second from left), cells with internu-
clear bridging (second from right) and
monopolar mitotic spindles (far right).
(D) Quantification of TUNEL� cells.
Positive cells were scored manually
under 20	 magnification. Mean �

S.D., n � 5. *P � 0.05.
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To determine whether inhibition of Apollon by MLN8237 sig-
nificantly contributes to its ability to sensitize CML cells to nilo-
tinib, we knocked down Apollon expression in LAMA 84 cells
using siRNA (Fig. 6D). Nilotinib induced significantly greater lev-
els of apoptosis in LAMA 84 cells treated with Apollon-targeted
siRNA compared to non-targeted controls (Fig. 6D). These data
suggest that inhibition of Apollon expression caused by
MLN8237 treatment sensitizes CML cells to nilotinib-induced
apoptosis and provides a rationale for the combination of these
two agents in CML.

Discussion

Resistance to tyrosine kinase inhibitor therapy in CML continues
to be a significant problem. In particular, the T315I and E255K
mutations in BCR-ABL confer cross-resistance to imatinib, dasa-
tinib and nilotinib [30]. Several investigational agents have
demonstrated preclinical efficacy in T315I-mutated CML cells. The
pan-Aurora kinase inhibitor MK-0457 has shown clinical activity
against CML cells harbouring the T315I mutation [11]. Early in
vitro competition binding assays revealed that MK-0457 bound to
wild-type ABL1 and T315I ABL1 [37, 38]. This observation led to
the hypothesis that the anti-leukemic efficacy of MK-0457 was due

to inhibition of BCR-ABL, rather than Aurora, activity [14, 15].
However, a more recent investigation revealed that the efficacy of
clinically relevant concentrations of MK-0457 was primarily due to
inhibition of Aurora kinase activity [16]. How significantly Aurora
kinase inhibition contributes to the activity of MK-0457 in CML
remains somewhat controversial. This matter will not be defini-
tively resolved for MK-0457 as its development has been stopped
due to issues with cardiac toxicity observed in some early phase
clinical trials and will have to be addressed in studies with other
Aurora kinase inhibitors. MLN8237 is a highly selective inhibitor of
Aurora A (IC50 � 2 nM) and demonstrates little inhibition of vari-
ous ABL isoforms in enzyme assays. Our data suggest that
MLN8237 does not directly inhibit BCR-ABL activity, indicating
that Aurora A kinase is a valid therapeutic target in CML.

The biological consequences of Aurora A kinase inhibition have
been intensively investigated in recent years. Aurora A kinase
plays an essential role in the assembly and function of the mitotic
spindle and disruption of its activity affects spindle pole organiza-
tion, centrosome separation and chromosome congression [39].
Ultimately, cells treated with Aurora A kinase inhibitors undergo
cell death through the development of deleterious aneuploidy [19].
Our data show that MLN8237 treatment initially results in a signif-
icant degree of aneuploidy before cell death ensues (Figs 1B, C,
5C). The collective effects of MLN8237 in BCR-ABL� cells are
summarized in Table 1.
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Notably, MLN8237-induced apoptosis was associated with
significant decreases in the expression levels of Apollon. Apollon
has several functional domains, multiple binding partners and
plays important roles in the regulation of apoptosis and cell
division [36, 40]. Apollon can be distinguished from other IAP
family members by its high molecular weight (528 kD) and
unique E2/E3 ubiquitin conjugating/ubiquitin ligase functions. As

Apollon overexpression has been associated with an
unfavourable outcome and resistance to chemotherapy in
leukaemia, we were particularly interested in examining whether
the ability of MLN8237 to reduce Apollon expression could
potentially sensitize CML cells to the standard of care agent nilo-
tinib [35]. Our results show that targeted knockdown of Apollon
significantly augments the pro-apoptotic effects of nilotinib, sug-
gesting that suppression of Apollon expression by MLN8237
may contribute to its ability to heighten the anticancer activity of
nilotinib. Furthermore, it is likely that the reduction in Apollon
expression associated with MLN8237 is a direct consequence of
Aurora inhibition as targeted knockdown of Aurora A kinase by
siRNA was associated with a significant reduction in Apollon
expression. These findings represent a novel mechanistic
approach for improving the efficacy of tyrosine kinase inhibitor
therapy in CML (Fig. 6E).

There are two potential important clinical translations of 
the results of the current study. We have shown that MLN8237 
is effective against cell lines and primary patient CML cells
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Fig. 6 Targeting Apollon expression sensi-
tizes CML cells to nilotinib-induced apopto-
sis. (A) MLN8237 treatment results in a
dose-dependent reduction in the large IAP,
Apollon and increased expression of its
substrate, Smac. LAMA 84 cells were
treated with MLN8237 for 24 hrs. Protein
lysates were subjected to SDS-PAGE, blot-
ted, and probed with Apollon and Smac
antibodies. Tubulin documented equal
loading. (B) Aurora A SMARTpool or
siCONTROL siRNA directed at luciferase
were transfected into LAMA 84 cells using
the Nucleofector II. (C) General disruption
of mitosis does not significantly affect
Apollon expression. LAMA 84 cells were
treated with nocodazole, vincristine or
MLN8237 for 24 hrs. Protein lysates were
subjected to SDS-PAGE, blotted, and
probed with an Apollon antibody. Tubulin
documented equal loading. (D) Apollon
SMARTpool or siCONTROL siRNA directed
at luciferase were transfected into LAMA
84 cells using the Nucleofector II. Tubulin
was used as a loading control. LAMA 
84 cells transfected with Apollon-targeted
siRNA and non-targeted siRNA were
treated with nilotinib for 48 hrs and the per-
centage of apoptotic cells were determined
by PI/FACS analysis. n � 3 � S.D., *P �

0.05. (E) Schematic depicting the multiple
anti-leukaemia properties of the MLN8237.
MLN8237 inhibits Aurora A kinase leading
to deleterious aneuploidy, inhibition of the
IAP, Apollon and cell death.

Table 1 Effects of MLN8237 in BCR-ABL+ cells

Apoptosis Cell cycle 

Activation of caspases-9 and -3 Accumulation of aneuploid cells

Decreased expression of Apollon Inhibition of colony formation

Increased expression of Smac Mitotic slippage

Induction of TUNEL�� Monopolar mitotic spindles

DNA fragmentation Chromatin bridging
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expressing unmutated and mutated forms of BCR-ABL including
the highly resistant T315I mutation and that it has activity inde-
pendent of p53 function. Therefore, MLN8237 may be clinically
active as a single agent in the setting of T315I and E255K muta-
tions for which the currently available tyrosine kinase inhibitors
are ineffective. Moreover, the combination of MLN8237 and nilo-
tinib is effective and well tolerated in preclinical models of CML
and represents a novel therapeutic strategy for advanced phase
CML that is orally active and has the potential to suppress the
emergence of CML clones expressing a range of resistant muta-
tions including T315I and E255K.

The current treatment strategy for resistant CML involves
sequential administration of tyrosine kinase inhibitors, which is
associated with the development of compound mutations in BCR-
ABL with increased oncogenic potency [31]. Patients with imatinib
resistance have heightened genomic instability and in this setting
combination treatment with an agent effective against cells har-
bouring the T315I mutation and a BCR-ABL kinase inhibitor could
possibly prevent resistance caused by kinase domain mutations in
CML [30, 41]. The combination of these two agents has the poten-
tial to eliminate BCR-ABL kinase domain mutation as a mecha-
nism of resistance in CML, suppressing resistant disease and
leading to sustained remissions in the vast majority of patients.
Based on this promising preclinical data, a phase I/II study is

warranted to investigate the safety and activity of MLN8237 in
refractory CML.
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efficacy of cytarabine through a FOXO-dependent mechanism. International 
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