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ABSTRACT
Recent studies in cooperative energy detection have focused
on the optimization of the threshold value and fusion center
voting rule in an effort to minimize the sensing error proba-
bility. However, such studies operate under the assumption
that the signal to noise ratio is equal at every node, which
is rarely the case in practice.

In this paper, generalized formulas for the optimal threshold
value and optimal fusion center voting rule are derived for
hard decision energy detector-based spectrum sensing net-
works where the signal to noise ratio is distinct at each node.
It is shown that the implementation of this solution requires
more data to be transmitted than the optimal soft decision
scheme, which is known to have superior performance.

Categories and Subject Descriptors
C.2.1 [Computer-communication networks]: Network
architecture and design—distributed networks, wireless com-
munication; G.1.6 [Numerical analysis]: Optimization;
G.3 [Probability and statistics]: Statistical computing

General Terms
Algorithms, Performance, Theory

Keywords
Cognitive radio, spectrum sensing, cooperative networks,
energy detector, hard decision, optimization

1. INTRODUCTION
Recent years have seen increasing utilization of the electro-
magnetic spectrum for a variety of military, civilian and
commercial applications. For each new application, fre-
quency resources are allocated based on the intended ge-
ographic range of the service, the number of channels pro-
posed and the required bandwidth per channel. However,

such resources are limited due to the variation of propaga-
tion characteristics across the electromagnetic spectrum and
so, with each new application, the amount of usable spec-
trum decreases.

Recent studies by the Federal Communications Commission
and National Telecommunications and Information Admin-
istration indicate that the majority of usable frequencies
have been allocated in the United States [3, 9]. A sim-
ilar study by the European Regulators Group found that
several EU member countries lacked the resources for ad-
ditional 2G/3G mobile networks [2]. Such bottlenecks pose
serious risks to future commercial competition and represent
a barrier to efficient spectrum regulation.

However, the problem is not intractable: studies have shown
that spectrum usage in allocated bands can vary significantly
depending on time and/or location [7]. By exploiting this
variation, it is possible to recover bands which have been al-
located but are unused for certain time periods or in certain
locations. The process by which this is achieved is known
as spectrum sensing. However, if a channel were inaccu-
rately determined to be free, then there is a high risk that
the service on that channel could be interfered with. This
is an unacceptable situation for the service owner, who may
have paid a license fee to use the channel. Thus, there is a
requirement for spectrum sensing to be very reliable.

One method of spectrum sensing involves the use of energy
detectors, which are less expensive to produce, but also less
accurate than other available technologies such as matched
filtering and cyclostationary feature detection [1]. However,
when grouped together, a significant increase in performance
can be achieved through cooperation, making networks of
low cost energy detectors an ideal solution for reliable spec-
trum sensing [15].

Such cooperation requires that sensor nodes be able to com-
municate with each other. There are several methods by
which this can be achieved [15, 6, 8]; however, available
spectrum is scarce (recall that the nodes themselves are at-
tempting to identify unoccupied bands to begin with), so
it is necessary that communication between nodes is lim-
ited. One particular scheme, known as hard decision fusion,
minimizes the amount of transmitted data by requiring that
each node transmit a binary decision about band occupancy.
The performance of this scheme depends partially on envi-
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ronmental factors beyond the control of the designer, such
as the power of the signal (if one is present) and background
noise, but also on arbitrary parameters at both the local
node and network levels. Recent studies have focused on the
optimization of these parameters so that sensing reliability
is maximized [15, 5]. However, such analyses have relied on
simplifying assumptions (e.g. that the signal to noise ratio
at each node is equal) which are not generally applicable. In
this paper, a generalized optimal solution is derived for hard
decision sensor networks and it is shown that the implemen-
tation of this solution requires significantly more data to be
transmitted than its soft decision equivalent.

2. SYSTEM MODEL

2.1 Signal model
In a network of cooperating energy detector-based spectrum
sensor nodes, for a given channel, the received signal is typ-
ically represented as:

ri(t) =

{

ni(t) H0

si(t) + ni(t) H1,
(1)

where ri(t) represents the received signal at the ith node,
ni(t) represents the time-varying noise interference at the
ith node, si(t) represents the transmitted signal at the ith

node and H0 and H1 are the null and alternative hypotheses,
respectively.

2.2 Energy detection
In hard decision energy detection, in order to determine
which hypothesis is true, i.e. whether the channel is oc-
cupied or unoccupied, the binary hypothesis test is applied.
Thus, at each energy detector node, a test statistic is com-
puted from discrete samples of the channel under investiga-
tion:

Yi =

Mi
∑

n=1

| ri[n] |2, (2)

where Yi is the test statistic at the ith node in the network
(i.e. the band energy assuming a 1Ω reference resistor), Mi

is the number of samples at the ith node and ri[n] = ri(nTs),
where Ts is the sample period.

The test statistic is then compared to a threshold, and a
decision is made according to a predefined rule. For hard
decision energy detection, the rule is given by:

Di =

{

H0 Yi ≤ λi

H1 Yi > λi,
(3)

where Di is the decision at node i and λi is the threshold at
node i.

From (2), the distribution of the energy of the received signal
at node i will be:

Yi ∼

{

χ2
2ui

H0

χ2
2ui

(2γi) H1,
(4)

where χ2
2ui

and χ2
2ui

(2γi) are the central and noncentral chi
square distributions, respectively, ui is the time-bandwidth
product at the ith node and γi is the noncentrality parameter
at the ith node [13].

The time-bandwidth product and noncentrality parameter
at the ith node are defined as ui = Mi

2
and γi = SNRi,

respectively, where SNRi is the signal to noise ratio at the
ith node [13;, 10, p. 45-47]. It is assumed that the number
of samples is equal at each node; thus, Mi = M and ui = u,
where M is the number of samples at every node and u is
the common time-bandwidth product.

If the number of samples is large then, invoking the cen-
tral limit theorem, the test statistic becomes approximately
normally distributed:

Yi ∼

{

N (Mσ2
i , 2Mσ4

i ) H0

N (Mσ2
i (1 + γi), 2Mσ4

i (1 + γi)
2) H1,

(5)

where σ2
i is the power of the noise signal ni(t) (assuming a

1Ω reference resistor) at the ith node [12].

Thus, the decision probabilities at the ith node are defined
as:

Pfi
= Q

(

λi − Mσ2
i

√

2Mσ4
i

)

, (6)

Pai = 1 − Pfi
, (7)

Pdi
= Q

(

λi − Mσ2
i (1 + γi)

√

2Mσ4
i (1 + γi)2

)

, (8)

Pmi = 1 − Pdi
, (9)

where Pfi
, Pai , Pdi

and Pmi are the probabilities of false
alarm, acquisition (i.e. detecting an available unused chan-
nel), detection and missed detection at the ith node, respec-
tively, and Q(·) is the standard Gaussian complementary
cumulative distribution function [12].

2.3 Cooperative networks
After each detector has made a decision about channel occu-
pancy, the results are transmitted across a control channel
to a designated master node or a fixed control center, called
the fusion center, where a voting rule is applied to reach an
overall decision. Generally, the k-out-of-N rule is used [15]:

Dfc =
N
∑

i=1

g(Di)

{

< k H0

≥ k H1,
(10)

where Dfc is the decision at the fusion center, N is the
total number of nodes in the network, k is the voting rule,
g(H0) = 0 and g(H1) = 1.

The process of making decisions at each node can be viewed
as a series of N independent Bernoulli trials, where the over-
all decision Dfc is the sum of the outcomes of the trials.
Thus, the fusion center decision probabilities are Poisson-
binomially distributed (also known as Poisson’s binomial



distribution):

Qf =

N
∑

l=k

∑

A∈(Fl|H0)

∏

x∈A

Pfx

∏

y∈AC

Pay , (11)

Qa = 1 − Qf , (12)

Qd =

N
∑

l=k

∑

A∈(Fl|H1)

∏

x∈A

Pdx

∏

y∈AC

Pmy , (13)

Qm = 1 − Qd, (14)

where Qf , Qa, Qd and Qm are the overall probabilities of
false alarm, acquisition, detection and missed detection, re-
spectively, Fl is the k-subset of size l of the power set1 of
all possible decision outcomes under a given hypothesis, and
AC is the complement of the set A [14].

3. OPTIMIZATION
In a network of cooperating nodes, the sensing error proba-
bility, G, is defined as the probability of either a false alarm
or a missed detection event:

G =Qf + Qm. (15)

Thus, G is a function of the number of cooperating nodes,
the decision probabilities at each cooperating node and of
the fusion center voting rule k; the decision probabilities are
themselves functions of the SNR, noise power, number of
samples and threshold at each node. However, the number
of cooperating nodes, SNR and noise power cannot be spec-
ified by the designer and, since it is known that the number
of samples required to achieve a given sensing error proba-
bility is a function of the SNR [12], the only variables which
can be adjusted by the designer are the local node decision
thresholds λ1, λ2, ..., λN and the fusion center voting rule k.

3.1 Optimal local node decision thresholds
In order to minimize G by adjusting the threshold at the ith

node, it is necessary to solve:

δG

δλi

∣

∣

∣

∣

λi=λiopt

= 0, (16)

where λiopt is the optimum threshold value at node i that
minimizes G.

Differentiating (15) with respect to λi, it can be shown (see
Appendix A for proof) that:

δG

δλi

=
δPmi

δλi

∑

A∈(Fk|H1)

∏

x∈A,x 6=i

Pdx

∏

y∈AC ,y 6=i

Pay

−
δPai

δλi

∑

A∈(Fk|H0)

∏

x∈A,x 6=i

Pfx

∏

y∈AC ,y 6=i

Pay . (17)

1The power set of a set S is the set of all subsets of S,
including the empty set and S itself.

Now, combining (16) and (17) and simplifying:

δPai

δλi

δPmi

δλi

∣

∣

∣

∣

∣

∣

∣

λi=λiopt

=

∑

A∈(Fk|H1),i∈A

∏

x∈A,x 6=i

Pdx

∏

y∈AC ,y 6=i

Pmy

∑

A∈(Fk|H0),i∈A

∏

x∈A,x 6=i

Pfx

∏

y∈AC ,y 6=i

Pay

.

(18)

Equation (18) can be solved to find the optimal decision
threshold for each node, i.e. λ1opt , λ2opt , ..., λNopt . As, to
the best of the authors’ knowledge, (18) cannot be simpli-
fied further, λiopt can be found at each node using numerical
methods. It can then be verified numerically that the solu-
tion is a minimum by showing that the Hessian matrix of G

is positive definite.

Under the assumption that the SNR and noise power are
equal at every node, (18) reduces to a more concise state-
ment of the solution presented in [15].

3.2 Optimal fusion center voting rule
As discussed in Section 2.3, the voting rule is chosen at the
fusion center after the decisions have been transmitted from
the local nodes. Thus, in order to find the optimal voting
rule, it is necessary to solve:

δ

δk
(G(λ1opt , λ2opt , ..., λNopt))

∣

∣

∣

∣

k=kopt

= 0. (19)

The second derivative test can be applied to verify that the
solution is a minimum.

Noting that k is an integer:

δG

δk
=

G(k + 1) − G(k)

(k + 1) − k

=
∑

A∈(Fk|H1)

∏

x∈A

Pdx

∏

y∈AC

Pmy

−
∑

A∈(Fk|H0)

∏

x∈A

Pfx

∏

y∈AC

Pay . (20)

Combining (19) and (20) and simplifying:
∑

A∈(Fkopt
|H1)

∏

x∈A

Pdx(λxopt)
∏

y∈AC

Pmy (λyopt) =

∑

A∈(Fkopt
|H0)

∏

x∈A

Pfx(λxopt)
∏

y∈AC

Pay (λyopt). (21)

The solution to (21) is the optimal fusion center voting rule,
kopt. Since, to the best of the authors’ knowledge, (21) can-
not be simplified further, kopt must be computed using nu-
merical methods.

Again, under the assumption that the SNR and noise power
are equal at every node, (21) reduces to the solution pre-
sented in [15].

4. IMPLEMENTATION

4.1 Data transmission requirements
From (18), it can be seen that the optimal threshold at the
ith node is a function of the decision probabilities and, by
extension, the SNR and noise power at every other node.



Table 1: Data transmission requirements.

Fusion method SNR at each node Bits required

Soft distinct 2Nb

Hard distinct 2Nb + N

Soft equal Nb + b

Hard equal N + b

Therefore, to compute the optimal threshold at a given node,
it is necessary to have knowledge of the values of the SNR

and noise power at every other node. To reduce bandwidth
requirements, the local SNR can be normalized with respect
to the local noise power [6]. As it cannot be assumed that
every node will be able to communicate with every other
node, data must be relayed via the fusion center. Thus,
if b bits are used to represent the normalized SNR, SNR,
at each node, then Nb bits must be relayed. Additionally,
as the local decisions are binary (see (3)), each node will
transmit one decision bit to the fusion center. Thus, the
total number of bits to be transmitted before a decision is
reached is 2Nb + N .

In soft decision fusion, each node transmits its test statistic
and normalized SNR value to the fusion center [6]. If the
normalized SNR is again represented using b bits, and a
further b bits are used to represent the test statistic, then
the total number of bits to be transmitted before a decision
is made is 2Nb.

In certain circumstances, it may be known that the normal-
ized SNR is equal at every node [15, 5]. In such cases, only
one node need transmit the common normalized SNR value
to the fusion center. Therefore, b bits must be transmitted
to the fusion center and a further N bits for the decisions
at each of the nodes. The equivalent soft decision scheme
still requires that each node transmit its test statistic to the
fusion center, although only one node is required to trans-
mit the value of the common normalized SNR value. Thus,
Nb + b bits are required in total.

Table 1 details the data transmission requirements of the
optimized hard and soft decision fusion schemes. As can be
seen, hard decision fusion requires more data to be trans-
mitted unless it is known that SNR is equal at each node.

4.2 Performance
The IEEE 802.22 draft standard for cognitive wireless re-
gional area networks specifies that sensing technologies must
be able to ensure an overall probability of detection greater
than or equal to 0.9 (i.e. a probability of missed detection
less than or equal to 0.1) and an overall probability of false
alarm less than or equal to 0.1 at SNR = −21dB [11].

Using these specifications, and the optimized parameters re-
sulting from (18) and (21), the performance of optimized
hard decision fusion can be measured by the sample com-
plexity, i.e. the number of samples required to achieve given
probabilities of false alarm and missed detection, for a cer-
tain network size, as shown in Figure 1. As can be seen,
optimized hard decision fusion requires a higher sample com-

10 20 30 40 50
N3.0

3.5

4.0

4.5

5.0

5.5

6.0

log10HN s L

Optimal soft decision fusion

Optimal hard decision fusion

Figure 1: Log-linear plot of sample complexity

against network size for IEEE 802.22 specifications.

plexity than optimized soft decision fusion.

5. CONCLUSION
Optimized energy detector-based cooperative spectrum sens-
ing can significantly reduce the sensing error probability of
a cognitive radio network. However, this reduction comes at
the cost of increased data transmission, which is limited.

When the normalized SNR is distinct at each node, optimal
hard decision fusion requires higher data transmission than
optimal soft decision fusion, which has been shown to have
a lower sample complexity.

If the normalized SNR is equal at every node, then opti-
mal hard decision fusion becomes more practical as the data
transmission requirements are reduced significantly. How-
ever, such scenarios are not common.

Based on these findings, it must be concluded that hard deci-
sion fusion, based on threshold and voting rule optimization,
is, in general, unlikely to be of practical use. Further re-
duction of data transmission requirements may be achieved
through the optimization of quantized soft decision algo-
rithms.
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APPENDIX
A. FIRST DERIVATIVE OF G
To show that (17) is true, an alternative, discrete Fourier
transform based formulation for the probability mass func-
tion of the Poisson binomial distribution may be used:

P (k; N,PN ) =

N
∑

n=0

(

e
−j2πnk

N+1

N + 1

N
∏

x=1

(

Pfxe
j2πn
N+1 + Pax

)

)

,

(22)

where P (k; N,PN ) is the probability mass function and PN

is the set of success probabilities at each node, in this case
given by {Pf1

, Pf2
, ..., PfN

} [4].



Using (22), the overall probability of false alarm can be writ-
ten as:

Qf =
N
∑

l=k

P (l; N,PN )

=
N
∑

n=0

((

N
∑

l=k

e
−j2πnl

N+1

N + 1

)

N
∏

x=1

(

Pfxe
j2πn
N+1 + Pax

)

)

. (23)

Differentiating Qf with respect to the threshold at the ith

node, (23) becomes:

δQf

δλi

=
1

N + 1

δPai

δλi

N
∑

n=0

((

N
∑

l=k

e
−j2πnl

N+1

)

(

1 − e
j2πn
N+1

)

×
N
∏

x=1,x 6=i

(

Pfxe
j2πn
N+1 + Pax

)



 . (24)

Now, defining f(l) = e
−j2πnl

N+1 , (24) becomes:

δQf

δλi

=
1

N + 1

δPai

δλi

N
∑

n=0

((

N
∑

l=k

f(l) − f(l − 1)

)

×
N
∏

x=1,x 6=i

(

Pfxe
j2πn
N+1 + Pax

)



 . (25)

This can be simplified by noting that:

N
∑

l=k

f(l) − f(l − 1) = f(N) − f(k − 1). (26)

Thus, (25) becomes:

δQf

δλi

=
1

N + 1

δPai

δλi

N
∑

n=0

((f(N) − f(k − 1))

×
N
∏

x=1,x 6=i

(

Pfxe
j2πn
N+1 + Pax

)





=
δPai

δλi

N
∑

n=0





f(N)

N + 1

N
∏

x=1,x 6=i

(

Pfxe
j2πn
N+1 + Pax

)





−
δPai

δλi

N
∑

n=0





f(k − 1)

N + 1

N
∏

x=1,x 6=i

(

Pfxe
j2πn
N+1 + Pax

)





=
δPai

δλi

P (N ; N − 1,PN−1)

−
δPai

δλi

P (k − 1; N − 1,PN−1), (27)

where PN−1 = PN \ Pfi
.

Logically, P (N ; N − 1,PN−1) = 0, so (27) reduces to:

δQf

δλi

= −
δPai

δλi

P (k − 1; N − 1,PN−1)

= −
δPai

δλi

∑

A∈(Fk|H0)

∏

x∈A,x 6=i

Pfx

∏

y∈AC ,y 6=i

Pay . (28)

A similar method can be used to show that:

δQm

δλi

=
δPmi

δλi

∑

A∈(Fk|H1)

∏

x∈A,x 6=i

Pdx

∏

y∈AC ,y 6=i

Pay . (29)
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