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SUMMARY

For two multinormal populations with equal covariance matrices

the likelihood ratio discriminant function, an alternative allocation

rule to the sample linear discriminant function when n1 +n2 ,is

studied analytically. With the assumption of a known covariance

matrix its distribution is derived and the expectation of its actual

and apparent error rates evaluated and compared with those of the

sample linear discriminant function. This comparison indicates that

the likelihood ratio allocation rule is robust to unequal sample

sizes.

The quadratic discriminant function is studied, its distribut­

ion reviewed and evaluation of its probabilities of misclassification

discussed. For known covariance matrices the distribution of b~e

sample quadratic discriminant function is derived. When the known

covariance matrices are proportional exact expressions for the

expectation of its actual and apparent error rates are obtained and

evaluated. The effectiveness of the sample linear discriminant

function for this case is also considered.

Estimation of true log-odds for two multinormal populations

with equal or unequal covariance matrices is studied. The estimative,

Bayesian predictive and a kernel method are compared by evaluating

their biases and mean square errors. Some algebraic expressimls for

these quantities are derived. With equal covariance matrices the

predictive method is preferable. Where it derives this superiority

is investigated by considering its performance for various levels of

fixed true log-odds. It is also shown that the predictive method is

sensitive to n1 +n2 - For unequal but proportional covariance

matrices the unbiased estimative method is preferred.

Product Normal kernel density estimates are used to give a

kernel estimator of true log-odds. The effect of correlation in

the variables with product kernels is considered. With equal

covariance matrices the kernel and parametric estimators are

compared by simulation. For moderately correlated variables and

large dimension sizes the product kernel method is a good estimator

of true log-odds.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Discriminant analysis is concerned with the allocation

of an observation known a priori to have come from one of

two or more populations. Allocation of the observation is

made using an allocation rule or discriminant function.

The exact forms of the discriminant functions depend on

the distribution of the variables in the various populat­

ions under consideration. In this thesis our interest will

centre on the classic case of two multivariate Normal

populations with equal or unequal covariance matrices.

When the population distributions and parameters

are known, optimal allocation rules, which minimise the

number of observations misclassified may be constructed.

In practice however the population parameters are unknown

but the type of population density is assumed, and sample

allocation rules constructed from sample observations whose

true allocation is known, are used. These sample allocation

rules also misclassify observations and their error rates or

probabilities of misclassification are often used to assess

their performance.

~

This thesis has two parts; the first consisting of five

chapters, concerning the distribution of the likelihood

ratio, sample linear and sample quadratic discriminant

functions; the second of four chapters concerning the

estimation of true log-odds.
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In the first part, the likelihood ratio discriminant

function, an alternative allocation rule to the sample

linear discriminant function when n
1

+n
2

.is studied

analytically. For the assumption of known and equal

covariance matrices its conditional and unconditional

distributions are derived. Expectations of its

associated actual and apparent error rates are evaluated

and compared with their counterparts for the linear

discriminant function. With n1 +n
2

it is found in

contrast to the linear discriminant function that there

is very little distortion in the expected actual

probabilities of misclassification of the likelihood

ratio allocation rule. The case of equal but unknown

covariance matrices is also considered.

The optimal quadratic discriminant function is

then studied. Its distribution and associated

probabilities of misclassification are reviewed. The

distribution for some special cases of the population

parameters such as proportional covariance matrices is

considered in detail and exact expressions are derived

for the optimal error rates. For the assumption of known

covariance matrices the conditional and unconditional

distributions of the sample quadratic discriminant

function are derived and with the additional assumption
~

of proportional covariance matriees, exact expressions

for the expected actual and apparent error rates are

obtained. The effectiveness of linear discrimination in

this case of known proportional covariance matrices is

also examined analytically.

2



In the second part of the ~hesis, estimation of

true log-odds is considered. Various methods of

estimating true log-odds are compared including

classical methods, the Bayesian predictive method and

a kernel method. Comparison of the estimators of

log-odds is based on the evaluation of their biases

and mean square errors and implications for correspond­

ing rates of misclassification are also considered.

Exact expressions are derived for the bias of the para­

metric estimators and for mean square errors where

possible. The mean square error of the predictive

method and the expected actual probabilities of

misclassification are estimated by simulation. With

equal covariance matrices the exaggeration in true log­

odds reported in the literature for the estimative

method is shown to be primarily due to bias. The

estimative method corrected for bias gives a distinct

improvement. The predictive method remains superior

however with smaller mean square error and conservative

bias. The relative performance of the predictive and

estimative method is examined in some detail for various

levels of true log-odds, population separations and

sample sizes. While the predictive methods superiority

is very marked for large log-odds, it persists albeit

modestly for low true log-odds. It is shown that the

predictive estimator is sensiti~~ to n1 +n2 and an

appropriate adjustment is suggested. For unequal but

proportional covariance matrices the superiority of the

predictive method does not persist and the unbiased

estimative method seems preferable.

3



Finally, product Normal kernel density estimates

are used to give a kernel estimator of true log-odds.

Quite dramatic claims for the relative allocation

performance of the product kernel to the estimative

allocation rule have recently been made in the

literature. Such studies however have been based on _

the population assumption of independence of the

variables. The effect of correlation in the variables

on product kernel density estimates is considered.

For equal covariance matrices the product kernel's

allocation and estimative performance is compared by

simulation with the parametric methods in the presence

of correlation in the variables. It is found that the

claims for the allocation performance of the product

kernel method are overstated and only hold when the

variables are close to independence and then only for

large dimension sizes and well separated populations.

For moderately correlated variables, large dimension

sizes and small sample sizes, the product kernel method

is however a good estimator of true log-odds.

The thesis concludes with a chapter outlining

possible areas into which the work undertaken in the

previous chapters might be extended.
~

4



1.2 The Linear and quadratic Discriminant Functions

The two basic discriminant functions together

with some general notation are introduced here. No

specific symbol is used to denote a vector or matrix,

it is hoped that such quantities will be apparent from

the context in which they occur.

A (p x 1) observation vector x is assumed to have

come from one of two multivariate Normal populations

nt (t = 1,2). The p-dimensional Normal distributions

will be denoted by ~(~t,It) where ~t is the mean vector

and It the covariance matrix. 1f wt(t = 1,2) are the

prior probabilities of x coming from nt then allocation

to n
1

or n2 is made according as

where

(1.2.1)

and f t is tne probability density function of x in nt.
The allocation rule (1.2.1) minimises the total

probability of misclassification, Welch (1939). The

symbol C will be referred to as !he cut-off point.

Anderson (1958, ppI27-133) has shown that the allocation

rule (1.2.1) with C now involving the costs of misclass­

ification minimises the average cost and where prior

probabilities are unknown that rules of the type (1.2.1)

form a minimal complete class.
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With the assumption of equal covariance matrices i.e.

tl - t2 = t, the allocation rule (1.2.1) becomes

the familiar linear discriminant function, Welch (1939). The

distribution of L(x) for x in fit is obviously Normal with mean

(_l)t-l IA2 and variance A2 where A2 = (PI - P2)' I-I (p t - P2)

is Mahalonobis' squared distance between the populations,

Anderson (1958, ppI33-137).

With tl ~ t2 the allocation rule (1.2.1) becomes

Q(x) • -I(x - PI)' til(x - PI) + lex - P2)' t;l(x - P2) -lln(ltll/ltzl)

> C
<

the quadratic discriminant function Smith (1947). The distribution

of Q(x) is considered in a later chapter.

1.3 The Sample Linear and Quadratic Discriminant Functions

When the population parameters are unknown it is customary to

replace them by their sample estimates, Anderson (1958, pI37).

This will result in the sample linear and quadratic discriminant

functions.

Random samples Xtj of size nt' 1 ~ j ~ nt are assumed from

fit (t • 1,2). Denoting the sample means and covariance matrices by

xt and St and with ~

S • {(nt - 1)51 + (n2 - I)S2} I (n l + n2 - 2)
A

the sample linear discriminant function L(x) corresponding to L(x)

is given by

A

L(x) • (Xl - X
2
)' S-l{x - l(x

I
+ x2)} ~ K

6



With the assumption of equal priors or in the absence of

information to the contrary K is set equal to zero. In some

cases it is assumed that the proportions of the sample size

reflect the incidence rate of the observations and K is set
A

equal to 1n(n2/n l ). L(x) is often referred to as the W

statistic from Anderson (1951).

A

The conditional distribution of L(x).i.e. x
l
,x2 and S
A

are assumed fixed~ is obviously Normal with mean L(pt ) and

variance (Xl - x2)' S-1 I S-1(X1 - X
2
). The unconditional

A .

distribution of L(x) is however extremely complicated and has

been studied by Anderson (1951), Sitgreaves (1952) and Bowker

(1961). Asymptotic expansions for the cumulative distribution
A

function of L(x) were derived by Bowker and Sitgreaves (1961)

for n1 • n2 and by Okamoto (1963) for nl ~ n
2

• Anderson (1973)

~as given an asymptotic expansion for a studentised version of
L(x).

A

The sample quadratic discriminant function Q(x) correspond-

ing to Q(x) is given by

Q(x) • -I(x - xl)' S14 (x - Xl) + I(x - x2)' S;1 (x - x2)

first described by Smith (1947).

A

The unconditional distrib~tion of Q(x) has proved to be

more intractable than that of L(x). The results in the literature

are asymptotic expansions for various special cases of the

population parameters and are reviewed in Chapter 4.

7



1.4 Optimal Probabilities of Misclassification

These are the probabilities of misclassification when the

optimal rules L(x) and Q(x) are used to allocate observations

from nt' (t • 1,2).

With EI • E2 • E they are defined as

LI • Pr{L(x) < C I x in n l } .

. •ec -A1A2 )

and

L2 • Pr{L(x) > C I x in n2 }

•• ( -c ~ 1A2)

where t denotes the standard Normal distribution function. As

noted in Section 1.2 the allocation rule L(x) minimises the total

probability of misclassification WI LI + w2 L
2

- With equal prior

probabilities C • 0, and

With E
I

; E
2

the optimal probabilities of misclassification

will be denoted by Q
1

and Q
2

where

Q • Pr{Q(x) < C , x in n
l

}
J.

and

Q • Pr{Q(x) ~ C I x in n
2

} •
2 .

The evaluation of Qt' t • 1 and 2 is considered in Chapter 3

where the distribution of Q(x) is derived.

1.5 Actual and Apparent Probabilities of Misclassification

The actual probabilities of misclassification are the

misclassification rates of the sample based rules when used to

classify future observations from n
1

and «2. They are also

referred to as the conditional probabilities of misclassification,

it and St being assumed fixed.

8



A

For L(x) the actual probabilities of misclassification

are given by

*
Ito -Ll == Pr{L(x) < K I x in IT l , xl' x

2
, 5}

VeX I

A )
K - L(JJ

1
)- - x )' 5-1 t 5-1 (Xl - x

2
)

2

and

*
Ito -Pr{L(x) > K I x -L

2 == in IT
2

, xl' X2 ' 5}

For Q(x)

*
Ito -Ql Pr{Q(x) < K I x in IT l , -

51' 52}• xl' x
2

,

and

* Pr{Q(x) > K I X in IT
2

, - -
51' 52}• xl' x2'

~
*evaluation of ~ is considered in Chapter 4. Conditional

probabilities of misclassification will be denoted by an

asterisk. Expectations of the actual probabilities of misclass­

ification over repeated samples of sizes n
l

and n
2

from IT
I

and

IT
2

are sometimes referred to as the unconditional probabilities

* *of misclassification and will be denoted by E (Lt ) and E (Qt).

The apparent probabilities of misclassification are defined

as the proportions of the sample observations misclassified by

the sample-allocation rules and will be denoted by a double

** **asterisk i.e. Lt and ~. They are estimates of the actual

probabilities of misclassification. The method of estimation

sometimes referred to as the resubstitution method was proposed.,
by Smith (1947) and is known to result in substantially biased

estimates, Hills (1966). This bias is to be expected since the

sample observations are used twice, once in the construction of

the allocation rules and then as observations to be allocated

by these rules. Expectations of the apparent probabilities of

misclassification over repeated samples from IT
I

and n
2

will

enable us to see the extent of the bias in the resubstitution

9



method.

**E(~ ).

**These expectations will be denoted by E(Lt ) and

A clear distinction between optimal, actual and apparent

error rates was made by Hills (1966). Considerable work on

the estimation of these error rates and their expectations when

E
1

• E
2

has been done by Lachenbruch (1967, 1968), Lachenbruch

and Mickey (1968) who suggested several alternative estimators

Broffitt and Williams (1973), Sorum (1968, 1971, 1972, 1973),

Sedrask and Okamoto (1971) and Mc Lachlan (1972, 1973, 1974,

1976). Inequalities between the various error rates and their

expectations have been given by Hills (1966), Das Gupta (1974)

and Glick (1972). In the latter reference the consistency of

sample based allocation rules is also considered.

10



Z(x)

CHAPTER 2

THE LIKELIHOOD RATIO ALLOCATION RULE OR Z STATISTIC

2.1 INTRODUCTION

II>

The sample linear discriminant function L(x) enjoys

widespread use for discriminating between multinormal

populations with equal covariance matrices when some or

all of the populations parameters are unknown. One of

the main reasons for its popularity is its multiple

regression derivation, Fisher (1936). In the literature

many alternative sample allocation rules have been proposed

among them the likelihood ratio allocation rule, Anderson

(1958, P14l-l42) or Z statistic, John (1963), where

n 1 - -1';' n2 - -1-=- ----- (x-x )' S (x-x) + ----- (x-x )' S (x-x)nl +1 1 1 n2 +1 2 2

(2.1.1)
2n A= n+l L(x) when n1 =n2 = n.

For unequal sample sizes the Z statistic has been shown to
....

have some advantages over L(x) and these are investigated

further in this chapter for t known.

The conditional and unconditional distribution of Z(x)

are derived for t known, here S in (2.1.1) is replaced by t.

Expectations of its actual and apparent probabilities of

misclassification are derived and evaluated. The imbalance

in the expectations of the actual and apparent probabilities

of misclassification for Z(x), for unequal sample sizes, is
....

compared with that for L(x}. Various approximations to the

expectations of the probabilities of misclassification for

Z(x) are then considered. The chapter concludes with a

discussion of possible extensions to the case where the

covariance matrix t is unknown.

11



2.2 Derivation and Notation

The likelihood ratio allocation rule as derived by

Anderson (1958, PI41-142) is as follows.

Let f(xr~,E) denote the probability density function

of the unidentified observation x where it is believed that

(~,E) = (PI,E) or (~2,E). Then the likelihood ratio

statistic for testing the hypothesis "I: P = ~1 versus

"2: P = P2 is

LR =
max f(xl~l,t)

"1
2
n

t=1
2
n

t=l
•

The maximum likelihood estimates of the unknown parameters

under HI are

A

E =

There are obvious changes for the corresponding estimates under

"2 where the maximum likelihood estimate of E will be denoted

by t. Substitution of these estimates gives after some

simplification

LR ={ It I I It I }1(nl+n2+1)

I (nl+n2+1)
n2

(x-i )'
-1 -

1 + (n2+1) (nl+n2- 2) 2 S (x-x2)

= n1 (X-Xl) ,
-I -

1 + (n1+1) (nl +n2-2) S (X-XI)

12



Z(X)

The hypothesis "1 is favoured according as LR ~ C, C > 0,

and allocation to HI or H2 would be made accordingly.

With the cut off C = 1, which may be interpreted as

our belief that the unknown prior probabilities are equal
t

the likelihood ratio allocation rule

nl _ -1 _ n2 - -1 _
= -nl+l (X-Xl)' S (X-Xl) + n

2
+l (X-X2), S (X-X2)

~ 0

is obtained. We note that if the sample sizes are equal,

nl = n2 = n, and C = I that

2n A

Z(x) = ---1 L(x)n+ (2.2.1)

and for allocation purposes the two rules are equivalent.

An equivalent intuitive rule to Z(x) was proposed by

Rao (1954) who suggested comparing tests of significance of

the unidentified observation X coming from HI or H2 • If the

test rejects the hypothesis that X comes from HI at a level a l
and the hypothesis that X comes from H2 at a level a2 then X

is assigned to HI or H2 according as a l ~ a 2• For multinormally

distributed populations the conventional test criterion is
nt - -1 - nt+n2-p-l-- (x-xt )' S (x-xt ) which is distributed as ( 2) times

Ilt+l p nx+n2-
an F variate with degrees of freedom p and (n l +n2-p-l). Thus

the procedure amounts to allocating to HI or H2 according as
~

n l - -1 - < n2 - -1 -
-- (x-x)' S (X-Xl) > n +1 (x-x2)' S (x-x2)nl+l 1 2

i.e. according as Z(x) ~ o.

13



With the restriction that the covariance matrix I is

known a similar likelihood ratio analysis gives the allocation

rule

Z(X)

= - N1 (X-XI)' I-I(X_xl ) + N2 (x-x2)' I- I (x-x2)

(2.2.2)

Further reference to the Z statistic will be to (2.2.2)

and I known unless otherwise indicated.

The actual probability of misclassification of the Z

statistic for x in nl is

Z* Pr{Z(x) < 0 x in nl , - x2}
I = Xl'

with expectation

* < 01 X in n
l

}E(ZI) = Pr{Z(x)

The corresponding Z* * for X in n2 are similarly2 and E(Z2)

defined.

The apparent probability of misclassification of the

Z statistic, defined as the proportion of the sample

observations from IT} misclassifie~ by Z(x), will be

denoted by Z~*_ Its expectation is

E(Z**) = Pr{Z(x .) < 0 1 X . a random member of the
I 1) I)

"sample from ITI }

with z~* and E(Z;*) similarly defined for the observations

from IT2 -

14



2.3 A Review of the Literature on the Z Statistic

As noted in Section 2.2, Anderson (1958) proposed and

derived the likelihood ratio allocation rule and Rao (1954)

had suggested an equivalent allocation rule to Z(x).

Ellison (1962) for t known and a zero-one loss function

has shown that Z(x) is an admissable translation-invariant

Bayes rule. For t known and a loss function dependent on A,

n1 and n2 Das Gupta (1965) has shown that Z(x) is an unbiased,

admissible minimax rule. By the term unbiased Das Gupta means

that E(Z~) < I for all (n
1

,n2), p and A. He has also shown

that this is true for E unknown. Schaafsma (1973) for E known,

p = 1 and a zero-one loss function, has shown that Z(x) has
A

uniform minimum risk in an invariant class, however L(x) is

not a member of this class.

John (1960a) obtained a complicated expression for E(Z~)

when E is known. He showed that these expectations were

bounded above by', anticipating Das Gupta's result on

*unbiasedness. John (1963) for E known expressed E(Zt) as the

difference of two weighted non-central chi-squares and suggested

Abdel-Aty's (1954) approximation to a non-central chi-square be

used for evaluation. Schaafsma and Van Vark (1977) obtained

expressions for E(Z~) when p ~ 1 and E known in terms of

standard Normal distribution fun~ions, similar to John's (1961)

*and Hills (1966) expressions for E(Lt ).

Hemon (1970) for &known and Memon and Okamoto (1971) for

t unknown provide asymptotic expansions for the unconditional

dtstribution of Z(x) similar to Okamoto's (1963) expansion for

15



A

L(x). Siotani and Wang (1977) compared for t unknown the
A

allocation rules L(x) and Z(x) by considering the

difference {E(L~) + E(L~)} - {E(Z;) + E(Z~)} for various

combinations of nl +n2 , p and A. Here E(L;) and E(Z~)

were estimated from Okamoto's and Memon and Okamoto's

asymptotic expansions with extensions to include a cubic

term. They conclude that the superiority of one procedure

over the other was not consistent but depended on the

configuration of the parameter set {nl ,n2 ,p,A}.

2.4 The Conditional Distribution of Z(x)

The conditional distribution of Z(x), given xl and x2J

is derived and evaluation of the actual probabilities of

misc1assificatlon considered.

Z(x) == - N (x-x) , -1
(x-Xl) (x-x

2
) ,

-1
(x-X2)I + N

2
t

1 1

(N2x2 -NI Xl) , -I
{x -

(N2x2 -NI Xl)
}== (N -N ) {x - } t

2 1 N2 -N1
N2 -N1

if n1 +n2

(N2-N1) {(x-a) , -1
== I (x-a)} - b

= N2x2-Nl xl NIH~ (Xl -x2 ) ,
-1 - -

where a and b = t (Xl -x2) •
N2 -N1 N2 -Nl

Conditional on xl and x2
-1 2 -1

(x-a)' ~ (x-a) (()' ~ ( a))~ - X p, pt-a ~ Pt -

for x in n , t == 1 and 2, where X2 (v,l) denotes a non-central
t

chi-squared variate with degrees of freedom v and non-centrality

16



-1 .
parameter~. The non-centrality parameters (pt-a), t. (pt-a)

contain unknown population parameters. Hence the evaluation

of the actual probabilities of misclassification

Z~ = Pr{(N2-N1) X2
(p, (PI-a)' t-1(P1-a)) < b}

and

is impossible in practice although it may be undertaken in

simulation studies. In Section 3.6 closed expressions are

given for the probabilities of non-central chi-squares with

odd degrees of freedom.

With n1 =n2
2n A

Z(x) =n+l L(x) ~ 0

and the actual probabilities of misclassification of Z(x) are
A

the same as those of L(x) as given in Section 1.5, if K • 0 and

S is replaced

Z*
1

17



2.S The Unconditional Distribution of Z(x)

Here the method of proof is similar to that employed

by John (196Gb) and Moran (1974) in deriving the

expectations of the actual probabilities of misclassification
,.

of L(x). The method is given in some detail as it will be

used again on several occasions. John's (1963) expressions

for the expectation of the actual probabilities of misclass­

ification of the likelihood ratio allocation rule are

somewhat involved and not suitable for evaluation purposes.

Let the cumulative distribution function of the Z statistic

be given by

t = I and 2.

Thus for x in III

G1(a) e Pr{-NI(X-X
l

) , I-I(X-X l ) + N2(x-X2), I-
I

(X-X2) ~ a}

=Pr{-y'y + w'w ~ a}

where y = I-I(x-x
l

) ~ and

= Pr{(w-y), (w+y) ~ a}

= Pr{ r's ~ a}

where r := (w-y) and 5 = (w+Y).

Now rand s are multinormally distributed with means

t-I(~I-~2)1:N2 and covariance maltices

2 2
_d1 d2 II andn1n2 nl n2

respectively, where

d l = {n1N2 + n2Nl + nln2 (/Nl _I:N2 )2}1

d -= {n1N2 + n2NI + nt n2 (~ ... IN; )2}1.
2

18



With

U = c1r and v = c2s are multinorrnally distributed with

covariance matrices I. The correlation PI between the

pairwise elements of u and v is given by

If nIN2(n2+1) = n2Nl(nl+I), then PI = 0, which is always true

for the Z statistic. The correlation parameter PI even when

zero will be retained in the remainder of the derivation for

illustrative purposes as the method of proof will be employed

again in situations where the correlation is non-zero.

Now G
1

(a) = Pr{r's $ a}

= Pr{u'v $ a clc2}

= Pr{(u+v)'(u+v) - (u-v)'(u-v) ~ 4a c1c2}

and (u+v) and (u-v) are independently multinormally distributed

with covariance matrix 2(1+P I ) I and 2(I-P1) I respectively.
1 1

Hence ~l = 2(I+Pl) (u+v)'(u+v) and w2 = 2(1-PI) (u-v)'(u-v)

are independently distributed as non-central chi-squares,

X2(p'~I) and X2(p'~2)' where the non-centralities ~1 and ~2 are

given by
-1 2 N ~2

~l = {2 (l+Pl)} (c
1

+c
2

)
2

(2.5.1)
{2(1-P

1
) }-l

.# 2 N ~2~2 = (cl -c2) 2

Writing
= Pr{(l+Pl) (I-PI)

~ (a) w2
~ a}

.' 2c Ic2
(1)1 2c

1
c

2

= Pr{
1 2 1 2

~ a} ,
2sc2

X (p, ~1) 2c1c2
X (P'~2)

as PI • 0, we see that the unconditional distribution of Z(x)

is that of an indefinite non-central quadratic form.

19



A similar analysis holds for x in n
2

with the equivalent

parameters given by

P2 = PI =0, c3 = c1 ' c4 =c2

-1 2 A2
6

3 = {2{1+P2)} (c3 -c4 ) N1

and -1 2 ~2 (2.5.2)6
4 = {2(1-P2)} (c

3
..c4 ) N1

The expectations of the actual probabilities of

misclassification are obtained easily as

E{Z;) = G
1

(0)

2 2= Pr{X (p,61) X (p,62) < O}

E(Z~) = 1 - G2 (0)
2 2= Pr{X (p,63) - X (p,64) > O}

(2.5.3)

From the expressions (2.5.1) and (2.5.2) for the non-centralities

in E{Z;) we note that

E{Z; I (nl ,n2)) • E(Z~ I (n2 ,n l )). (2.5.4)

. *Evaluation of E{Zt) and the unconditional distribution of Z(x)

is considered in Sections 2.9 and 2.10.
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2.6 The Expectations of the Apparent Probabilities of

Misclassification of Z(x)

The expectations of E(Z**) may be derived in a similar

manner to E(Z;) the differen~e being that the rand?m

observation x from nt is now replaced by a member Xtj of the

sample of nt from nt •

Hence for t =
E(Z;*) =

1
. - -1 -Pr{-N

1
(x .-x

l
)' I (x .-x

l
)

1) 1)

- -1 -+ N2 (X
1j

-X2), I (x
lj

-x2) < O}.

Allowing for the correlation of x . and xl it follows that
1)

**. 2 2
E(ZI ) = Pr{(1+P3) X (p#~s) - (1-P 3) X (P'~6) < O}

where ds = {n
1

N2 - n2N
l

+ 2n2~ + n1n2(/Ni"" - 1N;)2}1

c =s ,

P3 = {n
1

N
2

+ n
2
N

1
- n

1
n2 (N1 -N2)}/dsd

6

-1 2 ~26s = {2 (1+P3)} (C
S

+C
6

) N
2

~6 = -1 ., 2 2
2(1-P3) } (CS-c6) N2 ~

The relationship

(2.6.1)

(2.6.2)

holds here also, use of which will facilitate the evaluation

of E(Z;*). The evaluation of E(Z~*) is considered in Sections

2.9 and 2.10.
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* **2.7 Alternative expressions for E(Zt) and E(Zt ) when the

dimension p = 1

As may be seen in Sections 2.5 and 2.6 both expectations

E(Z~) and E(Z;*) involve the probability

Pr(uv < 0).

Now for p = 1, u and v are Normally distributed with

variances 1 and means a and b respectively and

Pr(uv < 0) = Pr(u < 0) + Pr(v < 0) - 2Pr(u < 0, v < 0)

= • (-a) + • (-b) - 2. (-a, -b, p)

where • (h, k, p) denotes the standard bivariate Normal

distribution function with correlation p.

For E(Z;), Section 2.5 shows

a = c11N2 I-I (~1-P2)' b = c2~2 I-I (PI-P2) • p = 0

giving E(Z;) = • (-a) + • (-b) - 2. (-a) • (-b). (2.7.1)

For E(Z~*), Section 2.6 shows

a = c5~2 I-I (~1-~2)' b = c6~2 I-I (~1-~2) , p ~ P3

giving E(Z~*) =•. (-a) + • (-b) - 2. (-a, -h, P3).

Similar expressions to these were obtained by John (1961) and
A

Hills (1966) for L(x). Schaafsma and Van Vark (1977) have given

the expression (2.7.1) for E(Z;).
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2.8 Bounds and Inequalities for the Expectations of the

Actual and Apparent Probabilities of Misclassification
A

of Z(x) and L(x).

As noted in Section 2.3 both John (1960a) and

Das Gupta (1965) have shown that Z(x) is an unbiased

allocation rule i.e. E(Z;) < j for all nl , n2 , P and A > O.
This is a simple consequence of the following lemma which

will be required elsewhere.

Lemma:- If x and yare two random variables independently

distributed as X
2
(p,ll) and x2

(p,l2) where II > l2 > 0 then

Pr{x-y ~ O} < I .

Proof:-

Now

PT{x-y ~ O} = Pr{x ~ y}

= Ey[Pr{X ~ y I y}].

Pr{x ~ y y} < Pr{w ~ y I y}

where w is distributed as X2(p,l2) independently of y. This
2follows as ~ > l2 and Pr{x (p,l) > c} is a monotonic

increasing function of l,Ghosh (1973).

Hence Pr{x-y 'O} < Pr{w-y ~ O}

= I
as wand yare identically distributed.

Corollary:-

Proof:-

With x and y a$# before, II > l2 > 0 and

a ~ B > 0 then Pr{ax - By ~ O} < I.

Pr{ax - By ~ O} = Pr{x ~ Bta y}

~ Pr{x " y}

< I by lemma.
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From (2.5.1) we see that &1 > &2 > 0 for all n l ,"-n2
and ~ > 0 and since

. 2 2= Pr{X (P'&l) - X (P'&2) < o}

< I by lemma, (2.8.1)

where a =

from (2.5.2) &4 > &3 > 0 and from (2.5.3) and the lemma

E(Z;) < j also.

In Section 2.6 we expressed E(Z~*) as the difference of

two weighted non-central chi-squares. It is easily shown

that the correlation P3 (2.6.1) is positive for all n
l

and n
2

and that the non-centrality &5 > &6. By the corollary to

the lemma and the relationship (2.6.2) it follows that

**E(Zt ) < I t =1 and 2, for all n
l

, n
2

, p and ~ > o.

In the evaluations of E(Z*) and E(Z;*) Section 2.10 it

will be noted that E(Z~) < E(Z~) and E(Z~*) < E(Z~*) when

nl < n2, for all p and A +O. Attempts to prove these

inequalities algebraically fail.ed except for E(Z~) when p = 1.

Using the alternative expressions in Section 2.7 for

E(Z~) when p = 1 we have

E(Z~) =• (-a) + • (-b) - 2. (-a) • (-b)

= I - 2{. (-a) - IJ{. (-b) - I}

, IN; I-I (1I1-lJ2) , b = c 21N2 I-
j

(1I1-P2) J

c1 and c2 positive.

Similarly

where

*E(Z2) = I - 2{. (-f) - I}{. (-g) - I}
f =Cl~ I-I (lJ I-P2)' g = c21.N1 I-I (Pt-P2).
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We wish to show that E(Z~) < E(Z;) when nl < n2, 6 +O.

If nl < n2 then N1 < N2 and the following inequalities

hold between a, b, f and g.

Case (i) with PI > P2 then 0 < f < a

and 0 < g < b

Case (ii) with PI < P
2

then 0 > f > a

and 0 > g > b (2.8.2)

" *For E(ZI) < E(Z2) we need to show that

{t (-a) - I}{t (-b) - I} > {t (-f) - l}{t (-g) - !}

that is A8 > FG

where A = {t (-a) - I} and 8, F and G are similarly defined.

Case (i):- With PI > P2 , A < 0,

from (2.8.2) and the function t.

function t that

A < F and 8 < G.

B < 0, P < 0 and G < 0

It also follows from the

Thus -A > -F > 0 and -B > -G > 0

and' AB > FG as required.

Case (ii):- With PI < P2, A ~,o, B > 0, F > 0 and G > 0 from

(2.8.2) and the function t, alsolA >. F > 0, B > G > 0 and so

A8 > FG as required.

T&uS'E(Z~) < E(Z~) when nl < n2J p = 1 and 6 +0, from (2.5.4)

it follows that

E(Z~) > E(Z~) when nl > n2, P = 1 and 6 +O.
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A

As Z(x) is an alternative allocation rule to L(x) when

nl +n2 we will have occasion to evaluate and compare' 'E(Z~)

and E(L;) for various values of n
l

+n
2

, p and A. For

I known

L(x) = (X
I

-X
2
)' I-I {x l(x

l
+x

2
)}

and the expectations E(L;) may be obtained in a similar

manner to our derivation of E(Z;). From Moran (1974)

* 2 2E(LI ) = Pr{(I+P..) X (p,6 7) - (l-p..) X (p,6a) < O}

(2.8.3)

where d = (n
l

+n
2

) I da
I

• = (nl +n2+4nl n2)
7

I =2(n
l
n

2
)I/daC

7 • (nl n
2

) /d7 Ca

Pit = (nl -n2)/d7da

-1 2 2a
7 = {2(I+P.. )} (c

7
+ca/2) A

. -1 2 2
aa = {2(I-p )} (c

7
-ca/2) A •..

The relationship

E(L; I (nl ,n2») • E(L~ I (n2 ,n1») (2.8.4)
A

holds here also. For n
l

= n
2

Z(x) and L(x) are equivalent

and it follOWS from (2.8.1) that

E(L;) < I t = I and 2, if n1 • n2 , for

all p and A > O.

-It also follows from the lemma and its corollary that

E(L~) < I if n1 > n
2

as Pit > 0 and

a7 > 68, for all p and A > O.

if n < n from (2.8.4), for
1 2

all p and A > O.

26



Moran's (1974) evaluation of E(L*t) contains a case wh~re
* AE(LI) > I when n l < n2, thus Lex) is an unbiased allocation

rule if and only if n
1

=n2 • Moran also derived the

expectations E(L**). By use of the lemma and its corollary
t

it is easily shown that

E(L;*) < I, t = 1 and 2, for all n
1

,n2, p and d > o.

For t known from a result of Das Gupta (1974) on
A

L(x)

E(Z**) < L < E(Z*)
t t t

t = 1 and 2, n
1

= n
2

, for all

p and d > 0,

where Lt is the optimal probability of misclassification,

Section 1.4. However with n
l

+n
2

it may be seen from our

evaluation of EeZ;) and ECZ;*) Tables 2.10.1 and 2.10.2 that

EeZ;) ~ Lt and Lt ~ E(Z;*), for all n1 +n2 ,

t = 1 and 2.

Wt(x) = (x-i) ,
-1

(x-it)With tt
A

Z(.x) and Lex) may be written as

Z(x) = -N1 w1 (x) + N2 W2(x)
A

and L(x) = -I WI (x) + I w2(x) •

t = 1 and 2

A

and Lex) ~ 0 is equivalent to

WI (x) ~ w2 (x) •
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=

Clearly if nl < n2 then N
2

/N1 > 1 and Z(x) allocates more
A

observations to population IT l than does L, hence

E(Z;) E(L~) and E(Z~) *< > E(L
2

) , n1 < n2 •

Similarly if n
1

> n
2

E(Z~) > E(L~) and E(Z;) < E(L~) .

2.9 Method of Evaluating E(Z;) and E(Z;*).

In Sections 2.5 and 2.6 the expectations E(Z~) and E(Z~*)

were expressed as the weighted difference of two independent

non-central chi-squares. This prompts consideration of ways

of evaluating

F(x) = Pr{Q ~ xl

n
Pr{ I Q

ii=l

where the x~(v.,~.) are independently distributed. If Q. > 0
111

for all i, Q is called positive definite. If ~i z 0 for all

i, Q is described as a central quadratic form. Otherwise Q
is called an indefinite non-central quadratic form.

Exact expressions for F(x) have been given by Shah (1963)

in terms of Laguerre POlrnominals and by Press (1966) in terms

of confluent hypergeometric functions, neither of 'these however

allow easy evaluation. Imhof (1961), by inverting the

characteristic function of Q, expressed F(x) in terms of an

infinite integral which allowed numerical evaluation.
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Other approaches to evaluating F(x) have been to use

approximations to non-central chi-squares such as

Patnaik's (1949) and Pearsons' (1959). The accuracy of

these approximations are considered by Imhof (1961) and

Solomon and Stephens (1977). Normal approximations were

considered by Jensen and Solomon (1972) and the Pearson

system of curves were used by Solomon and Stephens (1978).

The overall conclusion of these papers is that Imhof's

(1961) method gives the most accurate results.

Imhof's infinite integral expression for F(x) is

F(x) = 1 _! [sin fey) dy (2 9 1)2. Y g(y) • .
o

n 2 2
E {v. arctan (a.y) + (A.a.y)/(I+a

1
·y )} -

. 1 1 1 1
1=1

where

fey)

g(y)

I

. {

Ixy

n 2 2 2 2
E (A.a.y )/(l+a.y )}
.11 1
1=1

and tim
y-.a

sin fey)
,y g(y) =

n
lEa.

i=1 1

(v.+A.) - Ix.
1 1

The function y g(y) increases monotonically with y to +~. If

the integral (2.9.1) is evaluated from 0 to u, possible errors

in evaluation are (i) round off1errors (ii) the error of

integration inherent in the numerical method used to evaluate

I whereu

I
u sin fey)

Iu = l/w 0 y g(y) dy,

and (iii) the truncation error T whereu

Tu
= 1/- [ sin fey) d

" y g(y) y.
u

29



Imhof bounded T as follows
u

T ,
u

n
n

i=1

-1

2 2 2 2 JA.a. u I(l+a.u )}
111

n
where k = 1 t vJ i·

i=1

(2.9.2)

This bound (2.9.2) on T may be used to obtain the upper
u

limit of integration u of r for a predetermined truncation
u

error. Having done so. the problem of evaluating I mustu
then be considered. Two numerical methods. namely a

composite approach with 40 point Gaussian quadrature and a

trapezoidal rule with Romberg extrapolation. Ralston (1965,

ppI2l-129), were tried. The latter was chosen for routine

use given its guaranteed convergence. When it fails to

attain a prescribed tolerence level an examination of

intermediate results indicates the accuracy obtained.

The accuracy of the methods was assessed by comparing the

computed va~ues with known exact values given in the literature.

Those used were Imhof (1961), Jensen and Solomon (1972),

Tikuts (1970) double non-central F tables and Moran's (1974)

evaluatio~ of E(L~) and E(L;*). The trapezoidal rule with

Romberg extrapolation was the mdTe accurate and convenient

of the two methods. All computations were carried out in

double precision. Any inaccuracy noted was in the fifth decimal

place and was of the order 10- 5 •
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* **2.10 Evaluation of the Expectations E(Zt) and E(Zt )~

Imhof's (1961) method was used to evaluate the

unconditional distributions Gt(a) of Section 2.5. The

expectations E(Z;) and E(Z;*) are evaluated for a zero

cut-off point. This is not necessary for applying

Imhof's method, but was necessary for Moran's (1974)
* **evaluation of E(Lt ) and E(Lt ). By (2.8.3)

·22= Pr{(I+P4) X (p,67) - (I-P4) X (p,6a) < 0 }

= Pr{ x~(p,67) < (I-P4)}

X (p,6a) (I+P4)

<1-P 4 }
I+P4

where F(vI,v2'~I'~2) is a double non-central F variate with

degrees of freedom vI and v2 and non-centralities Al and A2•

Moran using Price's (1964) finite term expressions for

F(vIJv2,AI'~2) was able to evaluate E(L~) and E(L~*) with the

dimension p even.

In Tables 2.10.1 and 2.10.2 the expectations E(Z~)J E(Z~*)

and E(L~) and the averages, E(Z*) = I{E(Z~) + E(Z;)} with

E(Z**) and E(L*) similarly defined, are given for a range of

values of p, A and (n
1

,n2). The emphasis is on cases where

n1 +n2 since for equal sample sizes the allocation rules
- A ~

Z(x) and L(x) are identical and the results of Moran (1974)

may be consulted. Results for x in n2 may be obtained from

the relationship

E(Z; I (n1 ,n2» • E(Z~ I (n2 ,nl» (2.10.1)

which holds for E(Z;*) and E(L;) too. Univariate results were

checked by use of the results given in Section 2.7.
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The imbalance in the expectations of the actual ..

probabilities of misclassification is measured by

* . * * I.DIF Z = {E(Zl) - E(Z2)} x lO~

with DIF Z**, DIF L* and DIF L** similarly defined. It

follows from (2.10.1) that

DIF Z* (nl ,n2) = - DIF Z** (n2,nl ).

These differences are given in Tables 2.10.3 and 2.10.4, with
** . **DIF L calculated from Moran's (1974) evaluat10n of E(Lt ).
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Table 2.10.1

Expectations of the actual and apparent probabilities of misc1assification of the

Z and sample linear allocation rules for moderately unequal s~le sizes (l known).

Cn l • 16, n2 • 24) (n} • 24, n 2 • 16)

ww

P E(Z~) E(L~) E(Z~") E(Z~) E(Li) E (Zi") E(Z") ECL ") E(Z """')

I' 1 .4121 .4156 .3916 .4133 .4099 .3993 .4127 .4127 .3955
8 2 .4248 .4346 ;3663 .4259 .4161 .3859 .4254 .4254 .3761HLI)

o· 4 .4385 .4571 .3290 .4395 .4210 .3641 .4390 .4390 .3466
~o

" . 8 .4518 .4824 .2767 .4527 .4223 .3306 .4523 .4524 .3037
r-4

16 .4636 .5104 .2083 .4643 .4180 .2817 .4640 .4642 .2450
~<1 32 .4732 .5421 .1293 .4738 .4057 .2163 .4735 .4739 .1728

00 1 .3017 .3026 .2956 .3035 .3025 .2995 .3026 .3026 .2976
00
~ 2 .3110 .3157 .2833 .3129 .3083 .2939 .3120 .3120 .2886

HOo· 4 .3256 .3367 .2616 .3276 .3166 .2833 .3266 .3267 .2725
t') .... -• • 8 .3461 .3678 .2264 .3481 .3268 .2640 .3471 .3473 .2452

- 16 .3712 .4092 .1751 .3731 .3363 .2314 .3722 .3727 .2033
~<1 32 .3977 .4592 .1112 .3994 .3403 .1825 .3986 .3998 .1469

N 1 .2019 .2030 .1945 .2042 .2030 .1993 .2031 .2030 .1969t')
00 2 .2064 .2094 .1885 .2088 .2050 .1965 .2076 .2076 .1925H\CJo· 4 .2147 .2213 .1772 .2173 .2108 .1912 .2160 .2160 .1842N ....

.. . 8 .2294 .2428 .1573 .2321 .2190 .1809 .2308 .2309 .1691

- 16 .2527 .2788 .1254 .2556 .2308 .1624 .2542 .2548 .1439
~<1 32 .2853 .3329 .0822 .2883 .2440 .1320 .2868 .2885 1".1071

-



enl • 16, n2 • 24)

Table 2.10.1 (continued)

(nl • 24, n2 • 16)

W
"..

P E(Z~) E(L~) E(Z~*) E(Z~) E(L~) E(Z~*) E(Z*) E(L*) E(Z**)

.... 1 .1018 .1029 .0948 .1040 .1029 .0993 .1029 .1029 .0971to')

\0 2 .1036 .1055 .0924 .• 1059 .1040 .0982 .1048 .1048 .0953
NLI)

o · 4 .1072 .1106 .0878 .1096 .1062 .0960 .1084 .1084 .0919.... N

• H 8 .1141 .1208 .0793 .1167 .1102 .0917 .1154 .1155 .0855
... 16 .1270 .1403 .• 0650 .1299 .1178 .0837 .1284 .1288 .0744

.:I<J 32 .1496 .1765 .0442 .1528 .1284 .0699 .1512 .1525 .0571

I' 1 .0513 .0522 .0461 .0531 .0522 .0495 .0522 .0522 .04780\
00 2 .0522 .0534 .0450 .0539 .0527 .0490 .0531 .0531 .0470N

N • 4 .0539 .0558 .0430 .0557 .0531 .0480 .0548 .0548 .0455LI) to')

• • 8 .0572 .0607 .0391 .0591 .0551 .0460 .0582 .0582 .0426
... 16 .0637 .0706 .0325 .0659 .0594 .0423 .0648 .0650 .0374

.:1<3 32 .0763 ~0908 .0226 .0789 .0659 .0358 .0776 .0784 .0292

\0 1 .0105 .0108 •0086 .0111 .0108 .0098 .0108 . .0108 .0092N
LI) 2 .0107 .0110 .0084 .0113 .0109 .0097 .0110 .0110 .0091\0

toe • 4 .0110 .0115 .0081 .0111 .0111 .0095 .0114 .0113 .0088.... ~
I H 8 .0116 .0125 .0074 .0123 .0115 .0092 .0120 .0120 .0083
... 16 .0129 .0145 .0063 .0137 .0123 .0085 .0133 .0134 .0074

.:1<3 32 .0157 .0190 .0045 .0161 .0138 .0073 .0162 .0164 .0059



Table 2.10.2

Expectations of the actual and apparent probabilities of misc1assification of the Z and sample

linear allocation rules for very unequal sample sizes (E known).

(nl • 8, n2 • 32) (nl • 32, n2 • 8)

w

'"

P E(Z~) E(L~) E(Z~*) E(Z~) E(L~) E(Z~*) E(Z*) E(L*) E(Z**)

..... 1 .4185 .4369 .3712 .4238 .4054 .4106 .4212 .4212 .3909
\0
0 2 .4317 .4739 .3244 .4364 :3949 .4065 .4341 .4344 .3655

HI./')
o· 4 .4453 .5196 .2619 .4493 .3768 .3970 .4473 .4482 .3295
~o

H II
8 .4580 .5747 .1848 .4612 .3477 .3789 .4596 .4612 .2819

~
16 .4687 .6411 .1028 .4712 .3042 .3490 .4700 .4726 .2259

~<J 32 .4772 .7202 .0369 .4790 .2440 .3042 .4781 .4821 .1706

ClO 1 .3008 .~059 .2866 .3090 .3040 .3054 .3049 .3050 .2960
ClO
~ 2 .3142 .3363 .2591 .3230 .3015 .3075 .3186 .3189 .2833

HO
o · 4 .3332 .3831 .2164 .3423 .2949 .3080 .3378 .3390 .2622
1") ....

.. II 8 .3572 .4499 .1575 .3661 .2804 .3036 .3617 .3652 .2306

~
16 .3840 .5382 .0898 .3920 .2531 .2897 .3880 .3957 .• 1898

~<J 32 .4101 .6452 .0328 .4168 .2090 .2610 .4135 .4271 .1469

N 1 .1993 .2045 .1844 .2095 .2045 .2059 .2044 .2045 .1952
I")
ClO 2 .2060 .2197 .1712 .2170 .2033 .2070 .2115 .2115 .1891

H\O
o · 4 .2178 .2482 .1482 .2293 .2006 .2084 .2236 .2244 .1783N ....

II • 8 .2374 .2995 .1125 .2498 .1942 .2091 .2436 .2468 .1608
~

16 .2664 .3844 .0669 .2793 .1805 .2059 .2729 .2825 .1364
~<J 32 .3032 .5093 .0254 .3157 .1545 .1934 .3095 .3319 .1094



(n l • 8, n2 • 32)

Table 2.10.2 (continued)

(n l :18 32, n 2 • 8)

W
4'\

P E(Z~) E(L~) E(Z~*) E(Z~) E(L~) E(Z~*) E(Z*) E(L*) Eez**)

~ 1 .0994 .1043 .0856 .1093 .1043 .1057 .1044 .1043 .0957t')
\f) 2 .1020 .1105 .0806 .1122 .1038 .1061 .1071 .1072 .0934

HLn
o· 4 .1072 .1231 .0714 .1180 .1027 .1068 .1126 .1129 .0891
P"'4N

.. n 8 .1169 .1487 .0563 .1287 .1004 .1078 .1228 .1245 .0821

"
16 .1345 .2005 .0353 .1479 .0952 .1084 .1412 .1479 .0719

~<2 32 .1637 .3007 .0142 .1788 .0845 .1062 .1713 .1926 .0602

...... 1 .0495 .0533 .0395 .0571 .0533 .0543 .0533 .0533 .0469
0\
co 2 .0507 .0562 .0374 .0585 .0531 .0545 .0546 .0546 .0460
N

H • 4 .0531 .Q621 .0335 .0613 .0526 .0549 .0572 .0573 .0442Lnt')

H II 8 .0578 .0747 .0269 .0668 .0515 .0555 .0623 .0631 .0412

"
16 .0670 .1025 .0173 .0774 .0493 .0562 .0722 .0759 .0368

~<2 32 .0844 1052 .0073 .0969 .0445 .0562 .0907 .1049 .0318
0••

\0 1 .0098 .0112 .0065 .0128 .0112 .0116 .0113 .0112 .0091
N
Ln 2 .0100 .0118 .0062 .0130 .0112 .0117 .0115 .0115 .0090
\f)

H • 4 .0105 .0129 .0056 .0136 .0111 .0118 .0121 .0120 .0080
P"'4<l1lt

II n 8 .0114 .0155 .0046 .0148 .0109 .0119 .0131 .0132 .0083

"
16 .0132 '.0215 .0030 .0172 .0105 .0121 .0152 .0160 .0076

~<2 32 .0172 .0374 .0013 .0223 .0097 .0124 .0198 .0236 1. 0069

, ."..
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Table 2.10.3

The difference in the expectations of the actual and apparent probabilities of misclassification

of the Z and sample linear allocation rules for moderately unequal sample sizes (t known).

DIP Z* ." {E(Z~) - E(Z~)} x 104

(nl • 16. n2 • 24)

P DIP Z* DIP L* DIP Z** DIP L** P DIP Z* DIP L* DIP Z** DIP L**

I' 1 - 12 57 - 77 - 11 .... 1 - 32 0 - 45 - 24
ID 2 - 11 185 - 196 - 13

R"') 2 - 23 15 58 - 23
H~ ID -

4 - 10 361 - 351 - 16
HL/) 4 - 24 44 82 - 24o · o· -

~o 8 9 601 - 539 - 19 .... N 8 - 26 106 - 124 - 23-n II 16 7 924 - 734 - 24 II II 16 - 30 230 - 187 - 21-.... 32 6 1364 - 870 - 26
.... 32 - 32 481 - 257 - 19..J<I - .:1<1

00 1 - 18 !1 - 39 - 19 I' 1 - 18 0 - 34 - 18
00 2 - 19 74 - 106 - 21

0'1 2 - 17 7 - 40 - 18~ 00
HO 4 - 20 201 - 217 - 21 N 4 - 18 21 - 50 - 17o· H •R"') ....

8 - 20 410 - 376 - 23
&l)tI') 8 - 19 50 - 69 - 17

H II 16 - 19 729 - 563 - 25
II II 16 - 22 112 - 98 - 15....

32 - 17 1189 .... 32 - 132 - 14..J<I - 713 - 26 .:1<1 - 26 249

N 1 - 23 0 - 48 - 25 ID 1 - 6 0 - 12 - "6
tI')

2 .. 24 36 80 - 25
N 2 6 1 - 13 600 - L/) - -HID 4 - 26 105 - 140 - 25
ID 4 7 4 - 14 6o · " . - -N ....

8 .. 27 238 - 236 - 26
....~ 8 7 10 - 18 i 6- -• n 16 - 29 480 - 370 - 26
II II 16 8 22 - 22 6- -....

32 - 30 889
.... 32 - 28 4.:1<1 - 498 - 25 .:1<1 - 10 52 -



~

Table 2,10.4

The difference of the expectations of the actual and apparent probabilities of misclassification

of the Z and sample linear allocation rules for very unequal sample sizes (! known),

DIF Z* ." {E(Z7) - E(Z~)} ~ 104

(n! • 8, n2 • 32)

P DIF Z* DIF L* . DIF Z** DIF L** P DIF Z* DIF L* DIF Z** DIF L**

1 -53 315 -394 -52 ~ 1 -99 0 -201 -108,.... t')

\0 2 -47 790 -821 -65 \0 2 -102 67 -255 -1080 NIJ')
NIJ')

4 -40 1428 -1351 -81 o · 4 -108 204 -354 -106o · ~N

~o 8 '-32 2270 -1941 -100 8 -118 483 -515 -101
" IIII U 16 -25 3369 -2472 -118 16 -134 1053 -731 -93......

32 -2673 -118 ..J<J 32 -151 2162 -920 -76..J<J -18 4761

1 -82 19 -118 -90
,....

1 -76 0 -148 -8000 0\
00 2 -88 t 348 -484 -95 00 2 -78 31 -171 -79~ N

NO
4 -91 882 -961 -103 H • 4 -82 95 -214 -77o· IJ')toI)

t')~

8 1695 -1461 -112 8 -90 232 -286 -73-89 II n
It It 16 -80 2851 -1991 -120 16 -104 532 -389 -64......

32 4362 -2282 -113 ..J<J 32 -125 1207 -489 -51..J<J -67

N 1 -102 0 -215 -25 \0 1 -30 0 -51 -27N
t')

2 164 -358 -117 IJ') 2 -30 4 -55 -2700 -110 ">C
H">C

4 476 -602 -118 H • 4 -31 18 -62 -27o · -115 ~~

NI""'l
8 1053 -966 -119 8 -34 46 -73 -24-124 II II

It •
16 2039 -1390 -116 16 -40 110 -91 ; -21-129 ......
32 3548 -1680 -102 ..J<J 32 -51 277 ~111 -16..J<J -125



2.11 Discussion of the Results of Tables 2.10.1, 2.10.2,

2.10.3 and 2.10.4.

Considering first the individual expectations of the

actual probabilities of misclassification. It is noted

that E(Z1) increases with increasing dimension p for all

(n1 ,n2 ) and 6. The same is not true of E(L~) where for

very unequal sample sizes, Table 2.10.2, it decreases with

increasing p when the larger sample is from population one.

A consequence of this is that in some cases E(L~) is less

than the optimal probability of misclassification. When

the larger sample is from population two, E(L~) in some
A

cases exceeds I and L(x) is not an unbiased allocation

rule. The expectation E(Z~) in general exceeds the optimal

probability of misclassification and is as shown in Section

2.8 always less than I. The difference between individual

E(Z~) and E(L~) becomes more emphatic with increasing

unequal sample sizes; being in some cases of the order 1 2.

The average expectations E(Z*) and ~(L*) are close for

all (n1 ,n2) and ~. with increasing P. E(Z*) < E(L*).

Naturally b?th exceed the optimal error rate Ll • OUr results

here for I known agree with those of Siotani and Wang (1977)
A

who compared the allocation rules L(x) and Z(x) for E unknown

by considering the difference E(L*) - ecz*), derived from

asymptotic approximations, for ~arious values of n1 +n2 '

p and /1.

The imbalance between actual expectations for the Z

statistic and the sample linear discriminant function may

be judged from the differences DIF Z* and DIF L*. Tables

2.10.3 and 2.10.4. Both imbalances become more pronounced
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with increasingly unequal sample sizes. For fixed d,'"

DIF L* increases with increasing p while DIF Z* tends

to remain constant. With fixed p and increasing d,

DIF L* decreases but DIF Z* increases and then decreases.

The robustness of the Z statistic to unequal sample sizes

as measured by E(Z;) is confirmed by these results given

that the range of differences for Z(x) is .001 to .02
A

whereas for L(x) it is 0.0 to .5. It is also noted for

p > 1 that E(Z~l. < E(Z;) if n1 < n2 and d > 0, the

opposite being true of E(~) and E(L~). This inequality

in E(Z;) was proved analytically in Section 2.7 for p = 1.

For the expectations of the apparent probabilities of

misclassification of the Z statistic, Tables 2.10.1 and

2.10.2, we note that the individual E(Z~*) decrease with

increasing p for fixed d. With very unequal samples

E(Z~*) exceeds the optimal error rate L1 when the larger

sample is from population one. This is not so for E(L~*)

as may be seen in Moran (1974). However the average

expectation E(Z**) is less than L
1

for all (n1 ,n2), p and

A. It is also noted that E(Z~*) < E(Z~) for all (n1,n2),

p and A.

The imbalance in E(Z~*) is considerable as may be seen

from DIP z**, Tables 2.10.3 and 2.10.~. It is in the same
~

direction as DIP Z* but at least twice its size. This

implies that use of the apparent error rates will indicate

an imbalance in the actual probabilities of misclassification

of Z(x) which does not exist. Conversely DIF L** is quite

small regardless of inequalities in n
1

and n2 , while as

previously noted E(L~) displays considerable inequality when

n1 +n2 •
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Overall the Z statistic, while equating the expectations

of the actual probabilities of misclassification for unequal

sample sizes, imbalances the expectations of the apparent

probabilities, the converse being true of the sample linear

discriminant function. This behaviour of L(x) when n l +n2
does not appear to be well known. Siotani and Wang (1977)

A

who compared L(x) and Z(x) when n l +n2 failed to note the

effect of unequal sample sizes on the individual expectations.

This may be due to the fact that their comparison was based
- * - *on the difference of the average expectations E(L ) and E(Z )

rather than the individual expectations. Our results

indicate that for t known, nl +n2 and cut off zero,L(x) may

be an inappropriate discriminant function for multinormally

distributed populations. On average the actual probabilities

of misclassification L; unlike the optimal probabilities Lt
will be unequal and the resubstitution method will fail to

indicate this. As the actual probabilities of misclassification

of the Z statistic are nearly equal even when nl +n2 , the Z

statistic is recommended as the better allocation rule. Here

however the resubstitution method will indicate an imbalance

in the actual probabilities of Z(x) which does not exist.
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2.12 Approximations to the Expectations of the Actual

*Probabilities of Misclassification of E(Zt)

Three approximations to EeZ;) suggested in the literature

namely, Memon and Okamoto's (1971) asymptotic expansion, a

Normal approximation similar to Lachenbruch's (1968) approx­

imation of EeL;) and an approximate method of evaluating non­

central chi-squares suggested by John (1963), are considered

here. The latter approximation requires that t be known the

others do not.

Memon and Okamoto (1971) for t unknown gave an .

asymptotic expansion of E(Z;) as a function of n
l

, n2, p and

4. This was obtained by taking a Taylor series expansion of

the characteristic function of Z(x) conditional on x}, x2
and 5, obtaining its unconditional expectation and inverting

it. The resulting expansion for t known is

E (Z~) = t(-jl1) + a1/n1 + a2/n2 + a 3/(n} +n2-2)mo

-2 -2 -1
+ terms of order n1 ' n2 ' (n}n2)

-2and (n 1+n2-2) ,

where a1
.' (2A2) -1· {_d4

+ (p-4) d
2

}
0 0

-1 4
d

2
} (2.12.1)a = (2&2) {3d + (p+8)2 0 0

2
.,

a3 = I (p-l) do

and d
i = (d i /dyi) I(y) I y • -jl1 i = 2,4.0
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-1
After some simplification the expansion to order n

1
and

-1
n

2
is

Emo(Z:) = t(-16) + +(-1 6) {!(p-l)/6 - ~} / n1
(2.12.2)

3
+ +(-16) {1(p-l)/6 + I66} / n2

where ,(y) = (d/dy) t(y).

The usual relationship

E (Z* I ( ))mo 2 n1 ,n2

holds here. It is also interesting to note that the inequality
... * ...
Emo(Zl) < Emo(Z;) if n l < n2 holds for all p and 6 > O. This

property was noted to hold for E(Z;) in the evaluations of

Section 2.10.

The second approximation is similar in spirit to

Lachenbruch's (1968) approximation of E(L;). Here we approx­

imate the unconditional distribution of Z(x) by a Normal variable

with mean and variance that of Z(x) when xl and x2 vary and _"t

is assumed known. The unconditional mean and variance of Z(x)

may be obtained from its distribution in Section 2.S. With

61 and 62 as defined in (2.S.1), E(Z~) is approximated by

... * (-I (6 1-62))
Enor (ZI) = t {p+6

1
+6

2

The relationship _
... * ... *Enor (Z2 r (n1 ,n2)) • Enor(Zl I (n2,n1))

*holds here also. In his approximation of E(L1) Lachenbruch (1968)
A

did not use the exact variance of L(x) but the expectation of

its conditional variance, use of the exact variance results in

a better approximation. Moran's (1974) evaluations of Eo~L~)... * n
do not as a result correspond to Enor (Zl) when n1 = n2 •

43



The final approximation is that suggested by John (1963)

who proposed use of Abdel-Aty's (1954) approximation to a

non-central chi-square in evaluating E(Z*). Abdel-Aty's

result is that· {x
2

(p,A) I (P+A)}t is app~oximatelY Normally

distributed with mean 1-{2(p+2A) I 9(p+A)2} and variance

c 1 - ~;:;) :en:e( ~::~;::~a~ )
1 2 2

where a = (p+61)3, ml = 1-{2(p+201) I 9(p+6
1

) }, a
1

= I-m
1

The relationship

- *Ej (Z2 I (n1 ,n2»

holds again. As noted this approximation specifically

requires that t be known, since the unconditional distribution

of Z(x) is for this assumption a difference of two independent

non-central chi-squares. A discussion of the accuracy of

Abdel-Aty's approximation may be found in Johnson and Kotz

(1970, vol 2, ppI41-142). Although John proposed the above

approximation and commented that it would be interesting to

compare it and the exact values, he did not pursue the matter.

In Table 2.12.1 the difference between the exact and
.1

approximate values of E(Z;) are given for the three approximat-

ions listed above. The range of parameters, (n
1
,n2), p and A

considered,is similar to that of Section 2.10. Additional

results for equal sample sizes may be found in Moran (1974)

where the above approximations to E(L;) were also considered.
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Table 2.12.1

Errors in approximations for the expectation of the actual probabilities

of misc1assification of Z(x) (t known).

M &0 • Memon and Okamoto, Nor. Normal, J =John

Cn l • 16, n2 • 24) CTrue-approx.) x 104 Cn! • 24, n2 = 16)

...
U1

co p True M &0 Nor J True M &0 Nor Jco
~

HO

~,.; 4 .3256 -17 -45 38 .3276 -16 -45 37
II II 8 .3461 -158 -20 12 .3481 -157 -20 11

P"4
16 .3712 -597 -5 2 .3731 -597 -9 2

..:1<2 32 .3977 -1714 0 0 .3994 -1716 0 0

N
t') -
co

H\/:)
o· 4 .2147 -1 -55 49 .2173 0 -54 59
N ....

II II 8 .2294 t -28 -40 29 .2321 -25 -40 29
P"4

16 .2527 -141 -24 11 .2556 -137 -23 11
..:1<2 32 .2853 -508 -10 3 .2883 -503 -9 3

....
t')
\/:)

HL/)
o· 4 .1072 1 -42 27 .1096 1 -43 28
.... N

U It 8 .1141 1 -39 22 .1167 1 -38 23
P"4 16 .1270 -15 -32 15 .1299 -8 -30 16

..:1<2 32 .1496 -74 -22 9 .1528 -66 -22 8
......
0\
co I

N
H •L/) t') 4 .0539 1 -29 12 .0557 3 -29 13
• H 8 .0572 2 -28 11 .0591 3 -29 12

P"4 16 .0637 1 -26 10 .0659 6 -26 10
..:1<2 32 .0763 -3 -22 7 .0789 5 -22 8



(n l • 8, n2 • 32)

Table 2.12.1 (continued)

(True-approx.) x 104 en! • 32, n2 • 8)

".
0\

00 p True M & 0 Nor J True M & 0 Nor J
00
~

NO 4 .3332 -49 -43 34 .3423 -44 -40 30
~...: 8 .3572 -327 -15 8 .3661 -324 -13 7
It U 16 .3840 -1095 -1 1 .3920 -1101 -1 0

1"1 32 .4101 ,.2906 2 0 .4168 -2925 2 0..J<3

N
to')
00

N\l> 4 .2178 -8 -70 54 .2293 -3 -69 54o·
NI""'4 8 .2374 -72 -46 27 .2498 -58 -43 25
II U 16 .2664 -301 -22 9 .2793 -283 -19 8

1"1 32 .3032 -973 -7 1 .3157 -958 -6 1..J<3

1""'4
to') t
\l)

NL/') 4 .1072 1 -58 36 .1180 3 -61 39o·
I""'4N 8 .1169 -9 -51 27 .1287 3 -52 28

" " 16 .1346 -47 -39 16 .1479 -19 -38 17... 32 .1637 -183 -24 7 .1788 -138 -22 7..J<3

......
0\
00 4 .0531 1 -41 16 .0613 3 -45 19N

N • 8 .0578 ..1 -39 15 .0668 9 -41 17L/')to')

U II 16 .0670 -7 -35 12 .0774 17 -36 14
... 32 .0844 -29 -27 9 .0969 16 -27 9
~<3 i



As was to be expected from formula (2.12.2) Memo~

and Okamoto's approximation deteriorates with increasing

size p and decreasing~. It tends in general to be an

overestimate of the true value. It should be noted that

the inclusion of extra terms in the expansion may alter

this overestimation to underestimation and improve the

performance of the approximation. The Normal approximation

is fairly insensitive to increasing ~ and improves with

increasing p. It is also an overestimate of the true value.

John's approximation is on the other hand an underestimate

of the true value. It is fairly insensitive to increasing

4 and improves with increasing p. For p = 32 the error of

approximation is within .001 of the true value.

All approximations reflect the robustness of the Z

statistic to unequal sample sizes in that the magnitude of

the errors for both populations are the same. The

consistency of the Normal approximation has much to recommend

it. Eventhough. the best approximation is John's. it is as

noted specific to E known. whereas the Normal approximation

may be applied in general.

Use of 'the aSYmptotic approximation of Memon and

Okamoto (1971) for E(Z~) and the corresponding approximation

of Okamoto (1963) for E(L~) gives a simple guide as to when

the difference between the actu~ probabilities of misclass-
A

ification of Z(x) will exceed that of L(x) i.e.

I DIF Z* I > I DIF L* I
where DIF Z* = E(Z~) - E(Z;). with DIF L* similarly defined.
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From Okamoto (1963)

. I
+ +(-I~) {-l(p-I)!~ + ~ l!n 2

+ a3 ! (n1 +n2-2)

with a3 as given in the corresponding expansion of E(Z~), (2.12.1).

- * - *Also Eo(L2 I (nl ,n2» = Eo(LI I (n2 ,n l ».
Hence DIP L* = +(-j~) (.l.. - -.!.) (p-I)!~. (2.12.3)

, n l n2

and from (2.12.1) and (2.12.2)

DIP Z* = ~(-I~)(--!. - --!.) (-l~).n l n2
(2.12.4)

We note immediately from (2.12.3) that if n l < n2,Eo(L~) > Eo(L~)

as is the case in Tables 2.10.1 and 2.10.2 for E(L~) and E(L~).

Also, that the approximated DIF L* increases as p increases and

the approximated DIP Z* is independent of p, similar behaviour

was noted in the exact differences, Tables 2.10.3 and 2.10.4.

From (2.12.3) and (2.12.4)

I DIP Z* , > I DIP L* I when ~ > 2/p-1 •

The results of Tables 2.10.3 and 2.10.4 indicate that for

p > I this is a reasonable guide. More refined and complicated

guides may be derived from the other approximations considered..
here.
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2.13 E(Z;) when the Covariance Matrix E is Unknown

With E unknown the Z statistic is given by

Z(x) = -N l (X-Xl)' S-I(x-x l ) + N2 (X-X2) S-1 (X-X2) ~ o.

Retaining the notation of Section 2.5, the expectation E(Z7)

may be expressed as

E(Z~) = Pr{u' A-Iv < o}

= Pr{(u+v), A-I(u+v) (u-v) , A-I (u-v) < o}

where u and v are multinormally distributed with covariance

matrices I, and (nl +n2-2) A, where A = E-j S E- j • has 'a

Wishart distribution with nl +n2 -2 degrees of freedom and

dispersion matrix I, independent of u and v.

Use of Hotelling's T2 distribution gives

n +n -p-l
1 2 (u-v)' A-I (u-v)

2{n1+n2-2)p

with 6
1

and 6
2

as in Section 2.5 and F{m.n.A) denoting a

non-central F distribution with degrees of freedom m and n

and non-centrality A. Hence

(2.13.1)

unfortunately the numerator and denominator of (2.13.1) are not

independent since they both contain S.
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Asymptotic expansions of the distribution of the~atio

of non-independent T2 variables have been given by

Siotani (1956) and Chou and Siotani (1974). However since

Siotani's original expansion requires both non-centralities

to be zero and his later expansion requires one of them to

be zero, neither is applicable here where both non-centralities

are non-zero. It is to be hoped that the required expansion

will be forthcoming in the literature at some future date.

For dimension p = 1 the allocation rule Z(x) with r
unknown is equivalent to the allocation rule Z(x) with r
known. Hence the expectations,inequalities and bounds given

in Sections 2.7 and 2.8 for E(Z:)With p = 1 and r known,hold

here when r is unknown. Given the reappearance of the non­

centrality parameters 61 and 62 in the unconditional

distribution of Z(x) when r is unknown, it is anticipated

that, for p > 1 and t unknown, the Z statistic is still

robust to unequal sample sizes. A Monte Carlo study in

Section 8.7 supports this view.
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CHAPTER 3

THE DISTRIBUTION OF THE QUADRATIC DISCRIMINANT FUNCTION

3.1 Introduction

The linear discriminant function L(x) is the optimal rule

for discriminating between two multinormally distributed

populations with equal covariance matrices. However when the

covariance matrices are unequal the optimal allocation rule is

the quadratic discriminant function Q(x) where

Q(x) = -I(x - PI)' EiI(x - PI) + I(x - P2)' E;I(x - P2) - 11n(rE1'/'E21)

~ C
(3.1.1)

with C = In(~21~~), where ~t(t • 1,2) are the prior probabilities
of x in ITt •.

Much of the earlier work on discriminant analysis concentrated
A

on the linear allocation rule L(x) and its sample counterpart L(x),

deriving their distributions and various estimates of their error

rates. Work on the quadratic discriminant function has been sparse

due in par~ to the difficulty in evaluating the distribution of Q(x).

In this chapter we review the results on the distribution of

Q(x), which for various assumptions on the population parameters

are scattered throughout the ltterature. This review is necessary

to establish the notation and basis of subsequent chapters where

the distribution of the sample quadratic discriminant function
A

Q(x) is derived and evaluated. As well as reviewing the distribut-

ion of Q(x) we consider the evaluation of the optimal probabilities

of misclassification Qt and obtain exact expressions for Qt when

the covariance matrices are proportional with and without the

additional assumption of zero mean.
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3.2 Review of the Literature on Q(x)

Smith (1947) is one of the earliest references to the

quadratic discriminant function for Normally distributed

populations. He considered Q(x) for the bivariate case and

the multivariate case when all the covariances are zero.
A

Smith also proposed the sample rule Q(x) where the parameters

of Q(x) are replaced by their sample estimates. Okamoto (1961)

derived the distribution of Q(x) for the assumption of zero mean

i.e. PI - P2 • as a weighted sum of central chi-squares and pro­

posed an approximation to this sum in evaluating the optimal

error rates. Okamoto also considered the choice of cut-off

point C that equates the error rates. Bartlett and Please (1963)

considered the allocation rule Q(x) with the assumptions P • P
I 2

and at
l

• t
2

where a > 0 and a ~ 1 i.e. zero mean and proportion-

al covariance matrices. They further restricted the covariance

matrix to the inter-class correlation matrix where all covariances

are assumed equal. With these assumptions they were able to show
p

that Q{x) depends on the "size component".t x., the concept of
1=1 1

size and shape components being introduced by Penrose (1947).

Han (1968) extended Bartlett and Please's work to the case where

PI ~ P
2

and showed that Q(x) now involves the shape component

(PI - P
2
)' x.. Han (1969) for the assumption of proportional

covariance matrices derived the distribution of Q{x) as a non­

central chi-squared and showed that with Bartlett and Please's

additional assumption of zero mean, that this reduces to a central

chi-squared. Gilbert (1969), in-. comparison of the performances

of the linear and quadratic discriminant functions for population

parameters known, also derived the distribution of Q{x) for the

assumption of proportional covariance matrices and used Patnaik's

(1949) approximation to a non-central chi-square to evaluate the

optimal probabilities of misclassification Qt. Han (1970),

derived the distribution of Q(x) when the covariance matrices Et
are circular. Press (1972, pI4). The distribution is in this

instance a sum of weighted non-central chi-squares. Use of
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>- C < o.

Patnaik's (1949) approximation is suggested in evaluatJng ~.

Hildebrandt~ Michaelis and Koller (1973 in German)~ derived

the distribution of Q(x) in general and suggest some possible

approximations for evaluating Qt when the distribution is

that of a positive definite non-central quadratic form.

3.3 Canonical Forms of the Populations and Various Cases of Q(x)

It was assumed that the distribution of x in fit is

Np(Pt~rt) (t • 1~2)~ resulting in the optimal allocation rule

(3.1.1). As Q(x) is invariant to linear transformations it ma'i,

Okamoto (1961), without loss of generality be assumed that the

distribution of x in fi
l

is Np(O~I) and in U
2

is Np(v~A)~ where

I is the identity matrix,l1 the ..~iagonal matrix of eigen values

Ai~ 1 ~ i < P where AI> A2 > •. > Ap > 0 and v· B'(P2-lJl)

where B is a non-singular matrix such that B'EIB - I and

B'1:
2

B - A:

With these canonical forms for nl and n2~ Q(x) (3.1.1)

becomes

Q(x) • -Ix'x + I(x - v)' A~ (x - v) + 11n(1 A I) - C ~ 0

. P 2
• I r { (.!- - 1)x~ - 2 ~ x. + ~ + 1n A.}

i=1 ~i 1 ~i 1 Ai 1

If ~i ~ 1 for all i then

Q(x) • i!~{l ~i>'i (Xi 1~f~)2} - [2C \!/l~ij - tn>'jl] ~ 0

(3.3.1)
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Various possible values of A., where A. > 0 for all i'j result
1 1

in the following cases of Q(x).

Case (i) A. < 1, 1 ~ i ~ p. The case of A. > 1 for all i
1 1

is not considered a separate case since the distribution

of Q(x) may be obtained for this case by merely altering the

direction of the inequality.

Case (ii) A. > 1 for 1 " i ~ r and A. < 1 for r + 1 ~ i " p.
1 1

The converse of this is excluded by the assumption that the

A.'s are in descending order of magnitude.
1

Vi 2 s pI-Ai v.
_ --) _ 2 1: x

i
v

1
• + E {-,-( x. __1_) 2}

I-Ai i=r+l i-s+l Ai 1 I-Ai

Case (iii) A. > 1 for 1 ~ i ~ r, A. = 1 for r + 1 " i ~ S
1 1

and Ai < 1 for s + 1 " i ~ p. This proves to be the most

awkward case, combining as it does both linear and quadratic

terms. Here
r I-A.

Q(x) = 1:' {__I ( x.
• 1 A. 11= 1

[
r v~ s 2 P v~ ]

2C + E { 1_ - tnA.} - 1: v. + . E {I-A. - tnA i }
i=1 I-Ai 1 i=r+l 1 l=s+I 1

~ 0 (3.3.2)

(3.3.3}~ 0

For the assumption of zero'mean i.e. PI - P
2

, vi - 0 for

all i and Q(x) (3.3.1) becomes

P. I-A· 2 ( P ]
Q(x) • .1: {~ Xi} - 2C - i __ElIAAi

.. 1=1 1

Here Case (iii) does not apply as for each A.-I, Q(x) is reduced
1

by one i.e. the dimensionality of our problem drops by one and

we revert to Case (i) or (ii).
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Por the assumption of proportional covariance matrices

i.e. at = t , a > 0 and a ~ 1, ~. = a for all i and so Case (i)
121

need only be considered, thus without loss of generality it is

assumed that 0 < a < 1. With the additional assumption of zero

mean Q(x) (3.3.3) now becomes

I-a [ ]Q(x) = --- x'x - 2C - ptn a
a

~ o.

3.4 The Distribution of the Quadratic Discriminant Function

Here the general distribution of Q(x) is given and the effect

of the assumptions of zero-mean and proportional covariances

matrices considered.

Let
2

Y.
1 - II-~·I1

~.
1

v. 2
1

(x. - -1'\ )
1 -A.

I

and

H

2
P v.

- 2C + t' {_1_ - tn~1"} •
i=1 1-~i

Then for Case (i) where ~i < 1 for all i Q(x) (3.3.1) is given by

(3.4.1)

For Case (ii) where ~. > 1, 1 ~ J. " rand ~i < 1, r+l"i~p
1

Q(x) is given by r p
2 2

-t Yi + t Yi - H ~ o. (3.4.2)
i-I i-r+l

- y'Yy -

From (3.4.1) and (3.4.2) we see that the distribution of Q(x)

requires the distribution of

r 2
t Yi

i-I

where 1 ~ r ~ p and ~i ~ 1 for all i.
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Two subcases must be considered

(a)

(b)

,

,

X. .. N
1 1

Xi - N1

(0,1)

(v.,A.)
1 1

y. ­1

5ubcase (a) : X in n1, as xi - NI

N{ /Il~:il

(0,1)

v·
~

I-A. '
1

~)
A·1

The Xi'S and hence the Yi's are independently distributed and so

the (rxl) vector Y has a multinormal distribution N (m , ° )
r I 1

where m = (m , m , •••. , m ) a vector of means and ° is a
I 11 12 1r 2 I

diagonal matrix with diagonal (0 ,02 , ,02 ). Hence
-1 11 12 lr

Y' ° y has a non-central chi-squared distribution with r degrees
1 -1

of freedom and non-centrality m' Om. 50
1 1 1

-1 2 ,-1
Y' 01 Y X (r, m1 01 m1)

where

and

-1 ~ A· 2
Y' °1 Y = t 1 y.

i=l~ 1
1

..1 r ( vi )2m
1 01 m1 = 1: •

i=l I-A.
1

Subcase (b)~ x in n
2

, by a similar argument to subcase (a) and

retaining similar notation it follows that

2 ~

= N1 (~i' °2i )

-1 2 '-1and that y'02 Y - X (r, m2 02 m2)

where

and

-1 r 1 2
y'02 Y = 1: 11- Ai r Yii=l

, -1 r
(~)

2
m

2
0

2
m

2 • 1: Ai .
i=1 I-Ai
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Thus for x in nl
r r 2 2 v· 2

Y ==
2

X (1, (1-~1 ) )"t y. ~ t ali
i=l 1 i=l

and for x in n2
(3.4.3)

r 2 2 vi 2y".. t a2i X (I, (I-A.) Ai ) ,
i-I 1

a positive definite non-central quadratic form in both subcases.

From the results (3.4.1), (3.4.2) and (3.4.3) it follows

that in

Case (i) the distribution of Q(x) is a positive definite

non-central quadratic form.

Case (ii) the distribution of Q(x) is that of an indefinite

non-central quadratic form.

In Case (iii) from (3.3.2) and Case (ii) the distribution of

Q{x) is that of an indefinite non-central quadratic form plus

an additional Normal variate contributed by the (s-r) linear

terms where A. • 1.
1

With the assumption of zero mean, v. • 0 for all i, and so
1

the non-central chi-squares of (3.4.3) become central giving

the distribution of Q(x) as a positive definite quadratic form

Case (i) and an indefinite quadratic form Case (ii). Case (iii)

does not occur here.

With the assumption of proportional covariance matrices,
.~

A. • a for all i where 0 < a < 1. From (3.3.1) Q{x) is given
1

by

Q(x) I-a ( v). (x _ ~) - H > 0· a x - I-a I-a <

- Y-B ~ 0

where H •
v'v

2C - plna + I-a •
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Now from (3.4.3)

if x in III Y I-a 2 v'v ),-- X (p, (l-a)2a

and (3.4.4)

if x in II2 Y ~ I-a X2(p,
av'v

)(l-a)2

thus with proportional covariance matrices the distribution of

Q(x) is that of a non-central chi-squared. For the additional

assumption of zero mean the non-centralities of (3.4.4) are

zero and the distribution of Y and so of Q(x) is that of a central

chi-square.

3.5 The Optimal Probabilities of Misclassification and their Evaluation.

The distribution of Q(x) is in almost all cases that of a

quadratic form be it central or non-central, positive definite or

indefinite. Finite expressions for the probability density

functions of quadratic forms are only available for some special

cases of the parameters. two of which are considered in the

following sections.

The optimal probabilities of misclassification Qt were defined

in section 1.4 as

QI • Pr{Q(x) < C x in III},
(3.5.1)and

III

Q2 • Pr{Q(x) > C I x in II2}

From Cases (i) and (ii) of the previous section it follows that

evaluation of Qt is equivalent to evaluating probabilities of the

t~e r 2
Pr { I o. X (l,a.) < z }

.11 11-

where 1 , r ~ p and Q. in R • 1 ~ i ~ r. i.e. the evaluation of a
1

cumulative distribution function of a quadratic form. A

comprehensive review of quadratic forms. their distributions and

evaluation is given by Johnson and ~tz (1970. Vol.2, ppI49-188).

Finite expressions for the probability (3.5.1) are only possible
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in special cases, some of which are considered in following

sections. In the absence of such expressions the method

of Imhof (1961) as described in Section 2.9 may be used to

evaluate Qt. Evaluation of Qt for Case (iii) does not

appear to be possible except where finite expressions for

the probability density functions of the quadratic forms

are available, the complication here being the inclusion of

a Normal variate in the indefinite quadratic form of Q(x).

Hildebrandt et al (1973), who derived the general

distribution of Q(x), gave a complicated infinite expansion

in confluent hypergeometric functions for ~ in Case (i) i.e.

a positive definite non-central quadratic form. Evaluation

by use of this expansion was not attempted in their paper.

Many of the other references cited in Section 3.2 suggest

various approximations such as Patnaik's (1949) to non­

central chi-squares in evaluating Qt for the particular

population situation considered.

3.6 Evaluation of ~ when the Covariance Matrices are Proportional

The special case of quadratic discrimination with proportional

covariance matrices was considered by Bartlett and Please (1963)

for zero mean and by Han (1968,1969) and Gilbert (1969) for non­

zero mean. Both Han (1969) and Gilbert obtained the optimal
~

error rates ~ and Gilbert approximated Qt by use of Patnaik's

(1949) approximation of a non-central chi-square. It will be

shown here that with the dimension size p odd exact expressions

may be given for 0 when p, ~ p •
't 1 2
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With aE1 = E2 , 0 < a < 1 and ~l ~ ~2 the distrib~tion of

Q(x) is, from Section 3.4, that of a non-central chi-square.

Hence the optimal probabilities of misclassification are

Q1
= Pr{x2 (p, 1 v'v) <~ H}(l-a)2 I-a

(3.6.1)

~ Pr{X2 (p, a v'v) 1 H}= (l-a)2 > --I-a

where H = 2C - pR.na v'v+-.I-a

For the additional assumption of zero mean ~1 = ~2' v = o and so

Q
1

Pr{X2 <
a H}= I-ap (3.6.2)

~ Pr{X2 >
1 H}= I-ap

where now H = 2C - ptna.

The symbol x2 will denote a central chi-squared variate with n
Tl

degrees of freedom. By standard results, Johnson and Kotz (1970,

Vol.l, p173)

2 -Z/2
k-l

{(Iz)j/j!}Pr{X > z} = e E
. 2k j=o (3.6.3)

2 I k-2
{(Iz)j+l/r(j+~)} + 2{1 - t(li)}z} -z 2Pr{X > = e E

2k-l j=o 2

.,
and so exact values of ~ for the assumption of zero mean are

easily obtained. If the prior probabilities are such that the

cut-off H < 0 then Q = 0 and Q = 1, a similar comment applies to
. 1 2

the case where p ~ p •
1 2

60



Exact expressions for ~ in the non-central case (3.6.1)

are not so easily obtained. When the degrees of freedom are

odd, Imhof (1961) gave a finite expression for the probability

(3.6.4)

by use of a recursive property of Bessel functions. Seber (1963)

noted a similar result. Han (1975) also for odd degrees of

freedom was able to express the probability (3.6.4) as a finite

sum of standard Normal distributions and their derivatives, his

result is

. 2
Pr{X (n,cS) < z} =

+

•
1c
t

1=1

(a) - • (b)

i (i-I)
j~l j-l

(3.6.5)

2j {tj ea) - tjeb)}

where n = 2k+l, a = a + Ii, b = fi _~ Ii and t j is the jth

derivative of t with respect to~. Han (1978), using the

recursive property of the derivatives of • developed a computational'

formula based on his earlier result which facilitates computer

evaluation of an non-central chi-square with odd degrees of

freedom.

Explicit expressions for (3.6.4) are given in both Imhof (1961)

for Q = 3 to 9 and Han (1975) for n = I to 7, Imhof's expressions

being the more compact are recorded here.
~

. 2PrIx (n,cS) < z} = .(a) + t(b) - 1

- ~-2 (lY)'1 [~(cS,a) - Tn. (cS,-b)]
cSZ-

(3.6.6)

where a = IZ - fi, b = IZ + Ii and Tn (cS,x) = exp(-J. x2) Pn (cS,x),

with P~ (cS,x) a polynomial of degree l(n-3).

61



For n = 3. S. 7 and 9 these polynominals are given by

P3 (6,x) =1. Ps (6,x) = 26 + x61 - 1,

+

For n = 1 if we let P1 (6,x) ~ 0 then the desired result is

obtained,coinciding with Han's result of (3.6.5).

Gilbert (1969) having derived the error rates Qt (3.6;1)

used Patnaik's (1949) two moment central chi-square approximation

of a non-central chi-square for evaluation purposes. Patnaik's

approximation is

< z} < zIg} (3.6.7)

where g and k are chosen so that the first two moments of the

central and non-central chi-squares agree i.e.

· n+26g il:

n+6 •
k =

(n+6)2
n+26 •

The accuracy of this approximation and other approximations to

non-central chi-squares are discussed in Johnson and Kotz (1970,
~

vol.2, ppI39-143). In SectionS.3,where for proportional covariance

matrices the optimum error rates Qt are evaluated using the exact

expressions (3.6.6). the error in using Patnaik's approximation

(3.6.7) is considered.
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3.7 Evaluation of Qt for the assumptions of zero-m~an

and half the eigen values the reciprocals of the

other half.

This final special case of quadratic discrimination

is considered for three reasons: (i) The resulting density

of Q(x) is one of the few indefinite quadratic forms capable

of being expressed in closed form) allowing exact expressions

for Qt i (ii) A similar result will be required in the

following chapter where the distribution of the sample

quadratic discriminant function is considered; (iii) A

cut-off point C which equates the error rates Qt is easily

obtained) a problem considered by Okamoto (1961).

Here it is assumed that ~1 = ~2 giving v = 0 and that

when the dimension size p is even) A. = a for 1 ~ i < P!2
1

and A. = I!a for p!~~ i , p where 0 < a < 1. If P is odd
1

then the central eigen value is put equal to one and we

revert to the p even case. Unfortunately these assumptions

on the eigen values do not appear to have any practical

interpretation in terms of the original covariance matrices r t •

With these assumptions the quadratic discriminant function

is by (3.3.3)

I-a p!2 2 P 2 >
Q(x) = -- r x. 'J-a) r x. 2C < 0

a i=1 1 i=p!2+1
1

I-a (I-a) M 2C > 0= -- N <a

p!2 2 P 2where N • r x. and M :II r x. •
i=I 1 i=p!2.1

1
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For x in HI. x. - N (0,1) and so Nand M are independently
1 1

distributed as x2/ • For x in n • x. - N (O.~.) and so
1 P2 2 1 I 1
- N and aM are independently distributed as x2/ ' giving
a p 2
the distribution of Q(x) as that of the weighted difference

of two independent central chi-squares.

Before considering the distribution of Q(x) in detail

we note that with equal prior-probabilities C =0 and that

Q1 = pr{~N - M < 0 I x in nl }

= Pr{!! < a}
M

= Pr{P(p/2. p/2) < a} (3.7.1)

where F(n,m) denotes an F variate with degrees of freedom n

and m.

Similarly

~ = Pr{~ N - M > 0 I x in H2 }

= Pr{F(p/2. p/2) < a} = Q}.,
Hence with C = 0 the probabilities of misclassification are

equal. This result is notsuxprising as the assumptions on

the Ai's give the required symmetry. By a standard result

for an F distribution. Johnson and Kotz (1970. vol.2. p78)

and from (3.7.1) and (3.7.2)

Q} = Q2 = I I (P/... p/..)
a l+a
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where Ic(a,b) is an incomplete Beta function as defined

and tabulated in Pearson (1934). If p/2 is even then p/4

is an integer and the following finite expression for

Ic(a,b) and so Qt holds, Abramowitz and Stegun (1965,p944).

For the distribution of Q(x) we must now consider the

distribution of

x = 13 x2

2n

2
- 'Y X

2m

where 13 and yare positive and the X21 s are independently

distributed. Finite expressions for the probability density

function f(x) of X are given by Wang (1967) and may be

applied here with the assumption that 2n = 2m = p/2 i.e.

p/2 even.

From Wang (1967) it follows that with n = m

X~O

(3.7.3)

x " 0

x~o

x
; 28n-j-lx

[g(x) {(_B_)n (..L)j d.}]
28,2n-2j B+y B+y J

[g(-x) {(D~'Y )n (-L)j d }]
2,,2n-2j p B+Y j

n-j .,
(26) r (n-j)

n-l
E

j=o

". { n-Jl.+j)(n+t- l )!
= j! n-l) !

g(x) =
26,2n-2j

f(x) =

where

and

the probability density function of a Gamma variate with

parameters 26 and degrees of freedom 2n-2j. Note when 13=1 it

becomes the probability density function of X2 •
2n-2j
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For x in HI' letting B = l/a, y = 1 and 2n=p/2 ~he .

probability density function of Q(x) apart from the

additive constant H = 21e is from (3.7.3)
-a

g(x)
{(_l_)n a j[ 2/a,2n-2j (a+l) d.}] x ~ 0a+l J

f(x)= (3.7.4)

[g(2"x) {(~)n 1 j d }] x -E 0a+l (a+l) .
X2n-2j J

The optimal error rate Q1 is now given by

. JHQ1 ~ f(x) dx
_00

and with equal priors C and so H = 0 and

~ ·rf(x) dx

_00

•
n-l

t {(~)n ( 1 )j
+1 a+lo a

J=o
do}

J

If H < 0 then from (3.7.4) it follows that

> -H} {(~)n (_l_)j d:}]
a+l a+l J=

n-l
t [Pr{X2

j= 0 2n-2j

n-l ~/2 n-j-l
= t [{e t

j=o i=o

by use of the finite expansions for X2 probabilities (3.6.3).
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(3.7.5)

Since similar expansions apply to Gamma probabilities'it

from (3.7 .4) that if H > 0

Q = 1 - 1: f(x) dx

follows

n-l H / n-j-l . In·= 1 - L [{e- a 2 L (Ha/2)1/ i !}{C---
I
) C~)J d.}]

j=o i=o a+ a+l J •

The probability density function of Q(x) for x in fi2 may be

obtained in a similar manner and the probability of misclassification

Q2 expressed in finite form.
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CHAPTER 4

THE DISTRIBUTION OF THE SAMPLE QUADRATIC DISCRIMINANT FUNCTION

4.1 Introduction

In the absence of information about the populations, the

unknown population parameters of an optimal allocation rule are

replaced by their sample estimates so as to obtain a sample

based allocation rule. For multinormally distributed populations

with unequal covariance matrices this substitution of sample

estimates results in the sample quadratic discriminant function
A

Q(x) where

Q(x)

.~

~ 0

A

The allocation rule Q(x) was proposed by Smith (1947), who

compared its allocation performance and that of the sample linear
A A

allocation rule L(x) on two examples. As is the case for L(x), the
A ,"

distribution ef Q(x) has proved extremely difficult to obtain and

the results in the literature give asymptotic expansions for various

special cases of the population parameters. Okamoto (1961) for

PI • P2 and p = I outlined such an expansion and commented that
~

the expansion for the general case appeared to be "rather difficult".

Many of the other expansions found in the literature concentrated on

the proportional covariance matrices case where all • I 2 • aI, a + 1,

Han (1969) giving the expansion for E and a known, Han (1974) for

either E or a known and Mc Lachlan (1975) for E and a unknown, where

a was estimated by the ratio of the determinants of the sample

covariance matrices i.e. ; = (IS21/Is11)I/p. Han (1970) has also
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A

given the asymptotic expansion for the distribution of Q(x)

when Et , (t = 1,2) are circular and unknown.

In this chapter it will be assumed that the covariance

matrices Et (t = 1,2) are known, a restrictive assumption

but one which allows the exact derivation of the distribution
A

of Q(x). The case of proportional covariance matrices is

considered in detail and the exact expectations of the actual

and apparent probabilities of misclassification derived. With

the additional assumption of zero mean, closed expressions

for these expectations are obtained and the chapter concludes

with their evaluation.

- -4.2 The Distribution of Q(x), Conditional on x and x , for
1 2

Known Proportional Covariance Matrices

As the sample quadratic discriminant function is invariant

to linear transformations~thecanonical forms for the populations,

Section 3.3, may be assumed without loss of generality. With

proportional covariance matrices these canonical forms allow the

following values of the population parameters

= I, o < CJ < 1,

Thus for known proportional covariance matrices
~

6(x) = ~I(x-xl)'(x-il) + I!Cx-x )'(x-x) + Iptoa - K ~ 0a 2 2

>
+p lnCJ - 2 K<O

l-CJ. --
a

(x-z) , (x-z) - J ~ 0

z •
where (x2-ail)

l-CJ

and J = (l-CJ)~'w - P 10 CJ + 2 K.
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Conditional - and x
2

on xl

(x-z) , (x-z) X2 (p JZ' z) for X in III

and (x-z) , (x-z) a 2( (V-z) , (v-z)) for x in I12 ,X p, a

A

giving the conditional distribution of Q{x) as a non-central

chi-squared variate. With the assumption of zero-mean i.e.

v=o the distribution is still that of a non-central chi-squared

unlike the optimal distribution Section 3.4. The general

conditional distribution may be derived in a similar manner

taking one dimension at a time. Depending on the various cases

of ~iJ as given in Section 3.3, the distribution is that of a

positive definite or indefinite non-central quadratic form.

The problem of the Normal variates corresponding to the ~.=l
1

still remains.

The actual probabilities of misclassification Q*t as

defined in Section 1.5 may, for proportional covariance matrices,

be written as

Qt
2 . a J }= Pr { X (p, z ' z) < I-a

* Pr{ 2( (v-z) '(v-z) ) 1 J }
~ = X p, I-a > I-a

Imhof (1961) or Han's (1975) closed

Section 3.6 may be used to evaluate

centralities require a knowledge of

this evaluation would be impossible

taken in simulation studies.

form of a non-central chi-square

*~. However since the non-

the population parameter v

in practice but may be under-

,~

It is noted that with v +0 and proportional covariance
A

matrtces.if a is set equal to one in Q{x). then the sample linear
A

allocation rule L(x) is obtained. This relationship may be used
A

to check expressions derived for Q(x).

70



"4.3 The Unconditional Distribution of Q(x) for Kno~

Proportional Covariance Matrices

"The exact unconditional distribution of Q(x) is derived

initially for the case of known proportional covariance matrices

as it illustrates the method of proof to be followed in the

general case. The method of proof is similar to that used in

Section 2.5 to derive the unconditional distribution of the Z

statistic. Han (1969) has given a complicated asymptotic,.
expansion for the cumulative distribution function of Q(x) in

this case of known proportional covariance matrices.

Expectations of the actual probabilities of misclassificat­

ion are derived and their evaluation considered. With the

additional assumption of zero-mean closed expressions for these

expectations are given.

where J = 2K - P In a.

This may be re-written as

1 - - 1- -} >Q(x) = {~ (x-x2 ) - (x-x )}' {- (x-x ) + (x-xl) - J < 0
1 IQ 2

1 1 - - } 1 1 - - >= {(- -l)x - (Ii x
2

-x1) , {(til +l)x - (~ +x )} - J <;a 2 1

where r

and s

~'s - J • 0= <

1 1 - - i )}= {(7Q - l)x - Cia x2 I

{( 1 + l)x - 1 - + xl)}= (7(j x2 .7Q
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Let the cumulative distribution function of Q(x) be given by

Ft(a)
A

nt}= Pr{Q(x) ~ a x in (t = 1,2)

= Pr{r's ~ a + J x in nt}

For x in n
I

FI(a) = Pr{r's ~ a + J

where rand s are p-dimensional Normally distributed with mean~

-v/~ and covariance matrices

d2
d~I I and Ianln2 an ln2

respectively, where

d
l = {ani + an2

+ (1_1<i)2 0ln2 }1

d
2 {ani 2 I= + an

2
+ (1+1a) nl n

2
}.

= and =

then u = c r
I

and

are multinormally distributed with covariance matrices I. The

correlation PI between the pairwise elements of u and v is

given by Pl= {ani - an2 + (I-a) n102 } I dl d2 •

Now

~

= Pr{(u+v)'(u+v) - (u-v)'(u-v) ~ 4 c l c2 (a + J)}

where (u+v) and (u-v) are independently multinormally distributed

with covariance matrices 2(I+PI)I and 2(I-PI)I respectivel~.
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Hence

= (u+v)'(u+v) 12(I+Pl) and = (u-v)'(u-v) 12(I-Pl)

are independently distributed as non-central chi-squares

and

where the non-centralities 6
1

and 62 are given by

6
1

=' {2(I+Pl)}-1 n1n2 (d~1 + d;1)2 v'v

Thus

. -1= {2(I-p )}
1

v'v.

A

and the unconditional distribution of Q(x) is that of an indefinite

non-central quadratic form.

A similar argument for x in R2 gives

F2 (a)
(I+P2) 2 (I-P2) 2 a + J}:I Pr{2 X (P. 63) - 2c3c.. X (P. 6..) ~
c3c..

where d3 = {n} + n2 + (1_1Q)2 n
1
n

2
}1

d.. = {n} + n2 + (I +Ia) 2 n1n2 }1

C3 :I (n1n2)1 I d3 and c.. :I (nln2)1 I d..
.,

"'2
:I {n1 - n2 + (l~) n1n2} I d3d..

. -1 (d;1
-1 2

v'v43
:I {2(I+P2)} n1n2 - d.. )

. -1 (d;1 + d~I)2 v'v.6
4

:I {2(I-P2)) n1n2

As noted in the previous section. by letting a=l the above parameters
A

of the unconditional distribution of Q(x) for known proportional
A

covariance matrices may be checked against those for L(x) in Section 2.8.
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The expectations of the actual probabilities of·

misclassification are givel3. by

E{Q*) = Pr{Q{x) < o I x in n
I

}
I

= FI{O)

and E{~) = I - F2 CO) •

These expectations are evaluated in Chapter S. Section 5.5. the

method of evaluation is that of Imhof (1961) as discussed in

Section 2.9.

With the additional assumption of zero-mean v=O. the

non-central chi-squares in the cumulative distribution functions

~I and F2 become central and the unconditional distribution of

Q(x) is now an indefinite central quadratic form. If the

dimension p is even. the results of Section 3.7 may be used to
A

obtain the probability density function of Q{x) and to give exact

expressions for the expectations of the actual error rates.

x ~ 0

x<O

d. }]
J

(4.3.1)

d. }]
J

and n = p/2

then if P is even and with
I-P'l= ~--=--2c1c2

(3. 7 •3) •

n-l
r [ (-x)

g2Yl.2n-2jj=o

g(x) and d. are as defined in
J

f(x) =

where

For x in HI and " = 0

F (a)
Pr{(I+P I ) 2

= X
1 2c

l
c2 p

Retaining the notation of Section 3.7.

_ I+PI
- 2c

I
c

2
• Y1

A

the probability density functiqp of Q{x) is

n-I { (I+P21 )n (1-P
2

1 \j.
r [g2B(x) 2 2· \ J

I • n- Jj=o
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Hence
'Ie

E(Q )
1

= (f(X) dx
_00

and as J = 2K - P in a if we assume equal prior-probabilities

K = 0, and since 0 < a < 1, J > 0, then by (3.7.5) and (4.3.1)

•E(Q ) =
1

1 -
n-l n-j-l

I . {e-J / 261 I 1
ITj=o i=o

(~)i }{ (I+P1j' (.!-P1)j d.}
261 2 2 }

(4.3.2)

•The probability density function of Q(x) and E(Q2) for x in n
2

may similarly be expressed in closed form. With

a = I+P2 and n = P/2
2 2c3c4

p even and equal prior-probabilities, it follows that

'Ie
E(~) =

n-j -1 1
I ....

• 1.
1=0

(4.3.3)

•The expectations E(~ ) (4.3.2) and (4.3.3) are evaluated in

Section 4.6 for a range of values of p, a and (n 1 ,n2 ).

4.4 The Expectations of the Apparent Probabilities of Misclassification

of the Sample Quadratic Discriminant Function for Known

Proportional Covariance Matrices.

The apparent probabilitie~ofmisclassification were defined in

Section 1.5 as the proportions of the sample observations misclassified

by the sample allocation rule. For quadratic discrimination these
•• ••apparent error rates are denoted by Q1 and Q2

Here for known proportional covariance matrices the expectations

of the apparent error rates will be derived by the method used in the

previous section, the difference being that the random observation x
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from nt is replaced by a member Xtj
nt • Hence

**E(Ql) =

where J = 2K - P ln a.

-Allowing for the correlation of Xlj and xI it follows that

**E(QI )

where ds = . {ant + (2~-a)n2 + (1_1Q)2 n tn2
}1

d
6

= {ant (2~+a)n2 + (1+~)2 nt n2}1

Cs = (anl n2)1 /·ds and c6 = (an1n2)1 / d6

P3 =: {ant +an2 + (I-a) nl n2) / dsd6

· -I (d;1 -t 2
8S = {2(l+P3)} ntn2 + d6 ) v'v

· -I (d~1 -1 2 •
~6 = {2(I-P3) } n1n2 - d6 ) v v •

Similarly

** {(1+P4) 2(p 8 ) -
(1-P4) 2

> J}E(Q2 ) = Pr 2c eX, 2c c X (p ,8a)
7 a 7 7 a

where d7 = {(-I + 2~) nl + n2 + (I_/a)2 ntn2}1

da = {(-I - 2~) nl + ....2 + (I+~)2 ntn2}1

C7 = (nln2)1 / d7 and ca :: (n ln2)1 / da

P4 =: {-nl - n2 + (I-a) nln2} / d7da

-1 -1 _ d;I)28 =: {2(I+P4)} n1n2 (d7 v'v
7-

· -1 -1 -1 2
8e =: {2(I-P4) } nln2 (d7 + de ) v'v.
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With a = I the results, given coincide with Moran's (1974)

expressions for the expectations of the apparent error rates
A

of L(x), the sample linear discriminant function.

As is the case for the expectations of the actual error

rates with the additional assumption of zero-mean, the non­

centralities ~S' 86 , ~7 and ~8 are zero and exact expressions

similar to (4.3.2) and (4.3.3) may be obtained for the

expectations of the apparent error rates in this case also.

If K = 0 then J > 0 and with p even, n

... ~ .. -- ~~

**E(Q} )
n-I n-j-I 1

= 1 - t {e-J / 2B3 t ~
• • 1.
)=0 1=0

(2~J }(c+~3rG-~3')
(4.4.1)

d. }
)

and with Bit

**E(Q2 ) =
n-j-I

t
i=o

1
i! 6~,+y }{ C+~'+rC-;,+)J

(4.4.2)

d.}
)

. **.
The expectations E(Qt ) (4.4.1) and (4.4.2) are evaluated in

Section 4.6 for a range of values of p, 0 and (n1 ,n2).

77



A

4.5 The Unconditional Distribution of Q(x) for Known Covariance

Matrices

The general derivation for Cases (i).(ii) and (iii) of the eigen

values. Section 3.3, is presented here. The canonical forms of

the populations being N (O.I) and N (v, A). the sample quadratic
p p

discriminant function for known covariance matrices is

(4.5.1)=

Q(X) = -(X=X
1

) '(x-xl) ~ (X-x2), A-I (X-X2) + 1n IAI - 2K ~ 0

~ {-(x.-i .)2 + ~ (x.-x2 .)2} - J ~ 0
i=l 1 11 Ai. 1 1

p
where J = 2K - E 1n Ai.

i=1

Case (i) and (ii) of the eigen values; A. +1 for all i. Here
1

(X2i-Aiili) 2 - - 2]A P [ I-A. (x2i -x l i) >Q(x) = E ~ {x.- I-A. } - J < 0
. I A. 1 I-A .
1= 1 1 1

where r.
1

=

=

PI I-A. 2 2]E ~ (r. - Sl') - J ~ 0• A. 1
1= 1

{ x. - (X2i-Ai Xli) 1 and s. =
1 I-A. 1

1

Without loss of generality we let x in HI' as a similar proof holds

for x in fi2•

If (I-A.)
I" I 2 (n1 +n2) + (I_A.)2 ntn2}1Cli =- (nln2) / {(l-lri ) Ai

1 1

and c2i = (I-A. ) (n
1
n2)1 / {(I+lri )2 Ai (n

1
+n2) + (I-A

i
)2 n

t
n2}1

1

then u. • c1. (r.+s.) and vi = c2i (r.-s.)
1 111 1 1

are Normally distributed wi1h unit variances.



Hence
... p [ l-A. - J ~ 0Q(x) = 1: 1 u.v. ]

i=l A.c1·c . 1 11 1 21

P [ I-A. 2
- (u.-v.)2}J1 {(u. +v.) - J ~ 0= 1: 4A.C1·C . 1 1 1 1 .

i=l 1 1 21

Now (u.+v.) and (u.-v.) are independently Normally distributed
1 1 1 1

with variances 2(I+p.) and 2(I-p.) where
1 1

is the correlation between u. and v.• Let
1 1

=

2
(u. +v.)

1 1

2(I+p.)
1

and fA)2i =
2(u.-v.)

1 1

2(I-p. )
1

(I-A.)2
1

2
Vi

which are independently distributed as non-central chi-squares

with non-centralities 6
1

. and 6 . and degrees of freedom 1, where
1 21

2
Vi

If follows that

Pr{Q(x) ~ a}= Pr[ ~. n. {2(1+P1.) fA) • - 2(I-p.) fA).} ~ a + J]
i=l 1 11 1 21

where

Hence for x in Bt and for Case~ (i) and (ii) of the eigen values the

unconditional distribution of Q(x) is that of an indefinite non­

central quadratic form.
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Case (iii) Ai = 1 for some i 1.~ i , p:- The extension

of the proof to Case (iii) where A. = 1 for same i is straight
1

forward in contrast to the optimal and conditional distributions.

Let x in fi
1

and Ak = 1 where 1 , k 'p. Then a term of

the type

is contributed to the sum (4.5.1) for each Ai = 1. Rewriting the

above term as

(x1k-x2k) {2xk-(xlk+x2k)}

i.e. a.univariate sample linear discriminant function, with

where

Uk = c lk (xlk-x2k) and Yk = c2k {2~-(ilk+i2kJ}

c lk = {(n
l
n

2
) I (n l +n2)}1

c
2k

={en n ) I (n +n + 4n n )}I
1 2 I 2 I 2

it may be shown as previously that this term is distributed as the

weighted difference of two independent non-central chi-squares

with degrees of freedom 1. Retaining the previous notation the

appropriate terms are

P
k

= (n
l
-n

2
) I {(nl +n2) (nl +n2+4nl n2)}1

-1 2 2
alk • {2(I+Pk)} (c Lk+c2k) Vk

-1 2 2a2k ={2(I-Pk)} (c1k-c2k) Vk

In general the degrees of freedom will be the number of A.
1

which equal one. Since the remaining terms corresponding to

~. +1 fall into Case (1) or (ii~ it follows that the unconditional
1
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distribution of Q(x) is in all cases that of an indefinite

non-central quadratic form.

The expectations of the actual probabilities of

misclassification may now be derived and evaluated by Imhof's

(1961) method as given in Section 2.9.

4.6 Zero-Mean Discrimination with Known Proportional Covariance.

Matrices. An evaluation of the optimal and expectations of

the actual and apparent error rates.

The optimal probabilities of misclassification Qt and the

* **expectations E(Qt ) and E(Qt ) are evaluated here for the

assumptions of zero-mean and known proportional covariance

matrices. While admitting that these assumptions are restrictive,

they allow a reasonable range of parameters i.e. p,a,n 1 , and n2 ,

to be considered, which would not be the case in general. The

present assumptions also allow exact expressions for the expect­

ations of the actual and apparent error rates which are easily

evaluated.' Linear discrimination is not applicable here since

the assumption of zero-mean and common covariance matrix would

make the two populations indistinguishable. Applications of

zero-mean discrimination with proportional covariance may be
~

found in Bartlett and Please (1963) and Desu and Geisser (1973).

It is assumed that the distribution of x in fi 1 is NpeO,I)

and in fi is N (v,aI) where 0 < a < 1, that the mean v • 0 and
2 p

that the prior-probabilities in both the optimal and sample

allocation rules are equal. It is also assumed that the

dimension p is even. the latter assumption is required in
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obtaining the closed expressions for E(Q*) and E(Q**).
t t

The individual and total error rates and expectations;

Qt' E(~) , E(~*) t = 1,2

Q= j { Q1 +Q2 } , E(Q*) i * * and E(Q**) =!\t(Q~*)+E(Q~*)}=~ t(Ql) +E (Q2) }

are compared for the range of parameters given in Table 4.6.1.

The necessary formulae for evaluating the probabilities and

expectations are given in Sections 3.6, 4.3 and 4.4. Optimal

probabilities Q are given in Table 4.6.2, the expectations for
t

equal sample sizes in Table 4.6.3 and for unequal sizes in

Table 4.6.4.

In Table 4.6.2 it is noted that for fixed p the optimal

probabilities ~ and Q2 increase as a approaches one. This is

to be expected as the two populations become less distinguishable

with increasing a. However, for p = 2 it is easily shown that

tim Q} = l-e- 1 = .632 and tim Q2 = e- 1 = .368. With fixed
a-"l a-"l
proportionality a in Table 4.6.2, Q

1
decreased with increasing

p as does Q2 except for a = .9 where Q2 increases for p = 8 and

16 and then decreases. By standardising the chi-square

probabilities of Q
1

and Q2 (3.6.2) it may be shown that for

fixed a, Q
1

and Q2 go to zero as p approaches infinity. The

total probability of misclassification Qin Table 4.6.2 increases

and approaches y~ as a approaches one for fixed p,and decreases

with increasing p for fixed a.
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Table 4.6.1

Range of parameters used in evaluating Q , E(Q*) and E(Q**) for
t t t

zero-mean and known proportional covariance matrices.

Dimension p 2 8 , 16 32

Proportionality a .1 , .5 .9

Sample Sizes (20,20) , (40,40) , (8,32) , (32,8)

Table 4.6.2

The Optimal Probabilities of Misclassification ~ for Zero-mean

and Proportional Covariance Matrices.

a = .1 a = .5 a = .9

P Q1 Q2 Q Ql Q2 Q Ql Q2 Q

2 .226 .077 .151 .500 .250 .375 .613 .349 .481

8 .021 .009 .015 .302 .197 .299 .525 .393 .459
iI#

16 .001 .001 .001 .196 .138 .167 .488 .395 .442

32 .000 .000 .000 .098 .072 .085 .450 .385 .417
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Table 4.6.3
A

Expectations of the actual and apparent probabilities of misc1assification of Q(x)

for equal sample sizes, zero-mean and known proportional covariance matrices.

n1 • n2 • 20 n 1 =n2 =40

p E(Q1) E(Q~) E(Q~*) ECQ~*) !(Q*) ~(Q**) E(Q~) E(Q~) ECQ!*) E(Q~*) ~(Q~) -rCQ~*)

2 .230 .086 .227 .064 .158 .145 .228 .082 .227 .071 .155 .149

8 .022 .012 .021 .005 .017 .013 .021 .010 .021 .007 .015 .014

16 .001 .001 .001 .000 .001 .001 .001 .001 .001 .000 .001 .001

32 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

, 2 .515 .275 t .484 .218 .395 .351 .509 .263 .493 .233 .386 .363

8 .334 .237 .278 .139 .285 .208 .320 .219 .291 .165 .269 .228
,

16 .235 .184 .171 .077 .209 .124 .217 .163 .184 .103 .190 .143

32 .135 .117 .077 .027 .126 .052 .117 .096 .087 .044 .106 .065

2 .555 .434 .482 .352 .494 .417 .569 .417 .519 .361 .493 .440

8 .514 .466 .356 .294 .490 .325 .519 .454 .409 .335 .486 .372

16 .503 .470 .282 .233 .486 .257 .503 .459 .348 .291 .481 .319

32 .492 .470 .197 .157 .481 .177 .489 .458 .295 .230 .473 .262

II

es

II

es

II

es

LI)·

0\·

....·

~



Table 4.6.4

Expectations of the actual and apparent probabilities of misc1assification of
A

Q(x) for unequal sample sizes, zero-mean and known proportional covariance matrices.

nl ~ 8, n2 = 32 nl = 32, n2 = 8

CD
U1

P"'4

II

~

Ln

II

~

0\

II

~

p E(Q~) E(Q~) E(Q~*) E(Q~*) ] (Q*) ~ (Q**) E(Q~) E(Q~) E (Q~*) E (Q~*) ~ (Q*) ~ (et*)

2 .729 .076 .230 .064 .156 .147 .227 .105 .225 .052 .166 .138

8 .024 .008 .022 .005 .016 .013 .028 .021 .020 .003 .024 .011

16 .002 .001 .002 .000 .001 .001 .001 .003 .001 .000 .002 .001

32 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

2 .549 .247 l .476 .215 .398 .345 .489 .326 .471 .192 .407 .331

8 .409 .180 .269 .129 .294 .199 .290 .338 .258 .101 .314 .179

16 .332 .117 .162 .068 .225 .115 .184 .317 .150 .045 .250 .097

32 .245 .054 .070 .021 .149 .045 .088 .276 .061 .010 .192 .036

2 .601 .387 .454 .345 .494 .399 .492 .503 .455 .334 .497 .394

8 .631 .348 .311 .266 .489 .288 .391 .600 .314 .248 .495 .281

16 .672 .300 .228 .195 .486 .211 .332 .556 .231 .175 .494 .203

32 .729 .235 .138 .115 .482 .126 .260 .725 .142 .096 .492 .119



In Table 4.6.3 and 4.6.4 it is noted that in all cases the

expectations of the actual probabilities of misclassiftcation

exceed the expectations of the apparent probabilities of mis­

classification i.e.

E(Q*) > E(Q**)
t t

t = 1 and 2.

This is not surprising given the inherent bias in the apparent

method of estimation. A similar result holds for linear

discrimination and the Z statistic, Section 2.10. In all cases

the total probabilities and expectations are ordered as

for a similar linear result see Hills (1966). However even ro~~

~ = n2

E(Q:) f Q
t

f E(Q;*)

unlike the linear case or Z statistic, Section 2.8.

The effect of unequal sample sizes on the individual

expectations may be seen in Table 4.6.4, the expectations of the

actual rather than the apparent probabilities of misclassification

being effected most. Comparing the results of Table 4.6.4 with

*these for n1 = n2 = 20 (Table 4.6.3) we see that E(Ql) has

increased and E(Q~) decreased with some Slight increase in

~(Q*), while'E(~*) and E(Q~*) have both decreased. A similar

pattern was noted by Moran (1974) for the sample linear

discriminant function withl known. But is not the case for the Z

statistic as shown in Section 2.1).
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CHAPTER 5

An Analytical Comparison of Linear and Quadratic Discrimination

with Proportional Covariance Matrices.

5.1 Introduction

A linear discriminant function is commonly used for

discriminating between two populations mainly because of its

simplicity of form and concept. For multinormally distributed

populations with equal covariance matrices the optimal

discriminant function is linear. Lack of normality of the

populations is not considered here, but it is noted that Fisher's

(1936) derivation of a linear discriminant function for

populations with equal covariance matrices is distribution free,

and that the optimal discriminant function in other cases may

also be linear. The inequality of the covariance matrices in

Normally distributed populations would suggest use of the

optimal quadratic discriminant function but this is not the case

in practice where the simplicity of the linear allocation rule

and its "distribution free" derivation have given it wide usage

even in non-optimal situations.

Some cf the resistance to quadratic discrimination is due

to the lack of results on its distribution and the behaviour of

its error rates~ the main work on these problems being concentrated

on the linear discriminant function. However the main source of
~

resistance is due to its poor performance in practice when the

dimension is large and the sample sizes are small, given the need

of estimating two covariance matrices. As early as 1947 Smith had

considered the behaviour of linear and quadratic discriminant

functions when applied to an example where the covariance matrices

are unequal. One of the earliest analytical comparisons of
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linear and quadratic discrimination was undertaken by Gilbert

(1969), who derived and evaluated the optimal error ~ates

when the populations are multinormally distributed with

proportional covariance matrices. By considering the differ­

ence between the quadratic and linear error rates for various

selected values of the population parameters such as

dimension, proportionality and separation, Gilbert was able

to indicate the ranges of these parameters where an application

of linear discrimination would give misleading results.

Gilbert's study required a knowledge of all the population

parameters and Marks and Dunn (1974) extended her comparison

to sample allocation rules; by simulation they considered the

effect of various population parameters and sample sizes on

applying linear discrimination to the quadratic situation of

unequal convariance matrices. Wahl and Kronmal (1977) further

elaborated on Marks and Dunn's study, the main extension being

their use of larger sample sizes. Michaelis (1973) considered

the effects of applying linear discrimination to more than two

Normally distributed populations with unequal covariance

matrices. Using actual data to give a range of population

parameters for simulation purposes, Michaelis noted that

certain behaviour of the error rates and their estimates

indicate when an application of quadratic discrimination is

appropriate.

In this chapter we compar:linear and quadratic discrimin­

ant functions when applied to multinormally distributed

populations with proportional covariance matrices. We do this

firstly for all population parameters known using exact results

derived in previous chapters. Then the sample discriminant

functions are compared for known proportional covariance

matrices. Thus our study is midway between that of Gilbert who

assumed all population parameters known and the simulation



studies of Marks and Dunn, Wahl and Kronmal and Michaelis

where all the population parameters are assumed unknown.

The expectations of the actual and apparent probabilities

of misclassification of the linear discriminant function

are derived for the assumption of known proportional

covariance matrices and compared to the corresponding

quadratic expectations. Some comments on when an application

of quadratic discrimination is appropriate conclude the

chapter.

5.2 Population Assumptions and the Optimal Probabilities of

Misclassification

It is assumed that the distribution of x in IT is
t

Np(~t,tt) (t=l,2) and that the covariance matrices are

proportional i.e. at l = t 2 , 0 < a < 1. Equal prior probabilit­

ies, WI = w
2

= i are also assumed and the joint covariance

matrix t is given by

t = 1l'l t } + 1l'2L2

= i(L + L )
1 2

l+a
LI •= -2-

With these assumptions the quadratic Q(x) and linear L(x)

discriminant functions are given by.,
-I 1 -I >

Q(x) = -i(x-~l)' t l (x-~I) + i a (X-P2), t l (x-~2) + i ptna < 0

and

89



As both Q(x) and L(x) are invariant to linear trans- .

formations the following canonical fOnDS of the popu'rations

may be assumed without loss of generality, Section 3.3.

x in IT l is distributed as N (0,1) and in IT as N (v,al).
p 2 P

t = 1 and 2.
-1

(P l - P2)' t (P l -P2)

withWhere the mean vector v = (~l'o,o, ••• ,o)'
-1

(Pl-P2), Et (PI-P2)

. h 2separat10n ~ w ere ~ =

~2 =
t

l+aHence E=-y- I and the

becomes 2 2 2 2
~ - v'v - ~- l+a - l+a 1

Q(x) and L(x) may now be written as

Q(x) = !{l-a (x· _.2..- )' v _ v'v + p >
o I-a (x - I-a) I-a tn a} < 0

and

L(x) = -(l~a ) v'{x - tV} > 0
<

with optimal probabilities of misclassification for Q(x) given

in Section 3.6 by
{2( l+a ~2/2) < a H}

Q1 = Pr X p, ( I-a) 2 I-a

o = pr{x2(p, a(l+a) ~2/2) > _1_ H}
'2 (l-a)2 I-a

where H t + ~ ~2/2,= -p n a ~-a

and for L(x) by

L1 ft¥- ~/2)= t(- -r

L ~ ~/2) •
2 = t(- 20

It is interesting to note that in the present case of proportional

covariance matrices, of all linear allocation rules, L(x)

minimises the total probability of misclassification, Anderson

and Bahadur (1962).
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5.3 A Comparison of Linear and Quadratic Discrimination

for Proportional Covariance Matrices with

All Population Parameters Known.

For various separations ~, dimension p and

proportionality a we compare the error rates Qt and Lt of

Section 5.2, where the populations are multinormally

distributed with proportional covariance matrices.

Imhof's (1961) closed expressions for a non-central chi­

square, Section 3.6, were used to evaluate Qt. Such a

comparison was undertaken by Gilbert (1969) who however

approximated ~ by Patnaik's (1949) approximation to a

non-central chi-square, Section 3.6. The criteria of

comparison used by Gilbert was the difference in the total

probabilities of misclassification Qand L where

Q= !(Ql+Q2) and [ = !(L1+L2). In Marks and Dunn's (1974)
A

simulation comparison of L(x) and Q(x) the case of

proportionate covariance matrices was included as was a

comparison of ~ and Lt , the former being estimated from the

simulation runs. Their criterion of comparison was the ratio

of Qto L. Wahl and Kronmal's (1977) elaboration of Marks

and Dunn'~ study also included a comparison of ~ and Lt ,

where ~ was, as in Gilbert (1969) approximated by Patnaik's

(1949) approximation.

For the range of paramet6rs listed in Table 5.3.1 the

optimal probabilities of misclassification ~ and Lt as given

in Section 5.2 were evaluated. Patnaik's (1949) approximation

to ~, Section 3.6, given by

<
aH

(l-a)gl }
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Table 5.3.1

Range of Parameters used in Comparing Q
t

and L
t

for Proportional

Covariance Matrices.

Dimension p 3 5 7 9

Proportionality 0

Separation

.1

1.0488

.5

1.6832

.7 .9

2.5631*

* The separations A in Table 5.3.1 were chosen to give (when 0=1)

optimal linear error rates of 30%, 20% and 10% respectively.

Table 5.3.2

Optimal Probabilities of Misclassification of the Linear

Discriminant Function for the case of Proportional Covariance Matrices.

A 1.0488 1.6832 2.5631

a L1 L2 L L1 L2
[ L1 L2 L

.1 .• 349 .109 .229 .266 .024 .145 .171 .001 .086

.3 .336 .220 .278 .249 .108 .178 .151 .030 .090

.5 .325 .260 .293 .233 .151 .192 .134 .058 .096
.,

.7 .314 .282 .298 .219 .177 .198 .119 .079 .099

.9 .305 .295 .300 .206 .194 .200 .106 .094 .100
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where

k1
I f{E(l-a) 2 + (I+a) 112/2}2] (l-a)2p + (I+a) A2= (I-a) 2 p(1-a)2 A2 gl =+ (1 +2) (I-a) 2p + (l+a) A2/2

k2
1 pECI-a) 2 +q (l+a) 112/2}2J g = (1-a)2p + a(l+a) A2

= (I-a) 2 A2 2p(l_a)2 +a(l+a) (1_a)2p + a(l+a) 62/2

was also calculated.

In Table 5.3.2 the linear probabilities of misclassification

~, (t=1 and 2), and their total L are given. In Table 5.3.3 the

quadratic probabilities of misclassification Qt' (t=1 and 2) ~e

listed as are

DIF = Difference in the total probabilities of

misclassification i.e. L - ij.

R = (ilL x 100

t = case where percentage error in Patnaik's

approximation to Qt is in excess of ten

percent i.e.
(1 - approx) x 100 > 10.

Qt

In Table 5.3.2 we note as may be seen from the formulae

Section 5.2, that L2 < L1 for all A > 0 and a < I and that as

a approaches one, L
1

and L2 converge with L1 decreasing and L2

increasing.

As R is always ~ 100 it is the size of the ratio in

Table 5.3.3 that is of interest. With fixed p and A the ratio

approaches 100 as a approaches one, since the quadratic model

is tending to the linear. With fixed A and a, the ratio

decreases with increasing dimension p, as the quadratic

probabilities allow for increasing dimension the linear do not.

With p and a fixed the ratio is fairly insensitive to increas­

ing separation A.
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Table 5.3.3

Optimal Probabilities of Misc1assification of the Quadratic Discriminant Function

for the case of Proportional Covariance Matrices

6 1.0488 1.6832 2.5631
a Q1 Q2 DIF R Ql Q2 DIF R Ql ~ DIF R

.1 .117 .042 .150 35 . .086 .029 .088 39 .043t .014 .058 33

.3 .262 .122 .086 69 .185 .086 .043 76 .092t .044 .022 75

.S .328 .183 .037 87 .218 .130 .018 91 .107 .068 .008 91

.7 .338 .236 .011 96 .220 .165 .005 97 .108 .085 .002 98

.9 .316 .282 .001 100 .208 .191 .000 100 .103 .096 .000 100

.1 .052 .020 .193 16 .039 .015 .119 18 .020+ .007 .073 16

.3 .192 .099 .~33 52 .139 .071 .073 S9 .072+ .036 .036 60
~

.S .286 ", .171 .064 78 .196 .121 .033 83 .098 .063 .015 84

.7 .324 .231 .021 93 .214 .162 .010 95 .106 .083 .004 96

.9 .315 .281 .002 99 .208 .190 .001 100 .103 .096 .000 100

.1 .025 .010 .212 8 .018 .007 .132 9 .010t .004 .079 8

.3 .146 .079 .166 40 .107 .057 .096 46 .057'" .030 .047 48

.S .253 .159 .087 70 .178 .113 .047 76 .090 .059 .021 78

.7 .312 .226 .029 90 .208 .158 .015 92 .103 .082 .006 94

.9 .314 .280 .003 99 .207 .190 .001 99 .103 .096 .001 99

.1 .019 .005 .221 4 .009 .004 .139 4 .oost .002 .083 4

.3 .113 .064 .190 32 .084 .046 .113 37 .04st .024 .055 39

.S .226 .146 .106 64 .161 .105 .057 69 .083 .055 .027 72
I .7 .300 .221 .038 87 .202 .155 .019 90 .101 .080 .008 92

.9 .313 .279 .004 99 .207 .189 .002 99 .103 .096 .001 99

~

II

0\

II

Q..

I'

II

~

~

'C
". LI')

II

~



One concludes from the difference columns of Tab!e 5.3.3

that an application of the linear discriminant function to

the quadratic case of proportional covariance matrices, will

when ~ = 1.0488 and a < .5 result in an exaggeration of the

true total probability of misclassification of at least .05.

This exaggeration will increase as a gets smaller and or p

increases. With increasing ~ to maintain this error of .05,

a must be smaller than .5.

Similar trends may be seen in Gilbert's (1969) figures.

However Gilbert, Marks and Dunn (1974) and Wahl and Kronmal

(1977) concentrated on the total probabilities of misclass­

ification and not on the behaviour of the individual

probabilities Qt and Lt. We note that in general Q1 increases

with increasing a unlike ~ and is larger than L} when a = .9.

Use by Gilbert of Patnaik's (1949) approximation in evaluating

Qt leads to a positive percentage error in excess of 10% in

nine cases indicated by t in Table 5.3.3. The error in these

cases was to be expected since it is known that Patnaik's

approximation is poor when estimating the lower tail probabil­

ities of a non-central chi-square distribution, Johnson and

Katz (1970,.vol 2, P142). Use of Patnaik's approximation does

not alter the above comments.



5.4 Sample Linear and Quadratic Discriminant Functions. for

Known Proportional Covariance Matrices.

The Expectations of the Actual and Apparent Probabilities
....

of Misclassification of L(x).

The comparison of Section 5.3 will be extended in the

following section to the case where the unknown population

parameters of the discriminant functions Q(x) and L(x) are

replaced by their sample estimates. Assuming that the

populations have known proportional covariance matrices and

retaining the canonical forms N (0,1) and N (v,al) of Sectionp p
5.2 with random samples of size ntfrom ITt and equal prior-

probabilities here also, the sample quadratic and linear
A ....

discriminant functions Q(x) and L(x) are given by

Q(x) = -~(x~Xl)' (X-Xl) + ~ ~ (x-X2), (x-X2) + ~ pina ~ 0

and

A A

In comparing Q(x) and L(x) the expectations of the actual

and apparent probabilities of misclassification i.e. E(Q;),

E(O**). E(L*) and E(L**) will be required. Expressions for the
't t t

quadratic expectations were derived in Sections 4.3 and 4.4.

Similar expressions for the linear expectations are now derived.

The method of derivation being similar to that used in previous.,
chapters only an outline derivation is presented here.
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Expectations of the Actual Probabilities of Misclassification of
A

L(x) for Known Proportional Covariance Matrices.

A

= Pr{L(x) < 0 I x in nl }

= Pr{u'v < O}

where U = c1!1:a (xl -x2 ) and v = c2/1~a· {x - !(Xl +X2)} with

c
1

=' {(l+a) nln21 2(anl +n2)}!

and

chosen to give U and v covariance matrix I.

* < O}Now E(LI ) = ·Pr{ (u+v) , (u+v) (u-v) , (u-v)

= Pr{(I+P I ) (1)1 (I-PI) 002 < O}

where wI = (u+v) , (u+v) 12 (I+Pl) and w2 == (u-v) , (u-v) 12 (I-PI)

with PI = (an l -n2) 1 { (an l +n2) (an
l
+n2+4n

l
n

2
)}i.

As 00
1

and 00
2

are independently distributed as non-central chi-squares
2 2X (P'~l) and·x (p,62) where

-I 2 2
~l = {2(I+PI )} (c l +c2 / 2 ) 6

-1 2 2
~2 = {2(1-Pl)} (c l - c2 /2) 6..

then
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Similarly with x in IT2 '-
E(L;) = P~{(1+P2) X2(PJ~3) - (1-P2) X2(PJ~4) > O}

(5.4.2)

where c3 = c
1

=' {(l+a) n
1
n2 / 2 (an l +n2)}1

c4 = {(l+a) 4n
1
n2 / 2 (anl +n2+4an

1
n2)}1

. I
P2 = (an1 -n2) / {(an1 +n2) (anl+n2+4anln2)}

-1 2 2
~3 = {2(1+P2)} (c3-c4/2) ~

-1 2 2
~4 = {2(I-P2)} (c3+c4/2) ~

It is noted that MOran's (1974) expressions for E(L;) (Section 2.8)

when the covariance matrices are equal may be obtained from (5.4.1)

and (5.4.2) by letting a = 1.

Expectations of the Apparent Probabilities of Misclassification
A

of L(x) for Known Proportional Covariance Matrices.

The expectations of the apparent probabilities of

misclassification E(L**) of L(x) as defined in Section 1.5 may be
t

obtained in a manner similar to the expectations of the actual

probabilities of misclassification. Moran's (1974) expression
**for E(L
t

) when E1 = E2 may once~gain be obtained by letting a=l.
"22

Thus E(L~*) = Pr( (1+P3) X (PJ~S) - (1-P3) X (P'~6) < O}

where Cs = c1 =' I (l+a) nl n2 / 2 (anI +n2)}1

c6 =' {(l+a) 4n1n2 / 2 (anl-3n2+4nln2)}1

P3 = {(an1 +n2) / (anl -3n2+4n1n2)}1
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· -1 2 ~26S = {2(I+P3)} . (cS+c6/2)
' ..

· -1 2 ~266 = {2(I-P3)} (cS-c6/2)

and E(L~*) = Pr{(l+p~) x2(P,67) - (l-p ) 2
~

X (p,6a) > O}

where c7 = Cs =' {(l+a) n1n2/2(anl+n2)}1

Ca =' {(l+a) 4nln2/2(-3anl+n2+4anln2)}1

P4 ={-(anl+n2)/(-3anl+n2+4anln2)}1

· -1 2 2
67 ={2(I+P4)} (c7-ca/2) ~
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5.5 A Comparison of Sample Linear and Quadratic Discrimination
.-

for Known Proportional Covariance Matrices.

Our comparison here will involve the probabilities,

expectations and totals

Q, L,

E(L**) t = 1 and 2
t

(5.5.1)

~(L**) = !{E(L;*) + E(L;*)}

and D** = E(L**) - E(Q**)

for various values of the parameters (n
l
,n2 ), p, a and A. The

number of probabilities and parameters involved limits the range

of results that may be presented. Table 5.5.1 gives the rang~

of parameters used. These were chosen in the light of the

simulation of Marks and Dunn (1974) and Wahl and Kronmal (1977)

and the range of parameters considered in Section 5.3.

Table 5.5.1

Range of Parameters used in Comparing Sample Linear and Quadratic

Discrimination for Known Proportional Covariance Matrices.

Dimension p 3 • 9

Proportionality a • 1 • .5 • .9

Sample Size (n
l

,n
2

) (25,25) (100,100)
.,

Separation A 1.0488 , 1.6832 , 2.5631

The various expectations and totals (5.5.1) are given in

Table 5.5.2, the exact formulae for the expectations may' be

found in Sections 4.3, 4.4 and 5.4. The differences D* and D**

where

D* a E(L*) - E(Q*)

are given in Table 5.5.3.
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..
Table 5.5.2

Totals and Expectations of the Actual and Apparent Probabilities of Misclassification

of the Sample Quadratic and Linear Discriminant functions for known Proportional Covariance Matrices.

Sample Sizes (n1 ,n2) • (25,25)

a p ECQ~) ECL~) ECQ~*) E(L~*) E(Q~) E(L~) E(Q~*) E(L~*) ~ ECQ*) ECL*) E(Q**) E(L**)

.1 3 .120 .377 .118 .336 .047 .111 .034 .100 .080 .088 .244 .076 .218
9 .013 .440 .012 .309 .007 .084 .003 .065 .009 .010 .262 .008 .187

.5 3 .336 .346 .319 .311 .201 .269 .166 .244 .256 .269 .308 .243 .278
9 .246 .389 .211 .280 .176 .275 .112 .207 .186 .211 .332 .162 .244

.9 3 .331 .321 .302 .290 .297 .309 .265 .280 .299 .314 .315 .284 .285
9 .361 .351 .266 .257 .325 .333 .231 .246 .291 .338 .342 .249 °.252

.1 3 .087 .283 .085 .251 .033 .028 .024 .025 .058 .060 .156 .055 .141
9 .009 .325 ~ .009 .241 .005 .022 .002 .017 .007 .007 .174 .006 .129

I

.5 3 .224 .245 .213 .224 .141 .157 .119 .143 .174 .183 .201 .166 .184
9 .175 .274 .151 .206 .126 .163 .082 .125 .133 .151 .219 .117 .166

.9 3 .217 .216 .200 .197 .200 .202 .181 .185 .200 .209 .209 .191 .191
9 .232 .235 .181 .179 .217 .218 .161 .166 .198 .225 .227 .171 .173

.1 3 .044 .180 .042 .164 .016 .002 .011 .002 .029 .030 .091 .027 .083
9 .005 .204 .005 .156 .003 .002 .001 .001 .004 .004 .103 .003 .079

.5 3 .111 .140 .104 .128 .074 .062 .062 .055 .088 .093 .101 .083 .092
9 .090 .155 .078 .119 .066 .064 .044 .049 .069 .018 .110 .061 .084

.9
3 .108 .111 .099 .101 .101 .099 .091 .089 .100 .105 .105 .095 .095
9 .115 .120 .091 .093 .109 .106 .082 .082 ,100 .112 .113 .081 .088

II

<J

N
to')
00
\0

U

<J

....
to')
\0
LI).
N

"
<J

....

00
00
~
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....
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Table 5.5.2 (continued)

Sample Sizes en,. ,n,) - (100,100)

a p E(Q*) E(L~) E (Q**) E(L**) E(Q~) E(L~) E (Q**) E (L**) ~ E(Q*) E(L*) E(Q**) E(L**)
1 1 1 2 2

3 .118 .356 .111 .346 .043 .110 .040 .101 .080 .081 .233 .078 .177
.1 9 .012 . .376 .012 .338 .005 .102 .004 .096 .009 .009 .289 .008 .217

..

.s 3 .330 .330 .325 .321 .188 .262 .1'9 ,256 .256 .259 .296 ,,252 .289
9 .232 .344 .223 .313 .154 .266 .139 .245 .186 .193 .305 .176 .279

.9
3 .320 .304 .313 .301 .285 .299 .277 .291 .299 .303 .304 .295 .296
9 .324 .318 .300 .292 .293 .307 .266 .282 .291 .309 .313 .283 .287

.1
3 .086 .270 .086 .264 .030 .035 .028 .024 .058 .058 .148 .072 .• 144
9 .009 .282 .009 .260 .004 .024 .003 .022 .007 .007 .153 .006 .141

I

I 3 .220 .23~ .217 .231 .133 .153 .128 .149 .174 .177 .195 .173 .190
, .s; 9 .165 .244 .159 .226 .110 .154 .098 .144 .133 .138 .199 .129 .185

I .9
3 .210 .208 .206 .204 .193 .196 .188 .191 .200 .202 .202 .197 .198
9 .213 .214 .200 .199 .197 .200 .182 .186 .198 .205 .207 .191 .194

.1
3 .043 .173 .043 .169 .014 .001 .013 .001 .029 .028 .087 .028 .085
9 .005 .179 .005 .167 .002 .001 .002 .001 .004 .004 .090 .004 .084

.s 3 .108 .135 .106 .132 .069 .059 .061 .057 .088 .089 .097 .081 .095
9 .085 .139 •082 .130 .058 .060 .052 . .056 .069 .072 .100 .067 .093

.9
3 .104 .107 .102 .105 .097 .095 .095 .093 .100 .101 .101 .098 .094
9 .106 .109 .100 .102 .099 .097 .092 .091 .100 .103 .103 .096 .092

II

<I
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....
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From Tables 5.3.2, 5.3.3 and 5.5.2 we note that the
following inequalities held in general

E(~) > ~ ~ E(~*)

and (5.5.2)

* E(L;*)E(Lt ) ~ Lt ~ t = I and 2

the bounds becoming tighter with increasing sample size. The

linear expectations E(L;) and E(L;*) do not in general contain

the optimal probabilities of misclassification ~ except when

a is close to one. This is to be expected since as a approaches

one the quadratic and linear models converge and for n1 = n2

and E
1

= E
2

the inequality E(L;) > Lt > E(L;*) holds, Section 2.8.

* * ** **'When E
1

= E2 and n1 = n2 , E(LI ) = E(L2 ) and E(LI ) = E(L2 ).

Hence the considerable inequality displayed by E(L;) and E(L~*) v

in Table 5.5.2, when a is small, might be used in practice when

n
1

= n
2

to indicate that an application of quadratic discriminat­

ion is appropriate.

For the total probabilities Table 5.5.2 inequalities.

corresponding to the individual ones (5.5.2) .hold

- * - - **E(Q) ~ Q ~ E(Q )

and

F - **L ~ E(L )

a$ do comments on when the optimal total quadratic probabilities

will be bounded by the linear expectations. The additional

inequalities

also hold.

" "~(L ) > ~(Q ) and
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Considerable difference in the latter may indicate when n1 =n2
that an application of quadratic discrimination is appropriate.

A A

Michaeliil973) in his simulation of Q(x) and L(x), 1:t unknown

has noted similar inequalities to those presented here.

Table 5.5.3

Differences in the Expectations of the Actual and Apparent

Probabilities of Misclassification of the Sample linear and

Quadratic Allocation Rules for Known Proportional Covariance

Matrices.

00
00
~o.
r-f

•
<J

•
<J

..-4
to')
\()
lI).
N

•
<2

a p D* D** D* D**

.1 3 .161 .142 .153 .078
9 .252 .180 .230 .209

3 .039 .035 .037 .037
.5 9 .121 .082 .062 .103

3 .001 .002 .002 .001
.9 9 .004 .003 .004 .004

3 .096 .087 .090 .092
.1 9 .167 .124 .147 .110

3 .019 .018 .018 .018
.5 9 .068 .049 .062 .057

3 .001 .001~, .001 .001
.9 9 .002 .002 .002 .003

3 .061 .057 .059 .057
.1 9 .099 .076 .087 .081

3 .009 .009 .009 .008
.5 9 .032 .023 .028 .026

3 .001 .000 .001 .001
.9 9 .001 .001 .001 .001
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For the differences in the total actual and apparent

expectations, Table 5.5.3, we note that for (n
1
,n

2
), A

and p fixed the differences decrease as a approaches one

since the two models converge. With (n
1
,n

2
), p and a

fixed, the differences decrease with increasing separation

A of the populations. For p, a and A fixed the decrease

is slight with increasing sample sizes; this is in contrast

to the simulation studies of Marks and Dunn (1974) and Wahl

and Kronmal (1977) with It unknown. Here however as It are

known the linear and quadratic models need only estimate the

same number of parameters which is not the case in practice.

With a, A and (n1,n2) fixed the differences increase with

increasing p due possibly to the quadratic models utilisation

of the p differences in the covariances.

In conclusion we note that with known proportional

covariance matrices, if a is small the sample quadratic

discriminant function is. superior to the linear, becoming

more SO with increasing p. For moderate a the sample quadratic

rule is better than the linear especially for large p, and for

a close to one the sample quadratic rule is only slightly

better than the linear, improving with increasing p. With

known covariance matrices, increasing sample size has a small

but similar effect on the sample linear and quadratic allocation

rules. This will not be the cas. when the covariance matrices

are unknown, where sample size relative to dimension size has a

greater effect on the quadratic allocation rule.

105



CHAPTER 6

ESTIMATORS OF LOfJ-ODDS

6.1 INTRODUCTION

Allocation in discriminant analysis can be effected

without assessing the odds of an observation coming from

one rather than another of the populations, as for

instance a method based on ranks described by Kendall &
Stuart (1976, Vol. 3, pp 346-349). However observations

with widely differing odds may be allocated to the same

population. An assessment of the size of the odds would

enable one to gauge the strength of the allocation.

The estimation of true log-odds, in the classical

case of two multivariate Normal populations, with equal

or unequal covariance matrices, is the problem considered

in the latter half of this thesis. Our reasons for estimat­

ing log-odds rather than odds are; the distribution of

true odds is skew whereas the distribution of true lo~-odds

is, for equal covariance matrices, univariate Normal. The

natural bias of odds is a multiplicative factor, with lo~­

odds the bias is additive. We ~ll also see that the log­

transformation renders the estimation problems amenable to

standard statistical techniques. Our concentration on

point estimation rather than interval estimation reflects

the intractability of the distributions of the estimators,

with only some aSYmptotic results available in the literature.
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Point estimation leads to a consideration of bias and mean

square error. Bias is of interest here as it is directly

related to the misclassification of observations, its

sign and relative size to true log-odds being important.

In this chapter we establish our notation and review

some of the methods of estimating true log-odds proposed

in the literature.

6.2 True Log-Odds

Let an unidentified observation x come from one of

two populations ITt (t=I,2) with probability density

functions ft. If the prior probabilities of x from ITt are

1I't' the posterior probability Pr(ntlx) of coming from ITt

given x is by Bayes theorem,

t =1,2 (6.2.1)

and thus the log-odds in favour of x from nl is

(6.2.2)

(6.2.3)

The observation x is allocated ~ IT I or IT2 according as the

log-odds (6.2.2) are ~ o.

The posterior probabilities Pr(ITtlx) were described by

Cornfield (1962) as the risk of belonging to ITt given x.

The logit of risk where

Pr(IT1 1x)
logit {Pr(nIJx)} = In{l _ pr(IT1~}

WI f 1 (x)
= In{ f ( )}

11'2 2 x

is in fact the log-odds in favour of x from IT I , Cox (1966).
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If ft(xl~t,rt) = (2w)-lp Irtl-I exp{-Iwt(x)} (6.2.4)
-1

where Wt(x) = (x-~t)' r t (x-~t)

the log-odds in favour of x from IT1 (6.2.2), assuming equal

prior-probabilities is

where LO(T) denotes the phrase "log-odds true".

If r = r
1 2

LO(Te) = 1{-w1(x) + W2 (x)}

-1
= (~I-~2)'t {x-I(~I+~2)}

LO(Tu) = 1{-w1(x) + w2 (x) - tn(I;l/l r 2 1)},

where the subscripts e and u will denote whether r 1 = t 2 or

t 1 +t 2 • It is noted that LO(Te) = L(x) and LO(Tu) = Q(x) the

linear and quadratic discriminant functions of Section 1.2.
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6.3 Estimators of True Log-Odds '-

with

Some of the methods of estimating LO(T) proposed in

the literature are now considered. As LO(T) is a function

of the probability densities f t , a number of the methods.

reviewed are based on density estimates.

The Estimative Method:

The estimative or frequentist method corresponds to

Anderson's (1958) method of replacing the unknown

population parameters in the optimal allocation rules

L(x) and Q(x) by their sample estimates. For t} +t 2 the

density estimator of f t obtained on this basis is

rt(xlxt , St) = (2w)-lp Istl-I exp{-I wt(x)}

- -1 -where wt(x) = (X-xt ), St (x-xt ) is the sample counterpart

of Wt(x), (6.2.4). The resulting estimator of true log­

odds is then

LO(Eu) = tn{rt(x)}
r 2 (x)

for t} = t 2

rt(x/xt,S) = (2w)-lp lsi-I exp{-Iwt(x)}

- -1 -
wt(x) = (x-~)' 5 (x-~),
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....
Again LO(Ee) = L(x) and LO(Eu) = Q(x) the sample linear and

quadratic allocation rules, Section 1.3.

In the literature no specific justification apart

from intuition and consistency has been given for the

estimative approach. It is well known that LO(E) is a

biased estimator of LOCT). This prompted consideration

ofan unbiased estimator of true log-odds as well as an

investigation into the size of the bias and its

consequences for allocation. Mc Lachlan (1977) has

derived the aSYmptotic bias of the estimative odds when

t 1 :II: I 2 = I is unknown.

An alternative frequentist estimator might be based

on the uniform minimum variance unbiased (U.M.V.U.)

estimator of f t , viz.

:II: 0 otherwise,

Ghurye and Olkin (1969). With large p and small nt the wt(x) are often

large enough to result in zero estimates for both densities and

this approach seems unproductive.
III

The Predictive Method:

Here the true densities f t in LO(T) are replaced by

their corresponding Bayesian predictive densities. The

predictive densities are obtained as follows. Assuming that
-1

the non-informative prior density for Pt and It is

gt(Pt,t~l) a Ittll(P+l) dPt dt~l J the posterior density
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(6.3.1)

.. -1 - .
~ (lJt ' Et I~,St) is obtained in the usual manner. The ..

predictive density of x given it,St J pt(xlxt,St) is then

derived as

Pt(xl~,St) = I I ft(xlpt,Et ) ht(Pt,EtlIXt,St) dPt dEt
l

Jeffries (1961, p139). For multinormally distributed

populations the predictive density was given by Geisser

(1964) as

and for L
1

= L2 J m = m
1

= ~ = n1 +n2 -2 and St replaced

by s.

The predictive density Pt belongs to the multivariate -t

family of distributions.

The predictive log-odds is then

LO(P) = lnfP1 (x)}.
P2(x)

n
1 + I -2- WI (x)

1 ~ { n -1 }LO(Pe) = -J(2n-l) In n
I + I n2_1 w2 (x)

and for allocation purposes the predictive and estimative

methods are now identical.
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'-
In the classic study of the authorship of the

Federalist papers, Mosteller and Wallace (1963,1964),

log-odds were extensively used. LO(Tu) was estimated

by the estimative and predictive approaches, the latter

gave the smaller estimates, a confidence interval for

LO(Tu)' p=l, was also given. Based on the asymptotic

Normality of the standardised estimator LO(Ee),

Schaafsma and Van Vark (1977,1979) have obtained a

-confidence interval for LO(Te). Large differences in

the log-odds quoted in practice by the estimative and

predictive estimators were first noted by Aitchison and

Kay (1973). Further examples of such differences in

the estimators with small sample sizes were given by

Aitchison and Dunsmore (1975, Ch 12) and Hermans and

Habbema (1975). A limited simulation comparison of

the estimators was undertaken by Aitchison. Habbema and

Kay (1977), where the predictive estimator was distinctly

superior. Mc Lachlan (1979) derived the asymptotic bias

of the predictive odds when t} = t 2 = t and compared it

with the asymptotic bias of the estimative odds,

Mc Lachlan (1977), he concludes that the predictive

method is asYmptotically less biased then the estimative.

The superiority of the predictive method must be due

in part to the predictive density Pt being a better
~

estimator of f t than is the estimative density rt.

Adopting a measure of closeness based on the Kullback and

Liebler (1951) information measure, viz

. Pt J ~t(XI~·St)
E - S {t~--} =E- S [ ft(xl~t,tt) tn[- ( - s)} dx].
x,xt , t t xt, t r t x ~, t
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Aitchison (1975) showed this measure was positive and '_

independent of the population parameters Pt and Et , thi~

is interpreted as Pt being closer overall to f t than is

r t • Murray (1977) showed that of all densities based

on distances of the type (X-y) , S~l(x_y) and therefore

invariant to non-singular linear transformations, the

predictive density was closest to f t in the sense of
f

minimising E - S {tn(pt)}. If the estimated density
X,Xt t t-

is Normal i.e. ~lx) = Np(xt,atSt ), Murray (1979) showed

that - f
E - s {tn(ht )}
x,xt t t

is minimised

with

and

with St replaced by S.

The bia~ and mean square error of the predictive

estimator will be investigated in subsequent chapters and

compared with alternatives.
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Semi-Bayesian Method

The name Semi-Bayesian was used by Geisser (1967)

to distinguish the predictive method from an alternative

Bayesian approach. He viewed the problem of allocation

as one of estimating LO(T) and suggested as estimator the

posterior mean of LO(T) given x. For equal covariance

matrices and the non-informative prior distribution

gt(Pt,E~l)aIEtll(p+l)dPtdE~l Geisser derived this

posterior mean as

The result was extended to the unequal covariance matrices

case by Enis and Geisser (1970), to give

n -1 n n p
I 2 1- 2 ~ {E{LO(Tu) xl = LO(P ) + I[ptn(n -1) + p( ) + ~

~ 1 n1 n2 i=l

where ~(a) = r'(a)/r(a) is the digamma function. They

noted that'with equal sample sizes, nl = n2 , the posterior

means are unbiased and equivalent to the estimators given

by the estimative approach.
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The Likelihood Ratio Method

A likelihood ratio method of allocation was

considered in Chapter 2 with ~l = ~2 = ~ and ~ known.

This approach of choosing between the hypothesis x

in ill against the alternative hypothesis x in il2
results in a likelihood ratio estimator of posterior

log-odds. If the hypothesis with the larger

likelihood is favoured, then for equal prior

probabilities or pri~r support of zero, Edwards (1972,

p36), the likelihood ratio estimator or posterior

support, Edwards (p36 and Ch.9) is from Chapter 2

with ~1 = ~2

Similarly for ~1 +~2
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The similarity between the likelihood ratio and"

predictive estimators is striking. In fact for

n
l

= n
2

= n from (6.3.1) and (6.3.2)

LO(LRe) = 2n+l LO(P )
2n-l e

and the two methods result in identical allocation.

While no such simple relationship holds for t
1

+ t
2

,

the differences in the methods when nl = n2 are

slight and the behaviour of the predictive and

likelihood ratio estimators should be similar. The

similarity between the methods was noted by Aitchison

and Dunsmore (1975, p235), although they state

incorrectly that the methods are equivalent.

The likelihood ratio estimator differs from the

usual estimate approach by using such information

contained in the unidentified observation x. As such

differences in the methods should be apparent for nt
small and p large.

The Logistic Method

If the populations are multinormally distributed

with equal covariance matrices the posterior

probabilities pr(ITtlx) (6.2.1~may be written as

f 1 (x)
ff 1"rr 2 f

2
(x)

Pr(ITllx) = flex)

1+11'1 / .... 2 f
2

(x)

= exp (80 + 8' x)
1+exp(80 + S'x)"

and Pr(IT2Ix) = 1 - Pr(IT1Ix)

1
.-------~1 + exp(80 + S'x)
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WI -I
where Bo = tn CW2 ) - ~C~1-~2)' ~ (~1+~2) and B is a

p x 1 vector with B = (~1-~2)' ~-I. The functions

(6.3.3) and (6.3.4) are called multivariate logistic

functions, Cox (1966). The logit of risk (6.2.3) is

given by

logit{PrCIT1Ix)} = Bo + B'x

as noted by Cox (1966). If the covariance matrices are

unequal the arguments in the logistic model (6.3.3) and

(6.3.4) are no longer linear but quadratic. The

assumption of Normality of the populations is not

however a requirement of the logistic model. The model

is valid for a variety of population types including

discrete and a mixture of discrete and continuous

variables, as shown by Day and Kerridge (1967).

In practice if one postulates the linear logistic

form of the posterior probabilities, the problem is the

estimation of the p+l unknown parameters Bo,B I , .......•.

Bp • Maximum likelihood estimates of these parameters

have been given by Day and Kerridge, Anderson (1972),

Prentice and Pyke (1979). The later references deal

with separate samples from two populations rather than

a single sample from a mixture of the populations as in

Day and Kerridge. The quadratic case was considered by

Anderson (1975). Anderson in An~erson and Richardson (1979)

has considered correcting the maximum likelihood estimates

for bias having noted in his previous 1972 paper the

potential bias of all maximum likelihood procedures.and in a

simulation study the considerable difference between the

estimates and the true values. In his 1979 paper
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a simulation study on univariate Normal populations '..

with small sample sizes indicated that the corrected

parameters were much closer to the true parameters

than were the uncorrected. This reduction in bias

was effected without an increase in the variability

of the estimates and so results in a better estimate

of true log-odds.

The robustness of the logistic model to

population assumptions and the reduction in the

parameters make it an attractice model. McLachlan

and 8yth (1979) compared the classification performance

of the estimative and logistic allocation rules when

the populations are multinormally distributed with

equal covariance matrices. They derived asymptotic

expressions for the expectations of the actual

probabilities of misclassification of the logistic

rule and compared them to the corresponding expectat­

ions, Okamoto (1963), of the estimative rule. With n

large, p small and ~ ~ 3 the classification rates of

the rules were similar. This result should be related

to Efron's (1975) who derived the asymptotic relative

classification efficiency of the logistic to the

estimative rule. Efron shows that classification

efficiency deereases as ~ increases and has fallen to

.641 when ~ = 3. Parametric ~thods which assume normality

of the populations are unlikely to be rivalled by the

logistic method when the populations are normally

distributed. As this is the case here the logistic

approach is not pursued.
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The Non-Parametric Method
'-

Here the true densities ft in the log-odds ratio
A

are replaced by non-parametric density estimates fte
Unlike the parametric methods where the form of ft is

assumed knoWTI,the only assumption here is that f t are

continuous e Methods of non-parametric density estimation

are well developed and are reviewed in Cover (1972),

Wegman (1972a) and Fryer (1977).

In this thesis we have chosen the kernel approach

since unlike other non-parametric density estimates the

kernel estimate is itself a density. As such, kernel

discrimination is undertaken by estimating true log-odds.

Kernel density estimation is described in Chapter 9

where a kernel based estimator of log-odds is compared

with the estimative and predictive methods.
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CHAPTER 7

ANALYTIC EXPRESSIONS FOR THE BIAS AND MEAN SQUARE ERROR

OF THE ESTIMATIVE AND PREDICTIVE LOG-ODDS.

7.1 INTRODUCTION

In this chapter analytic expressions are obtained for the

bias and mean square error of the estimative and predictive

log-odds. Unconditional and conditional bias and mean square

error, where the observation x is fixed, are derived on the

assumption that the covariance matrices are known and unknown.

The estimative log-odds corrected for bias is also considered.

7.2 Bias and Mean Square Error

Here a system of notation is adopted and some necessary

results and conventions recorded. With estimators of true

log-odds denoted by LO(M) where M denotes the method of

estimation the derivation of biases and mean square errors

will require consideration of the following expectations.

The expectation of LoCM), conditional on a fixed value

of x, over repeated samples of size D l and n2 from fi l and

fi 2 , will be denoted by
E{LO(M) I»}.

The bias of LO(M) for x fixed is then defined as

B{LO(M) I xl = E{LO(M) I xl - LO(T).
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The unconditional expectation of LO(M) over repeated samples of

size nI and n2 from HI and H2 and over repeated observations
from Ht (t = 1 and 2) is

E{ LO (M)} = Ex [E { LO (M) I x}]

and the corresponding unconditional bias is

B{LQ(M)} = Ex[B{LO(M) I x}]

= E{LO(M)} - E{LO(T)}.

The mean square error (MSE) of the estimated

conditional on a fixed x in Ht is defined as

MSE{LO(~ I x} =E[{LO(M) - LO(T)}2 I xl

= V{LO(~I x} + [E{UO(M)I

=V{LO(M)I x} + [B{LO(M)I

log-odds,

x} - ID(T)]2
2xl] ,

with V{LO(M) I x} denoting the variance of LO(M) conditional

on x. The corresponding unconditional mean square error is

denoted by MSE{LO(M)}, where for x in H
t

, t = I and 2

MSE{LO (M) } = EI { IL> (M) - In (T) }2
]

= E [V{LO(M) x}] + E [8{ID(M) I x}2]
x x

= ExfMSE{LO(M) I x}].

The conditional bias and mean square error are considered

since the fixed x case is that which occurs in practice. The..
unconditional bias and mean square error provide an overview

of the performance of the estimators. The known covariance

matrices case is considered first as it gives some insight into

what happens when the covariance matrices are unknown, it also

allows the derivation of the mean square error of the predictive

estimator.
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7.3 True Log-Odds

Here for equal and unequal covariance matrices the means

and variances of LO(T) are established for later use.

In Section 6.4 it was noted that to(T ) = L(x) ande
LO(Tu) = Q(x), the linear and quadratic discriminant functions.

The distribution of L(x), x in ITt' t = land 2, is univariate

Normal with mean I 62 (_l)t-l and variance 62 where

62 = (~l - ~2)' I-I (~l - ~2)· Hence for x in ITt the

unconditional mean and variance of LO(Te) = 1{-w1 (x) + w2(x)}

where wt(x) = (x-~t)' I-I (x-~t) are

E{LQ(Te)} = 162 (_l)t-l, t = 1 and 2, V{UO(Te)} = A2.

(7.3.1)

The distribution of LO(Tu) = Q(x) was obtained in

Chapter 3. The expectation of LO(Tu) may however be obtained

directly as follows, noting that

LO(Tu) = I {-w1(x) + w2(x) - In(II 1 11I I 21)}
-1

and that for x in ITt' Wt(X) = (X-~t)' It (x-~t) is distributed

as a central X2 variate, hence E{wt(x)} = p. Now for x in HI
'p

where

-1
E{w2(x)} = tr I 2 E{(x-~2)(x-~2)'}

=tr I;1 {II + (Pl-~2) (PI-P2)'}--1 -1=tr I 2 II + (Pl-~2)' t 2 (Pl-~2)

-1 2=tr t 2 II + A2

2 -1.
At = (P1- P2)' It (Pl-~2)

Similarly for x in H2
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Hence for x in IT! the unconditional mean of LO(Tu) is

E{LO(Tu)} = I{-p + tr r;lr l + ~~ - tn(r r1I/l r2r)}

(7.3.3)

and for x in IT 2 is

E{LO(Tu)} = l{-tr r~lr2 - ~~ + p - tn(rr1I/lr2r)}.

The variances of LO(Tu) are not so easily obtained, the

expectations E{wl (x)w2 (x)}, E{w~(x)} and E{w~(x)} being

required, where w1(x) is not independent of w
2

(x).

Adoption of the standard canonical forms for IT! and IT 2 as

in Section 3.3, gives the distribution of x in IT1 as

Np(O,I) and in IT2 as Np(v,A) with A a diagonal matrix of

eigen values l., 1 ~ i ~ p. The following results for
1

x in ITt' t = 1 and 2, are needed later.

For x in IT1

p
= r

i=l

2l+v.
1

(7.3.4)

(
P l+V~) 2+ t __1

i=l li
2

P l+vi
+ P t

i=l li

. 2 p
E{w2(X)} = 2 t

i=l
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For x in H2

E{w1 (x)}
P 2

= 1: )..+v.
i=1 1 1

E{w2(x)} = p

2 P 2 2 P 2 2
E{w1 (x)} = 2 1: ).. + 2v.).. + ( 1: )..+v.)

.1 111 i=l 1 11=

(7.3.5)

Now V{LO(Tu)} = I E[{w1(x) - ~2(x)}2] - I [(E{wl(x)} - E{~2(x)})2]

and from (7.3.4) and (7.3.5). the variance of LO(Tu) for x in

U1 is
P P

21+2v.
V{LO(Tu)} = jp - 1: 1/).. + I 1: 1

lZ •1i=1 i=1 1

and for x in U2

V{LO(Tu)} = jp -
p

~ ).~ 2
1: ).. + I + 2 v.)..

i=1 1 i=1 1 1 1
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7.4 The Estimative Method, Ll = L2 known

For t known

'-

LO(Ee) = j{-w1(x) + w2 (x)}

where nt wt(x) =nt(x-xt ), L-1(x-xt ) A x2 (p, nt Wt(X)) (7.4.1)

and

Now E{X2(p,~)} = p+~ and

E{LO(Ee) I xl = I{-p/nl - wl(x) + p/n2 + w2(x)}

The unconditional expectation for x in ITt' t = 1 and 2, from

(7.3.1) is

Thus B{LO(Ee)} = B{VO(Ee) I xl

Conditional on x, n1w1(x) and n2w2 (x) are independently

distributed as non-central chi squares (7.4.1) with variances

2p + 4n
t
w

t
(x), t = 1 and 2. Hence

and as
MSE{LO(Ee) I xl = V{UO(Ee) I x} + [B{LO(Ee) x}]2

+
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Now for x in IT 1, w1(x) - x2 and w2(x) - X2(p,A2) and fer
2 p 2

x in IT2, w1 (x) - X (p,d2) and w2(x) - X p' hence the

unconditional mean square error for x in IT
1

is

MSE{LO(Ee)} = Ip (.1... + ..!...)
n2 n2

1 2

and for x in IT2

With n1 = n
2

= D these reduce to

(2n+l) d2MSE{LO(Ee)} =p ~ + ;- t X in ITt' t = I and 2.

7.5 The Estimative Method r 1 + r 2 known

where

with

For r1 + r2 known

to(Eu) = 1{-w1(x) + w2(x) - tn(l r
1 1/I r21)}

- -1 - 2
D t wt(x) = nt(x-xt ), r t (x-xt ) - X (p, ntwt(x))

-1
~t(X) = (x-pt )' r t (x-p t )

and hence

.,
From (7.3.3) the unconditional mean for x in IT l is

1 2 I I I I + Ip (n1 -n2 )E{LO(Eu)} = I{-p + tr ri r1 + d2 - tn( r1 I r2 )} 2 n 1n 2

and for x in IT2

Eh.oCEu)l" = I£-tr 1:111:2 -t.~ + P - tnCll:d/l1:21)} + IP(~~~:2)
and the bias is

.'J . ., (' ,
.' .' - .' .. ,.).
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As in Section 7.4 the conditional mean square error

of LO (Eu) is

MSE{LO(Eu)

The unconditional mean square error from the results (7.3.2) is

for x in II}

MSE {r.o (Eu) }

and for x in II2 is

MSE{W(Eu)} " Ip en! ~ ~

7.6 The Predictive Method, r l = r 2 known

For r 1 = r 2 known, the predictive density for a multinormally

distributed population, with the conventional non-informative

prior density'for Pt as g(p
t

) a d Pt , was given by Geisser (1964)

as
Pt(x) = (2w)-lp ct

1p I r I-I exp {-I ct wt(x)}

where ct = nt / nt +1 and wt(x) =_ (x-it)' r- 1(x-it ), t = 1 and 2.

It is interesting to note that here, with r known, the predictive

density is itself multinormal with mean it and covariance matrix

(1 + l/nt )r and is very simi~ar to the estimative density

Np{xt,r).

Thus LO(Pe) • in {PI (x) }
P2{x)

" I [p tn {n l ~n2+~~} _ nIl '\ (x) + n 2
1
~ (x)] ,

n 2 n 1+ nl+ n2+
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From the results on LO(Ee), Section 7.4 it follows that ..

E{LO(Pe) I xl = I[p in (c l /c2) - n ~l' {p + nlwl(x)}
I

and for x in ITt' t = 1 and 2

E{LO(Pe)} = I[p in (c l /c
2

) + c
3

_
t

d2 (_1)t-l].

Hence the biases are

B{LO(Pe) t x} = I[p in (c l /c
2

) - 1_ {p -wl(x)}
nl+l

I .
+ -- {p - w

2
(x)}],n2+l

and for x in IT
I

B{LO(Pe)l = I[p in (c l /c2) - nl+l d2],
2

while for x in n2

B{LO(Pe)} = I[p tn (c
l
/c

2
) +~ d 2].n

l

For nl = n2 = n these reduce to

B{LO(Pe) I x} =n : I LO(Te) - LO(Te) = 1
n + I LO(Te)

I=---n + I

..
I d2 (_I)t-l, t = 1 and 2.

Both biases are negative, indicating that the predictive method

understates true log-odds. It is particularly noteworthy that

for n
l

=n2 the biases are independent of the dimension

parameter p.
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From Section 7.4

and hence

'\e

MSE{LO(Pe) x} = V{LO(Pe I x}-+ [B{LO(Pe) I x}]2 •

The corresponding unconditional mean square error for x in

IT I is

MSE{LO(Pe)} = Ip!( I )2 + I } + nl
nl+l (n2+1)2 (n

1
+1)2 p

+ n2 2 (p+~2) + E [B{LO(Pe) I x}2]
(n2+1) x

and for x in IT2 is

MSE{LO{Pe)} = IP{(nl~1)2 + (n2~1)2) + (n:~1)2 (p+6
2
)

+~p + E [B{LO(Pe) I x}2],
n2 +1 x

where after'some algebraic manipulation

4p + 2p ]
- (n1+1)(n2+1) (n2+1)2

with c =p In (c l !c2).
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For n1 = n2 =n these mean square errors simplify to

MSE{LO(Pe) I xl =(n:l) 2 MSE{LO(Ee) I xl + I 2 L02(T )
(n+l) e

and MSE{LO(Pe)l

7.7 The Predictive Method, II +I 2 known

For II +I 2 but known the predictive densities are

Np(Xt , (1+1/nt )I
t
), t = 1 and 2.

and LO(Pu) = I{p tn (c l /c2) - c1w1 (x) + c2w2 (x) - tn (IIII/II21)}

Again the means and mean square errors of LO(Pu) may be deduced

from those in Section 7.5 for LOCEu).

I I·
Thus E{LOCPu) x} = I[p in (c l /c2) -nt+I{P + n1wI(x)}

+ n2~1{P : n2~2(x)} - tn(IE1 1/IE21)]

-1
where wt(x) = (x-pt )' It (x-pt ),

'.

for x in HI

E{LO(Pu)} s I[p tn (c l /c2) +'n:~~{-p + trE;lE 1 + 6~}

- tnCI I 11/I I 21)]
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and for x in IT2

2 -1
where as before At = (11

1
-11

2
)' r (11 11)"" "" t ""1-""2 t = 1,2.

The corresponding biases are
" . "I,

8{LO(Pu) I x} = I[p In(c
1
!c

2
) - ~p - ~ (x)}, n}+I~ }

and for x in IT}

1 [ ., ( ! )". I· { t ~-1~ + A 2}]= 2 P ~n C 1 c2 -'n +1 -p + r ~2 ~1 u
22

while for x in IT2

8{LO(Pu)}

The conditional mean square error of LO(Pu) is

MS~{LO(Pu) I x} =V{LO(Pu) I x} + (B{LO(Pu) I ~})2

where from Section 7.5

'. +
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The unconditional mean square error of LO(Pu) is

MSE{LO(Pu)} = Ex[MSE{LO(Pu) f ~}J,

in terms of the canonical forms of the populations, Section 7.3,

Ex[V{LO(Pu) I x}] 1 1 n1= Ip{(nl +I)2 + (n2+1)2} + (n
1
+1)2 P

n2 p I+v~
(7.7.1)

+ r 1 I for x in IT I(n2+1)2 i=1 A.
1

Ex[V{LO(Pu) I x}] Ip{ 1 2 1 } nl P 2
= + 2 +

(nl+1)2
r(A.+v.)

(n l +1) (n2+1) i=l 1 1-

J
for x in IT2 •

As in Section 7.6 after lengthy algebraic manipulation and

use of the results (7.3.4) and (7.3.5) on LO(Tu) we obtain

for x in IT l

E [B{LO(Pu) I x}2]
x

2
}

p
+ 2 r

i=l

21+2v.
1

)] . (7.7.2)

and for x in IT2
2c P 2 2p= l[c2 - -- {p -·r (A.+v.)} + 2

n1+1 i=l 1 1 (n2+1)

P 2 2+2 r (A.+2v.l.»]
. 1 1 1 1
1=

where c = p In (c l /c2).

Combining (7.7.1) and (7.7.2) gives the unconditional mean square

errors MSE{LO(P )} x in nt' t = 1 and 2.
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7.8 The Estimative Method, t 1 = E2 Unknown ....

For E1 = E2 = t unknown

LO(Ee) = I{- w1(x) + w2 (x)l

where now wt(x) = (x-it)' 5-1 (x-it)' t = I and 2, and

(n
1

+n
2
-2)5 has a Wishart distribution, W(p, n

1
+n2-2,E).

Conditional on x,

Wt(x) - P 1 F(p, D-+n2-p-l, nt~t(x))n
l

+n
2
-p- -~

The mean of a non-central F variate, F(vl,v2'~)' is

and therefore

E{LO(Ee) I xl

(7.8.1)
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The unconditional mean of LO(Ee) for x in ITt is

E{LO(E )} = n1+n2-2 {lA2(_1)t-1 + 1 (nt-n2)} t =
e n +n -p-3 2 2P n n '

1 2 1 2

and corresponding biases are

I and 2,

and

For n1 = n2 = n the biases are non-zero, unlike the case of

I known, Section 7.4. The estimative method over-states true

log-odds, this overstatement increases with increasing

dimension p and separation d. The main source of bias is the

coefficient
nl+n,-2
n1+n2 -p-3

which arises in
E(S-l) = nl+n2-2 I-I

n1+n2-p-3

Das Gupta (1968), Lachenbruch (1968).

The conditional mean square error of LO(Ee) is

MSE{LO(Ee) Ix} = E{L02 CEe) I ~} ~2E{LOCEe) r x} LO(Te) + L02 (Te)
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The conditional expectation E{L02 (Ee) I xl is in gene~al a

complicated expression and details are left to Appendix 7.A.

The result for nl = n2 = n is

I (2n-2) 2 2
E{L02(Ee) xl = d [{~2 + n (2n-3)l (x-n)' r-1(x-n)

P ~2
+ (2n-3) {~ + --2 1 + (2n-p-3) L02(T~Jn n

where n = I(PI+P2) and d = (2n-p-2)(2n-p-3)(2n-p-S).

Since for x in Rt , t = 1 and 2, (x-n)' r-1(x-n) - x2(p,1~2),

the unconditional expectation when n l = n2 = n is

+ (2n-p-2) ~4/4J,

and the corresponding conditional and unconditional mean square

errors of LO(Ee) may be written as

MSE{LO(Ee) r xl = E{L02(Ee) I xl - 2n+p-l LQ2(Te)2n-p-3

and

MSE{LO(Ee)}

x in nt' t = 1 and 2.
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7.9 The Estimative Method, r t +r 2 and both unknown

For r 1 +r
2

and both unknown

LO(Eu) = 'I{-wl (x) + w
2

(x) - tn(ls l I/ls 2 Ill.

and oot (x) = (x-pt )' r-t(x-p ) t = 1 and 2,
t t

giving (7.9.1)

•••• y2 ,Anderson (1958,pI71)
''"Jlt -p

and E{tn r St rl r f
P. 2= tn tt - ptn(nt -l) + t E{tn ~ .}.

i=1 t-1

2 .
Now E{tn Xv} = '(~) + tn2, Johnson and Kotz (1970, vol. 1, P196)

where '(a) = rta) / rea), the digamma function, Abramowitz and

Stegun (1965, P258) and thus

n -1 P nt-i
E{tn r 'St I} :: In I tt J - ptn(~) + r '(-2-). (7.9.2)

1=1

Combining the results (7.9.1) and (7.9.2) it follows that
- nt- l "p n2-1 P

E{LO(Eu) I xl = 1[- 2 (- + 001 (x»+ 2 (- +002 (x»n1-p- nl n2-p- n2

I
nl-l

- tn(1 II I/It2 ) + ptn(n
2

_1)

P nl-i n2-i
- I {'(----r) - '(-2)}]

i=1
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and for x in HI

and for x in H2

. n -l'p -1 2E{ LO (Eu)} = I[1 (+ t L L + d )- n
t
-p-2 TIl r I 2 I

The corresponding biases follow from the above expectationse

For n
l

= n
2

.= n they reduce to

8{LOCEu) I x} = P+12 I{-ool(x) + oo2(x)}
n-p-

p+l »+1 I I I I= n-p-2 LO(Tu) +~ 11n( II I I 2 )

8{LOCEu)}

and

8{LOCEu)}
p+l -1 2 ]= 2 1[-trL1 L

2
- A + P , x in H2en-p- ~
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Th ff"· nt- l . ~e coe lClents 2 in the expectations E{LO(~,) xl
nt-p- U

and E{LO(Eu)l result from S~l. Estimation of the covariance

matrices is the main source of bias.

The derivation of the mean square errors seems in

general to be interactable involving expectations like

E{tnIStr(x-xt)' s~l(x-it)l. The conditional expectation

of this term when p = I may be derived as follows:

Let S = s and E = (J when p = 1t t t t
- 2

then tnlstlCx-it )' -1 - (x-xt )
St (x-xt ) = tn St St

.-

Conditional on x

and

and St and it are indeperidently distributed. As

E[x2(v,A)] = v + A, E[l/x2
v] = V~2 and E[t~~2YJ= v~2[.(V;2) + t n2]

v
the result follows. We have been able to extend this result

to the unconditional case for p > 1 provided the covariance

matrices are proportional, details are given in Appendix 7.8.

There it is used to derive the unconditional mean square error of

LO(Eu)·
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7.10 The Predictive Method, E1 ~ E2 , unknown.

For E unknown the predictive estimator of log-odds is

from (6.3.1)

ln
[

{I + c1/m Wl(~)}] (7.10.1)
LO(Pe) = Iptn (cl /c2 ) - I(m+l) ~~1~+---c;-J~m---w2~(~x~)~}

where m = n1 +n2-2, Ct = nt/(nt+l) and Wt(x) = (x-Xt)' S-l(x-Xt),
t = 1 and 2.

The expectations E{LO(Pe) I x} and E{LO(Pe)} involve the

derivation of

E[tn { 1 + Ct /m Wt(x)}] t = 1 and 2.

The unconditional case is easier and will be considered first.

Let Zt = Ct/m Wt(x) t = 1 and 2

then LO(Pe) = Iptn(c
1
/c

2
) - l(m+l) [In(I+Z1) - 1n(1+Z2)]

(7.10.2)

and for x in n1

and·

where

ZI - ~l F(p,m-p+l) = x2 /x2
m-p+ P m-p+l

1
= BClp,ICm-p+l))

As ZI is a scalar multiple of an F variate the moment generating

function of 1n(1+Zl) is

! - 1

~ ZI m+1 dZ1 ,
o (I+ZI) ,- - s

(/2 m-p+l) .
SUbstitution of y = ZI/(I+Z

1
) where y - Beta p , ---2--- gives
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E{(I+Z )s} = l ~
1 B(E.. m-p+ 1)

2' 2
I

I n 1 m-p+l -s-1

oy

2 - -
(l-y) 2 dy

B(E.. m-p+l _ )
2' 2 s=----....,,-.--

B(P . m-p+1 )
2" ' 2 •

(7.10.3)

The derivative of (7.10.3) with respect to s at s = 0 is

f' (m+1) f' (m-p+l)
E{1n(I+ZI)} 2 2=

f (m+1) f (m-p+1)
2 2

=~(m+l) _ ~(m-p+1)
2 2

where ~(a) = feCal/rCa) is the digamma function.

(7.10.4)

For t = 2, Z2 has a non-central F distribution and the density

of Z2/(I+Z2) is now a weighted sum of Beta densities with

parameters (p/2+j, m-}+l) and Poisson probability weights with

parameter IA1, Johnson and Kotz (1970, vol. 2, pI91). The

corresponding moment generating function of 1n(1+Z2) is
• B(~ • m-p+l _ )

( lAl)j lA 2 +), 2 s
E{(I+Z2)s} = t 2 e- 2 1

. j~ B(n • m-p+l)
)=0 ~ +J J 2

and the derivative at s = 0 is

e-1A1 ~(m;l +j)] _ ~(m-~+l).

(7.10.5)

Use of the digamma functions recurrence relationship.,
,(a+l) = ,(a) + l/a, allows us to write

1 m+1 j-l 2
,em; +j) = 111(2) + t m+I+2i' j ~ 1

i=o

and so

t
j=o

(7.10.6)
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Combining the results (7.10.4), (7.10.5) and (7.10.6)

in (7.10.2) gives

00

E{LO(Pe)} =! In(c1/c2) + E
j=l

j-I
-1).1 E m+l

e . m+I+2i
1=0

(7.10.7)

Similarly for x in n2
j-I

E
i=o

m+l
m+l+2i

(7.10.8)

The unconditional bias of LO(Pe) is therefore

B{LO(Pe)} = E{LO(Pe)} - 1~2(_I)t-l, x in nt, t = I and 2.

For n
1

= n
2

= n, c
1

= c2 and we see that the unconditional

expectation~ and biases of LO(Pe) are independent of the

dimension parameter p and depend only on the separation A

and sample size n.

Upper and lower bounds on R{LO{Pe)} may be obtained as

follows.
j-l

As .jl' E
J+ i=o

it follows that

m+l
m+l+2i

, j for j ~ 1
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Thus using (7.10.7),for x in n

1

and from (7.10.8),for x in n2

With equal sample sizes c1 = c2 and the unconditional bias

of LO(Pe) may be bounded for x in n1 as

-162 < B{LO(Pe)} < - n~l 162

and for x in n2 as

_(_162) > B{LO(Pe)} > - n~1(-162).

(7.10.9)

For equal sample sizes, therefore, the bias of LO(Pe) is

independent of the dimension parameter and Pe on average

understates the true log-odds for observations from either

population.

We now consider the derivation of the conditional

expectation E{LO(Pe) I xl. Conditional on x we define

Zt = nt/m Wt(x) t = 1 and 2

-

The expression (7.10.1) for LO(Pel may now be written as

LO(Pe} = I ptn (cl /c2) - l(m+I)[ln(I+Zl/k t } - In(I+Z2/k2)]

(7.10.10)

where kt = nt+1.
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Noting that Zt/(l+Zt) is again distributed as a weight~d

sum of Beta's with parameters

(~ . m-p+l)
2+ J'-r-

I {
BCT> 0 m-p+l,
~J, 2 1

and Poisson weights with parameter lAt. The transformation

Yt = Zt/(I+Zt) now gives

GO (IAt)j
= !:

j, ~ .
j=o

J;
~ 0 1 m-p+1 I
2 J- 2-

Yt (I-Yt)

and the derivative with respect to s at s = 0 is

I . {

(p m-p+l,
B 2'"j, 2 1

i= -

But -In(I-Yt) = In(l+Zt ) and the result (7.10.4) gives this

part of the expectation. As 0 , Yt < I and Ct = nt/nt+1 < I

we may write

and so
. j I j-I

~+1 1 GO!: ( IAt) e- 2 At{to 2
{ ( / l ' _ .,.(m-p+ , + ~ --"..~}E 1n I + Zt~) =, --2--1 V 2 1 0' m+l+2ij=1 J. i=o

(7.10.11)

Combining (7.10.10) and (7.10.11) the conditional expectation

E{LO(Pe) I x} follows and the conditional bias is given by

B{LO(Pe) I xl = E{LO(Pe) I xl - LO(Te)·
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From (7.10.11) it is clear that the bias B{LO(Pe) xl
does depend on the dimension parameter p even when n1 = n2

unlike the unconditional bias B{LO(Pe)}.

Derivation of the mean square error of the predictive

estimator when E is unknown proved intractable.

7.11 The Predictive Method, E1 ~ E2 Unknown

With E} +E2 and unknown the predictive densities as

given in Section 6.3 result in the predictive estimator

LO(Pu) where

LO(Pu)

witRlD =n -I,
t t

till and 2.

Conditional on x

c =n I(n +1)t t t.,
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With nl = n2 = n for simplicity, from the result (7.10.11)

and E{tnlStlJ Section 7.9, the conditional expectation

E{LO(Pu) I xl may be written as

00 j-l
~}{e-IAI

(IA
1
)j

E{LO(Pu) I xl = -ltnCl r 1 1/J r 2 1) - L { r n+21 .,
j=l i=o ) .

(lA2)j} n i [
-I A2

00 00

(n+~)n
L L- e +-j! 2 • i=1)=0

B(¥+' • n-p) (I AI) j (I A2) j ~.: 1+J , 2
{e- IAl -I A2, ., - e .,

B(~j, n;p) J. J.

The unconditional expectation E{LO(Pu)l can not be

obtained from the results of Section 7.10 because, for

x in nI , w2 (x) is not distributed as a scalar multiple of

an F variate. However one case which may be partially solved

is that of proportional covariance matrices, i.e. aLl = L2'

a > 0 and a.+ 1. ~

Now for x in nl
c1!m1 w1(x) - ~ FCp. nl-p)

.,

where Al and
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and

then from (7.10.4)

E{ln (1 + c1/m1 w1(x)} = E{ln (1 + Zl)} = ~(n~) _ ~(nl;p).

(7.11.1)

Where •

with the transformation y= Z2/(I+Z2) and the result (7.10.11)
it follows that

Eftn(I + Z2 /k)} = H~}- .t2?) + ; (I~~)j e-I~l {j~l 2 .}
j=1 J. i=o n2 +21

(7.11.2)
. n a-I

Where at E l - 11k = ~1 (---~. However for this series
n2+ a

expansion to be valid -1 < ~ ~ 1 hence

n2
a > 2n

2
+1.

III

Combining (7.11.1) and (7.11.2) and the expectations

E{ ln ISt l} results in the unconditional expectations

E{LO(Pu)} when the covariance matrices are proportional.

A similar result holds for x in IT2 and with nt = n2 =n for

simplicity we obtain

(I~t)j _j~ j-l n
-:-:-- e t t --

J" ! . n+2i
1=0

•
E{LO(Pu)} = (_l)t-Ir E

j=l

•n
- 2 t

j=o
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....
x in II t = I and 2, where

t

n 2
Al = - A}n+a

and

_n_ A
2

A2 = an+l I

a = ~ (a-I)
I n+l a

n
a2 = n+l (I-a)

provided -I < ~ , 1 i.e. __1_ < a < 2 + ~ •
2+!

n

The unconditional bias is now given by

B{LO(Pu )} = E{LO(Eu)} - E{LO(Tu )}

where from (7.3.3) with proportional covariance matrices

and

I-a I 2
E{LO(Tu)} = I{p(-a-) + a Al + pinal

E{LO(Tu)}
2

= l{p(I-a) - Al + pinal

The mean square errors of LO(Pu), E1 +E2 unknown have proved

to be intra~table.
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7.12 Unbiased Estimation of True Log-Odds
,.

As was noted in Section 6.3 LO(Ee) = L(x) is a biased

estimator of true log-odds. Lachenbruch (1968). In Section

7.8 we noted that the main source of bias in LO(Ee) when E

is unknown is due to the multiplicative constant

nl+n2-2

n 1+n2 -p-3

in the expectation of 5-1 • However an allocation rule with

zero cut-off point is invarient to multiplication by a

positive constant. For estimation however unbiased estimators

seem worth considering.

Unbiased estimators of true log-odds are easily derived

from the results on LO(E). Sections 7.4, 7.5, 7.8 and 7.9.

From these sections it follows, with LO(U) denoting an

unbiased estimator, that

for E} = E2 known LO(Ue) = LO(Ee) - Ip(n1-n2ln1n2

(7.12.1)

and for 1:] f E2 known LOCUu) = LO(Eu) - Ip(n t -n2l ·
°1°2

With n
J

= n
2

the estimative and unbiased methods are identical

and result in identical allocatfOn.

From (7.12.1)
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For ~1 = ~2 unknown

_ nl+n2-p-3
LO(Ue) - n +n -2

1 2

and with n1 = n2 allocation by LO(Ee) and LO(Ue) is identical.

The mean square errors of LO(Ue) may for ~ unknown be obtained

from Section 7.8 and Appendix 7.A. For n1 = n2 = n they are

I 2n-p-3 2 2 I 2MSE{LO(Ue) x} = ( 2n-2) E{LO (Ee) x} - LO (Te)

MSE{LO(Ue)}

x in nt, t = 1 and 2.

In Appendix 7.8 the unconditional mean square error of LO(Eu),

~1 and ~2' both unknown but prOP6rtional, is derived.

As MSE{LO(Uu)} = E{L02 (Uu)} - E{L02(Tu)} and with n1 = n2

E{L02(Uu)} = lE[(n~~i2)2 {-wt(x) + w2(x)}2

+ (n-p-l)-2{-w
t

(x) + w2(x)} In{ISt IIIS2 1} +" {lnISlI/IS21}2]
n-l
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where E(a)~ E(b)~ E(c) and E{L02 (Tu)} are given in

Appendix 7.B,the unconditional mean square error of

LO(Uu) for aLl = L2 unknown is obtained.

As (Xt,St) is a complete sufficient statistic for

(Pt~ Et)~ it follows from the Rao-Blackwell theorem~ that

the unbiased estimator LO(U)~ being a function of these

sample parameters is in all cases~ the uniform minimum

variance unbiased estimator.
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Appendix 7.A

The Expectations E{L02 CE e) I x} and E{LO~CEe)}, when t is unknown

With t unknown

• v t S-l(x-n)

where v and

We assume without loss of generality the usual canonical

form of the populations IT! and IT2 i.e. y in IT} is distributed

as NpCO,I) and in IT2 as NPC9,I) where e = C6,O,O, •••• 0)'.

Now EfLO~(Ee) I v,n,xl = E[{v' S-1(x-n)}2]

= (x-n)' E[S-l v v' s-11 (x-n)

m2
=~ (x-n) , [v'v + (m-p-l) vv'] (x-n)

m2=41 [v'v (x-n)'(x-n) + (m-p-l){v'(x-n)}2]

where d = (m-p) (m-p-l) (m-p-3).

..

TRe expectation E[S-1 vv' S-1 I v] is due to Das Gupta (1968)

who derived the covariance matrix of the sample discriminant

coefficients 5-1 CX1-X2).
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It follows that

= E [E{L02 (Eel r v,n,x}]v,n

(7.A.l)

m2
= T E [v'v x'x - 2v'v X'"a v,n

+ v'v n'n + (m-p-l) {v'(x-n)}2I

Four individual expectations are required. They are

n1+n2E {v'v XiX} = x'x trE{vv'} = x'x tr{------ I + ee'}v,n n
1

n
2

(7 .A. 2)

=

•

152



-
E {2 v'v x'n} E[x'X

I xixi - 2
,- -,- ,- -,-= x xl X

I
X2 + X X X2X2V~n I

+ x'x -,- 2 x'x -,-
+ x'x X~X2]xl Xl - X

I
X22 2 2

= [0
2x'e---n1

pX'e 'acD+2+0+ -o+x -'-+
nl n2

(7.A.4)

where the expectations E{x'i1 i;x1} and E{x'x2 x~x2} result

from E{z'y y'y f z} = i'e{(p+2) + e'e} if y - Np(e,I).

E [{v'(x-n)}2] = lE[{(x-x1)' (x-xl) - (x-x2)' (x-x2)}2]
v~n

as n (x-x) (X-x) - X2(p~ nl x'x) independently of
I I I

n2(x-x2), (x-x2) - X2(p~ n2(x-e) , (x-e)) it follows that

2p+4n1 x'x
= 1[ n2 +

1

_ p+n2 (x-8) '(x-a) )2]
- n2

4x'x
+ -- +n1

4(x-9)'(x-9)
n2
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For the unconditional expectations

E{L02 {Ee)} = Ex[E{L02 {Ee) I x}]

and x in fit, t = I and 2, formulae (7.A.2), (7.A.3), (7.A.4)

and (7.A.5) may be combined as in (7.A.I) noting that for

t = I, x ~ Np(O,I) and

E{x'x) = p, E{x'e) = 0, E{(x-S), (x-e)} = p + ~2

E{LO(Te)} = 1~2 and E{L02(Te~} = ~2 + 1~4,

for t = 2, x ~ Np(e,I) and

E{x'x) = P + A2 , E{x'9) = ~2, E{{x-e), (x-e)} = p

With n
l

= n2 = n the formulae for the expectations

may be reduced considerably to

+ (m-I) {~ + ~2} + (m-p-I) LQ2{Te)]
n 2n

and
E{L02 {Ee)} =~2 [(m-I) {p{2:;I) + n:1 ~2} + (m-p) ~4/4),

x in nt, t = 1 and 2.
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Appendix 7.B

The Unconditional Mean Square Error of LO(Eu) when the

Covariance Matrices r t are Proportional but Unknown.

With proportional covariance matrices art = t 2, a > 0,

a +1 it may be assumed without loss of generality that

lJ1 = 0, 112 = a where e = (~l' 0, 0 ----- 0)' with fJ.2 =
-1 1

hl~.-P2)' t 1 (PI-P2)' r 1 = I and r 2 = aI. For r t unknown.

where Wt(x) t ~ I and 2,

and MSE{LO(Eu)} = E{{LO(Eu) - LO(Tu)}2] (7. B.l)

Now E{L02(Tu)} x in ITt' t = I and 2 may be derived in general

from the results of Section 7.3, for proportional covariance

matrices the results are

2
+ fJ.}/a + plna}2 (7.B.2)

2= Ip - po + lpa~ + afJ.f + !(p(l-a) - ~} + plna}2

x E IT2

The expectation E{LO(Eu) LO(Tu)} may be derived in general by

considering Ex[E{LO(E~) I x} LO(Tu)], where the conditional

expectation E{LO(Eu) I x} is given in Section 7.9. Once

again the results of Section 1.3 may be employed to obtain

the unconditional expectation.
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For proportional covariance matrices and equal sample sizes

01 = 02 =° for simplicitY,the results are

2p-.. 2
1

2
n I 0 _ 2n-

E{LO(Eu) LO(Tu)} = l[ - 2 {2p + p2 - 4p/a - ---~ ~n-p- a a

+~a

2
p+L\} 2

+ (--) }
a

2

+ plna (2n-p-3) {-p- + ~ + ~} + (plna)2]
n-p-2 a a

(7.8.3)

and E{LO(Eu) LO(Tu)}

= IE [ a + b + cj ..

the expectation of a, band c are considered separately.
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the expectation of the covariance may be derived conditional

on x first and then unconditionallyusing the results of

Section 7.3. The expectations are

E(a) = (n2_1,2[ p2 + 2p ] + ((n+a) (n-I))2[(p+~1)2+ 2(n+2~1)]
---n-1 (n-p-2) (n-p-4) an (n-p-2) (n-p-4)

for x in III
n 2

and l} = --- AI'n+a (7.8.4)

(7. B. 5)

Consider now E{c} = E{tn2lS1f - 2tnlSlltnlS2f + ln2lS2r}

where 51 and 52 are independently"distributed. Now Istf = 1~I/(nt-l)P

where A - W (n -l,r ) and IAtl/lrtl - * X2 i where the X2,s
t p t t i=1 nt- p

are independent, Anderson (1958, pI71), hence 1nl~r/rrtJ - r 1n X2 i.
i=1 nt-

nt -1 AJ.
Now E{in X2 .} = ;(---2-) + 1n ~nt-1

and

2 nt-i
V{tn X .} = .' (--)nt-1 2

where
d2

,'(z) =~ 1n fez)
dz"

is usually referred to as the trigamma function, Abromowitz

and Stegun (1965, p260). It follows with some manipulation that

n -1 p n-l
E{tn IStl} = 1n Irtl - ptn (~) + E .(~)

1=1

and

151



' ..
Hence with n1 = n2

p
E{c} = 2 E

i=l

p
= 2 E

i=l

Finally consider

+

+

[ln1E11 - lnlE21]2

(7.8.6)

E{b} = 2 E{w1(x)lnIStl - W2(X)lnfStf - wl (x)lnfS21

+ w2 (x) ln IS2 f}
the expectations E{wl(x)lnIS21} and E{w2(x)lnrStl} are easily'

derived by independence. the expectations E{wl(x)lnrSlf} and

E{w2(x)lnIS21} are more difficult and have only been derived

when the covariance matrices are proportional. We give the

derivation in some detail for x in HI. the results for x in H
2

require only minor changes.

With x in ITt

-1 - n1+1 I f -1E{ ln ISI I (X-Xl)' 51 (X-Xl)} =~ E{ln 51 trSl }

I I -1 n2 +(1 f I -1 " 2 11E{ln S2 (X-x2)' 52 (x-x2) = ---- E{ln 52 trS2 + tn,S2 81 52 }n2

_L 11. h f' 1 • h t f 5-1 ThWilere 52 15 t e 1rst e ement 1n t e race 0 2. e
~ -1

expectation E{lnrSlltr 51 } is r~quired. a similar proof holds

for t = 2.

Now (nl-I) 51 • "p(n l -1.I). let 51 =A/(nl-I) then

tnl51ltr 5~1 = (n1-l){tnIAltr A-I - pln(nl -l) tr A-I}

I -I -1
and as E(A- ) • t

l
/(nl -p-2). E{tr A } =p/(n l -p-2).
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Consider now the expectation E{lnIA(tr A-I}

if A = (aij) i,j = 1,2, ----- P ,

Ar = (aij) i,j = 1,2, ----- r, 1 ~ r ~ p

.• 1 2 then tr A-I -_ ~ aii •1,) = ,,---- p ~

i=l

Now IApr lAp-II IA2 1
(AI = lAp-lr x lAp-2r x --------- x lA1T x (AI I

lAp-II I
where aPP = rxpr-- by definition of A-

and as the ordering of the elements is arbitrary, this

approach applies to aii in general.

With y. = ~AAil r' 1 ~ i ~ P and IAol = 1 say. then
1 i-I

P
IAI = , II Yi : .

i=l .
where y., 1 ~ i , P are independently distributed a central

1

X2 with n
1
-i degrees of freedom, Rao (1973, p540), thus

P 1
E{ln(A[ aPP} = E{( 1: tn Yi) --}

i=l Yp

. tnyp p-l 1=E{----} + E{ 1: Yi} E{--}
Yp i=1 Yp

1 n1 -p-2 p-l' nl-1
= 2['( 2) + t ~(-2-) + ptn2)

n1-p- i=1
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Hence

similarly

After some lengthymanipulation and n
1

= n2 we have

E{b} n2 -1 p {-2= 2 -- -~-",---=-
n n-p-2 n-p-2 - pinal

+ 2 (n+a)(n-l) (P+Al) { 2
an n-p-2 - n-p-2 + pinal, x in ITI

and E{b} 2 n2-1 p {_ 2= - + pinaln n-p-2 n-p-2 (7.8.7)

+ 2 (an+l) (n-l) (P+A2){_ 2 }
n n-p-2 n-p-2 - pina , x in IT2

where Al and A2 are as defined in (7.8.4) and (7.8.5).

Combining the results (7.8.2), (7.8.3), (7.8.4), (7.8.5), (7.8.6) and

(7.8.7) in (7.8.1) the unconditional mean square error of

LO(Eu), x in ITt.t = 1 and 2, when aLl = L2 ,is obtained.
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CHAPTER 8
' ..

COMPARISONS OF THE ESTIMATIVE AND PREDICTIVE ESTIMATORS OF LOG-ODOS

8.1 Introduction

The results of the previous chapter supplemented by

simulation studies will be used to compare the estimative and

predictive approaches to estimation of true log-odds. An

adjusted predictive estimator which closely resembles the

likelihood ratio approach of Section 6.3 is also considered.

8.2 Canonical Forms and True Log-Odds

Without loss of generality it is assumed that when

t
1

= t
2

= t, the true densities f t (6.2.4) are given by

f l = Np(O,I) and f 2 = Np(9,I)

where 9 is a p-dimensional vector, the first element of which

is A and the remaining elements zero. The true distances

wt(x) of an observation x from a population mean as defined

in (6.2.4) are therefore given by

P 2 2 P 2
W1(X) = t x· and fA)2(x) = (xI-~) + t x. (8.2.1)

1 1
1=1 1=2

~

and the true log-odds may be written as

LO(Te) = I{-wl(x) + fA)2 fx)}

=,·-~{xI - I~}. (8.2.2)
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8.3 A Comparison of the Estimators for t
1

= t
2

known

and Equal Sample Sizes.

In this and the following section we compare the

estimative and predictive estimators when t
1

= t
2

= t

is known. Our reasons for considering the t known case

are; exact expressions for the conditional and

unconditional bias and mean square error of all the

estim~tors were derived withthis assumption in Chapter 7.

When t is unknown the mean square error of the predictive

estimator is unavailable. In Chapter 2 with t known we

have established the effect of unequal sample sizes on
A

the classification behaviour of L(x) = LO(Ee) and

Z(x) a LO(Pe). Now we can investigate the interrelation­

ship between bias and misclassification. Finally our

study of the t known case indicates the form of our study

when 1: is unknown.

For the moment we assume that the sample sizes are

equal i.e. n
l

= n
2

= n. It follows from Sections 7.4,7.6

and 7.12 that

LO(Ee) = LO(Ue)

and (8.3.1)
n

LO(Pe) = n+l LO(Ee)

with unconditional bias and mean square errors

B{LO(Pe)}

MSE{LO(Ee)}

B{LO(Ee)} = B{LO(Ue1} ~ 0

= -11 E{LO(Te)}n+

(2n+l) A2
=P---=r +-n n

= 1__ IA 2 (_l)t-l
n+l

(8.3.2) ,

x in Rt t. 1 and 2.
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From (8.3.2) we note that the estimative method is

(for n1 = n2 ) unbiased,while LO(Pe) is negatively biased

thus understating true log-odds. We also note that the

relative bias of LO(Pe) i.e.

B{LO(Pe)} I E{LO(Te)}

is - n~l. This relative bias is small, independent of

p and 6 and decreased as n increases.

Consider the difference

DMSE(A) = MSE{LO(Ee)} - MSE{LO(Pe)}

= . .1 [ (2n+1)
2

+ A 2 (n+1) I"]
(n+l)2 P nUn - A •

It is clear that it is a function of A and the following

properties are easily deduced.

DMSE(A) has maximum positive difference when

6 = /2(n+l) = 6 say
n max

2 2
DMSE(6 ) = 1 [p (2n+l) + (n+l) ]

max (n+l)2 n n

DMSE(A) > 0 for 0 ~ 6 < 60 where

6 • [~ {(n+l) + ~(2n+I)2 + (n+l)2}]1on.,

DMSE(Ao) =0 and DMSE(A) < 0 for 6 > 60

DMSE(A) + 0 as n + - and DMSE(6) + - as p + -.

In Table 8.3.1 we give for a range of values of nand p the

maximum difference DMSE(A ), the value of MSE{LO(Ee)} atmax
6 and the value 60 at which MSE{LO(Ee)} =MSE{LO(Pe)}.

max
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Table 8.3.1

The Maximum Difference in the Unconditional Mean Square Error ~f

the Estimators LO(Ee) and LO(Pe), r known and n1 • n2 •

-0\•

DMSE(dm~)

~ 12 24 48

1 .03 .01 .00

4 .11 .03 .01

8 .21 .06 .~n

16 .42 .11 .03

M5E{LOOEel} at ~max

~ 12 24 48

1 0.35 0.17 0.08

4 0.87 0.43 0.21

8 1.59 0.77 0.38

16 2.96 1.45 0.72

Value at 6n at which DMSE(6) = 0

~ 12 24 48

1 2.62 2.58 2.56

4 3.28 3.24 3.22

8 3.76 3.72 3.70

16 4.36 . 4.31 4.28



From Table 8.3.1 we see that the maximum difference in .

mean square error between the estimators is slight dec~easing

with increasing n but increasing as p increases. This slight

difference in the estimators may be anticipated from (8.3.1).

The value of Ao at which the mean square errors of the

estimators are equal, indicates that the populations must be

well separated for the predictive method to have the larger

mean square error.

We now consider the estimators for fixed categories of

true log-odds to see if the behaviour of the estimators is

untform over the range of possible LO(Tel.

From Sections 7.4, 7.6 and 7.12 the conditional bias

and mean square error of the estimators are

B{LO(Eelrx} = B{LO(Uelrx} = 0

B{LO(Pellx} = - n~l LO(Te) (8.3.3)

MSE{LO(Ee) 'x} =~ + ~{wI(Xl +~2(x)}

MSE{LO(Pe)rx} = (n:l~2 MSE{LO(Ee)rx} + [B{LO(Pellx}]2.

From (8.3.3) we see that the mean square errors of the

estimators d~pend on the individual distances Wt(x) and not

simply their difference as in LO(Te). Choice of A and XI

in (8.2.2l determines LO(Te). We must now specify reasonable

values for the remaining p-l elements of x, where Xi' 2<i<p

are independent and identically distributed as NI(O,I)

variates, Section 8.2. The values chosen were the expected

values of the order statistics of a.random sample of size

p-l from a NI(O,I) distribution. In retrospect it is clear

from (8.2.1) that we need only have specified a reasonable

value for
P 2 2
r Xi X.

ta2 p-l

the mean p-l being one possibility.
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Figure 8.3.1

o
+ +

zero. low.

IA2+1.6449t\
+
high

LO(Te)

.,
*Optimal probability of misclassification given by t(-IA).
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In fixing true log-odds for x from IT
1

we wished to

investigate the behaviour of the estimators for high,

medium, low and zero log-odds. Now for x in IT
1

,

LO(Te) - N1 (162 ,A2) and so a medium LO(Te) say varies

with 6. Thus we set LO(Te) equal to the 95th, 50th,

(t(-}A) + .05) x lOOth and t(-IA) x lOOth percentiles

for high, medium, low and zero log-odds, where t(-J6)

is the optimal probability of misclassification (PMe),
'Figure 8.3.1.

In Table 8.3.2 we tabulate the conditional mean

square error of LO(Ee) and LO(Pe) for n = 12, P = 1,4,8

and 16, A = 1.049 and 3.290. As well as indicating the

category of true log-odds we also give in brackets the

value of LO(Te).

For high true log-odds and as might be anticipated

from the unconditional results, with A large, the

conditional mean square error of LO(Pe) exceeds that of

LO(Ee), Table 8.3.2. Overall the difference in mean

square errors are slight and will decrease with increas­

ing sample size n. As the bias of LO(Pe) (8.3.3) depends

on the size of LO(Te) it accounts for the larger mean

square error of LO(Pe) for high true log-odds when 6 is
large. _

We conclude that with t known and nl = n2 there is

little to choose in bias and mean square error between

the estimators, which have identical allocation. Given the

conservative bias of LO(Pe) and its smaller mean square

error for reasonable values of 6, and so of LO(Te), the

predictive approach is preferable.
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Table 8.3.2

The Conditional Mean Square Error of LO(Ee) and LO(Pe), I known and n1 = n2 •

Sample Sizes n1 • n2 • 12

Method Ee & Ue Pe

Category of LOeTe) zero low med. high zero low med. high

Size of LO(Te) (0) (0.15) (0.55) (2.28) (0) (0 .15) (0.55) (2.28)
A & PMC p

I 0.05 0.06 0.10 0.84 0.04 0.05 0.09 0.74

A • 1.049 4 0.31 0.32 0.36 1.10 0.27 0.27 0.31 0.97

.30 8 ! 0.94 0.95 0.99 1.73 0.81 0.81 0.84 1.50

16 2.29 2.29 2.33 3.07 1.95 1.95 1.99 2.65

Size of LO(Te) (0) (1.19) (5 .41) (10.82) (0) (1.19) (5.41) (10.82)

1 0.46 0.48 0.91 2.26 0.39 0.42 0.95 2.62

~ • 3.290 4 0.72 0.74 1.17 2.52 0.61 0.64 1.17 2.84

.05 8 1.35 1.37 1.80 3.15 1.15 1.18 1. 71 3.38

16 2.69 2.71 3.14 4.49 2.29 2.32 2.85 4.52



8.4 A Comparison of the Estimators for ~ known and Unequal

Sample Sizes

With unequal sample sizes the situation is more

complicated and more interesting. The estimators are now,

LO{Ue)

A

With L{x) and Z{x) denoting the sample linear discriminant

function and Z statistic of Chapter 2, we note that
A

LO{Ee) = L{x)

(8.4.1)

and so the unconditional distribution of the estimators may

be obtained from the results of Chapter 2.

Given the connection between bias and allocation i.e.

persistent understatement of true log-odds may be so severe

that the sign of the estimator ~ incorrect and so misclass­

ifies, we investigated the effect of unequal sample sizes on

the misclassification performance of the estimators. With

~ =8, n
2

= 40, assuming that in all cases allocation is

based on the sign of the estimators, evaluation of their

exact expected actual PMC's, Section 2.5, indicates that in
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contrast to LO(Ee)

the unbiased rule

,.
= L(x), Tables 2.10.1 and 2.10.2.

almost equates the expected actual PMC's. In fact LO(Ue)

is in this regard almost as good as the Z statistic,

Section 2.10, whereas LO(Pe) a linear function of Z(x),

(8.4.1) is almost as sensitive to n
1

+n
2

as is LO(Ee).

The above suggest that an adjusted predictive estimator

which we will denote by LO(PAe), where

LO(PAe) I Z(x)

(8.4.2)

is worthy of consideration. This adjusted predictive

estimator is in fact the likelihood ratio estimator of

Section 6.3. We also conclude that adjustment of the

cut-off point from zero to

,.
in the standard linear allocation rule L(x), will improve

its classification behaviour when n
1

+n2 •

With n
1

+n2 the unconditional bias of the four

estimators are

B{LOCEe)}

B{LO(Ue)} = 0 (8.4.3)
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We note that the relative biasi.e. 8{LO(M)}/~{LO(Te)}­

where E{LO(Te)} = 162 (_I)t-1 t = I and 2,if negative

denotes understatement, if positive overstatement, of

true log-odds for IT 1 with x in IT
1

or IT2 • From (8.4.3)

we see that with n
l

+n
2

the bias of LO(Ee) depends

on p but not on 6. However its relativ~ bias does and

decreases as 6 increases. If n
l

< n
2

the relative

bias of LO(Ee) is negative in IT 1 but positive in IT2 and

vica versa if n > n. The bias and relative bias of
1 2

LO(Pe) now depends on p as well as 6. If n
l

< n2 the

relative bias of LO(Pe) is negative in IT1 , for IT2 true

log-odds may be understated or overstated depending on

n
l

, n2 , p and 6. The bias of the adjusted predictive

estimator LO(PAe) is independent of p, its relative bias

is

t = I and 21
n

3
_
t

+1

which is always negative, independent of 6 and so LO(PAe)

understates true log-odds in both populations.

The unconditional mean square errors of the estimators

are

MSE{LO(Ee)}

where, for x in IT2 62/n2 is replaced by 62/n1_.,

2
MSE{LO(Ue)} =MSE{LO(Ee)} - [8{LO(Ee)}] x in ITt' t = I and 2.

(8.4.4)
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MSE{LO(Pe)} 1= Ip{ 2
(n1+l)

(8.4.4)

n1 (n2 +1) 2 1 1 2
+ [Ip tn{n

2
(n

1
+l)}] + Ip{(nl+i) - (n

2
+1)}

x in It
l

x in Itt' t = 1 and 2.

From (8.4.4) we note that if n
t

< n
2

the mean square errors

of LO(Ee), LO(Ue) and LO(PAe) for It l are less than their

counterparts in Jt 2 • With n
t

+n
2

the mean square error of

LO(Ue) is always less than that of LO(Ee)- With nl < n2 ,

. n
t

(n
2

+1)
Ip tn{ }n2 (n t +l)

is negative as is the bias of LO(Pe) in Jt l hence the mean

square error of LO(PAe) (8.4.4), is less than that of LO(Pe)

in ITt- For IT 2 however the mea~square error of LO(PAe) may

be larger than that of LO(Pe) depending on the relative

size of nl to n2, and the size of p and ~.
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...
In Taole 8.4.1 we tabulate some unconditional biases

and mean square errors of the four estimators for both

populations. The sample sizes were chosen so that

n1 + n2 = 48 and evaluations were carried out for various

ratios of n1 to n2 , the particular case listed is n1 = 8, n
2

= 40.

Results for other ratios were similar but less marked.

From the biases Table 8.4.1, we note as shown the

understatement of true log-odds by LO(Ee) and LO(Pe) in

n} and the overstatment by LO (Ee) in Il2 • This corresponds .'.

with the misclassification behaviour noted in these

estimators. The size of the bias of LO(PAe) = fZ(x) and

its relationship with LO(Pe) (8.4.2) indicates the amount

of understatement that may occur in the predictive

approach without seriously imbalancing the misclassification

rates. We also note in Table 8.4.2 that there is little

difference between the mean square errors of the estimators,

with LO(Ee) having the largest mean square error in both

populations.

We conclude that for t known and n1 +n2 , the unbiased

estimator LO(Ue) is superior to LO(Ee), with smaller mean

square error, zero bias and good classification behaviour.

The adjusted predictive estimator LO(PAe) even though it

may have slightly larger mean s~are error than LO(Pe),

has good classification behaviour, understates LO(Te) in

both populations and is considered the better predictive

approach. The choice between LO(Ue) and LO(PAe) is more

difficult as they have similar classification behaviour.

The slight conservative bias of LO(PAe) and its somewhat

smaller mean square error give it an edge here.
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Table 8.4.1

The Unconditional Bias and Mean Square Error of LO(M) ,

M in {Ee,Ue,Pe,PAe}, t known and nl +n2 •

Sample Sizes

nl • 8, n2 • 40

Population II I II2

Method E Ue P PAe Ee U P PAee e e e

6 & PMC P Bias Bias

1 -.05 a -.06 -.01 -.05 a .01 .06
6 • 1.049 4 -.20 a -.20 -.01 -.20 a -.13 .06

.30 8 -.40 a -.39 -.01 -.40 a -.31 .06
16 -.80 a -.76 -.01 -.80 a -.68 .06

6 • 3.290 1 -.05 a -.18 -.13 -.05 a .55 .60
.05 4 -.20 0 -.32 -.13 -.20 0 .42 .60

8 -.40 0 -.50 -.13 -.40 0 .23 .60
16 -.80 0 -.R8 -.13 -.80 0 ~.14 .60

Method E U P PA E U P PAe e e e e e e e

A &PMC P MSE MSE
f"

1 0.19 0.19 0.16 0.16 0.30 0.30 0.26 0.26
6 • 1.049 4" 0.70 0.66 0.60 0.56 0.81 0.77 0.67 0.66

.30 8 1.45 1.29 1.24 1.09 1.56 1.40 1.28 1.19
16 3.20 2.56 2.73 2.15 3.31 2.67 2,71 2.25

A • 3.290 1 0.43 0.43 0.43 0.41 1.51 1.51 1.64 1.70

.05 4 0.94 0.90 0.90 0.81 2.03 1.99 1.91 2.10
8 1.70 1.54 1.58 1.34 2.7,3 2.62 2,32 2.63

16 3.44 2.80 3.16 2.41 4.52 3.88 3.35 3.69



8.S A Comparison of the Estimators when E is unknown and
'-

We begin our investigation of the three estimators

LO(E ), LO(U ) and LO(P ) when the covariance matrix Ee e e
is unknown.by considering their behaviour in the

unconditional case. This will give us an overview of

their performance. In subsequent sections their conditional

behaviour and their behaviour when n1 t n2 is considered.

Here the three estimators will be compared in terms

of unconditional bias and mean square error where the

unconditional mean square error of LO(Pe) is estimated by

simulation.

From Sections 7.8, 7.10 and 7.12

LO(Ee) = I{-wl (x) + w2 (x)}

LO(Ue) = 2n-p-3 LO(Ee)2n-2
n

{I + (n2 -I)
IW1 (x)}

LO(Pe) = -1(2n-l) 1n I n ~
{I + (n2 -1) IW2 (x)}

and all three estimators provide identical classification.

The unconditional bias of the estimators have already been

derived as

B{LO(Ee)} = p+1
2n-p-3

where A ;: ....!!-.
n+1

B{LO(Ue)} = 0

•
B{LO(Pe)} =[ I

j=l

(8.5.1)

CIA)l e- 1A { j~1 2n-I.} -IA2 ] C_I)t-1
j ! 2n-I+21i=o

A2 and x in fit' t = I and 2.
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i.e.

It is clear from (8.S.l) that the relative bias of LO~Ee)

p+l
2n-p-3

is positive in both populations~ thus LO(Ee) overstates

LO(Te) in both populations. Also its relative bias

is independent of A, increases with increasing p and

decreases as n increases. The bias and relative bias

of LO(Pe) are independent of p when nl = n2 • From

(7.10.9) the relative bias of LO(Pe) is bounded above

by - n~l and below by -1, x in ITt' t = 1 and 2 and so

LO(Pe) on average understates LO(Te) in both populations.

The relative bias of LO(Pe) decreases as n increases and

increases with increasing A.

The relative biases of LO(Ee) and LO(Pe), multiplied

by 102 for convenience, are tabulated in Table 8.S.l for

various combinations of n, p and A. The infinite series

in B{LO(Pe)} was summed by recursivly evaluating the

terms (I~)j/j! and j-l
2n-l

t 2n-l+2i.
i=o

The residual sum at any stage j = r aay be bounded above

as follows

CD

t
j=r+l

_I~. j-I 2n-l) CD

e {.t 2n-l+2i < t
i=o j=r+l

III

CD

= I" t
j-l=r

r-J
:: I"{l - E

j=o

(l~)j-l

(j -1) !
-I"e

-j,,}e .

Evaluation of the series was terminated when the residual

was less than 10-4 •
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Table 8.5.1

The Relative Unconditional Biases of LO(Ee) and LO(Pe) x 102 , t unknown and n1 =n2 •

­""
<2

P"'4
P"'4
c.s

Method Ee

l~ 12 24 48

1 10 S 2
4 29 12 6
8 t 69 24 11

16 340 S9 22

Method Pe IE{LO(Te)}!

~ 12 24 48 I~A2(-1) t-TI

1.049 -9 -S -2 0.55

1.683 -12 -6 -4 1.42

2.563 -17 -10 -5 3.28

3,.290 -23 -13 -7 5.41

."



In Table 8.5.1 we note the large positive relative bias

of LO(Ee) when p is large and n is small regardless of

the separation of the populations. The size of this

relative bias is directly attributable to estimating
-1

t by the inverse sample covariance matrix S-I. The

unbiased method adjusts for this. The negative relative

bias of LO(Pe) is small even for well separated

populations.

From Sections 7.8 and 7.12 the unconditional mean

square errors of LO(Ee) and LO(Ue) are given by

MSE{LO(Ue)}
2

= (2n-p-3)
2n-2 (8.5.2)

d = (2n-p-2) (2n-p-3) (2n-p-5)

The conditional and hence the unconditional mean square

errors of LO(Ue) are always less than those of LO(Ee);

this follows from the elementary-result, if X = LO(Ue)

and E(X) = a = LO(Te), Y = LO(Ee) = eX where

2n-2e = > 12n-p-3

then (8.5.3)

if c > 1.

'~om (8.5.2) we note that both unconditional mean square

errors increase with increasing p and A, they decrease as

n increases.

178



A simulation study was undertaken to estimate

the unconditional mean square error of LO(Pe), the

details are as follows. For each n,p combination,

2n observations were generated from IT I , a Np(O,I)

distribution. Details of the random number generator used

are given in Appendix B.A. By an additive transformation

the sample mean x2 was calculated for various values of A

i.e. population IT2 . Also generated and stored were 100

test observations from IT} and the mean, bias, variance

and mean square error given a particular set of sample

parameters was calculated for these test observations.

By repeating the sample generation process 100 times

estimates of the unconditional mean, bias, variance and

mean square error of LO(M), M in {Te , Ee , Ue , Pel were

obtained. Estimates were also obtained of the misclass-

ification rates of LO(Te) and LO(Ee) i.e. all three

estimators. The test observations were stratified by

size of LO(Te), four strata corresponding to the quartiles

of the distribution were used and the unconditional mean,

bias and mean square error of the estimators recorded for

each strata. Using standard statistical tests the

estimated mean, variance and error rate of LO(Te), the

number in each strata of LO(Te), and the unconditional

mean of LO(Ee) and LO(Ue) were compared with their exact

values. At the 5% level no significant results were­recorded.

The exact and estimated unconditional mean square

error of LO(Ee), LO(Ue) and LO(Pe) are given in Table

8.5.2 for a range of n, p and A. At the base of Table

8.5.2 we indicated for LO(Ee) and LO(Ue) the minimum

and maximum ratios of their estimated mean square errors

to their exact values.
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-CD
Q

Table 8.5.2

The Unconditional Mean Square Errors of LO(Ee), LO(Ue) and LO(Pe), ~ unknown and n1 = n2 •

Method Ee Ue Pe

~ & Sample Sizes n1 • n2 Sample Sizes n1 • n2 Sample Sizes n1=n2PMe p 12 24 48 12 24 48 12 24 48

1 0.56 0.23 0.10 0.46 0.20 0.10 0.32 0.16 0.07
~ • 1.049 4 2.52 0.76 0.31 1.43 0.59 0.27 1.38 0.46 0.23

.30 8 10.78 1.94 0.66 3.53 1.20 0.52 2.46 1.01 0.51
16 447.10 7.93 1.72 22.26 4.97 1.11 9.45 2.98 1.04

1 1.25 0.49 0.22 0.99 0.44 0.21 0.63 0.33 0.16
~ • 1.683 4 4.46 1.30 0.52 2.41 0.98 0.45 2.03 0.78 0.38

.20 8 17.88 3.11 1.02 5.43 1.83 0.79 3.51 1.44 0.78
16 687.32 12.39 2.60 32.61 4.26 1.59 12.41 4.11 1.43

t

1 3.48 1.35 0.60 2.73 1.20 0.57 1.80 0.96 0.45
A • 2.563 4 10.21 ' 2.87 1.11 5.20 2.08 0.95 3.77 1.85 0.85

.10
8 38.31 6.38 2.02 10.47 3.47 1.49 5.89 2.61 1.45

16 1330.18 24.70 4.95 58.34 7.45 2.75 18.55 6.46 2.34

1 7.24 2.78 1.23 5.65 2.47 1.16 4.36 2.29 1.04
~ • 3.290 4 19.38 5.33 2.03 9.50 3.76 1.71 6,92 3.73 1.67

.05 8 70.05 11.36 3.50 17.75 5.82 2.49 9.30 4.54 2.44
~6 2269.69 43.22 8.37 93.29 11.70 4.31 26.05 9.32 3.51

Min. Ratio 0.70 0.60 0.75 0.67 0.66 .75
i

Max. Ratio 1.43 1.20 1.19 1.40 1.21 1.14



The most notable feature of Table 8.5.2 is that the predictive

estimator LO(Pe) has the smallest mean square error for all

combinations of n, p and A. This was also true of the

simulation results. Like the mean square errors of LO(Ee)

and LO(Ue) those of LO(Pe) increase with increasing p,

decrease as n increases and increase with increasing A.

The difference between the mean square errors of LO(Ee) and

. LO(Ue) is substantial when p is large and n is small.

Similarly for p large and n small there is a noticeable

difference between the mean square errors of LO(Ue) and

LO(Pe).

Overall for E unknown and nl = n2 the unbiased

estimator is the superior frequentist approach, given LO(Ee)'s

overstatement of LO(Te) and its larger mean square error.

However LO(Pe)'s understatement of LO(Te) and smaller mean

square error especially for large p and n small make the

predictive approach preferable.
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8.6 Comparing the Estimators LO{Ee), LO{Ue) and LO{Pe~

for fixed True Log-odds, t unknown and Equal Sample Sizes.

In this section we address the problem of where LO{Pe)

derives its superiority by investigating the behaviour of

the estimators for fixed true log-odds for x from RI • The

three estimators are compared in terms of their conditional

bias and mean square error.

From equations (7.8.1), (7.10.10) and (7.10.11) the

conditional bias of the estimators are

B{LO(Ee) Ix} =
p+l LO(Te)

2n-p-3

B{LO(UeJlx} = 0

B{LO(PeJlx} = E{LO(Pe) Ix} - LO(Te)

where • j-l (I).I)j (1).2)j2n-1 {e-I ).1 e- I ).2E{LO(PeJlx} = -t t 2n-1+2i j! . , }

j=l i=o J •
(8.6.1)

n i
i ~i+j-k• • (n+1)2n-l {+ -2- t t i
n ( )

j=o i=l k 1 2n-l . . k= ~1+J-

e- I ).1
(I).l)i -1).2 (1).2)j

}
j! - e .,

J •-
and ).t = n Cl)t(xJ, t = 1 and 2.

As in Section 8.5 the relative conditional bias of LO(Ee) i.e.

B{LO{EeJlx}/LO(Te) is
p+l

2n-p-3

and so independent of the size of true log-odds. The size of
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this relative bias indicates the inadvisability of using LO(Ee)

as an estimator of LO(Te). Considering the conditional bias

of LO(Pe) we note that it is not just a function of LO(Te) but

of the individual distances wt(x) and unlike its unconditional

bias it now depends on the dimension parameter p. For zero

true log-odds all estimators are unbiased.

In Table 8.6.1 we list the relative conditional bias x 102

of LO(Pe) for low, medium and high true log-odds percentiles

as specified in Section 8.3. The relative bias of LO(Ee) is

as given in Table 8.5.1. The first infinite series in

E{LO(Pe)rx} (8.6.1) was evaluated as described in Section 8.5.

The second and double infinite series is

(I~t)j
n i

i ¥-i+j-kCD

e-I~t
CD (n+l)

t ., t ----.--- n ( )
j=O J. i=l

1 k=1 2n-l . . k-y-t"1+J-

00

e-j~t
(j~t)j

= t I. say
j=O j! J

where the inner series I. is independent of ~t. If evaluation
J

of I. is terminated when i = r ~ 1 the residual sum may be
J

bounded above by

n=- tn(1 - n+l) -

r
= tn(n + 1) - t

i=1

t
i=r+l

i
n

k=1

~i+j-k
( ) <
2n-l . . k
~1+J-

t
i=r+l

n i
(-)
n+l'

i
as p < 2n-l

n i
r (n+l)
t i

i=1
n i

(ii+T)

i
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This upper bound depends only on n. Hence for given n'~he

value of r at which evaluation of I. may be terminated for
J

a pre-set to1erence of 10-4 is the same for all p and j.

Further as I. is independent of ~t the values of I. were
J J

stored to avoid unnecessary computation. If evaluation of

the double infinite series is terminated when j = m > 0

the residual may be bounded above by

E
j=m+1

(8.6.2)

which may be summed as the series is summed. Evaluation of

the double infinite series was terminated when the upper

bound (8.6.2) was less than 10-4 •

Noting that negative relative bias implies understatement

and positive relative bias overstatement of true log-odds, we

see from Table 8.6.1 that LO(Pe)'s tendency to understate

LO(Te), Section 8.5 is due to its understatement of high LO(Te)

regardless of n, p and d. Overstatement of LO(Te) by LO(Pe)

is confined to low and medium log-odds and increases as 4

decreases, it is however small. With increasing! the under­

statement of LO(Te) spreads to medium CA = 2.563) and low

(A = 3.290) true log-odds. The influence of increasing p is

small and is not consistent. As anticipated the relative bias

of LO(Pe) decreases as n increaseS.
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Table 8.6.1

The Relative Conditional Bias of LO(Pe) x 102, t unknown and nl • n2.

Method Pe

Sample Size n1 • n2 • 12 n1 =n2 = 24

Category of LOeTe) low med. high low med. high

Size of LOeTe) 0.15 0.55 2.28 0.15 0.55 2.28

b. &PMC P

A • 1.049
1 7 2 -15 0 2 -8
4 13 9 -11 7 4 -5

.30 8 13 9 -11 7 5 -5
16 7 7 -11 7 5 -5

Size of LOeTe)
~

4.190.28 1.42 4.19 0.28 1.42

A • 1.683
1 11 -2 -21 0 -1 -11
4 7 4 -17 4 2 -9

.20 8 7 4 -16 4 3 -8
16 7 3 -17 4 3 -8

Size of LO(Te) 0.63 3.28 7.50 0.63 3.28 7.50

A • 2.563
1 -3 -9 -28 -2 -5 -16
4 3 -4 -25 .2 -2 -14

.10 8 3 -3 -25 2 -1 -13
16 2 -5 -25 2 -1 -14 I

Size of LOeTe) 1.19 5.41 10.82 1.19 5.41 10.82

1 -8 :-16 -34 ..4 -9 -21
A • 3.290 4 -3 .. 11 -31

I
-1 -6 -18

.05 8 -3 ..11 -31 0 -5 -18
16 -3 -12 -31 -1 -5 -18



We now consider the conditional mean square errors of

the estimators, those of LO{Ee) and LO(Ue) were derived in
Chapter 7 as

MSE{LO{Ee) 'x} = E{L02{Eellx} 2n+p-1 L02(Te)
2n-p-3

and

MSE{LO{Ue)fx}

where

2
= (2n-p-3)

2n-2

(2n-2)2
= d

d = (2n-p-2)(2n-p-3){2n-p-Sl and n = 1{~1+~2).

From the canonical forms of Section 8.2

(x-n)' I-I (x-n) = (x-Ie)' (x-Ie)

2 p 2= (xI-I~) + I x.
i=2 1

and L02{Te)

As noted in Section 8.5 the conditional mean square error of

LO{Ue) is always less than that of LO(Ee). Both mean square

errors increase with increasing p and decrease with increasing

n, for all LO(Te). The relative-conditional mean square

error i.e. MSE{LO(M) Ix} / L02(Te) of LO{Ee) and LO{Ue) decrease

with increasing LO{Te) > 0 for all fixed A > O. This indicates

that LO{Ee) and LO{Ue) give better estimates of higher rather

than lower true log-odds.
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In Table 8.6.2 we list the conditional mean square errors

of LO(Ue) and LO(Pe), the latter derived from the simulation

study of Section 8.5. The estimator LO(Ee) is omitted as

LO(Ue) is clearly superior. At the base of Table 8.6.3 we

indicate the minimum and maximum ratio of estimated to exact

mean square error of LO(Ue).

In Table 8.6.1 we note that the conditional mean square

errors of LO(Pe) are always less than or equal to the corresponding

mean square errors of LO(Ue), in the simulation study they were

always less than. The one exception is for A = 1.044, P = 8,

n = 12 and low LO(Te), however allowance must be made for the

sampling error in the predictive results. For high LO(Te) and for

all p, n and A, LO(Pe) has smaller mean square error than LO(Ue).

The mean square errors of LO(Pe) display similar behaviour to

those of LO(Ue) as regards increasing n, p, A and LO(Te). As

for LO(Ue) the relative conditional mean square error of LO(Pe)

indicates better estimation of higher rather than lower true

log-odds.

We conclude that for I unknown and n t = n2 , when p is large

and n is small, the predictive estimator LO(Pe) is superior to

the unbiased estimator LO(Ue) regardless of size of LO(Te) or A.

This preference for LO(Pe) is due to its considerably smaller

mean square error, Table 8.6.2, rather than the size of its

bias, Table 8.6.1. For n or p mOderately large the difference

in the methods is slight.
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Table 8.6.2

The Conditional Mean Square Errors of LO(Ue) and LO(Pe), ~ unknown and n
1

• n2 •

Sample Sizes nl :I n = 12 n l = n2 = 24

Method Ue Pe UP. P~

Cate~ory LOeTe) low med. hi2h low med. hi2h low rned. hiQh low rned. hiQh

A &PMC p

1 0.06 0.14 1.51 0.06 0.14 1.00 0.03 0.06 0.68 0.03 0.06 0.58
A • 1.049 4 0.52 0.61 2.24 0.51 0.61 1.41 0.21 0.25 0.91 0.20 0.24 0.70

.30 8 2.15 2.28 4.47 2.16 2.20 2.52 0.73 0.77 1.51 0.62 0.71 1.27
16 17.27 17.70 25.26 9.11 9.71 9.91 2.30 2.36 3.31 2.17 2.20 2.52

1 0.15 0.49 3.23 0.12 0.44 2.09 0.07 0.22 1.44 0.06 0.20 1.19
I! • 1.683 4 0.78

t
1.19 4.46 0.77 0.81 2.38 0.32 0.48 1.79 0.29 0.46 1.16

.20 8 3.03 3.58 8.02 3.01 3.04 3.54 1.02 1.21 2.66 1.00 1.21 1.99
16 23.88 25.83 41.49 10.03 10.55 10.60 3.16 3.39 5.28 2.92 3.04 3.50

1 0.37 1.81 8.15 0.26 1.25 6.45 0.17 0.80 3.57 0.16 0.74 3.35
I! • 2.563 4 1.37 3.11 10.70 1.38 1.48 6.98 0.56 1.24 4.22 0.51 0.93 3.68

.10 8 4.97 7.32 17.64 4.41 4.36 7.30 1.67 2.43 5.75 1.62 2.10 4.19
16 38.29 46.76 83.80 15.76 16.23 17.76 5.02 6.00 10.30 4.48 4.79 6.10

1 0.69 4.26 15.53 0.43 2.66 14.98 0.32 1.87 6.76 0.30 1.61 7.75
I! • 3.290 4 2.14 6.42 19.93 1.69 2.67 15.90 0.87 2.54 7.81 0.80 1.60 6.28

.05 8 7.31 13.13 31.50 5.57 5.69 20.73 2.44 4.30 10.17 2.31 . 3.28 8.42
16 55.17 76.24 142.70 19.92 18.62 29.99 7.19 9.60 17.20 6.14 I 6.73 10.54

Min. Ratio 0.65 0.66 0.70 .67 .67 .71

Max. Ratio 1.40 1.25 1.19 1.05 1.07 1.10



8.7 A Comparison for the Estimators for t unknown and

Unequal Sample Sizes

The Comparison of Section 8.S is extended here to

consider the effect of unequal sample sizes on the estimators

when the covariance matrix t is unknown. Included in the

comparison is an adjusted predictive estimator which is

denoted by LO(PAe). As before the comparison is based on

evaluation of unconditional biases and mean square errors

with estimation of expected actual probabilities of misclass­

ification now included.

The four estimators of true log-odds are now given by
A

LO(Ee) = 1{-w1 (x) + w2 (x)} = L(x)

(8.7.1)

LO(Pe)

{I
n1 WI (x)

+--- }

[
n 1+1 n1+n2 -2

]n2 w2 (x) }{I +--
n2+1 nl+n2- 2

In Section 8.4 with t known we noted the connection between

bias and misclassification performance when n1 +n2 • From

(8.7.1) we see that if we classify observations using the sign
~ A

of the estimators, then classifying by sign of LO(Ee) = L(x)

is equivalent to using the sample linear discriminati~Afunction

with zero cut-off point. Classifying by sign of LO(Ue) is

equivalent to
A

L(x)
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Noting that the likelihood ratio estimator LO(LRe) of,_

Section 6.3 is related to the Z statistic of Chapter 2

with t now unknown i.e.

LO(LRe) = I Z(x),

classification by sign of LO(Pe) is equivalent to

Zex)
> n1 +n2+1
< n1 +n2 -1

and by LO(PAe) is equivalent to

Z(x) ~ O.

Hence. our investigation of the estimators when n1 +n2
will enable us to see whether as in Section 8.4 for t

A

known, adjusting the cut-off point of L(x) from zero to

nl+n2- 2 I (n1 -n2)
n1+n2-p-3 p n1n2 '

will result in the expected actual probabilities of
A

misclassification of L(x) being equated. For this reason

we retain LO(Ee) in our comparison despite its clear

inferiority to LO(Ue) as an estimator of log-odds. The

inclusion of.LO(PAe) will enable us to see whether the

equation of expected actual probabilities of misclassification

of Z(x), t known Section 2.10, persists when t is unknown.

The unconditional bias of th~ estimators, x in fit' t • 1

and 2 are from Sections 7.8 and 7.10,

B{LO(E
e
)} = p+l 1~2e_l)t-l + nl+n2-2 nl-n2

n
1

+n2-p-3 J n
1
+n2-p-3 jp(n

1
n2 )

B{LO(Ue)} =

B{LO(Pe)} =

0 (8.7.2)

• (j).t)j -j).t j-l n1+n2-l
{ t

j ! e t n +n -1+2i _j~2} (_l)t-l
j=l i=o 1 2

nl (n2+ l )
B{LO(PAeJ} • B{LO(Pe)} - jp tn{n2(nt+l )}.
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We define as before the relative unconditional bias of­

LO(M) to be

where

8{LO(M)} I E{LO(Te)}

E{LO(Te)} = 1~2 (_l)t-l

(8.7.3)

t = 1 and 2.

and if the relative bias is negative interpret this as

LO(M) understating true log-odds for IT I , with x in IT I or

IT2 • Positive relative bias is interpreted as overstatement

of LO(Te), with x in IT I or IT2 •

From (8.7.2) and (8.7.3) we see that the relative

uoconditional bias of LO(Ee) is

p+l

(8.7.4)

The first term io (8.7.4) is the relative bias of LO(Ee) for

01 = 02 and with 01 +02 we see from the second term of

(8.7.4) that the relative bias of LO(Ee) oow depends on ~.

With 01 < 02 the relative bias of LO(Ee) may be positive or

negative io IT I but will be positive io IT2• Thus uolike the

01 = 02 case where LO(Ee) overstates LO(Te) io both populations

with 01 < O2 'it may understate LO(Te) for x in IT!. We conclude

that with 0 1 +02 LO(Ee) will overstate true log-odds for IT!,

with x in the population corresponding to the larger sample

size.

From (8.7.2) we see that the bias and relative bias of

LO(Pe) oow depend on the dimension parameter p unlike the

01 • 02 case. From the bounds on E{LO(Pe)}, derived in

Section 7.10 we see that the relative bias of LO(Pe) may be

bouoded above by

1
n3 +1

-t
(8.7.5)
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With n1 < n2 and x in fi l this bound is negative and s~

LO{Pe) understates true log-odds in fi l , with x in fi
2

however the upper bound (8.7.5) may be positive and

LO{Pe) may overstate LO(Te) in fi2 • Thus with n
l

+n
2

,

LO{Pe) understates true log-odds for fi
l

with x in the

population corresponding to the smaller sample size.

For the adjusted predictive estimator LO(PAe) from

(8.7.2), (8.7.5) and (7.10.9) its relative bias may be

bounded above by
I

n
3

_
t

+1

and below by -I, for x in Rt.t = 1 and 2. Thus with

n l +n2 , LO{PAe) understates true log-odds in HI' with

x in fi l or fi2 •

The relative unconditional bias xl02 of the estimators

are listed in Table 8.7.1 for various values of p and A

when n1 = 8, n2 = 40. Several ratios of n
1

to n
2

were

considered i.e. 1:2, 1:3 and 1:5, where n
1

+n2 = 48. The

latter total of n1 + n2 was decided on so as to allow a

marked imbalance in the sample sizes without either sample

size becoming too small and to facilitate a comparison with

previous tabulations for n1 = n2 = 24. The evaluation of

the infinite series in B{LO{Pe)} (8.7.2) was as described

in Section 8.5.

The expectation of the actual probability of misclass­

ification of LO{M), M£{Ee,Ue,Pe,PAe } were estimated from a

simulation study similar to that detailed in Section 8.5

but with 100 test observations from each population. These

estimated expected actual PMC's xl02 are listed in Table

8.7.2 as is their maximum standard error. Also included in

this table are the estimated expected actual PMC's for

n1 • n2 =24, which were obtained fra. the simulation study

of Section 8.5.
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Table 8.7.1

The Relative Unconditional Bias xl02 of LO(Ee), LO(Pe) and LO(PAe), t unknown and n1 +n2 •

Population TIl TI2

Method Ee Pe PAe Ee Pe PAa

A, PMC & p
IE{LO(Te)ll= IA 2

1 - 5 - 13 - 4 15 - 4 - 13
A • 1.049 4 - 29 - 45 - 4 53 31 - 13

.30 8 - 65 - 80 - 4 115 64 - 13
IA2 • 0.55 16 - 173 - 147 - 4 289 133 - 13

1 1 - 8 - 5 8 :- 10 - 13
A • 1.683 4 - 4 - 21 - 5 28 3 - 13

.20 8 - 11 - 35 - 5 59 16 - 13
IA2 • 1.42 1@ - 31 - 61 - 5 148 42 - 13

1 3 - 10 - 8 6 - 15 - 16
A • 2.563 4 5 - 16 - 8 19 - 9 - 16

.10 8 9 - 21 - 8 40 - 3 - 16
IA2 • 3.28 16 20 - 32 - 8 97 8 - 16

1 4 - 13 - 12 6 - 18 - 19
A • 3.290 4 8 - 16 - 12 16 - 15 - 19

.05 8 15 - 19 - 12 33 - 11 - 19 .
IA2 • 5.41 16 35 - 26 - 12 82 - 4 - 19 I
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Table 8.7.2

Estimated Expected Actual Probabilities of Misclassification xl02 of LO(Ee), LO(Ue), LO(Pe) and LO(PAe) ,

t unknown, n1 • n2 and nl +n2'

Sample Sizes nl =8, n2 =40 nl = n2 = 24

Population TIl TI2 TIl &TI2

Method Ee Ue Pe PAe Ee Ue Pe P~ All

~ &PMC P

1 26 24 26 25 27 29 26 28 27
~ • 1.049 4 39 33 40 35 32 39 31 37 33

.30 8 43 33 43 33 26 35 26 34 35
16 54 39 55 41 28 42 28 41 38

•
1 18 17 18 18 20 20 20 20 16

~ • 1.683 4 27 24 28 25 22 27 22 26 23
.20 8 28 22 28 22 18 24 18 23 24

16 41 31 41 31 22 32 22 32 28

1 10 10 10 10 10 10 10 10 9
~ • 2.563 4 15 13 15 13 10 12 10 12 11

.10 8 15 12 14 11 9 12 10 12 14
16 27 20 27 20 15 21 15 21 18

.
1 6 5 5 5 4 5 5 5 5

~ • 3.290 4 8 7 8 7 5 5 5 6 5
.05 8 8 6 7 6 5 6 5 7 8

16 18 14 17 13 9 13 10 14 12

Max. S.E.* .012 .007 .008

S.E. • Standard Error

..



Considering the results in Tables 8.7.1 and 8.7.2 we

note immediately the differing classification behaviour

of LO(Ee) and LO(Pe) as compared to LO(Ue) and LO(PAe).

We see from Table 8.7.2 that the estimated expected actual

PMC's of LO(Ee) and LO(Pe) display considerable imbalance

especially for large p, with the larger expected actual

PMC's corresponding to the population with the smaller

sample size. For LO(Ue) and LO(PAe) this is not the case,

with the expected actual PMC's of LO(PAe) almost equal and

those of LO(Ue) reasonably balanced, with a tendency for

the slightly larger expected actual PMC of both to

correspond to the population with the larger sample size.

Relating this classification behaviour to the unconditional

bias of the estimators, Table 8.7.1, we note that LO(Ee)'s

large overstatement of LOCTe) in R2, which is always greater

than any overstatement by it in fi l , coincides with its

classification behaviour. Similarly LO(Pe)'s large under­

statement of LOCTe) in fi l which is usually less than any

understatement by it in fi2 coincides with its classification

behaviour. Finally the slight understatement of LO(Te) by

LO(PAe) in both population with the larger understatement

in R2 and t~e unbiasedness of LO(Ue) coincide with their

noted classification behaviour. For the other ratios of n t

to n2 considered, similar but less marked behaviour was noted.

These classification resul~s enable us to confirm that

with n
t

+n2 the Z statistic's ability to equate expected

actual PMC's when t is known persists when E is unknown.

Also. that the classification behaviour of th~ sample linear

discriminant function can be substantially improved by

alternating its cut-off point from 0 to

n l +n2 -2
n1+n2 -p-3

."
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We now consider the unconditional mean square errors

of the estimators. With nl +n2 • the derivations of

Sections 7.8, 7.12 and Appendix 7.A give

and

(8.7.7)

x in fit' t = 1 and 2.

The expression for Et {L02(Ee)} is very lengthy and is given

in full in Appendix 7.A. In a similar manner to (8.5.3) it

may be shown that

MSE{LO(Ee)} =(n1+n2-2 3'2 MSE{LO(Ue)} + Ex [B{LO(Ee)lx}2]
n l +n2-p- ~

x in fit' t = land 2
(8.7.6)

and as is the case for nl = n2 , the mean square error of

LOCUe) is for n1 +n2 always less than that of LO(Ee), for

observations from either population. With some algebraic

manipulation it may be shown that if nl < n2 the unconditional

mean square errors of LO(Ee) and LO(Ue) for x in fi l are less

than their corresponding values in fi 2. From (8.7.6) and the

results of Section 7.8

MSE{LO(Ee)} = (onl +n2-
2

2 MSE{LO(Ue)} + (n1 +n2 -2 3 ~J 2 Vx' {L.O(Te)}
nl +n2-p-3 n1+n2 -p- I

+ [B{LO{Ee)}]2

where V~{LO{Te)} =A2 for x in fit. t = 1 and 2,

and this expression (8.7.7) allows us to assess the contribution

of bias in LO(Ee) to its unconditional mean square error.
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The unconditional mean square errors of the four'"

estimators are listed in Table 8.7.3, those of LO(Pe)

and LO(PAe) were estimated from the simulation study

previously cited in this section. From (8.7.1) and

(8.7.2)

MSE{LO(PAe)} = MSE{LO(Pe)} - 2c B{LO(PAe)} - c2

where c = Ip tn' {nI(n2+1)}.
n2 (n1+1)

With n1 < n2' c < 0 and for x in nl , B{LO(PAe)} < 0 hence

MSE{LO(PAe)} < MSE{LO(Pe)}, n1 < n2 and x in nl , and

we see that the mean square error of LO{PAe) is always less

than that of LO(Pe) for the population corresponding to

the smaller sample size. The precise contribution of bias

to the unconditional mean square error of LO(Pe) is unclear.

At the base of Table 8.7.3 we indicate for LO(Ee) and LO(Ue)

the minimum and maximum ratio of their estimated mean square

errors as given by the simulation, to their exact values.

In Table 8.7.3 we note that the estimated unconditional

mean square errors of LO(Pe) and LO(PAe) for x in ni exceed

their corresponding values in n2. The reverse is true of

the exact mean square errors of LO(Ee) and LO(Ue) and was

also the case in the simulation study. From (8.7.2), (8.7.7),

and the bias of the estimators Table 8.7.1 we conclude that
II,

LO(Ee) will have its larger mean square error for that

population in which it has the larger absolute bias. This

is also the case for LO(Pe) but not for LO(PAe). In Table

8.7.3 we note for population nl that the estimated mean

square errors of LO(Pe) and LO(PAe) exceed those of LO(Ue)

for p = 1 and 4 and for all A. The differences are however

~all and this behaviour was not noted to hold in general

in the simulation study. Any noticeable reduction in mean

197



..

-\D
00

Table 8.7.3

The Unconditional Mean Square Error of LO(M), Min· {E ,U ,P ,PA },e e e e
t unknown and nl +n2 •

Sample Sizes
nl == 8, n2 == 40

Population III II2

Method Ee Ue Pe PAe Ee Ue Pp PAe

A &PMC P

1 0.29 0.26 0.35 0.34 0.42 0.38 0.29 0.30
A • 1.049 4 1.17 0.90 1.01 0.97 1.39 1.03 1.03 1.02

.30 8 3.15 1.91 1.62 1.50 3.64 2.06 1.46 1.38
16 13.38 4.81 4.72 4.17 15.50 5.00 4.42 4.01

t
1 0.50 0.46 0.65 0.64 0.87 0.77 0.55 0.57

A • 1.683 4 1.61 1.25 1.51 1.45 2.19 1.58 1.46 1.52
.20 8 4.04 2.49 2.24 2.07 5.31 2.87 1.82 1.84

16 16.41 6.06 5.98 5.34 21.85 6.55 5.17 4.98

1 1.28 1.15 1.46 1.43 .2.10 1.87 1.39 1.43
A • 2.563 4 2.98 2.26 2.65 2.53 4.31 3.04 2.66 2.86

.10 8 6.72 4.04 3.78 3.44 9.65 4.91 2.85 3.12
16 25.64 9.12 8.94 8.03 38.26 10.25 7.05 7.39

I

1 2.61 2.33 2.80 2.73 3.96 3.52 3.01 3.09
A • 3.290 4 5.21 3.86 4.29 4.04 7.41 5.14 4.71 5.10

.05 8 11.03 6.29 6.03 5.40 15.85 7.71 4.64 5.26
16 40.65 13.24 12.80 11.34 61.44 15.10 9.67 10.75

Min Ratio 0.90 0.92 0.75 0.74

Max Ratio 1.45 1.46 1.27 1.29



'.
square error by the predictive methods as compared with

LO(Ue) occurs for p large. Similar but less marked

behaviour in the estimators was noted for the other ratios

of n1 to n2 considered.

We conclude that with r unknown and n1 +n2 the

predictive method LO(Pe) has deficiencies as an estimator

of true log-odds. Its understatement of LO(Te) may be so

severe in the population with the smaller sample size that

it misclassifies considerably more observations from this

population than the other. Adjusted for bias the predictive

method LO(PAe) is a good estimator of LO(Te) with small

conservative bias, good classification behaviour and slightly

smaller mean square than LO{Ue), especially for p large. As

such it has a slight edge over LO{Ue) as an estimator of true

log-odds.
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8.8 A Comparison of the Estimators LO(Eti), LO(Uu) and LO(Pu)

for r 1 and r2 Unknown but Proportional.

In this final comparison of the estimators the effect

of unequal but proportional covariance matrices i.e.

ar 1 = 1:2 where 0 < a .< I, on their preformance as estimators

of true log-odds is considered. As in previous sections

bias, mean square error and misclassification rates are the

criteria of comparison. In the interest of simplicity it is

assumed that the sample sizes are equal.

With r1 + r2 the true log-odds in favour of x from fi1 is

LO(Tu) = I {-WI (x) + w2(x)} - I 1n ( Ir11/11:21 )

where

Wt(x)
-1 I and 2.= (x-~t)' 1:t (x-~t), t =

With n1 = n2 = n the three estimators of LO(Tu) are from

Sections 7.9, 7.11 and 7.12

LO(Eu) = 1{-w1(x) + w2(x)} - I 1n(I SlI/I S21)

LO(Uu) = n-p-2 I {-WI (x) + w2(x)} - I 1n(1 51 1/1521)n-l
n

{I + 21 WI (x)}
I 1n ( 151 III s21 )LO(Pu) n [ n - ]_:= - '2 1n

{I + + w2(x)}
n -I

(x-it)'
-1 - and 2.where wt(x) = St (X-Kt ), t = I

Here with r 1 + 1:2 and n1 := n2 the predictive estimator is not

identical to the likelihood ratio estimator of Section 6.3.

However the difference in the estimators is slight, as

LO(LRu) = n~1 LO{Pu) + ~ I 1n{IS11/IS21),

and LO(LRu) is not considered further.
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The usual canonical forms are assumed without IQss of

generality: viz.

f 1 = Np(O,I) f 2 = Np (a ,al)

where a = (61 ,0,0, ....•. ,0)

and
2

(lJ 1- lJ2),
-1

( lJ 1- lJ 2) t = 1 and 2.6 t = L t

We take a in the range 0 < a < 1, noting that if we reverse

the role of the populations a result for a may be interpreted

as a result for!. The true log-odds may now be written as
a

LO(Tu) = I{-x'x + !(x-a) '(x-a) + p tna}
a

I-a a a a'a
= I{a (x- I-a)' (x- I-a) - I-a + p tna}.

Now for x in fi l

(x - 1~a)' (x - 1~a) - X2 (p , a'a )
(l-a)2

1 a a _ 2( aa'a )
while for x in fi 2 a (x- I-a)' (x- I-a) X p, (l_a)2

hence the unconditional mean and variance of LO(Tu) are

E{LO(Tu)} =

V tLO(Tu )} =

E{LO(Tu )} =

V{LO(Tu)} =

I {p(I~a) + 6~/a + p tna}

2
I {p(l-a) - Al + P tna}

(8.8.1)

a-I {( }. .As -- < tna < a-I for 0 < (J < 1, E LO Tu) IS positIve
(J

in fi1 and negative in fi2 • We also note that the mean and

variance of LO(Tu) increase as p increases and the larger

mean and variance of LO(Tu) correspond to the population

with the larger variance i.e. fi l .
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For allocation purposes the rule LO(Tu) ~ 0 is

equivalent to

I-a e a a'ea (x - l-a)'(x - I-a) ~ I-a - p lna

~H

and hence the optimal probabilities of misclassification are

6
2

a
Ql = Pr {X2 (p, 1 2) < - H} x in fl

l(I-a) I-a

> _1_ H
I-a

These probabilities are readily evaluated for odd degrees

of freedom, Section 3.6.

The unconditional bias of LO{Eu) was derived in

Section 7.9 as

8 {LO(Eu) } p+l I-a 2
= n-p-2 I {pea) + 6 1/a}

and

8 {LO(Eu) } p+I 2
= l{p(l-a) - 6 1 }n-p-2

(8.8.2)

Hence the relative unconditional bias of LO(Eu) i.e.

8 {LO(EuJ} / E {LO(Tu)}, is ..

P+12 (1 - I p lna/E{LO(Tu)}).
n-p-

As 0 < a < I we see from (8.8.1) and (8.8.2) that the relative

bias of LO(Eu) is positive for x in fi l , but may, depending on

the size of n, p and 61 , be negative for x in fi 2 • Hence
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while LO(Eu) always overstates true log-odds for IT
I

with

x in IT I , it may understate true log-odds for IT I with x

in IT 2 . The relative bias of LO(Eu) decreases as n

increases with x in IT I or IT2 and with x in IT I increases

as p increases.

The unconditional mean of LO(Pul was derived in

Section 7.11 as

and

n
c2 = n+l (I-a),

n
n+2i

j-l
E

i=o
(8.8.3)

e-I).t CD ~ i (~i+j-k)
E . IT ] + I ~lna
·1 1 k1 n·· k1= = ~1+J-

CD

E{LO(Pu)} = (_l)t-l [ E
j=l

CD (j).t)jn
E- 2"

j=o j !

where ).1
n Z

= -- 6
1n+a

_n_
6

2
).2 = an+l I

x in ITt' t = 1 and 2.

For these s'eries expansions to be valid -1 < Ct ~ 1, hence

I
-1
2+­

n

< a < 2 + ..!.
n

(8.8.4)

.,
The bias and relative bias of LO(Pu) are clearly dependent

on the dimension parameter p. With x in IT I i.e. the

population with the larger variance, the bias and relative

bias of LO(Pu) are negative. Thus LO(Pul understates true

log-odds for IT I with x in IT I • However with x in IT 2 it may

overstate LO(Tu) depending on the size of n, p and 61 •

..
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That B{LO(Pu)} < 0 for x in IT I follows by noting that

its mean E{LO(Pu )}, Section (8.8.3), may be bounded

above, since

00

E
j=l

j-l
E

i=o

n
n+2i as in Section 7.10

00 _ C
l
l·. ni (~2 i+j-k_) CD (IA )j £...j

E <!!. E~_ e-IAI· {-c _2_}
i=l 1 kIn . . k 2 J' =0 J. 1!!...2 J.= z+l+J-

(8.8.5)

The intermediate results (8.8.5) follow as -c i > 0, p < nand

CD _c i i (ri+j-k)
E _._1 n

i=l 1 k=1 ~i+j-k
2

is a convergent alternating series. Hence with x in IT I • from

(8.8.1), (8.8.3) and (8.8.5)
I-a 2 n

B{LO(Pu)} < [-Ip(a-) - I~~l/a] (1 - n+l)

<() as 0 < a < 1.
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The unconditional mean of LO(Tu) and relative

unconditional bias of LO(Eu) and LO(Pu) x 102 are given

in Table 8.8.1. Their evaluation requires specification

of a, 61, P and n. We have assumed 0 < a < 1. Given

the constraint (8.8.3) on a, our previous studies on

the quadratic discriminant function Chapters 3, 4 and 5

and our desire to introduce reasonable imbalance in the

covariance matrices we set a = 0.5. The evaluation of

the infinite series in E{LO(Pu)} was as described in

Sections 8.5 and 8.6 with a minor modification when

t = 1 as c1 < O. Following our approach in Chapter 5,

we define L as

L I (L1 + L2)
l+a

L1= = -2-

thus 62 2
(1l1 112) ,

-1
(1l1 - 112)= l+a L1

_2_ ~2
(8.8.6)= .l+a 1

The separation parameter ~ was chosen as before to give

optimal linear PMC's when a = 1 of .3, .2, .1 and .05.

The values of ~1 follow from the relationship (8.8.6).

The dimension parameter p was set at 1, 3, 9 and 15 to

allow exact evaluation of the optimal PMC's, Qt. To ensure

positive definiteness of the sample covariance matrices St i.e.

nt - P > 0, and to facilitate cQrnparison with the results

of the previous sections, we set n1 = n2 = 24.

Given the relationship between bias and classification

performance a' simulation study was undertaken similar to

that detailed in Section 8.5, with 100 test observations

from R1 and R2 and with 200 sample iterations. From this

estimates of the expected actual PMC's of to(Eu), LO(Uu) and

LO(Pu) were obtained. These estimated expected actual PMC's

x 102 , together with the optimal PMC's, Qt x 102 are listed

in Table 8.8.2. Also included are the maximum standard

errors of the estimates.
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Table 8.8.1

The Unconditional Mean of LO(Tu) and Relative Bias of LO(Eu) and LO(Pu) x 102 ,

tt Unknown and Proportional

Sample Sizes

n 1 • n2 • 24

Proportionality a • 0.5

Population TIl II2

6 Mean Relative Bias Mean Relative Bias
&

PMC P Tu Eu Pn Tu Eu Pu

1 0.98 13 - 17 - 0.51 4 0
6 • 1.049 ~ 1.29 38 - 26 - 0.70 - 10 1

.30 9 2.21 186 - 51 - 1.28 - 110 - 7
15 3.13 608 - 72 - 1.86 - 410 - 23

1 2.28 11 - 19 - 1.16 7 - 2
A • 1.683 3 2.58 29 - 26 - 1.35 5 1

.20 9 3.51 145 - 46 - 1.93 - 47 - 1
15 4.43 497 - 64 - 2.51 - 245 - 9

A • 2.563
1 5.08 10 - 24 - 2.56 8 - 7

.10 3 5.39 25 - 29 - 2.75 13 - 4
9 6.31 115 - 44 - 3.33 5 1 f

IS 7.23 393 - 58 - 3.91 - 75 1

1 8.27 10 - 30 - 4..15 9 - 12
A • 3.290 3 8.58 24 , - 34 - 4.35 16 - 9

.05 9 9.50 102 - 45 - 4.91 28 - 2
15 10.42 343 - 57 - 5.51 13 1



No.....,

Table 8.8.2

The Optimal Probabilities of Misclassification of LO(Tu) x 102 and the Estimated Expected Actual Probability

of Misclassification of LO(Eu), LO(Uu) and LO(Pu) x 102 , Lt Unknown and Proportional

Sample Sizes n1 • n2 • 24

Proportionality a • 0.5

Population TIl I TI 2I

Method Tu Eu Uu Pu Tu Eu Uu Pu

A &PMC P Ql Q2

1 39 45 46 45 19 23 23 22
A • 1.049 3 33 39 43 42 18 26 22 23

.30 9 23 25 39 39 15 50 25 29
15 18 23. 46 45 11 61 28 38

• 1 24 30 30 30 14 17 17 17
A • 1.683 3 22 27 30 29 13 19 17 17.20 9 16 18 29 30 10 36 20 23

15 12 20 41 40 8 55 26 33

A • 2.563
1 12 12 12 12 7 9 9 9
3 11 12 13 13 7 11 10 10.10 9 8 10 17 17 5 24 13 14

15 7 15 31 32 4 45 21 25

A • 3.290
1 6 6 6 6 4 5 5 5
3 5 6 6 7 3 6 5 J 5.05 9 4 5 9 10 3 15 8 8

15 3 11 23 25 2 36 17 18

Max.. S.E. .008 .011

S.E. • Standard Error



In Tables 8.8.1 and 8.8.2 we note that the optimal

PMC's Qt decrease with increasing p for all ~ i.e. as

E{LO(Tu)} increases and that QI is always greater than

Q2. However when we consider the estimated expected

actual PMC's. Table 8.8.2 which are in all cases in

excess of Qt we see that in general they increase with

increasing p. We also note that while the expected actual

PMC's of LO(Uu) and LO(Pu) in IT I are. like QI. greater than

their corresponding values in IT2• this is not the case for

LO(Eu) when p = 9 and 15. This classification behaviour

of LO(Eu) when related to the size and direction of its

relative bias Table 8.8.1 indicates that it is only when

the relative bias of LO(Eu) in IT I exceeds 1 that there is

a definite relationship with classification performance.

The reversal in the size of the expected actual PMC's of

LO(Eu) when p > 9 is also apparent in the asymptotic

expansions of its expected actual PMC as derived by

Mc Lachlan (1975). The predictive method's understatement

of LO(Tu) in IT I for all p is clearly reflected in Table 8.8.2

where its larger expected actual PMC's are in IT I • Another

surprising result in Table 8.8.2 is the differing classific­

ation behaviour of LO(Uu) and LO(Pu) in IT 2 when p = 15 and

A = 1.049 and 1.683. where we see that LO(Pu) misallocates

substantially more observations ~han does LO(Uu). The size

of LO(Pu)'s relative bias in Table 8.8.1 would not indicate

this and we conclude that the relationship between bias and
~

misallocation is not as simple as in the case of equal

covariance matrices. Overall LO(Uu) has the smaller total

expected actual PMC.
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We now consider the unconditional mean square errors

of the estimators, that of LO(Eu) was derived in

Appendix 7.8. As

where

E{L02 (UU)}= I [(n-p-2)2 E(a) + n-p-2 E(b) + E(c)]
n-l n-l

with the expectations of a, band c given in Appendix 7.8,

the result for LO(Uu) follows. In Table 8.8.3 we list the

unconditional mean square errors of LO(Eu), LO(Uu) and

LO(Pu), the latter estimated from the simulation study

previously cited in this section. At the base of Table

8.8.3 we give the maximum and minimum ratios of the

estimated mean square errors of LO(Eu) and LO(Uu) to their

exact values.

In Table 8.8.3 we note that the mean square errors of

all the estimators in fi 1 are greater than their corresponding

values in fi2, as were the simulation estimates. This was to

be expected as fi 1 has the greater population variance. All

mean square-errors increase with increasing p and~. The

mean square error of LO(Uu) is always less than that of

LO(Eu), the difference being substantial for p ~ 9. We

were unable to prove this result analytically. However it
~

is once again apparent that the correction for bias is vital

in the estimative approach. The mean square error of LO(Pu)

is in general less than that of LO(Uu), especially in n1 for

p ~ 9. The three exceptions are when p = 1, ~ = 2.563 and

p = 1 and 3, ~ = 3.290, these occurred in the simulation

also. It is interesting to note that the larger expected

actual PMC's of LO(Pu) as compared with LO(Uu) in fi2 when
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Table 8.8.3

The Unconditional Mean Square Errors of LO(Eu), LO(Uu) and LO(Pu),

~t Unknown and Proportional

Sample Sizes

n1 • n2 • 24

Proprotionality a • 0.5

Population TIl TI2
Ii Method Method
&

PMC P Eu Uu Pu Eu Uu Pu

~ • 1.049 1 1.30 1.03 0.76 .0.28 0.23 0.20
3 5.52 3.41 2.21 1.27 0.84 0.63.30 9 106.62 26.59 12.39 24.20 6.64 5.69

~s 1991.24 141.91 48~11 467.10 35.32 27.87

~ • 1.683
1 2.88 2.26 1.87 0.54 0.43 0.33
3 9.04 5.39 3.78 1.77 1.14 0.80

.20 9 137.67 32.50 15.46 26.16 7.48 6.14
IS 2351.63 161.23 53.33 480.00 37.97 28.81

~ • 2.563
1 7.84 6.11 6.44 1.50 1.17 0.76
3 19.11 11.02 9.37 3.45 2.14 1.34.10 9 '217.95 47.34 25.33 33.73 9.79 7.09

15 3238.28 207.47 68.70 535.22 44.82 30.64.
I

~ • 3.290
1 16.07 12.51 16.30 3.23 2.52 1.55

.05 3 34.71 19.67 20.35 6.41 3.84 2.27
9 331.51 .·67.,70 43.20 47.89 13.30 8.16

IS 4429.80 26.7. 75 93.86 643..67 54.53 39.45

Min Ratio 0.87 0.87 0.85 0.27

Max Ratio 1.03 1.01 1.20 1.21



p = IS and 6 = 1.049 and 1.683 are not reflected in

larger mean square errors. This indicates that here'-

the size of the log-odds of the misclassified observations

by LO(Pu) are small.

When estimating true log-odds, given that the

populations are multinormally distributed with unknown

proportional covariance matrices, we conclude that the

unbiased method is the better estimative approach. It has

smaller mean square errors, zero bias and smaller total

expected actual PMC than LO(Eu). Also its individual

expected actual PMC's do not reverse direction for

moderately large p as is the case for LO(Eu). The clear

superiority of the predictive approach when Et were equal

and p large does not persist. The predictive estimator

usually understates true log-odds. This understatement

can on occasions be severe. With small 6 and large p,

LO(Pu) misallocates substantially more observations than

does LO(Uu) in n2 , the population with the smaller variance,

otherwise their misclassification performance is comparable.

Even though the mean square errors of LO(Pu) are in general

less than those of LOCUu) this is not enough to unreservedly

recommend the'predictive approach. Here we prefer the

unbiased estimative approach as the better all round

estimator of true log-odds.

211



APPENDIX 8A

RANDOM NUMBER GENERATOR

'-

The following subroutine was used. to generate standard

normal random variates. It is based on the suggestions of

Chen (1971) for computers with 32-bit words and was tested

as outlined by Chen and Newman and Odell (1971, ch 9), before

routine use with an IBM 370/138. The uniform random number

generators are of the multiplicative congruential type and

the Box-Muller(19S8) transformations are used to obtain

standard normal random variates.

SUBROUTINE RAND32(X,J)

REAL*8 XNl,XN2

DIMENSION X(30)

COMMON / SEED / XN1,XN2

C GENERATES NORMAL OBSERVATIONS

C SEE CHEN J.A.S.A. 1971 P400-403

C SEEDS XN1,XN2 MUST BE ODD INTEGERS

IF (XN1 .EQ. ~.ODO)XNl=16387.0oo

IF (XN2 .EQ. O.ODO)XN2=262147.0oo

XNl=DMOD (XN1*16387.0oo,2147483647.0DO)

XN2=D~~D (DMOD(XN2*262147.0oo,2147483647.0DO) *262147.000,2147483647.000)

A=DSQRT (-2.0*DLOG(XN1/2147483647~~00»

B=6.28318S*(XN2/2147483647.0DO)

X(J)=A*COS(B)

X(J+l)=A*SIN(B)

RETURN

END
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CHAPTER 9

KERNEL DENSITY ESTIMATION AND LOG ODDS

9.1 Introduction

In previous chapters estimators of true log-odds assumed

the populations were multinormally distributed. A comparison

with an estimator which does not require this assumption,

difficult to ensure in practice, is undertaken here. Many

non-parametric methods of discrimination are available in the

literature. Of these we have chosen to consider kernel based

methods, since the kernel method provides an estimator of the

true density which is itself a density. As such, kernel

based discrimination, unlike other non-parametric methods is

undertaken by estimating true log-odds.

Given the weaker assumptions of the kernel method,

-namely that the true densities f t (t = I and 2) are

continuous, one would expect it to yield inferior estimates

of true log-odds than parametric methods which assume the

correct form of ft. However for two multinormally distributed

populations with equal covariance matrices,.Van Ness and

Simpson (1976) found that kernel based methods had superior

allocation ability to the estimative method for small sample

sizes and for relatively large dimension sizes. This

surprising result stimulated our interest in kernel based

estimation of true log-odds.

With the true probability density functions ft(t=l and 2)

given by Np (~t,Et) and with E1 = E2 = E, we extend our

comparison of the parametric estimators LO(Ee), LO(Ue) and

LO(Pe) of Chapter 8, to include a kernel based estimator of

true log-odds. The notation of previous chapters is retained

and will be supplemented for the kernel estimator as necessary.
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9.2 Kernel Density Estimation

The kernel method is only one of many non-parametric

density estimation methods proposed in the literature. The

principal· alternatives are spline, orthogonal series and

histogram-type estimators. Reviews of these methods

including the kernel method are given by Cover -(1972),

Wegman (1972a) and Fryer (1977) and compared by means of

simulation in Anderson (1969) and Wegman (1972b). For

estimation of log-odds these alternative methods were

rejected since their density estimates are not themselves

densities, with spline and orthogonal series methods giving

negative values and the histogram type density of Loftsgaarden

and Quesenberry (1965) integrating to infinity, Wagner (1975).

(9.2.1)All n x-x·
f(x) =-- t K( l)

n h i=l h

Kernel density estimation in the univariate case is

considered first, fo~lowed by its extension to the multi­

variate case. Let· ~i} 1 < i ~ n be a sequence of one

dimensional independent identically distributed random

variables with continuous probability density function f.
A

Then the kernel density estimate f of f based on xi is given

by

where K(z) is the kernel function and h a function of n is

the smoothing parameter. For vlrious constraints on hand K
A

the density estimate f may be shown to be consistent,

asymptotically Normal and unbiased. With K{z) ~ 0 and

JKCZ) dz = I,
A

f is a density in its own right.
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The origins of the kernel method may be traced back

to Fix and Hodges (1951) who proposed a "naive estimator"

or "running-histogram" approach to density estimation.

By choosing an interval of width h, Fix and Hodges

estimated the density f at any point as being proportional

to the number of observations falling within an interval

of width h centered at the point under consideration. It

was this naive estimator which led Rosenblatt (1956) to

define the univariate kernel or window estimator (9.2.1).

For the naive estimator Rosenblatt showed that the

aSYmptotic conditional mean square error MSE(x) where

MSE(x) = E({f(x) - f(x)}2]

approaches zero if h ~ 0 and nh + m as n ~ m, thus
A

establishing pointwise consistency of f. He also obtained

the value of h which minimises the aSYmptotic MSE(x).

However this value of hen) depends on the true density at

the point x. By minimising the expanded integrated mean

square error IMSE, where

IMSE =JMSE(x) dx (9.2.2)

Rosenblatt Obtained a value of h which only depends on n,

however a knowledge of the true form of f is still required.

The integrated mean square error (9.2.2) has become the

principal measure of closeness of the kernel density
A ~

estimate f to the true density f, Anderson (1969), Wegman

(1972b), Fryer (1976,1977).

Parzen (1962) extended Rosenblatt's earlier work by

defining the generat kernel density estimate as in (9.2.1)

i.e. 1 I n X-Xi
f(x) =-- I K(~)n h . 1 n .

1=

with the kernel function K(z) satisfying the conditions
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K(z) is a Borel function , tim I K(z) z I = 0
Z-+<lD

SUf I K(z) 1<00 IK(Z) dz = 1
Iz <00

J
(9.2.3)

K(z) I dz < 00 K(z) ~o

I z2 I K(z) I dz < 00 IZ K(z) dz = o.

A

Parzen showed that if h ~ 0 as n ~ 00, f is asymptotically

unbiased, if nh ~ 00 as n ~ 00, f is point-wise consistent

in mean square error. He also gave conditions for uniform
A

consistency and asymptotic Normality of f. From the

conditions (9.2.3) it is clear that the kernel function K

must be a symmetric density function. Included in Parzen's

paper is a list of suitable kernel functions among which

are the rectangular, triangular, Cauchy, Normal and Laplace

densities. With more stringent conditions on hand K

stronger consistency properties may be obtained, Wegman

(1972a).

Cacoullos (1966) extended kernel density estimation

to the multivariate case. It is now assumed that the true

continuous probability density function f is p-dimensional

as are the observations {Xi}, l·~ i ~ n. The multivariate

kernel density estimate is now defined as

f(x) 1 1= -n hP

n
t

i=l

x-x­K(__l)
h (9.2.4)

where K is a p-dimensional density function satisfying

similar conditions on RP to those of Parzen (9.2.3) on Rl.
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Cacoullos also defined a more general multivariate kernel

density estimate f* where

1 1
J) xl-x. I X2-Xi2 J»-Xip)f*(x) = - 1: K( 1

n p hI
, h2

, ••••• I hp
n h· i=l

j=l J

but restricted his attention to hI = h2 = ••••• = hp = h.

In a similar manner to Parzen for p = 1, Cacoullos showed
A

that if h + 0 as n + ~, f is asymptotically unbiased and

if nhP + ~ as n +~, f is point-wise consistent in mean

square error. Uniform consistency and asymptotic Normality

were also shown to hold for various conditions on hand K.
A

Van Ryzin (1969) gives stronger consistency results for f.

The value of hen) which minimises asymptotic MSE(x) was

also found but as in Rosenblatt (1956) requires a knowledge

of f(x).

While not considering the general kernel density

estimat~ f*, Cacoullos considered a particular case which

he called t~e product kernel case. Here

=

K(x) = K(x l ) K(x2) •••••••• K(Xp)

P
n K(xj)

j=l
(9.2.5)

where K(xj) is a univariate kernel. As K(x) is a multivariate

density the condition (9.2.5) implies that K is a product of p

univariate densities and so requires independence of the

kernel function. The resulting product kernel density

estimate f** is given

I
f**(x) = ­n

n
1:

i=I

by

{~ I
j=1 1lj

x·-x· .
K( Jh.lJ) J.

J
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Cacoullos showed that the optimal choice of hj 1 ~ j ~ p

to minimise the asymptotic MSE(x) is to take h} = h
l

=
= hp = h and if h + 0 as n + ~ and nhP + ~ as n + ~,

unbiased and point-wise consistency of f** hold. The

advantage of the product kernel ,density f** over the
A

non-product kernel density f is, as Cacoullos notes, that

the former is invariant under different scale transformations

in each dimension, a desirable property in practice since

the components of x may represent incommensurable character­

istic~.

9.3 The Choice of Kernel Function K and Smoothing Parameter h

We have seen in Section 9.2 that the only restriction on

the kernel function K is that it must be a symmetric multi­

variate density. Which function to pick and how to obtain

its associated smoothing parameter h for fixed n are the

problems considered here.

Epanechnikov (1969) derived for the product kernel

density f** (9.2.6) the optimal kernel function which

minimises the asymptotic relative IMSE i.e. the I~SE

divided by I f2(x) dx. as

K(z) ={4I5o~ "{1 - z:) if Izl' S (9.3.1)
otherwise

which is independent of the true density f, the sample size

n and dimension p. He also showed that the relative

efficiency of the univariate Normal, rectangular and Laplace

kernel functions to this optimal kernel function are .95,

.93 and .76 respectively. Deheuvels (1977) has extended
A

Epanechnikov's work to the non-product kernel density f

(9.2.4).
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As a kernel based estimator of true log-odds will be

the log-ratio of the estimated densities, kernel density

functions such as the optimal one (9.3.1) are to be

avoided due to the zeros in their definitions. In

Anderson (1969) it is shown that the exact form of K

is not critical provided the smoothing parameter h is

properly chosen. For these reasons and to facilitate

comparison with the study of Van Ness and Simpson (1976),

we will use a multivariate Normal density function for K,

with covariance matrix hM i.e.

K(z) = Np (O,hM)

The choice of M is considered in Section 9.5. This choice

of K results in the kernel density estimate

-_£. I n 1
{(x) = (2wJ"-2 IhMI- ! I: exp{-I h (x-xi)' M-l(x-xi)}.

n i=1

= ~(O,hM)

E.:' j2 i
2 I In-I I

IhM+2I: Ir + n IhMl1 + n IhM+I: ,I
(9.3.2)

Having decided on the form of K we must now consider

how to choose its associated smoothing parameter h. As we

will specify that the true density f is Np(~,I:), h may be

chosen to minimise the I~5E. While this approach is not

possible in practice it will allow us to see how the kernel

method performs under what we might term optimal conditions.

the exact IMSEWith f(x) = Np(~,I:) and K(z)

(9.2.2) is give: bY

f
I

IMSE = £. W-
(41r) 2

details of its derivation are given in Appendix 9.A•...
Besides IMSE other measures of closeness of f to f available
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in the literature are the expected mean square error i.e.

Ex{MSE(x)}, Specht (1971), Wegman (1972b), Fryer (1976)

and the Kullback and Liebler (1951) information measure

i.e.

Jf(X) In{f/f} dx,

Bryan (1971), Wegman (1972b). An exact expression for

Ex{MSE(x)} with f(x) = Np(~,E) and K(z) = NpCO,hM) is

derived in Appendix 9.A, the values of h which minimise

the expected mean square error are similar to those that

minimise the IMSE. No exact expression for the Kullback

and Liebler measure was obtained but the values of h

obtained by Herman and Habbema's (1975) sample based

"modified maximum likelihood" method of estimating it,

were similar to those that minimise the IMSE. Other

methods used in practice to choose h when the form of f

is unknown are reviewed in Fryer (1977).

9.4 . Use of Kernel Density Estimation in Discriminant Analysis

We do not attempt here an exhaustive list of the

application- of kernel density estimation in discriminant

analysis, a bibliography by Wertz and Schneider (1979)

may be consulted for this. Instead we describe the

principal studies which are in the main concerned with
~

allocation performance rather than estimation of log-odds.

Van Ness and Simpson (1976) investigated the effect

of increasing dimension size p, with p ~ 20 and small sample

sizes n1 = n2 = 10, 20, on the allocation ability of the

kernel and estimative methods. Their study involved the

simulation of sample and test observations from two
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multinormal populations with equal covariance matrices

and equal prior-probabilities. The test observations

were then allocated by five different rules (i) estimative

with ~ known (ii) estimative with ~ unknown (iii) estimative

with ~l ; ~2 unknown (iv) product Normal kernel with joint

covariance matrix hI and (v) product Cauchy kernel with

joint covariance matrix hI. Van Ness and Simpson assumed

the standard canonical form for the population densities

f t i.e. flex) = Np(O,I) and f 2 (x) = Np (8,I) where a = (~,O,O, •••O)I.

The joint smoothing parameter h was chosen by generating

additional observations from IT
l

and IT
2

and picking that h

which maximised correct allocation of these observations.

For the Normal kernel with p = 1 and n = 10 they quote the

value of h obtained as h = 2.25 and for the product Cauchy

kernel when p = 20 and n = 20, h = 49.0. These values of h

are exceedingly large as compared with those that minimise

the IMSE, Appendix 9.8. With these population assumptions

and values of h, Van Ness and Simpson found that the kernel

methods allocation ability was distinctly superior to the

estimative method with ~ unknown for p ~ 2 and was in fact

comparable to the estimative method with ~ known!

Van Ness (1979) extended the investigation to the case

of Normal populations with unequal covariance matrices.

The allocation performance of the rules (0) estimative ~t

and ~l +~2 known (i) estimativ~ ~l + t 2 known (ii) estimative

~l + ~2 unknown (iii) estimative ~l = I 2 = t unknown

(iv) product Normal kernel with joint covariance matrix hI

(v) product Normal kernel with covariance matrices htl where

hI = a h
2

and (vi) average linkage method, were compared.

Once again a standard canonical form for f t was assumed,

namely, flex) = Hp(O,I) and f 2 (x) = Hp(a,jl). However the
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method of choosing the smoothing parameters was changed,

a jacknife approach being used and the values of h now

quoted appear to be more reasonable. Van Ness found

that the kernel allocation rule (v) whose covariance

matrices have similar structure to the populations

was superior for p > 5 to all other methods except rules

(0) and (i). The standard estimative rule (ii) and the

cluster method (vi) were found to be the worst when p ~ 2,

while rules (iii) and (iv) were comparable and better

than rules (ii) and (vi).

A search of the literature to find confirmation of

these studies was undertaken. In a paper by Koffler and

Penfield (1979) the classification behaviour of the

estimative rule for bivariate Normal populations with

t 1 = t 2 unknown, was compared by simulation with the

product Normal kernel with joint covariance matrix hI.

The standard canonical form for the populations was

assumed. With sample sizes n1 = n2 = 64, 200 and 729, 300

observations from each population and 5 to 10 sample and

test iterations, the classification performance of the

rules was fpund to be comparable. However the large

sample sizes may account for this. In a similar simulation

study by Gessaman and Gessaman (1972) for untransformed

bivariate Normal populations with equal covariance matrix

t = (};); means ~l= (~), ~2=(-5~, the s;me sample and test

sizes but only one iteration, the product Normal kernel

method had inferior classification performance. Both

studies used the same fixed value for ~ of n~ •
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Specht (1966) developed a polynominal discriminant

function based on the estimation of the true densities

by product Normal kernels with covariance matrix hI.

By simulation he compared the estimative rule r
1

+ r 2

unknown and his polynominal discriminant function with

joint covariance matrix on two five-dimensional Normal

populations with densities Ns (0,1002I) and Ns (e,502I)

where e = (100,0,0 ••••0)'. With 15 repetitions of

sample sizes n
1

= n
2

= 8 and 450 test observations from

each population, the polynomial discriminant function

was distinctly superior to the standard estimative rule,

a similar result to that of Van Ness (1979).

The question of whether the product kernel method

is given an inherent advantage by the assumption of

independence with the standard canonical form of the

population is raised by these studies, as is the effect

of large values of h as used by Van Ness and Simpson (1976).

In the literature comparative studies of the non­

product Normal kernel and the estimative allocation rule

are few. Brran (1971) for two bivariate Normal populat­

ions with equal covariance matrices compared the estimative

allocation rule with a rule based on non-product Normal

kernel densities with equal covariance matrix hS. With the

standard canonical form of the populations, sample sizes

of 61, test sizes of 500 from each population, one iteration

and h chosen to minimise the Kullback and Liebler (1951)

information measure, the non-product Normal kernel methods

allocation performance was comparable to that of the

estimative rule. Byran also shows that with the sample

covariance matrix S in the Normal kernel density estimate
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the standard canonical form of the populat ions may be··

adopted without loss of generality. A similar study

by Fukunaga and Kessell (1971) with p = 8 indicates

that the non-product Normal kernel methods allocation

performance is somewhat inferior to the estimative rule,

however their choice" of h may account for this.

While there is no published study of kernel based

estimation of log-odds, kernel based estimation of

posterior probabilities and odds on specific examples

has been considered by Hermans and Habbema (1975) and

Aitchison and Aitken (1976). Hermans and Habbema (1975)

compared five estimators of posterior probabilities and

odds on two practical examples. The methods compared were

(i) estimative E} = E2 and (ii) E} +E2 unknown, (iii)

predictive E} = E2 and (iv) E
1

+E
2

unknown and (v) product

Normal kernel with distinct covariance matrices ht Dt , where

Dt were the diagonal matrices of estimated variances, thus

allowing for differing units of measurement in the components

of x. They also proposed a sample based "modified maximum

likelihood method" for choosing the smoothing parameters ht •

Bryan (1971) had proposed and implemented the same method.

In both examples p = 2 with sample sizes of n} = 40, n2 = 3S

in one and n
1

= 22 and n2 = 33 in the other. The kernel and

appropriate parametric method provided comparable estimates

of posterior odds. ~

Aitchison and Aitken (1976) considered the application

of kernel methods to the estimation of posterior odds in

the p-dimensional binary case. They established a suitable

product kernel function the smoothing parameter of which

was chosen as in Hermans and Habbema by the method of
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modified maximum likelihood, which in this case gives a

consistent density estimate. Aitchison and Aitken

applied their kernel method to a set of data previously

analysed by Anderson (1972) using a logistic approach

and found that the kernel method gave comparable allocat­

ion rates. The similarity of the odds given by the kernel

and logistic methods was reflected in similar doubtful

allocations based on the size of the estimated odds.

In concluding Aitchison and Aitken note the ease

with which the product kernel method may be extended to

the awkward yet common problem of discrimination with both

discrete and continuous variables.

9.5 Standard Canonical Forms and Their Implications

The distribution of x in fit (t = 1 and 2) has been taken

~s f t = Np (~t,t) and we define our kernel density estimates

<Ii. f t as

_p.
ft(x) = (2i) 2 IhtMt,-1 n~l i~l exp{-I k

t
(x-xit)' M:1(XTXit)}

(9.5.1)

The usual canonical form adopted in this case is to take the

density f t of fit as _

and (9.5.2)

respectively, where I is a pxp unit matrix and e = (A,O,O, ••• ,O)'.
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A transformation which accomplishes this is

y = AB(x-~l) = T(x-~l) (9.5.3)

where B = 0-1 r' is a matrix such that B E B' = I, with

D the diagonal matrix of eigen values ).. I " j ~ P of E" r ~ ~c--l. -lM.c. t\
J ~-,,~ ~f.

and Aan orthogonal matrix with first row (v1/lv'v, v2//VTV,

•••••• , vp/lv'v) where v = B(~2-~1) and v'v = 62 the

canonical form (9.5.2) results. We note that the transform-

ation

(9.5.4)

allows the canonical form

Now whereas the parametric estimators of log-odds i.e.

LO(Ee), LO(Ue ) and LO(Pe) are invariant to the transformation

(9.5.3) the kernel density estimate may not be, depending on

the choice of its covariance matrix htMt • In the literature

the two choices of htMt are Case (a) htMt = htl and Case (b)

htMt = htS. Case (a) corresponds to standardising all the

variables to unit variances and will be treated as such.

We note tha~ Case (a) results in a product kernel density

as defined by Cacoullos (9.2.6), Case (b) in a non-product

kernel density. We now show that Case (a) product kernels

are not invariant to the transformation (9.5.3) whereas

Case (b) non-products kernels a~e.

226



Case (a) Here on the original scale x '-

_E. n
t

= (2n) 2 IhtII-1 n~l r exp{-I ~ (x-x.t)'(x-x. )}
i=l t 1 1t

with the transformation (9.5.4), Y = 8(x-~I)

_E. 1 n
A 2 I - t 1
ft(y) = (2n) Iht 88'1- nt i~l exp{-I h

t
(Y-Yit ) '(8 8,)-1 (Y-Y

it
)}

but .8 8' = 0- 1 r' r o-j = 0- 1 as r orthogonal, hence

_E. n
t

2 I "11-1 -1 1= (2n) htO- nt.r exp{-I h (Y-Yit), D(y-yit )}
1=1 t

i.e. Kt(z) = Np(O,htD-l). Thus one may assume without loss of

generality the canonical form (9.5.5) for f t and the kernel

density estimate is still a product kernel as D is a diagonal

matrix. However with the full transformation (9.5.3), Y = T(X-~l)

A _Eo j 1 nt I
ft(y) = (2n) -2 IhtT T' 1- nt- r exp{-I -(y-y. ). (T T,)-l(y_y. )}

i=l ht 1t 1t

n
t I

r exp{-j --(y-y. ). A 0 A'(y-y. ))
i=l ht 1t 1t

(9.5.6)

i.e. Kt(z) = Np(O,htA D-l A'), a non-product kernel unless ~j = a for all j

i.e. r = al.
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Case (b) Here on the original scale x

n

tt exp{-I ! (x-x. )' S~l(X-Xl.t)}
i=l ht It

with the full transformation (9.5.3), y = T(x-~l)

_£ -1 nt
ft(y) = (2n) 2 IhtT Sx Til-I nt t exp{-I! (y-y. )'(T S TI)-l(y_y. )

i=l ht It x It

n
l

n
2

t (Yil-Yl)(Yil-Yl)' + .t (Yi2-Y2)(Yi2-Y2)'
i=l 1=1

hence

and so the standard canonical form (9.5.2) may be adopted without

loss of generality.

While this invariance property of the Normal kernel density

estimate when Mt = S is attractive,we concentrate our attention

on the product Normal kernel where Mt = I. The reasons for this

decision are; we have demonstrated that Van Ness and Simpson's

(1976) assumption of Mt = I and the standard canonical form

(9.5.2) for f t implies from (9.5.6) that A 0- 1 A' = I i.e. ~j=l for all j

t=I ab-inito, and so their results and conclusions do not apply

in general. Even so the distinct·~uperiorityof their kernel

method when t = I and p ~ 2 remains to be explained. We are

also interested in seeing what happens when t + I and whether

the good classification behaviour of the product kernel method

is accompanied by good estimation of true log-odds.
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One possible explanation of the good classification

behaviour of the product kernels of Van Ness and Simpson

when r = I is the large values of the smoothing parameter

hI = h2 = h used by them. Their quoted value of h = 2.25

for the Normal kernel when p = 1 and n
l

= n2~= 10 contrasts

with h = .575 which minimises the IMSE# Appendix 9.8. We

now show that with their population assumptions and method

of choosing h# large values of h were inevitable and this

resulted in comparable classification performance with the

estimative rule when r is known and equal to I.

With the standard canonical form (9.5.2) for f t ,

Kt(z) = Np(O,hI) and n
1

= n2 = n# Van Ness and Simpson's

(1976) kernel log-odds is

-....

(9.5.7)1n
n I
r exp{-I - (x-x" )' (x-x

1
"2)}. 1 h 121=

with allocation to R1 or R2 according as (9.5.7) ~ o. if h

is sufficiently large to allow the expansion of the exponential

terms this would approximate to the rule,allocate to R1 or R2
according as

n
r (x-x. )' (x-x

1
"2)

. I 121=

>
<

n
E (x-x. )' (x-x

1
"1)

. I 111=..
or

or

(X-x2), (X-X2) n-l > (X-Xl) (X-Xl)
n-l

SI+ n tr S2 < + -- trn

(X -X )' {x-l(x
1

+x
2

)} > I n-I {tr S - trS2 }·
1 2 < n 1

(9.5.8)

This behaviour was noted by Specht (1966). The left hand side

of (9.5.8) corresponds to the classical rule

- - -1 --
LO(Ee) = (X I -X2)' S {x-l(x1+x2 )} ~ 0

with E known and replaced by I, while the right hand side
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corresponds to the difference in trace between the estimated

covariance matrices of the two populations. The latter will

vary about zero the optimal cut-off point. Ironically the

comparable performance of the kernel and classical rules

for t known was noted by Van Ness and Simpson but no

explanation was given. With their trial and error method of

selecting h so as to maximise correct allocation on additional

observations from IT
I

and IT2 large values of h were inevitable.

A similar argument may be carried out for their Cauchy kernel.

9.6 Interclass Correlation Matrix Models

To investigate the questions raised in Section 9.5 we choose

to look at the particular case of equi-correlated variables and

assume that t = R where

R =

1 - - - - P
I " l

" " "
1 •" .

" I

P - - - - - - -' 1

is the pxp interclass correlation matrix. Thus we have

flex) = Np(~I,R), f 2 (x) = NP(~2,R) and Kt(z) = Np(O,htI)

and with the transformation y = (x-~l) we may assume without

loss of generality that

p(~ n o )2 J2 1 J
nj - l+(p-l)p (9.6.2)

and Kt(z) = Np(O,htI)

(9.6.1)

distance A2 betweenwhere n = (~2-~1) > O. Mahalonabis' squared

the popUlations is given by

1 [p
A2 = n' R-1n = --- r

1-p I
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The eigen values of R are Al = I+(p-l)p, A2 = A
3

=

and for R positive definite

1
I-p < p < 1.

Now from Section 9.5 we see that with the transformation

y = B(x-~l) we may assume without loss of generality that

-1
and Kt(z) = Np(O,htO )

(9.6.3)

where v = Bn = 0-1 r' hJ2-~I) and v'v = /).2. Here 0 is the

diagonal matrix of eigen values Aj of R and the orthogonal

matrix r is taken to be the pxp Helmert matrix

1 1 1 1
--== -= -=- - - - - - - -

f(p-l)pIp 11.2 12.3
I

1 -1 1

Ii> 11.2 12.3 -
- - - - - - -

r =

1

Ii>

o
I

I
o

-2
12.3 -

o
•
I..,

I

I

I
I

-(p-l)
I(p-l)p

For convenience we will assume that the sample sizes nt are equal

i.e. n1 = n2 = n and with LO(Ke) denoting our kernel estimator of

true log-odds fro;1~:;5.1) and[~i:6~::{~: iO::::~ ::a:(X_x. )}I
LO(Ke ) = In{-... --} = 1n 1- 11 11

f ( ) n 1
2 x .t exp{-l -h (x-x. 2)' D(x-x. )}

1=1 1 12

The single smoothing parameter h, as nl • n2 =n, was chosen to

minimise the integrated mean square error (9.3.2) and is both
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a function of nand p i.e. the population covariance matrix.

Details of how this was accomplished are given in Appendix 9.B.

We must now specify the parameters {n,p,p,6,nj}. 'The

parameters n,p and 6 were chosen to coincide with the

studies of Chapter 8, while being similar to the range of

parameters considered by Van Ness and Simpson (1976), i.e.

n = 12, P = 1,4,8,16 and 6 so as to give optimal PMC's of

30, 20, 10 and 5%. To guide our choice of p and the mean

parameters njor v,,1 ~ j , p~we first look at the easier

case of p = 2.

From (9.6.1) with p = 2

(pI PI) , -1 < p < 1, ).1 = I+p, >'2 = I-p, II =(~~) and

MOdel I. Let n
1

= n
2

= c > 0 then from (9.6.2)

A2 1 [2c2 p4c2 2c2
= -- - I+P] = l+pI-p

hence c = A/ 1+p
= A/~) •2

With fixed A, as p + -1, ).1 + 0 and c + 0 and the populations

become indistinguishable, and we show that LO(Ke ) + O.

For v = D-1 r' II = D; (c;)= (~~) =(~)
hence from (9.6.3) the transformed densities are

and (9.6.4)

with xi2 = x~1 + v, where x~I' 1 , i ~ n are distributed as XiI

i.e. N2 (0, I).
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As v = (~) the quadratic forms '-

2
E (x.-x.. )2 ~.

j=l ) 11) )
and 2 *E (x.-x.. -v.)2 ~.

j=l ) 11)) )
(9.6.5)

in the exponential arguments of LO(Ke) (9.6.4), are only

distinguished in their first term. As p ~ -1, ~1 ~ 0 and

the quadratic forms (9.6.5) become identically distributed

with LO(Ke ) varying about zero. Thus we would anticipate

very poor classification behaviour by LO(Ke) as the first

eigen values approaches zero i.e. as R becomes singular.

A possible criticism of Model I is that it only

behaves badly as ~l ~ 0 that is for p negative whereas in

practice p is usually positive. This led us to consider

Model II.

Model II. Let v = t) and as n = r 01 v, n = (_~) with

c = L.JX~ .
Now as ~2 = I-p, ~2 ~ 0 as p ~ 1 and similar classification

behaviour i~ LO(Ke) as occurred in Model I is to be expected.

A possible criticism of Model II is that while p is positive

it may well be large i.e. close to 1, when p > 2, before the

anticipated classification breakdown materialises. What we

then sought was an intermediate model that would display the

behaviour of both Models I and II.

233



With P 2 from (9.6.2) -=

2

d2 122 P(Tl
1

+Tl
2

)
= 12[ en 1+Il2) A ]

1

in Model I d2 2c2
c -+ 0 as Al -+ 0 i.e. as P -+ -1n1

= Tl 2
= c > 0, - -A-'

I

in Model II d2 2c2
c -+ 0 as A2 -+ 0 i.e. I.n

l
=-Tl

2
= c > 0, = -A-' as p -+

2

" =

C2 A-p= o. then d2 - (1), -X;~'
= C > 0, n

2

Now for Model II! we wish d to depend on Al and A2 and one possibility_

is to take

ltt>del III n
1

and C -+ 0 as Al -+ 0 or A2 -+ 0 i.e. as p -+ ±l.

These models generalised to the p > 2 case are, with n = (~ -~ ) > 0.
2 I '

~a R and their transformed values v = B(~2-~I)' BEB' = I.

ltt>del I

'n = (C,C,-----,c)' , V :: (d,O,O,-----O),

ltt>del II

n :: (c,c,-----c,-<f-1)c)', " :: (O,O,-------O,d),

(9.6.6)

~del III

where

n = (c,O,O,-----,O), , " = (v l ,v2 '-----v j '----vp)'

v = ;;:;;; , v. =
/O-l)j ~~~l-P)1 d p{AI-p) J

2 < j , p

and Al = l+(p-l)p , A.:: I-p
J

2 , j < p.

.'
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As I~P < P < 1 and the maximum value of p is 16 we.. took

p = {-.066, 0, .2, .3••4, .5, .6, .8}. The extreme values

of {-.066, .8} were chosen to introduce when p = 16 near

singularity in the models. The value p = 0 was chosen to

reproduce the case of r = I of Van Ness and Simpson (1976),

we also note that with p = 0 all three models coincide.

The intermediate values p = {.2, .3, .4, .5, .6} were

chosen to investigate where the break-down in classification

behaviour of the models would occur.

9.7 A Simulation Study

For the three models adopted in Section 9.6 a simulation

study was undertaken to investigate the estimation and

classification behaviour of the kernel method Ke as compared

with the parametric methods Ee , Ue and Pee The study was

similar in form to that detailed in Section 8.5 and only a

brief description is given here.

With fixed nand p, 100 test observations were generated

from n1 i.e. a Np{O,I) distribution, and stored. The sample

parameters x
1
:·x

2
and S were then generated and for each A

and p i.e. each of the three models (9.6.6), the unconditional

mean, bias, variance, mean square error, expected actual PMC

and standard error of the means, mean square errors and

expected actual PMC's of LO(M), ~{Ee,Ue,Pe,Ke} calculated.

The mean, variance and PMC of LO{Te) were also estimated. This

sample generation process was repeated 100 times and suitable

tests carried out to check estimated values with their exact

values. To allow comparisons with the studies of Chapter 8,

the same seeds for the random number generator. Appendix S.A,

were used here.
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The estimated expected actual P~fC's xl02 obtained from

the simulation study are listed in Table 9.7.1. As n
1

= n
2

only one result is listed for the parametric methods

{Ee,Ue,Pe } under the heading Ee • The Ke result for p = 0

is separated from the three models since as noted they

coincide in this instance. With p = 1 the case of p +0

does not arise. Maximum standard errors are given at the

base of the table.

From the results of Table 9.7.1 we see that with p = 0

i.e. t = I the results of Van Ness and Simpson (1976) hold

for high dimensions when reasonable values of the smoothing

parameter h are used. Contrary to their results however,

for p = 0 and p ~ 8 the estimated expected actual PMC's of

LO(Ke) are in all cases greater than or equal to those of

LO(Ee). With increasing p they improve and for p = 16 they

are smaller, but the superiority is not as marked as in

Van Ness and Simpson's study. Further the expected actual

PMC's of LOCKe) do not display the pattern noted by Van Ness

and Simpson where they paralleled those of LOCEe) with t

known. This phenomenon is explained by Van Ness and Simpson's

choice of large values for the smoothing parameters.

For the results of Model I we note as anticipated that

with p = -.066 the estimated expe~ted actual PMC's of LOCKe)

are larger than those of LOCEe) and LOCKe) with p = O. With

P = 16 and p = -.066 as demonstrated in Section 9.6 the"

estimated PMC's of LOCKe) are close to .50 for all d. With

increasing p > 0 the estimated expected actual PMC's of

LOCKe) decrease and for d ~ 2.563 they are smaller than the

corresponding values for LO{Ee) in all dimensions.
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Table 9.7.1

Estimated Expected Actual Probabilities of Misclassification x 102

of LO(M) , M e{E ,U ,P ,K }., e e e e

Sample Sizes n
1

= n
2

= 12

-I

N
W
~

Parametric Ke Ke Model I Ke Model II Ke Model III !
IMethods all models

IA &PMC P Ee p • 0 -.066 .2 .4 .8 -.066 .2 .4 .8 -.066 .2 .4 .8
I
I

1 37.5 37.2 - - - - I- - - - - - - - I

A • 1,049 4 31.5 35.8 36.9 34.0 33.3 33.3 37.7 38.5 39.1 41.7 36.1 36.6 37.9
41.

3
1.30 8 38.7 43.1 45.5 40.7 39.7 39.1 44.3 45.0 45.5 46.4 43.0 42.8 43.7 45.4

16 42.7 42.5 49.9 38.7 37.8 36.9 45.4 44.7 45.1 46.5 49.1 43.5 44.6 45.8 !
-.

1 25.1 25.8 - - - - - - - - - - - -
A • 1.683 4 20.8 24.0 25.3 22.2 21.6 21.0 24.6 25.3 26.8 30.9 24.7 25.3 26.4 31.2

.20 8 27.5 32.1 37.0 27.7 . 27.2 26.8 33.0 34.4 35.2 39.0 31.9 32.2 33.4 38.1
16 35.9 i4•7 49.7 28.3 27.9 27.7 37.9 38.0 39.6 42.4 47.8 36.6 38.2 41.1 I

I
1 10.2 11.3 I- - - - - - - - - - -

1;.8 IA • 2.563 4 11.2 11.2 12.3 10.1 9.3 8.9 11.8 12.4 13.3 17.3 14.0 14.2 15.2
.10 8 15.3 17.4 22.6 13.7 12.6 12.4 18.4 19.9 21.1 26.5 18.1 17.9 19.8 25.7 I

16 26.9 22.4 49.4 14.7 13.7 13.4 24.9 26.0 28.1 33.6 45.2 24.4 26.9 32.9 I

A • 3.290 1 3.9 4.3 - - - - - - - - - - - - I
.05 4 5.6 5.3 5.8 4.2 3.9 4.0 5.8 6.2 6.5 9.8 7.9 8.1 8.5 11.5 i

8 8.8 9.1 13.2 6.3 5.9 5.5 9.5 10.4 11.8 16.8 10.0 10.3 11.4 16.6 :
16 20.4 13.5 49.0 7.8 6.8 6.5 14.0 16.2 18.8 25.3 42.2 15.3 17.8 25.0 I

I
Maximum S.E. .011 .013 .011 .012 .011 .010 .012 .012 .010 .010 .012 .011 .011 .010 1



In Model II where we anticipated that the classification

performance of LOCKe) would dis improve as p + 1 we see from

Table 9.7.1 that this disimprovement as compared with LO(Ee)

sets in at the early stage of p = .2 except for p = 16 and

A ~ 2.563 where it occurs at p = .3 when A = 2.563 and p = .6

when A = 3.290.

For the intermediate model, Model III, where we

anticipated poor classification performance as p + 1 and

l+(p-l) p + 0, we see from Table 9.7.1 that this is indeed

the case. As in Model II the inferior classification

performance as compared with LO(Ee) sets in at p = .2 except

for p = 16 and A ~ 2.563 where it occurs at p = .4 when

A = 2.563 and p = .6 when A = 3.290.

We conclude from these classification results that for

variables which are close to independence, product kernel

methods can outperform conventional parametric methods,

particularly at higher dimensions and for well separated

populations if the parametric methods make no effort to

incorporate the independence assumption.

Consider now the performance of the product kernel method

as an estimator of true log-odds. In Table 9.7.2 we list the

estimated unconditional means of LOCKe) for the three models,

also listed are the exact means or LO(Ue) and LOCPe) derived

and evaluated in Chapters 7 and 8. The exact unconditional

mean square error of LO(Ue) and the estimated unconditional

mean square errors of LO(Pe) and LOCKe) are listed in

Table 9.1.3. Included at the base of each table are the

minimim and maximum ratios of the estimated to exact values.
The estimative method Ee is omitted as it has been shown in

Chapter 8, to be a poor estimator of true log-odds. The

appropriate results for LOCEe ) may be found in Table 8.5.1

and 8.5.2.
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Table 9.7.2

Exact and Estimated Unconditional Mean of LOeM)

M£{Ue'Pe,Ke} and x in n1•

Sample Sizes n1 • n2 • 12

Parametric Ke . Ke Model I Ke Model II Ke Model III
Methods all models

A &PMC P Ue Pe p = 0 -.066 .2 .4 .8 -.066 .2 .4 .8 -.066 .2 .4 .8

1 0.55 0.50 0.35 - - - - - - - - - - - -
A • 1.049 4 0.55 0.50 0.53 0.47 0.73 0.95 2.08 0.47 0.41 0.38 0.36 0.47 0.47 0.45 0.43

.30 8 0.55 0.50 0.31 0.14 0.54 0.82 2.46 0.27 0.24 0.23 0.22 0.31 0.33 0.31 0.31
16 0.55 0.50 0.40 0.02 0.97 1.59 5.58 0.26 0.28 0.30 0.47 0.05 0.38 0.39 0.59

1 1.42 1.25 1.00 - - - - - - - - - - - -
A • 1.683 4 1.42

"

1.25 1.30 1.13 1.80 2.39 5.67 1.22 1.05 0.97 0.84 1.20 1.18 1.12 0.97
.20 8 1.42 1.25 0.91 0.52 1.57 2.37 7.14 0.89 0.78 0.73 0.67 0.91 0.92 0.88 0.81

16 1.42 1.25 0.92 0.03 2.41 4.12 14.55 0.77 0.71 0.71 0.85 0.13 0.87 0.87 1.04

1 3.28 2.71 2.58 - - - - - - - - - - - -
A • 2.563 4 3.28 2.71 2.97 2.56 4.22 5.85 15.48 2.89 2.46 2.26 1.88 2.82 2.77 2.60 2.14

.10 8 3.28 2.71 2.22 1.33 4.03 6.37 20.83 2.27 1.96 1.85 1.64 2.22 2.22 2.09 1.87
1'6 3.28 2.71 2.05 0.04 5.85 10.60 36.98 1.93 1.69 1.65 1.71 0.28 1.94 1.91 2.00

1 5.41 4.19 4'.63 - - - - - - - - - - - -
A • 3.290 4 5.41 4.19 4.93 4.23 7.21 10.31 29.14 4.91 4.14 3.78 3.07 4.76 4.65 4.35 3.49

I

.05 8 5.41 4.19 3.75 2.27 7.19 11.87 40.39 3.91 3.34 3.15 2.76 3.75 3.72 3.50 3.08
16 5.41 4.19 3.35 0.06 10.20 19.31 63.66 3.30 2.84 2.76 2.71 0.46 3.18 3.10 3.09

Min.Ratio 0.81 0.80

Max. Ratio 1.42 1.38
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Table 9.7.3

,Exact and Estimated Unconditional Mean Square

Error of LO(M) Me{Ue,Pe,Ke } and x in n1 •

Sample Sizes n1 = n2 • 12

Parametric Ke
. Ke Model I Ke· Model II Ke Model III

Methods all models

A &PMC P Ue Pe p • 0 -.066 .2 .4 .8 -.066 .2 .4 .8 -.066 .2 .4 .8

1 0.46 0.32 0.37 - - - - - - - - - - - -
A • 1.049 4 1.43 1.38 1.64 1.72 1.84 2.79 20.42 1.77 1.68 1.87 4.22 1.66 1.64 1.88 4.42

.30 8 3.53 2.46 2.38 2.65 3.02 5.66 64.62 2.50 2.66 3.30 10.93 2.59 2.77 3.48 11.39
16 22.26 9.45 4.20 5.98 7.20 20.26 362.05 4.58 5.25 8.57 75.98 5.81 5.44 8.93 77.68

A • 1.683
1 0.99 0.63 ~.83 - - - - - - - - - - - -

.20 4 2.41 2.03 .21 2.36 2.92 6.28 79.31 2.37 2.35 2.63 5.28 2.22 2.27 2.67 5.73
8 5.43 3.51 3.03 3.81 4.48 12.79 232.25 3.13 3.45 4.19 12.12 3.47 3.70 4.57 13.04

16 32.61 12.41 5.05 9.86 11.83 50.79 989.00 5.14 5.91 9.28 76.69 9.27 6.31 9.98 79.65

A • 2.563
1 2.73 1.80 2.11 - - - - - - - - - - - -

.10 4 5.20 3.77 3.64 4.17 6.48 21.29 380.57 3.80 4.13 4.82 8.71 3.54 3.80 4.66 9.42
8 10.47 5.89 4.93 .7.89 9.72 44.70 996.15 4.82 5.84 6.93 15.80 5.92 6.31 7.66 17.59

16 58.34 18.55 7.71 23.41 28.97 178.29 2971.99 6.87 8.25 11.81 79.41 21.16 9.09 13.16 84.46

1 5.65 4.36 4.00 - - - - - - - - - - - -
A • 3.290 4 9.50 6.92 5.49 6.77 13.14 54.44 1088.94 5.56 6.58 8.06 14.36 5.12 5.64 7.27 14.91

.05 8 17.75 9.30 7.81 15.12 20.11 117.57 2521.13 7.14 9.51 11.28 21.79 9.45 10.10 12.29 24.51
16 93.29 26.05 12.02 47.40 63.50 448.97 5812.84 9.65 12.38 16.31 84.49 41.99 13.68 18.35 91.61

Min. Ratio 0.67

Max. Ratio 1.40



Considering the unconditional means and mean square

errors of Tables 9.7.2 and 9.7.3 we see that with p = 0,

E{LOCKe)} is for all p and 6 less than E{LOCUe)} = E{LOCTc)}

and so Ke on average understates true log-odds. For p ~ 8

this understatement of true log-odds by LOCKe) is in excess

of LOCPe)'s. This is also reflected in Table 9.7.3 where

for p = 0 and p ~ 8 the mean square errors of LOCKe) are

less than those of LOCPe).

The unconditional means of LOCKe) in Model I display

behaviour consistent with the classification behaviour of

Ke noted in Table 9.7.1. With p = -.066 and for all 6,

LOCKe) understates true log-odds increasingly so as p

increases. As demonstrated in Appendix 9.C, where the

asymptotic unconditional mean of LO(Ke) is derived, for

p = 16 and p = -.066 E{LO(Ke)} is almost zero. However

with p > 0 we note that the improving classification perform­

mance of LO(Ke) Table 9.7.1. is due to its increasing over­

statement of true log-odds. This overstatement and under­

statement of true log-odds is reflected in the mean square

errors of LOCKe) Table 9.7.3.. With p = -.066, MSE{LO(Ke)}

is usually less than MSE{LO(Ue)} but greater than MSE{LO(Pe)}.

With increasing p > 0 the mean square errors of LOCKe) increase

and are larger in all cases than those of LO(Ue) for p ~.3.

For Model II we note Table a.7.2 that LOCKe) understates

on average true log-odds for all p, 6 and p and that for p ~.2

this understatement is in all cases greater than that of LO(Pe).

We also note that E{LOCKe)} usually decreases with increasing

p for all 6 and p. From the mean square errors of Model II,

Table 9.7.3 we note that p must be as large as .8 for the

mean square errors of LOCKe) to be greater in all cases than
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'-those of LOCUe) and p must be equal to .6 before they are

larger in all cases than those of LOCPe).

For Model III similar comments as made for Model II

apply. With p = 16 and p = -.066 and .8 we note the

similar size of E{LOCKe)} and MSE{LO{Ke)} as compared with

their corresponding results for Model I (p = -.066) and

t-bdel II (p = .8). This was to be expected from the

construction of Model III, Section 9.6.

These results on the mean and mean square error of

LOCKe) with p = 0 confirm that for variables which are

independent and for large dimension sizes relative to

sample sizes the product kernel method is a superior

estimator of true log-odds as compared with the parametric

methods Ee , Ue and Pee However the results of Model I show

that with p ~.2, LOCKe) becomes progressively poorer as an

estimator of true log-odds while improving its classification

performance. It must however be admitted that Model I and

indeed Model II are somwhat extreme cases. From the behaviour

of LO{Ke ) in Model III,especially its classification behaviour,

we conclude that for n small, p large and multinormally

distributed populations with equal covariance matrices the

product kernel method is a good estimator of true log-odds

provided the variables are moderately correlated.
III

242



APPENDIX 9.A. ' ..

DERIVATION OF THE INTEGRATED t-IEAN SQUARE ERROR WITH

f(x) = Np(~,r) and K(z) = Np(O,hM)

We assume that the true probability density function f(x)

is Np(~,r) and that the kernel function K(z) is Np(O,hM), where

IhMI > 0 and M is independent of the sample observations {xi}'

1 , i ~ n. We define the conditional mean square error,

MSE(x) as
....

MSE(x) = E[{f(x) - f(x)}2],

where
....
f(x)

_p.
= (2w) 2 IhMI-1 I

n

n 1
r exp{-l - (x-x.)' M-I(x-x

1
·)},

. 1 h 11=

and the expectation is taken over the sample observations x .•
1

The integrated mean square error IMSE is then defined as

IMSE = fMSE(X) dx. (9.A.I)

As

MSE(x) = f 2(x) - 2 f(x) E{f(x)} + E{f2(x)}
.... ....

we require the expectations E{f(x)} and E{f2(x)}.

Let t = B B' and Yi = B-I(x-xi ), then Yi - Np(v,I) where

v = B-l(x-~) and

....

f(x) 1
= -

n

1= -n

n
t

i=1

n
t

i=1

_p.
(2w) 2 IhMI-1 !Xp{-l y.' B' (hM)-1 By.}

1. 1

_p.
(2w) 2 IhMl-1 exp{-I y~ A y.}

1 1

.~

where A =~ B' M-l B.
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Now as the x. and so the y. are independent identically·
1 1

distributed it follows that

-~

E{f(x)} = (2~) 2 IhMI- 1 E[exp{-I y' Ayl]

and (9.A.2)

E{f2 (x)} = (2n}-P IhMl- 1
;2 (nE[exp{-y' Ay}] + n(n-I) E2 [exp{-lY' AY}l)

where y-Np(v,I).

But y' Ay is a non-central positive definite quadratic form

with characteristic function

E[exp{\t y' Ay}] = II-21t AI-I exp{lt v' A(I-2\t A)-l v}

(9.A.3)

and with \t = -I

E[exp -Iy' Ay}] = II+AI-1 exp{-I v' A(I+A)-t v}

thus from (9.A.2)
-~ IA 2

E{f(x)} = (2~) IhM+LI- exp{-l(x-p), (hM+L)-l (x-p)}
~

(9.A.4)
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The expectation (9.A.4) was derived by Specht (1966) and

Anderson (1969) using different approaches to that used

here.

With \t =-lin(9.A.3) we see that

E[exp{-y' Ay}] = II+~ M-
1 ~I-I exp{-(x-~)' {hM+2E)-1 (x-~)}

and so from (9.A.2)

(9 .A. 5)

+ (2w)-P IhM+~I-I n-l exp{-{x-~)' {hM+E)-1 (x-~)}.
n

This expectation (9.A.S) was also studied by Anderson (1969)

for the case M = I. His result however is incorrect as he

writes 1/12 IlhM+~fj for I/lhM+2E,I.

For the integrated mean square error (9.A.l) we will

require three integrals. These are easily derived from the

inte~ral of the Multivariate Normal density.

J
-~ 1 -~ J -~ p. j - 1

Now f2{x) dx = (2w) 2 1~1-2 2 2 (2w)2 22 I~I- exp{-I{x-~)' 2~ (x-~)} dx

(9.A.6)= 1 1--.
~ 1~lj

(4w)2

from (9.A.4) •

J
_P. IE,-II hM+ EI-I J _P.

f{x) E{f(x)}dx = (2w) 2~ (2w) 2 1~-l+{hM+E)-lll [
I~-1+(hM+ E) - 1 I

(9.A.7)
IhM+2~11

1
=--

P.
(4w)2

1

exp{_j{x_~),{~-l+{hM+E)-l)

_P.
= (2w) 2
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and from (9.A.5) ' ..

1 1
=-- -

~ n
(4w) 2

1
I

IhMI

+ _1_ n-l
~ n

(41f) 2

1
I

IhM+l:1

(9.A.8)

As IMSE

it follows from (9.A.6), (9.A.7) and (9.A.8) that

IMSE 1 1 n-l 1 ]
+ n jh;IT + n IhM+l:1 1

(9.A.9)
.,

The latter result coincides with the result for f(x) = NpCO,I)

and K(z) = Np(O,hI) given by Epanechnikov (1969).
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The formula for the expected mean square error i.e.

Specht (1971) derived Ex{MSE(x)} when p = I and f(x) = NI(O,I),

it coincides with the move result in this instance.
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APPENDIX 9.B

CHOICE OF h TO MINIMISE 1~E IMSE

'-

In the models of Section 9.6 we let M = 0-1 where 0 is

the diagonal matrix ~j I ~ j ~ P of eigen values of t, with

~l = I+(p-l)p, ~2 = ~3 = ----- = ~p = I-p and now t = I.

From (9.A.9) the IMSE for these models is

IMSE

~I ]I 2 1 I n-I I
~ - IhI+2DI1 + n~ + n IhI+01 1

= g(h) say.

We note that the-IMSE g(h), is independent of the mean of the

true populations, hence the value of h, for given n, p and p,

that minimises g(h) will be the same for all three models.

This was to be expected as h is a smoothing parameter and all

three models require the same amount of smoothing as they

differ only in their mean vectors. We also note as 101 = Itl,

IhI+201 = IhI+2EI and IhI+ol = jhI+tl that g(h) = ItllxIMSE

where ft(x) = Np(~t,t) and Kt(z) = NpCO,hI), thus the values

of h that minimise g(h) also minimise the IMSE for the

untransformed models where t = R.
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'-

We now require for given n~ p and p that value of

h > 0 which minimises g(h)~ this is equivalent to

finding h > 0 so that g'(h) = 0 and g"(h) > O. Now

g'(h) =~
E.

(41l) 2

¥+1
~ 2 {h+2+(p-2)2p}
2 3· E.:.!-..

'2 2 1
{h+2+(p-I)2p} (h+2-2p)

{h+I+(p-2)p} ]
3 E.:.!-.."2 2 1

{h+l+(p-l)p} (h+l-p)

~ E. ~1 1 1 _ E. n-l= 2 a - E. - -- -B
E. 2 2 n

~1
2 n

(41l) 2 h

and g' (h) = 0 when

o

~1
ah.,

+

T-l
u(h) = - 0 2 + 1 + (0-1) ! = O.

T- l a
ah

It is easily shown that _1 > B > 0 and as a > 0 it follows that
~1

h

T-1
u(h) < - 0 2

T- l
= - 0 2

3 E.:.!-..
22

1
{h+2+(p-l)2p} (h+2-2p)

+ 0 ~-~~~-~-~"'---

~l
{h+2+(p-2)2p} h

= w(h) say.
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Now if p ~ 0 h+2+(p-2)2p ~ h+2-2p > 0

h+2+(p-I)2p ~ h+2-2p > 0

hence
¥+l ~l

w(h) , - n 2 + n {h+2+(p-l)2p}

~1
h

= o when h = 2+(p-l)2p = 2A 1•

If p < 0 then (p-l) 2p < (p-2) 2p

and 0 < h+2+(p-l)2p < h+2+(p-2)2p

o < h+2+(p-I)2p < h+2-2p

hence
~l

w(h) < - n 2 + n
~l

(h+2-2p)

·2+1
h2

= 0 when h = 2-2p = 2~2.

Thus the value of h > 0 that minimises g(h) must be in the

interval

(O,2~1) for p > 0 where ~I = l+(p-l)p

(0,2] for p = 0 where Al = ~2 = 1 (9. B.l)

(O,2~2) for p < 0 where ~2 = I-p and ~j=l2'

2 ~ j " p.

Using the search intervals (9.B.l) and the IBM SSP routine
~

RTMI (1970) i.e. a regula falsi approach, those values of

h > 0 which minimise the IMSE g(h) for given n, p and p

were obtained. The complete search interval was scanned

in each case to ensure that the global minimum was found.

The resulting values of h are listed in Table 9.B.l.
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Table 9.B.l ' ..
Values of the Smoothing Parameter h which minimise the IMSE

when f(x) =Np(v,I) and K(z) = Np(O,hD-l), based on a sample

of size n = 12.

~ -.066 0 .2 .3 .4 .5 .6 .8

1 .526 .526 .526 .526 .526 .526 .526 .526

4 .722 .727 .689 .648 .595 .532 .459 .281

8 .927 .943 .871 .805 .725 .636 .536 .309

16 1.180 1.234 1.112 1.011 .897 .773 .641 .351

We see from Table 9.B.l, that with fixed p, as p increases i.e.

as the shape of the kernel alters, the amount of smoothing

required decreases. We also noted in obtaining these values

of h that the corresponding values of g(h) = IMSE were for

fixed p almost constant with increasing p. This coincides

with the result of Anderson (1969) and Epanechnikov (1969),

that the shape of the kernel is not critical provided the

appropriate smoothing value is used.
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APPENDIX 9.e
' ..

AN ASYMPTOTIC EXPANSION FOR THE UNCONDITIONAL MEAN OF LOCKe)
•

....

. f} (x)
LOCKe) = In{.... }

f 2 (x)

....
where f t (x) I- -n

By a Taylor series expansion and taking expectations with

respect to the sample values xit we have the asymptotic

conditional expectation

E{LO(Ke) Ix} [
£} (x) I]= E In{-----....} x
f 2 (x)

:= [~E{fl-(X)} jIn ....
E{f2 (x)}

.....

.... . .... 2 2 ....
As V{ft(x)} = E{ft(x)} - ~ {ft(x)}

and the results of Appendix 9.A where it is shown that
....

E{ft (x)} = Np (Pt ~ hM+I:)
.... 2 ! (211')-P IhMl-1 IhM+21:(-1

. -1
E{ft (x)} = exp{-(x-pt)'[hM+2I:) (x-Pt)}

n

n-l E2{ft (x)}+-n

it follows that

T1 = (P
1

-P2), (hM+1:)-l {X-I(Pl+P2)}
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and

where C = (hM+L)-I - (hM+2E)-1

(9 .C. 2)

The asymptotic unconditional expectation of LO(Ke), x in R1
is given by

E{LO(Ke)} = Ex(T1 ) + Ex(T2)

where (9.C.3)

For Ex (T2) we require from (9.C.l)

Ex £ exp{(x-Pt)' C(x-Pt)}] t = I and 2 (9.C.4)

where x - Hp(PI,E). These expectations (9.C.4) may be

obtained as in Appendix 9.A. As before we let Yt = B-I(x-pt)

where E = B B', then YI - Hp(O,I) and Y2 ~ Hp(v,l) where

v = B-1 (P2 -PI) • From (9 .A. 3) for t = I

C(X-PI )}] = Ey [exp{YI H YI}] where H = B'CB
.1

= 11-2HI-1 = 11-2BB'cl-1

• 11~2Ecl-1 = Icl- l lc· I -2EI· I ,

(9.C.5)

for t = 2

Ex [exp{(x-P2)' C(x-P2)}] = Ey: [exp{Y2 ,'H Y2}]
2

= 11-2HI-1 exP{v'H(I-2H)-1 v}

• Icl-llc-1-2EI-lexP{(PI-P2)'(C-I-2E);(Pt-P2)}.

(9.C.6)
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'\00

From (9.C.2)

giving

hence

3
rhM+Ir!
=~.

(9.C.7)

I

....

Combining the results (9.C.5), (9.C.6), (9.C.7) and (9.C.l) gives

(9.C.8)

Thus from (9.C.3) and (9.C.8)

E{LO(Ke)} a 1(~1-~2)' (hM+I)-1 (~1-~2)

In the models of Section 9.6 ~1 = 0, ~2 = v, I = I and

M= D-l where D is the diagonal matrix of eigen values ).., 1 ~ j ~ p,
J

of R. For these models, from (9.C.9)

E {LO (Ke)} = I v • (hD- 1+I) - 1 v

3
1 IhD-I+I I!

+ I - --.J ..----- [exP {v'p-I v} - 1]
n IhD-11 IhO- 1+3II 1

where P = h2 D-2 + 3h D-l.
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Now
' ..

o

o

,
o

,
"

and so for Model I, (9.6.6), as v = (6,0,0,-----,0)'

(9.C.IO).

. -1
As ~l = 1+(p-l)p + 0 1.e. p + I-p , E{LO(Ke)} + 0 as anticipated.

However as p + 1. ~l + P and the second term in the expansion

of EaO(Ke)} (9.C.IO) becomes extremely large, rendering the

expansion worthless. Unfortunately the size of the second term

is still quite large for p = 0 and so the asymptotic expansion

does not provide reliable information except in near singular

cases.
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CHAPTER 10

POSSIBLE EXTENSIONS

We conclude by considering possible extensions and

development of the work undertaken in the previous chapters.

We have seen in Chapters 7 and 8 that allowing for the

bias in estimating E- 1 by 5- 1 results in a considerable

improvement in estimating log-odds. However the biased

predictive method was superior. The use of alternative biased

estimators of E-l and their consequences for estimation of

log-odds have yet to be investigated. There have been some

recent studies of biased allocation rules; Di Pillo (1976.

1977. 1979) introduced a ridge adjustment in the estimative

allocation rule i.e. he replaced S-1 by (S + kI)-I, k > O.

His simulation study with n small indicates considerable

classification improvement when the population covariance

matrices are poorly conditioned. Similar investigations have

been undertaken by Smidt and Mc Donald (1976a,b). Given the

arithmetic connection between multiple regression and the

estimative allocation rule Anderson (1958,pI40l, the improve­

ment in estimating the regression coefficients with inclusion

of a ridge adjustment, Hoerl and Kennard (1970). might be

reflected in a better estimate of true log-odds especially for

highly correlated population covariance matrices. Efron and

Morris (1976) have shown that

A n
1
+n2-p-3 p2+p_2

E-1 = s-1 + -:---"""'="='---=- I '
n 1 +n2 -2 (n1+n2 -2) tr S

is for p ~ 2 a uniformly better estimator of E-l than the

unbiased estimator

n1 +n2 -p-3 5- 1

n 1+n2 -2

for a particular loss function.
...

With n1 = n2 use of E-l would
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result in overstatement of true log-odds. The implications

of this bias for mean square error and classification are

not known. Some analytic mean square error results may be

possible here. Haff (1979) has extended the work of Efron

and Morris and proposed modifications to r- 1 which are

optimum for alternative loss functions.

The logistic approach to estimating log-odds is one

important area not investigated in this thesis. The logistic

formulation is valid for a range of distribution assumptions

and its economy of parameters make it an attractive method.

With normality assumptions however the logistic method is

unlikely to perform as well as some of the parametric methods

considered here. Some support for this view is given by the

result of Efron (1975) who derived the aSYmptotic relative

classification efficiency of the logistic to the estimative

allocation rule when the poputations were multinormally

distributed, these relative efficiencies were quite low for

reasonable population separations A. However Mc Lachlan and

B¥th (1979) showed t~at the asymptotic expected actual

probabilities of misclassification of the logistic and

estimative allocation rules are comparable for reasonable A and

n moderately large. It is likely however that as an estimator

of log-odds the logistic method has a substantial bias.

Expressions in Mc Lachlan and Byth will facilitate calculation

of the asymptotic bias and mean siuare error of the logistic

method when the populations are normally distributed. The

presence of a substantial bias in the logistic method is also

supported by the study of Anderson and Richardson (1979) who

derived in general the bias corrections when estimating the

logistic parameters. Their simulation study, on univariate

normal distribution with small sample sizes, indicated that

. the logistic parameters adjusted for bias were closer to the
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true parameters than the unadjusted logistic parameters-and

that this bias reduction was not accompanied by increased

variability of the estimators.

Turning now to the estimation of log-odds by the kernel

method, the obvious extension to the study of Chapter 9 is

to consider the behaviour of product kernels in the presence

of correlated variables when the covariance matrices are

unequal. For allocation, the case of zero correlation and

proportional covariance matrices has been considered by

Van Ness (1979). Use of the full sample covariance matrices

in the kernel functions also needs to be considered.

Preliminary investigations of this when ~l = I 2 indicate that

the kernel method is now a poor estimator of log-odds. It is

also inferior for classification purposes unless the dimension

size p is large relative to the sample size n, when it is

comparable to the parametric methods. Recently the behaviour

of the product kernel method when the populations are continuous

but non-normal has been studied by Koffler and Penfield (1979)

and Remme, Habbema and Hermans (1980). In the latter reference

it is noted that on the basis of previous work, Habbema, Hermans

and Remme (1978), the product kernel with fixed smoothing

Parameter may have difficulties when the population distributions

are skewed. The variable kernel modification of Brieman, Meisel

and Purcell (1977) addresses this problem.

258



REFERENCES

Abdel-Aty, S.H. (1954). Approximate formulae for the percentage

points and the probability integral of the non-central

X2-distribution. Biometrika 41, 538-540.

Abramowitz, M and Stegun, I.A. (Eds) (1965). Handbook of

Mathematical Functions. Dover Publications.

Aitchison, J. (1975). Goodness of prediction fit.

Biometrika 62, 547-554.

Aitchison, J. and Aitken, C.G.G. (1976). Multivariate binary

discrimination by the kernel method. Biometrika 63, 413-420.

Aitchison, J. and Dunsmore, I.R. (1975). Statistical Prediction

Analysis. Cambridge Univ. Press.

Aitchison, J., Habbema, J.D.F. and Kay, J.W. (1977).

A critical comparison of two methods of statistical discrimination.

Appl. Statist., 26, 15-25.

Aitchison, J. and Kay, J.W. (1973). Principles, practice and

performance in decision problems of categorisation. Paper

presented at the NATO conference on the role and the effectiveness

of decision theories in practice. Luxembourg.

Anderson, G.D. (1969).

a probability density.

Anderson, J.A. (1972).

Biometrika 59, 19-35.

Anderson, J.A. (1975).

Biometrika 62, 149-154.

A comparison of the methods for estimating

Ph.D. Diss. Univ. of Washington.-
Separate sample logistic discrimination.

Quadratic logistic discrimination.

259



Anderson, J.A. and Richardson, S.C. (1979).

Logistic discrimination and bias correction in maximum

likelihood estimation. Technometrics 21, 71-78.

Anderson, T.W. (1951). Classification by multivariate

analysis. Psychometrika 16, 31-50.

Anderson, T.W. (1958). An Introduction to Multivariate

Statistical Analysis. Wiley.

Anderson, T.W. (1973). An aSYmptotic expansion of the

distribution of the Studentized classification statistic W.

Ann. Statist. I, 964-972 •.

Anderson, T.W. and Bahadur, R.R. (1962). Classification into

two multivariate Normal distributions with different covariance

matrices. Ann. Math. Statist. 33, 420-431.

Bartlett, M.S. and Please, N.W. (1963). Discrimination in the

case of zero-mean differences. Biometrika 50, 17-21.

Bowker, A.H. (1961). A representation of Hotelling's T2 and

Anderson's classification statistic in terms of simple

statistics. Studies in Item Analysis and Prediction.

Stanford Univ. Press.285-292.

Bowker, A.H. and Sitgreaves, R. (1961). An asymptotic expansion

for the distribution of the W-classification statistic. Studies
~

in Item Analysis and Prediction. Stanford Univ. Press. 293-310.

Box, G.E.P. and Muller, M.E. (1958). A note on the generation

of random normal deviates. Ann. Math. Statist. 29, 610-611.
/

Brieman, L., Meisel, W. and Purcell, E. (1977). Variable kernel

estimates of multivariate densities and their calibration.

Technometrics 19, 135-144.

260



Broffitt, J.D. and Williams, J.S. (1973). Minimum variAnce

estimators for misclassification probabilities in

discriminant analysis. J. Mult. Anal~ 3, 311-327.

Bryan, J.K. (1971). Classification and clustering using

density estimation. Ph.D. Diss. Univ. of Missouri.

Cacoullos, T. (1966). Estimation of a multivariate density.

Ann. Inst. Statist. Math. 18, 179-189.

Cornfield, J. (1962). Joint dependence of risk of coronary

heart disease on serum cholesteral and syptolic blood

pressure: a discriminant function analysis.

Proc. Fed. Amer. Soc. Exp. BioI. 21(2), 58-61.
*Chen (1971) see below
Chou, C.and Siotani, M. (1974). Asymptotic expansion of the

non-null distribution of the ratio of two conditionally

independent Hotelling's T~-statistic.

Ann. Inst. Statist. Math. 26, 277-288.

Cover, T.M. (1972). A hierarchy of probability density

function estimates. In, Frontiers of Pattern Recognition.

83-98 Ed., Wantanabe, S. Academic Press.

Cox, D.R. (1966). Some procedures associated with the logistic

qualitative response curve. Research Papers in Statistics:

Fetschrift for J. Neyman. 55-7l.Wiley.

Das Gupta, S. (1965). Optimum classification rules for

classification into two multivariate normal populations.

Ann. Math. Statist..36, 1174-1184.

Das Gupta, S. (1968). Some aspects of discrimination function

coefficients. Sankhya A. 30, 387-400.

*Chen, E.H. (1971). A random normal number generator for

32-bit-word computers. J. Am. Statist. Assoc. 66, 400-403.

261



Das Gupta, S. (1974). Probability inequalities and errors

in classification. Ann. Statist. 2, 751-762.

Day, N.E. and Kerridge, D.F. (1967). A general maximum

likelihood discriminant. Biometrics 23, 313-323.

Deheuvels, P. (1977). Estimation non parametrique de la

densite par histogrammes generalises II.

Pub. Inst. Stat. Univ. Paris 22, 1-23.

Desu, M.M. and Geisser, S. (1973). Methods and applications

of equal-mean discrimination. Discriminant Analysis and

Applications 139-159. Ed. T. Cacoullos. Academic Press.

Di Pillo, P.J. (1976). The application of bias to

discriminant analysis. Comm. Statist. - Theor. Meth. A5, 843-854.

Di Pillo, P.J. (1977). Further applications of bias to

discriminant analysis. Comm. Statist. - Theor. Meth. A6, 933-943.

Di Pillo, P.J. (1979). Biased discriminant analysis: Evaluation

of the optimum probability of misclassification.

Comrn. Statist. - Theor. Meth. A8, 1447-1457.

Edwards, A.W.F. (1972). Likelihood. Cambridge Univ. Press.

Efron, B. (1975). The efficiency of logistic regression compared

to Normal discriminant analysis. J. Am. Statist. Assoc. 70, 892-898.

Efron, B. and Morris, C. (1976). Multivariate empirical Bayes and

estimation of covariance matrices. Ann. Statist. 4, 22-32.

Ellison, B.E. (1962). A classification problem in which

information about alternative distributions is based on samples.

Ann. Math. Statist. 33, 213-223.

262



Enis, P. and Geisser, S. (1970). Sample discriminants'­

which minimize posterior squared error loss.

S. Afr. Statist. J. 4, 85-93.

Epanechnikov, V. A. (1969). Non-parametric estimation

of a multivariate probability density.

Theory. Probe Appl. U.S.S.R. 14, 153-158.

Fisher, R.A. (1936). Use of multiple measurements in

taxonomic problems. Ann. Eugen. 7, 179-188.

Fix, E and Hodges, J.L. (1951). Discriminatory analysis,

non-parametric discrimination: consistency properties.

Report No.4, Project No. 21- 49-004, USAF School of Aviation

Medicine, Brooks Air Force Base, Texas.

Fryer, M.J. (1976). Some errors associated with non-parametric

estimation of density functions. J. Inst. Math. App1ics.18, 371-380.

Fryer, M.J. (1977). A review of some non-parametric methods of

density estimation. J. Inst. Math. Applics. 20, 335-354.
*Fukunaga ~nd Kessell (1971) see below.
Geisser, S. (1964). Posterior odds for multivariate normal

classification. J.R•. Statist. Soc. B, 26, 69-76.

Geisser, S. (1967). Estimation associated with linear

discriminants. Ann. Math. Statistc. 38, 807-817.

~Gessaman, M.P. and Gessaman, P.H. (1972). A comparison of some

multivariate discrimination procedures.

J. Am.·· Statist. Assoc. 67, 468-472.

Ghosh, 8.K. (1973). Some monotonicity theorems for X2 , F and t

distributions with applications. J.R. Statist. Soc. B. 35, 480-492.

*Fukunaga, K. and Kessell, D.L. (1971). Estimation of classification

error. IEEE. Trans. Comput. C-20, 1521-1527.

263



Ghurye, S.G. and Olkin, I. (1969). Unbiased estimatio~ of some

multivariate probability densities and related functions.

Ann. Math. Statist. 40, 1261-1271.

Gilbert, E.S. (1969). The effect of unequal variance-covariance

matrices on Fisher's linear discriminant function.

Biometrics 25, 505-516.

Glick, N. (1972). Sample-based classification procedures

derived from density estimators. J. Am. Statist. Assoc. 67, 116-122.

Habbema, J.D.F., Hermans, J. and Remme, J. (1978). Variable

kernel density estimation in discriminant analysis.

Compstat 1978, 178-185, Eds. L. Corsten and J. Hermans,

Physica-Verlag, Vienna.

Haff, L.R. (1979). Estimation of the inverse covariance matrix;

random mixtures of the inverse Wishart matrix and the identity.

Ann.of Statist. 7, 1264-1276.

Han, C.P. (1968). A note on discrimination in the case of unequal

covariance matrices. Biometrika 55, 586-587.

Han, C.P. (1969). Distribtuion of discriminant function when

covariance matrices are proportional. Ann. Math. Statist. 40, 979-985.

Han, C.P. (1970). Distribution of discriminant function in circular

models. Ann. lost. Stat. Math. 22, 117-125.

Han, C.P. (1974). Asymptotic distribution of discriminant function

when covariance matrices are proportional and unknown.

Ann. Inst. Stat. Math. 26, 127-133.

Han, C.P. (1975). Some relationships between non-central chi-squared

and normal distributions. Biometrika 62, 213-214.

264



I.8.M. (1970).

Version III.

Han, C.P. (1978). On the computation of non-central chi-squared

distributions. J. Statist. Comput. Simul. 6, 207-210.

Hermans, J. and Habbema, J.D.F. (1975). Comparisons of five

methods to estimate posterior probabilities.

E.D.V. in Med. und. BioI. 6, 14-19.

Hildebrandt, B. Michaelis, J. and Koller, S. (1973).

Die haufigkreit der fehlklassifikation bei der quadratischcn

diskriminonzanalyse. Biom. Z. 15, 3-12.

Hills, M. (1966). Allocation rules and their error rates •.

J.R. Statist. Soc. 8. 28, 1-32.

Hoer1, A.E. and Kennard, R.W. (1970). Ridge regression: Biased

estimation for non-orthogonal problems. Technometrics 12, 55-67.

System/360 Scientific Subroutines Package.

Programmer's Manual. 5th Ed. I.B.M.

Imhof, J.P. (1961). Computing the distribution of quadratic

forms in normal variables. Biometrika 48, 419-429.·

Jeffreys, H. (1961). Theory of Probability. 3rd edn.,

Oxford Univ. Press.

Jensen, D.R. and Solomon, H. (1972). A Gaussian approximation

to the distribution of a definite quadratic form.

J. Am. Statist. Assoc. 67, 898-902.

John, S. (1960a). On some classification problems I.

Sankhya, 22, 301-308.

John, S. (1960b). On some classification statistics.

Sankhya, 23, 309-316.

John, S. (1961). Errors in discrimination.

Ann. Math. Statist. 32, 1125-1144.

265



John, S. (1963). On classification by the statistics R­
and Z. Ann. Inst. Statist. Math. 14, 237-246.

Johnson, N.L. and Kotz, S. (1970). Continuous Univariate

Distributions -I and II. Wiley.

Kendall, M and Stuart, A. (1976). The Advanced Theory of

Statistics Vol. 3. Design and Analysis,and Time Series.

3rd Edn, Griffen.

Koffler, S. and Penfield, D. (1979). Nonparametric

discrimination procedures for non-normal distributions.

J. Statist. Comput. Simul. 8, 281-299.

KUllback, S. and Liebler, R.A. (1951). On information and

sufficiency. Ann. Math. Statist. 22, 79-86.

Lachenbruch, P.A. (1967). An almost unbiased method of obtaining

confidence intervals for the probability of misclassification

in discriminant analysis. Biometrics 23, 639-645.

Lachenbruch, P.A. (1968). On expected probabilities of

misclassification in discriminant analysis, necessary sample

size, and a ~elation with the multiple correlation coefficient.

Biometrics 24, 828-834.

Lachenbruch, P.A. and Mickey, M.R. (1968). Estimation of error

rates in discriminant analysis. iechnometrics 10, 1-11.

Loftsgaarden, D.O. and Quesenberry, C.P. (1965). A nonparametric

estimate of a multivariate density function.

Ann. Math. Statist. 36, 1049-1051.

Marks, S andDunn, O.J. (1974). Discriminant functions when

covariance matrices are unequal. J. Am. Statist. Assoc. 69, 555-559.

Memon, A.Z. (1970). Distribution of the classification statistic Z

when covariance matrix is known. Punjab. Univ. J. Math. 3, 59-67.

266



Memon, A.Z. and Okamoto, M. (1971). Asymptotic expansi9n

of the distribution of the Z statistic in discriminant

analysis. J. Mult. Analysis 1, 294-307.

Ntichaelis, J. (1973). Simulation experiments with multiple

group linear and quadratic discriminant analysis.

Discriminant Analysis and Applications, 225-238.

Ed. T. Cacoullos. Academic Press.

Moran, M.A. (1974). The performance of the linear discriminant

function with and without selection of variables.

Ph.D. Thesis. Univ. of Reading.

Mosteller, F and Wallace, D.L. (1963). Inference in an

authorship problem. J. Am. Statist. Assoc. 58, 275-309.

Mosteller, F and Wallace, D.L. (1964). Inference and Disputed

Authorship The Federalist. Addison-Wesley.

MUrray, G.D. (1977). A note on the estimation of probability

density functions. Biometrika 64, 150-152.

Murray, G.D. (1979). The estimation of multivariate Normal

density functions using incomplete data. Biometrika 66, 375-380.

Me Lachlan, G.J. (1972). An asymptotic expansion for the variance

of the errors of misclassification of the linear discriminant

function. Austral. J. Statist. 14, 68-72.
~

Me Lachlan, G.J. (1973). An asymptotic expansion of the expectation

of the estimated error rate in discriminant analysis.

Austral. J. Statist. 16, 210-214.

Me Lachlan, G.J. (1974). The asymptotic distributions of the

conditional error rate and risk in discriminant analysis.

Biometrika 61, 131-135.

267



Mc Lachlan, G.J. (1975). Some expected values for the

error rates of the sample quadratic discriminant function.

Austral. J. Statist. 17, 161-165.

Mc Lachlan, G.J. (1976). The bias of the apparent error

rate in discriminant analysis. Biometrika 63, 239-244.

Mc Lachlan, G.J. (1977). The bias of sample based posterior

probabilities. Biometrical. J. 6, 421-426.

Mc Lachlan, G.J. (1979). A comparison of the estimative

and predictive methods of estimating posterior probabilities.

Comm. Statist. - Theor. Meth. A8, 919-929.

Mc Lachlan, G.J. and Byth, K. (1979). Expected error rates

for logistic regression versus normal discriminant analysis.

Biometrical J. 21, 47-56.

Newman, T.G. and Odell, P.L. (1971). The Generation of Random

Variates. Griffin's Statistical Monographs and Courses, No. 29.

Okamoto, M. (1961). Discrimination for variance matrices.

Osaka Math. J. 13, 1-39 •

. Okamoto, M. (1963). An asymptotic expansion for the distribution

of the linear discriminant function. Ann. Math. Statist. 34, 1286-1301.

O'Neill, T. (1980). The general distribution of the error rate of
~

a classification procedure with application to logistic regression

discrimination. J. Am. Statist. Assoc. 75, 154-160.

Parzen, E. (1962). On estimation of a probability density function

and mode. Ann. Math. Statist. 33, 1065-1073.

Patnaik, P.B. (1949). The noncentra1 chi-square and F-distributions

and their approximations. Biometrika 36, 202-232.

268



Pearson, E.S. (1959). Note on an approximation to the-·

distribution of a non-central X2 • Biometrika 46, 364.

Pearson, K. (1934). Tables of the Incomplete Beta Function.

Cambridge Univ. Press.

Penrose, L.S. (1947). Some notes on discrimination.

Ann. Eugen. 13, 228-237.

Prentice, R.L. and Pyke, R. (1979). Logistic disease

incidence models and case-control studies. Biometrika 66, 403-411.

Press, S.J. (1966). Linear combinations of non-central chi-square

variates. Ann. Math. Statist. 37, 480-487.

I

Press, S.J. (1972). Applied Multivariate Analysis.

Holt, Rinehart and Winston.

Price, R. (1964). Some non-central F distributions expressed

in closed form. Biometrika 51, 107-122.

Ralston, A. (1965). A First Course in Numerical Analysis.

Me Graw-Hill.

Rao, C.R. (1954). A general theory of discrimination when the

information about alternative population distributions is based

on samples. Ann. Math. Statist. 25, 651-670.

Rao, C.R. (1973). Linear Statisfical Inference and its

Applications. 2nd edn. Wiley.

Remme, J. Habbema, J.D.F. and Hermans, J. (1980). A simulative

comparison of linear, quadratic and kernel discrimination.

J. Statist. Comput. Simul. II, 87-106.

269



Rosenblatt, M. (1956). Remarks on some non-parametric -

estimates of a density function. Ann. Math. Statist. 27, 832-837.

Schaafsma, W~ (1973). Classifying when populations are

estimated. Discriminant Analysis and Applications.

339-364 Ed. T. Cacoullos. Academic Press.

Schaafsma, W. and Van Vark, G.N. (1977). Classification and

discrimination problems with applications, part I.

Statist. Neerlandica 31, 25-45.

Schaafsma, W. and Van Vark, G.N. (1979). Classification and

discrimination problems with applications, part Ila.

Statist. Neerlandica 33, 91-126.

Seber, G.A.F. (1963). The non-central chi-squared and beta

distributions. Biometrika 50, 542-544.

Sedrask, N. and Okamoto, M. (1971). Estimation of the

probabilities of misclassification for a linear discriminant

function in the univariate case. Ann. Inst. Math. Statist. 23, 419-435.

Shah, B.K. (1963). Distribution of definite and indefinite

quadratic forms from a non~central normal distribution.

Ann. Math. Statist. 34, 186-190.

Siotani, M. (1956). On the distributions of Hote1ling's r 2-Statistics.

Ann. Inst. Statist. Math. 8, 1-14.

Siotani, M. and Wang, R.H. (1977). ASYmptotic expansions for

error rates and comparisons of the W-procedure and the Z-procedure

in discriminant analysis. Multivariate Analysis IV, 523-545.

Ed. P.R. Krishnaiah, North-Holland.

Sitgreaves, R. (1952). On the distribution of two random

matrices used in classification procedures.

Ann. Math. Statist. 23, 263-270.

270



Smidt, R.K. and Mc Donald, L.L. (1976a). Ridge estimation

of the inverse of a covariance matrix.

Research Paper 106, Stat. Lab. S-1976-548. Univ. of Wyoming.

Smidt, R.K. and Mc Donald, L.L. (1976b). Ridge discriminant

analysis. Research Paper 108, Stat. Lab. S-1976-549.

Univ. of Wyoming.

Smith, C.A.B. (1947). Some examples of discrimination.

Ann. Eugen. 13, 272-282.

Solomon, H and Stephens, M.A. (1977). Distribution of a swa

of weighted chi-square variables. J. Am. Statist. Assoc. 72, 881-885.

Solomon, H and Stephens, M.A. (1978). Approximation to density

functions using Pearson curves. J. Am. Statist. Assoc. 73, 153-160.

Sorum, M. (1968). Estimating the probability of misc1assification.

Ph.D. Diss. Univ. of Minnesota, Minneapolis.

Sorum, M. (1971). Estimating the conditional probability of

misc1assification. Technometrics 13, 333-343.

Sorum, M. (1972). Three probabilities of misc1assification.

Technometrics. 14, 309-316.

Sorum, M. (1973). Estimating the expected probability of

misc1assification for a rule based on a linear discriminant

function : univariate normal case., Technometrics 15, 329-339.

Specht, D.F. (1966). Generation of po1ynomina1 discriminant

functions for pattern recognition. Ph.D. Diss. Stanford Univ.

Specht, D.F. (1971). Series estimation of a probability

density function. Technometrics 13, 409-424.

271



Tiku, M.L. (1970). Tables of the double non-central F­

distribution. Technical Report, Dept. of Appl. Math. Mc Master Univ.

Van Ness, J. (1979). On the effects of dimension in discriminant

analysis for unequal covariance populations.

Technometrics.2l, 119-127.

Van Ness, J. and Simpson, C. (1976). On the effects of dimension

in discriminant analysis. Technometrics 18, 175-187.

Van Ryzin, J. (1969). On strong consistency of density estimates.

Ann. Math. Statist. 40, 1765-1772.

Wagner, T.J. (1975). Non-parametric estimates of probability

densities. IEEE. Trans. Infor. Theory IT-21, 438-440.

Wahl, P.A. and Kronmal, R.A. (1977). Discriminant functions

when covariances are unequal and sample sizes are moderate.

Biometrics 33, 479-484.

Wang, Y.Y. (1967). A comparison of several variance component

estimators. Biometrika 54, 301-305.

Wegman, E.J. (1972a). Non-parametric probability density

estimation I.· A summary of available methods.

Technometrics 14, 533-546.

Wegman, E.J. (1972b). Non-parametric probability density

estimation II : A comparison of d~nsity estimation methods.

J. Statist. Comput. Simul. I, 225-245.

Welch, B.L. (1939). Note on discriminant functions.

Biometrika 31, 218-220.

Wertz, W. and Schneider, B. (1979). Statistical density

estimation: A bibliography. Inter. Statist. Review 47, 155-175.

272


	MurphyBJ_PhD1981_001
	MurphyBJ_PhD1981_002
	MurphyBJ_PhD1981_003
	MurphyBJ_PhD1981_004
	MurphyBJ_PhD1981_005
	MurphyBJ_PhD1981_006
	MurphyBJ_PhD1981_007
	MurphyBJ_PhD1981_008
	MurphyBJ_PhD1981_009
	MurphyBJ_PhD1981_010
	MurphyBJ_PhD1981_011
	MurphyBJ_PhD1981_012
	MurphyBJ_PhD1981_013
	MurphyBJ_PhD1981_014
	MurphyBJ_PhD1981_015
	MurphyBJ_PhD1981_016
	MurphyBJ_PhD1981_017
	MurphyBJ_PhD1981_018
	MurphyBJ_PhD1981_019
	MurphyBJ_PhD1981_020
	MurphyBJ_PhD1981_021
	MurphyBJ_PhD1981_022
	MurphyBJ_PhD1981_023
	MurphyBJ_PhD1981_024
	MurphyBJ_PhD1981_025
	MurphyBJ_PhD1981_026
	MurphyBJ_PhD1981_027
	MurphyBJ_PhD1981_028
	MurphyBJ_PhD1981_029
	MurphyBJ_PhD1981_030
	MurphyBJ_PhD1981_031
	MurphyBJ_PhD1981_032
	MurphyBJ_PhD1981_033
	MurphyBJ_PhD1981_034
	MurphyBJ_PhD1981_035
	MurphyBJ_PhD1981_036
	MurphyBJ_PhD1981_037
	MurphyBJ_PhD1981_038
	MurphyBJ_PhD1981_039
	MurphyBJ_PhD1981_040
	MurphyBJ_PhD1981_041
	MurphyBJ_PhD1981_042
	MurphyBJ_PhD1981_043
	MurphyBJ_PhD1981_044
	MurphyBJ_PhD1981_045
	MurphyBJ_PhD1981_046
	MurphyBJ_PhD1981_047
	MurphyBJ_PhD1981_048
	MurphyBJ_PhD1981_049
	MurphyBJ_PhD1981_050
	MurphyBJ_PhD1981_051
	MurphyBJ_PhD1981_052
	MurphyBJ_PhD1981_053
	MurphyBJ_PhD1981_054
	MurphyBJ_PhD1981_055
	MurphyBJ_PhD1981_056
	MurphyBJ_PhD1981_057
	MurphyBJ_PhD1981_058
	MurphyBJ_PhD1981_059
	MurphyBJ_PhD1981_060
	MurphyBJ_PhD1981_061
	MurphyBJ_PhD1981_062
	MurphyBJ_PhD1981_063
	MurphyBJ_PhD1981_064
	MurphyBJ_PhD1981_065
	MurphyBJ_PhD1981_066
	MurphyBJ_PhD1981_067
	MurphyBJ_PhD1981_068
	MurphyBJ_PhD1981_069
	MurphyBJ_PhD1981_070
	MurphyBJ_PhD1981_071
	MurphyBJ_PhD1981_072
	MurphyBJ_PhD1981_073
	MurphyBJ_PhD1981_074
	MurphyBJ_PhD1981_075
	MurphyBJ_PhD1981_076
	MurphyBJ_PhD1981_077
	MurphyBJ_PhD1981_078
	MurphyBJ_PhD1981_079
	MurphyBJ_PhD1981_080
	MurphyBJ_PhD1981_081
	MurphyBJ_PhD1981_082
	MurphyBJ_PhD1981_083
	MurphyBJ_PhD1981_084
	MurphyBJ_PhD1981_085
	MurphyBJ_PhD1981_086
	MurphyBJ_PhD1981_087
	MurphyBJ_PhD1981_088
	MurphyBJ_PhD1981_089
	MurphyBJ_PhD1981_090
	MurphyBJ_PhD1981_091
	MurphyBJ_PhD1981_092
	MurphyBJ_PhD1981_093
	MurphyBJ_PhD1981_094
	MurphyBJ_PhD1981_095
	MurphyBJ_PhD1981_096
	MurphyBJ_PhD1981_097
	MurphyBJ_PhD1981_098
	MurphyBJ_PhD1981_099
	MurphyBJ_PhD1981_100
	MurphyBJ_PhD1981_101
	MurphyBJ_PhD1981_102
	MurphyBJ_PhD1981_103
	MurphyBJ_PhD1981_104
	MurphyBJ_PhD1981_105
	MurphyBJ_PhD1981_106
	MurphyBJ_PhD1981_107
	MurphyBJ_PhD1981_108
	MurphyBJ_PhD1981_109
	MurphyBJ_PhD1981_110
	MurphyBJ_PhD1981_111
	MurphyBJ_PhD1981_112
	MurphyBJ_PhD1981_113
	MurphyBJ_PhD1981_114
	MurphyBJ_PhD1981_115
	MurphyBJ_PhD1981_116
	MurphyBJ_PhD1981_117
	MurphyBJ_PhD1981_118
	MurphyBJ_PhD1981_119
	MurphyBJ_PhD1981_120
	MurphyBJ_PhD1981_121
	MurphyBJ_PhD1981_122
	MurphyBJ_PhD1981_123
	MurphyBJ_PhD1981_124
	MurphyBJ_PhD1981_125
	MurphyBJ_PhD1981_126
	MurphyBJ_PhD1981_127
	MurphyBJ_PhD1981_128
	MurphyBJ_PhD1981_129
	MurphyBJ_PhD1981_130
	MurphyBJ_PhD1981_131
	MurphyBJ_PhD1981_132
	MurphyBJ_PhD1981_133
	MurphyBJ_PhD1981_134
	MurphyBJ_PhD1981_135
	MurphyBJ_PhD1981_136
	MurphyBJ_PhD1981_137
	MurphyBJ_PhD1981_138
	MurphyBJ_PhD1981_139
	MurphyBJ_PhD1981_140
	MurphyBJ_PhD1981_141
	MurphyBJ_PhD1981_142
	MurphyBJ_PhD1981_143
	MurphyBJ_PhD1981_144
	MurphyBJ_PhD1981_145
	MurphyBJ_PhD1981_146
	MurphyBJ_PhD1981_147
	MurphyBJ_PhD1981_148
	MurphyBJ_PhD1981_149
	MurphyBJ_PhD1981_150
	MurphyBJ_PhD1981_151
	MurphyBJ_PhD1981_152
	MurphyBJ_PhD1981_153
	MurphyBJ_PhD1981_154
	MurphyBJ_PhD1981_155
	MurphyBJ_PhD1981_156
	MurphyBJ_PhD1981_157
	MurphyBJ_PhD1981_158
	MurphyBJ_PhD1981_159
	MurphyBJ_PhD1981_160
	MurphyBJ_PhD1981_161
	MurphyBJ_PhD1981_162
	MurphyBJ_PhD1981_163
	MurphyBJ_PhD1981_164
	MurphyBJ_PhD1981_165
	MurphyBJ_PhD1981_166
	MurphyBJ_PhD1981_167
	MurphyBJ_PhD1981_168
	MurphyBJ_PhD1981_169
	MurphyBJ_PhD1981_170
	MurphyBJ_PhD1981_171
	MurphyBJ_PhD1981_172
	MurphyBJ_PhD1981_173
	MurphyBJ_PhD1981_174
	MurphyBJ_PhD1981_175
	MurphyBJ_PhD1981_176
	MurphyBJ_PhD1981_177
	MurphyBJ_PhD1981_178
	MurphyBJ_PhD1981_179
	MurphyBJ_PhD1981_180
	MurphyBJ_PhD1981_181
	MurphyBJ_PhD1981_182
	MurphyBJ_PhD1981_183
	MurphyBJ_PhD1981_184
	MurphyBJ_PhD1981_185
	MurphyBJ_PhD1981_186
	MurphyBJ_PhD1981_187
	MurphyBJ_PhD1981_188
	MurphyBJ_PhD1981_189
	MurphyBJ_PhD1981_190
	MurphyBJ_PhD1981_191
	MurphyBJ_PhD1981_192
	MurphyBJ_PhD1981_193
	MurphyBJ_PhD1981_194
	MurphyBJ_PhD1981_195
	MurphyBJ_PhD1981_196
	MurphyBJ_PhD1981_197
	MurphyBJ_PhD1981_198
	MurphyBJ_PhD1981_199
	MurphyBJ_PhD1981_200
	MurphyBJ_PhD1981_201
	MurphyBJ_PhD1981_202
	MurphyBJ_PhD1981_203
	MurphyBJ_PhD1981_204
	MurphyBJ_PhD1981_205
	MurphyBJ_PhD1981_206
	MurphyBJ_PhD1981_207
	MurphyBJ_PhD1981_208
	MurphyBJ_PhD1981_209
	MurphyBJ_PhD1981_210
	MurphyBJ_PhD1981_211
	MurphyBJ_PhD1981_212
	MurphyBJ_PhD1981_213
	MurphyBJ_PhD1981_214
	MurphyBJ_PhD1981_215
	MurphyBJ_PhD1981_216
	MurphyBJ_PhD1981_217
	MurphyBJ_PhD1981_218
	MurphyBJ_PhD1981_219
	MurphyBJ_PhD1981_220
	MurphyBJ_PhD1981_221
	MurphyBJ_PhD1981_222
	MurphyBJ_PhD1981_223
	MurphyBJ_PhD1981_224
	MurphyBJ_PhD1981_225
	MurphyBJ_PhD1981_226
	MurphyBJ_PhD1981_227
	MurphyBJ_PhD1981_228
	MurphyBJ_PhD1981_229
	MurphyBJ_PhD1981_230
	MurphyBJ_PhD1981_231
	MurphyBJ_PhD1981_232
	MurphyBJ_PhD1981_233
	MurphyBJ_PhD1981_234
	MurphyBJ_PhD1981_235
	MurphyBJ_PhD1981_236
	MurphyBJ_PhD1981_237
	MurphyBJ_PhD1981_238
	MurphyBJ_PhD1981_239
	MurphyBJ_PhD1981_240
	MurphyBJ_PhD1981_241
	MurphyBJ_PhD1981_242
	MurphyBJ_PhD1981_243
	MurphyBJ_PhD1981_244
	MurphyBJ_PhD1981_245
	MurphyBJ_PhD1981_246
	MurphyBJ_PhD1981_247
	MurphyBJ_PhD1981_248
	MurphyBJ_PhD1981_249
	MurphyBJ_PhD1981_250
	MurphyBJ_PhD1981_251
	MurphyBJ_PhD1981_252
	MurphyBJ_PhD1981_253
	MurphyBJ_PhD1981_254
	MurphyBJ_PhD1981_255
	MurphyBJ_PhD1981_256
	MurphyBJ_PhD1981_257
	MurphyBJ_PhD1981_258
	MurphyBJ_PhD1981_259
	MurphyBJ_PhD1981_260
	MurphyBJ_PhD1981_261
	MurphyBJ_PhD1981_262
	MurphyBJ_PhD1981_263
	MurphyBJ_PhD1981_264
	MurphyBJ_PhD1981_265
	MurphyBJ_PhD1981_266
	MurphyBJ_PhD1981_267
	MurphyBJ_PhD1981_268
	MurphyBJ_PhD1981_269
	MurphyBJ_PhD1981_270
	MurphyBJ_PhD1981_271
	MurphyBJ_PhD1981_272
	MurphyBJ_PhD1981_273
	MurphyBJ_PhD1981_274
	MurphyBJ_PhD1981_275
	MurphyBJ_PhD1981_276
	MurphyBJ_PhD1981_277
	MurphyBJ_PhD1981_278
	MurphyBJ_PhD1981_279
	MurphyBJ_PhD1981_280

