\‘ ‘ ORA Cork Open Research Archive
[ Cartlann Taighde Oscailte Chorcai

Title Untangling unstructured programs

Author(s) Oulsnam, Gordon

Publication date 1984

Original citation Oulsnam, G. 1984. Untangling unstructured programs. PhD Thesis,

University College Cork.

Type of publication |Doctoral thesis

Link to publisher's  |http://library.ucc.ie/record=b1100709~S0

version Access to the full text of the published version may require a
subscription.
Rights © 1984, Gordon Oulsnam

http://creativecommons.org/licenses/by-nc-nd/3.0/

@080

Embargo information [No embargo required

Item downloaded http://hdl.handle.net/10468/1659
from

Downloaded on 2017-02-12T13:49:577

University College Cork, Ireland
Colaiste na hOllscoile Corcaigh


http://library.ucc.ie/record=b1100709~S0
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://hdl.handle.net/10468/1659

DPIQgk ouLs

R 1SS

UNTANGLING UNSTRUCTURED PROGRAMS

by

Gordon Oulsnam

Submitted for the Degree of
Doctor of Philosophy to the

National University of Ireland.

The research contained in this thesis was
begun in the Department of Computer Science
University of Queensland Australia and was
completed in the Department of Computer
Science in the Faculty of Science at the
University College Cork. The work has not
been submitted in whole or in part to any

other Institution for an Academic Award.

Date of submission: July 1984
Head of Department: Prof. P.G. O'Regan
Supervisor: Prof. P.G. O'Regan

7/5. Oawé‘_:::’/

v

G. Oulsnam.




CONTENTS

Summary
l. Introduction
2. Definitions
3. Basic Unstructured Forms
4. The Structuring Transforms
5. Effectiveness of the Transforms
6. Identifying Basic Unstructured Forms
7. The Structuring Process
8. Examples
9. Space and Time Overheads
Conciusion
Figures
Appendix 1
Proof of the forward path algorithm
Appendix 2
Abstract Data Type Specifications

Addendum

Unravelling Unstructured Programs

11
15
24
30
41
50
61
64
65
95

99



ACKNOWLEDGEMENTS

Thanks are due and gladly given to Prof. P.G. O'Regan
for undertaking the task of supervision, and to
Prof. F.H. Sumner, Manchester University, for his

help in finding an External Examiner.

Thanks are also gladly given to my wife for her
support and acceptance of neglect during the tortuous

months of thesis preparation.

The customary plaudits for typing are omitted as all
typing and art work was done by the author. In this
regard a special word of thanks must go to Tipp-Ex
Vertrieb GmbH & Co KG of Frankfurt West Germany with-
out whose product this thesis would never have been

completed and upon which so much of it depends!

Typed in Courier 10-point on an IBM Selectric Model 72.



SUMMARY

A method is presented for converting unstructured
program schemas to strictly equivalent structured form.
The predicates of the original schema are left intact
with structuring being achieved by the duplication of
the original decision vertices without the introduction
of compound predicate expressions, or where possible
by function duplication alone. It is shown that struc-
tured schemas must have at least as many decision
vertices as the original unstructured schema, and must
have more when the original schema contains branches
out of decision constructs. The structuring method
allows the complete avoidance of function duplication,
but only at the expense of decision vertex duplication.
It is shown that structured schemas have greater space-
time requirements in general than their equivalent
optimal unstructured counterparts and at best have the
same requirements.



1. INTRODUCTION

This thesis presenté a method for transforming unstruc-
tured program schemas into structured equivalents in
D-chart format.! The form of the derived structured
programs is such that the original unstructured forms
can be eésily recovered, thus revealing what overheads
in space and time are inherent in the structured forms.
The method enables the user to opt for minimization of
time overheads, minimization of space overheads, or
some intermediate compromise. A measure for the intro-
duced overheads is given which can be used to compare
the relative conceptual complexities of unstructured
programs. A feature of the structuring method is that
the number of introduced auxiliary Boolean variables,
or flags, is kept to a minimum, and where such flags
are introduced, they correspond exactly to some condi-
tional expression, or predicate, in the original pro-
gram. Thus the method preserves as far as possible the
logic of the original algorithm.

The problem of transforming schemas into some standard
form has been widely addressed in the literature.
Methods based on yielding a schema in while-program
form have been given by Jacopini,? Ashcroft and Manna,?
Knuth and Floyd,“ Bruno and Steiglitz,! Mills,® Kasai,®
Williams,? Williams and Ossher® and Oulsnam.? The
method of Jacopini was shown by Cooper!? to yield in a
trivial way a schema consisting of a single while
statement enclosing a sequence of alternations based
on introduced auxiliary variables. (This result was
hardly surprising since it simply restates in computer
science terminology what has been long known to mathe-
maticians - that any general recursive computable
function can be computed using at most one application



of the unbounded minimization, or u, operator, the
mathematical counterpart of the while construct.)
Jacopini's conjecture that in general auxiliary vari-
ables would be necessary to transform arbitrary schemas
into D-chart form was proved by Ashcroft and Manna,?
Knuth and Floyd* and Bruno and Steiglitz.! Kasai® and
Bainbridge!?! describe methods of reducing while-
programs to minimal form, while the general capabil-
ities and limitations of D-charts as a standard form
were considered by Paterson, Kasami and Tokura'? and
Kosaraju.!?

The necessity for auxiliary variables, coupled with

the fact that schemas in while-program form were shown
by Paterson et al.!? to generally require some dupli-
cation of basic functions or predicates of the original
schema, has led to consideration of more general stan-
dard control structures than D-charts. Wulf!"* has
proposed the use of multi-level control structures,

and further generalizations were analysed by Kosaraju!?

15 with some refinements of
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and Ledgard and Marcotty,
their results by Cherniavsky et al. Proposals based
on the non-duplication of the original schema's func-
tions and predicates have been given by Urschler,!’
using a technique based on the back dominators of the
original schema, and by Baker.!® Of necessity both
methods allow the use of GOTO statements although
Urschler restricts these to backwards jumps only. A
standard form based on binary trees has been proposed

by Engeler!? 20

and Wegner. The former allows only
jumps to ancestor nodes in the tree, while the latter
allows jumps in both directions. Proposals to convert
schemas to recursive form have been made by Knuth and
Floyd* and Urschler.!?’” McCabe?! and Williams’ inde-
pendently identified the basic forms of unstructured-
ness, while transformations based on the identification

and elimination of these constructs have been given by



Williams,” Williams and Ossher® and Oulsnam.®
Dijkstra,22 echoed by Knuth,2??® has cautioned against
expecting mechanical transformations of schemas to
yield more comprehensible programs, while Knuth?? has
examined the problem of efficiency .relating to programs
translated to structured form. A comprehensive survey
of program transformation systems is given in Partsch
and Steinbriiggen.?* vVan Emden?® has questioned the
need for structured programming and has proposed a
method for deriving programs directly with minimal
function and predicate duplication.

The remainder of this thesis is organized as follows.
Section 2 introduces some necessary definitions and
concepts, Section 3 briefly reviews the basic forms of
unstructuredness in schemas, while in Section 4 a
method for their removal based on structured transforms
is given. A proof of the effectiveness of the trans-
forms in general is given in Section 5; Section 6 is
concerned with the identification of the basic forms
of unstructuredness in arbitrary schemas and Section 7
gives the full structuring algorithm. Section 8 is
addressed to the practical application of the struc-
turing method, while Section 9 is concerned with the
space-time overheads incurred by structuring.



. 2« DEFINITIONS

Schemas

A schema is a labelled program flowgraph?® which shows
the control structure of the program whilst leaving
the transformations on the program's variables to be
determined by an interpretation of the labelling.

Thus a schema represents a family of programs having a
common control structure. A program schema is defined
as the triple ¢ = (V,I',Z) where V is a set of vertices
or nodes, I' is a mapping I': V +» ZV, and I an alphabet
of operators. If u,v € V, v € Tu, and a € Z* then
(u,v:a) is an arc of G directed from u to v labelled
by a. Vertex u is the tail of the arc, and v the
head. If v € Tu then u € I 'v, By extension 'y =
" .ry and '™ = 12! r"!y, for n > 1. The set of
arcs {(u,v:a)|v € Tu} will be written (u,lu:*), and
the set of all arcs {(u,Tu:*)|u € V} will be written
E. Whenever convenient, G will be considered to be
defined equivalently by (V,E,X). When the label of an
arc is not of immediate concern it will be elided and
the arc written in the abbreviated form (u,v); G simi-
larly will be written (V,T) or (V,E).

* . ) .
FT'u ={u} vuTuvurl? ... is the set of vertices reach-

1 L.
U ... 18 the

able from u. Similarly P-*u = {u} v I
set of vertices that reach u. For A ¢V, TA= {v|v =
lu, u € A}, with corresponding definitions for P'IA,
FnA, and so on. If u,v ¢ Vand v € P*u then u is a
predecessor of v, and v is a successor of u. If v € Tu
then u is an immediate predecessor of v, and v is an

immediate successor of u.

A path [u,v:al is a sequence of arcs (uo,ulzal) coe
i:ai) e (un_l,un:an) where u, € rui;l,



u, = u, u =v, Qa6 € Z*, and a = LS ERRL FERTL for
l<is< n. The length of the path is n, the number of
arcs on the path. An elementary path is one on which
no vertex occurs more than once, while a simple path
is one on which no arc occurs more than once. Any
simple path (u,u:al is a cycle, and a cycle of length

one is called a loop.

Every arc of G is labelled with some string over Z*.
The elements of I represent functions which operate on
program variables. A program has three sets of vari-
ables: the input set X, the local set Y, and the out-
put set Z. The operators of I over these variables
are of three types. Let f,g,p € I, then f: X x Y + Y
is a local function, g: X x Y + 2 is an output func-
tion, and p: X x Y + {true, falsel} is a predicate.

The logical negation of p is written p. The composi-
tion of two local functions f,,f, € X, £,(X,f,(X,Y)),
is written f,f,, which in programming terms corres-
ponds to the sequencing operation: Y + f£,(X,Y); Y «
£f,(X,Y). Similarly g(X,f(X,Y)) is written fg, while
the conditional execution of a function if p(X,Y) then
Y « £(X,Y) is written pf.

Let u,v,w ¢ Vv, and a,8 € z*. The vertices of a schema
form five equivalence classes. These are start with
in-degree 0 and out-degree l; chain with in-degree 1
and out-degree l; decision with in-degree 1 and out-
degree 2; collector with in-degree 2 and out-degree 1;
halt with in-degree 1 and out-degree 0. A schema with
vertices having higher in-degree than 2 can be put in
the above form using a cascade of collectors, while a
cascade of decisions can be used in place of vertices
with out-degree greater than 2. By extension it can
be assumed that every schema has exactly one start
vertex and exactly one halt vertex. A chain vertex v



on a path (u,v:a)(v,w:8) can be elided by replacing
the path by a new arc (u,w:aB). Unless otherwise
stated schemas are assumed to have had all chain ver-
tices elided by this form of path compression. The
two arcs (u,v:a) and (u,w:B) of a decision vertex are
labelled pa and pB respectively, where p is the predi-
cate associated with the decision u.

Notational conventions

Unless otherwise stated the following notational con-
ventions are henceforth adopted throughout to avoid
repetitious definitions: ¢.= (v,l,L) or (V,E,X), u,v,
eee €V, ,Bpeece € Z*, a,b,... € I denoting functions,
P¢gse++ € L denoting predicates, and 4,B... € V. All
symbols may also be sub- or superscripted. A is used
to denote the empty string.

Subschemas

GA = (A,PA,E) is a subschema of G when PA is defined
such that rAu c€cTunA, u ¢ A. Thus an arc (u,v) in G
with u,v € 4 is not necessarily an arc of GA. The
difference G ~ GA is defined to be the subschema GD =
(D.PD,Z) where I''u = Tu - I',u and D = {ulTju # ¢ or
Pglu # ¢}. Let GA be a subschema of G, then the pre-
decessors of GA are defined by ' 4 = {ulv € Tu n 4 and
(u,v) ¢ EA}. Thus if (u,v) is an arc of ¢ but not of
GA, and v is in 4, then u is a predecessor vertex of
GA. Vertex u may or may not be in 4 - see Figure 1.
The successors of GA are defined similarly by r+A =
{viu € r'iva A, (u,v) ¢ EA} - Figure 1. It will
often prove convenient to augment a subschema GA of ¢
as follows. Let SA = {s|s € P+A}, PA = {plp € T 4},
then define &A = (B,I,,L) such that B =4 u S, v P,
and FBu = T'u o B. 3A is the augmented subschema GA
with respect to G.



Paths and back arcs

An advancing path is any elementary path [s,u:a] where
s € S, the start set of G. A forward path is any elem-
entary path [s,h:a] where h ¢ H, the halt set of G.
Let F, = [s,h:a] be a forward path and let v be a ver-
tex on F,. If there exists a cycle (v,w:Y)...(u,v:B)
then (u,v:B) is a back latch of F,. Deletion of the
back latch eliminates the cycle. A cycle may contain
back latches from several different partially over-
lapping forward paths - see Figure 2, for instance.

A back latch of one forward path may itself lie on
some other forward path - again see Figure 2. The
notion of back latch is extended recursively as fol-
lows. The back latches of the forward paths of G are
back latches of G. If G, is that subschema of ¢
which consists of just the forward paths of G, then
the back latches of G ~ G, are also defined to be back
latches of G - see Figure 3.

Let B be a subset of the back latches of ¢ such that

if GB is the schema comprising the arcs of B then G ~
GB is acyclic. Further, if for all » ¢ B, G ~ GB-{b}
is not acyclic then B constitutes a minimal set of

back latches whose deletion from G leaves G acyclic.
Such a set is called a back arc set of G, and the cor-
responding subschema GB is called a back arc subschema
of G. Back arc sets and subschemas are not necessarily
unique. Any subschema G ~ GB, where GB is a back arc
subschema of G, is called an advancing path subschema
of G, and by definition is acyclic. Let G be a schema
with some back arc set B. For each arc (u,v:aB) of B
replace (u,v:aB) in G by the arcs (u,yuv:a) and
ixuv,rzf) where X v'Yuv ¢ V. The resultant schema

G= (V,E,L) is called the augmented advancing path sub-
schema of G, where Vav u'{xuv,yuvl(u.v) e B}, and

E=E-B+ {(ary,))s (x, ov)|(u,v) & B},



Computation sequences

A regular expression over an alphabet I describes a
regular set of strings ¢ Z*, and is defined recursively
as follows. The empty string A and elements of I are
regular expressions. If a and B are regular expressions
then so are a.B, a+8, a* and (ax), where '+' is used
here to denote set union. Usually the concatenation
operator '.' and the pair () will be elided if no ambi-

guity is thereby introduced.

The computation sequences of a schema are defined as
follows. Let [u,v:al be a path in the schema, then a
represents a possible computation sequence from u to v.
The set of all such computation sequences from u to v
is called the end set of u with respect to v and is
written E(u,v). Let u €e A ¢ V and v ¢ B ¢ V, then the
notion of end set is extended to include E(4,v), the
union over A of all E(u,v), with corresponding exten-
sions for E(u,B) and E(4,B). Following Kleene’’ it is
known that end sets are regular sets over L. Let S be
the start set and # the halt set of a schema ¢, and
let E(u,d) be abbreviated to E(u), then E(S) is the
computation sequence set of G, and represents all pos-
sible terminating computations over the schema.

Any vertex u such that IS n {u} = ¢ is unreachable
from S, so E(u) contributes nothing to the computation
sequence set. Any vertex v such that P*v n H=¢ can-
not reach the halt set, with the result that E(v) is
undefined and represents a non-terminating computation
of the schema. Vertices such as u and v do not lie on
any path from S to HA. For simplicity it is assumed
throughout that all vertices that do not lie on any
path from S to # have been elided from the schemas.



Let (u,v:a) be an arc of a schema G, then it follows
from the definition of end set that E(u) = aE(v). If
u is a decision vertex such that (u,v:pa) and (u,w:pB)
are arcs of G, then E(u) = paE(v) + pBE(w). If there
are paths from v to u such that E(v,u) = y, then E(u)
= paYE(u) + pBE(w), from which it can be shown®® that
E(u) = (pay) BBE(w).

Structured schemas

A structured regular expression (sre) is defined recur-
sively as follows. The empty string is an sre, as are
the elements of L. If p € I is a predicate, and «,B
are sre's, then so too are (a), a.B8, p.a+p.f and
a(pBa)*E. An arc (u,v:a) corresponds to the program
construct u: Y « a(X,Y); goto v, where u,v are program
labels. Similarly a.B corresponds to Y « a(X,Y); Y «
B(X,Y), and pa+pB to if p(X,Y) then Y « a(X,Y) else

Y « B(X,Y). The loop construct a(pBa)*E, which is
equivalent to (apB)*aE, corresponds to repeat Y +
a(X,Y); P+« p(X,Y); if P then Y « B(X,Y) until not P;
where P ¢ X, Y, or Z. P is an introduced flag or
auxiliary variable. If a = A, the no-op function that
leaves Y unchanged, then (pB)*E corresponds to while
p(X,Y) do ¥ « B(X,Y). If B = A, then a(pa) p corres-
ponds to repeat Y + a(X,Y) until p(X,Y).

A schema is structured if and only if its computation
sequence set is an sre.

If E(u,v) is an sre for some u,v € V, and the arc (u,v)
- if it exists - is not the only simple path from u to
v, then the simple paths from u to v can be replaced
by a new single arc (u,v:E(u,v)). When all such re-
placements have been made the schema is in reduced
form. If a schema is structured then it follows that



its reduced form consists of the single arc (S,Hd:0),
where ¢ is a structured regular expression describing
the schema's computation sequence set.

Unless otherwise stated it is assumed throughout that
schemas are always in reduced form.

Regular expression notation

As stated above, the loop construct is represented by
the regular expression a(pBa)*i or equivalently
(apB)*aﬁ. Unfortunately both forms of regular expres-
sion each contain two instances of a, whereas the loop
construct only contains one. To make the notation re-
flect more closely the schema being represented the
convention is adopted that both regular expressions
will be written as (apB8)*p.

10



. 3. . BASIC UNSTRUCTURED FORMS

There are six basic unstructured forms (buf's) that
can occur in a schema. These are:

jump into a decision - ID;

jump out of a decision - OD;

jump into the advancing path of a loop - IL;
jump out of the advancing path of a loop - OL;
jump into the back latch of a loop - IB;

jump out of the back latch of a loop - OB

and are depicted in Figure 6. The last two, IB and OB,
are not independent forms but are morphologically
identical to IL and OL respectively, as shown in Figure
7. Referring back to Figure 6, there are three pos-
sible positions for vertex E in the schema: on a path
from the start vertex to vertex 4; on a path from ver-
tex C to the halt vertex; or on a path from the start
vertex to the halt vertex which does not include any
of the vertices 4, B, or C. Analysis of all possible
placings for vertex E with respect to each of the six
buf's shows that unstructuredness always occurs in
possibly overlapping combinations of the six unstruc-
tured subschemas depicted and named in Figure 8, and
that none of the buf's can ever occur alone.

To see that none of the buf's can occur alone consider
the ID construct shown in Figure 6. Vertex fF must be
reachable from the start vertex S, say. Since § only
has out-degree 1, there must be a. decision vertex, .D
say, somewhere on the path [S,d], where # is the halt
vertex, and such that there is a path [D,E]. If D is
a predecessor of 4 then there are paths [S,D][D,A] and
(S,D1(D,E]l. But now D is the entry of a decision sub-
schema with paths [D,41(4,B] and [D,E]1[(E,B], with a

11



jump out at 4 to ¢, that is, an OD. If D is a succes-
sor of C then D is the exit vertex and B the entry of

a cycle (B,D1[D,E]I[E,B] with a jump in at C from 4 -~
an IL construct. . If D occurs on [4,C] then A4 is the
entry and B the exit of a decision subschema with paths
(4,B] and (A4,D1[(D,E]1(E,B] with a jump out at D to C -
an OD construct. Finally, if D occurs on either [4,B]
or [B,C] then structured subschemas result and there

is no ID construct present. Similar arguments can be
advanced for the other 'jump-in' constructs IL and IB.

Turning to the OD construct, the halt vertex # must be
reachable from E and therefore there must be a collec-
tor K somewhere on [S,H] such that there is a path
[(E,K]. By considering all possible placings of K with
respect to the OD construct instances of OL and ID are
found to occur with the OD. Similarly, the other
'jump-out' constructs OL and OB can be shown not to
occur in isolation.

Examination of each of the six possible forms of un-
structuredness depicted in Figure 8 reveals that they
each comprise pairs of buf’s taken from the set ID,
OD, IL and OL. Thus:

DD = ID + OD; DL = ID + IL;
LD = OD + OL; LL = IL + OL;
BL = ID + OL; LB = OD + IL.

That this is so for the first four forms is clear from
the Figure. To see the result for BL observe that BL
certainly contains an instance of OB, which as shown
in Figure 7 is equivalent to OL, whilst the ID compo-
nent, in the notation of Figures 8 and 6, is found by
setting vertex 3 to 4, 1 to B, 2 to ¢ and the immedi-
ate predecessor of the BL construct to E. For LB, the
IB construct is equivalent to IL, and the OD component
is found by setting 3 to 4, 4 to B, 2 to ¢ and the im-
mediate successor of the LB construct to E.

12



From the foregoing it is now evident that it is suffi-
_ éientAtb consider just ID, OD, IL and OL as the basic
units of unstructuredness whose removal will result in
a structured schema. In fact it is sufficient to con-
sider just ID, OD, and IL; structuring all instances
of ID removes all occurrences of DD, DL, and BL, and
then structuring all OD's removes LD and LB constructs
to leave just LL's. These can then be removed by
structuring just the IL's, so consideration of the OL
forms is not necessary. Since each of the basic forms
occurs in combination with each of the other three,
any one of the forms ID, OD, IL, OL can be the form
neglected in the structuring process, but for reasons
to be given later it is advantageous to omit OL.

Although the various buf's have been depicted with just
one jump in or out, a decision or cycle subschema may
have several such jumps on any or all of its constit-
uent paths and therefore gives rise to multiple and
possibly overlapping instances of basic unstructured
forms. Each buf can be considered in isolation and,
as is easily seen, can only occur paired with one of
the other buf'’'s. The problem of structuring single
jump entry or exit buf’'s is considered in the next
Section whilst that of multiple overlapping buf's is
taken up in Section 5.

McCabe?! considered the buf's here named as ID, OD, IL
and OL, but did not consider IB and OB. (As already
noted, these are in any case not independent forms but
are equivalent to IL and OL respectively.) McCabe?!?!
and Williams’ independently derived the unstructured
forms described here as DD, DL, LD and LL, but neither
recognized the forms BL and LB. With these forms now
included it can be seen from the foregoing that each
buf is paired with one of the other three - as might

13



be expected from symmetry - to produce a unique un-
structured single-éntry singie-éxit subschema. Clearly
no buf can be paired with itself to produce such a
subschema, so the six forms DD, ..., LB are the para-
digms of all possible forms of unstructuredness.
Williams added a fifth form to DD, ..., LL termed
parallel loops, but as Williams also recognized, this
form is expressible in terms of the other four under
the restriction of a single exit vertex.

N4

14



4. THE STRUCTURING TRANSFORMS

Two schemas having identical functions and predicates
are computationally equivalent if their computation
sequence sets are described by the same regqular set.
The first step in the structuring process is therefore
to recast the regular expressions describing the buf's
into sre formats. The strategy for transforming an
unstructured schema into structured form is then as
follows:

l. If the schema is structured then stop.

2. Identify a buf and replace it with a compu-
tationally equivalent but structured schema.
(Since buf's cannot occur alone a second buf
will also be removed.)

3. Go to step 1.

In this Section the structured equivalents of the buf's
are derived. Where possible two alternative transforms
are given: one which avoids predicate duplication but
necessarily incurs function duplication, called here
Type 0, and one which avoids function duplication but
necessarily incurs predicate duplication, called Type
1. The 0 and 1 represent the number of predicate
duplications in the transform. For ID and IL both
types of transform exist, but for OD and OL it will be
shown that only Type 1 is possible. Proofs that the
structuring algorithms can always be applied and always
terminate will be given in the next Section.

Consider first the ID subschema shown in Figure 9. It
is required to find a structured reqular expression
for the end set expression E(N) + E(E). From the
Figure it can be seen that

15



E(N) = c.E(4)

E(4) = q.e.E(C) + g.d.E(B)

E(E) = b.E(B)

E(B) = a.E(C)

E(C) = £.E(X) (1)

It is required to solve these equations in a form
which is an sre expressed in terms of E (X).
Bainbridge!? has given three rules for solving end set
equations to yield sre's. Letting x, y denote sre's
and p a predicate these rules are:

l. if E(v) = x.E(u) or E(v) = x
then eliminate E(v) by substitution;
2. if E(v) = p.x.E(u) + p.y.E(u)
then deduce E(v) = (p.x + p.y).E(u);
3. if E(u) = p.x.E(u) + p.y.E(u) or
if E(u) = p.x.E(u) + p.y
then deduce
E(u) = (p-X)*-i-y-E(u) or
E(u) = (p.x)*.i.y respectively.

Bainbridge asserts that if application of these rules
yields an sre then the sre is minimal with respect to
a count of the number of occurrences of functions and
predicates, but if a stage is reached where none of
the rules applies then there is no sre solution for
the end set equations. Applying these rules to equa-
tions (1) for ID gives

E(N) = c.(g.e + g.d.a).E(B)
E(E) = b.a.E(B)
E(B) = £f.E(X) (2)

which is in the required sre format and has also
eliminated vertices 4 and ¢ as chain vertices in the
structured subschema. The structuring transform has
thus effectively deleted the entry and exit vertices
of ID by placing them on structured arcs in the

16



transformed schema whilst retaining the topological
relationship between the vertices originally incident
on the ID. Unlike equations (1), equations (2) con-
tain one duplication of function a. The corresponding
subschema is shown in Figure 9 as ID-0, the 0 denoting
that the decision entry vertex of the ID has not been
duplicated. Structuring has been achieved at the ex-
pense of a single function duplication.

For the IL depicted in Figure 10 the end set equations
are:

E(N) = £.E(4)
E(4) = a.E(B)
E(E) = p.E(B)
E(B) = c.E(C)
E(C) = g.e.E(4) + 3.d.E(X) (3)

Following the example of ID, the intent is to elimi-
nate 4 and C as the cycle entry and exit vertices and
to find sre's for E(N) and E(E) in terms of E(B), and
E(B) in terms of E(X). By substitution for E(4) and
then E(B) in E(C) is obtained?

E(C) = g.e.a.c.E(C) + q.d.E(X)
= (g.e.a.c)”.3.d.E(X)

hence

E(B) = c.(g.0.a.¢)" .3.d.E(X)
= (c.q-eoa)“‘oa-doE (X)

and then

E(N) = f.a.E(B)
E(E) b.E(B)
E(B) = (c.q.e.a)t.3.d.E(X) (4)

+ Direct substitution in the equation for E(B) gives a
form on which Bainbridge's Rules cannot be used.
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Again structuring has been achieved at the expense of
one function duplication, namely a in E(¥) and in E(B),
but without duplication of the cycle exit vertex gq.

The resulting structured subschema is shown in Figure
10 as IL-0, where it can be seen that the topological
relationship between vertices incident on IL has been
preserved.

Next consider OD, Figure 1ll. In this case an sre for
E(N) is required in terms of E(B), and for E(B) in
terms of both E(X) and E(E). As seen from the Figure
the end set equations are:

E(N) = a.E(4)

E(4) = g.e.E(C) + g.d.E(B)

E(B) = p.b.E(E) + p.c.E(C)

E(C) = £f.E(X) (5)

Substituting for E(4) and E(C) gives

E(N) = a.(g.e.f.E(X) + g.d.E(B))

which is not in sre format and none of the Bainbridge
Rules can be applied further.

To achieve sre format it is necessary to expand terms
with the general format

r.f.E(U) + r.g.E(V)
into the factored sre form
(r.f + T.g).(r'.E(U) + r'.E(V))

where r’ is an introduced predicate whose computation
yields the same Boolean value as that originally com-
puted for r. Given that r’' can be so computed, then
being a predicate its computation will not alter the
local or output variable sets Y and Z respectively of
the schema. Now the only possible computation
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sequences of the factored sre are r.f.r’'E(U) and
r.g.r'.E(V) which respectively produce the same se-
quences for the values of Y and Z as r.f.E(U) and
r.g.E(V). Thus the unfactored and factored expressions
are computationally equivalent under the assumption
concerning r’. Remembering that r is a predicate and
f, g are local functions of the schema such that

rs X x Y + {true, false}
f, gs X x Y+ Y

it follows that r5 cannot in general be replaced by a
recomputation of r because the local functions f and ¢
could have subsequently changed the arguments of r.
Thus it is necessary to record for later use the value
of r at its point of computation by the introduction
of an auxiliary variable, or flag, which is distinct
from the variables of the schema. To preserve compu-
tational equivalence the flag is introduced in the
following way.

At a decision vertex the associated predicate p, say,
is computed as before but its value is immediately as-
signed to a flag P, say, uniquely associated with p.
It is this flag that is used, rather than the original
predicate, as the discriminant in choosing the exit
path from the decision vertex. In programming terms

if p then ... else ...
is replaced by
P « p; If P then ... else ...

Whereas in the original schema the value of a predicate
is known only at its point of computation, the intro-
duction of a corresponding flag preserves the predi-
cate's value until recomputed. In the sequel the
convention is adopted that schema predicates will be
denoted by p, ¢, r, ... and the corresponding uniquely
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associated flags by P, @, R **- . It will also prove
convenient to allow direct assignment of truth values
to the flags. Again, such assignments do not affect
the original schema's computations. Bainbridge's Rules
can now be extended to allow for the introduction of
flags as follows, where 1 denotes true, 0 denotes
false, and ¢ denotes the non-existent or null string:

4. if E(u) = p.a.E(v) + p.b.E(w) then introduce
E(u) = (P+p).(P.a; + P.bl).
(P.a,.E(v) + ?.bz.E(w))
where
aj;.a, = a and b;.b, = b;
5. from (P+l).(P.a + P.b) deduce a, and from
(P+«0) . (P.a + P.b) deduce b;
6. if x, y are sre's that do not contain assign-
ments to P, then from
P.x.P.y deduce P.x.y,
P.x.B.y . 9,
P.x.P.y " P.x.y,
-p.x.P.y " ?;
7. from (P + P).E(u) deduce E(u);
8. from ¢.x deduce ¢, and from
x.9 deduce 9.

Returning to the end set equations (5), E(B) can be re-
cast in the form
E(B) = (P+p).(P.b; + P.c).(P.b3.E(E) + P.E(C))

where bj.by = b, c; = c, and ¢, = A. In order to pro-
vide a common sre factor for E(4) - and hence E(¥) -
E(C) can be expanded into the computationally equiva-
lent form

(P+0) . (P.bz.E(E') + B.E(C)),

which explains the choice of ¢, = A in the sre for E(B).
Now follows after some collection of terms
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E(N) = a.E(4)
= a.[g.e.(P+0) + g.d.(P+p).(P.b; + P.c)1.E(B')
E(B') = P.b .E(E) + P.f.E(X) (6°)

This is the desired sre format but in terms of a new
B' in place of the original B. The corresponding sub-
schema is shown in Figure 11 as OD-1, with b, = b and
b; = A. This choice is made because the new arc
(B',E;P.b) is then closely similar to the original
jump-out arc (B,E;p.b).

Structuring has removed the buf's entry and exit
vertices, but in this case the resulting sre can be
expressed only in terms of duplication of a predicate
- that which provided the jump-out construct. The
original jump-out decision vertex is incorporated in
the new structured arc (¥,B') as the entry to the con-
struct P + P.c while the duplicated vertex B' takes
over the role of tail to the original arc (B,E).
Again, the topological relationship of the vertices
incident upon the buf has been preserved.

Now consider OL, Figure 12. For this buf

E(N) = £.E(4)

E(4) = a.E(B)

E (B) p.b.E(E) + p.c.E(C)

E(C) = gq.e.E(4) + g.d.E(X) (7)

As for OD, it will be found that no sre solution can
be formulated using function replication alone.
Introducing flags for p and ¢, and after substituting
for E(C) and E(B), E(4) takes the form

a.(P+p) .(P.b.E(E) + P.c.(Q+q).(Q.e.E(4) + @.d.E(X))
The first disjunctive term can be extended to the form
P.(Q+0).Q.b.E(E)

for reasons that will shortly become apparent.
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Applying the expansion formula
P.u.x + B.v.y = (P.u + B.v).(P.x + B.y)
~gives

E(4) = a.(P+p).(P.(Q«0) + P.c.(Q+q)).
(P.3.b.E(E) + P.(Q.e.E(4) + Q.d.E(X))]

which can be recast in the computationally equivalent
form
E(4) = a.(P+p).(P.(@«0) + P.c.(Q+q)).
[Q.e.E(4) + Q.(P.b.E(E) + P.d.E(X))]

Defining
x = a.(P+p).(P.(Q+0) + P.c.(Q«q))
E(B') = P.b.E(E) + P.d.E(X)
gives
E(4) = x.(Q.e.E(4) + Q.E(B"))
= x.E(4'), say.
Thus
E(A') = Q.e.x.E(4') + Q.E(B")
= (Q,e.x)*.a.E(B')
from which

E(4) = x.(Q.e.x)*;a.E(B')
= (x.Q.e)t.Q.E(B")

and finally

E(N) = £.(x.Q.e)¥.Q.E(B")
E(B') = P.b.E(E) + P.d.E(X) (8)

Thus structuring requires the duplication of the jump-
out decision at B, with the original vertex now con-
tained on the structured arc (¥,B') and duplicated at
B'. The resulting subschema is depicted as OL-1l in
Figure 12. As for all other structured forms of the
buf's the topological relationship of the incident
vertices is preserved.
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Whilst OD-1 and OL-1 each contain one duplicated deci-
sion vertex, neither contains a duplicated function.

It is also possible to structure both ID and IL without
function duplication at the expense of one duplicated
decision vertex as shown by ID-1 and IL-1l in Figures

11 and 10 respectively. Thus each of the basic un-
structured forms OD, ID, IL and OL can be structured

at the expense of at most one duplicated decision ver-
tex and no function duplication, but only ID and IL

can be structured by function duplication alone.

As noted on Section 3, the six paradigms of unstruc-
turedness are composed of pairs of buf's:

DD = ID + OD; DL = ID + IL; LD = OD + OL;
LL = IL + OL; BL = ID + OL; LB = OD + IL

and all of these except LD can be structured without
predicate duplication by a suitable application of
either ID-0 or IL-0. However, as LD consists of OD +
OL it can only be structured at the expense of one
introduced decision vertex using either OD-1 or OL-1l.

It was remarked in Section 3 that of the four buf's
it was only necessary to consider structuring trans-
forms for three of them and the preferred three were
ID, OD, and IL. The reason for this is now clear.
Whereas the transforms for these three buf's require
at most one flag each, that for OL requires two, and
is in any case the most complex of all the transforms.

It remains to be established under what conditions, if
any, the transforms developed in this Section can be
applied in the presence of overlapping buf's. This is
taken up in the next Section.
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5. EFFECTIVENESS OF THE TRANSFORMS

A transform is considered to be effective only if it
results in another valid schema and if it gives a re-
duction in the total number of buf's left in the
schema.

In the previous Section it was assumed in the deriva-
tion of the structuring transforms that there was no
overlap between the buf's. The effect of overlap is
to introduce decision or collector vertices on what
would otherwise be arcs of buf's, and then there is no
guarantee that the structuring transforms can still be
applied effectively. In this Section it is shown that
whilst some forms of overlap can invalidate certain
transforms, nonetheless for every schema there is
always at least one transform that can be applied ef-
fectively, thus enabling every schema to be progres-
sively transformed into structured format.

Consider ID, Figure 9, and the ID-1 transform. A col-
lector on path [4,B] of ID gives rise to a second
instance of ID. Applying the ID-1 transform to the
jump-in at B from E still effectively removes the first
instance of ID but now leaves [¥,B] not as a structured
arc but as an instance of ID on the path originally
labelled g.e. A second application of ID-1 effectively
removes this ID buf. By extension it is possible to
effectively remove any number of overlapping ID's
arising from collectors on the original path [4,B].
Similarly, ID-1 is effective with respect to the orig-
inal arc (E,B) in the presence of any number of collec-
tors on paths (B,C] and [4,C]. Clearly ID-1 is also
equally effective in the presence of any number of
decisions on the original paths [(4,B], [4,C] and (B,C],
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or indeed for any combination of decisions and collec-
tors. Thus ID-1 can always be applied effectively to
any ID buf.

ID-0 is also effective with respect to introduced ver-
tices on the original arcs (4,B) and (4,C) of ID, but
not for vertices on (B,C) because ID-0 duplicates this
arc. However, consider an introduced collector B' on
[B,C] and let B' have an external immediate predecessor
E'. The ID comprising vertices AB'E'C can be regarded
as the original ID having a collector B on its path
[A,B'] for which as already noted ID-0 is effective.
This argument can be extended to any number of collec-
tors on [B,C] of the original ID. In the presence of
decision vertices on [B,C] ID-0 is ineffective but, as
already seen, ID-1 can be used instead. Hence

Lemma 1. There is always an effective transform for

the removal of ID constructs from any schema.

Consider OD and OD-1, Figure 1ll. The presence of col-
lector vertices on any path of OD introduces instances
of ID which by Lemma 1 can always be removed effective-
ly so it is sufficient to consider introduced decision
vertices alone. Each such vertex introduces one addi-
tional instance of OD. Now the [¥,B] path of OD-1
contains two nested decision subschemas, namely
g.e.(P+0) + G.d.(P+p).(P + P.c) and P + P.c. Each
decision vertex on paths [4,B:g.e] and [4,C:3.d] there-
fore gives rise to one OD construct on the otherwise
structured path [¥,B] of OD-1 whereas each such vertex
on path [B,C:p.c] of OD necessarily produces two OD's
in OD-1 - one for each decision subschema on [(¥,B].
Thus OD~1 is effective for decisions on paths [4,B]

and [(4,C] of OD, but not [(B,C]. However, let B' be
that decision on [B,C] which has vertex ¢ as an imme-
diate successor, and let E' be its other immediate
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successor. Subschema AB'E'C is now an instance of OD
with decision vertices on its [4,B'] path, for which
as already noted OD-1 is effective. Hence:

Lemma 2. In the absence of ID constructs there is
' always an effective transform for the

removal of OD constructs from any schema.

Summarizing thus far, ID-1 can always be applied on
any ID such that the jump-in vertex is the most immedi-
ate successor of the ID subschema's entry vertex, and
OD-1 can always be applied on any OD such that the
jump-out vertex is the immediate predecassor of the
OD's exit collector. Lemmas 1 and 2 together assert
that it is always possible to transform an unstructured
schema to one that contains no instances of ID or OD.
Thus it is now necessary to consider schemas contain-
ing only IL and OL buf's. Since, as noted in Section
3, neither buf can occur in combination with itself,
the only possible remaining unstructured form is IL +
OL, and the effective removal of one component ensures
the removal of the other.

Consider IL, Figure 10, and the transform IL-0. Since
path [B,X] of IL-0 contains a cycle with label
(c.q.e-a)¥.g it follows that any vertex intraduced on
[(B,C:c] or [C,A:q.e] of ILleaves IL-0 as an effective
transform, with the introduced buf's being transferred
to path [B,XY of IL-0. However, IL-0 is not effective
in respect of vertices introduced on path [4,B:al of
IL due to the duplication of the path. The path

[B,X] of IL-1 contains a cycle [(Q.a+Q).c.(Q+q).el*.Q
with nested decision subschema Q.a + Q. As for IL-0,
IL-1 remains effective in the presence of introduced
vertices on [B,C] and [C,A] in IL, but not for [4,B:al
which due to the nested decision cause two buf's in
IL-1 - one for the cycle and one for the nested deci-
sion subschema.
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However, as will now be shown, for every schema com-
prising LL forms alone there is at least one IL for
which there is no vertex on the path [4,B:al. Since
by assumption all ID and OD forms have been removed
there can be no vertices on path [C,4] of IL because
these imply the presence of LB's and BL's which in the
absence of OD's and ID's respectively cannot exist.
Thus all decisions are cycle exits and all collectors
are cycle entries.with the result that all vertices
necessarily lie on the forward path [s,h]l]. Let d be
that decision vertex which is the most immediate suc-
cessor decision of the start vertex s, and let (d,c)
be the corresponding back latch. The cycle [c¢,d](d,c)
can comprise IL constructs only, since by definition
[c,d] is decision-free apart from d.

Consider the IL constructs of this cycle and let B' be
that collector on [c,d] which has ¢ as one of its im-
mediate predecessors and E', say, as its other. Now
cB'E'd can be regarded as an IL buf with no vertices
on its path [4,B'], that is, on (¢,B') and so can be
structured using either IL-0 or IL-1l. The argument
can be repeated on the resulting schema, hence:

Lemma 3. In the absence of ID and OD constructs there
is always an effective transform for the re-
moval of at least one IL construct from any

schema.

Lemmas 1—3 taken together lead to the principal result
of this thesis:

Theorem. It is always possible to put an unstructured
schema into a computationally equivalent
structured form using only the transforms
Ip-0, 1pD-1, 0D-1, IL-0 and IL-1l. If function
duplication is not required then ID-1, OD-1
and IL-1 comprise the minimum set of trans-

forms necessary.
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A note on A-paths.

A-paths may be present in the original schema, or may
arise during the structuring process in the presence
of overlapping buf's. The presence of a A-path in a
buf may enable simplification of the equivalent struc-
tured form by eliminating the need for a duplicate
function, a duplicate test on a flag, or even the flag
itself.

For instance, consider ID, Figure 9. If a = A then
ID-0 becomes simply:

E(E) = b.E(B)
E(B) = f.E(X)

with no function or predicate duplication necessary,
and no need for any flags. 1ID-1 is redundant in this
case.

Next consider IL, Figure 10. Setting a = A makes IL-0

E(N) = £.E(B)
E(E) = b.E(B)
E(B) = (c.q.e)¥.3.d

where again there is no predicate or function dupli-
cation, or any introduced flag. IL-1 is redundant.

Finally consider OD, Figure 1ll. Setting c¢ = A makes
the nested decision (P + P.c) superfluous to yield

E(N) = a.(g.e.(P+0) + g.(P«p)).
(P.b.E(E) + P.£.E(X))

&n this case the flag P must be retained, because
although the original jump-out predicate p has now
dropped out of the decision subschema due to the
presence of the A-path, nonetheless p must not be
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computed after the preceding computation of g has
returned ‘true’'.

It is assumed throughout the rest of this thesis that
all such simplifications due to the presence of A-paths
are duly made, and done so usually without further
reference.
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6. IDENTIFYING BASIC UNSTRUCTURED FORMS

Throughout the development of the structuring trans-
forms in the earlier Sections it was assumed that it
was always possible to identify the basic unstructured
forms and, in particular, to identify them in such a
way that structuring could be carried out in the pre-
scribed order of ID's, OD's and IL's. In this Section
algorithms are developed to justify that assumption.

Although the recognition of buf's seems straight-
forward when looking at carefully drawn schemas, their
recognition is less obvious when one is faced with the
description of the schema in the form of, say, an ad-
jacency list of vertices. Thus some algorithmic
technique is required. The first requireﬁent in any
algorithmic method is to partition the vertices (other
than start and halt) into four equivalence classes:
the entry vertices of decision subschemas, the exits
of decisions, the entries of cycles, and the exits of
cycles. Given these partitions, decision subschemas
are identified by finding for each entry decision the
set of exit collectors such that there are exactly two
disjoint simple paths from the entry to the exit col-
lectors. Each such decision - collector pair, to-
gether with the two associated simple paths, consti-
tutes a decision subschema. Cycle subschemas can be
identified in an analogous manner.

However, it is not possible in general to partition all
vertices uniquely into the required equivalence
classes. Consider, for instance, the schemas depicted
4in Figure 4b. Partitioning the vertices of schema a
into decision entries, decision exits, cycle entries
and cycle exits gives respectively {a,e}l, {b,f}, {4},
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{c}, whilst for the schema B the respective partitions
are {a,e}, {d,f}, {p}, {e} - yet the schemas are iden-
tical having the same vertex set V and arc function T.
The ambiguity surrounding vertices b, ¢, d and e arises
as follows. There are two forward paths in the schema
(as depicted by the vertically drawn paths in forms 4
and B) with back latches (c,d) and (e,b) respectively.
Both back latches lie on the only cycle in the schema,
namely d-e-b-c-d, and the removal of either leaves the
schema acyclic. Treating {(c,d)} as the back arc set
suggests the partition associated with schema 4,
whereas selecting {(e,b)} suggests that for schema B.
Either group of partitions is equally acceptable for
the purposes of applying the structuring transforms,
although some particular interpretation of the schema
may make one group preferred over the other.

Since there can be no ambiguity in an acyclic schema
the foregoing example shows that the first step in
identifying buf's must be to determine a back arc set
for the schema, whose deletion would leave the schema
acyclic. Having found such a set, the heads of the
back arcs are designated cycle entry collectors and
all other collectors of the schema as decision exits.
Partitioning the decision vertices is then straight-
forward, as will be shown later in this Section.

Defining back arc sets

One way to define back arcs of a schema ¢ = (V,E)

might be by means of a depth first traversal of the
schema, beginning at the start vertex. Let T = (V'Er)'
E, < E, (or equally T = (V.PT)) be a depth first span-
ning tree of ¢ and let the vertices of T (and hence of
G) be numbered upwards in pre-order (number the root,
number the left subtree, number the right subtree) with

vertex u being numbered N(u), say. The arcs of G can
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now be partitioned into four equivalence classes:
tree arcs = {(u,v)|(u,v) € Egp},
forward arcs = {(u,v)|N(u) < N(v) and (u,v) ¢ Ep},
cross arcs = {(u,v)|N(u) > N(v) and u ¢ Tpul,

back arcs = {(u,v)|N(u) > N(v) and u e Tpv}.

Back arcs can be distinguished from cross arcs by re-
numbering the vertices of T in reverse pre-order
(number the root, number the right subtree, number the
left subtree) with vertex u numbered R(u), say, to
yield R(u) < R(v) for cross arcs but R(u) > R(v) for
back arcs.

Unfortunately this straightforward method of defining
back arcs can cause failure to recognize even the
simplest of decision subschemas. Consider for instance
the schema of Figure 4c, where the vertices have been
numbered in a possible depth first search order. This
numbering yields (4,2) as the back arc and then 1-4

and 1-2-3-4 as the two paths of a rather improbable
decision subschema, instead of the much simpler decision
paths 1-2 and 1-4-2, with back arc (3,4). The intui-
tive preference for the simpler decision subschema is
justified by the fact that it lies wholly on forward
paths of the schema, whereas the alternative one does
not. The reason for the failure of the depth first
search to find the back arc (3,4) was that it did not
fully traverse all forward paths before exploring other

paths.

A suitable definition of back arcs in terms of forward
paths is the following. Let F be a forward path of a
schema G, and let L be the set of back latches of PF.
Each back latch is by definition associated with a
distinct cycle in G, and no two back latches lie on
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one cycle and no other. For suppose that (u,v) and
(w,x) are two back latches lying on the same cycle but
no other. Then this cycle is composed of paths [u,v],
(v,wl, Cw,x], [x,ul. But v,x both lie on P so either
(v,x] or [x,v] is also a path. Suppose the former,
then there exists a distinct cycle [u,v], [v,x], [x,ul
which does not include backlatch (w,x), contrary to
assumption. Similarly if [x,v] is a path then there
is a cycle [w,w] which does not include (u,v).

Each backlatch of P is therefore in a back arc set B
of G. The remaining members of B are defined recur-
sively by considering the not necessarily connected
subschema G ~ F, regarding F as a schema. Since, as
shown above, back latches of different forward paths
can lie on a single cycle, and can be part of some
other forward path, it is evident that B will depend
upon the order in which forward paths are found.

rinding forward paths

A suitable goal-oriented depth first search algorithm
for finding forward paths is the following. Starting
from some initial vertex u, a depth first search is
carried out until either a halt vertex h is found, in
which case the depth first path [u,h] is accepted as an
elementary path from u to h, or no further progress is
possible. To improve computational efficiency, the

set of goal vertices is extended from the halt set to
include all those vertices already found to lie on

some elementary path from u to h.

Specifically, let P = (VF'EF)' or equivalently let P =
(VpeT,), where F ¢ G, and let # ¢ Vv, be the set of halt
vertices in ¢. It is required to construct F from the
given # such that F is a maximal acyclic forward path
subschema of G. Let U, U c V-H, denote the set of
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vertices whose membership of F is yet to be determined.
The required forward path function dfs is defined by

dfs:s V + 2V x 2F
where
dfs(u) + U - {u};
for all x.x € Tu n U do
dfs(x); .
for all x.x € (Tu-{u}) n V, do
(VeiEg) + (Vpt{u}, Ep+{(u,x)});

It is shown in Appendix 1 that, in the modified nota-

29

tion of Hoare's axiomatics,

{ueUANTI} dfs(u) {T*unU =9 a I}
where

I: IOAII

Ip: (UeV)A(VpgesV)A(HcVe)AWnVp=9)

II: (Vw,x,y.w,x,y € V).
[(x,y €« Vg » x,y ¢ P;*H) A(y eTpx »x ¢ P;y)
A(wéd Vp»wd Tox)l

Invariant I guarantees that P is acyclic, while the
condition I'"u n U = ¢ guarantees that all paths from u
have been considered and hence that F is maximal with

respect to u.

It now follows that under the pre-condition
{(s € U) AT A (Vg =H) A (Ep = 9)}
dfs(s) yields
{(r*s nvU =9 A I}
from which is easily deduced
(s e Vy=»se P;*H}

with P = (V,Ep) being a maximal forward path subschema
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of G. In general F will depend on the order of selec-
tion of the vertices in dfs(s).

If G contains a set of start vertices S then all for-
ward paths are found from

for all s.s € S do
dfs(s).

The correctness of this is easily seen by introducing

a new vertex t ¢ V and extending I' to include S = Tt.
Then dfs(t) over V v {t} yields F' = (Vi,E;), say, from
which F = (Vi-{t},El-{(¢t,Tt)}).

Finally the back latch set L of F is given by
L= {(u,v)| v e VpaA (u,v) ¢ Ep}

which is a subset of the back arc set B of G. As noted
earlier, B is found by recursively applying the dfs
algorithm to G ~ F.

Identifying decision subschemas

To identify decision subschemas in a schema G = (V,E)
first find the back arc set B of G as described above
and then define four sets of vertices

C: the set of collectors in V;
D: the set of decisions in V;
E: {vi(u,v) € B}

X: {ul(u,v) € B A u e D}

E is the set of cycle entry collectors and X the set
of cycle exit decisions. Whilst the head vertex of
every back arc is necessarily a collector, not every
tail is necessarily a decision - see Figure 4a for in-
stance, where (e,a) is a back arc and e is a collector.
Thus it remains to find the complete set of cycle exit
decisions as well as identifying decision subschemas.
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For the purposes of identifying basic unstructured
forms it is required to find simple decision subschemas
where by simple is meant that the subschema properly

. contains no other with the same entry. An algorithm
will now be given to determine for each vertex d € D
whether or not d is a decision entry vertex, and if so,
simple decision subschemas for which it is the entry
vertex. Applying the algorithm to each element of D
results in finding all simple decision subschemas, and
the unique partitioning of all decision and collector
vertices into the four classes: decision entries,
decision exits, cycle entries and cycle exits. The
algorithm does not, however, identify simple cycles.

Algorithm 6.1. To find for each decision vertex of a
schema G whether or not it is a decision entry vertex
and if so the simple decision subschemas for which it
is the entry.

Input. The advancing path subschema GA of a schema G,
and the sets (C,D,E,X: being respectively the collectors,
decisions, cycle entries and cycle exits of G.

Output. For each vertex d, d ¢ D, a list L,; of topo-~
logically ordered sets, each set comprising the verti-
ces of a simple decision subschema with 4 as its entry.

Method.
0. Define U =D - X.
l. IfU = ¢ then stop.
2. Choose d, d € U, and define Tyd = {x,yl}.
Ly« 9% U+ U*-'{dl;
Define R; = (TaxnTy) n (C - E) and let R; be
topologically ordered. [R; comprises the collec-
tors reachable from d by two or more paths.]
3. If Ry = @ then
begin X + X v {d}; goto step 1 end.
4. Let ¢ = first (Ry), where first (S) returns the
first element of ordered set S.
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, »
Vg + @. [V; is a set used to hold vertices
of a simple decision subschema.]
R * *
Define F = {c} v (T,d - T,c) and let V4, F be
topologically ordered.
5. If F = ¢ then goto step 7.
6. Let u = first (F).
If c € P;u then
begin V4 « Va u {u}l; P <« F - {u} end
else
FP+«P-T)
- Au.
~goto step 5.
7. Ld « Ld’ Vdo
If R4 = @ then goto step 1 else goto step 4.

Notes.

l. R4 contains all decision exit collectors reachable
from d by two or more distinct paths. If R, is
enpty then there are no such collectors and 4 must
therefore be a cycle exit.

2. Since R; is topologically ordered, [d, first(Rd)]
must be a simple decision subschema. For suppose
the contrary, then there exists some collector u,
say, which lies on either [x, first(R;)] or on
Ly, first(Ry)] where Tpd = {x,y}. In either case u
must topologically precede first(R;) which is in
contradiction to the definition of first.

3. The preceding argument explains why r;c is sub-
tracted from Rd in Step 4 rather than just c.

4. In Step 6, if u, u ¢ F cannot reach ¢, then neither
can any vertex reached by u, hence P;u rather than
u is subtracted from F in this case.

As suggested by the above algorithm, a decision entry
may have more than one simple decision subschema as-
sociated with it. As an example consider the schema of
Figure 5 where decision d, has the simple decision
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subschemas (d,,d;,d;,c;) and (d,,d;,dz,c2). Conversely
there may also be a collector associated with two over-
lapping subschemas. Again referring to Figure 5, cj
has (dj,c;,c3,c3) and (dy,c;,c5,c3) as overlapping
simple decision subschemas.

It is to be noted that whilst a simple decision does
not properly contain another with the same entry vertex
it may properly contain another with a different entry.
Simple decisions that do not properly contain others
are called basic decision subschemas, and it is these
that comprise the basic unstructured forms ID and OD.
It is not necessary, however, to find all basic deci-
sions in the forward path subschema before commencing
structuring. It is sufficient at each stage merely to
identify the topologically last basic decision and
then structure it, repeating the process until all
basic decisions have been structured.

Identification of the last basic decision is straight-
forward. Let U be a set of decision entry vertices in
the forward path subschema arranged in topological
order, and let u, u € U be the last decision vertex of
U. Then each simple decision subschema with entry u
is also a basic decision. The proof is immediate:
suppose that V, is a simple decision with u as its
entry but which is not basic. Then ¥V, must contain a
decision entry vertex which is topologically later in
U than u, contrary to the assumption that u was the
last.] Any of the simple decisions of u can be
chosen as the last basic decision, but in view of the
desire to structure IDs first, one with no cycle exits
(if it exists) would be chosen preferentially.
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Identifying cycle subschemas

To identify cycle subschemas of a schema G for the pur-
poses of structuring, the decision subschemas on the
augmented advancing path subschema G of ¢ are progres-
sively detected and removed by structuring as described
above. Since G is acyclic, after the removal of all
decision subschemas G will be reduced to the form of a
tree, T say. Reinstating the back arcs of G onto T
restores the cycles of G, to give a schema R, say.

These cycles may be in structured form or in the form
of possibly overlapping instances of LL (IL. + OL), and
BL (ID + IL). It might be expected that LB (OD + IL)
could occur as well, but in fact it cannot because both
of the constituent paths of the OD component of any LB
construct in G are necessarily contained in the ad-
vancing path subschema G of G, and therefore the OD is
removed before R is constructed. The ID component of
BL on the other hand has a back arc as the first arc
on gach of its constituent paths, and so cannot occur
in G.

Detection of each structured cycle is straightforward.
If (u,v) is a back arc then, recalling that R is in
reduced form, if (v,u) is an arc of R then u~-v-u is

a structured cycle, and can be replaced by a single
arc, making u and v chain vertices, which are then
elided to preserve reduced form.

The unstructured cycles of R are now found as follows.
Let (u,v) be a back arc of ¢ in R, then the elementary
path [v,u] in R together with (u,v) constitutes a cycle.
By analogy with decision subschemas, a simple cycle is
defined to be one which does not properly contain an-

other having the same exit decision, whilst a basic
°
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. cycle is one that does not properly contain another
with a different exit decision. Howevef, before iden-
tifying IL constructs for the purposes of structuring
it is first necessary to identify and remove the ID
constructs of BL. This, and the final identification
and removal of the IL constructs, is taken up in the

next Section.
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7. THE STRUCTURING PROCESS

General Strategy

The first step is to identify a back arc set of the
schema G, and then consider the augmented advancing
path subschema G derived from G by cutting the back
arcs and introducing new vertices at the cut ends of
the arcs. Since by definition G is acyclic, it com-
prises at most the ID and OD bufs. To remove these,
first identify the topologically last basic decision
in a. (Where a choice among such decisions exists,
choose the one with the least number of cycle exits.)
Structure this decision to produce 31, say, and re-
peat the structuring process on 31 to produce a se-
quence of progressively more structured schemas, until
all ID and OD constructs have been removed, that is,
until all decision entry vertices have been reduced to
chain vertices. At each stage any chain vertices pro-
duced are elided to keep the schemas in reduced form.
Since cycle exit decisions are not decision entries,
no cycle exit will be elided in the structuring process.

The resultant schema is in the form of a tree, T say.
Disregarding the cut back-arcs and their introduced
end vertices yields the structured advancing-path tree,
T say, of G whose vertices (apart from start and halt)
comprise only the cycle entries and exits of G. Each
leaf of T (other than halt) is necessarily a cycle exit
decision, and by a process to be described below can be
pruned to yield a tree, T; say. T3 has the same prop-
erty as T regarding its leaves, and so the pruning
process can continue until a tree in the form of a sin-
gle non-branching path is obtained. At this stage any
remaining IL and OL constructs can be removed by iden-
tifying and removing the ILs, to yield the final
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structured form of G.

- The structuring method.

To illustrate the various steps in the structuring
algorithm a detailed example of a hypothetical schema
designed for the purpose will be worked out. The ap-
plication of the structuring algorithm to some prac-
tical problems is done in the next Section.

Consider the schema ¢ shown in Figure 13 for which

s = {0}, #=1{10}, and vV = {v | 0 s v s 21}. The de-
sired forward path Gp = (Vp,Ep) of G with respect to
start vertex 0 and halt vertex 10 is initialised by
B, Ep = ¢, and the set of unconsidered
V - Vp. Clearly the invariant

setting VF’
vertices U

L]

Ig:s (UcV) A (VpeV) A (UnVp=@) A (HcVp)
is satisfied, as is also in a vacuuous manner invariant
I;: (Vx,y.x,yeVp).[(x,yeT"H) A (yeTpx xfTpy)]

the latter being the condition for G, to be acyclic.
The precondition for dfs(0) to be executed, namely

I A (0 € U), is met so after dfs(0) terminates G, will
be as depicted in Figure 14, omitting the cut back arcs
and their introduced end vertices. Arcs not in Gp but
incident on it such that the head vertices are in V,
are the back latches of Gp and are therefore back arcs
of 6. These are: (6,1), (19,2), (21,11), and (15,12).

The next step is to form G¢; = ¢ ~ G, and if this is
non-empty to repeat the process of finding forward
paths and their associated back latches. For the pre-
sent example G; is not empty and is as depicted in
Figure 15, from which it can be seen that G; comprises
two disjoint subschemas collectively having 5; = {5,
9, 13} and #; = {1, 2, 12, 13}. Applying dfs over S,
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with Gp; = (#;,8), Vp; = H; and U = V; - V., yields
the forward path G,; for G, shown in Figure 16.

Gp; has two disjoint components but only the larger
has back latches, these being (20,14) and (20,17).
Repeating the process to form G, = G; ~ Gp; yields a
subschema which has no back latches, so the search for
the back arcs of G ends. The back latches of G, and

Gp; together comprise the back arc set of G.

The next step in the structuring algorithm is to cons-
truct the augmented path subschema G of G by cutting
the back arcs and introducing new vertices at their
ends. G is shown in Figure 17. Omitting the cut back
arcs gives the advancing path subschema G, from which
it is required to identify and structure the topologi-
cally last decision subschema in 3, repeating the

process until none remains.

One possible topological ordering of the vertices of
GA iS:

0 1 2 3 4 5 7 11 12 13 8 9 6 10

14 15 16 17 21 18 19 20.

In the notation of the previous Section, the back arc,
collector, decision, cycle entry and cycle exit sets

are respectively

B: {(,1), (19,2), (21,11), (15,12), (20,14),
(20,17)}

c: {1, 2, 7, 11, 12, 8, 6, 14, 17, 18}

p: {3, 4, 5, 13, 9, 15, 16, 21, 19, 20}

E: {1, 2, 11, 12, 14, 17}

x: {15, 21, 19, 20}.

With six cycle entries but only four cycle exits iden-
tified it is clear that two further cycle exits remain
to be found.
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Applying Algorithm 6.1 gives

0.

1.
2.

4.

6.

UeD-X
{3, 4, 5, 13, 9, 16}
U=¢ hence
Choose d as 16, the last decision in U. Then
U«U - {4}
= {3, 4, 5, 13, 9}
L,g + ® and
Fal6 = {17, 21} so that
Rjg + (Ta17 n Tp21) a (C - E)
({18, 19, 20}) n ({7, 8, 18})
{18}.

Thus 18 is identified as the only decision exit
corresponding to decision entry 16. To find the
vertices of the decision subschema:
Rjg 2 ® so
c + 18
Rie + Rjg - l";lS
=9

Vie + ¢
F + {c} u {T;d - Tjc}

= {16, 17, 21, 18}

from which repeated application of

eventually gives

v;6 = {16, 17, 21, 18} .

the vertex set of a topologically last decision
subschema headed by 16. ‘

L;g + V; and as

R = 9 there are no other decision subschemas

headed by 16.

Since 17 is a collector and 21 a decision the decision

subschema comprises one ID and one OD construct. As
shown in Section 5, structuring effectively deletes
the entry and exit vertices 16 and 18 respectively to
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leave Gp in the form shown in Figure 18, in part.

Returning to Algorithm 6.1, the next decision to be
considered is 9 so that
2. U « {3, 4, 5, 13}
Lg « ¢ and
r,9 = {6, 10} so that
Rg « ({6} n {10}) n ({7, 8, 18})
3. Rg = ¢ and hence .
X « {9, 15, 21, 19, 20}.
Thus vertex 9 has been identified as a cycle exit.

Continuing with Algorithm 6.1, 13 is likewise found to
be a cycle exit, so

X « {13, 9, 15, 21, 19, 20}.
Next, decision vertex 5 is found to have 6 as its only
collector, the paths of the decision being (5,6) and
5-7-8-9-6. Structuring the decision, which comprises
two ID's and one OD, effectively removes 5 and 6 to
yield the schema partially depicted in Figure 19.
The next decision vertex, 4, heads a structured deci-
sion [4,7] and so 4 and 7 are elided as chain vertices
following replacement of ([4,7] by a single arc. Fi-
nally, vertex 3 is found to be a decision entry with
paths (3,8) and 3-11-12-13-8, which after structuring
the ID's at 11 and 12 and then the OD at 13 gives the
schema depicted in Figure 20, in part. The final form
of G, is thus a tree, T say, which after adding the cut
back arcs and their introduced end vertices gives the

schema } depicted in Figure 21.

Referring to Figure 21, it can be seen that vertex 13
is the only branch vertex of T whilst vertex 9 is the
tail of the only back latch (9,1) of the forward path
of T. Vertices 13 and 9 are precisely those which were
added to the cycle exit set X in Step 3 of Algorithm
6.1. It is easy to see that for any schema ¢ a deci-
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sion vertex d is added to X only if it is not the head
vertex of a decision subschema and is not the tail of

a back latch of ¢. Thus all such vertices 4 are neces-
sarily branch vertices of the derived structured tree

T of the advancing path subschema G, of G. In the pre-
sent example, vertex 9 is a branch vertex for which

one of its subschemas (the arc 9-6) has been elided in
the structuring process, leaving 9 as the tail of the
derived back latch (9,1) which has subsumed the orig-
inal arcs (9,6) and (6,1).

It remains to explain how to structure G, following the
reinstatement of the back arcs, some of which as noted
already may have been extended by the elision of their
tails during the structuring of G,.

Let R denote the schema obtained by reinstating the
back arcs of G on the structured form of G,. If R has
a tree T as its advancing path subschema rather than
just the forward path [s,h], then instances of BL, and
hence ID, are present in R. If d is a leaf vertex of
T other than the halt vertex then 4 is necessarily a
decision vertex and therefore the head of two back arcs
(d,b;) and (d,b,), say. (If d were a leaf collector
of T it would be the exit of some decision subschema
in G, contrary to the fact that all such subschemas
have been removed from G,.) Both »; and b, must lie
on the path [s,d] (otherwise they would not have been
treated as back arcs by the forward path algorithm)
with b; say such that (b;,b,] is an elementary path in
T. (d,b;)(b,;,b,] is one path of a decision subschema
D and (d,b,) the other, with an ID component at b;.
The path [b,;,b,] may itself comprise both decision and
collector vertices so D contains the one ID construct
at b; and possibly several ID and OD constructs over

the vertices between b, and b, on [bl.bzl.
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Structuring D eliminates 4 and b, together with

(d,b,) from R and replaces (d,bl) by an arc (p,b;)
where d € I'p. Vertex p is never the same one as b,
since if it were then b,-d-b, would be a structured
cycle and therefore would have been replaced earlier
by a single arc in R. Let R; be the resultant schema
with advancing path tree T,. If p is not on the for-
ward path of T; it is a decision vertex leaf of T; and
as such is the exit decision of two nested cycles.

The inner cycle may or may not be structured. If it
is, then the outer cycle surely may not be structured
also.+ Figure 22 illustrates the possibilities. After
eliding any structured cycles associated with p, a new
schema R' say is obtained for which the process of
pruning decision leaves from the underlying advancing
path tree T' can be repeated until all such leaves
have been elided. What remains is a schema in the form
of a single forward path [s,h] together with back arcs.
Since there is now only a single forward path there
can be no remaining instances of ID and hence BL, thus
only IL and OL constructs remain to be structured.

The IL constructs are easily identified and structured
as follows. Let the vertices on the forward path
[s,h] of R' be numbered in ascending order - the topo-
logical numbering given to the vertices for Algorithm
6.1 will suffice - with vertex v being numbered N(v),
and let D be the ordered set of decision vertices so
numbered. Choose a vertex d € D such that 4 is the
lowest numbered vertex of D, and let c ¢ PR,d such
that N(c) < N(d). Then the cycle (d,c)lc,d] contains
IL constructs alone. For suppose the contrary, then
there must be a decision vertex d' on [c,d] and hence

+ Because p would lie on a cycle from which the halt

vertex h was unreachable.
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such that N(d') < N(d), contradicting the fact that d
is the lowest numbered vertex in D. ‘Structuring the
cycle effectively deletes d and ¢ from R', and the
structuring process can then be repeated until R!
comprises just the derived structured arc (s,h).

Returning to the example, let R be the schema derived
from G, by reinstating the back arcs, then since G, is
a tree there are instances of BL in R. Figure 23(i)
shows G, with the back arcs from the leaf vertex 20
restored. Vertex 14 corresponds to b; and 17 to b,.
Since decision vertex 15 lies on [14,17], the decision
subschema headed by 20 comprises one instance of ID at
14 and one of OD at 15. Structuring the decision re-
moves 20 and 17. Figures 23(ii) to (v) show the pro-
gressive steps in pruning the leaves of the advancing
path tree of R. In this instance two nested structured
cycles 2-13-2 and 1-2-13-9-1 are left after removing
all ID constructs, so the schema when put into reduced
form is structured. The steps sketched in Figure 23
are set out fully in Figures 24 to 28.

The sre for the original schema G is thus

alb(X,W,U+0)(0zTex) Py3£1's
where .
U+TUSCW+Wk(X+x)]
U(P+0)+Un(X+Xa)
W(P,X+0)+W[X+Xc(P+p)1]
X(Y+y) (T«0)+XBLT+T(¥+0)]
Y(V,U+0)+¥i(U«u)(U+T(V+v)]
V(W<«w)+Vj(WN«0)
R(S+0)+Re(S+s)
P(T«0)+Ph(T«t)
= P[q(R+r)+g(R+0)1(R+Rd)+Pg.

QR <X oM yw I3 @ A&
"

Note that ¢, ..., K are all sre's.
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As an illustration of the consequences of structuring
consider the following computation sequence in the
original schema G:

abcpagdes
For the structured form of G this becomes
ab (X, W, U+ 0)
UWXc (P« p) -
! !

|
|
n l
XPg(R<«O0)RA | o
I [ |
a |
TP(rT+«o0)T --;
e | | ¢
B 1
TRe (S+3)
|
Y

S.

Thus the order of evaluation of the original functions

and predicates is
abcpagdes

as expected, but the structured schema requires seven
assignments to, and thirteen tests on, predicate vari-
ables as against no assignments and just three tests

for the unstructured schema. Structuring is achieved

only at a price.
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8. EXAMPLES

In this Section the structuring method is applied to
some practical problems.

Example 1.

First consider the problem of searching an unordered
list for a given key where it is not guaranteed that
the key sought is present in the list. It is required
to return found false if the key is not present and
found true together with the entry index value if the
key is present. Assuming that the list indices range
from 1 to size inclusive then a typical solution is

0: found « false;
entry « 1;
1'
1l: while entry < size do
2: if list[entry] = key then
found « true;

goto 3;
else -
entry « entry + 1;
3: {found = listlentry] = key}

where indentation is used to indicate statement group-
ings. Define

a: found « false; entry +« 1;
p: listl[entryl] = key

g: entry > size

b: entry « entry + 1;

ct found +« true;

then the schema for the search algorithm is as shown
below and, as can be seen, comprises one instance of
LD. Structuring the OD component yields the structured
form shown which has the computation sequence set
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0
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q(P+«0) g(P<p)

o <3

pb

Pp

e
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>

a.[ (3. (P+p).(P + P.c) + q.(P+0)).P.p1*.P

The structured form of the algorithm can be recovered
by substituting for the labels and writing NotFinished
for P. However, to avoid constructs such as e
until not NotFinished, the algorithm will be written
in terms of the flag P: Finished rather than P.
After transcribing expressions such as NotFinished «
false to Finished « true, the final structured form
of the algorithm becomes as shown below. Although
longer than its equivalent unstructured form the algo-
rithm nonetheless retains the same predicates and the
same tests on them, albeit duplicated for Finished.
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found + false;
entry + 1;
repeat
if entry < size then
Finished « listl[entry] = key;
if Finished then
found « true;
else
Finished +« true;
if not Finished then
entry +« entry + 1
until Finished;
"{found = listlentryl] = key}.

. Structured Algorithm for List Search.

Bxample 2.

As a second example consider the problem of processing
the nodes of a non-empty binary tree in post-order.

An iterative solution is given below in terms of ab-
stract data type (adt) operations on the tree and a
stack.

'{t is a non-empty binary tree}
8 + create_stack;
l: while not empty tree(left(t))do {go left}
push(s, <t, goright>);
t « left(t);

2: if not empty tree(right(t)) then {go right}
push(s, <t, goback>);
t « right(t);
goto 1;

3: process(root(t)):;
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4: if not empty stack(s) then {go back up}
<t, action> + top(s);
pop(s) ;
5: if action = goright then
~goto 2
else

goto 3;

a: 8 <« create_stack;
b: while not empty tree(left(t)) do
push(s, <t, goright>);
t « left(t);
c: push(s, <t, goback>);
t « right(t);
d: process(root(t));
e: <t, action> « top(s);
pop(s) ;
p: empty tree(right(t))
g: empty_stack(s)
r: action = goright

then the schema for the post-order traversal algorithm
is as shown below. The back arcs are easily found to
be (5,2'), (5,3) and (2,1), while the advancing path
tree is seen to have one branch vertex 4, and one
decision vertex leaf, 5. To prune the leaf back arcs
(5,2) and (5,3) are reinstated to give a decision sub-
schema with paths 5-3 and 5-2'-2-3 which, because 2°'
is a collector and 2 a decision, comprises one ID and
one OD. Structuring this in the prescribed order of
of ID and OD and eliminating redundant constructs
which arise due to the presence of A-paths yields the
LL schema also shown below. Structuring the LL compo-

nent then gives the structured reqular expression
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N
O\ =~ b <P W < N P NTore = @« O

]

a.(P«1).[[(P.b.(R«0) + P.e.(R+E)).
(R + R.(P+«p)).P.c1t.B.da.(P+0).3]%.q

The term (P+0) is redundant since it will be executed
only when P is false. Writing EmptyRight for P and
BackUp for R finally gives the structured iterative
algorithm below for the post-order traversal of a
binary tree.

8 « create_stack;
EmptyRight + false;
repeat
repeat
if not EmptyRight then
while not empty tree(left(t)) do
push(s, <t, goright>);
t « left(t);
BackUp +« false
else
<t, action> « top(s):;
pop(s);
BackUp + action = goright;
if not Backup then
EmptyRight « empty_tree(right(t));
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if not EmptyRight then
push(s, <t, goback>);
t +« right(t);
until EmptyRight;
process (root(t)) ;
until empty_ stack(s).

Structured Post-Order Traversal Algorithm.

Example 3.

As a third example consider the unstructured algorithm
given below for merging two sorted files 1 and r into
a single sorted file s. It is assumed that 1 and r
are sorted in ascending order and that both are non-
empty initially. The algorithm uses the following adt
file operations

eof(f): return 'true' if f is empty, 'false’
otherwise;
get(f): if not eof(r) then return <f’', i>

where i is the first item on £ and £’
is the remainder of £, otherwise un-
defined;

put(f,i): append item i to file f and return
the updated file;

copy(£f;,£5) ¢ return the composite file f;.f,.

"{~eo0f (1) A ~eof(r)}

<l,u> « get(l);

<r,v> + get(r);
1', 1",
l: if u € v then

s « put(s,u);
2: if eof(1l) then
s + copy(put(s,v),r)

55



else {~eof(1)}
<1,u> + get(1);
goto 1

else {u > v}
s « put(s,v):;
3: if eof(r) then

s « copy(put(s,u),1)

else
<r,v> « get(r);

goto 1;

Algorithm for File Merge

as <l,u> + get(1l); <r,v> « get(r);
: s « put(s,u):;

ce s « put(s,v):

ds s + copy(put(s,v),r)

e: s +« copy(put(s,u),1)

£f3 <l,u> « get(1);

g: <r,v> + get(r);

p eof (1)

q: eof(r)

then the resulting schema G is as shown below. Since
arcs (1',1") and (1",1) are both A-paths, 1' and 1"
can be interchanged without any change to the computa-
tion sequences of the schema. This could be of advan-
tage to avoid what might otherwise be an IL construct
at a later stage in the structuring process.

The back arcs of G are (2,1') and (3,1") while the for-
ward path includes two OD constructs. Applying OD-1l to
the jump-out arc (2,1') first, followed by a further

application of OD-1 yields the schema also shown below.
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Observing that P.(Q«0).Q.P.f can be rewritten as
P.£.(@+0).Q and Q.1A.Q.g as Q.g.A.Q without affecting
any other computation sequence, the sre for the merge
files problem becomes

a.[[s.b.(P+<p).(P.f + P.d).(Qe0) +
(Q«3).(Q.g + @.e.(P+0))).@1*.Q.P1*.B

from which the corresponding interpretation is:
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<l,u> + get(1);
" <rsv> + get(r);
repeat
repeat
if u S v then
s + put(s,u);
EofL « eof(1);
if EOfL then
s + copy(put(s,v),r)
else
<1,u> + get(1);
EofR « true
else
s « put(s,v):;
EofR « eof(r);
if EOofR then
s + copy(put(s,u),1);
EofL « true
else
<r,v> + get(r)
until EofR
until EofL

where EofL = P and EofR = Q.

Although correct the algorithm can scarcely be regarded
as more intelligible than the unstructured form. In-
deed, the setting of EofR to 'true' when u < v, simply
to enable escape from the inner loop, is positively
misleading.

This example shows that the structuring method is not
guaranteed to give sre's whose interpretations are
clearer or more 'logical' in some sense than the un-
structured original. In the present example the loss
of clarity arises because of the overloading of mean-
ing on the inner loop exit test for @, that is, EofR.
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If the loop exit test is reached by the sequence

Seb. °*°** .(Q+0) then @ = false (EofR = true) means
'‘finished' if P = false also (EofL = true), otherwise
it means 'continue to compare files'! Specifically,
at the inner loop exit test point the following mean-
ings hold

Q: continue comparisons
EAPS ] |
'Q A P: finished.

The last condition suggests that the two loops be
combined into one and a new flag R: Finished be intro-
duced to give

a.[(s.b.(P+p) . (P.£.(R+0) + P.d.(R«1)) +
5.c.(Q«3).(Q.g9.(R+0) + Q.e.(R+1)).R1*.R

from which the term (R«0) can be deleted and placed
immediately after a. 1In this form the sre represents
the same computation sequence set as the unstructured
schema with regard to the latter's functions and vari-
ables and, like the original, is also symmetric. It
is clear that the structuring transforms alone could
not have produced this result for the reason that the
final stages of development were dependent upon the
particular interpretation given to the schema.

The final form of the File Merge Algorithm is

<l,u> + get(1);
<r,v> «+ get(r);
Finished « false;
repeat
if u £ v then
s +« put(s,u);
EofL + eof(1l);
if EofL then
s +« copy(put(s,v),r);
Finished « true
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else {~EofL}
<l,u> « get(1)
else {u > v}
8 « put(s,v);
EofR +-eof(r);
if EofR then
s + copy(put(s,v),1);
Finished « true
else
- <r,v> + get(r)
until Finished.

Structured Algorithm for File Merge.
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9. SPACE AND TIME OVERHEADS

In developing and proving the effectiveness of the
structuring transforms one important question was left
unasked: how efficient are the resulting schemas in
respect of space and time? This question is now taken
up and it will be shown that structuring can only ever
be achieved at a price: increased space requirements
in the form of function duplication, introduced flags
and assignments to the flags; increased time require-
ments in the form of duplicate tests on predicates;

or some combination of the two.

It is desirable to have some general measure of the
overheads incurred which is independent of particular
interpretations of the schemas. Such a measure can of
course give no guidance in general on the efficiency
of the transformations for particular interpretations
where for example reductions in overheads may be pos-
sible through optimizations over local functions or
introduced flags, but could nonetheless be useful as a
means of comparing the results produced by the struc-
turing process. One such measure is the space-time
hierarchy for embedded graphs described by Lipton,
Eisenstat and DeMillo?°’ and refined by them in DeMillo
et al.?! This measure can be defined informally as
follows. Let G = (V,E) be a schema in which the ver-
tices V represent functions and predicates and the
arcs E the flow of control between them. (This defi-
nition is different from that used elsewhere in this
thesis.) Let dist(u,v) be the minimum path length,
calculated as the number of arcs between the vertices
u,v € V, with u 2 v. G is said to be embedded in a
strictly equivalent schema G' = (V',E') with respect
to space S and time T if S is the largest number of
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duplications of any function of predicate of G con-
tained in G', and T is the least value satisfying
dist(u’,v’) < T x dist(u,v), where u’,v’ in G' corre-
spond to u,v in G. Thus S = s means that there are s
occurrences of some function in G' as against one in
G and no other function in G' has more occurrences
than s. T = t means that two distinct functions or
predicates having one arc in between them in G have t
arcs in between them in G', and no other pairs of
distinct functions or predicates in G have a greater
separation than t in G'.

Returning to the structuring transforms and noting

that each introduced reference (test or assignment) to

a flag adds an arc to the embedding schema, the space-

time measures of DeMillo et al. can be derived directly
from the computation sequence sets of the embedded and

embedding schemas. Thus for ID, Figure 9, the compu-

tation sequence sets for ID and its two transforms are

ID ID-0 ID-1
(1) c.q.e.f c.qg.e.f c.(Q+g).Q.e.Q.f
(2) c.3.d.a.f c.g.d.a.f c.(Qeq).Q.d.Q.a.f
(3) b.a.f b.a.f b.(Q«0).Q.a.f

from which it can be seen that T = 1 for all sequences
in ID-0 but 7 = 3 for ID-1 in consequence of sequences
(1) and (2). The space overheads can be seen by re-
writing the computation sequences as

ID ID-0

c.(g.e + g.d.1lz:a).f c.(g.e + g.d.a) .2:f
b.4+1l b.a.42

where n: denotes the target of a goto action +n.
Thus S = 2 for ID-0, whilst for ID-1] S = 1 with respect
to the original functions and predicates of ID since

62



the DeMillo et al. space measure takes no account of
introduced flags or assignments to them. The S, T
values over all transforms are found similarly and are
given in the table below:

ID-l 1 ’ 3 IL-l 1' 3

Thus the Type-0 transforms require an increase of
space alone (from function duplication), whereas the
Type-1 transforms require an increase in time alone
(from predicate duplication in the form of flags).

Because S and T are defined in terms of extreme values
rather than total ones, they are generally not additive
over successive applications of the transforms, so that
the space-time penalties incurred in producing any par-
ticular structured schema have to be computed from that
schema rather than from the transforms used to produce
it. Nonetheless it is clear that since structuring
must use at least one of the Type-0 or Type-1 trans-
forms some space or time overheads are necessarily
incurred in general, although the presence of A-paths
may in some instances reduce these to nothing by making
some form of duplication redundant. Thus a = A in the
paradigm for ID means that there is no function dupli-
cation in ID-0 and that the decision subschema Q + Q.a
is redundant in the form @ + @.A in ID-1, thereby
removing the need for predicate duplication. Con-
versely, the transforms do not introduce space-time
savings which, because of the restrictive nature of
structured control mechanisms, is as to be expected.
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CONCLUSION

It has been shown that an arbitrarily complex unstruc-
tured program schema can always be put into structured
form using just three transforms on basic unstructured
forms. These transforms require in general either a
duplication of a predicate or, under special conditions,
a duplication of a function instead. In the presence
of A-paths in the buf undergoing transformation it may
be possible to avoid function or predicate duplication
but in general structuring always requires some loss
of computational efficiency compared with optimal un-
structured schemas.

Algorithms for the identification of buf's have been
given and an ordering in which the buf's should be
removed has been proposed. '

Application of the transformational method to some
practical problems shows that clear well formed struc-
tured algorithms can be produced, but it has also been
shown that the method does not necessarily produce such
results under all conditions and that further trans-
formations based on considerations of particular inter-
pretations may be required to achieve clear logical
structured programs.

Finally it must be said that the structured schemas
produced can at best be only as good as the unstruc-
tured originals - tangled nonsense cannot be trans-
formed into logical poetry.
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Successor vertices of G, v', x

Figure 1.
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APPENDIX 1.

Proof of the forward path algorithm

Let ¢ = (V,T), let G = (Vp,Ep) or (Vg,I'p) be an acyclic
subschema of G, with halt set A, and let U represent

the set of vertices whose membership of any acyclic path
terminating in A is yet to be determined. Define

Io: (UcV) A (VoeV) A (UnVp=9) A (HcVp)
I;: (Vx,y.x,erF).[(x,yeP;*E) A (yePwaxﬁr;y)]
I: IypnlI,
Invariant I asserts that Gp is an acyclic path termi-
nating at # and is a subschema of G. Define ‘
dfs: v +» 2V x 2B
such that
dfs(u) »
: U<« U - {u};
¢ for all v € TunlU do
3: dfs(v);
4: for all v € PunVF do -
5: (Vp,Ep) + (Vpulul, Epu{(u,v)});
6:
It is asserted that I A (ueV) {dfs(u)} adds to G, all

paths [u,v] where veV, and no other vertex on [u,v] is
in Vg, and preserves the acyclicity of Gg.

The proof is by induction. Let the predicates at
labels 1, 2, -+ in the algorithm be denoted by P,,

Py . There are three mutually exclusive possi-
bilities to consider: v e TunVp, (velu) A (vdUuV,),

and v € TunlU. Consideration of the first two forms
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the basis step in the proof, and that of the third the
induction step. '

Basis.
(i) Consider all v such that v € Tu n Vp. Then

P;: I A(uelU) F utdV,
Pz T A(uédUwuVgp) A(veTunVg)
(v € U) A (u # v).

As v is not in U, statement 3 is not executed, so
P4: P2.

P4 includes the precondition for statement 5 to be
executed, so

Ps: Py + (u# v) A (Vy.y € Vp)(u ¢ Tpy)
F (ve Vg) A (u ¢ P;v) A (v € Tu).

P; asserts that arc (u,v) exists in G, that it is not
a loop, and that there are no paths from any vertex of
Gp to u. Thus adding (u,v) to Ep and u to Vp in
statement 6 cannot introduce a cycle. Hence

Pg: I A (udéd U) A (Yv.v e Tun Vp)(v ¢ V).

The first conjunctive term establishes the invariance
of I, whilst the second and third terms state that u
and its successors in Vp are left by dfs(u) in Vv - U,
that is, their membership or otherwise of G, is estab-
lished by dfs(u). In this case, of course, u and its
successors in Vp are left in Vp.

(ii) Consider all v such that (v € U v V) A (v € Tu),
that is, v is a successor of u and is known not to be

in Gr' Then

P;: I A(uelU) + (ué Vp)
Py: I A(udUuVp)A(veTu)a(veEUuVp)
F (v d TunU) A (v € Tun Vp).

Statements 3 and 5 are not executed as their pre-
conditions are not satisfied. Hence
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Pg: I A (uédU)A(VYv.v e Tu-(U v Vg))(v £ V)

Again the.invariance of I is established, with u and
any of its immediate successors not in either U or V,
being left as non-members of U.

Induction.
For all v such that v € Tu n U assume that

I A(veU) {dfs(v)} T A (v d U)A(Tv n U = @).
Then

Pz I A(uelU) + ut¢dVp
Pys I A(uédUlUwv Ve) A (v e Tu n V)
- (u # v)

Since the precondition for statement 3 is satisfied
P3s I A(veU)A(aédUvuVp)a(uivw)

Before inferring P4 it is necessary to show that
dfs(x) terminates for all x, x ¢ U. To see that it
does, note that a call on dfs(x) immediately deletes «x
from U thus ensuring that dfs(x) cannot be called more
than once. Since U is a finite set, the number of
calls on dfs is also finite. As both for statements
in dfs have a limited range, dfs must terminate.
Further, vertex w not in U prior to a call on dfs can-
not ever become an argument to later calls on dfs.
Thus w ¢ U is invariant over dfs. Hence from the in-
duction hypothesis

Pgy: I A (Vv.ve Tu)l(v dU) A(TvnlU-=¢)]a
(u ¢ U v Vp).

Consider all v such that v € Tu n Vp. Then

Ps: P4y A (v e TunVg)
 (u2v) A(veTu) A(veVgp)A(utfé P;v)

which after statement 5 gives

Pg: I A (u ¢ U) A (Yv.v € Tu n Vpg).
[(v £ U) A(Tv € U]
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Returning to P,, consider the only possible remaining
- condition for v, namely that (v € U v V) A (v e Tu).
As the precondition for statement 5 is not satisfied
P6= P, F
I A(uéU)A(Vv.v e Tu - Vp).
(v £ U) A (Tv ¢ U)].

Combining the results for P, over all v.v ¢ Tu is
finally obtained

Pg: I A (ué U) A (Tuél).

Since dfs(u) terminates only after all calls dfs(v),
v ¢ Tu have terminated, it follows by induction from
the third conjunctive term of Pg that

I A(ueUlU) {dfs(u)} I A(r'ueé¢v). O
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A method is presested for coaverting umstructured program schemas to strictly equivalest structured form. The

predicates of the original schema are left intact with structuring being achi

d by the duplication of the original

decisioa nodes withoat the introduction of d pr

alose. It Is shown that stroctured schemas mast have at le

expressions, or, where possible, by function duplicatk

ast as many decision nodes as the original umstructured

schema, and must have more whea the original schema coatains branches out of alternation comstructs. The structuring
method allows the complete avoidance of functioa duplication, but omly at the expense of decision node duplication. It

is shown that str d sch always requi

au increase in space—time requiremests, and it is suggested that this

increase can be used as a complexity measure for the original schema.

1. INTRODUCTION

This paper presents a method for transforming unstruc-
tured program flowgraphs into structured equivalents in
D-chart format.' The form of the derived structured
programs is such that the original unstructured programs
can be easily recovered, thus revealing what overheads
in space and time are inherent in the structured forms.
The method enables the user to opt for minimization of
time overheads, minimization of space overheads, or
some intermediate compromise. A measure for the
introduced overheads is given which can be used to
compare the relative conceptual complexities of unstruc-
tured programs. A feature of the structuring method is
that the number of introduced auxiliary Boolean varia-
bles, or flags, is kept to a minimum, and where such flags
are introduced, they correspond exactly to some condi-
tional expression, or predicate, in the original program.
Thus the method preserves as far as possible the logic of
the original program.

The problem of transforming flowgraphs into some
standard form has been widely addressed in the literature.
Methods based on yielding a flowgraph in while-program
form have been given b)' Jacopini,? Ashcroft and
Manna,’ Knuth and Floyd,* Bruno and Steiglitz,' Mills,’
Kasai,® Williams,” Williams and Ossher® and Oulsnam.®
Jacopini’s method was shown by Cooper'® to yield in a
trivial way a flowgraph consisting of a single while
statement enclosing a sequence of alternations based on
introduced auxiliary variables. Jacopini's conjecture that
in general auxiliary variables would be necessary to
transform arbitrary flowgraphs into D-chart form was
proved by Ashcroft and Manna,® Knuth and Floyd* and
Bruno and Steiglitz.! Kasai® and Bainbridge'® describe
methods of reducing while-programs to minimal form,
while the general capabilities and limitations of D-charts
as a standard form were considered by Paterson, Kasami
and Tokura'? and Kosaraju.'?

The necessity for auxiliary variables, coupled with the
fact that flowgraphs in while-program form were shown
by Paterson et al.'? to generally require some duplication
of basic functions or predicates of the original flowgraph,

*Present address: Dep of Comp Sci U y
College, Cork, Eire.

has led to consideration of more general standard forms
than D-charts. Wulf'* proposed the use of multi-level
control structures and further generalizations were
analysed by Kosaraju'® and Ledgard and Marcotty,'$
with some refinements of their results by Cherniavsky et
al.'® Proposals based on the non-duplication of the
original flowgraph's functions and predicates have been
given by Urschler!” (using a technique based on back-
dominators of the original flowgraph), and Baker.'® Of
necessity both methods allow the use of GOTO statements
although Ref. 17 restricts these to backward jumps only.
A standard form based on binary trees has been proposed
by Engeler'® and Wegner.?® The former allows only
jumps to ancestor nodes in the tree, while the latter allows
jumps in both directions. Proposals to convert flowgraphs
to recursive form have been made by Knuth and Floyd*
and Urschler.!” McCabe?' and Williams’ independently
identified the basic forms of unstructuredness, and
transformations based on the identification and eimina-
tion of these constructs have been given by Williams,”
Williams and Ossher® and Oulsnam.” Dijkstra,?? echoed
by Knuth,?? has cautioned against expecting mechanical
transformation of flowgraphs to yield more comprehen-
sible programs, while K nuth?* has examined the problem
of efficiency relating to programs translated to standard—
or structured—form. Van Emden?* has dismissed the
need for structured programming altogether and proposes
a method for deriving programs directly with minimal
function and predicate duplication.

The remainder of this paper is organized as follows.
Section 2 introduces some necessary definitions and
concepts, Section 3 briefly reviews the basic forms of
unstructuredness in flowgraphs while in Section 4 a
method for their removal based on structured transforms
is given. The proof of the effectiveness of the structuring
algorithm is given in Section 5. Section 6 contains an
example of the use of the method and the paper concludes
in Section 7 with a discussion on the space-time efficiency
of the structuring transforms.

2. SCHEMAS

The method of structuring to be introduced in Section 4
involves transformations on program flowgraphs or

CCC-0010-4620/82/0025-0379 304.50
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schemas.2S This Section briefly reviews schemas and an

associated algebra for describing them.

A schema shows the control structure of the program
whilst leaving the details of the program's computation
to be defined as an interpretation of the schema. A
schema therefore represents a family of distinct programs
sharing a common control structure. Each program of a
schema is considered to operate on three types of
variables:

input variables xl,..., xa
local variables  yl,...,yb
output variables zi,...,ze

which are represented collectively by X, Y and Z
respectively. The operations of the program on these
variables are of two types:

functions f1(X, Y),...,/X, Y)
predicates pl(X, Y),...,pm(X, Y)

Functions map their arguments into ¢ither Y or Z, while
predicates map theirs into {true, false}. The composition
of functions such as fi(X, fj(X, Y)) is denoted by fj(X,
Y).fi(X, Y), where the full point (.) denotes the
sequencing operator. The logical negation of a predicate
pi(X, Y) is denoted by pi(X, Y). For both functions and
predicates the argument list usually will be elided.

The specification of the variables, functions and
predicates for a particular program is called an inter-
pretation of the schema. The transformational structuring
process described in this paper is independent of such
interpretations.

Schemas are constructed by composition of the
following statements.

s

which is to be understood as an abbreviation for -

S: Y = f(X), where § is a program (node) label.

ASSIGN: O.__ﬂ_)

which denotes i: Y= f}(X, Y)
I

»

which denotes i: IF pj(X, Y) GOTO the left branch
target node ELSE GOTO the right branch target
node.

HALT: O._”_;G

which denotes i: Z = fj(X, Y)

380 THE COMPUTER JOURNAL, VOL 25, NO. 3. 1982

Every schema consists of exactly one START and one
HALT statement, and any number of uniquely labelled
ASSIGN and TEST statements such that every statement
lies on some path from START to HALT. The node of a
TEST statement is called a decision node, and that of an
ASSIGN statement a collecting node.

In addition to the geometrical representation of
schemas it is advantageous to have an algebraic repre-
sentation as an aid to the transformational process.
Following Kleene?® it is known that the computations
associated with a flowgraph schema can be represented
by a regular set. The regular expressions of the set are
derived by regarding the schema as a finite state generator
(fsg) whose states correspond to the nodes of the
flowgraph and whose transitions correspond to traversal
of flowgraph edges. Each transition causes the function
or predicate identifier of the corresponding edge to be
appended to the fsg’s output string. Any string output by
the fsg in going from the START node to the HALT
node represents a possible computation sequence of the
schema, and the set of all such strings represents the
schema’s computation sequence set. The regular set
operators of union (+), concatenation (.) and Kleene
star closure (*) are related to schema operations and
statements as follows:

@+ (®)

b
0o O—tmsO——>
@*.® 2

Here, ‘a’ and ‘b’ denote strings of function and predicate
identifiers and the star closure postfix operator means
‘concatenated zero or more times’. The string grouping
operators (,) will be elided where their omission does not
cause ambiguity.

A complete forward path in a schema is any path that
begins at the START node and ends at the HALT node
without going through the same node twice. An edge of
the flowgraph on some complete forward path is called a
forward edge, and an edge which is not a forward edge is
called a backward edge. Any path which does not include
abackward (forward) edge is called a forward (backward)
path.

The end set E(, /) of a node ‘i* with respect to a not
necessarily distinct node ‘j* is defined?’ as the set of
strings that the fsg would output in traversing all paths
from i’ to *j". Thus E(S, H) is the computation sequence
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set of the schema. For brevity E(i, H) will be written
E(s). By convention E(H) = (), the empty string.

Structured schemas

A structured regular expression (sre) is defined recursively
as follows:

(1) Functions and predicates are sre’s.

(2) If x and y denote any two sre’s and p is a predicate
then the following are also sre’s: (a) a sequence
x.y (b) a decision (p.x+p.y) (c) a loop
(x.p.y)*.x.porequivalently x.(p.y.x)*.p.

The familiar WHILE-DO construct is a special case of
the loop in which x = (), whilst the REPEAT-UNTIL
construct is obtained by setting y = () instead. For loops,
x.pis a forward path with respect to the loop's entry and
exit nodes whilst p. y is a backward path. A loop here is
what Dijkstra reportedly?? termed a n + § loop.

It is to be noted that whilst the flowgraph for a loop
contains only one instance each of x and y, the
corresponding regular expressions given in 2(c) above
each contain two occurrences of x. In fact the second of
the two expressions can be written in programming terms
as:

x; WHILE p DO BEGIN y; x END;

showing that it is always possible (but only at the expense
of duplicating the function on the forward path) to
express a loop in terms of the WHILE. .. DO construct.
Throughout this paper the (n + §) loop is taken as the
terminal form for a structured loop since it contains both
the WHILE ... DO and REPEAT... UNTIL constructs
as special cases and, as just seen, can always be converted
to WHILE. .. DO format if so desired.

A schema is structured if and only if its computation
sequence set E(S) is a sre.

3. THE BASIC FORMS OF
UNSTRUCTUREDNESS

There are six basic unstructured forms (buf's) that can
occur in a schema: jump into a decision—ID; jump out
of a decision—OD; jump into the forward path of a
loop—IL; jump out of a forward path of a loop—OL;
jump into the backward path of a loop—IB; and jump
out of the backward path of a loop—OB. These are
depicted in Fig. 1. The last two, IB and OB, are additional
to the forms considered by McCabe.?' Referring to Fig.
1, there are three possible placings for the node £: on a
path from the START node S to node A4; on a path from
node C to the HALT node H; on a path from S to H
which does not include nodes 4, B or C. Analysis of all
possible placings of node E with respect to each of the six
buf’s shows that unstructuredness always occurs in
possibly overlapping combinations of the six unstruc-
tured subgraphs depicted and named in Fig. 2, and that
none of the basic forms can ever occur by itself. For
example, the schema of Fig. 7 comprises one instance
each of LD, DL and LL. McCabe?' and Williams’
independently derived the forms described here as DD,
DL, LD and LL. Williams’ added a fifth form called
parallel loops but, as he recognized, this form is

© Heyden & Son Lud, 1962
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Figure 2. The six forms of unstructuredness.

expressible in terms of the other four under the restriction
of a single HALT node.

Examination of each of the six forms DD...LB of
Fig. 2 reveals that they are constructed from pairs chosen
from the basic forms ID, OD, IL and OL. Thus DD =
ID+OD;DL=ID+IL;LD=OD +OL;LL = IL +
OL; BL = ID + OL; LB = OD + IL. (For instance, for
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ID-0

Figure 3. Jump into » decision and its structured forme.

BL the ID component is obtained with node 1 equivalent
to B, node 2 to C, node 3 to A and the immediate
predecessor of node 1 to E. The OL component comprises
the loop 2-4-3-2 with node 2 equivalent to 4, node 3 to
C, node 4 to B and the immediate successor node of the
BL construct to £.) From this it follows that it is sufficient
to consider just ID, OD, IL and OL as the basic units of
unstructuredness whose removal will result in a structured
schema. In fact, since none of these can occur alone in a
schema, it is sufficient to consider any three of them as
the minimum set for removal.

4. THE STRUCTURING TRANSFORMS

Two schemas having identical functions and predicates
are computationally equivalent if their computation
sequence sets are described by the same regular set. The
first step in the structuring process is therefdre to recast
the regular expressions describing the buf’s into sre
formats. The strategy for transforming an unstructured
schema into structured form is then as follows. (1)
Identify a buf and replace it with a computationally
equivalent but structured subgraph. (Since buf'’s cannot
occur alone, a second buf will also be removed.) (2)
Repeat the process until a structured schema is obtained.

In this Section the structured equivalents of the buf’s
are derived, whilst a proof that the structuring procedure
can always be applied and will always terminate is given
in Section §.

Consider first ID, Fig. 3, for which it is required to

-0

find an sre for E(A) + E(E). From Fig. 3 it is seen that

E(A) = g.¢.E(C) +9.4.E(B)
E(E) = b.E(B)
E(B) = a.E(C) ()

Bainbridge'! has given three rules for solving end set
equations to yield sre’s. Letting x, y denote sre'sand p a
predicate these are:

1. if E(v) = x. E(u) or E(v) = x, then eliminate E(s) by
substitution;
2 ifE()=p.x.E(u) +p.y.Ew)
then deduce E(v) = (p.x + p.y) Elu);
3. ifE@@)=p.x.E()+p.y.EWor
E(v) = p.x.E(v) + p.y then deduce
E@)=(p.x)*.0.y . E(w)oc E(w) =(p.x)*.p.y
respectively.
Bainbridge asserts that if application of these rules yields
a sre then the sre is minimal with respect to a count of the
number of occurrences of functions and predicates, but
if a stage is reached where none of the rules can be
applied then there is no sre solution. Applying these rules
to the end set equations for ID to eliminate E(B) gives:

E(4) =(g.e+93.d.a).E(C)
E(E)=b.a.E(C) 2

which is in the required sre format. However, unlike
Eqns (1), Eqns (2) contain one duplication of identifier
‘a’. The flowgraph corresponding to Eqns (2) is shown in
Fig. 3 as ID-0, the 0 denoting no duplication of the
predicate ‘g".

For IL, Fig. 4, the end set equations are:

Figure 4. Jump into a loop and its structured forme.
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E(4) = a.E(B)
E(E) = b. E(B)
E(B) = ¢.E(C)
E(C)=gq.c.E(4) + 3.

Eliminating E(B) and E(C) gives
E(4)=a.c.(g.e.E(4A)+ @
from which can be shown

E(A)=a.(c.q.e.0)*.c.]
= g.E(8’), say,

E(E) = b.E(B')

to give IL-0, Fig. 4. (Actually IL-0 can be obtained
directly by simply substituting for E(4) in the equation
for E(C).) Again it has been necessary to duplicate just
edge ‘a’ to achieve sre format.

Now consider OD, Fig. 5. In this case a sre for E(A) is
required since B- E is an outgoing edge from the decision.
The end set equations are:

E(4) = g.¢.E(C) +7.4.E(B)
E(B) = p.b.E(E) +p.c.E(C) (6}

Since an expression for E(A) is required in terms of E(C)
and E(E) it is necessary to eliminate E(B), but none of
the Bainbridge rules can be applied to achieve this. Thus
OD cannot be structured by function replication aloae,
30 predicate replication must be considered instead.

Predicate replication is achieved by introducing
auxiliary predicate variables, or flags, with identifiers
distinct from those of the schema’s functions, predicates
and variables. In order to preserve the schema’s compu-
tations over its variables, the flags are introduced in the
following way. At a TEST statement node, the TEST
predicate ‘p’ is computed as before, but its value is
immediately assigned to a flag ‘P’ uniquely associated
with the predicate. It is this flag that is used, rather than
the original predicate, as the discriminant in choosing
the exit path from the TEST node. In programming
terms,

IFpTHEN...ELSE...

is replaced by

P=p; IFPTHEN...ELSE...

Figure 8. Jump out of 8 decision.

© Heyden & Son Lud, 1962

Whereas in the original schema the value of a predicate
is known only at its point of computation (since
subsequent functions will in general change the values of
the predicate’s arguments), the introduction of a corre-
sponding flag preserves the predicate’s value until that
value is recomputed. In the sequel the convention is
adopted that schema predicates will be denoted by p, g,
r, Q ;nd the corresponding uniquely associated flags by
P.Q.R....

It will also prove convenient to allow direct assignment
of truth values to flags. Again, such assignments do not
affect the original schema’s computations. Bainbridge’s
rules can now be extended to allow for the introduction
of flags as follows, where ‘1’ denotes TRUE, ‘0’ denotes
FALSE and ‘@’ denotes the non-existent or null string:

4. if E(u) = p.a.E(0) + . b. E(w) introduce
E(u) = (P=p).(P.a+ P.b).(P.E(v) + P.E(w))
S. from (P=1).(P.x + P.y) deduce x and
from (P=0).(P.x + P.y) deduce y
6. if x, y do not contain assignments to P, then from
P.x.P.ydeduce P.x.yandfrom P.x. P.ydeduce

@
7. from (P + P). E(u) deduce E(w)
8. from @.x and x. @ deduce @.
In each of rules 4-7, P and P can be interchanged.
Returning to the end set Eqns (3)_ for OD, the term
g-¢.E(C) can be recast as

q.e.(P=0).(P.E(E) + P.E(C))
and E(B) as
(P=p).(P.b+ P.0).(P.E(E) + P.E(C))
to yield the sre:
E(A) = (g.e.(P=0)+3.4d.(P=p).(P.b+ P.c)).
(P.E(E) + P.E(C))

The corresponding flowgraph is shown in Fig. 5 as
OD-1, the ‘1’ indicating that the TEST statement at node
Bhas been duplicated at B'. (In the Figure the assignment
P = p has been ‘pushed back’ onto the A-B path for the
sake of giving a slightly simpler flowgraph.)

Now consider OL, Fig. 6. For this buf

E(A)=a.p.b.E(E)+a.p.c.(q.e.E(4) + 3).

Figwe 6. Jump out of s loop.
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Introducing flags for ‘p’ and ‘¢’, and after some
rearrangement of terms, then

EA)=a.(P=p).(P.c.(Q=9).Q.c.E(4) +
P.b.E(E)+P.c.(Q=q).0Q)

By expansion, the three disjunctive terms in parentheses
can be written respectively as:

(P.b(Q=0)+P.c.(Q=q)).Q.c.E(4)
P.b (Q=0).Q.P.E(E) and
Pc(Q=¢.Q.P

Using the expansion formula
Pu.P.x+P.o.P.y=(P.u+P.v).(P.x+P.y)

on the last two expressions, and then collecting terms,
gives the sre

E(A)=a.(P=p).(P.b.(Q=0)+ P.c.(Q=q)).
(Q.e.E(A)+ Q.(P.E(E) + P))
depicted as OL-1 in Fig. 6, where the original decision
node B has been duplicated at B'.

Whilst OD-1 and OL-1 each contain one duplicated
decision node, neither contains the duplication of a
function. It is also possible to structure both ID and IL
without function duplication at the expense of one
duplicated decision node as shown by ID-1 and IL-1 in
Figs 3 and 4 respectively.

Thus each of the basic unstructured forms OD, ID, IL
and OL can be structured at the expense of at most one
duplicated decision node and no function duplication,
but only ID and IL can be structured by function
duplication alone.

As noted in Section 3, the six paradigms of unstruc-
turedness are composed of pairs of basic unstructured
forms:

DD=ID+0D; DL=ID+IL; LD=OD+OL;
LL=IL+OL; BL= ID+OL; LB=OD +IL

and all of these except LD can be structured without
decision node duplication by a suitable application of
either ID-0 or IL-0. However, as LD consists of OD +
OL it can only be structured at the expense of one
introduced decision node using either OD-1 or OL-1.
Since the former requires only one flag to the latter’s two,
OD-1 is the preferred choice.

It remains to be established under what conditions, if
any, the transforms can be applied in the presence of
overlapping buf’s. This is taken up in the next Section.

§. EFFECTIVENESS OF THE TRANSFORMS

A transform is considered to be effective only if it results
in another valid schema and if it gives a reduction in the
total number of buf s left in the schema.

In the previous Section it was assumed in the derivation
of the structuring transforms that there was no overlap
between the buf's. The effect of overlap is to introduce
decision or collecting nodes on what would otherwise be
edges of buf's, and there is then no guarantee that the
structuring transforms can still be applied effectively. In
this Section it is shown that whilst some forms of overlap
can invalidate certain transforms, nonctheless for every
schema there is always at least one transform that can be
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applied effectively, thus proving that every schema can
be progressively transformed into structured format.

Consider ID, Fig. 3, and transform ID-1. The
introduction of a collecting node on any of the edges
A-B, A-C or B-C of ID gives rise to one additional
instance of ID. Application of ID-1 leaves the introduced
ID intact, but still effectively removes the original ID. In
fact it can be seen from Fig. 3 that ID-1 remains effective
in the presence of any number of collecting nodes on the
edges of ID and also for any number of introduced
decision nodes.

Similarly, ID-0 is effective with respect to introduced
nodes on edges A-B and A-C of ID, but, because of edge
duplication, not for nodes on B~C. Consider an intro-
duced collecting node & on B-C, and let B have an
external immediate predecessor £. The subgraph AB'CE
can be regarded as an ID form with node B a collecting
node on the A-C edge for which, as already seen, ID-0 is
effective. This argument can be extended to any number
of collecting nodes on edge B—C of the original ID. With
regard to introduced decision nodes on edge B—C, the use
of ID-0 is inappropriate as at best it would give rise to
duplicated predicates—precisely what ID-0 was designed
to avoid. However, as noted above, ID-1 can be used
instead. Hence:

Lemma 1. There is always an effective transform for the
removal of ID constructs from any schema.

Coasider OD and OD-1, Fig. 5. The presence of
collecting nodes on the edges A-B, A-C or B-C introduces
instances of ID. From Lemma 1 it is known that these
instances can always be removed effectively, so it remains
to consider introduced decision nodes alone. It can be
seen from Fig. S that OD-1 remains effective for decision
nodes on A-B and A-C, but not for those on B-C. (Since
E can always be chosen to make B-E an edge, there is no
need to consider nodes on B-£.) Let B be the decision
node on B-C which has node C as an immediate
successor, and let £ be its other immediate successor.
Subgraph AB'CE’ is now an instance of OD with decision
nodes on its A-B edge, for which OD-1 effective. Hence:

Lemma 2. [n the absence of ID constructs there is always
an effective transform for the removal of OD constructs.

Lemmas | and 2 together assert that it is always
possible to transform an unstructured schema to one that
contains no instances of ID or OD. Thus it is now
necessary to consider schemas containing only IL and
OL constructs. Since, as noted in Section 3, neither IL
nor OL occur in combination with themselves, the only
possible remaining constructs are of the form IL + OL,
and the effective removal of one component guarantees
the removal of the other.

Consider IL and its transforms, Fig. 4. Any nodes
introduced on the B-C or C-A edges leave both IL) and
IL-1 as effective transforms. Collecting nodes on A-B
introduce further instances of IL, and there is always one
of these that has no collecting nodes on its corresponding
A-B edge. Thus IL-0 and IL-1 can always be applied
effectively to this IL construct in the absence of decision
nodes on the 4-B edge.

It remains only to consider decision nodes on the 4-8
path. Let these nodes be Bl, . . ., Bn with corresponding
external target nodes E1, . .. , Ea. Since by assumption
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all instances of ID and OD have been removed, all the
edges BI-El, ... , Bn-En are backward edges, and
together give rise to other instances of IL + OL, that is,
of LL. Since the schema is finite, there must be at least
one LL that has no backward edge leading out of it. (The
first instance of LL encountered on a forward path from
START is an example.) But an LL construct which has
no such edge cannot have an (introduced) decision node
on any of its edges and, in particular, its IL component
cannot have an introduced decision node on its A-B edge.
As already noted, both IL-0 and IL-1 can be applied
effectively to this instance of IL.

Lemma 3. In the absence of ID and OD constructs, there
is always an effective transform for the removal of IL
constructs, and hence of OL constructs as well.

Lemmas 1-3 taken together lead to the principal result
of this paper.

Theorem. It is always possible to put an unstructured
schema into a computationally equivalent structured
form using only the transforms ID-0, ID-1, OD-1, IL-0
and IL-1.

In fact, as is easily shown, the result can be strengthened
to use ID-1, OD-1 and IL-1 as the minimum set if the
avoidance of decision node duplication is not a
requirement.

6. AN EXAMPLE

Consider the schema shown in Fig. 7. This is a slighll¥
generalized version of a schema which Tausworthe?
calls Flynn's Problem No. 5. To recover the original
problem from Fig. 7 it is merely necessary to set 'f*, ‘g’
and 'k’ to (), the empty string. It can be seen that the
schema comprises one instance each of LD (OL + OD),
DL (ID +1L), and LL (IL + OL). Two structuring
strategies might be: (1) avoid function duplication; (2)
avoid decision node duplication (as far as possible). For
the purposes of illustration the second approach will be
chosen here.

Since decision node duplication is to be avoided it is
required to apply the Type-0 transforms of ID and IL
wherever possible, but the presence of LD in the schema
suggests that some decision node duplication is
unavoidable.

Consider first the ID construct comprising nodes B, C,
E with external node F. The presence of decision node D
on path C-E precludes the use of ID-0. Next consider the
IL comprising nodes C, E, F with external node B. The
decision node D on path C-E again prevents the use of a
Type-0 transform—this time IL-0. Next consider the IL
comprising nodes A, C, D with external node F. Now it
is decision node B on path A-C that prevents the use of
IL-0 and so there is no effective Type-0 transform
available.

Applying ID-1 removes the DL construct to leave a
schema with one LL and one LD for which again no
Type-0 transform is effective. Applying ID-1 and finally
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Figure 7. Generslized Flynn's Problem No. S.

Figure 8. Structured form of Flynn's Problem.
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IL-1 gives the structured schema shown in Fig. 8. The
end set equations for this schema are:

E(S) = (Q = 1).E(D")

E(D)=(Q.a.(P=p).(P.f+P.&) + D.h).

(Pb.(Q=9).(Q.d+Q.9)+ P.(Q=0)).

(Q.E(D) + Q.c.(r.(Q:=0).E(D") + )
from which it can be seen that the assignment Q =0 is
redundant in the expression Q.c.r.(Q = 0). E(D") and
so can be eliminated. Thus the structured schema
contains one duplication of decision node ‘p’ and two of
‘q’, together with four assignments to flags. Whether or
not the structured schema is more perspicuous than the
original is left to the reader’s judgement.

7. SPACE-TIME OVERHEADS

In developing and proving the effectiveness of the
transforms, two important questions were left unasked:
how are the basic unstructured forms identified in a
general flowgraph, and how efficient are the resulting
flowgraphs in respect of space and time?

With regard to the first question, whilst decision and
loop subgraphs are easily identified in suitably drawn
flowgraphs their presence is less obvious in arbitrary
ones. The identification of such subgraphs is a major
topic outside the scope of this paper. The interested
reader is referred to standard texts such as Schaefer®®
and Aho and Ullman*® where suitable techniques and
further references can be found.

On the question of efficiency, it is desirable to have
some general measure for program schemas which is
independentof particular interpretations. Such a measure
could of course give no guidance in general on the
efficiency of the transformations for particular interpre-
tations of schemas, but could be useful as a means of
comparing the results produced by the structuring
process. One such measure is the space-time hierarchy
for embedded graphs described by Lipton, Eisenstat and
DeMillo (LED)*' and refined by them in Ref. 32. This
measure can be defined informally as follows. Let G =
(V, E) be a flowgraph in which the nodes ¥ represent
functions and predicates and the edges E the flow of
control between them. (This definition is different from
that used elsewhere in this paper—see Fig. 9 for the
depiction of ID and ID-1 in this form.) Let dG(x, v) be
the minimum path length, calculated as the number of
edges, between two nodes u, v of ¥, with u # v. G is said
to be embedded in a strictly equivalent flowgraph G* =
(V*, E*) with respect to space S and time T if § is the
largest number of duplications of any function or
predicate of G contained in G*, and T is the least value
satisfying dG*(u®, v*) < T.dG(w, v). Thus S = n means
that there are n occurrences of some function in G* as
against one in G and no other function in G* has more
occurrences than n. T=m means that two distinct
functions (or predicates) having one edge between them
in G have m edges between them in G*, and no other
pairs of distinct functions in G have a greater separation
than m in G*. The embedding is denoted by G <
$. 1G*.

Returning to the structuring transforms, and noting
that each introduced reference (assignment or test) to a
flag adds a node to the LED graph of a buf, it can be

388 THE COMPUTER JOURNAL. VOL. 25, NO. 3, 1982

C: C:

Figure 8. Embedding of ID in ID-1.

shown that ID < (2, 1) ID-0 and ID < (1, 3) ID-1, and
similarly for IL. For OD the relationship is OD < (1, 3)
OD-1 while for OL it is OL < (1,4) OL-1. Thus the
Type-0 transforms require an increase of space alone
(from function duplication), whereas the Type-1 trans-
forms require an increase in time alone (from the
introduction of flags).

Because S and T are defined in terms of extreme values
rather than total ones, they are not necessarily additive
over successive applications of the transforms. Thus for
the generalized Flynn's Problem, denoting the original
and final flowgraphs by G and G * respectively gives G <
(1, 3) G * despite three applications of Type-1 transforms.

Intuitive concepts of the relative complexities of the
basic unstructured forms and their structured counter-
parts are to some extent reflected by < (S, T) but the
important topological distinction between duplicated
functions and duplicated decision nodes is lost. It might
be worthwhile replacing S by (S, D) where Sisunchanged
in meaning and D is domputed like S but in respect of
decision nodes only. For this purpose a test on a flag in
G* is regarded as the same action as a test on the
corresponding predicate in G. Thus for the generalized
Flynn's Problem is now obtained G < ((1, 3), 3) G* indi-
cating no duplicated functions, a maximum of three
occurrences of at least one decision node (the TEST on
Q) and an increased time factor (path length) of three for
atleast one path. This is the price to be paid for achieving
structured form.

CONCLUSION

It has been shown that any unstructured schema can be
put into strictly equivalent structured form using simple
transforms on basic unstructured forms. Further, the
transforms used do not rely on the introduction of
compound predicate expressions and therefore preserve
the original schema's logic as closely as possible.
However, it must be said that the structuring process
presented here is no substitute for good design. The
transforms developed in this paper might help to unravel
some knotty problems, but they cannot produce logical
poetry from tangled nonsense.
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