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Abstract

Quantum dashes are elongated quantum dots. Polarized edge-photovoltage and

spontaneous emission spectroscopy are used to study the anisotropy of optical

properties in 1.5µm InGaAsP and AlGaInAs-based quantum dash lasers. Strain,

which causes TM -polarized transitions to be suppressed at the band edge, coupled

with carrier confinement and dash shape leads to an enhancement of the optical

properties for light polarized along the dash long axis, in excellent agreement with

theoretical results. An analysis of the integrated facet and spontaneous emission

rate with total current and temperature reveals that, in both undoped and p-doped

InGaAsP-based quantum dash lasers at room temperature, the threshold current

and its temperature dependence remain dominated by Auger recombination. We

also identify two processes which can limit the output power and propose that the

effects of the dopant in p-doped InGaAsP-based lasers dominate at low tempera-

ture but decrease with increasing temperature. A high threshold current density

in undoped AlGaInAs-based quantum dash laser samples studied, which degrade

rapidly at low temperature, is not due to intrinsic carrier recombination processes.

1.3µm GaAs-based quantum dots lasers have been widely studied, but there re-

mains issues as to the nature of the electronic structure. Polarized edge-photo-

voltage spectroscopy is used to investigate the energy distribution and nature of

the energy states in InAs/GaAs quantum dot material. A non-negligible TM -

polarized transition, which is often neglected in calculations and analyses, is mea-

sured close to the main TE-polarized ground state transition. Theory is in very

good agreement with the experimental results and indicates that the measured

low-energy TM -polarized transition is due to the strong spatial overlap between

the ground state electron and the light-hole component of a low-lying excited hole

state. Further calculations suggest that the TM -polarized transition reduces at

the band edge as the quantum dot aspect ratio decreases.
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Chapter 1

Introduction

Semiconductor lasers play a central role in fibre-based optical telecommunication

systems, as well as being widely used in many other applications, including print-

ing, medicine and data storage. This thesis contains an analysis of semiconductor

quantum dot materials and lasers operating in the infrared at 1.3 µm and 1.5 µm.

The former, where silica-based optical fibres exhibit zero dispersion, is used in

short-haul optical links. The window at the longer wavelength, where optical

losses are minimal in silica-based optical fibres, is used in long-haul optical net-

works.

The choice of semiconductor materials depends on the wavelength required. Since

the 1970s InP-based semiconductor lasers have been used to achieve lasing at

1.3 µm and 1.5 µm. Bulk InGaAsP/InP lasers emitting at 1.5 µm have been com-

mercially used since the middle of the 1980s and most recent InP-based lasers have

InGaAsP/InP quantum well active regions [1]. However there is usually a need

for expensive temperature controlling components in these laser modules due to

the strong temperature sensitivity of the laser characteristics. 1.3 µm lasers are

slightly less temperature sensitive than 1.5 µm lasers, due to the wider bandgap.

GaAs-based vertical-cavity surface-emitting lasers, which emit at 1.3 µm, have

been attracting much research interest, because suitable Bragg mirrors can be

grown using an alternating sequence of GaAs and AlAs layers. Although there is

an interest in growing GaAs-based lasers which emit at 1.5 µm [2, 3], there remains

difficulty in extending these devices to wavelengths longer than 1.3 µm. Therefore

InP remains the most suitable substrate choice for this spectral region.

It has been predicted that semiconductor laser characteristics change when the di-

mensions of the material are reduced to the order of the de Broglie wavelength [4].

This has been confirmed in moving from bulk to quantum well lasers on both

GaAs and InP, with for example a reduction in the threshold current density and

its temperature dependence. Quantum dots are obtained when all three dimen-
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sions of the semiconductor material have been reduced, leading to a quantisation

of the electron momentum in all three dimensions [5].

There is an interest in growing quantum dots on InP. Although it has been more

challenging than growing on GaAs, advances have recently been made in growing

quantum dots on the commercially favoured (001)-InP substrate orientation. The

dots are elongated along (1-10) and are known as quantum dashes [6, 7].

GaAs-based quantum dot lasers have been widely studied with promising results,

but there remain issues as to the nature of the electronic structure, and hence the

polarization of transitions, in InAs/GaAs quantum dot materials.

1.1 Thesis Structure

This thesis begins with a summary of the basic theoretical concepts relevant to this

work in chapter 2, while an overview of the experimental methods are presented in

chapter 3. Chapter 4 contains an analysis of undoped 1.5 µm InAs/InGaAsP/InP

quantum dash materials and lasers. A polarization anisotropy of the optical prop-

erties is measured in these lasers, in excellent agreement with theoretical predic-

tions. We also investigate the dominant carrier recombination process in these

undoped InP-based devices as a function of current and temperature. Having es-

tablished the characteristics of this material system we consider the influence of

p-doping on InAs/InGaAsP/InP quantum dash lasers in chapter 5. We consider

the effect of the high density of acceptors and its temperature dependence in or-

der to analyse of the recombination mechanisms at room temperature. We then

study undoped InAs/AlGaInAs/InP quantum dash lasers in Chapter 6 in order

to compare them to the devices studied in chapter 4. We investigate the polar-

ization dependence of the optical properties and the carrier recombination process

present in these lasers. In chapter 7 we consider the polarization characteristics of

1.3 µm InAs/GaAs quantum dots in order to identify the energy distribution and

nature of the energy states close to the band edge to confirm whether or not the

ground state in these dots is purely TE-polarized. Finally a summary of the work

presented in this thesis can be found in chapter 8.
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Chapter 2

Background Theory

2.1 Introduction

The aim of this chapter is to provide an overview of the background theory of

semiconductor lasers relevant to this thesis. The chapter begins by providing a

brief history of the laser diode. The following sections then provide an overview

of the concepts which will be used in this work. The requirements to achieve

lasing and an overview of three basic types of edge-emitting laser structures are

included in section 2.3. In section 2.4 we consider laser light-current characteristics.

The change in density of states between bulk, quantum well, quantum wire and

quantum dot material is described in section 2.5. Lastly we consider recombination

processes in diode lasers. We consider first the spontaneous emission rate and its

polarization dependence. Next we review the main non-radiative recombination

processes and optical losses, which can occur in real diode lasers. This chapter is

summarised in section 2.8.

2.2 Brief History of the Diode Laser

A number of books and papers give a good overview of the history of semiconduc-

tor diode lasers [1, 8–10]. The first electrically pumped semiconductor lasers were

based on recombination at a pn homojunction, and operated pulsed at 77 K [11–

14]. These homojunction lasers, shown schematically in the top panel of Fig. 2.1

had large threshold current densities (10 – 100 kA cm−2) due in large part to the

absence of both optical and carrier confinement. Carrier and optical confinement

are improved in the growth direction by growing a double heterostructure (DHS),

shown schematically in the middle panel of Fig. 2.1. In this design, proposed by

Kroemer in 1963 [15], the active region is sandwiched between two doped cladding

layers with larger energy gap and smaller refractive index. The DHS acts as a

3
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Figure 2.1: Schema of the conduction and valence band energy profiles of a forward
biased pn homojunction laser (top), for a double heterostructure pn junction (middle)
and for a double heterostructure pn junction with separate confinement heterostructure
layers (bottom), where EFc

and EFv
are the conduction and valence band quasi-Fermi

levels, with a energy separation ∆EF .

waveguide for photons and to prevent electron and hole leakage from the active

region. The first material system used to make DHS lasers was bulk AlGaAs

grown on bulk GaAs, because this pair of alloys are similar lattice constants, often

referred to as being lattice-matched. Both pulsed and continuous-wave lasing were

demonstrated at room temperature in 1970 [16–18].

Improvements in diode laser characteristics were seen in the 1970s as the growth

of the semiconductor material moved from liquid phase epitaxy (LPE) to molec-

ular beam epitaxy (MBE) and metal organic vapour phase epitaxy (MOVPE),

which allowed precise monitoring of the thickness, planarity and composition of

each layer. Laser characteristics also improved by using separate confinement het-

erostructure (SCH) layers, illustrated in the bottom panel of Fig. 2.1. As the name

suggests, these structures provide separate confinement of charge carriers in the

central narrow-gap region, and of the photon mode by the lower refractive index

cladding layers.

Once room temperature operation in semiconductor laser diodes was demon-
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strated, diode lasers found applications in many areas, including printing, medicine,

data storage and as sources for optical fibre-based telecommunication. The rapid

growth in the Internet would not have been possible without the roll out of fibre-

based optical telecommunication systems where InP-based lasers have played a

central role. Optical fibre communication was proposed in the mid-1960s and by

the mid-1970s two windows in the infrared had been identified for telecom appli-

cations [1]. The first, at 1.3 µm, shows no material dispersion in silica fibres and is

now used for short haul applications. The second window, at 1.5 µm, has minimal

optical loss and is used in long haul optical systems. In the mid to late 1970s, bulk

InP-based diode lasers were demonstrated at both 1.3 µm and 1.5 µm [19, 20].

Bulk InGaAsP/InP lasers have been commercially used since the middle of the

1980s, while most recent InP-based lasers have InGaAsP strained quantum well

active regions [1]. However AlGaInAs/InP has been a competing material system

since it was demonstrated in the mid 1990s with promising results [21]. The dif-

ference between these two material systems will be described in detail in chapter 6.

Although quantum wells were proposed and first demonstrated in the mid-1970s [22],

growing the thin layers required to make a quantum well was initially challenging

even by MBE and MOVPE. In 1982 the first quantum well laser to outperform

bulk lasers was reported [23]. That same year Arakawa and Sakaki [4] predicted

that quantum wire and quantum dot lasers should have reduced threshold current

with improved temperature stability compared to quantum well lasers. As with

quantum wells, it remained challenging throughout the 1980s and 1990s to grow

quantum wires and dots. The first quantum dot laser based on GaAs was demon-

strated in 1994 [24] and six years later the first 1.3 µm GaAs-based quantum dot

laser with a very low threshold current was reported [25].

Quantum dots grown on GaAs, which operate at 1.3 µm, are now commercially

available. However there have been issues extending GaAs-based quantum well

and quantum dot materials to the second telecom window at 1.5 µm, due to the

large lattice mismatch between GaAs and InAs. There are currently two ap-

proaches being investigated to extend GaAs-based lasers to longer wavelengths.

The first involves adding a small amount of N and/or Sb to GaInAs to further

reduce the bandgap [26]. Quantum well lasers have been demonstrated based on

this material system [27, 28], but there remain issues related to defects in the

active region, and concerns about device reliability. The second approach involves

reducing the lattice mismatch between GaAs and InAs by growing a metamor-

phic buffer layer [29, 30]. Lasing at 1.5 µm has been measured in quantum well

and quantum dot lasers with a metamorphic layer [2, 3], but the temperature

performance is quite poor. There are also issues of defects in the active region
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and device reliability in lasers which contain a metamorphic layer. The growth

of quantum dots on an InP-substrate is more challenging than on GaAs due to

the larger lattice mismatch. Two approaches currently being investigated. The

first approach involves using highly misoriented substrates, such as (311)B [6, 31],

where device processing is challenging. Recently advances have also been made

in growing quantum dots on the commercially favoured (001)-InP substrate ori-

entation. Using this substrate orientation enables the use of the same fabrication

processes as for bulk and quantum well lasers [6, 7].

2.3 Basic Principles of Diode Lasers

The objective of a laser is emit coherent radiation, where the energy and phase of all

the photons is the same. The requirements for lasing are positive gain and optical

feedback and the laser reaches threshold when the modal gain equals the total

losses. In this section we focus on the requirements to achieve lasing. We begin

by reviewing radiative recombination, considering both emission and absorption.

We then present the condition for positive gain and the threshold condition in a

Fabry-Pérot laser.

2.3.1 Electronic Transitions

In this section we consider single mode band-to-band transitions, which can be

seen schematically in Fig. 2.2, between a single conduction and valence band.

Transitions must conserve energy and momentum,

E21 = E2 − E1 = hν (2.1)

k2 = k1 (2.2)

and must occur between a filled initial state and an empty final state. The left

panel of Fig. 2.2 shows stimulated absorption, R12, which is responsible for the

generation of carriers and the loss of photons. This is the recombination process

used in photovoltage measurements for example. The middle panel of Fig. 2.2

shows stimulated emission, R21, where an incoming photon causes an electron

and hole to recombine, producing a photon with the same energy and phase as

the incoming photon. R12 and R21 are competing processes and results in a net

stimulated emission rate, Rst = R21 - R12. The right panel of Fig. 2.2 shows the

single mode spontaneous emission for a photon, R∗
sp. This downward transition,

induced by a vacuum field photon, is similar to R21, but has a random phase

and generally a different emission direction compared to the stimulated photons.

6
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Figure 2.2: Schema of three single mode band-to-band transition types, where the left
panel is stimulated absorption, middle panel is stimulated emission and right panel is
spontaneous emission.

Taking the occupation probabilities of states 1 and 2, f1 and f2, we can write the

transition rates for R12, R21, R
∗
sp and Rst as

R12 = Rrf1(1 − f2)P (2.3)

R21 = Rrf2(1 − f1)P (2.4)

R∗
sp = R∗

rf2(1 − f1) (2.5)

Rst = Rr(f2 − f1)P (2.6)

where R∗
r and Rr are the single mode spontaneous and radiative recombination

rates, where P is the photon density. f1 and f2 are usually described by Fermi-

Dirac statistics. Under quasi-equilibrium conditions each state has its own occu-

pation probability:

f1 =
1

1 + exp (
E1−EFv

kBT
)

(2.7)

f2 =
1

1 + exp (
E2−EFc

kBT
)

(2.8)

where E1 and E2 is the energy of states 1 and 2, EFc
and EFv

are the conduction

and valence band quasi-Fermi levels and kB is the Boltzmann constant [32].

We see from equation (2.6) that in order to have net stimulated emission we

require f2−f1 > 0. We can show by subtracting equation (2.7) from equation (2.8)

7



that this requires

∆EF > E21 (2.9)

where ∆EF is the difference between the quasi-Fermi levels EFc
and EFv

and where

the bandgap energy is written using equation (2.1). This is the Bernard-Duraffourg

condition for population inversion [33]: the stimulated emission rate is larger than

the absorption rate when the quasi-Fermi levels are separated by more than the

bandgap energy.

2.3.2 The Threshold Condition

As outlined above, a laser requires gain and optical feedback. In a diode laser

a forward biased pn-junction is used to inject electrons and holes to generate a

population inversion and optical gain in the material. The Fabry-Pérot cavity

provides feedback by allowing a photon density to build up in the cavity. In a

Fabry-Pérot diode laser photons are amplified as they travel back and forth many

times before leaving the cavity. When the amplitude and phase of the electric

field are unchanged after a round trip as the gain has compensated for the losses,

oscillations occurs and the laser starts to emit coherent radiation as the threshold

is reached.

The threshold condition for a Fabry-Pérot laser can be derived using the scattering

matrix formalism [32]. We consider the etalon of length L with mirror reflectivities

r1 and r2 in Fig. 2.3, with a complex propagation constant β and inputs a1 and

a2, and outputs b1 and b2 and write

(

b1

b2

)

=

(

S11 S12

S21 S22

)(

a1

a2

)

(2.10)

We can rewrite equation (2.10) as

b1 = S11a1 + S12a2

b2 = S21a1 + S22a2

(2.11)

Assuming the etalon is not injected from the right (a2 = 0), the element S21 = b2
a1

,

where

S21 =
t1t2exp(−iβL)

1 − r1r2exp(−2iβL)
(2.12)

with r1r2 = R. When the denominator of equation (2.12) tends to zero, the

condition for a finite transmitted amplitude for zero incident field is obtained and

can be written as

Rexp(−2iβL) = 1 (2.13)
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Figure 2.3: Fabry-Pérot etalon of length L and refractive index, nref with inputs ai and
outputs bi are for i = 1,2.

In this condition oscillation occurs and the threshold is reached. At threshold the

amplitude and phase of the electric field are unchanged after a round trip as the

modal gain has compensated for the losses.

Assuming L is greater than or equal to the wavelength, λ, β can be written as a

real part, βr, and imaginary part, βi, as

β = βr + iβi =
2πnref

λ
+
i

2
(Γg − αi) (2.14)

where nref is the refractive index of the mode and Γg and αi are the transverse

modal gain and internal loss respectively.

Substituting equation (2.14) into equation (2.13) and separating the real and imag-

inary parts we obtain

R exp

[

−2i

(

2πnref

λ
L

)]

exp((Γg − αi)L) = 1 (2.15)

where the first exponential term describes the phase, where (−βrL) is the phase

shift after a single pass, and the second term describes the magnitude of the electric

field. Considering the magnitude of the electric field term, we obtain the threshold
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condition by solving for Γgth

Γgth = αi +
1

L
ln

(

1

R

)

= αi + αm (2.16)

where αm are the mirror losses.

2.3.3 Basic Edge-Emitting Diode Laser Designs

The most basic design for an edge-emitting diode laser is an oxide stripe (OS)

laser, shown schematically in the top panel of Fig. 2.4. This gain-guided design

has only weak carrier and optical confinement in the plane perpendicular to the

growth direction, due to a small current-induced refractive index change in the

electrically pumped region [34].

Index-guided lasers have improved in-plane optical and carrier confinement. In

an index-guided laser, such as a ridge waveguide (RW) laser shown schematically

in the middle panel of Fig. 2.4, the optical and carrier confinement is due to a

lateral index step at the interface between the semiconductor cladding and dielec-

tric around the waveguide [32]. A buried heterostructure (BH) laser is a strongly

Growth direction
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Figure 2.4: Schema of the cross section of an oxide stripe (OS) laser (top), for a ridge
waveguide (RW) laser (middle) and for a buried heterostructure (BH) (bottom).
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index-guided laser. In BH lasers the active region is bounded both parallel and

perpendicular to the junction by layers with a lower refractive index. The layers,

which are perpendicular to the growth direction, are doped with doping opposite

to that in the active region, as seen schematically in the bottom panel of Fig. 2.4.

Processing a BH device is more complex than either OS or RW devices, as it in-

volves regrowth on etched surfaces. However, although BH lasers are more difficult

to fabricate, they are widely used because they have improved performance over

both RW and OS lasers. One of the ways in which RW and OS lasers differ from

BH lasers is the presence of current spreading, which will be explained below.

2.4 Laser Light-Current Characteristics

In this section we consider the light current (LI) characteristics of a laser measured

at the facet. From the LI characteristics we extract two figures of merit in lasers,

the threshold current and the external differential quantum efficiency.

2.4.1 The Threshold Current

The threshold current is the current which must be injected into a laser diode for

the modal gain to equal the total losses. Diode lasers with temperature insensitive

threshold currents are desirable for telecom applications. Currently thermoelectric

coolers have to be used as the threshold current, Ith, of most diode lasers is very

temperature sensitive between 20 ◦C and 100 ◦C. The overall temperature depen-

dence of Ith in most diode lasers can be well described over a limited temperature

range by an empirical formula [9]

Ith = I0 exp (
T

T0

) (2.17)

where T and T0 are in Kelvin. If we rewrite equation (2.17) we can evaluate the

characteristic temperature, T0, from the slope of a ln(Ith) versus temperature plot.

T0 is used as a figure of merit for lasers, with a high value of T0 describing a weak

temperature dependence of Ith.

2.4.2 Types of Efficiencies

We begin by considering the internal efficiency, ηi, which is the ratio of the radiative

current to the total current. It is used when working with lasers below threshold.

We now define ηint
d , the internal differential quantum efficiency, which is the ratio

of the number of photons generated per second in the lasing mode to the total
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Figure 2.5: Plot of the integrated total emitted optical power, L, of a laser as a function
of current. ηext

d is proportional to the slope above threshold.

number of additional carriers injected per second above threshold. This is an above

threshold definition of ηi. In an ideal laser, the carrier density clamps at threshold

and all the extra carriers are injected into the active region above threshold and

will contribute to the stimulated emission, that is, ηint
d = 1.

The external differential quantum efficiency, ηext
d , is the number of photons in

the lasing mode collected at the facets to the total number of injected carriers

above threshold, and can be related to ηint
d and the total emitted optical power,

L, through equation (2.18).

ηext
d = ηint

d

αm

(αi + αm)
=

q

hν

dL

dI
(2.18)

So we can measure ηext
d from the slope of an L versus current above threshold plot

as illustrated in Fig. 2.5.

2.5 Density of States

When studying the electronic and optical properties of semiconductor lasers it can

be useful to know both the number of states and their energy distribution [32, 34–

36], i.e. the density of states per unit energy. It is required for example to calculate

12



the material gain or the spontaneous emission rate. Changing the quantum con-

finement can change the form of the density of states near a band edge as illustrated

in Fig. 2.6. Since quantum wells were proposed in the early 1970s there has been

a lot interest, both theoretically and experimentally, in understanding how the

changes in the density of states affect the overall laser characteristics.

This section includes a derivation of the density of states per unit energy, per unit

volume, ρ3D(E), in a bulk material, followed by an overview of how the density of

states is modified as the carriers become increasingly confined in a quantum well,

quantum wire and quantum dot.

2.5.1 Density of States in Bulk

If the dimensions Lx, Ly and Lz are large (≥0.1 µm), the states are uniformly

distributed in k-space and the spacing between allowed k values, (2πl
Lx
, 2πm

Ly
, 2πn

Lz
),

where l, m and n are integers, is very small. The number of states, N , in the range

k → k + dk is

N = D(k)dk = D(E)dE (2.19)

where D(E) is the density of states per unit energy. We assume a parabolic

dispersion relation

E =
~

2k2

2m∗
, (2.20)

a bulk volume V , and write N as the volume of shell of radius k with thickness

dk, 4πk2dk, divided by the volume of a single state, 8π3

V
. We include a factor of 2

to account for the spin.

N = D(k)dk = 2(
V k2dk

2π2
) (2.21)

Writing D(E) using equation (2.19) and substituting N from equation (2.21), we

obtain

D(E) =
2V

4π2
(
2m∗

~2
)
3/2√

E (2.22)

which has units of inverse energy. Dividing D(E) by the volume V we obtain

ρ3D(E), the density of states per unit energy per unit volume, shown schematically

in the bottom left panel of Fig. 2.6.

ρ3D(E) =
1

2π2
(
2m∗

~2
)
3/2√

E (2.23)
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Figure 2.6: Schema of the change in size as well as in the density of states from left to
right in going from for bulk to quantum well to quantum wire to quantum dot.

2.5.2 Density of States in Quantum Well, Wire and Dot

Reducing one of the dimensions, say Lz, to a size of the order of the de Broglie

wavelength, we obtain a quantum well, shown schematically in the second top

panel of Fig. 2.6. The carriers are free to move in the x − y plane, as in bulk,

but are quantised along kz and form subbands. Taking the density of states as a

function of k, D(k), as in equation (2.19) for an area, A = LxLy, we now have that

the number of states, N , between k and k+dk is proportional to 2πkdk, compared

to 4πk2dk in the bulk case. Following a similar process as outlined in section 2.5.1

for bulk, we then obtain the density of states per unit energy per unit area for one

sub band as

ρ1sub
2D (E) =

m∗

π~2
(2.24)

To obtain ρ2D(E), shown schematically in the second bottom panel from the left

in Fig. 2.6 for N = 3 sub bands, we use the Heaviside step function H(x − x0)
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where

H(x− x0) =

{

0 if x < x0

1 if x ≥ x0

(2.25)

to write

ρ2D(E) =
m∗

π~2

N
∑

n=1

H(E − En) (2.26)

for E ≥ En, where En is the energy of the nth confined state.

We now restrict the carrier momentum to a single dimension, say along y, by

reducing x and z to the order of the electron wavelength and obtain a quantum

wire, shown schematically in the third top panel of Fig. 2.6. In this case electron

momentum is quantised along x and z and the density of states is derived per unit

length. Following a similar analysis as for bulk we obtain the density of states per

unit energy per unit length for one sub band as [34]

ρ1sub
1D (E) = 2

~
2

m∗

√

2m∗

~2

1
√

(E − Enx
− Enz

)
(2.27)

for E > Enx
+Enz

. As with the density of states in a quantum well, the Heaviside

step function is used for a number of sub bands and ρ1D(E) is illustrated in the

third bottom panel from the left in Fig. 2.6 for two sub bands along z, the shortest

wire dimension.

ρ1D(E) = 2
~

2

m∗

√

2m∗

~2

M,N
∑

nx,ny=1

H(E − Enx
− Enz

)
√

(E − Enx
− Enz

)
(2.28)

for E > Enx
+ Enz

.

Reducing all three dimensions, Lx, Ly and Lz, to sizes of the order of the de Broglie

wavelength we obtain a quantum dot, where electron momentum is quantised in all

three dimensions, and hence to a discrete, atom-like, density of states. Illustrated

in the bottom right most bottom panel of Fig. 2.6 are the ground and first excited

states of a cube shaped quantum dot, where the excited state is made as the sum

of three states, which each have 2 spins. Overall, reducing the dimensions of the

material changes both the form of the density of states and also the total number of

states per unit energy in the active region of the laser. There has been significant

interest in how these changes affect the overall laser characteristics: a major theme

of this thesis is to investigate the influence of elongated quantum dots - referred

to as quantum dashes - on the characteristics of actual 1.5 µm InP-based lasers.
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2.6 Recombination Processes in Diode Lasers

In this section we first focus on the spontaneous emission rate and its polariza-

tion dependence. Next we consider the non-radiative recombination processes and

optical losses present in real diode lasers which operate at 1.5 µm.

2.6.1 The Spontaneous Emission Rate

The total spontaneous emission rate per unit energy, per unit active volume, Rsp,

is obtained by summing R∗
sp over all optical modes. Assuming we have a quantum

dot with nc conduction band states and nv valence band states, we can write Rsp

as

Rsp(p, hν) ∝ hν
nc
∑

i

nv
∑

j

|Mp
i,j|2G(Ec,i − Ev,j − hν)fc(Ec,i)(1 − fv(Ev,j)) (2.29)

where p indicates the polarization direction and hν is the photon energy [5]. Mp
i,j

is the momentum matrix element with polarization p for the ijth transition with

energy separationEc,i−Ev,j. G(x) = 1
σ
√

2Π
exp(−(x−µ)2

2σ2 ), where where µ is the mean,

σ is the standard deviation, is a Gaussian broadening function which quantifies the

amount of inhomogeneous broadening present in an ensemble of real quantum dots.

This broadening is due to the presence of dash size dispersion and composition

fluctuations in the ensemble.

The Polarization Dependence of Rsp

The transition rate of an electron in a state 2 to a continuum of final states 1 in

the presence of a harmonic perturbation, such as an electromagnetic field, which

is given by Fermi’s Golden Rule [32], is proportional to

2π

~
|H ′

21|2 (2.30)

where |H ′

21|2 is the square of the matrix element evaluated at E21, which determines

the strength of the interaction between the initial and final states and the optical

field. The matrix element H
′

21, is given by

H
′

21 =

∫

V

ψ∗
2H

′

rψ1d
3r (2.31)

where ψ1 and ψ2 are the wavefuntions of the isolated electron in states 1 and 2,

while H
′

r is the Hamiltonian characterising the electronic state and its interaction
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with the electromagnetic field.

In a low dimensional structure such as a quantum well, ψ1 and ψ2 can be decou-

pled into a slowly varying envelope function, F (r), which satisfies Schrödinger’s

equation at a macroscopic level, and a complex Bloch function, u(r), which repeats

itself over each unit cell and satisfies Schrödinger’s equation at an atomic level.

The difference between F (r) and u(r) can be seen schematically in Fig. 2.7. We

can therefore write

ψ1 = Fv(r)uv(r) (2.32)

ψ2 = Fc(r)uc(r) (2.33)

H
′

r is related to the vector potential A(r) and can be written as [32]

H
′

r =
qA(r)

2m0

(e·p) (2.34)

where the unit vector e gives the polarization direction and p is the momentum

operator. If we substitute equations (2.32), (2.33) and (2.34) into equation (2.31)

and assuming that the vector potential is a plane wave with magnitude A0 and no

Macroscopic 
potential

atomic-scale 
potential

F(r)
u(r)

Figure 2.7: Schema of a quantum well potential and the corresponding lowest energy
wavefunction.
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spatial dependence, we obtain

H
′

21 =
qA0

2m0

|MT | (2.35)

where |MT | is the transition matrix element and is equal to the product of the

overlap integral, < Fv(r)|Fc(r) >, and the momentum matrix element, |M | =

< uc(r)|e·p|uv(r) >, which gives the polarization dependence of the interaction.

We substitute equation (2.35) into equation (2.30) and can write |M |2 = Sx|Mx|2+
Sy|My|2 + Sz|M z|2, where Si is the relative transition strength at the band edge

along the ith direction. The polarization dependence of |M |2 does not reveal itself

in bulk due to a uniform distribution of electron momentum as seen schematically

in the left panel of Fig. 2.8. However when we form a quantum well, the degeneracy

of the heavy-hole (HH) and light-hole (LH) levels is lifted, with the HH states

lying above the LH states in unstrained and compressively strained quantum wells.

When light is emitted (absorbed) by recombination into (from) a pure HH state

in a quantum well, the emitted (absorbed) photon is polarized in the x− y plane

with Sx = Sy = 1
2

and Sz = 0, giving what is referred to as TE-polarized emission

(absorption). By contrast, Sz = 2
3

and Sx = Sy = 1
6

for a pure LH state, so that

transitions involving LH states are predominantly TM -polarized, with the electric

field pointing along the z-direction.

In a symmetric quantum wire, the band edge transition matrix element is enhanced

along the wire axis, and suppressed equally along the two other directions. In

an asymmetric quantum wire the electron momentum is anisotropic in all three

directions. The quantum dashes, which we will be investigating in this thesis, can

be approximated as asymmetric quantum wires [37]. For an asymmetric quantum

wire with Lx > Lz (see Fig. 2.8), we find Sx > Sz and for sufficient asymmetry,

Sz → 0, suppressing TM -polarized emission (absorption) at the band edge.

If we have a quantum dash with the long axis along y and define transitions along

that direction as p1-polarized and transitions along the shorter in-plane axis x as

p2-polarized, we can simplify and use equation (2.29) to write the spontaneous

emission rates with polarization p1 and p2 as

Rsp(p1, hν) ∝
nc,nv
∑

i,j

|Mp1

i,j |2fc(Ec,i)(1 − fv(Ev,j)) (2.36)

Rsp(p2, hν) ∝
nc,nv
∑

i,j

|Mp2

i,j |2fc(Ec,i)(1 − fv(Ev,j)) (2.37)
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Figure 2.8: Illustration showing S, the relative transition strengths for bulk (left panel),
quantum well (middle panel) and quantum wire (right panel) at the band edge.

The quasi-Fermi factors, fc(Ec,i)(1 − fv(Ev,j)), have no polarization dependence,

so we can write the ratio, r, of the spontaneous emission rates along y and x as

r =
Rp1

sp (hν)

Rp2

sp (hν)
=

∑nc ,nv

i ,j |M p1

i ,j |2
∑nc ,nv

i ,j |M p2

i ,j |2
(2.38)

Using equation (2.38) we can quantify the anisotropy of the square of the momen-

tum matrix element experimentally.

2.6.2 Carrier Recombination Processes in Diode Lasers

Although a lot of work has been carried out on semiconductor lasers operating

at telecoms wavelengths, recombination processes still make them temperature

sensitive. In this section we describe four carrier recombination processes, shown

schematically in Fig. 2.9, which can occur in diode lasers.

Monomolecular defect-related recombination, shown schematically in the left

most panel of Fig. 2.9, can play a dominant role at low carrier densities. Defects

are not intrinsic and can be due to vacancies, impurities or dislocations in the semi-

conductor crystal, which leads to the creation of the defect states in the bandgap

through which carriers can recombine non-radiatively. The overall recombina-
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tion rate is assumed to be proportional to the carrier density, n. In high quality

undoped material defect-related recombination is negligible. Radiative recombi-

nation is an intrinsic process involving two carriers. The integrated spontaneous

emission, LSE, is obtained by integrating Rsp(hν) as a function of energy and is

a measure of the radiative current, with Irad = qV (Bn2) in an undoped material.

Unlike defect-related recombination, band-to-band Auger recombination is an in-

trinsic non-radiative process [9, 32, 35, 36]. There are a number of possible Auger

processes, all of which involve three carriers. Considering the CHCC Auger recom-

bination process, shown schematically in the third panel of Fig. 2.9, the energy

created by the annihilation of a Conduction band electron – valence band heavy

Hole pair, (1) and (2), is transferred to a second Conduction band electron, (3),

which is promoted to a higher Conduction band energy state. The third carrier

then looses the energy by the non-radiative emission of phonons to return to its

original state. Auger recombination is dependent on the quasi-Fermi level sepa-

ration as this affects whether carrier (1) is available. Auger recombination is also

influenced by the valence band structure as this governs the availability of carrier

(2). Lastly Auger recombination is dependent on the bandgap of the material, as

this governs the energy given to the third carrier and can be negligible in shorter

wavelength lasers. IAuger has a stronger dependence on the carrier density (∝ n3)

than either defect-related or radiative recombination and can become dominant

for larger carrier densities.

In an ideal laser the carriers should be confined to the active region. However

carriers can thermally escape from the active region and recombine radiatively

or non-radiatively in the barrier or cladding regions, as illustrated in the right

most panel of Fig. 2.9. Leakage currents, Ileakage, which may not clamp at thresh-

old, lead to a decrease in ηint
d , the internal differential quantum efficiency of the

laser [32, 38]. The internal differential quantum efficiency in RW and OS lasers

are also reduced by current spreading, where electron - hole pairs recombine in

CB

VB

Defect 
Recombination

Radiative 
Recombination

Auger 
Recombination

Leakage
current

(1)
(2)

(3)

Figure 2.9: Schema of the carrier recombination processes which can occur in a forward
biased semiconductor laser
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the region beyond the contacts. Current spreading also leads to an increase in the

threshold current density but is expected to be negligible in BH lasers.

The z analysis

The method, which we refer to as the z analysis [39], assumes that the carrier

distributions are described by Boltzmann statistics and can be used to evaluate

the dominant carrier recombination process in a diode laser at threshold. This

involves measuring the variation of the radiative current, Irad, with total current,

Itot, as a function of temperature. The analysis assumes that Itot varies with carrier

density, n, as [9, 39–41]

Itot = qV (An+Bn2 + Cn3) + Ileakage (2.39)

where qV An describes monomolecular defect-related recombination, qV Bn2 is the

radiative current, qV Cn3 is due to intrinsic Auger recombination, and Ileakage is

due to leakage current paths.

Assuming negligible leakage currents, the total current can be written as Itot ∝ nz.

If the device is dominated by defect-related non-radiative recombination, z ∼ 1,

while z ∼ 2 in a radiatively dominated device, and z ∼ 3 if non-radiative Auger

recombination is dominant. Within this model, n2 ∝ Irad, so Itot ∝ (I
1/2
rad)z.

Therefore the dominant recombination process can be identified by finding the

slope, z , of a plot of ln(Itot) versus ln(I
1/2
rad).

2.7 Optical Losses in Diode Lasers

Lasers operating at 1.5 µm also suffer from a major optical loss mechanism called

intervalence band absorption (IVBA), which is undesirable as it leads to a loss

of carriers and photons. In IVBA a photon traveling in the laser gets reabsorbed

and the energy is transferred to an electron in the spin-split-off (SO) band, which

gets promoted to an injected hole state in the HH band, as seen schematically

in Fig. 2.10. In 1.5 µm lasers the photon is reabsorbed a distance from the Γ

point, as the energy gap is larger than the SO splitting. IVBA may also involve

phonons and is influenced by the temperature and the valence band structure.

IVBA increases with temperature as the population of hole states away from the

Γ point and phonons increases.
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Figure 2.10: Illustration of intervalence band absorption (IVBA), where a photon is
reabsorbed leading to the promotion of an electron from the spin-split-off band to an
injected hole state in the heavy hole band.

2.8 Summary

This chapter contains an overview of the relevant background theory of semicon-

ductor lasers and begins with a history of the diode laser. The requirements to

achieve lasing, an overview of three basic edge emitting laser designs and the laser

light-current characteristics are reviewed in section 2.3 and 2.4. Section 2.5 in-

troduces the concept of density of states for bulk, and highlights how the density

of states is modified by changing the dimensions of the material and hence the

carrier confinement. The final part of this chapter included in section 2.6 involves

the presentation of the recombination processes and loss mechanisms present in

diode lasers. We consider the spontaneous emission rate and its polarization de-

pendence. We then review the effects of intrinsic and non-intrinsic processes on the

laser light-current characteristics and show how to evaluate the dominant recom-

bination process at threshold from the integrated spontaneous emission. Lastly we

review an optical loss which can be important in diode lasers emitting at 1.5 µm.
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Chapter 3

Experimental methods

3.1 Introduction

As outlined in chapter 1 the main theme of this thesis is the analysis of the optical

characteristics and identification of the recombination processes present in quan-

tum dash and quantum dot semiconductor lasers. Much of this work involves mea-

suring polarized and unpolarized unamplified spontaneous emission (SE) spectra

as well as carrying out polarized edge-photovoltage (E-PV) spectroscopy measure-

ments in order to analyse the electronic structure of the semiconductor material

and its consequence on the optical properties and recombination processes present

in lasers. This chapter describes the main experimental techniques used in this

thesis.

In order to collect unamplified SE, the measurement must be made in a direc-

tion perpendicular to the laser waveguide [42]. This usually requires the etching

of windows in either the substrate of the laser or in the top contact. First, in

section 3.2, we will describe the technique used to create the windows through

which unamplified spontaneous emission is collected. Next we describe the polar-

ized E-PV spectroscopy method as well as the method used to collect polarized

and unpolarized unamplified SE spectra. Polarized E-PV and SE spectral mea-

surements are linearly polarized along the three main axis, with TE(1−10), TE(110)

and TM -polarized along the (1-10), (110) and (001) crystal planes respectively.

In section 3.3 we describe polarized E-PV spectroscopy in detail and show that by

coupling light into the facet in the samples being analysed, we can only have ac-

cess to the TE(1−10) and TM components of the polarized E-PV spectrum. Having

reviewed SE and possible measurement methods in section 3.4, we show in sec-

tion 3.5, that in order to have access to both TE components we must measure

polarized unamplified SE spectra through a window milled in the top contact of

the laser. In this work we also collect SE in order to compare the radiative and
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non-radiative processes as a function of temperature. This requires using a cryo-

stat set up to measure how facet and integrated spontaneous emission vary as a

function of current between 40 – 330 K. The current range used covers below and

above threshold enabling us to identify how the threshold current and its radiative

component change with temperature. The technique, as well as the set up used

for this measurement, are described in detail in section 3.6.

In summary this chapter reviews of the main experimental methods used in this

thesis. Section 3.2 provides information about the milling carried out using a

focused ion beam microscope (FIB) to etch transparent windows into the laser

contacts. Section 3.3 describes room temperature polarized E-PV spectroscopy

and the set up used to measure polarized E-PV spectra. A brief overview of the

methods used to measure SE are included in section 3.4. Next the set up and

method used to measure room temperature polarized SE spectra are described in

section 3.5. An outline is then given in section 3.6 of the experimental set up and

method used to collect facet and spontaneous emission as a function of current

and temperature. Section 3.7 provides a summary of the work presented in this

chapter.

3.2 Window Milling

In this section, a review of the window milling process is presented. Windows

are milled in the p and n-contacts of devices using a FEI Vectra 200 DE Focused

Ion Beam (FIB) system. A FIB [43] works in a very similar way to a scanning

electron microscope, except that it uses a finely focused beam of of energetic (30

keV) gallium (Ga+) ions instead of electrons. The spot diameter is 10 nm.

During operation, Ga flows from a reservoir to the tip of a tungsten needle. A

large negative potential between the tungsten needle and the extraction electrode

generates a large electric field at the needle tip leading to the emission of the

gallium ions. The ion beam is then collimated and focused onto the sample. Unlike

an electron microscope, the FIB is a destructive process [44, 45], as material at the

surface of the sample can be sputtered by high-energy gallium ions as they strike

the sample. However at low intensities the FIB can be used as a high magnification

microscope for short periods to align the sample and focus the beam before any

milling is carried out.

3.2.1 Windows in P-Contact

Devices to be windowed on the p-side are mounted on carriers and wire bonded

before milling. In the FIB, contact is made with the metal holder through the
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n-contact of the carrier, using a double-sided sticky carbon planchet or using a

specially designed mount. The advantage of using the mount is that no acetone is

required to break down the glue on the planchet in order to remove the carrier from

the holder. The in-plane dimensions of the rectangular window are set at 6µm by

10µm on the FIB user interface. However, window depth cannot be accurately set

in the FIB, because the depth is dependent on the ion beam intensity, the type of

material used and the length of time for which the material is exposed to the ion

beam. The settings of the FIB used in this work are calibrated for the milling of

Si, but it has been suggested that InP and the metals that make up the contact,

usually titanium, platinum and gold, are milled faster than Si [45–47]. Included

below is an investigation carried out to obtain the optimal depth for windows

milled on the p-contact of InP-based devices.

Depth of Windows in P-Contact

When milling windows in the p-contact of a device, we aim to achieve a uniform

current distribution underneath the windows caused by uniform current spreading.

This ensures that the waveguide and optical recombination are not perturbed by

the presence of the window.

In order to reliably achieve the correct window depth, a series of large windows of

smaller windows

waveguide

wirebond

facet

W6

W1

W3
W5

W7

W4
W2

Figure 3.1: Photo of a test device used to measure the depth of the windows in the
p-contact milled with the FIB.
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different depths were first milled in the p-contact of four test devices. Fig. 3.1 shows

a photo of one of the test lasers, where the gold p-contact of the laser is yellow

and the oxide is orange. The black disk at the centre of the laser contact is the

point at which the wirebond is attached. The vertical lines mark the waveguide

of the laser. The small windows below the wirebond were too small to achieve

an accurate depth measurement. A larger set of windows, labeled W1-W7 with

increasing depth, were milled above the wirebond and their depth was measured

using a surface profilometer.

Plotted in Fig. 3.2 is the measured depth versus the depth set in the FIB for the

four test devices. Although there is some scatter on the data, the trend is linear

and suggests the actual depth measured is ∼10 times larger than the value set in

the FIB. This is consistent with the contact metals and InP being milled faster

than Si [45–47].

Both sets of windows in Fig. 3.1 have been milled along the waveguide in order

to measure SE from them. The left panel of Fig 3.3 shows the same test laser as

in Fig. 3.1 under a X32 microscope giving a close up view of windows W2-W7.

The test laser is biased using a 2400 Keithley DC source. The window emission

measured using an Electrophysics Corp MicronViewer 7290 infrared (IR) camera

is shown in the right panel of Fig. 3.3.

Considering first window W2, which has a measured depth of less than ∼1µm,
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Figure 3.2: Plot of measured surface profilometer depth as a function of the depth set
in the FIB for four test samples. The red line has a slope of 10.
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Figure 3.3: Photo of a test device (left panel) and window emission (right panel) from
the test device under X32 magnification.

no spontaneous emission is observed, suggesting that W2 is not deep enough to

expose any InP. The next three windows (W3-W5) have depths between 1µm

and 3µm and have uniform window emission. This indicates a uniform current

density underneath these windows. Window W6 is ∼5µm deep and in this case

the window emission is non-uniform, with no spontaneous emission emitted at the

centre of the window. This suggests the absence of current or the presence of a

non-radiative recombination site underneath the centre of the window. W7 is the

largest and deepest window and the current density is not uniform underneath

this window either. The difference in emission strength between both edges of W7

suggests the laser waveguide has been perturbed by W7. When the very bright

window emission, closest to the wirebond was spectrally resolved, it was measured

to be amplified spontaneous emission, as normally measured through the facet of

a laser.

To conclude, a window milled in the p-side of a device must be small and not

too deep, to ensure the waveguide is not perturbed and that the current density

underneath the window is uniform. The window is milled as close as possible to

the centre of the laser, but is dependent on the position of the wire bond(s). The

dimensions set in the FIB are 6 µm x 10 µm and 0.1 µm deep, leading to an

expected window depth of ∼ 1 µm. Emission can be observed from such a window

using the X32 microscope and IR camera. However it is hard to make out the
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uniformity of the emission due to the small size of the window. The spectrum of

the emission from this window confirms the presence of pure unamplified SE only.

A photo of one of the lasers with a 6 µm x 10 µm x ∼ 1 µm window milled in the

p-contact, which is investigated in chapter 4, is included in Fig. 3.4.

window

wirebond

facet

waveguide

facet
Gold Oxide

Figure 3.4: Photo of a laser with a window (6µm by 10µm) milled in the p-contact which
is investigated in chapter 4. The laser stripe width in 1.5 µm. The large black disk at
the centre is the gold ball by which the wire bond is attached to the laser. Some of the
wire bond can be seen as an out of focus horizontal line on the right of the photo. The
gold p-contact of the laser is yellow and the oxide is orange. The vertical lines mark the
waveguide of the laser and the window has been milled along the waveguide close to the
centre of the laser.

3.2.2 Windows in N-Contact

Bare laser bars with six lasers per chip are used when milling windows on the

n-substrate. The chip is mounted p-side down on a metal holder using a double-

sided sticky carbon planchet, before the holder is mounted in the FIB. One large

window with long axis aligned perpendicular to the laser cavity is milled on the

n-side at the centre of the chip, exposing some active region from all the lasers on

the chip. The width of the window is set to 10 µm, as on the p-contact, and the

FIB depth is set to 1 µm. Results measured for depth on the p-contact indicate

the actual depth of the windows on the n-substrate is ∼10 µm. A deep window

is not expected to affect the current density in the laser due to the thickness of

the substrate. In order to remove the chip from the holder, acetone is used to
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break down the glue on the double-sided sticky carbon planchet. Unamplified SE

is measured at different points along the window when the lasers on the chip are

biased in turn.

In summary, this section provides an overview of the main considerations when

milling windows in the p and n-contacts of semiconductor lasers. Windows milled

must be small enough in order to ensure uniform current distribution underneath

the window. The depth of the window is carefully set when milling on the p-

contact, but is less critical when milling on the n-substrate. Care must also be

taken when windowing lasers as the FIB mills contact metals and InP ∼ 10 times

faster than Si.

3.3 Polarized Edge-Photovoltage Spectroscopy

This section includes information about photovoltage (PV) spectroscopy and the

set up used to measure polarized E-PV spectra. In this experiment the diode laser

is used as a pn photodiode, as described in Ref [48].

When light with energy greater than the bandgap incident on a pn junction, such

as the active region of a diode laser, it gets absorbed and electron – hole pairs are

generated inside the depletion region. The generated electron and hole are sepa-

rated by the electric field in the depletion region of the laser active region. When

the laser is connected to an external circuit the extra electrons travel through the

external circuit to the p-type semiconductor. This photocurrent, and associated

photovoltage, can be measured across the laser.

In PV spectroscopy light is incident from the side (S-PV) or the edge (E-PV) of

the laser and a step in magnitude of the measured PV spectrum, and the onset

of a peak represents the onset of a set of transitions at that energy. PV spectra

are used to identify energy states in quantum confined materials, such as quantum

well and quantum dots.

By polarizing the light incident on the laser facet E-PV spectroscopy can be used

to differentiate between transitions involving heavy hole (HH) and light hole (LH)

valence band states [49–53]. As outlined in chapter 2 transitions involving HH

states are TE-polarized, while transitions involving LH states are predominantly

TM -polarized.

3.3.1 Set Up

The set up used to measure polarized E-PV spectra can be seen schematically

in Fig 3.5. The spectrometer used is a SP2150 made by Princeton Instruments,

which has a focal length of 150 mm. The entrance and exit slits are vertical and
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are operated manually. The grating used has 600 line/mm, is blazed at 1µm and

has a 9 nm/mm dispersion.

In this experiment light from a tungsten bulb passes through a pin hole and is

collimated by a lens. An iris is placed in the light path to control the amount

of light that passes through. A second lens, which has the same f number as the

spectrometer, is used to focus the light onto the spectrometer entrance slit. This

ensures the grating is filled. The focused white light is collimated by a mirror and

reflected onto the diffraction grating, which splits white light into its component

wavelengths. The whole collimated diffraction pattern is focused onto the output

slit by a second mirror and the slit only lets a small wavelength range through.

The wavelength of the light at the output slit depends on the angle of the grating.

The spectral range is set as 1000 – 2000 nm by using a low pass filter to remove

any higher order energy contributions to the spectrum. The light at the output of

spectrometer is polarized and coupled onto the laser facet using a x 40 microscope

objective. The microscope objective has a numerical aperture (NA) of 0.65 to

maximize the coupling of light into the waveguide. The sample is mounted on an

xyz-stage. The coarse adjusting of the stage is manual, with a piezoelectric fine

adjustment operated using a Newport ESA-C microdrive controller. By chopping
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Figure 3.5: Schema of the set up used to measure polarized edge-photovoltage spectra
at room temperature.
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the light at a known frequency (typically 20 kHz), the E-PV can be detected using

a lock-in amplifier.

A lock-in amplifier [54, 55] consists of a phase sensitive detector, which performs

the AC to DC conversion of the input signal under investigation. Inside the lock-in

amplifier the input signal is multiplied by a 50-50 duty cycle oscillator reference

signal, which is generated with the same frequency as the AC input. The phase

sensitive detector does not rectify the noise, which appears as an AC fluctuation

on the DC output and is removed by a low pass filter so that the output of the

lock-in amplifier is a DC voltage. In our case the model used is an EG&G 7260

DSP lock-in amplifier.

3.3.2 Experiment

The samples being investigated are buried heterostructures (BH) or ridge waveg-

uides (RW) with an optical axis along the (110) direction. In this configuration,

E-PV emission polarized along the (1-10) direction (TE(1−10)), and TM -polarized

E-PV spectra are measured. This will be revisited in more detail below. In or-

der to carry out polarization dependent spectral measurements, the polarization

dependence of the grating must be removed. In this thesis most of the TE(1−10)

and TM -polarized E-PV spectra are measured in two configurations, with the

heterostructure growth direction (001) aligned parallel and perpendicular to the

spectrometer slits respectively. The coupling in both configurations has to be opti-

mal in order to couple light into the same part of the waveguide. First the system

response is removed from each spectrum. The four spectra are then used to remove

the effects of the polarization dependence of the experimental set up, due to the

grating in the spectrometer. Alternatively one can use a half-wave plate, as in

chapter 7.

Spectral Corrections

In an optical system, most components have some wavelength dependence, leading

to a system response which must be measured and removed as it affects the shape

of the measured spectrum. The set up used to measure the system response of the

polarized E-PV experiment is similar to that in Fig 3.5, except that the sample is

replaced by the calibrated detector from an Ando AQ2140 powermeter. A system

response spectrum is collected for the two polarizations and each E-PV spectrum

is corrected by dividing out the system response. A second correction is then used

to remove the polarization dependence of the spectrometer grating, following the

method presented in Ref [53]. Errors in this collection and correction method are

be due to misalignment, leading to photovoltage not being generated from the
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same region of the junction, but are minimised by careful alignment.

The polarized E-PV spectra are referred to as having been collected with the (001)

crystal axis parallel (p) or perpendicular (h) to the spectrometer slits. The mea-

sured polarized E-PV spectrum is denoted as Sk(λ, i) if collected in an orientation

k for a polarization i. In order to correct the spectra, two pairs of spectra collected

with the (001) axis aligned p and h to the spectrometer slits need to be considered.

The spectrally corrected polarization dependent spectra are labeled, P (λ, p1) and

P (λ, p2), for polarizations p1 and p2 respectively. Op and Oh give the orientation

dependence of the spectrum collected in the p or h orientation. IIN represents the

magnitude of the incident photon flux on the sample in a photovoltage spectrum.

The collection efficiencies, Rp(λ) and Rh(λ), are assumed to be the same for a

pair of spectra in a particular orientation and represent the fraction of the light

transmitted into the sample.

Spectra, Sp(λ, p1) and Sp(λ, p2), taken with the sample oriented parallel to the

spectrometer slits for polarizations p1 and p2 are written as

Sp(λ, p1) ∝ Rp(λ)P (λ, p1)OpIIN (3.1)

Sp(λ, p2) ∝ Rp(λ)P (λ, p2)OpIIN (3.2)

For the sample oriented perpendicular to the spectrometer slits, the spectra are

Sh(λ, p1) and Sh(λ, p2), noting that changing the sample orientation by 90◦ swaps

the orthogonal polarizations. The ratio of a pair of spectra collected in the same

orientation, for example parallel to the spectrometer slits, can be written as

Sp(λ, p1)

Sp(λ, p2)
∝ P (λ, p1)

P (λ, p2)
(3.3)

Looking at equation (3.3), the spectrally corrected polarization dependent spec-

trum, P (λ, p1) can be written as a function of P (λ, p2), if the ratio of the two

spectra collected parallel to the spectrometer slits is known. Taking the ratio of

the measured spectra collected perpendicular to the spectrometer slits, Sh(λ, p1)

and Sh(λ, p2) and coupling it with equation (3.3) enables us to write the ratio

of the spectrally corrected polarization dependent spectra, P (λ,p1)
P (λ,p2)

as a function

of the measured polarized spectra S(λ, p1) and S(λ, p2), collected parallel and

perpendicular to the spectrometer slits, as shown in equation (3.4).

P (λ, p1)

P (λ, p2)
∝
√

Sp(λ, p1)

Sh(λ, p2)

Sh(λ, p1)

Sp(λ, p2)
(3.4)

32



Therefore P (λ, p1) can be written as a function of P (λ, p2) and both spectra can

be plotted on the same intensity axis, as the polarization dependence of the grating

in the spectrometer has been removed.

Components of Polarized Spectra

Due to the direction of the electric field, polarized E-PV spectra generated by

light incident on the facet of a device with its optical axis parallel to (110) cannot

give any information about TE(110) polarized transitions, as seen schematically in

Fig 3.6. In a quantum well, TE(1−10) and TE(110)-polarized spectra are expected

to be identical, due to rotational symmetry in the quantum well plane. This is not

expected to be the case in quantum dash material due to the asymmetry of the

dashes, which are elongated along the (1-10) direction.

In order to measure an E-PV spectrum for TE(110) and TM -polarizations, we

attempted measurements where light was incident on the side of an oxide stripe

laser, illustrated schematically as (b) in Fig 3.6. An oxide stripe quantum dash

laser was cleaved along the gold contact to expose the active region, mounted and
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Figure 3.6: Schematic view of polarized photovoltage in a buried heterostructure and
oxide stripe laser. Due to the direction of the electric field (indicated by a single headed
arrow), (a) TE(1−10) and TM -polarized PV spectra are measured when light is incident
on the facet of the laser. (b) TE(110) and TM -polarized PV spectra are measured when
light is incident on the side of the oxide stripe laser. The active region is not accessible
from the side of the BH laser. (c) When light is incident parallel to (001), TE(1−10)

and TE(110) PV components can be measured. The directions of the electric fields are
included in the top left corner respectively.
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facet
Oxide

Gold

side

wirebond

0.1 mm

Figure 3.7: Photo of a quantum dash oxide stripe laser used to measure polarized PV
spectra from the side and facet. The two yellow regions are the gold p-contacts of lasers.
The orange region is oxide. The top laser is the test laser and has a wire bonded which
can be seen in the photo.

wire bonded as shown in Fig 3.7. Polarized E-PV spectra were then measured

at the side of the facet, close to the cleaved side, as well as along the side of the

laser, close to the laser facet. This was to try to ensure that E-PV was generated

from the same dash ensemble at the facet and at the side of the laser. The spectra

collected at the facet and side were corrected as outlined in section 3.3.2. The

intensity of the corrected TM -polarized PV spectra collected at the facet and side

were normalised and plotted, as shown in Fig 3.8. However, the TM -polarized

E-PV spectra measured at the side and at the facet were spectrally different,

due presumably to stresses and resultant strain of the active region. Given the

difference between the two TM -polarized spectra, which should be identical, we

concluded that this was not an appropriate approach to compare the TE(1−10) and

TE(110)-polarized spectra.

Alternatively, we investigated whether TE(1−10) and TE(110)-polarized PV could

be measured directly by focusing light into the material in a direction parallel

to (001), as shown schematically by (c) in Fig. 3.6. However, the quantum dash

materials analysed in this thesis have very low optical absorption cross-section

per dash and therefore a very low voltage was generated when light was coupled

into a window milled in the p or n-contacts of the laser. Light from the tungsten

bulb was coupled through the spectrometer and into a window in the p-contact
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Figure 3.8: Corrected TM -polarized photovoltage spectra for an oxide stripe laser. The
blue dash data was measured using light incident on the facet, and the red line was
measured using light incident on the side of the laser.

of the laser, a very small voltage was measured and the signal to noise ratio was

too low. A larger PV signal was measured by coupling fibre-coupled light from a

tunable laser into a window milled in the n-contact of the laser. Test experiments

were carried out using polarization-maintaining fibre but the output polarization

of the tunable laser module was found not to be sufficiently stable. In view of this,

the method chosen in this thesis to analyse both TE components involves free-

space spontaneous emission (SE) spectral measurements, and will be presented in

section 3.4.

In summary, this section included a description of the experimental set up used to

carry out polarized E-PV spectroscopy. The methods used to correct the spectra

by removing system response and the polarization dependence of the grating in

the spectrometer were also outlined. Although the corrections are applied to E-PV

spectra in section 3.3.2, they can be applied to any spectral measurement taken

for two orthogonal polarizations, including the SE measurements presented in the

next section.
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3.4 Spontaneous Emission

Studying spontaneous emission is widely used in the characterisation of semicon-

ductor lasers as it provides information about intrinsic material and device proper-

ties [42, 56, 57]. Some authors [58] refer to amplified spontaneous emission (ASE)

measurements measured at the laser facet as spontaneous emission. The spon-

taneous emission (SE) measurements presented in this work involve unamplified,

’pure’ SE measured in a direction perpendicular to the device waveguide.

SE spectra can be collected from the side of an oxide stripe laser, which has been

cleaved along the gold contact to expose the active region. In a ridge waveguide

laser, SE can be collected through the side of the laser without any special pro-

cessing. SE can also be collected vertically through a window in the p- or n-side

electrode of any laser or semiconductor optical amplifier structure. The window

can be made during the processing [56, 59] or can be milled [39] as outlined in

section 3.2. When measuring SE, the direction of collection governs which com-

ponents can be measured in a similar way to that described for photovoltage in

Fig. 3.6. Collecting SE through the side of an oxide stripe or ridge waveguide

laser gives access to TE(110) and TM -polarized components. However, in order

to simultaneously collect TE(1−10) and TE(110), SE is collected vertically through
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Figure 3.9: SE spectrum measured above threshold in free space for a test laser, showing
the scattered laser peak.
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windows milled in the p and n-contact of the devices.

SE can be collected using a microscope objective or an optical fibre and measured

using a power meter, spectrometer and photodetector or optical spectrum anal-

yser (OSA). Two set ups, seen schematically in Figs 3.10 and 3.14, were used in

this work to collect SE. When SE spectra are collected from a window milled in

a laser for currents greater than threshold, a scattered laser peak is observed, as

seen in Fig. 3.9, where the narrow laser line has been broadened by the 10 nm

spectrometer resolution. Therefore when SE spectra were polarized and measured

as in section 3.5, the device was operated below the lasing threshold to avoid any

scattered stimulated emission.

3.5 Spontaneous Emission Spectral Measurements

TE(1−10) and TE(110)-polarized transitions in quantum dashes are not expected to

be of equal magnitude. However, due to the low cross dash absorption, measuring

polarized E-PV spectra along (001) was not experimentally possible. By applying

a bias to the test device and measuring the polarized SE spectra, information can

be obtained about the in-plane anisotropy of the optical properties in quantum

dashes. The set up used is described in section 3.5.1 and tested on a multiple

quantum well (MQW) device in section 3.5.2. Finally the set up and the method

used to measure wide range unpolarized SE spectra is presented in section 3.5.2.

3.5.1 Set Up

Polarized SE spectra are collected using a free-space set up at room temperature.

The device is mounted n-side down on a carrier and wire-bonded. The laser light-

current-voltage (LIV ) characteristics are measured from the facet before a window

(6µm x 10µm, and ∼1µm deep) is milled on the p-side. The facet LIV characteris-

tics are measured again after milling to ensure no damage has occurred due to the

FIB. The window is then inspected under a microscope and the window emission

is observed using an IR camera, as outlined in section 3.2. The carrier is mounted

perpendicular to the optical bench on a piezoelectric xyz-stage. The SE set up can

be seen schematically in Fig 3.10. An Agilent 81101A Pulse Generator (pulser) is

used to drive the laser with a 50% duty cycle. The amplitude of the bias current is

measured using a current probe, inside which the voltage from the pulser induces

a current in a coil, which can be measured on an oscilloscope, via a 50 Ω resistor or

on a lock-in amplifier. The frequency of the pulser is chosen to match the detector

and current probe frequency specifications. A microscope objective (x 40) with a

large NA and small focal length is used to selectively collect window emission. A
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Figure 3.10: Schema of the set up used to measure polarized spontaneous emission
spectra at room temperature.

polarizer is used to discriminate between TE(1−10) and TE(110)-polarized SE. The

polarized SE is then coupled through the spectrometer and onto a photodetector.

The BNC output of the detector is connected to a lock-in amplifier, to measure

the optical power incident on the detector. In this set up the facet emission from

the device can also be collected using a broad area detector.

3.5.2 Experiment

As outlined in section 3.3.2 any polarized spectrum collected in free space using

a spectrometer has to be corrected to remove the polarization dependence of the

spectrometer grating, as well as the system response. First TE(1−10) and TE(110)-

polarized SE spectra are collected through a window as a function of current in the

parallel configuration. The measurement is then repeated once the window had

been coupled up for the device in the perpendicular configuration. The spectra are

then corrected to remove the system response and the polarization dependence of

the grating, using the method outlined in section 3.3.2. The TE(1−10) and TE(110)

SE spectra can then be plotted on the same scale and their magnitudes compared.

In order to confirm that the polarization dependence of the measurement set up

has been correctly accounted for, TE(1−10) and TE(110) polarized SE spectra were
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Figure 3.11: Top panel: Polarized SE spectra where TE(1−10) spectrum is plotted as
red dash dot and TE(110) as black line. Bottom panel: ratio r = TE(1−10)/TE(110) for a
MQW device.

measured for a MQW test device. The sample was mounted with the (110) crystal

axis parallel and then perpendicular to the spectrometer slits and spectra were

measured at 50 mA. The spectrally corrected polarized SE spectra are shown in

the top panel of Fig. 3.11. As expected both TE components are equal within ex-

perimental error. Plotting the ratio r = TE(1−10)/TE(110) in the bottom panel of

Fig. 3.11, it can be seen that there is no energy dependence of r in the MQW sam-

ple. This is to be expected, because the two polarization directions are equivalent

in a quantum well structure [32]. Fig. 3.11 therefore confirms that the calibration

of the polarized SE set up for the measurements undertaken on quantum dashes

in chapters 4 and 6.

Wide Spectral Range Unpolarized SE Measurement

In order to measure whether any SE is emitted from the barrier regions we measure

unpolarized spontaneous emission spectra as a function of current over a wide

spectral range (1000 – 2000 nm) using a similar set up to that shown in Fig 3.10.

A high pass filter with 1300 nm cut of frequency is used when measuring the

spontaneous emission from the barrier to ensure that no scattered light or higher

order contributions from the spectrometer grating are mistakenly measured. The
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wide range spectra are only corrected to remove the system response

To summarise, this section includes an overview of the set up used to measure

polarized and unpolarized SE spectra. The polarized SE spectra are corrected as

in section 3.3.2. The set up is tested on a MQW device in section 3.5.2 where as

expected the magnitude of both polarizations is the same.

3.6 Temperature-Dependent Facet and Sponta-

neous Emission Measurements

As part of the laser characteristion and analysis, we measure how the integrated

SE varies as a function of drive current and temperature, from 40 – 330 K. We

also make facet measurements over the same temperature range to determine the

temperature dependence of the threshold current and of the external differential

quantum efficiency.

A closed cycle helium cryostat is used to carry out these temperature-dependent

facet and spontaneous measurements. The lasers used in this part of this work

are bare chips. The LIV characteristics are measured before a window is milled

on the n-substrate, and are again measured after windowing to confirm the lasers

have not been damaged during milling. The cryostat set up and the experiment

used in this part of the work are explained in detail in the following sections.

3.6.1 Set Up

This section includes a description of the closed cycle helium cryostat used in this

work, as well as the laser mount on which the samples are tested.

The Closed Cycle Cryostat

A schematic view of a closed cycle helium cryostat can be seen in Fig 3.12. In

a cryostat system there are two independent systems, the vacuum cycle and the

helium cycle. The vacuum cycle is made up of a rotary and turbo pump combina-

tion allowing the system to reach pressures of ∼10−6 mBar. The helium cycle used

in this work is made up of a Leybold Coolpak 6200 compressor, which includes a

water cooling system, a cold head, Fl4.5 flexlines and a model 9700 temperature

controller [60]. The temperature stability of the cryostat system was +/- 0.01 K

due to the wide temperature range. The compressor cools the helium gas, which

leaves the compressor unit under high pressure. The gas travels through a flexline

to the cold head. On reaching the cold head the gas expands and as it does so,

it cools the cold head and sample chamber. The low pressure helium gas is then
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Figure 3.12: Schematic view of the close cycle helium cryostat used in this work.

returned to the compressor via a flexline. The heat generated in compressing the

helium is removed from the system by a water-cooled heat exchanger in the com-

pressor. A cryostat system can only cool. The temperature in the sample chamber

can be varied from 6 – 330 K using an external temperature controller unit which

works by changing the current passing though a heating coil mounted in the sam-

ple chamber. The temperature controller unit measures the temperature of the

sample chamber by using a temperature sensor which is screwed into the laser

chip mount. For a set current, the unit measures the voltage across a calibrated Si

diode and the temperature is displayed on the front of the temperature controller

unit. In the sample chamber a 47 Ω resistor is also included in series with the laser

diode being tested on the laser chip mount.

The Laser Chip Mount

The laser chip mount, seen schematically in Fig 3.12 and 3.13, enables the collec-

tion of SE through the substrate with a constant collection efficiency and provides

an electrical connection to the bare chip laser. The base is made of brass and can

be mounted in the sample chamber, next to the heating coil. The 47 Ω resistor,

bush and contact probe are all mounted onto the base. The bush is a 1 cm long

brass cylinder with a 150 µm diameter hole drilled in the centre of one end. A

900 µm diameter counter-bored hole is drilled half way through the bush at the

centre of the other end. A multimode fibre has been glued in the bush with the
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Figure 3.13: Schema of the laser chip mount and heating coil in the cryostat sample
chamber.

150 µm diameter hole holding the bare multimode optical fibre flush with the end

of the bush while the counter-bored hole holds the fibre sheathing in place. The

bush is fitted into the base and held in place with a screw. Electrical connection

to the n-contact of the laser is made through the bush and base. A copper contact

probe and a piece of insulating material are mounted into the base using a plastic

screw, as seen schematically in Fig 3.13. The p-contact with the laser is made

through a silver wire mounted onto the end of the probe. The contact probe was

designed and tested to ensure that it holds the laser chip in place, without any

movements, during a thermal cycle, ensuring the SE collection efficiency is kept

constant throughout the measurement. In order to change the laser sample, the

height of the contact probe can be changed by moving a screw in the base.

3.6.2 Experiment

The coupling of both the spontaneous emission and facet emission must remain

constant throughout the measurement from 40 – 330 K. A schematic view of the

set up used to carry out the temperature-dependent measurements can be seen in

Fig 3.14. The laser chip is placed at the centre of the bush and electrical contact

is only made with the laser being tested. SE is collected from the test device
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Figure 3.14: Schema of the set up used to measure the facet and spontaneous emission
in the cryostat.

using a multimode fibre. The SE spectra are measured on an optical spectrum

analyser (OSA). Measuring a SE spectrum can only be carried out for a small

number of currents at each temperature, implying large current steps between the

different measurements. The measurement can also be carried out for smaller cur-

rent steps, with the integrated spontaneous emission power measured on the fibre

coupled channel of an Ando AQ2140 powermeter. Outside the cryostat window a

pair of lenses are used to collimate the facet emission and focus it onto the broad

area photodiode channel of an Ando AQ2140 powermeter. Stray light, which may

be collected by the broad area photodiode, must be blocked out for the duration

of the experiment.

The current is either DC or pulsed, depending on the sample. Lasers with low

threshold currents are measured using a 2400 Keithley DC source. For devices

with larger threshold currents, an Agilent model 81101A pulser is used to drive

the laser with a 2% duty cycle (1µs pulses at 20 kHz) and the current is measured

using a current probe and a lock-in amplifier.

The total threshold current, I th
total, is found by measuring the current for the onset

of lasing from the facet. The radiative component of I th
total, I

th
rad, is extracted from
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the integrated SE. The error in this experiment relates to accurately measuring

threshold, especially at low temperatures.

In summary, this section contains an overview of the set up used to measure facet

and spontaneous emission as a function of current and temperature. Measure-

ments are taken from 40 – 330 K, with the set up designed to ensure that the

coupling efficiency of both optical measurements remains constant throughout the

measurement.

3.7 Summary

In summary this chapter provides an overview of the main experimental methods

used in this work. Firstly an outline of the window milling process is given in

section 3.2. Next a description of the set up and experimental procedure used

to measure room temperature polarized edge-photovoltage is given in section 3.3.

Spontaneous emission is presented in section 3.4 and the experimental method used

to measure room temperature polarized spontaneous emission spectra is given in

section 3.5. Lastly the set up and experimental method used to collect facet and

spontaneous emission as a function of temperature is described in section 3.6.
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Chapter 4

Analysis of InAs/InGaAsP/InP

Quantum Dash Lasers

4.1 Introduction

Semiconductor lasers with quantum dot or wire active regions have long been pro-

posed for future optoelectronic laser devices, with potential benefits including low

and temperature insensitive threshold current, zero linewidth enhancement fac-

tor, and reduced chirp [4, 61]. Despite the advances in this technology only some

of these benefits have been achieved. To date, much of the effort in developing

quantum dot lasers has been based on the development of GaAs devices emitting

around 1.3 µm [5, 62]. However, as with quantum well devices, there remains diffi-

culty in extending GaAs-based devices to the second telecommunications window

at 1.55 µm, and InP remains the most suitable substrate choice for this spectral

region.

Growth of quantum dots on the commercially favoured (100) orientated InP sub-

strate can result in quantum dots elongated along the (1-10) axis, called quantum

dashes. InAs/InGaAsP/InP quantum dash lasers have been demonstrated to have

many impressive characteristics such as high modal gain per layer and high char-

acteristic temperature [7]. In addition to these figures of merit, these dash lasers

have been shown to have a greater insensitivity to optical feedback than quantum

well structures [63], and they can also be used for mode-locking without an active

or passive saturable absorber [64]. In addition the use of quantum dashes may also

enable polarization stable vertical cavity surface emitting lasers [65]. Nevertheless,

there has to date been little detailed analysis reported of the consequences of dash

formation on the electronic structure and intrinsic device characteristics.

This chapter includes an experimental analysis of InAs/InGaAsP/InP quantum

dash-in-a-well (DWELL) and dash-in-a-barrier (DBAR) devices. Details of the
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materials and devices studied are given in section 4.2. An overview of the theoret-

ical analysis carried out by Dr. Sorcha Healy, which is relevant to the interpretation

of experimental results, is presented in section 4.3. Results indicate that the low

electron mass and small conduction band offset lead to electrons not being confined

in the dash in the case of a DWELL structure and are only weakly confined in the

dash in a DBAR structure. By contrast, the heavy hole states see a large band off-

set. The combination of strain and dash shape lead to the optical matrix elements

being strongly enhanced for light polarized parallel to the dash long axis, and

hence to an anisotropy in the TE-polarized gain and spontaneous emission in the

growth plane. The strain also leads to strongly reduced TM -polarized emission at

the band edge, as is also found in compressively strained quantum well lasers [53].

It is also observed that the electron and hole calculated integrated density of states

are quantitatively very similar within an energy range of ∼ 50 meV of the band

edge.

The first part of the experimental analysis presented in sections 4.4.1 and 4.4.2,

confirms the presence of the anisotropy in the optical characteristics. First po-

larized edge-photovoltage (E-PV) spectroscopy is used to confirm the suppression

of TM -polarized recombination at the band edge. Then polarized spontaneous

emission (SE) measurements are taken through a window in the top laser contact

to confirm the anisotropy in the growth plane. The second part of the experimen-

tal work included in section 4.4.3 involves studying the recombination processes

present in quantum dash lasers by comparing the measured dependence of the in-

tegrated SE rate to the total current as a function of temperature. Experimental

results show that the temperature performance of these 1.55 µm InP-based de-

vices remains limited by Auger recombination, as was previously shown for 1.55

µm quantum well lasers [39]. The analysis also shows a correlation in one device

between the onset of current leakage paths and a reduction in the external dif-

ferential quantum efficiency. In the absence of current leakage paths the external

differential quantum efficiency is limited by optical losses. The issue of carrier

transport effects in the dashes is also addressed. GaAs-based quantum dot lasers

emitting at 1.3 µm typically show strong evidence of poor carrier transport at low

temperatures, resulting in the threshold current typically increasing with decreas-

ing temperature for T ≤ 200 K [66, 67]. This anomalous variation in threshold

current is much weaker in the devices studied here, suggesting that the weak elec-

tron localization and quantum wire-like valence band density of states allows a

more rapid thermalisation of carriers in quantum dash lasers compared to 1.3 µm

quantum dot devices. A summary of the work presented in this chapter is included

in section 4.5.
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4.2 Materials and Devices

This section includes an outline of the materials and devices studied in this chapter.

The material was grown at Alcatel – Thales III – V Lab by gas source molecular

beam epitaxy on the commercially favoured (100) InP-substrate orientation [7, 68]

and is made up of six stacks of dashes. The first two sets of devices studied,

DW1 and DW2, have a DWELL design, where the dashes are embedded in a

6 nm InGaAsP quantum well, which is lattice-matched to an InGaAsP barrier.

The schematic flat band profile for the DWELL design can be seen in Fig. 4.1.

The barrier and separate confinement heterostructure (SCH) layers are 40 nm and

80 nm thick in DW1. These layers are narrower in DW2, with values of 30 nm and

40 nm respectively. DW2 also has an increased level of p-doping in the upper p-

cladding layer. The other two sets of devices studied, DB1 and DB2, have a DBAR

structure where the dashes are now embedded in the InGaAsP barrier layer. The

flat band profile for the DBAR design can also be seen schematically in Fig. 4.1.

The p-doping levels in the cladding and the width of the barrier and SCH layers

are as in DW1.

The typical dash height is ∼ 2 nm. The dashes in DW1, DW2 and DB1 are

elongated with the long axis of the dashes orientated along (1-10) and the shorter

axis along (110). The dashes have approximate in-plane dimensions of 20 nm x

200 nm along (110) and (1-10) respectively. In DB2, the dashes are more dot-like

with in-plane dimensions of ∼ 20 nm along (110) and ∼ 40 nm along (1-10) due

to different growth conditions.

The materials were processed as buried ridge stripe lasers or semiconductor optical

amplifiers (SOA) at Alcatel-Thales III-V Lab. All lasers have an optical axis

along the (110) crystal axis and as-cleaved facets. The SOA samples are 2 mm

long with an angled cavity at 7 ◦ to the (110) crystal axis and have antireflection

coated facets. The SOAs are used in this chapter only for material property

measurements.

The devices studied in sections 4.4.1 and 4.4.2 are mounted and wire bonded. In

section 4.4.1 all samples are 600µm long lasers which have a ridge width of 1.5µm.

The DW1 and DB1 samples in section 4.4.2 are lasers with a ridge width of 1µm

and length 300µm and 320µm respectively. The DW2 sample is a 600µm long laser

with a ridge width of 1.5µm, while the DB2 sample is an SOA. This difference in

samples in these two sections does not affect the results as material properties

are being investigated. In section 4.4.3 temperature-dependent measurements are

carried out on bare laser chips which are 600µm long and have a ridge width of

1.5µm.
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Figure 4.1: Flat band schema of the conduction and valence band profile of the DWELL
(top) and DBAR (bottom) design with 6 stacks of dashes. The energy of the dash (D),
well (W) and barrier (B) transitions are included for the DWELL while the dash (D)
and barrier (B) transition energies are marked for the DBAR.

4.3 Theoretical Modeling

This section includes a summary of the relevant theoretical results of calculations

carried out by Dr. Sorcha Healy. These will be compared to experimental results

in sections 4.4.1 and 4.4.2.

4.3.1 Overview of Theoretical Analysis

The band offsets are calculated using material parameters in Ref [69], with the

effects of strain incorporated following the method in Refs [70, 71]. The energy

states and wavefunctions of the lowest confined conduction and valence band state

are calculated by solving Schrödinger’s equation for an 8-band k.p envelope func-

tion Hamiltonian using the plane wave expansion technique [71].

Calculations are performed for two types of materials. The first material is a

DWELL design similar to DW1 with a 1.3 nm (001) x 15 nm (110) x 80 nm (1-10)
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InAs dash embedded in a 6 nm lattice-matched InGaAsP quantum well (∼ 0.855 eV

material absorption edge) in a lattice matched InGaAsP barrier (∼ 1.06 eV). In

the second material, which is a DBAR design, the InAs dashes have the same

in-plane dimensions as the DWELL but are 1.9 nm tall (along (001)). The InAs

dashes are confined by a bulk barrier with ∼ 1.06 eV absorption edge. In both

materials the theoretical dash height has been chosen to give an optical gap of 0.8

eV (1.55 µm).

In order to ensure convergence of the ground state and lowest excited state energies

in the DWELL and DBAR materials the dimension of the long dash axis along (1-

10) is reduced to 80 nm from the experimentally measured value of ∼ 200 nm. The

difference in the dash length along the long axis has a negligible effect provided

the in-plane areal coverage of dashes is constant. The experimentally measured

surface density of dashes ranges between 1 – 4 × 1010 cm−2 [7]. The dashes were

measured using cross-section transmission electron microscopy (TEM) to have a

lens-shaped cross-section [7]. However previous calculations on InAs/InGaAlAs

dashes [72] have shown that it is reasonable to approximate a dash with lens-

shaped cross-section by a dash with rectangular cross-section. The net strain over

the supercell is constrained to be zero. Using supercells with dimensions of 16 nm

along (001), 50 nm along (110) and 100 nm along (1-10), gives a filling factor of

0.24 and a dash density of 2 × 1010 cm−2. The energy states and wavefunctions

are calculated using a basis of 11, 17 and 17 plane waves along the (110), (1-10)

and (001) directions respectively. The ground state electron and hole states are

then converged to within a few meV. The convergence of the higher energy states

will tend to decrease with increasing energy separation from the band edges, but

this does not affect any of the analysis or conclusions of this work. Lastly, TEM

measurements [7] show the dashes sitting on a thin wetting layer (WL). However

because of the small CB offset, the WL CB states only slightly perturb the con-

tinuum of quantum well and barrier conduction states. The deep VB well ensures

that the WL states are well separated from the dash valence states. Hence we

conclude that for this discussion it is reasonable to ignore the WL states when

modeling InAs/InGaAsP/InP quantum dashes.

4.3.2 Overview of Theoretical Results

The insets in Fig. 4.2 show the calculated band profile and lowest confined state

energies for the DWELL and DBAR material. Due to the low InAs electron mass

and small InAs/InGaAsP conduction band offsets, the electron states are poorly

confined in both materials. In the DWELL, the electron ground state is not

confined in the InAs quantum dashes, but rather in the surrounding quantum well
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Figure 4.2: Calculated absorption curves (top) multiplied by filling factor ζ of DWELL
(left) and DBAR (right). Also shown (bottom) are the corresponding anisotropy ratios,
r=|M (1−10)|2/|M (110)|2 for the DWELL (left) and DBAR (right). Insets show the calcu-
lated band profile and lowest confined state energies for the DWELL (left) and DBAR
(right).

layer. The lowest lying heavy-hole (HH) valence band states, HH1, are however

well confined within the quantum dash in both materials due to the combination

of hydrostatic and axial strain in the dashes. Results predict that the lowest

lying light-hole (LH) states, LH1, are shifted downwards considerably in both

the DWELL and DBAR because of the large axial strain component. We will

investigate the predicted valence band dispersion in both samples in section 4.4.1

by measuring the polarization of transitions at the band edge using polarized E-

PV spectroscopy.

The calculated electronic structure is used to determine the momentum matrix

elements, describing transitions between all electron and hole levels within 120 meV

of the ground state [73] at room temperature, and so to calculate the absorption at

room temperature. The expression for absorption follows from the gain expressions

in Refs [72, 74] and [5], modified by the inclusion of the dash filling factor ζ in
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order to take account of the dash area density.

α(p, hν) =
πe2ζ

m2
0ǫ0cnrω

1

V

nc
∑

i

nv
∑

j

|Mp
ij|2G (Ec,i − Ev,j − hν) (4.1)

where p indicates the polarization direction, ζ is dash filling factor takes ac-

count of the dash area density, V is the volume of the quantum dash, |Mp
ij| is the

momentum matrix element in each of the relevant directions (TE(110), TE(1−10)

and TM) for the ijth transitions with energy separation Ec,i − Ev,j, hν is the

photon energy, and G(x) is the Gaussian broadening function. nc indicates the

number of conduction band states while nv indicates the number of VB states.

The Gaussian broadening function is included to account for the presence of inho-

mogeneous broadening in a real quantum dash ensemble.

The calculated absorption spectra shown in the top row of Fig. 4.2 have a broad-

ening of 30 meV, as measured experimentally in section 4.4.1. Calculations indi-

cate that absorption polarized along the dash long axis is larger than along the

other in-plane direction in both the DWELL and the DBAR. The bottom row of

Fig. 4.2 shows the ratio between the two calculated in-plane absorption values,
TE(1−10)

TE(110)
. The causes of the enhancement of TE(1−10)-polarized transitions over

TE(110)-polarized transitions will be discussed in more detail in section 4.4.2.

In summary, due to the effect of carrier confinement, strain and dash shape, an

anisotropy of the optical properties is predicted in both DWELL and DBAR ma-

terial, as seen in Fig. 4.2.

4.4 Experimental Analysis

Having reviewed the relevant theoretical results, we present in this section an

experimental analysis of quantum dash materials and lasers. Polarized edge-

photovoltage (E-PV) and spontaneous emission (SE) spectra are presented in sec-

tions 4.4.1 and 4.4.2, to evaluate the anisotropy of the optical properties of the

quantum dash material. An understanding of the features of the polarized spec-

tra and the causes of the anisotropy is gained by using the results presented in

section 4.3. Having established the optical characteristics of InAs/InGaAsP/InP

quantum dash materials experimentally, quantum dash lasers are then studied

as a function of current and temperature in section 4.4.3. In this analysis the

temperature dependence of the threshold current and its radiative component are

measured and analysed in order to identify the dominant carrier recombination

processes and losses, and their temperature dependence.
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4.4.1 Polarized Edge-Photovoltage Spectroscopy

Polarized E-PV spectroscopy is used to determine the energy distribution and char-

acter of transitions between electrons and HH and LH valence band states [50, 52].

Typically TM -polarized spectra are due predominantly to transitions involving LH

states, as outlined in chapter 2.

In this experiment, light from a broadband tungsten light source is spectrally

resolved using a spectrometer, polarized and focused onto the laser facet. The

generated voltage is measured using a lock-in amplifier. The measured polarized

E-PV spectra are corrected for spectral variations, allowing the two orthogonal

polarizations to be plotted on the same intensity scale [53], as outlined in chap-

ter 3. In the quantum dash samples studied in this chapter, E-PV spectroscopy

can only give information about TE(1−10) and TM -polarized transitions. Transi-

tions involving TE(110) are hidden because the laser cavity is parallel to the (110)

crystal plane and access to this polarization direction from the side of a buried

heterostructure (BH) laser is not possible, as illustrated schematically in Fig. 4.3.

Further information about the experimental set up used to measure polarized E-

PV spectra was presented in chapter 3.
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Figure 4.3: Schema of experimental configuration for E-PV measurement with polarized
light is incident on the laser facet. The dash orientation is shown in the top right.
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Spectra

Fig. 4.4 shows the polarized E-PV spectra collected for four samples where the

TE(1−10) and TM -polarized spectra are shown by the red dash-dot and blue dashed

lines respectively. A large difference between the TE(1−10) and TM -polarized ab-

sorption edges can be seen in all four panels of Fig. 4.4. This result is due to the

strain-induced splitting between HH and LH valence band states, and is in good

agreement with the theoretical results summarised in section 4.3. Based on the

modeling in section 4.3 the features of the E-PV spectra are interpreted as origi-

nating from the dash states and the surrounding InGaAsP alloys, as indicated by

the labels in Fig. 4.4. Considering first the top row of Fig. 4.4 the lowest energy

transition (∼ 0.8 eV) in DW1 and DB1 is attributed to recombination between

HH ground state in the dash and ground state electrons. Several further peaks are

clearly visible in these two spectra. The peak just below 0.9 eV in DW1 is associ-

ated with transitions between quantum well states. A clear shoulder close to 0.9

eV is found in the TE(1−10)-polarized spectrum for DB1, close to the main peak in

the TM -polarized spectrum. This feature is attributed to recombination between

bound electron states and higher states with predominantly LH character. The

InGaAsP barrier material is seen at hν ≈1.1 eV in DW1 and DB1. Considering
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now the bottom left panel of Fig. 4.4 the spectrum for DW2 has similar spectral

features to those seen in DW1. The polarized E-PV spectra measured in DB2

and included in the bottom right panel of Fig. 4.4 are much broader than in the

other three samples. The lowest peak at ∼ 0.8 eV is attributed to transitions

involving dash-like ground state heavy holes and electrons. The shoulder observed

at hν ≈1.1 eV in DB2 is associated with bulk barrier transitions.

Dash Size Dispersion

Size and composition fluctuations in an ensemble of self organised quantum dashes

leads to a distribution of energy levels and the presence of inhomogeneous broad-

ening. The standard deviation (σ) of a Gaussian function fitted to the absorption

edge of the TE(1−10)-polarized E-PV spectrum, quantifies the amount of inho-

mogeneous broadening present in the ensemble. In the top panel of Fig. 4.5 a

standard deviation of ∼ 30 meV is measured for the Gaussian function fitted to

the TE(1−10)-polarized E-PV spectrum for DW1. This value is used as the Gaus-

sian broadening applied to the calculated absorption spectra in section 4.3. The

estimate of the amount of inhomogeneous broadening is the same for DW1, DB1

and DW2 which have elongated dashes with in-plane dimensions of ∼ 20 nm (110)

by ∼ 200 nm (1-10). The Gaussian function fitted to the DB2 TE(1−10)-polarized

E-PV spectrum can be seen in the bottom panel of Fig. 4.5 and has a standard

deviation of ∼ 50 meV, indicating there is more dash size dispersion in this sam-

ple, as predicted by Gioannini [72]. The shorter (1-10) dimension in DB2 will

contribute to a different distribution of energy states compared to DB1, as the

in-plane dash dimensions are ∼ 20 nm by ∼ 40 nm along (110) and (1-10) respec-

tively in DB2. The energy states along (1-10) form wire-like mini-bands in DB1,

but such mini-bands are not as well defined in DB2. As both in-plane directions

of the dash are significantly larger than the height, variations in the dash height

and shape, as well as composition fluctuations are likely to contribute most to the

inhomogeneous broadening.

To summarise, polarized E-PV spectroscopy is used to study transitions involving

electrons and both HH and LH states and to differentiate between them. Results

show that electron-LH transitions are suppressed at the band edge, in good agree-

ment with the theoretical results presented in section 4.3. A Gaussian function is

fitted to the absorption edge of the lowest energy state in order to estimate the

amount of inhomogeneous broadening in the samples. The value measured for the

elongated quantum dashes in DW1 is used to broaden the calculated absorption

spectra in section 4.3.
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DW1 (top panel) and for DB2 (bottom panel) with a Gaussian function fitted to the
absorption edge.

4.4.2 Anisotropy of TE Components of SE Spectra

The polarization anisotropy of the in-plane TE(1−10)-polarized optical properties is

a beneficial property of the dash structure, for example in vertical-cavity surface-

emitting lasers (VCSELs) [65, 75], and also therefore to give higher gain and

lower threshold for edge-emitting lasers that exploit the higher gain polarization

direction [76]. The polarization anisotropy present in quantum dash samples is

experimentally measured in this section and a good qualitative and quantitative

agreement is found with the theoretical results summarised in section 4.3.

SE is measured through a window in the top contact of each device, using a

polarizer to discriminate between TE(110) and TE(1−10)-polarized emission. The

collected SE spectra are corrected for spectral variations, again using the method

described in Ref [53]. More information about the experimental set up and spectral

correction used can be found in chapter 3. A sketch of the experimental set up

is shown in Fig. 4.6, indicating the position of the window, the orientations of

the dash and laser optical axis, and the different polarization directions. The

calibration of this experimental set up is confirmed by measuring the polarized

SE spectra from a multi quantum well sample. The results of this analysis are

included in chapter 3 where, as expected [32], the measured TE(110) and TE(1−10)
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Figure 4.6: Schema of experimental set up for polarized SE measurements, where light
is collected through a window in the top contact of the laser. A sketch of the dash
orientation is shown in the top right.

polarized emission spectra have equal magnitude.

SE is collected for three laser samples (DW1, DB1 and DW2) below the lasing

threshold to avoid any scattered laser light. Fig. 4.7 shows the measured SE spectra

for DW1 (left panel) and DB1 (middle panel) at a current of 7 mA, corrected for

spectral response. The spectral response correction leads to the large errors at low

and high energy tails in all three panels of Fig. 4.7. The spectra collected for DW2

are not shown as they are similar to DW1. Polarized SE spectra are also collected

through a window in the top contact of an SOA for DB2. The corrected spectra

measured at a bias current of 61 mA are plotted in the right panel of Fig. 4.7.

The current of the SOA was chosen so as to ensure the gain of the SOA was not

saturated and that no amplified SE was coupled out of the window.

It is clear that there is an appreciable enhancement of TE(1−10) over TE(110)

emission in all three panels of Fig. 4.7. Fig. 4.8 shows the ratio, r , of TE(1−10) to

TE(110)-polarized SE for DW1 (left panel), DB1 (middle panel) and DB2 (right

panel) as a function of bias current. The ratio r does not depend on current,
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Figure 4.7: The TE(1−10) (red dash-dot) and TE(110) (black) SE spectra at 7 mA for
DW1 (left panel) and DB1 (middle panel) and at 61 mA for DB2 (right panel). The
large errors at the low and high energy tails are due to the spectral response correction.

indicating that it is an intrinsic property of the material. A good qualitative and

quantitative agreement is seen between the measured ratio r for DW1 and DB1

and the ratio of the calculated absorption spectra, r , included in the bottom panel

of Fig. 4.2.

Origin of TE Polarization Anisotropy

To understand the origin of the polarization anisotropy measured in the quantum

dash samples, we recall the SE rate for a polarization, p, Rspon(p, hν), written as

in chapter 2

Rspon(p, hν) ∝ hν

nc
∑

i

nv
∑

j

|Mp
ij|2G (Ec,i − Ev,j − hν) (fc(Ec,i)(1 − fv(Ev,j))) (4.2)

where |Mp
ij| is the momentum matrix element linking the conduction state with

energy Ec,i with the valence state with energy Ev,j in each direction p ((001), (110)

and (001)). hν is the photon energy and G(x) is a Gaussian broadening function

included to account for the presence of inhomogeneous broadening in a real quan-

tum dash ensemble. fc(Ec,i) and (1 − fv(Ev,j)) are the probability of occupation

for an electron at Ec,i in the conduction band and a hole at Ev,j in the valence
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Figure 4.8: Ratio of SE spectra for DW1 (left panel), DB1 (middle panel) and DB2
(right panel) for three values of drive currents.

band.

In chapter 2 we showed that the ratio, r , of the two TE-polarized spectral com-

ponents of the SE rate along (1-10) and along (110) is written as

r =
R

TE(1−10)
spon (hν)

R
TE(110)
spon (hν)

∝
∑nc ,nV

i ,j |M (1−10 )
ij |2

∑nc ,nv

i ,j |M (110 )
ij |2

(4.3)

and is the ratio of the square of the momentum matrix elements for TE(1−10) and

TE(110)-polarized recombination.

Considering the left panel of Fig. 4.8, r ∼ 1.5 between 0.75< hν <0.85 eV. Coupled

with the E-PV spectra presented in Fig. 4.4 we see that the SE below 0.85 eV is due

entirely to transitions involving anisotropic dash valence states. For hν > 0.9 eV ,

the ratio r decreases below unity, as transitions involve well and barrier states with

enhanced TE(110) character. In a quantum well matrix elements tend to have equal

magnitude for recombination polarized along the (110) and (1-10) directions, due

to the uniform distribution of carrier momentum along the two orthogonal direc-

tions in the well. Therefore the predicted and measured anisotropy below 0.85 eV

is attributed to a larger momentum matrix element along (1-10) than along (110)

for transitions involving quantum dash states.

The larger anisotropy in DB1 is attributed to a theoretically predicted larger dash
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height and deeper lateral confinement potential for HH carriers in DB1 [77]. This

leads to an enhancement of the wire-like characteristics of the dash and hence to

the increase in r . A smaller ratio r (∼ 1.5) is measured in DB2 compared to DB1.

This reduction is attributed to the more dot-like dashes in this sample relaxing

along both (1-10) and (110). Relaxation along (1-10) would not be expected in

the other three quantum dash samples where the dashes are more elongated along

(1-10).

To conclude polarized SE spectra are measured through a window fabricated into

the top contact of a device to quantify the anisotropy of the TE-polarized com-

ponents experimentally. A good qualitative and quantitative agreement is found

between experiment and theory presented in section 4.3. The anisotropy is at-

tributed to a larger momentum matrix element along (1-10) due to the effect of

carrier confinement, strain and dash shape.

4.4.3 Recombination Processes and Optical Losses

In this section the recombination processes are studied in three laser structures

with DW1, DB1 and DW2 active material. The DB2 laser is not investigated in

detail as it is found to suffer from defect-related recombination.

Each sample is mounted in a closed-cycle helium cryostat capable of cooling be-

tween 40 K and 330 K. The set up used in this section is described in detail in

chapter 3 but can be seen schematically in Fig. 4.9. Using a polished multimode

fibre SE is collected through a window that has been milled in the substrate of the

laser. The facet emission is also measured. The collection efficiency for both opti-

cal measurements is kept constant throughout. The integrated SE, LSE, collected

though the window is a lower bound measure of the radiative current, Irad, as the

contribution from TM -polarized SE (up to ∼ 20 %), which cannot be measured

through the window, is neglected.

Temperature Dependence of the Threshold Current and its Radiative

Component

First the temperature dependence of the threshold current, I th
total, and its radiative

component, I th
rad, are studied using an analysis presented in Ref. [39]. I th

total is found

by measuring the current for the onset of lasing from the facet. I th
rad is extracted

from the integrated SE. The analysis assumes that at low temperatures the cur-

rent is dominated by radiative recombination enabling I th
rad to be equated to I th

total

for temperatures ≤ 100 K. Fig. 4.10 shows a similar temperature dependence of

I th
tot and I th

rad for both DW1 and DB1 in the left and middle panels respectively.
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Figure 4.9: Schema of the experimental configuration for temperature dependent mea-
surements. Spontaneous emission is collected through a window in the substrate of the
laser. Facet emission is also measured. The collection efficiency is kept constant at the
facet and window throughout the experiment.

Below 100 K, I th
total and I th

rad increase at the same rate with temperature support-

ing our assumption that radiative recombination dominates in this temperature

range. At ∼130 K there appears a bump in the temperature dependence of the

threshold current and its radiative component. A similar feature has been observed

in 1.3µm undoped and p-doped quantum dot lasers [66, 67], where the effect is

much stronger and occurs at a higher temperature. This anomalous variation in

the temperature dependence of the threshold current has been attributed to poor

carrier transport into and between dots leading to an increase in the threshold

current at low temperature. The reduction in threshold current with increasing

temperature is then due to improved carrier thermalisation at higher temperatures.

The smaller bump at a lower temperature in the quantum dash lasers indicates

that carrier localization is much weaker than in 1.3µm quantum dot lasers. The

weaker localization and more rapid thermalisation of carriers is attributed to the

theoretically predicted weak electron confinement and quantum wire-like valence

band density of states in quantum dash lasers.

Above 150 K, I th
tot increases more rapidly than I th

rad, indicating the onset of a non-

radiative recombination process. Between 200 K and 300 K I th
tot increases with a

characteristic temperature, T0 ≈ 70 K which is larger than values measured on

other InGaAsP/InP-based lasers (T0 ≈ 50 – 55 K) [39, 78] indicating that quan-

tum dash lasers can have improved temperature performance. The temperature

dependence of I th
rad with T0 ≈ 200 K in this range is accounted for by thermal
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Figure 4.10: Plot of total threshold current, Ith
total, (filled red squares) and its radiative

component at threshold, Ith
rad, (filled blue triangles) as a function of temperature for DW1

(left panel), DB1 (middle panel) and DW2 (right panel). The characteristic temperature,
T0, of Ith

tot and Ith
rad are also included for DW1.

broadening of the carrier distributions. At 300 K the internal quantum efficiency,

ηi, defined as the ratio of radiative current to total current, is ∼ 10% for DW1 and

∼ 20% for DB1 at threshold. The room temperature value of ηi in DW1 is similar

to that previously measured in other InP-based lasers [78, 79].

Considering the right panel of Fig. 4.10 we notice there is no bump in the temper-

ature dependence of I th
tot and I th

rad for DW2 indicating improved carrier transport

at low temperature. Above 150 K, the temperature dependence of I th
tot behaves as

in DW1 and DB1, indicating the onset of a non-radiative recombination process.

We will return to discuss this further below.

To summarize, the temperature dependence of quantum dash lasers is attributed

to the onset of a temperature-dependent non-radiative carrier process.

Current and Temperature Dependence of Carrier Recombination Pro-

cesses

This section includes an analysis described in detail in chapter 2 to identify the

dominant carrier recombination process as a function of current and temperature.

It involves measuring the variation of the radiative current, Irad, with total cur-

rent, Itot, as a function of temperature. The dominant recombination process can
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Figure 4.11: The power of the carrier density, z , as a function of drive current up to
threshold for DW1, DB1, DW2 and DB2 at 100 K

be identified by finding the slope, z , of a plot of ln(Itot) versus ln(I
1/2
rad).

First z is plotted at 100 K as a function of the total current, Itot, up to threshold

in Fig. 4.11. DW1, DB1 and DW2 are measured to be radiatively dominated, with

z ∼ 2 over the full current range, which is consistent with the normalisation of

I th
rad to I th

tot at low temperatures in these lasers. In DB2 z ∼ 1 at low currents,

indicating the presence of defect-related monomolecular recombination. This is

the reason for not investigating this sample further.

Fig. 4.12 shows the measured temperature dependence of the value of z at thresh-

old, zth , (blue diamonds) for DW1 and DB1 (left and middle respectively). In both

lasers, zth ∼ 2 below 100 K and increases with increasing temperature. In DB1

zth ∼ 3 at 300 K consistent with Auger recombination as the dominant carrier

recombination process. In DW1 zth ∼ 3 at 250 K, indicating the presence of Auger

recombination. However above 250 K zth > 3 in DW1, leading to a breakdown

of the z analysis. This behaviour has previously been associated with the likely

onset of a further non-radiative loss mechanism in this temperature range [39].

Temperature Dependence of the External Differential Quantum Effi-

ciency

The z analysis presented above assumes the absence of leakage currents. However

room temperature results for DW1 in Fig. 4.12 cannot be attributed to Auger

62



recombination alone as zth > 3. The open red squares plotted on the right axes of

Fig. 4.12 show the temperature dependence of the external differential efficiency,

ηext
d , normalised to its maximum value, ηext

d,norm = ηeta
d /ηmax

d , with ηext
d,norm plotted

on a log10 scale. The maximum value of ηext
d,norm occurs around 150 K and 200 K

for DW1 and DB1 respectively.

A small decrease in ηext
d,norm is seen for T ≤ 100K in DW1 and DB1, consistent with

poor carrier transport and non-equilibrium distribution of carriers at low temper-

ature. The negligible decrease in ηext
d,norm at low temperature indicates reduced

carrier localisation in DW2. For DB1, increasing the temperature above 200 K

results in an exponential decrease of ηext
d,norm to 50% at 300 K. By contrast, two

distinct regions can be observed in the temperature dependence of ηext
d,norm in DW1;

ηext
d,norm begins to decrease exponentially at 150 K and then starts to decrease more

rapidly above 250 K. A correlation is observed between the second decrease in

ηext
d,norm and zth > 3 in the left panel of Fig. 4.12.

As outlined in chapter 2 a decrease in ηext
d can be due to current spreading, current

leakage or increased optical losses [38]. Current spreading is neglected because all

samples are BH lasers. In DB1 the decrease in ηext
d,norm above 200 K is attributed

to a temperature dependent optical loss, such as intervalence band absorption

(IVBA). IVBA, which is described in detail in chapter 2, is often an issue in long-

wavelength lasers where the energy separation between the split-off band and the

HH band is equal to the band gap energy at finite wavevector k. The decrease

in ηext
d,norm beginning at 150 K in DW1 is also attributed to IVBA. The additional

loss mechanism in DW1 is most likely due to the development of a current leakage

path with increasing temperature.

This assignment is supported by the measured room temperature variation of the

SE spectra for DW1 and DB1 for currents above and below threshold, as shown

in Fig. 4.13. SE from the barrier material is measured in DW1 (left panel) but is

absent in DB1 (middle panel). SE clamps at threshold in DB1 but not in DW1,

as seen in the insets of Fig. 4.13. The unclamped barrier emission above threshold

in DW1 is consistent with the presence of a current leakage path [38].

This conclusion is supported further by analysing DW2, which is a laser with a

narrower waveguide and more p-doping in the top contact but has a similar type

of active region as DW1. Considering the right panel of Fig. 4.11, DW2 is radia-

tively dominated at low temperature. The right panels of Fig. 4.10 and 4.13 shows

the threshold current characteristics and ηext
d,norm as a function of temperature for

DW2. The absence of a bump in the threshold current and a negligible decrease

in ηext
d,norm at low temperature indicate reduced carrier localisation in this sample.

The value of zth for DW2 increases from 2 to 3 with increasing temperature, but
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DW2 (right panel)

does not exceed 3, indicating that Auger is the dominant recombination process

at threshold in this laser at room temperature. ηext
d,norm shows a similar exponential

decrease to that observed in DB1, with no second process observed to contribute

to losses at higher temperature. Considering the right panel of Fig. 4.13 and the

relevant inset, no barrier emission is measured and SE clamps at threshold in DW2

indicating the absence of a leakage path in this laser. It should be noted that the

room temperature unpolarized SE spectra for DW1 and DB1 were measured on

∼ 300µm lasers while the DW2 laser was ∼ 600µm. Although it would be ex-

pected that a larger amount of barrier emission might be measured in a ∼300µm

DW2 laser, the clamping of the carrier density at threshold in DW2 would not be

expected to change. In summary, there is a clear correlation in DW1 between the

onset of current leakage paths and a reduction in the external differential quantum

efficiency. This leakage path is eliminated in DW2, which has a similar type of

active region as DW1. Results of this analysis indicate that at room temperature

Auger recombination remains dominant at threshold in quantum dash lasers and

that in the absence of leakage currents the external differential quantum efficiency

is limited by an optical loss. We also find that these quantum dash lasers have

marginally improved temperature performance compared to InGaAsP/InP-based

MQW and (311)B quantum dot lasers.
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Figure 4.13: Plots of the unpolarized spontaneous emission as a function of current
for DW1 (left panel), DB1 (middle panel) and DW2 (right panel). Data for DW1
(left panel) shows the presence of barrier emission which continues to increase above
threshold. Insets: unclamped SE in DW1 at 1 eV, while SE measured at 1 eV clamps
in both DB1 and DW2.

4.5 Summary

This chapter includes an analysis of InAs/InGaAsP/InP quantum dash lasers. An

overview of the materials and devices studied is presented in section 4.2. Sec-

tion 4.3 includes a summary of theoretical results calculated by Dr. Sorcha Healy.

The model shows that, whilst the HH states are confined within the dash, the

electron states in the DWELL are confined within the quantum well and are only

weakly confined in the dash in the DBAR structure. An anisotropy of the optical

properties is predicted due to the effect of carrier confinement, strain and dash

shape.

The first part of the experimental analysis I have undertaken involves the study of

the anisotropy in the optical characteristics in quantum dash materials, which is

a beneficial property of the dash structure for laser applications. First polarized

edge photovoltage spectroscopy is used to measure the suppression of electron-LH

transitions at the band edge predicted by theory. Next polarized spontaneous

emission spectra are analysed and the measured anisotropy of the in-plane polar-

izations is found to be in good qualitative and quantitative agreement with theory.

The anisotropy, measured for transitions which involve dash states, is attributed
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to an enhancement of the momentum matrix element along the long dash axis.

Having established the anisotropy of the optical properties in quantum dash mate-

rials, the recombination processes present in quantum dash lasers are investigated

in section 4.4.3. Results indicate that, at room temperature, Auger recombina-

tion remains the dominant intrinsic carrier recombination process at threshold

despite the extra dimension of confinement provided by using a quantum dash

active region. Further analysis suggests that in the absence of leakage paths an

optical loss, such as IVBA, is the factor limiting the external differential quantum

efficiency above ∼ 200 K. However, despite these limitations, the quantum dash

lasers studied in this chapter have better temperature performance than conven-

tional InGaAsP/InP quantum well [39] and (311)B quantum dot [78] lasers. The

reduced temperature dependence of the threshold current and the anisotropy in

the optical characteristics are of significant benefit for telecom laser applications.
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Chapter 5

Recombination Processes in

P-Doped Quantum Dash Lasers

5.1 Introduction

Quantum dots have been proposed as a means of increasing the modulation speed

of lasers due to their potential to achieve a temperature insensitive threshold cur-

rent and a high differential gain [4, 61], the latter enabling improved intrinsic

modulation bandwidth of the laser.

In an ideal quantum dot there is a large energy separation between the ground

state and other states. Carriers are confined in 3D electronic states and there is

no thermal spreading of the injected carriers. This leads to the threshold current

being temperature insensitive [4]. The energy levels of the electrons and holes are

discrete in an ideal quantum dot and the quasi-Fermi levels separate symmetrically.

Symmetric separation of the quasi-Fermi levels is beneficial as the differential gain

is maximised when both quasi-Fermi levels are as close as possible to the band

edge [32]. However due to the asymmetry in the electron and hole effective masses

and charge neutrality under high injection conditions in a real quantum dot laser

the quasi-Fermi levels separate more toward the valence band, as previously seen

in quantum well lasers [32]. The symmetry of the quasi-Fermi level separation can

be improved by p-doping the material as shown schematically in Fig 5.1.

A semiconductor is doped by adding a small controlled amount of another element,

called a dopant. If this impurity atom has a greater number of valence electrons

than the host semiconductor material, the extra electrons are known as donors

and the semiconductor is n-doped. In the case of a p-doped semiconductor, the

dopant has fewer valence electrons than the host material and accepts an electron

from the valence band [80]. However p-doping the active region itself can alter

the band structure near the band edge and degrade the laser performance [32]. A
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Figure 5.1: Illustration of how the quasi-Fermi levels are affected by p-type doping

symmetric separation of the quasi-Fermi levels can also be achieved by modulation

doping where the dopant is placed in the barrier regions, and therefore physically

separated from the active region [35].

Modulation-doping is widely used in electronic devices [80] and although modula-

tion-doped quantum well and quantum dot lasers have been studied theoreti-

cally [81–83] and experimentally [84, 85] for twenty years, until recently they

have not been widely used, due to problems such as increased optical loss and

non-radiative recombination in quantum well lasers, and the initial difficulty in

growing quantum dots. With the recent advances made in the growth of self-

organised quantum dots, p-doping has once again been applied to quantum dot

lasers. The impact of the p-doping is expected to be greater in quantum dots

because of the reduction in the band edge density of states due to dot formation.

Less dopant is therefore required than in quantum well lasers [82, 86–88].

As well as improving differential gain [82, 83, 87], other benefits have been theo-

retically predicted in p-doped quantum dots including a larger peak gain and later

ground state gain saturation, as well as improved temperature performance [67,

89, 90].

The theoretically predicted benefits of p-doping have been investigated experi-

mentally for InAs/GaAs quantum dot and for InAs/AlGaInAs/InP quantum dash

lasers. A higher gain and differential gain at a given current compared to an un-

doped laser and later ground state gain saturation have been measured [86, 88, 91].

The higher differential gain has led to an improvement in the modulation band-

width of the p-doped lasers [92, 93]. P-doped quantum dot lasers have also been
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total,(filled red squares) and its

radiative component at threshold, J th
rad,(filled blue triangles) as a function of temperature

for an undoped InAs/GaAs 1.3 µm quantum dot laser, as in Ref [98].

found to have improved temperature performance with T0 ≥150 K or even negative

values of T0 at room temperature [67, 86, 89, 91, 93–97] .

We measured for the undoped InAs/InGaAsP/InP lasers in chapter 4 a small bump

in the measured threshold current as a function of temperature at lower temper-

atures (T < 150 K) which we attributed to carrier thermalisation effects. At

the lowest temperatures, once carriers are captured into the lowest energy states,

the escape time for carriers to be excited from a given dot becomes too long to

allow a thermal equilibrium distribution of carriers. As a consequence of the non-

equilibrium carrier distribution, the threshold current density then increases with

decreasing temperature. Similar, but stronger localisation effects are observed in

undoped InAs/GaAs 1.3 µm quantum dot lasers, as illustrated for a typical device

in Fig 5.2, where the total threshold current density, J th
total, has a minimum value at

∼ 200 K, with the radiative component of the threshold current density, J th
rad, con-

tinuing to decrease until room temperature [98]. The introduction of p-doping to

InAs/GaAs quantum dot lasers further increases the thermalisation effects, thus

accounting for the high or even negative T0 values which are found in such de-

vices [95].

Having gained an understanding of the undoped InAs/InGaAsP/InP material

and its effect on lasers in chapter 4, this chapter includes an analysis both of
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the localisation effects and of the recombination processes present in two p-doped

InAs/InGaAsP/InP quantum dash lasers. Results are compared to those mea-

sured on a nominally identical undoped sample, to seek to identify the influence

of p-doping in the case of quantum dash lasers.

Details of the samples studied in this chapter are included in section 5.2. The

main results are presented in sections 5.3 to 5.5. Firstly the temperature depen-

dence of the total threshold current and its radiative component are studied in

section 5.3. As in other p-doped quantum dot lasers, carrier transport effects are

found to be stronger in p-doped InAs/InGaAsP/InP lasers, with their influence

persisting to a higher temperature than in the undoped sample. However, a more

rapid thermalisation of carriers is measured in these p-doped quantum dash lasers

compared to the p-doped 1.3 µm quantum dot devices. Next the dominant re-

combination processes present in the p-doped lasers are analysed as a function of

current and temperature in section 5.4. Experimental results suggest that both

p-doped samples suffer from defect-related recombination, which is quantified in

section 5.5. We show for the p-doped laser where defect-related recombination is

not dominant, that the threshold current remains dominated by Auger recombi-

nation at room temperature. We conclude with a summary of the work presented

in this chapter in section 5.6.

5.2 Materials and Devices

This section presents an outline of the materials and devices studied in this chapter.

Two sets of p-doped dash-in-a-barrier (DBAR) lasers are studied and compared

to the undoped DBAR laser considered in detail in chapter 4. The material was

grown at Alcatel – Thales III – V Lab using gas source molecular beam epitaxy

on the commercially favoured (100) InP-substrate orientation [7, 68].

As outlined in chapter 4, the DBAR design involves growing InAs quantum dashes

in an InGaAsP barrier layer, as shown schematically in Fig. 5.3, where the flat band

profile for the undoped DBAR design is above and the modulation-doped DBAR

design below. The undoped material, DB1, is made up of six stacks of dashes

and has barrier and separate confinement heterostructure (SCH) layers which are

40nm and 80nm thick. As a laser referred to as DB2 has been studied in chapter 4,

the p-doped materials will be referred to as DB3 and DB4, where DB3 thermalises

before and has better characteristics than DB4. DB3 and DB4 also have six dash

layers and have the same barrier and SCH layer thickness as DB1. However the

40nm barrier is made up of 20nm of Be-doped InGaAsP, sandwiched between two

10nm layers of undoped quaternary, as shown schematically in Fig. 5.3. The Be

70



Growth direction

Energy

VB

SCH

InP top InP top

SCH

~0.8 eV ~1.06 eV

B

D

InP
substrate

SCH

p-doped DBAR Design

CB

VB

SCH

InP top InP top

~0.8 eV ~1.06 eV

B

D

InP
substrate

SCH SCH

Undoped DBAR Design

CB

Be

X6

X6

Figure 5.3: Flat band schema of the conduction and valence band profile of the undoped
(top) and p-doped (bottom) DBAR design with 6 stacks of dashes. The energy of the
dash (D) and barrier (B) transitions are included for both designs. The 20nm p-doped
barrier is marked by the thick pink line in the p-doped DBAR design.

doping density is 1×1018 cm−3 in DB3 and 5×1017 cm−3 in DB4, equivalent to 80

and 40 acceptors per dash in DB3 and DB4 respectively. The dashes are elongated,

with the long axis of the dashes oriented along (1-10) and the shorter axis along

(110). The dashes have approximate in-plane dimensions of 20nm x 200nm along

(110) and (1-10) respectively as in chapter 4. The typical dash height is ∼ 2nm.

The undoped DBAR material at processed by Alcatel – Thales III – V Lab

into 600µm long buried heterostructure (BH) lasers with an active region width of

1.5µm and as-cleaved (C - C) facets, as described in chapter 4. In order to ensure

the p-doped active region did not affect the laser, the two p-doped materials were

processed by NanoPlus into 1200µm long ridge waveguide (RW) lasers with a

ridge width and height of 2.5µm and a high-reflection (HR) coated back facet.

The optical axis in both the BH and RW lasers is along the (110) crystal axis.

Details of the three lasers are summarised in Table 5.1.
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Table 5.1: Details of the three lasers studied in this chapter.
Device Type length (µm) Facet Be doping density (cm−3)
DB1 BH 600 C - C 0
DB3 RW 1200 C - HR 1 × 1018 cm−3

DB4 RW 1200 C - HR 5 × 1017 cm−3

5.3 Temperature Dependence of the Threshold

Current and its Radiative Component

The p-doped RW lasers are studied as a function of current and temperature, but

the results are best plotted as a function of current density when comparing the

results to those measured on the undoped BH laser.

A closed-cycle helium cryostat system, described in detail in chapter 3, is used

to study the temperature dependence of the recombination processes present in

DB3 and DB4, from 40 – 330 K. Facet emission is collected through a window

in the cryostat sample chamber and a polished multimode fibre is used to collect

spontaneous emission, which is emitted through a window milled in the substrate

of the laser. The collection efficiency at the facet and window remain constant

throughout the measurement and the integrated SE, LSE, collected though the

window in the laser substrate, is a lower bound measure of the radiative current,

Irad, as outlined in chapter 4.

The temperature dependence of the threshold current density, J th
total, measured in

DB1, DB3 and DB4 is plotted on a log scale in the top row of Fig. 5.4. The larger

value of the characteristic temperature, T0, at room temperature in the p-doped

lasers suggests improved temperature performance. However the reduced temper-

ature dependence of J th
total is at the expense of its magnitude. We cannot compare

the exact value of the threshold current densities of the three lasers, due to the dif-

ference in length, device structure and facet coatings, but we do note that although

the mirror losses are lower in the longer p-doped lasers, J th
total is considerably larger

in the p-doped lasers than the undoped laser at low temperatures, and slightly

larger (∼ 50%) at room temperature. At room temperature the larger threshold

current may be due to internal losses, leakage current, defect-related recombina-

tion or current spreading. Due to the presence of p-doping, internal losses may

be larger. As we are studying a DBAR design which was shown in chapter 4 not

to have leakage currents, we expect leakage currents to be negligible in DB3 and

DB4. We will show in section 5.4 both p-doped lasers suffer from defect-related

recombination at room temperature. Current spreading affects the external dif-

ferential quantum efficiency and the threshold current density in RW lasers [38],

72



 

 

 

 

100

1000
Jth to

ta
l(A

/c
m

2 )

 

 

T
0
 ~ 70 K

DB1

T
0
 ~ 106 K

DB3 DB4

T
0
 ~ 135 K

0 150 300

0.5

1

1.5
2

Jth ra
d,

 n
or

m

 

 

0 150 300
Temperature (K)

 

 

0 150 300
 

 

Figure 5.4: Plots on a log scale of the temperature dependence of the threshold current
density, J th

total (top panel), and its radiative component, J th
rad arbitrarily normalised at

260 K (bottom panel), for DB1, DB3 and DB4 (left to right)

especially when the ridge width is narrow [99]. There are methods available to

estimate the current spreading beyond the ridge [99, 100], but they require the

knowledge of parameters such as the sheet resistance and carrier mobility of the

material and are beyond the scope of this thesis. The presence of current spreading

can be confirmed by measuring the spontaneous emission close to the facet [38].

We did not quantify the current spreading in DB3 and DB4 but expect it may

play a role, as we are using 2.5 µm ridges. However we believe that the presence

of current spreading will not change our conclusions.

Considering how J th
total varies with temperature below 250 K, a larger bump at a

higher temperature can be seen in DB3 and DB4 compared to the undoped sam-

ple, as previously measured in 1.3µm InAs/GaAs quantum dot lasers [67, 89, 95].

However the p-doped quantum dash lasers thermalise more quickly than the p-

doped GaAs-based quantum dot lasers, leading to the temperature stable region

being below 300 K. We attribute this more rapid thermalisation of carriers to the

weaker electron localization in InAs/InGaAsP quantum dash states compared with

InAs/GaAs quantum dot devices, as previously highlighted in chapter 4.

The measurement of an improved or negative temperature dependent threshold

current in p-doped lasers has been attributed to a number of processes. It was

originally suggested that it is the cumulative effect of decreasing Auger and radia-
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tive current and the increase of leakage currents [89]. However, although the rate of

Auger recombination decreases with increasing temperature due to an increase in

the electron relaxation time [101], Auger recombination still increases with temper-

ature as in bulk and quantum wells, contrary to the analysis presented by Fathpour

et al. [89]. More recently Jin et al. analysed the temperature dependence of the

threshold current of a p-doped laser by attributing it to a different filling of ground

or excited states when the material is p-doped [67]. However, we believe the tem-

perature dependence of the threshold current in p-doped lasers can be attributed

to the interplay of carrier thermalisation and carrier recombination processes, as

outlined in Ref [90]. The decrease in the threshold current at low temperature

is attributed entirely to a decrease in the injection level required to reach a fixed

gain, due to a more symmetric quasi-Fermi level separation in a p-doped laser. At

these low temperatures the carriers are not in thermal equilibrium. A minimum

in the threshold current is then measured when the carriers become thermally dis-

tributed at a higher temperature. The threshold current then increases again with

temperature due to a combination of the increase in the injection level required

to reach the set gain and the increase in non-radiative recombination. It has been

suggested that the later carrier thermalisation in p-doped lasers is due to a more

symmetric quasi-Fermi level separation and an increased confinement of electrons

due to the presence of excess holes in a p-doped laser [90, 91, 95].

In addition to measuring the total threshold current, J th
total, we have also measured

the temperature dependence of the radiative component of the threshold current,

J th
rad. The results are shown on a log scale in the bottom row of Fig. 5.4, with

J th
rad, arbitrarily normalised to the value at 260 K. In both p-doped lasers J th

rad,norm

decreases with increasing temperature over the same temperature range as J th
total,

and then remains almost constant up to 300 K. This behaviour is very different

from the increase measured in DB1.

Comparing the top panels in Fig. 5.4, we see that J th
total at 150 K is almost an order

of magnitude larger in DB3 and DB4 compared to the undoped sample, DB1, but

only ∼ 50% larger at room temperature. This difference may arise due to the

larger number of holes in the doped dashes at low temperature compared to the

undoped dashes. The larger bump observed in J th
rad for the doped samples then

occurs because of a combination of thermalisation and doping density effects.

In summary, although both p-doped lasers have improved temperature perfor-

mance compared to the undoped laser, a much higher threshold current is measured

in both p-doped lasers at low temperatures, with the magnitude of the radiative

current measured to decrease as the temperature rises above 150 K. We argue

below how this is related to the large number of holes in the p-doped dashes at
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low temperature, and also present evidence that there may be additional defect-

related, non-radiative recombination in the p-doped samples.

5.4 Current and Temperature Dependence of Car-

rier Recombination Processes

In this section we analyse the total current, Itot, and its radiative component, Irad,

as a function of temperature in order to identify the dominant carrier recombina-

tion process at threshold in two p-doped lasers. Using the analysis from chapter 2

for the undoped samples in chapter 4 we were able to assume that the total current,

Itot, can be written as a function of carrier density n as

Itot = qV (An+Bn2 + Cn3) + Ileakage (5.1)

where the electron density, n, is equal to the hole density, p, and where qV An de-

scribes monomolecular defect-related recombination; qV Bn2 is the radiative cur-

rent; qV Cn3 is due to intrinsic, non-radiative, Auger recombination, and Ileakage

is due to leakage current paths. All four processes were described in detail in

chapter 2. However the situation becomes more complicated in p-doped samples.

If we assume P0 holes are transferred into each dash from the acceptors and also

assume overall charge neutrality, there will then be p = (P0 +n) holes in each dash

when n electrons are injected into each dash. The radiative current, Irad, will then

be given in the Boltzmann approximation by

Irad = qV Bnp = qV Bn(P0 + n) (5.2)

with

Irad ≈ qV BnP0 (5.3)

when P0 ≫ n, as expected to be the case at low temperature.

As described in chapter 2, Auger recombination involves recombination of a con-

duction band electron and valence band hole, followed either by excitation of a

conduction band electron to a higher conduction band state, or else by excitation

of a hole into a split-off valence band state. The former process, referred to as a

CHCC Auger process, varies with the carrier density in the Boltzmann approxi-

mation as ICHCC
Auger = qV CCHCCn

2p, while the latter process, referred to as a CHSH

Auger process, varies as ICHSH
Auger = qV CCHSHnp

2. Theoretical and experimental

analysis both support that CHSH is the dominant Auger recombination process in

InGaAsP-based lasers [102, 103], so that the Auger recombination rate will then
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vary with n as

IAuger ∝ qV CnP 2
0 (5.4)

when n≪ P0.

Finally defect-related recombination will also be limited by the electron density,

n, when n≪ P0, so that the total current in this case, is given by

Itot = qV (An+BnP0 + CnP 2
0 ) + Ileakage (5.5)

Given the increased hole density in p-doped samples, we expect that the thresh-

old electron density, nth, will be reduced in p-doped samples compared to undoped

samples. However the overall threshold hole density, P0+nth(≈ P0), will be consid-

erably higher at low temperature in the p-doped samples compared to the undoped

case. It is also likely that BnthP0 and CnthP
2
0 in equation (5.5) will be considerably

larger in the p-doped samples than the equivalent terms in equation (5.1) for the

undoped samples. This explains why the threshold current at low temperatures

(T < 150 K) is about an order of magnitude larger in DB3 and DB4 compared to

DB1.

In chapter 4 we were able to identify that DB1 is radiatively dominated at very
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Figure 5.5: The measured variation of the coefficient, z , as a function of total current
density up to threshold for DB1 (undoped), DB3 (∼ 80 acceptors per dash) and DB4
(∼ 40 acceptors per dash) at 100K.
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low temperature, and to equate Irad to Itot for T ≤ 100 K. We see however that

we can no longer do this in a p-doped sample assuming that P0 ≫ n in each dash

at very low temperature. We see from equation (5.5) that each of the recombina-

tion processes now varies linearly with injected carrier density, n. By analysing

the value of z in the undoped sample, and finding z ∼ 2 at low temperatures, we

were able to conclude that Auger recombination is eliminated at low temperature

in DB1. We cannot however from the present analysis determine whether Auger

recombination is also eliminated at low temperature in DB3 and DB4. Firstly

defect, Auger and radiative currents are expected to have a similar dependence on

n at low temperature in DB3 and DB4, so cannot be distinguished using a z anal-

ysis. Secondly the overall magnitude of the Auger term at threshold, ∼ CnthP
2
0 ,

is expected to be considerably larger in the p-doped samples than in the undoped

case, and could be significantly large to make a non-negligible contribution to the

threshold current at low temperature. We expect that the relative importance of

Auger could be determined, for example, by measuring the threshold current as a

function of applied hydrostatic pressure at low temperature [39]. Laser emission

frequency increases with hydrostatic pressure, Auger decreases with increasing en-

ergy gap while the radiative current at threshold tends to increase slightly with

increasing energy gap. Hence the variation of threshold current with pressure could

be used to determine the relative importance of the Auger and radiative current

contributions at low temperature. Such a measurement is however beyond the

scope of this thesis. Therefore, although z ∼ 2 at low temperature in DB3 and

DB4 in Fig. 5.5 we cannot use this result to identify the dominant recombination

process. This is the reason for normalising J th
rad at an arbitrary temperature of

260 K in the bottom panel of Fig. 5.4.

At threshold at room temperature, n is calculated to be ∼ 25 electrons per dash

in an undoped sample [77], while P0 can be up to 80 and 40 holes per dash in DB3

and DB4 respectively. Although there are still more holes than electrons in DB3

and DB4, we expect that the form of the total current can be approximated by

Itot = qV (Anα +Bnβ + Cnγ) + Ileakage (5.6)

at higher temperatures close to and at 300 K, where the values of α, β and γ are not

exactly 1, 2 and 3 as in equation (5.1) but where α < β < γ. When defect-related

recombination is the dominant recombination process, we then expect β
α
< 2 while

γ
α
> 2 when Auger recombination is the dominant process.

Therefore we use the z analysis to investigate as far as possible the relative impor-

tance of the different current contributions at threshold in the p-doped devices,

DB3 and DB4, assuming that Itot is best described by equation (5.5) at low tem-

77



perature and by equation (5.6) at higher temperatures, close to 300 K.

In the following section we consider how the threshold value of z , zth, changes with

temperature for DB3 and DB4 as well as how z changes with current density at

300 K.

5.4.1 Temperature Dependence of Carrier Recombination

Processes at Threshold

As outlined above care must be taken when applying the z analysis to p-doped

lasers. At low temperature the effects of the dopant density per dash, P0, dominate

and we cannot identify different processes by their carrier density dependence.

However as the temperature increases and carriers can start to escape we assume

that the total current can be written as in equation (5.6).

We begin by considering the measured temperature dependence of the value of

z at threshold, zth , and plot it for DB1, DB3 and DB4 in Fig. 5.6. As seen in

Fig. 5.5, zth ∼ 2 in all three lasers at very low temperature. In chapter 4 we

identified radiative recombination as the dominant process at low temperature in

DB1. However, as outlined above, we cannot use the measured value of z at low

temperature to identify the dominant recombination process in DB3 and DB4, as

each of the carrier recombination processes in equation (5.5) varies linearly with n.

However as the temperature increases toward 300 K, we assume that the value of n

approaches that of P0 and therefore assume that the total current is more closely

described by equation (5.6). Comparing the left and middle panel of Fig. 5.6

the temperature dependence of zth is similar in DB1 and DB3, with zth ∼ 3 at

300 K, suggesting the dominance of Auger recombination at threshold in DB3.

For T ≥ 150 K in DB4 the value of zth first increases toward 3, before falling

toward 1.5 and reaching ∼ 2 at 300 K. The unusual temperature dependence of zth

in DB4 requires further analysis in order to identify the dominant recombination

process at threshold at 300 K in this laser.

We therefore plot z as a function of the total current density, Jtotal at 300 K for

DB1, DB3 and DB4 in Fig. 5.7. We first consider the left and middle panels of

Fig. 5.7. DB3 is seen to suffer from monomolecular defect-related recombination at

low current densities, as z < 2, which is not the case in DB1. However z goes above

2 and toward 3 as the current increases, indicating that Auger is the dominant

recombination process at threshold at room temperature in DB3. Considering

now the right panel of Fig. 5.7, we observe that z < 2 up to threshold in DB4.

This result suggests that defect-related recombination plays an important role in

DB4 at room temperature, but that it may not be the only recombination process
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Figure 5.6: The power of the carrier density at threshold, zth , plotted as a function
of temperature for DB1 (undoped), DB3 (∼ 80 acceptors per dash) and DB4 (∼ 40
acceptors per dash).

present at threshold, where z ∼ 2.

To summarise, although the z analysis cannot be used to differentiate between

different recombination processes at low temperature in p-doped lasers, we can

nevertheless study how zth changes with temperature, as well as how z changes

with current at room temperature, in order to identify the dominant threshold

recombination process at 300 K in DB3 and DB4. DB3 is found to behave in

a similar way to DB1 at threshold, indicating that Auger recombination is the

dominant recombination process at 300 K, although defect-related recombination

is present in DB3 at low current densities. Considering the same data for DB4

indicates that the dominant recombination mechanism is quite different to that in

DB3. Our results suggest that DB4 suffers from a higher level of defect-related

recombination than DB3. However the analysis cannot identify the dominant

recombination process at threshold, because zth ∼ 2 in DB4 at 300 K, which

should indicate that the laser is radiatively dominated. Therefore more than one

recombination process may be playing a role at threshold at room temperature in

this laser, as analysed further in the next section.

79



0 1500 3000
Total Current Density (A/cm2)

 

 

0 1000 2000
 

 

0 500 1000
0

1

2

3

4

z

 

 

DB1 DB3 DB4

Figure 5.7: The power of the carrier density, z , as a function of total current density
up to threshold for DB1 (undoped), DB3 (∼ 80 acceptors per dash) and DB4 (∼ 40
acceptors per dash) at 300K.

5.5 Quantifying Monomolecular Defect-Related

Current and its Temperature Dependence

By quantifying the amount of current lost to defect-related recombination as a

function of current and temperature, we gain an understanding of the different

recombination processes present in DB4, and identify, in particular, which recom-

bination processes dominate at threshold at room temperature in DB4.

The analysis, presented in Ref [104], involves plotting ln(Itotal) versus ln(L
1/2
SE ) at

a given temperature and fitting a line of slope = 1 to estimate the monomolecular

defect-related current, Idefects, to the current range over which it dominates. Plot-

ting a line of slope 1 is based on assuming β
α

= 2 in equation (5.6), equivalent to

α = 1 and β = 2. Extrapolating the line of slope = 1 to threshold enables us to

estimate the contribution of Idefects to the total current at threshold.
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5.5.1 Contribution of the Defect Current to the Total Cur-

rent at Threshold at Room Temperature

First the contribution of Idefects is studied at 300 K as seen in Fig. 5.8. A poor fit

is observed between the line of slope = 1 and the DB1 data in the left most panel

of Fig. 5.8. This is consistent with results presented in chapter 4 indicating DB1

to have no defect-related recombination pathway at 300K.

Applying the same analysis to DB3, a good fit between the line of slope = 1 and

the experimental data is observed at low currents in the middle panel of Fig. 5.8.

Looking at the linear fit, less than half of the total threshold current at 300 K is

attributed to defect-related recombination. Although DB3 still suffers from defect-

related recombination at threshold at room temperature, this result is consistent

with Auger being the dominant recombination process, as identified in Figs. 5.6

and 5.7.

In the right panel of Fig. 5.8 the current range over which the line of slope = 1 fits

the experimental data for DB4 is much larger than in DB3. This result indicates

that more than three quarters of the threshold current is lost to defects and that

DB4 is dominated by defect-related recombination at threshold at 300 K. However
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Figure 5.8: Plot of ln(Itotal) versus ln(L
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SE ) (open red squares) up to threshold, Ith at

300K for DB1 (undoped), DB3 (∼ 80 acceptors per dash) and DB4 (∼ 40 acceptors per
dash) at 300K. The black line, with slope = 1, represents the monomolecular defect-
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in the presence of defect-related recombination only one would expect zth < 2 in

DB4 at 300 K, which is not the case. In the following section we therefore consider

how the contribution of Idefects to the threshold current changes with temperature.

5.5.2 Temperature Dependence of Monomolecular Defect-

Related Current at Threshold

Having identified monomolecular defect-related recombination as the dominant

process in DB4 at 300 K, the threshold value of Idefects, I
th
defects, is investigated as

a function of temperature in order to clarify why zth ∼ 2 in DB4 at 300 K. Plotted

in the top panels of Fig. 5.9 is the temperature dependence of the monomolecu-

lar defect-related current, I th
defects, in both p-doped lasers. For low temperatures

I th
defects is similar in both p-doped lasers, however as outlined above, care must

be taken with this analysis at low temperature, as each recombination process in

equation (5.5) varies linearly with injected carrier density, n. We see that in DB4

that Idefects increases more strongly with temperature than in DB3. Plotted in the
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Figure 5.9: In this figure all the plots in the left panel are for DB3 (∼ 80 acceptors
per dash), while those in the right panel are for DB4 (∼ 40 acceptors per dash). Top
row: Plot of the temperature dependence of the monomolecular defect-related current
at threshold, Ith

defects. Middle panel: Plot of the temperature dependence of the ratio

of the monomolecular defect-related current at threshold, Ith
defects, to the total threshold

current, Ith
tot. Bottom row: The threshold value of z , zth as a function of temperature.
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middle panels of Fig. 5.9 is the ratio of I th
defects to the total threshold current, I th

tot,

as a percentage. We see that the contribution of Idefects increases strongly with

temperature and begins to dominate above 180 K in DB4.

The temperature dependence of zth in DB4, plotted in the bottom right panel

of Fig. 5.9, can be understood by considering that the dominant monomolecular

process (zth< 2) may be coupled with Auger recombination (zth> 2), leading to

the measured zth ∼ 2 in DB4. DB3 may also suffer at low current densities from

the monomolecular non-radiative defect-related recombination process present in

DB4, but in this laser it is not dominant. In summary the value of zth ∼ 2 at

room temperature in DB4 is attributed to the interplay between a monomolecular

defect-related recombination process, which dominates above 180 K, and intrinsic

Auger recombination.

5.6 Summary

In summary this chapter provides an analysis of two p-doped InGaAsP-based quan-

tum dash lasers grown on InP. Modulation doping and the benefits of p-doping

are reviewed in section 5.1. An overview of the materials and devices studied are

included in section 5.2 while the results can be found in sections 5.3 to 5.5. We

study the temperature dependence of the total threshold current density for two

p-doped lasers as well as a nominally identical undoped quantum dash laser in sec-

tion 5.3. P-doping leads to a reduction in the temperature dependence of threshold

current density at room temperature, as previously measured in InAs/GaAs quan-

tum dot lasers. InAs/InGaAsP/InP quantum dash lasers thermalise more quickly

than GaAs-based quantum dots lasers, due to weaker electron localization, as seen

in chapter 4. This leads to the most temperature stable region being below 300 K

in p-doped InAs/InGaAsP/InP quantum dash lasers. The reduced temperature

dependence of the threshold current density in the p-doped lasers is however at

the expense of the magnitude of the threshold current density, especially at low

temperatures where the effects of the p-dopant dominate.

We find that both p-doped samples have similar threshold current densities (J th
tot

and J th
rad) and similar temperature performance. However results indicate that the

dominant recombination process at threshold at 300 K is very different in DB3

and DB4. Due to the presence of a dopant care was taken when using the z

analysis to identify the dominant carrier recombination process, especially at low

temperature. Results on DB3 indicate that although defects are present at low

current densities, Auger recombination is the dominant recombination process at

threshold at room temperature, as in the undoped DB1 laser. DB4 seems to be
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dominated by a monomolecular recombination process above 180 K. This process,

coupled with intrinsic Auger recombination, leads to zth ∼ 2 in DB4.

It has been suggested [85, 94] that it may be possible to optimize p-doped lasers

so that the benefits of a more symmetric movement of the quasi-Fermi levels out-

weigh problems such as the increased non-radiative recombination. However in

an undoped InAs/InGaAsP/InP quantum dash laser, the integrated density of

states for electrons and holes is not as asymmetric as in MQW or InAs/GaAs

quantum dots, due to the difference in electron and hole confinement, suggesting

that p-doping may therefore not have as strong a beneficial effect on the move-

ment of the quasi-Fermi levels as expected as in p-doped InAs/GaAs quantum dot

lasers [77, 105].
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Chapter 6

Analysis of InAs/AlGaInAs/InP

Quantum Dash Lasers

6.1 Introduction

Lasers which emit at 1550 nm are usually based on quantum wells grown on an

InP substrate. There are two competing material systems, InGaAsP wells and

barriers or AlGaInAs wells and barriers grown on InP. InGaAsP/InP is the most

widely used combination. However the conduction band offset is low between In-

GaAsP wells and barriers, as shown schematically for InGaAsP/InP in the left

panel of Fig. 6.1, leading to a poorly confined electron. Poor electron confinement

can lead to electrons leaking out of the well, and leakage currents degrade laser

performance.

Growing AlGaInAs structures on InP, shown schematically in the right panel of

Fig. 6.1, leads to a different band line up. The conduction band offset in this

material system is larger than in InGaAsP/InP so electrons are well confined in

the well. The presence of aluminium lowers the barriers in the valence band, so

holes are not as well confined as in InGaAsP/InP. The loss of hole confinement is

less important than the increase in electron confinement in AlGaInAs/InP, due to

the larger hole effective mass.

Although the improved electron confinement in AlGaInAs/InP has been known for

a number of years [21], InGaAsP/InP remains more widely used. Using AlGaInAs

makes device processing more challenging as the aluminium alloys oxidise. The

oxidation of aluminium-containing materials makes it more difficult to etch and

regrow material and is also detrimental to device reliability. However in recent

years problems related to processing AlGaInAs-based multi quantum well (MQW)

devices have been addressed [21, 106]. AlGaInAs/InP MQW lasers now show im-

proved performance over InGaAsP-based MQW lasers [21, 106, 107]. There is
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Figure 6.1: Schematic illustration of how the confinement of the electron and hole states
are different in InGaAsP/InP and AlGaInAs/InP. The conduction band offset is larger in
presence of AlGaInAs than InGaAsP. The holes are not as well confined in AlGaInAs/InP
but the loss of hole confinement is less important due to the larger hole effective mass.

therefore an interest in growing quantum dots on Al-containing materials, in order

to obtain improved temperature performance as well as 3D carrier confinement.

InAs quantum dots, grown in AlGaInAs on the commercially favoured (100) InP-

substrate orientation, are elongated and known as quantum dashes. These dashes

have the long dash axis along the (1-10) crystal plane [108–110] similar to InAs

dashes grown on InGaAsP/InP.

The aim of the work in this chapter is to compare the characteristics of AlGaInAs-

based quantum dashes with those of the InGaAsP-based dashes studied in chap-

ter 4. An overview of the materials and devices studied in this chapter is included

in section 6.2. We summarise in section 6.3 the theoretical results presented for

InAs/AlGaInAs/InP quantum dash-in-a-well (DWELL) and quantum dash-in-a-

barrier (DBAR) materials [37, 72, 111], which are relevant to the interpretation of

experimental results presented in section 6.4.

The anisotropy of the optical properties in InAs/AlGaInAs/InP quantum dash

material is studied in sections 6.4.1 and 6.4.2. We first use polarized edge-photo-

voltage spectroscopy to confirm the theoretically predicted suppression of TM -

polarized recombination at the band edge. Next polarized spontaneous emission

measurements are taken through a window in the top laser contact. The results
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confirm that InAs quantum dashes grown on AlGaInAs/InP have anisotropic in-

plane optical characteristics, as shown in chapter 4 for InAs/InGaAsP/InP quan-

tum dashes.

The second part of the analysis included in section 6.4.3 involves studying the

recombination processes present in InAs/AlGaInAs/InP quantum dash lasers by

comparing the radiative current to the total current at room temperature. It was

intended to carry out a full analysis of the devices from 40 K to 330 K. However it

was found that both the DWELL and DBAR devices degraded rapidly when low

temperature measurements were carried out. At room temperature, the DWELL

laser suffers from defect-related recombination, which is quantified in section 6.4.4

and found to be the dominant recombination process. Leakage currents play a sig-

nificant role in the DBAR laser, as previously suggested by Marko et al [112]. In

the absence of defect-related recombination and leakage currents the temperature

performance of these 1.55 µm InAs/AlGaInAs/InP quantum dash lasers appears

to be limited by Auger recombination as in AlGaInAs/InP MQW lasers [107].

Therefore the laser characteristics of AlGaInAs/InP quantum dash lasers may im-

prove in the presence of intrinsic carrier processes only. It was not however possible

to test or quantify this possible improvement because of the presence of defect-

related recombination and leakage-related losses, and the device degradation at

lower temperatures. A summary of the work presented in this chapter is included

in section 6.5.

6.2 Materials and Devices

This section includes an outline of the materials and devices studied in this chapter.

The material was grown at the University of Würzburg by gas source molecular

beam epitaxy on the commercially favoured (100) InP-substrate orientation [110]

and is made up of four stacks of dashes. All layers except the quantum dashes are

lattice-matched to InP and the dash density is ∼ 2 x 1010cm−2.

Two sets of devices are studied. The first set, Al-DW, has an asymmetric dash-

in-a-well (DWELL) active region design, where InAs dashes are embedded in a

10 nm AlGaInAs quantum well (∼ 0.89 eV). The quantum wells, which consist of

4 nm below and 6 nm above the dashes, are separated from each other by 10 nm

of AlGaInAs barriers (∼ 1.05 eV). The second set of devices studied, Al-DB, has

a dash-in-a-barrier (DBAR) active region design. Four InAs dash layers, each

separated by 15 nm AlGaInAs barriers (∼ 1.05 eV), were grown under identical

conditions to Al-DW [110].

The schematic flat band profile for the DWELL and DBAR designs can be seen
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Figure 6.2: Flat band schema of the conduction and valence band profile of the DWELL
(top) and DBAR (bottom) design for the aluminium-containing samples, which are made
up of four stacks of dashes.

in Fig. 6.2. The Al-DW and Al-DB active regions were embedded into a 400 nm

AlGaInAs graded index separate confinement heterostructure (GRINSCH) realised

by short period superlattices of InAlAs and InGaAs layers. The GRINSCH is

surrounded by 200 nm thick InAlAs cladding layers. The top cladding is capped

by InP and InGaAs [110].

The dashes are elongated with the long axis of the dashes orientated along (1-10)

and the shorter axis along (110). The dashes have approximate in-plane dimensions

of 20 nm x 350 nm along (110) and (1-10) respectively [110].

The materials were processed into ridge waveguide (RW) lasers at the University of

Würzburg. All lasers have an optical axis along the (110) crystal axis, as-cleaved

facets and are mounted and wire bonded. Al-DW lasers are 600 µm long and have

a ridge width of 5 µm. The threshold current density is 1330 A cm−2 at 293 K.

The Al-DB lasers are 800 µm long and have an ridge width of 3.5 µm. Although

the Al-DB lasers have reduced mirror losses due to the increased cavity length,

the threshold current density at 293 K is 1790 A cm−2.

88



6.3 Theoretical Modeling of the Dash Band Struc-

ture

Elongated InAs quantum dots, called quantum dashes, grow on both (100) ori-

ented AlGaInAs/InP and InGaAsP/InP. The dimensions and orientation of the

dashes are similar in both material systems. This section includes a summary

of the relevant results of calculations carried out on InAs/AlGaInAs/InP quan-

tum dash material [37, 72, 111]. These will be compared to theoretical results for

InAs/InGaAsP/InP quantum dash material presented previously in chapter 4.

We consider two AlGaInAs-based designs, a DWELL design [111] and a DBAR

design [37, 72], and compare each one to a similar material design based on In-

GaAsP. As outlined in chapter 4 the InGaAsP-based DWELL design has a 1.3 nm

(001) x 15 nm (110) x 80 nm (1-10) InAs dash embedded in a 6 nm lattice-

matched InGaAsP quantum well (∼ 0.855 eV) in a lattice matched InGaAsP bar-

rier (∼ 1.06 eV). In the InGaAsP DBAR design, the InAs dashes have the same

in-plane dimensions as the DWELL but are 1.9 nm tall (along (001)). The InAs

dashes are confined by a bulk barrier (∼ 1.06 eV). In both InGaAsP-based lasers

there are 6 layers of dashes.

In the AlGaInAs DWELL design analysed in Ref [111], the dashes are modeled as

a 5 nm (001) x 25 nm (110) x 300 nm (1-10) InAs dash embedded in a 7.5 nm com-

pressively strained AlGaInAs quantum well (∼ 0.952 eV) in an AlGaInAs barrier

(∼ 1.052 eV), which is lattice matched to InP. In the DBAR design of Ref [72] the

dashes are modeled as a 2.1 nm (001) x 15 nm (110) x 180 nm (1-10) InAs dash

embedded in an AlGaInAs barrier (∼ 1.052 eV) lattice-matched to InP. Results

have also been calculated using 2.5 nm (001) x 15.6 nm (110) InAs wires embed-

ded in an AlGaInAs barrier lattice matched to InP (∼ 1.052 eV) [37], as it has

been demonstrated that AlGaInAs-based quantum DBAR material is wire-like in

nature [113]. In the AlGaInAs-based DBAR lasers there are 4 layers of dashes.

6.3.1 Dash Confined State Energies

Considering first the DWELL quantum dash material, results indicate that the

electron ground states are confined in the quantum dash in the AlGaInAs-based

DWELL material, but that the confinement is poor. The heavy hole valence

band ground states are well confined in this material and an energy splitting

is predicted between ground state heavy-hole (HH) and light-hole (LH) valence

band states [111]. Similar results were presented in chapter 4 for InGaAsP-based

DWELL material; however the electron ground state is not confined in the InAs

quantum dashes, but rather in the surrounding quantum well layer. Considering
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now the aluminium-containing DBAR quantum dash material, calculations indi-

cate that, in the absence of the wetting layer, the electron and hole ground and ex-

cited states are confined in the dash [72]. Calculations, which include the effects of

the wetting layer and the quantum mechanical coupling between adjacent quantum

dashes, indicate that the electron and hole ground states remain well confined [37].

The wetting layer is not found to affect the hole excited states either, but the elec-

tron excited states for adjacent dashes become significantly coupled. These results

are quite different from those calculated for InAs/InGaAsP/InP DBAR lasers and

summarised in chapter 4. In the InGaAsP-based DBAR material many hole states

are confined, but only the ground state electron state is confined in the quantum

dash. However the confinement is poor for electrons due to the low InAs electron

mass and small InAs/InGaAsP conduction band offsets, while the lowest lying

HH valence band states are well confined. Results also indicate that the wetting

layer can be ignored in InAs/InGaAsP/InP quantum dashes, as it is found not to

significantly affect the conduction band states or the dash valence states.

6.4 Experimental Analysis

Having summarised the details of carrier confinement in AlGaInAs-based quantum

dash material grown on (100) oriented InP, we now turn to carrying out an experi-

mental analysis of the two types of AlGaInAs-based quantum dash lasers supplied

by the University of Würzburg. First, the anisotropy of the optical properties of

the quantum dash material is measured using polarized edge-photovoltage (E-PV)

and spontaneous emission (SE) spectroscopy. The results of these measurements

are provided in sections 6.4.1 and 6.4.2. A comparison is made with the anisotropy

of the optical properties presented in chapter 4 for InGaAsP-based quantum dash

materials. In section 6.4.3 we analyse the facet and unamplified spontaneous emis-

sion collected as a function of current at room temperature for the AlGaInAs-based

quantum dash lasers. This analysis suggests that defect-related recombination is

dominant in the DWELL sample, while there is a leakage current path in the

DBAR. We analyse and quantify these further in sections 6.4.4 and 6.4.5.

6.4.1 Polarized Edge-Photovoltage Spectroscopy

Polarized E-PV spectroscopy and the set up used are described in detail in chap-

ter 3. Linearly polarized light, with energy greater than or equal to the bandgap,

incident on the laser facet, is absorbed and the photovoltage generated is mea-

sured for TE(1−10) and TM -polarization. The measured polarized E-PV spectra

are corrected to remove the polarization-dependence of the spectrometer grating
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as outlined in chapter 3. Studying the peaks of the polarized E-PV spectra en-

ables us to identify interband transitions and their character because transitions

involving LH states are predominantly TM -polarized.

The spectrally corrected polarized E-PV spectra for the AlGaInAs-based DWELL

and DBAR lasers, Al-DW and Al-DB, are shown in Fig. 6.3. In both panels, an

energy splitting is observed between the TE(1−10) and TM -polarized spectra. This

is in qualitative agreement with results presented in Ref [111]. Comparing Fig. 6.3

to the spectra presented in chapter 4 for InGaAsP-based quantum dash materials,

we attribute this energy splitting in InAs/AlGaInAs/InP quantum dash material

to the effect of strain.

Considering first the DWELL, theory [111] suggests that the ground state elec-

tron and heavy hole states are confined in the dash. In the left panel of Fig. 6.3 we

observe two low energy peaks (∼ 0.78 eV and ∼ 0.81 eV) in the TE(1−10)-polarized

E-PV spectrum. We are unsure why these two peaks occur but suggest they are

due to dash-like electron and hole ground state transitions and may indicate the

presence of a bimodal distribution of dashes. We attribute the shoulder at ∼ 0.9 eV

where the spectra become equal to transitions involving the lattice-matched Al-

GaInAs quantum well states. More than one peak is also observed in right panel

of Fig. 6.3. We again suggest that the peaks are due to confined electron and hole
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Figure 6.3: Polarized E-PV spectra for Al-DW and Al-DB. The red dash-dot lines show
TE(1−10)-polarized spectra and the blue dash lines show TM-polarized spectra. Black
arrows indicate the approximate energy of peaks corresponding to different transitions.
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ground state transitions predicted by theory [37, 72] in a possible trimodal distri-

bution of dashes, as outlined below. We attribute the shoulder at 0.9 eV in Al-DB

to transitions involving bound electron states and higher order states of mainly LH

character, as in chapter 4, as DWELL theoretical results only include heavy hole

states [37, 72]. In both panels of Fig. 6.3 a peak close to 1.1 eV is attributed to bar-

rier transitions. The increase in the E-PV spectra at high energies in both panels is

attributed to the graded-index separate-confinement heterostructure (GRINSCH)

present in both Al-DW and Al-DB.

Dash Size Dispersion

As outlined in chapter 4 the amount of dash size variation in an ensemble of

quantum dashes can be quantified by extracting the standard deviation (σ) of a

Gaussian function fitted to the absorption edge of the TE(1−10)-polarized E-PV

spectrum. As outline above, at least two peaks are measured close to 0.8 eV in

the TE(1−10)-polarized E-PV spectrum of both Al-DW and Al-DB.

In Al-DW a pair of Gaussians with a standard deviation of ∼ 15 meV are required

to fit the band edge of the TE(1−10)-polarized E-PV spectrum in the top panel of

Fig. 6.4. In the bottom panel of Fig. 6.4 three Gaussians with a standard deviation
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Figure 6.4: The red dash-dot line represents the TE(1−10)-polarized E-PV spectrum
for Al-DW (top panel) and for Al-DB (bottom panel). The black line is fitted to the
absorption edge with a pair of Gaussian functions for Al-DW (top panel), while Al-DB
(bottom panel) requires three Gaussian functions for a good fit to the absorption edge.
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of ∼ 20 meV are required for a good fit of the band edge. The larger value of σ

in Al-DB indicates that the same size fluctuations can have a larger effect in the

DBAR sample because of the deeper confining potential. Although variations in

dash compositions and dimensions lead to inhomogeneous broadening, variations

in the dash height are likely to contribute most to this broadening, as both in-plane

dash dimensions are significantly larger than the dash height.

6.4.2 Anisotropy of TE Components of SE Spectra

In-plane polarization anisotropy is a beneficial property of quantum dash ma-

terial [65, 75, 76]. In chapters 2 and 4, we showed that the intrinsic in-plane

polarization anisotropy of the material can be quantified by measuring the ratio

of the TE(1−10) to TE(110)-polarized SE spectra collected through a window in the

p-contact. This section includes a study of the TE(1−10) and TE(110)-polarized

emission spectra measured in the Al-DW and Al-DB structures. The spectra are

collected using the set-up outlined in detail in chapter 3.

Considering both panels of Fig. 6.5, we see that TE(1−10)-polarized emission is

enhanced over TE(110)-polarized emission as previously observed for the InGaAsP-

based structures in chapter 4. We measure the polarized SE spectra as a function
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Figure 6.5: The TE(1−10) (red dash-dot) and TE(110) (black) SE spectra for Al-DW (left
panel) and Al-DB (right panel), for a drive current of 28.4 mA and 31.5 mA respectively,
where both currents are below threshold in the respective laser.
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of current and plot the ratio, r , of TE(1−10) to TE(110) polarized SE in the top

panels of Fig. 6.6. As r is current-invariant, the ratio is an intrinsic property of

the material, as outlined in chapter 4.

The bottom panels of Fig. 6.6 contain the ratios measured in the InGaAsP-

based DW1 and DB1 and previously presented in chapter 4. Considering first

the DWELL samples in the left column of Fig. 6.5, an anisotropy is measured for

energies where transitions involve dash-like states. Both the ratios decrease below

1 at ∼ 0.9 eV, above the onset of quantum well and light-hole related transitions.

However r in Al-DW decreases from ∼ 2 at 0.78 eV to ∼ 1.5 at 0.81 eV. This

behaviour is not observed in the InGaAsP-based DWELL and is not fully under-

stood. We note that the two energies are consistent with the peak energies of the

two peaks identified in section 6.4.1. Considering now the DBAR samples in the

right column of Fig. 6.5 we again observe an anisotropy for energies < 0.9 eV. As in

the DWELL lasers, the ratio r in Al-DB decreases toward 1 for energies ≥ 0.9 eV.

We do not however observe any significant change in r close to the absorption

edge in Al-DB, contrary to what was observed in Al-DW. This may be due to the

presence of a larger amount of broadening in the Al-DB material. In chapter 4

a larger anisotropy is measured in the DBAR laser and is attributed to a greater

carrier confinement. This is also the case in Al-DB, for energies close to 0.8 eV, in

0.8 0.9 1
Energy (eV)

 

 

0.8 0.9 1
0.8

1
1.2
1.4
1.6
1.8

2

r

 

 
0.8

1
1.2
1.4
1.6
1.8

2

r

 

 

19mA
23.8mA
28.4mA

 

 

22.8mA
27mA
31.5mA

3.3mA
5mA
7mA

3.3mA
5mA
7mA

DB1

Al−DBAl−DW

DW1

Figure 6.6: Top panels: Ratio r of the TE(1−10) to TE(110) SE spectra for Al-DW (left
panel) and Al-DB (right panel) for three values of drive currents. Bottom panels: Ratio
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currents, as previously presented in chapter 4.
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agreement with theory [37, 72, 111], however the enhancement measured in Al-DB

is not as large as in the InGaAsP-based DBAR.

In summary we quantified the anisotropy of the in-plane optical properties by

measuring polarized SE spectra through a window fabricated into the top con-

tact of each laser. The anisotropy is attributed to a larger momentum matrix

element along (1-10) for transitions involving dash-like states, due to the elonga-

tion of the dashes along that direction, as previously presented in chapter 4 for

InAs/InGaAsP/InP quantum dash materials.

6.4.3 Recombination Processes and Optical Losses

Having established that the polarization characteristics of the AlGaInAs-based

quantum dashes are similar to those of InGaAsP-based dashes considered in chap-

ter 4, we turn in this section to investigate the recombination processes present in

Al-DW and Al-DB at room temperature (293 K). The main possible carrier recom-

bination processes which can occur in a forward-biased laser are monomolecular

defect-related recombination, radiative recombination, Auger recombination, car-

rier leakage and current spreading, which are explained in detail in chapter 2.

We measure the integrated spontaneous emission, LSE, as a function of current

through a window in the top contact of the laser. Recalling that LSE is propor-

tional to the radiative current, we study how the recombination processes change

with current up to threshold by comparing the radiative current to the total cur-

rent at 293 K. Because Al-DW and Al-DB have different cavity length and ridge

width, we compare results as a function of current density. As mentioned ear-

lier, it was intended to analyse the devices over a wider temperature range, but

this did not prove possible due to device degradation when operated at cryogenic

temperatures.

Current Density Dependence of Carrier Recombination Processes at

Room Temperature

The analysis presented here involves measuring the variation of the radiative cur-

rent density, Jrad, with total current density, Jtot, at room temperature. Assuming

Jrad ∝ n2 and that leakage currents are negligible, the dominant recombina-

tion process can be identified by finding the slope, z , of a plot of ln(Jtot) versus

ln(J
1/2
rad ). If the device is dominated by defect-related non-radiative recombination,

z ∼ 1, while z ∼ 2 in a radiatively dominated device, and z ∼ 3 if non-radiative

Auger recombination is dominant. More details can be found about this analysis

in chapter 2, as well as in chapters 4 and 5.

In Fig. 6.7, z is plotted at 293 K as a function of the total current density,
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Figure 6.7: Value of the slope, z , of a ln(Jtot) versus ln(J
1/2
rad ) plot, as a function of total

current density up to threshold for Al-DW (left panel) and Al-DB (right panel) at 293 K.

Jtotal. In the left panel of Fig. 6.7 Al-DW is seen to suffer from defect-related

recombination at low current densities, as z ∼ 1. Results however suggest that

Auger recombination is dominant at threshold where z ∼ 3. Very different z be-

haviour is observed in Al-DB in the right panel of Fig. 6.7. At low current densities

z ∼ 2, indicating that Al-DB may be radiatively dominated. As the current den-

sity increases, z increases rapidly, reaching ∼ 3 at approximately a quarter of the

threshold current density, and then rising above 3 at higher currents. We attribute

the increase of z above 3 to the presence of another recombination processes, such

as current spreading and/or leakage currents. This will be investigated further in

section 6.4.5.

To summarise, although we believe Auger recombination is present in both lasers

at threshold, the dominant recombination process at room temperature is different

for each laser. Results indicate that Al-DW suffers from mono-molecular defect-

related recombination but that Auger recombination seems to be dominant close

to threshold. Results suggest that another recombination process such as current

spreading and/or leakage current is dominant in Al-DB.
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6.4.4 Monomolecular Defect-Related Current at Room Tem-

perature

We present here a further analysis of the monomolecular defect-related recombi-

nation present in Al-DW, as was done for DB4 in chapter 5. By quantifying the

amount of current lost to defect-related recombination in Al-DW, we can get fur-

ther information on the dominant recombination process at threshold in this laser.

The analysis, presented in chapter 5, involves plotting ln(Itotal) versus ln(L
1/2
SE )

and fitting a line of slope = 1, which represents the monomolecular defect-related

current, Idefects (∝ An), to the current range over which it dominates. By extrap-

olating Idefects to threshold we can then estimate the amount of current lost to

defect-related recombination at threshold.

Considering the data for Al-DW in the left panel of Fig. 6.8 a good fit between

the line of slope = 1 and the experimental data is observed for a wide current

range. We estimate that ∼ 80% of the threshold current is lost to defect-related

recombination, which is therefore the dominant recombination process in Al-DW

at threshold. The value of zth ∼ 3 in Al-DW is attributed to the interplay of

dominant monomolecular defect-related recombination and intrinsic Auger recom-

bination. However the large defect-related contribution to the total current means
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that it is not possible to identify the relative contributions of Auger and radiative

recombination which might be expected in defect-free device.

Applying the same analysis to Al-DB, a poor fit is observed between the line of

slope = 1 and the experimental data in the right panel of Fig. 6.8. This result is

consistent with the result presented in section 6.4.3, which shows no evidence of

defect-related recombination.

6.4.5 Barrier Emission at Room Temperature

In chapter 4 we showed that the external differential quantum efficiency, ηext
d , can

be severely affected by the presence of leakage currents. We also observed a cor-

relation between a decrease in ηext
d attributed to leakage currents and zth > 3.

These results were measured in BH lasers, where current spreading is not an issue.

In RW lasers the current spreading and leakage currents play a role in increasing

the threshold current density and decreasing the external differential quantum ef-

ficiency of the laser [38].

In this section we investigate whether leakage currents are present in Al-DB by

measuring SE spectra over a wide spectral and current range. We did not experi-

mentally quantify the current spreading in Al-DW, but expect it may play a role,

0 0.5Ith Ith 1.5Ith
Current density

L S
E
@

1 
eV

 (
a.

u)

 

 

0.7 0.9 1.1
Energy (eV)

S
E

 (
a.

u)

 

 

Al−DB Al−DB

Figure 6.9: Left panel: Unpolarized SE spectra for Al-DB showing barrier emission
which does not clamp at threshold. Right panel: Unpolarized, unclamped integrated SE
measured at 1 eV in Al-DB. Both indicate the presence of leakage currents.
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as we are using 3.5 µm wide ridges. We believe that the presence of current spread-

ing will not change our conclusions and unlike leakage currents, current spreading

can be removed by working with BH lasers. We do not investigate Al-DW in this

section because it was shown above to be dominated by defect-related recombina-

tion.

Considering the left panel of Fig 6.9, barrier emission is observed in Al-DB, which

does not clamp at threshold. This can be clearly seen in the right panel of Fig. 6.9,

where the SE measured at 1 eV is plotted as a function of current. The results

in Fig. 6.9 are consistent with z > 3 measured in section 6.4.3, and we there-

fore suggest that leakage currents are significant in Al-DB. This assignment is also

supported by temperature and pressure-dependent measurements [112] on similar

samples.

6.5 Summary

This chapter presented an analysis of two InAs/AlGaInAs/InP quantum dash

lasers. The differences between InGaAsP and AlGaInAs quantum well material

grown on InP were reviewed in section 6.1. We summarised the details of the

materials and devices studied in this chapter in section 6.2. Section 6.3 included

a summary of the published theoretical results for InAs/AlGaInAs/InP quantum

dash-in-a-well and quantum dash-in-a-barrier materials. A comparison was made

with results calculated by Dr. Sorcha Healy for InAs/InGaAsP/InP materials and

presented in chapter 4.

The experimental analysis was presented in section 6.4. First we studied the

anisotropy of the optical characteristics in the Al-containing quantum dash mate-

rials. We used polarized edge-photovoltage spectroscopy to confirm the suppression

of electron-LH transitions at the band edge. We also collected polarized sponta-

neous emission spectra to study the anisotropy of the in-plane optical properties,

showing that TE(1−10)-polarized recombination is enhanced over TE(110)-polarized

recombination above the band edge, as also observed and analysed for InGaAsP-

based quantum dashes in chapter 4.

Having gained an understanding of the band structure and polarization character-

istics of AlGaInAs-containing materials, we then studied the recombination process

present at room temperature in two AlGaInAs-based quantum dash lasers in sec-

tion 6.4.3. It did not however prove possible to identify the relative importance of

radiative and Auger recombination in these devices compared to InGaAsP-based

structures. The analysis shows that Al-DW is dominated by defect-related recom-
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bination, while leakage currents make a significant contribution in Al-DB.

Our analysis therefore indicates that the high threshold current density in Al-

DW and Al-DB are not due to intrinsic processes. In the absence of defect-

related recombination and leakage currents the characteristics of these 1.55 µm

InAs/AlGaInAs/InP quantum dash lasers appear to be limited by intrinsic Auger

recombination as in AlGaInAs/InP MQW lasers [107], but it did not prove possi-

ble with the devices considered here to identify whether AlGaInAs/InP quantum

dash lasers provide an advantage compared to AlGaInAs/InP quantum well and/or

InGaAsP/InP quantum dash devices.
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Chapter 7

Analysis of 1.3µm InAs/GaAs

Quantum Dot Lasers

7.1 Introduction

There is a significant interest recently in using GaAs-based quantum dots as the

active region in polarization-insensitive semiconductor optical amplifiers (SOA)

operating at 1.3 µm [114–117]. Similar work has also been recently reported on

1.5 µm InP-based materials [118–120].

Both undoped and p-doped InAs/GaAs quantum dots have been widely stud-

ied [24, 25, 67, 87–89, 95] since quantum dots were first proposed in the early-

1980s [4]. However there are differing reports as to the nature of the electronic

structure in InAs/GaAs quantum dot materials. Calculations and experimental

measurements on single [121, 122] and ensembles [123, 124] of InAs/GaAs quan-

tum dots have suggested optical recombination between ground state electron and

hole levels to be purely TE-polarized. These reports are consistent with results

for compressively strained quantum wells [53] as well as quantum dashes, pre-

sented in chapters 4 and 6, where the heavy hole (HH) and light-hole (LH) valence

states are well separated due to the effects of strain. However there have also been

experimental reports suggesting the presence of a non-negligible TM -polarized

transition close to the main TE-polarized ground state in InAs/GaAs quantum

dots [125, 126].

In previous chapters we have studied InP-based quantum dash lasers emitting at

1.5 µm (∼ 0.8 eV), establishing their polarization behaviour and its effect on the

overall laser performance. This chapter includes an analysis of the polarization

characteristics of undoped and p-doped 1.3 µm (∼ 0.95 eV) InAs/GaAs dot-in-a-

well (DWELL) materials. Unlike the InP-based materials studied in the previous

chapters, both sets of InAs/GaAs quantum dots studied here are not elongated
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Figure 7.1: The left panel contains a plan-view transmission electron microscopy (TEM)
image of a stack of six quantum dash layers similar to those studied in chapter 4 [7],
while the right panel contains a plan-view TEM image of a single layer of InAs quantum
dots grown in an InGaAs quantum well prior to GaAs deposition [127].

along (1-10), as seen in the left panel of Fig. 7.1 for InAs/InP. Instead InAs/GaAs

quantum dots have a shape which is often described as being truncated pyramidal

or lens-shaped (right hand panel of Fig. 7.1).

Having given an overview of the samples and materials in section 7.2, the experi-

mental methods are summarised in section 7.3. The first part of the experimental

analysis, included in section 7.4, is the room-temperature characterisation of a

p-doped InAs/GaAs laser. Results indicate that although this p-doped laser has a

temperature sensitive threshold current, its external differential quantum efficiency

is almost temperature-insensitive. This sample is TE-polarized above threshold,

but both TE and TM -polarized amplified spontaneous emission (ASE) are mea-

sured below threshold. In the second part of this analysis, edge-photovoltage

(E-PV) spectroscopy is used to confirm the presence of a TM -polarized transi-

tion close to, but at an energy above, the TE-polarized ground state transition.

An overview of the results of a theoretical analysis, carried out by Mark Crow-

ley, which is relevant to the interpretation of experimental results, is presented

in section 7.5.1. Theoretical results indicate that the low energy TM -polarized

peak, close in energy to the TE-polarized ground state peak, is due to a transition

involving the ground state electron and a low lying excited hole state, which has
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predominantly HH character, but with significant LH character with s-like sym-

metry. A summary of the work presented in this chapter is included in section 7.6.

7.2 Materials and Devices

This section includes an outline of the materials and devices studied in this chapter.

Two sets of 1.3µm InAs/GaAs DWELL materials are studied in this work. The

material in the first sample, DO520 [128], was grown commercially using molecular

beam epitaxy by NL Nanosemiconductor, Dortmund. DO520 is made up of ten

stacks of InAs dots (2.5 – 3 monolayers of InAs) in a 5 nm InGaAs well, itself grown

in a p-doped GaAs barrier. The dot density is 3 – 5 ×1010 cm2 [128]. The material

was processed in Tyndall National Institute into 1200 µm long ridge waveguide

(RW) lasers with a ridge width and height of 3 µm and 1.6 µm respectively. This

sample will be referred to as NANO.

The second sample investigated in this chapter is a 3 mm long semiconductor

optical amplifier (SOA), fabricated commercially by Zia Inc with a cavity angled

at 10 ◦ to the (110) crystal axis. This SOA, referred to as ZIA, also operates at

GaAs
substrate

AlGaAs

NANO DWELL Design

Growth direction

Energy

CB

VB

GaAs

InGaAs

InAs

GaAs

GaAs
Top

AlGaAs

GaAs
substrate

AlGaAs

CB

VB

GaAs

InGaAs

InAs

GaAs

AlGaAs

ZIA DWELL Design

DOPANT

(p- doped)

(undoped)

X10

GaAs
Top

X6

Figure 7.2: Flat band schema of the conduction and valence band profile of the DWELL
design of both the modulation doped NANO (top) and undoped ZIA sample (bottom)
design, which have ten and six stacks of dots-in-a-well respectively.
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1.3 µm and has a 4 µm width ridge and antireflection coated facets [129]. As

in chapter 4, the SOAs are only used for material property measurements in this

chapter. The active region is made up of six stacks of InAs quantum dots grown

on an InGaAs well, with a GaAs barrier. This sample is not modulation doped.

A schematic flat band profile for the NANO and ZIA DWELL designs can be seen

in Fig. 7.2.

7.3 Overview of the Experimental Methods

This section includes an overview of the experimental set up used to characterise

the p-doped InAs/GaAs 1.3 µm NANO laser sample, as well as the set up used to

measure the polarized edge-photovoltage (E-PV) spectra for the NANO and ZIA

DWELL materials.

We used a calibrated broad area detector from an Ando AQ2140 powermeter

to measure the temperature dependence of the integrated facet emission for the

NANO laser close to 300 K. The temperature was varied using a Peltier-element

and a temperature sensor connected to a temperature controller. An optical spec-

trum analyser (OSA) was then used to collected polarized amplified spontaneous

emission (ASE) spectra with an 0.01 nm or an 0.5 nm resolution at 298 K. The set

up can be seen in Fig. 7.3, where an isolator was used to ensure that there was no
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Figure 7.3: Schema of the experimental set up used to collect ASE spectra as a function
of current at 298 K.
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Figure 7.4: Schema of the set up used to measure polarized E-PV spectra at room
temperature in the GaAs-based devices.

feedback from the external cavity. In our case the OSA model used was an Ando

AQ6317.

In order to measure polarized edge-photovoltage (E-PV) spectra in these GaAs-

based devices, we modified the set up described in detail in chapter 3 and included

a half wave plate (HWP). A HWP is used to rotate the plane of polarization from

a known linear polarization to any other desired plane. By setting the polarizer

in the set up in Fig. 7.4 to the TE-polarization orientation and changing the fast

axis of the HWP from 0 ◦ to 45 ◦ to the TE-polarization axis, the light incident

on the facet of the laser can be changed from TE-polarized to TM -polarized.

This enabled us to measure pairs of polarized E-PV spectra in a single sample

orientation, which do not require any spectral correction other than the system

response. In this part of the work we were interested in the ratio between TE and

TM -polarized photovoltage. Extra care was taken to ensure that the polarizer in

the set up had as high an extinction ratio as possible. A number of polarizers

were tested, but best results were obtained with a single linear polarizer, with an

extinction ratio of 0.15 %, which was also used in chapters 4 and 6.
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7.4 Room Temperature Characterisation of a P-

Doped InAs/GaAs 1.3µm Laser.

This section includes the results of the characterisation of the p-doped InAs/GaAs

1.3 µm NANO laser. Measurements were undertaken to establish that the general

laser characteristics were comparable to other devices reported in the literature.

We measure the light-current characteristics as a function of temperature from

293 – 323 K, from which we extract the characteristic temperature, T0, defined in

chapter 2. We then measure TE and TM -polarized ASE spectra as a function of

current at 298 K and extract the net modal gain spectra by using the Hakki-Paoli

technique [58].

7.4.1 Temperature Dependence of Light-Current Charac-

teristics.

In order to characterise the p-doped NANO laser, we begin by measuring the inte-

grated facet emission as a function of temperature from 293 – 323 K and plotting

it in Fig. 7.5. The facet emission above threshold is found to be TE-polarized and

the characteristic temperature, T0 ∼ 60 K, is lower than values measured over this

temperature range on other p-doped GaAs-based lasers (T0 ≥ 196 K) [86, 89]. As
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Figure 7.5: Measured temperature dependence of the threshold current for the NANO
laser.
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the coupling efficiency was unchanged with temperature in the measurement, we

are able to consider the temperature dependence of the external differential quan-

tum efficiency, ηext
d . We find that ηext

d is almost temperature independent between

293 K and 323 K, as previously observed by Fathpour et al. [89].

7.4.2 TE and TM-Polarized Amplified Spontaneous Emis-

sion Spectra.

We began by considering the TE-polarized ASE spectra above and below thresh-

old at 298 K, where the threshold current was measured to be ∼ 11 mA. We then

turned to consider the TM -polarized ASE. Plotted on a log scale in the left panel

of Fig. 7.6 are TE and TM -polarized ASE spectra measured at 8.5mA with a reso-

lution of 0.01 nm. A close up of these spectra showing the Fabry-Pérot resonances

is included in the left panel of Fig. 7.6. Considering the TE-polarized ASE spec-

trum plotted in red we observed a single peak, which we attribute to the ground

state transition. We then extracted the net modal gain spectra as a function of

current from the TE-polarized ASE spectra using the Hakki-Paoli method [58].

With this approach the contrast ratio, ρ, of the Fabry-Pérot resonances of the

cavity of length, L, and mirror reflectivity, R, is used to extract the net modal
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Figure 7.6: TE and TM -polarized ASE spectra measured with an 0.01 nm resolution
at 8.5 mA in the left panel, with a close up of the Fabry-Pérot resonances in the right
panel, plotted on a log scale.
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gain spectrum from the sub – threshold ASE spectrum using

Γg − αi =
1

L
ln

(

1

R

)

− 1

L
ln

(√
ρ+ 1

√
ρ− 1

)

(7.1)

where Γg − αi is the net modal gain. The TE-polarized net modal gain spectra

are plotted in Fig. 7.7. The Hakki-Paoli analysis is only valid below threshold; as

evidenced by the gain clamping at 11 mA. A net modal gain spectrum converges

to αi for photon energies below the band edge. Considering the low energy tail

of the net modal gain spectra in Fig. 7.7 this p-doped laser appears to have very

low internal losses. Turning to the TM -polarized ASE spectra, which we also

measured with a 0.01 nm resolution above and below threshold at 298 K. As the

coupling was unchanged, we can plot the TM -polarized ASE spectra measured

at 8.5 mA on a log scale in Fig. 7.6 along with the corresponding TE-polarized

spectra. There is much less TM -polarized than TE-polarized emission and the

spectra are quite different, unlike what has been reported in Ref [123].

We observed two bumps in TM -polarized ASE spectra. This can be seen more

clearly in Fig. 7.8, where the resolution of the TM -polarized spectra was reduced

from 0.01 nm to 0.5 nm. We attribute the higher energy peak at ∼ 0.975 eV

to true TM -polarized emission, while the lower energy peak, just below 0.96 eV,

which increases more rapidly and lases above threshold, is attributed to scattered
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Figure 7.8: TM -polarized ASE for a 0.5 nm resolution. The peak at ∼ 0.975 eV is
attributed to true TM -polarized peak, while we attribute the lower energy peak just
below 0.96 eV to scattered TE-polarized emission.

TE-polarized ASE. The 0.01 nm resolution TM -polarized ASE spectra, similar to

that plotted in Fig. 7.6, were too noisy to extract the TM-polarized net modal

gain. Nevertheless we see that there is TM -polarized emission associated with

recombination under the ground state peak, in agreement with Refs [125, 126] but

contrary to other experimental reports [123, 124].

In summary we investigated the characteristics of a p-doped 1.3µm InAs/GaAs

DWELL laser at room temperature by analysing the ASE. We first considered

the integrated facet emission as a function of temperature, before considering the

TE-polarized ASE spectra, from which we extracted the TE-polarized net modal

gain. We also measured TM -polarized ASE, which indicates that there may be a

TM -polarized transition close to, but at a slightly higher energy than the main

TE-polarized ground state transition. In the following section, we use polarized

edge-photovoltage (E-PV) spectroscopy to determine the energy distribution and

character of transitions in the p-doped and undoped InAs/GaAs quantum dot

materials.
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7.5 Polarized E-PV Spectroscopy

Having identified a TM -polarized transition close to the TE-polarized ground

state in the ASE spectrum of the p-doped NANO sample, we investigate this tran-

sition further in this section, as well as considering the undoped 1.3µm InAs/GaAs

DWELL material, which makes up the active region in the ZIA SOA. We used the

set up outlined in section 7.3 to measure polarized E-PV spectra. As outlined in

chapter 3, a peak in a TE-polarized E-PV spectrum is typically due to transitions

between electrons and HH states, while peaks in TM -polarized E-PV spectra are

predominantly due to transitions involving electrons and LH states [50, 52].

The E-PV spectra measured in the NANO and ZIA samples are shown in the left

and middle panels of Fig. 7.9. There is a striking similarity between them, indicat-

ing the negligible effect of the p-dopant on transition energies in the modulation-

doped material. The arrows in Fig. 7.9 indicate the approximate energy of the

peaks corresponding to different transitions. The lowest TE-polarized peak in the

E-PV spectra is at an energy greater than the TE-polarized ASE peak in Fig. 7.7,

because the bandgap narrows when the device is electrically pumped.

The polarized E-PV spectra measured in InAs/GaAs quantum dots are different

from those measured in strained quantum well material [53] and quantum dash ma-

terial, presented in chapters 4 and 6, where TM -polarized transitions are strongly

suppressed at the band edge. Both TM -polarized E-PV spectra in Fig. 7.9 reveal

the existence of a transition close to, but not at, the TE-polarized ground state

dot transition. This TM -polarized peak is ∼ 20 – 30% of the TE-polarized ground

state peak, similar to the value reported in Ref [126] and is labelled in green as A in

Fig. 7.9. We believe this is the first report of a TM -polarized peak in E-PV spectra

measured in dot-in-a-well material, although similar behaviour has been reported

for dot-in-a-barrier materials. Refs [125, 126, 130] report a rising background of

TM -polarized absorption starting under the ground state peak. Ref [125] does

not quantify or explain it, while Ref [126] quantifies the TM -polarized E-PV com-

ponent at ∼ 25% of the TE-polarized peak. Chu et al [130] show a plot where

TM -polarized absorption is absent and another where it is present and in the lat-

ter case, attribute it to vertical coupling between quantum dots.

In the following section we investigate the origin of the peak labeled as A in the

E-PV spectra in Fig. 7.9 by considering the results of a theoretical analysis under-

taken by Mark Crowley.
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7.5.1 Origin of the Low Energy TM-Polarized Transition

This section includes a summary of the relevant theoretical results of calculations

carried out by Mark Crowley on an InAs/GaAs DWELL structure similar to the

undoped ZIA sample. These results will be used to understand the origin of the

TM -polarized transition close to the main TE-polarized ground state transition.

Calculations are performed on a square based truncated pyramidal shaped InAs

dot with a base and top length of 15 nm and 11.25 nm. The dots are 5 nm high

and sit on a one monolayer (0.28 nm) thick wetting layer. The dots are capped

with a 5 nm thick In0.15Ga0.85As quantum well in a GaAs barrier.

We compare the measured polarized E-PV spectra in the left and middle panels

of Fig. 7.9 to the calculated absorption curves plotted in the right most panel of

Fig. 7.9. The calculated absorption spectra include an inhomogeneous broadening

of 30 meV to account for the dot size dispersion in a real quantum dot ensemble.

This value is about twice the measured value obtained by fitting a Gaussian func-

tion to the absorption edge of the E-PV spectra. A non-negligible peak, labeled as

A, can be seen in the calculated TM -polarized absorption spectrum at an energy

close to the main TE-polarized ground state, in agreement with the measured
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E-PV spectra.

A top view of the calculated spatial probability density component isosurface for

(a) E1

(b) HH part of H1 (c) LH part of H1

(d) HH part of H2 (e) LH part of H2

(f) HH part of H3 (g) LH part of H3

Figure 7.10: Top view of the square based truncated pyramidal shaped InAs dot and the
calculated spatial probability density component isosurfaces for (a) the electron ground
state, E1, and (b) – (g) the HH (left column) and LH (right column) components of the
ground state hole, H1, in blue and two lowest lying excited state hole, H2 (in yellow)
and H3 (in green) in DWELL.
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the ground state electron, E1, is plotted in Fig. 7.10(a). The HH spatial probability

density component isosurfaces for the ground state hole, H1, and two lowest lying

excited hole states, H2 and H3, are plotted in blue, yellow and green respectively

in the left column of Fig. 7.5.1, while the corresponding LH spatial probability

density component isosurfaces are plotted in the right column. Considering first

the ground state transition (E1 → H1), we can see that there is a strong spatial

overlap between the spatial probability density component isosurface of E1, plotted

in Fig. 7.10(a), and the HH part of the ground state hole plotted in Fig. 7.10(b),

as both have s-like symmetry. However there is no interaction between E1 and the

LH part of the ground state hole, plotted in Fig. 7.10(c), which has p-like symme-

try. Hence H1 does not contribute to the TM -polarized recombination with the

ground state electron. As both the HH and LH spatial probability density com-

ponent isosurfaces of H2 in Fig. 7.10(d) and Fig. 7.10(e) respectively, have p-like

symmetry, there is also negligible interaction between these and the ground state

electron, E1. By contrast the LH part of H3, included in Fig. 7.10(g), has s-like

symmetry and makes up a significant part of the second lowest lying excited hole

state (15.3 % for the dot dimensions modelled here). Theoretical results suggest

that the TM -polarized transition, labelled as A in Fig. 7.9, is due to a strong spa-

tial overlap between the ground state electron, E1, and the LH part of the second

lowest lying excited hole state, H3, which both have s-like symmetry.

To summarise, polarized E-PV spectroscopy is used to study and differentiate

transitions involving electrons and HH states from transitions involving LH states.

Experimental results confirm the presence of a TM -polarized transition at an en-

ergy close to, but slightly above, the TE-polarized ground state. These results

are in good agreement with the calculated absorption spectra included in the right

panel of Fig. 7.9. The theoretical results, summarised in section 7.5.1, indicate

that the low energy TM -polarized transition involves ground state electrons and

the LH component of the second lowest lying excited state holes, H3. As both

have s-like symmetry, there is a strong spatial overlap leading to a non-negligible

TM -polarized transition at an energy close to the main TE-polarized ground state

transition.

7.6 Summary

This chapter has presented an analysis of InAs/GaAs 1.3µm DWELL devices. Sec-

tion 7.2 includes an overview of the materials and devices studied in this chapter,

with an overview of the experimental methods in section 7.3. Having characterised

a p-doped InAs/GaAs 1.3µm DWELL laser at room temperature, we investigated
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the TE-polarized ASE spectra and extracted the TE-polarized net modal gain.

We then measured the TM -polarized ASE spectra and identified two peaks. We

attribute the higher energy peak to the true TM -polarized transition. We then use

polarized E-PV spectroscopy to further investigate the energy distribution and na-

ture of the energy states in the p-doped as well as in an undoped 1.3µm InAs/GaAs

DWELL material in section 7.5. The transitions are very similar in the undoped

and p-doped sample, indicating that the modulation doping has a negligible effect

on the transition energies. Analysing the E-PV spectra we identified an electron-

LH transition close to the main TE-polarized ground state, consistent with the

measured TM -polarized ASE spectra in section 7.4. Although the TM -polarized

ground state has been previously measured, it has never been satisfactorily ex-

plained. We gained an understanding of the origin of the TM -polarized ground

state peak measured in the undoped and p-doped 1.3µm DWELL materials by

considering results calculated by Mark Crowley in section 7.5.1. The theory in-

dicates that the measured TM -polarized transition, with an energy close to the

main TE-polarized ground state, is due to the strong spatial overlap between the

ground state electron and the LH component of the second lowest lying excited

hole state. Experimental results are in very good agreement with theory and help

confirm the overall trend observed in Mark Crowley’s further calculations which

suggest that the TM -polarized transition is quashed as the quantum dot height

to base ratio decreases.
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Chapter 8

Summary

8.1 Conclusions

This thesis has been concerned with investigating gain and loss mechanisms in

1.3 µm and 1.5 µm semiconductor quantum dot lasers. Chapters 4 and 5 pro-

vided an analysis of undoped and p-doped InAs/InGaAsP/ InP quantum dash

lasers emitting at 1.5 µm. This was followed in chapter 6 by a study of 1.5 µm

InAs/AlGaInAs/InP quantum dash lasers. In chapter 7 we analysed the polariza-

tion characteristics of 1.3 µm InAs/GaAs quantum dots lasers. In the following

sub-sections we summarise the achievements of each topic, and conclude with a

brief summary of future directions in section 8.2.

8.1.1 Analysis of InAs/InGaAsP/InP Quantum Dash Lasers

In chapter 4 we presented a combined theoretical and experimental analysis of

InAs/InGaAsP/InP quantum dash structures.

We began with a summary of the relevant theoretical results of 8 band k.p cal-

culations carried out by Dr. Sorcha Healy. The theoretical results indicate that

because of the low electron mass and small conduction band offsets, the electron

states in the dash-in-a-well material are confined within the quantum well and are

only weakly confined in the dash in the dash-in-a-barrier structure. The shape

of the dashes, as well as strain, led to a predicted enhancement in the optical

recombination rate for light polarized along the dash long axis. Strain also led to

strongly reduced TM -polarized emission at the band edge, as is found in compres-

sively strained quantum well lasers [53].

The anisotropy in the optical characteristics, which is a beneficial property of

the dash structure [65], was confirmed experimentally. We first used polarized

edge-photovoltage spectroscopy to confirm the suppression of TM -related recom-
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bination at the band edge, and then measured polarized spontaneous emission

spectra through a window in the top contact of the laser to confirm the anisotropy

in the growth plane. The measured E-PV spectra and spontaneous emission en-

hancement were in excellent agreement with the theoretical calculations.

We then investigated the measured dependence of the integrated spontaneous emis-

sion rate to the total current as a function of temperature in order to identify the

recombination processes present in InAs/InGaAsP/InP quantum dash lasers. Our

results showed that Auger recombination remained the dominant intrinsic carrier

recombination process in these lasers, as previously shown for 1.55 µm quantum

well lasers [39]. We also identified a correlation in one device between the onset

of current leakage paths and a reduction in the external differential quantum effi-

ciency.

Despite these limitations InAs/InGaAsP/InP dash lasers have the benefit of having

anisotropic optical properties, of interest in edge and surface emitting lasers [65,

75, 76], as well as having improved temperature performance compared to conven-

tional InGaAsP/InP quantum well and (311)B quantum dot [39, 78] lasers.

8.1.2 Recombination Processes in P-Doped Quantum Dash

Lasers

Having established in chapter 4 the intrinsic characteristics of undoped InAs/ In-

GaAsP/InP dash structures, we then turned in chapter 5 to undertake an analysis

of two p-doped InAs/InGaAsP/InP lasers.

We found that care had to be taken when using the measured variation of the

integrated spontaneous emission with total current analysis to identify the dom-

inant carrier recombination process in p-doped lasers. This was due to the high

density of acceptors in the active region, which at very low temperatures played

a dominant role at threshold. The acceptors had a less pronounced effect on the

analysis with increasing temperature, allowing a reasonable analysis of the recom-

bination mechanisms at room temperature. Auger recombination was identified

as the dominant intrinsic process at room temperature in these lasers.

8.1.3 Analysis of InAs/AlGaInAs/InP Quantum Dash Lasers

It has been shown that the improved electron confinement in AlGaInAs/InP quan-

tum wells leads to a reduced temperature dependence of the threshold current com-

pared to InGaAsP-containing quantum well lasers. There is therefore an interest in

growing quantum dots on AlGaInAs-containing materials. The aim of the analysis

in chapter 6 was to compare the characteristics of InAs/AlGaInAs/InP quantum
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dash lasers to the lasers studied in chapter 4. However the InAs/AlGaInAs/InP

quantum dash laser samples available degraded rapidly when low temperature

measurements were carried out. Therefore the analysis was only carried out at

room temperature.

The characteristics of the 1.55 µm InAs/AlGaInAs/InP quantum dash lasers ap-

peared to be limited by intrinsic Auger recombination as in AlGaInAs/InP multi

quantum well lasers [107], in the absence of defect-related recombination and leak-

age currents. However, because only room temperature data was available, it

did not prove possible to identify whether AlGaInAs/InP quantum dash lasers

had beneficial properties over AlGaInAs/InP quantum well and/or InGaAsP/InP

quantum dash lasers.

8.1.4 Analysis of 1.3 µm InAs/GaAs Quantum Dot Lasers

Chapter 7 presented a study of the polarization characteristics of undoped and

p-doped 1.3 µm InAs/GaAs quantum dot materials and devices.

We began by considering the characteristics of a p-doped laser between 293 K and

323 K. We then measured the TE-polarized amplified spontaneous emission (ASE),

from which we extracted the net modal gain using the Hakki-Paoli technique [58].

We also measured the weaker TM -polarized ASE, which had a peak at a slightly

higher energy than the TE-polarized ASE peak.

To determine the energy distribution and character of the interband transitions

and to confirm the presence of a TM -transition close to the TE-polarized ground

state peak, we measured polarized E-PV spectra in the p-doped laser, as well as

in an undoped InAs/GaAs quantum dot device. Our results showed the presence

of a TM -polarized transition close in energy to the main TE-polarized ground

state transition. We gained an understanding of the origin of the measured low-

energy TM -polarized transition by reviewing the relevant theoretical results of

8 band k.p calculations carried out by Mark Crowley. These results show that

low lying excited hole states, with both a non-negligible LH character and strong

spatial overlap with the ground state electron, are responsible for the TM -polarized

transition with an energy close to, but slightly above, the main TE-polarized

ground state.

8.2 Future Work

In summary we have investigated in this thesis gain and loss mechanisms in 1.5 µm

and 1.3 µm semiconductor quantum dash and dot lasers, including an analysis of
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the polarization characteristics of the different devices.

We were able to undertake a detailed analysis of 1.5 µm undoped and p-doped

InAs/InGaAsP/InP quantum dash lasers. This analysis helped in the develop-

ment of a new generation of InAs/InGaAsP/InP quantum dash lasers with im-

proved temperature stability (T0 ≈ 95 K), which have recently been grown and

processed by Alcatel – Thales III – V Lab. It would be interesting to investigate

these new lasers further to analyse the different factors contributing to the im-

provement.

Having studied first generation InAs/AlGaInAs/InP quantum dash lasers in chap-

ter 6, it would also be of interest to study the temperature dependence of the

threshold current and its radiative component for a new generation of InAs/AlGa-

InAs/InP quantum dash lasers. AlGaInAs/InP quantum well lasers show improved

performance over InGaAsP-based quantum well lasers, due to improved electron

confinement, and one would expect this to be the case also in InAs/AlGaInAs/InP

quantum dash lasers when only intrinsic recombination processes are present. Cou-

pling this analysis with other analyses (TEM, AFM) would also allow us to confirm

whether there is a bimodal or trimodal dash distribution, as suggested by the mea-

surements in chapter 6.

It would also be interesting to apply the analysis methods presented here to other

anisotropic materials, including GaInP quantum wells and GaN quantum dots

grown on non-polar substrates, as well as to self-assembled Sb- and N-containing

quantum dots. If site-controlled quantum dots and nano-pillars grown on pre-

patterned Si and GaAs substrates are electrically pumped, it would also be of

interest to study the optical properties of these materials and their polarization

dependence.

There has been an interest in recent times in using InAs/GaAs quantum dot ma-

terials in the development of polarization insensitive semiconductor optical am-

plifiers. It would be valuable to carry out a systematic analysis of TE and TM -

polarized emission in InAs/GaAs quantum dots as a function of dot asymmetry,

size and aspect ratio, as a means to identify and understand the polarization char-

acteristics of InAs-based quantum dots grown on GaAs.

Although the z analysis has been widely used to study how the dominant carrier

recombination process at threshold changes with temperature, studying z as a

function of current at a given temperature has not been widely used. We showed

here that the z analysis can be used in this way to identify changes in the domi-

nant recombination process, as well as the interplay of a number of recombination

processes as a function of current. Such questions are of wide interest in semi-

conductor LEDs, lasers and amplifiers, and the analysis techniques presented here
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should therefore be of value in detailed studies across a wide range of such devices.
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