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Abstract—The method by which individual decisions are
combined in cooperative cognitive radio networks is crucial to
minimising the overall probabilities of false alarm and missed
detection. In this paper, general expressions for these probabil-
ities are derived for a double threshold energy detector-based
network, and an analytical solution for the optimal value of
voting rule is found so that the overall probability of error is
minimised.

Simulation results show that there are significant advantages
to the use of double threshold energy detector-based networks as
opposed to their single threshold-based counterparts; additional
simulations verify that the analytical solution is optimal.

I. INTRODUCTION

The electromagnetic spectrum is a valuable natural resource:

without it, there would be no radio, television or mobile

telephony services, not to mention the plethora of other

applications for which it is employed. Like other natural

resources, it is imperative that the electromagnetic spectrum

is used responsibly, maximising its benefits for all.

Over the past few years, significant research has taken place

in the area of spectrum utilisation. Worryingly, studies by

the Federal Communications Commission [1], [2] and the

National Telecommunications and Information Administration

[3] indicate that the majority of the usable electromagnetic

spectrum (i.e. bands with good propagation characteristics) has

been licensed in the United States, leaving an ever-decreasing

allocation for new applications.

A survey by the European Regulators Group [4] found

that four EU member countries did not have the frequency

resources available for additional 2G/3G mobile networks.

This current lack of available spectrum resources does not

bode well for future competition.

Fortunately, the problem is not intractable: statistics show

that spectrum usage varies significantly depending on time

and/or location [5]. To exploit this variation, an intelligent

radio platform has been proposed [6]; it is envisaged that this

new platform, known as Cognitive Radio, will have the ability

to identify and broadcast in the unused areas of spectrum,

thereby freeing up occupied frequency bands, while allowing

existing and legacy systems to function as normal.

However, the technical challenges involved in designing

such devices are many and complex. For example, in a licensed

- - -r(t) | · |2
∫ T

0
dt Oi

Fig. 1. Illustration of an energy detector.

band, if the primary signal is not detected, the cognitive

radio risks interfering with licensed broadcasts - this is an

unacceptable situation for the primary user who may have paid

a license fee for broadcast rights.

One promising solution is for neighbouring cognitive radios

to pool their resources in order to sense the licensed signals

at very low power levels, thus ensuring a very low proba-

bility of interference. This approach, known as cooperative

spectrum sensing, is quickly becoming a key candidate for

next-generation wireless technologies.

In this paper, networks of cooperating double threshold

energy detectors are considered. In particular, it is shown that

the performance of such networks can be significantly greater

than networks of cooperating single threshold detectors, even

when there are fewer cooperating nodes. This increase in

receiver sensitivity is a crucial step towards the realisation of

efficient spectrum utilisation.

II. SYSTEM MODEL

A. Energy Detection

1) Single Threshold Detection: Energy detection is a spec-

trum sensing method consisting of a square law device and an

integrator, as shown in Figure 1. Although it has been shown

to have a higher sample complexity than other methods of

spectrum sensing, such as matched filter detection or cyclo-

stationary feature detection [7], it has a low implementation

cost,t which makes it more commercially viable.

Each node in a cognitive radio network must decide whether

the band of interest is occupied or not. The usual method of ac-

complishing this task is the binary hypothesis test (see Figure

2), where a decision is made based on discrete observations

of the spectrum.

978-1-4244-7907-8/10/$26.00 2010 IEEE
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Fig. 2. Illustration of a binary hypothesis test with chi square (H0) and
noncentral chi square (H1) probability density functions and single threshold
λ.

In the typical case of a cognitive radio in a noisy environ-

ment, the received signal will be:

r(t) =

{

n(t) H0

s(t) + n(t) H1
(1)

where r(t) represents the received signal, n(t) represents

time-varying noise interference, s(t) represents the transmitted

signal, and H0 and H1 represent the null and alternative

hypotheses, respectively.

The energy detector operates by taking discrete samples

of the spectrum and processing them to form a test statistic,

which is then compared to a pre-calculated threshold. When

the test statistic is less than the threshold, the null hypothesis is

chosen; when it is greater, the alternative hypothesis is chosen,

as per:

Di =

{

H0 Oi < λ

H1 Oi ≥ λ
(2)

where Di is the decision at node i, Oi is the measured energy

(i.e. the test statistic) at node i and λ is the threshold. It should

be noted here that λ is assumed to be identical at each node.

Due to the square-law integrator process (see Figure 1), the

distribution of the energy of the received signal at node i will

be [8]:

Oi ∼

{

χ2
2u H0

χ2
2u(2γ) H1

(3)

where χ2
2u and χ2

2u(2γ) are the central and noncentral chi

square distributions, respectively, u is the time-bandwidth

product and γ is the noncentrality parameter. Again, it is

assumed that these parameters are identical at each node.

In addition, the following relationships should be noted [8],

[9, p. 45-47]:

u =
Ns

2
(4)

γ = SNR (5)

Λ1
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Fig. 3. Illustration of a hypothesis test with chi square (H0) and noncentral
chi square (H1) probability density functions, lower threshold λ0, upper
threshold λ1 and uncertainty region U .

where Ns is the number of samples and SNR is the signal to

noise ratio.

Energy detection is not a recent development, and its prin-

ciples are well-understood [8], [10], [11]. In its simplest form,

a single threshold is used, and the associated probabilities are

defined as [8], [9], [12]:

Pf = P (Oi > λ|H0)

=
Γ(u, λ

2σ2 )

Γ(u)
(6)

Pa = P (Oi ≤ λ|H0)

= 1 − Pf (7)

Pd = P (Oi > λ|H1)

= Qu

(

√

2γ

σ2
,

√

λ

σ2

)

(8)

Pm = P (Oi ≤ λ|H1)

= 1 − Pd (9)

where Pf , Pa, Pd and Pm are the probabilities of false alarm,

acquisition, detection and missed detection, respectively, σ2 is

the power of the noise signal n(t) (assuming a 1Ω reference

resistor), Γ(a, b) is the upper incomplete gamma function,

Γ(a) is the gamma function and Qu(a, b) is the Marcum Q

function.

2) Double Threshold Detection: The double threshold en-

ergy detector employs two thresholds which define the same

hypotheses as the single threshold detector, in addition to a

region of uncertainty where the detector chooses neither H0

nor H1 but, instead, reports that it is unsure which hypothesis



is true (see Figure 3):

Di =







H0 Oi < λ0

U λ0 ≤ Oi < λ1

H1 Oi ≥ λ1

(10)

where λ0 and λ1 are the lower and upper thresholds, respec-

tively, and U is the decision representing uncertainty.

The use of two thresholds allows the probabilities of false

alarm and missed detection to be set arbitrarily low at the

cost of an increased uncertainty region; this is the principle

on which double threshold energy detection relies.

The probabilities associated with the double threshold de-

tector are defined as [13]:

Pf = P (Oi > λ1|H0)

=
Γ(u, λ1

2σ2 )

Γ(u)
(11)

Pa = P (Oi ≤ λ0|H0)

= 1 −
Γ(u, λ0

2σ2 )

Γ(u)
(12)

∆0 = P (λ0 < Oi ≤ λ1|H0)

= 1 − Pf − Pa (13)

Pd = P (Oi > λ1|H1)

= Qu

(

√

2γ

σ2
,

√

λ1

σ2

)

(14)

Pm = P (Oi ≤ λ0|H1)

= 1 − Qu

(

√

2γ

σ2
,

√

λ0

σ2

)

(15)

∆1 = P (λ0 < Oi ≤ λ1|H1)

= 1 − Pd − Pm (16)

where ∆0 is the probability of uncertainty under H0 and ∆1

is the probability of uncertainty under H1.

B. Cooperative Networks

1) Single Threshold Detection: Energy detection is not an

ideal candidate for cognitive radio since it is a sub-optimal pro-

cess [14], and has been shown to be susceptible to uncertainty

in parameter measurements [7]. However, through the use of

networks of individual detectors, significant performance gains

can be achieved. Typically, this involves each detector node

making an individual decision about spectrum occupancy; the

decisions are then transmitted across a control channel (e.g.

an underlay channel or a fixed frequency channel [14]) and

processed either at a designated master node, or at a fixed

control center.

In the case of single threshold energy detection, the deci-

sions can be either H0 or H1 (see (2)). Each node transmits

its decision to the fusion center where the votes for each

hypothesis are counted and an overall decision is made, based

on a pre-defined voting rule. Generally, the k-out-of-N rule is

used [15]:

Dfc =

{

H0

∑N

i=1 g(Di) < k

H1

∑N

i=1 g(Di) ≥ k
(17)

where Dfc is the decision at the fusion center, N is the total

number of nodes in the network, k is the voting rule, and the

function g(·) is defined as:

g(Di) =

{

0 Di 6= H1

1 Di = H1.
(18)

The associated probabilities for the k-out-of-N rule for a

single threshold detector network are [13], [15]:

Qf =

N
∑

l=k

(

N

l

)

PN−l
a P l

f (19)

Qa = 1 − Qf (20)

Qd =

N
∑

l=k

(

N

l

)

PN−l
m P l

d (21)

Qm = 1 − Qd (22)

where Qf , Qa, Qd and Qm are the overall probabilities

of false alarm, acquisition, detection and missed detection,

respectively.

2) Double Threshold Detection: For the double threshold

energy detector, there are three possible decisions: H0, H1

and U . This allows for a greater degree of flexibility with the

counting process as the number of uncertain nodes can change

with each poll of the network (with a single threshold detector

there are no uncertain nodes since there is no uncertainty

region). Thus, by setting the area (i.e. the probability) of

the uncertainty region appropriately, it is possible to censor

the decisions of the nodes most likely to make erroneous

decisions, as shown in Figure 3.

It should be noted that the fusion center decision rule for

a double threshold energy detector-based network is the same

as for a single threshold network (see (17)).

Previous to this work, to the best of the authors’ knowledge,

no general equations existed in the literature for describing the

relevant probabilities for a double threshold detector network

with an arbitrary voting rule. The overall probability of false

alarm is given by (see Appendix A for proof):

Qf =

K
∑

l=k

(

K

l

)

PK−l
a P l

f

(1 − ∆0)K
, (23)



where K is the number of certain nodes (i.e. the number

of nodes that choose either H0 or H1). Applying a similar

process, the following equation can be derived for the overall

probability of detection:

Qd =

K
∑

l=k

(

K

l

)

PK−l
m P l

d

(1 − ∆1)K
. (24)

As before, the overall probabilities of acquisition and missed

detection are defined as:

Qa = 1 − Qf , (25)

Qm = 1 − Qd. (26)

III. VOTING RULE OPTIMISATION

In previous work [15], the optimal voting rule (i.e. the voting

rule minimising the overall probability of error) for a single

threshold detector network was found to be:

kopt =













N log

(

Pa

Pm

)

log

(

PdPa

PfPm

)













(27)

where kopt is the optimal voting rule and d·e is the ceiling

function.

To find the optimal voting rule for a double threshold

detector network, it is necessary to define:

G(k) = Qf + Qm

= 1 +
K
∑

l=k

(

K

l

)

(

PK−l
a P l

f

(1 − ∆0)K
−

PK−l
m P l

d

(1 − ∆1)K

)

(28)

where G(k) is the error function.

G(k) can be either maximised or minimised by finding the

solution of:

dG(k)

dk

∣

∣

∣

∣

k=kopt

= 0. (29)

The second derivative test can then be applied to determine

whether this solution is a maximum or a minimum.

Noting that k is integer, the following simplification can be

made:

dG(k)

dk
≈

G(k + 1) − G(k)

(k + 1) − (k)

=

(

K

k

)

(

PK−k
m P k

d

(1 − ∆1)K
−

PK−k
a P k

f

(1 − ∆0)K

)

. (30)

Solving (29) for kopt yields the following (see Appendix B

for proof):

kopt =













K log

(

Pa(1 − ∆1)

Pm(1 − ∆0)

)

log

(

PdPa

PfPm

)













. (31)

It should be noted that kopt satisfies 1 ≤ kopt ≤ K since

the probability of error is unity outside this range. In the case

where K = N (i.e. ∆0 → 0, ∆1 → 0), (31) simplifies to (27).

IV. SIMULATION RESULTS

A. Voting Rule Optimality

In order to assess the accuracy of (31), a simulation was

carried out where the lower threshold was varied while the

signal to noise ratio, number of samples and threshold separa-

tion (λ1−λ0) were kept constant. As can be seen in Figure 4,

the analytical solution matches the optimum voting rule found

via simulation across the whole range of values.

160 180 200 220 240
Λ0

2
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10
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kopt

Theoretical
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Fig. 4. Plot of optimal voting rule against lower threshold value for a network
of 20 nodes, 15 of which are certain, with SNR = −10dB, Ns = 200,
λ1 = λ0 + 20.

B. Performance: Best Case Scenario

To quantify the maximum performance of double threshold

detection, a best case scenario was analysed. Here, both the

single and double threshold detector networks have twenty

nodes, and each double threshold detector node is certain, i.e.

all twenty nodes vote H0 or H1. As can be seen in Figure 5,

the value of the error function at the optimal voting rule for a

double threshold network is lower than at the optimal voting

rule for a single threshold network.

In the case where both networks are utilising their respective

optimal voting rules, it can be seen (Figure 8) that the double

threshold detector network outperforms the single threshold

detector network in terms of receiver sensitivity. Specifically,

given an overall error probability of 0.05, the double threshold

detector network outperforms the single threshold by a margin

of almost 2dB.

C. Performance: Practical Scenarios

In a more practical scenario, several cognitive radio nodes

are likely to report that they are uncertain. Unsurprisingly,

this increases the overall probability of error for the double

threshold detector network. However, it is still possible for the

double threshold network to outperform the single threshold

network, as shown in Figure 6, but only when the number of

reporting nodes is sufficiently large.
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Fig. 5. Plot of the error function against voting rule for a network of 20 nodes,
all of which are certain, with SNR = −10dB, Ns = 200, λ = λ0 = 200,
λ1 = 220.
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Fig. 6. Plot of the error function against voting rule for a network of 20 nodes,
15 of which are certain, with SNR = −10dB, Ns = 200, λ = λ0 = 200,
λ1 = 220.
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Fig. 7. Plot of the error function against voting rule for a network of 20 nodes,
9 of which are certain, with SNR = −10dB, Ns = 200, λ = λ0 = 200,
λ1 = 220.

In the case where the number of reporting nodes is too

small, in this instance when fewer than ten nodes vote (see

Figure 7), the single threshold detector network begins to

outperform the double threshold detector network. However,

-20 -15 -10 -5 0
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0.4

0.6
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GHkopt<L

Single Threshold

Double Threshold

Fig. 8. Plot of the error function with optimised voting rule against SNR
for a network of 20 nodes, all of which are certain, with Ns = 200, λ =

λ0 = 200, λ1 = 220.
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Fig. 9. Plot of the error function with optimised voting rule against SNR
for a network of 20 nodes, 15 of which are certain, with Ns = 200, λ =

λ0 = 200, λ1 = 220.
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Fig. 10. Plot of the error function with optimised voting rule against SNR
for a network of 20 nodes, 9 of which are certain, with Ns = 200, λ =

λ0 = 200, λ1 = 220.

it should be noted that the number of uncertain nodes is

proportional to the area of the uncertainty region itself, and so

such a scenario could only occur if the thresholds had been

placed in such a way that the uncertainty region was large; this



situation is always avoidable as the placement of thresholds,

as far as this work is concerned, is flexible.

Figures 9 and 10 illustrate the effect of increasing the num-

ber of uncertain nodes on receiver sensitivity. In the case where

fifteen out of twenty nodes are certain, the double threshold

detector network outperforms the single threshold detector

network; in the case where nine out of twenty are certain,

the single threshold detector network begins to outperform the

double threshold detector network.

V. CONCLUSION

In this paper, general expressions for the probabilities of

error for a double threshold energy detector-based network

with arbitrary voting rule and unknown number of certain

nodes were derived. These expressions were simplified for the

practical case where the number of certain nodes is known

at the fusion center at the time of decision fusion, and an

expression for the optimal voting rule in this case was derived.

Simulation results showed that the derived equation for the

optimal voting rule matches the actual optimal voting rule

across a range of values. In addition, it was shown that the

correct choice of voting rule is crucial to minimising the

overall probability of error and that no one rule is optimal

for all situations.

Simulation results also illustrated how the number of certain

nodes, and by extension, the size of the uncertainty region, is

crucial to the performance of the double threshold scheme. A

combined optimal threshold placement and optimal voting rule

selection scheme would be desirable to find the performance

limits of both single and double threshold-based networks -

only then could a real comparison be made between the limits

of both techniques. It is envisaged that this will be the focus

of future work.

APPENDIX A

DERIVATION OF DOUBLE THRESHOLD ENERGY DETECTOR

NETWORK PROBABILITIES

For both single and double threshold energy detectors, the

network probability of false alarm is defined as:

Qf = P (Dfc = H1|H0)

=
P ((Dfc = H1) ∩ H0)

P (H0)
(32)

where P (H0) is the probability of an event occurring from

the set of events H0.

H0 consists entirely of false alarm and acquisition events,

and both subsets are mutually exclusive as false alarms and

acquisitions cannot occur simultaneously, by definition. Thus:

P (H0) =P ((Dfc = H0) ∩ H0)

+ P ((Dfc = H1) ∩ H0). (33)

To simplify notation, it is convenient to define F as the set of

false alarm events and A as the set of acquisition events:

P (F ) = P ((Dfc = H1) ∩ H0) (34)

P (A) = P ((Dfc = H0) ∩ H0) (35)

where P (F ) and P (A) are the probabilities of an event

occurring from the sets of events F and A, respectively. Now,

combining (32), (33), (34) and (35):

Qf =
P (F )

P (A) + P (F )
. (36)

For a single threshold detector, P (F ) and P (A) are bino-

mially distributed [15]:

P (F ) =

N
∑

l=k

(

N

l

)

PN−l
a P l

f (37)

P (A) =

k−1
∑

l=0

(

N

l

)

PN−l
a P l

f (38)

where the lower index for P (F ) (i.e. l = k) is determined by

the decision rule specified in (17). Summing P (A) and P (F ):

P (A) + P (F ) =

k−1
∑

l=0

(

N

l

)

PN−l
a P l

f +

N
∑

l=k

(

N

l

)

PN−l
a P l

f

=
N
∑

l=0

(

N

l

)

PN−l
a P l

f

= 1. (39)

This is easily verifiable using the binomial theorem and the

relationship:

Pf = 1 − Pa. (40)

Now, combining (36), (37) and (39):

Qf =

N
∑

l=k

(

N

l

)

PN−l
a P l

f .

A similar process can be applied to show that (21) holds true.

For the double threshold detector network, both P (F ) and

P (A) change due to the uncertainty region:

P (F ) =

N
∑

l=k

(

N

l

) N
∑

K=l

(

N − l

K − l

)

PK−l
a P l

f∆N−K
0 (41)

P (A) =

k−1
∑

l=0

(

N

l

) N
∑

K=l

(

N − l

K − l

)

PK−l
a P l

f∆N−K
0 . (42)

These equations are analogous to (37) and (38); the additional

binomial distribution describes the relationship between the

probability of acquisition and the probability of uncertainty.



In this case, the summation of P (A) and P (F ) is:

P (A) + P (F ) =

k−1
∑

l=0

(

N

l

) N
∑

K=l

(

N − l

K − l

)

PK−l
a P l

f∆N−K
0

+

N
∑

l=k

(

N

l

) N
∑

K=l

(

N − l

K − l

)

PK−l
a P l

f∆N−K
0

=
N
∑

l=0

(

N

l

) N
∑

K=l

(

N − l

K − l

)

PK−l
a P l

f∆N−K
0

=1. (43)

This can be verified using the binomial theorem and the

relationship:

∆0 = 1 − Pa − Pf . (44)

Now, combining (36), (41) and (43):

Qf =

N
∑

l=k

(

N

l

) N
∑

K=l

(

N − l

K − l

)

PK−l
a P l

f∆N−K
0 . (45)

Equation (45) represents the overall probability of false

alarm given a voting rule, k, and unknown number of certain

nodes, K. However, at the fusion center, the number of certain

nodes is always known prior to any summation of results, and

so it is possible to simplify:

P (F ) =

N
∑

l=k

(

N

l

)(

N − l

K − l

)

PK−l
a P l

f∆N−K
0 ,

P (A) =

k−1
∑

l=0

(

N

l

)(

N − l

K − l

)

PK−l
a P l

f∆N−K
0 . (46)

Noting that:

(

N

l

)(

N − l

K − l

)

=

(

N

K

)(

K

l

)

, (47)

it is possible to simplify further:

P (F ) =

(

N

K

)

∆N−K
0

K
∑

l=k

(

K

l

)

PK−l
a P l

f , (48)

P (A) =

(

N

K

)

∆N−K
0

k−1
∑

l=0

(

K

l

)

PK−l
a P l

f . (49)

Thus, the summation becomes:

P (A) + P (F ) =

(

N

K

)

∆N−K
0

K
∑

l=0

(

K

l

)

PK−l
a P l

f

=

(

N

K

)

∆N−K
0 (1 − ∆0)

K . (50)

Again, this can be verified by applying the binomial theorem.

Now, combining (36), (48) and (50):

Qf =

(

N

K

)

∆N−K
0

K
∑

l=k

(

K

l

)

PK−l
a P l

f

(

N

K

)

∆N−K
0 (1 − ∆0)

K

=

K
∑

l=k

(

K

l

)

PK−l
a P l

f

(1 − ∆0)K
. (51)

In the case where K equals N (i.e. ∆0 → 0), both (45) and

(51) simplify to (19).

A similar process can be applied to show that (24) is true.

APPENDIX B

DERIVATION OF OPTIMAL VOTING RULE

To find the optimal voting rule, it is necessary to find the

solution to:

(

K

kopt

)

(

P
K−kopt
m P

kopt

d

(1 − ∆1)K
−

P
K−kopt
a P

kopt

f

1 − ∆0)K

)

= 0. (52)

Solving this for kopt:

kopt =

K log

(

Pa(1 − ∆1)

Pm(1 − ∆0)

)

log

(

PdPa

PfPm

) . (53)

This may produce a non-integer value; however, the overall

probabilities of false alarm and missed detection are binomi-

ally distributed, and so, by definition, the ceiling function must

be applied. Thus, the true optimal voting rule is:

kopt =













K log

(

Pa(1 − ∆1)

Pm(1 − ∆0)

)

log

(

PdPa

PfPm

)













. (54)

By the second derivative test, for (54) to minimise the

overall probability of error, it must be shown that:

d2G(k)

dk2

∣

∣

∣

∣

k=kopt

> 0. (55)

Again, because k is an integer, the following simplification

can be made:

d2G(k)

dk2
=

dG(k + 1)

dk
−

dG(k)

dk
(k + 1) − (k)

. (56)

Now, using (29):

d2G(k)

dk2

∣

∣

∣

∣

k=kopt

=
dG(k + 1)

dk

∣

∣

∣

∣

k=kopt

−
dG(k)

dk

∣

∣

∣

∣

k=kopt

=
dG(k + 1)

dk

∣

∣

∣

∣

k=kopt

− 0. (57)



Thus, it must be shown that:

(

K
kopt+1

)

(

P
K−kopt−1

m P
kopt+1

d

(1−∆1)K −
P

K−kopt−1

a P
kopt+1

f

(1−∆0)K

)

> 0.

(58)

Simplifying this:

Pd

Pm

P
K−kopt
m P

kopt

d

(1 − ∆1)K
−

Pf

Pa

P
K−kopt
a P

kopt

f

(1 − ∆0)K
> 0. (59)

Now, recalling (52), it suffices to show that:

Pd

Pm

−
Pf

Pa

> 0

PdPa > PmPf . (60)

This will always be true as Pd > Pm and Pa > Pf by design.

Thus, (54) will minimise the overall probability of error.
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