
Title Untangling unstructured programs

Author(s) Oulsnam, Gordon

Publication date 1984

Original citation Oulsnam, G. 1984. Untangling unstructured programs. PhD Thesis,
University College Cork.

Type of publication Doctoral thesis

Link to publisher's
version

http://library.ucc.ie/record=b1100709~S0
Access to the full text of the published version may require a
subscription.

Rights © 1984, Gordon Oulsnam
http://creativecommons.org/licenses/by-nc-nd/3.0/

Embargo information No embargo required

Item downloaded
from

http://hdl.handle.net/10468/1659

Downloaded on 2017-02-12T13:49:57Z

http://library.ucc.ie/record=b1100709~S0
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://hdl.handle.net/10468/1659

DPlq~~ OtlL~

:22HISS
UNTANGLING UNSTRUCTURED PROGRAMS

by

Gordon Oulsnam

Submitted for the Degree of

Doctor of Philosophy to the

National University of Ireland.

The research contained in this thesis was

begun in the Department of Computer Science

University of Queensland Australia and was

completed in the Department of Computer

Science in the Faculty of Science at the

University College Cork. The work has not

been submitted in whole or in part to any

other Institution for an Academic Award.

Date of submission:

Head of Department:

Supervisor:

July 1984

Prof. P.G. O'Regan

Prof. P.G. O'Regan

G. Oulsnam.

CONTENTS

Summary

1. Introduction

2. Definitions

3. Basic Unstructured Forms

4•. The Structuring Transforms

S. Effectiveness of the Transforms

6. Identifying Basic Unstructured Forms

7. The Structuring Process

8. Examples

9. Space and Time Overheads

Conclusion

Figures

Appendix 1

Proof of the forward path algorithm

Appendix 2

Abstract Data Type Specifications

Addendum

Unravelling Unstructured Programs

1

4

11

15

24

30

41

50

61

64

65

95

99

ACKNOWLEDGEMENTS

Thanks are due and gladly given to Prof. P.G. O'Regan

for undertaking the task of supervision, and to

Prof. F.H. Sumner, Manchester University, for his

help in finding an External Examiner.

Thanks are also gladly given to my wife for her

support and acceptance of neglect during the tortuous

months of thesis preparation.

The customary plaudits for typing are omitted as all

typing and art work was done by the author. In this

regard a special word of thanks must go to Tipp-Ex

Vertrieb GmbH & Co KG of Frankfurt West Germany with

out whose product this thesis would never have been

completed and upon which so much of it depends!

Typed in Courier IO-point on an IBM Selectric Model 72.

SUMMARY

A method is presented for converting unstructured
program schemas to strictly equivalent structured form.
The predicates of the original schema are left intact
with structuring being achieved by the duplication of
the original decision vertices without the introduction
of compound predicate expressions, or where possible
by function duplication alone. It is shown that struc
tured schemas must have at least as many decision
vertices as the original unstructured schema, and must
have more when the original schema contains branches
out of decision constructs. The structuring method
allows the complete avoidance of function duplication,
but only at the expense of decision vertex duplication.
It is shown that structured schemas have greater space
time requirements in general than their equivalent
optimal unstructured counterparts and at best have the
same requirem~nts.

1. INTRODUCTION

This thesis presents a method for transforming unstruc
tured program schemas into structured equivalents in
D-chart format. 1 The form of the derived structured
programs is such that the original unstructured forms
can be easily recovered, thus revealing what overheads
in space and time are inherent in the structured forms.
The method enables the user to opt for minimization of
time overheads, minimization of space overheads, or
some intermediate compromise. A measure for the intro
duced overheads is given which can be used to compare
the relative conceptual complexities of unstructured
programs. A feature of the structuring method is that
the number of introduced auxiliary Boolean variables,
or flags, is kept to a minimum, and where such flags
are introduced, they correspond exactly to some condi
tional expression, or predicate, in the original pro
gram. Thus the method preserves as far as possible the
logic of the original algorithm.

The problem of transforming schemas into some standard
form has been widely addressed in the literature.
Methods based on yielding a schema in while-program
form have been given by Jacopini,2 Ashcroft and Manna,s
Knuth and Floyd,- Bruno and Steiglitz,l Mills,s Kasai,'
Williams,' Williams and Ossher 8 and Oulsnam.' The
method of Jacopini was shown by Cooper lO to yield in a
trivial way a schema consisting of a single while
statement enclosing a sequence of alternations based
on introduced auxiliary variables. (This result was
hardly surprising since it simply restates in computer
science terminology what has been long known to mathe

maticians - that any general recursive computable
function can be computed using at most one application

1

of the unbounded minimization, or).I, operator, the
mathematical counterpart of the while construct.)
Jacopini's conjecture that in general auxili~ry vari
ables would be necessary to transform arbitrary schemas
into D-chart form was proved by Ashcroft and Manna,·
Knuth and Floyd' and Bruno and Steiglitz. 1 Kasai 6 and

Bainbridge 11 describe methods of reducing while
programs to minimal form, while the general capabil
ities and limitations of D-charts as a standard form
were considered by Paterson, Kasami and Tokura 12 and
Kosaraju. 1.

The necessity for auxiliary variables, coupled with
the fact that schemas in while-program form were shown
by Paterson at al. 12 to generally require some dupli
cation of basic functions or predicates of the original
schema, has led to consideration of more general stan
dard control structures than D-charts. Wulf 1' has
proposed the use of mUlti-level control structures,
and further generalizations were analysed by Kosarajul 3

and Ledgard and Marcotty,15 with some refinements of
their results by Cherniavsky at al. 16 Proposals based
on the non-duplication of the original schema's func
tions and predicates have been given by Urschler,17
using a technique based on the back dominators of the
original schema, and by Baker. II . Of necessity both

methods allow the use of GOTO statements although
Urschler restricts these to backwards jumps only. A
standard form based on binary trees has been proposed
by Engeler l9 and Wegner. 20 The former allows only
jumps to ancestor nodes in the tree, while the latter
allows jumps in both directions. Proposals to convert
schemas to recursive form have been made by Knuth and
Floyd' and Urschler. 17 McCabe 21 and Williams 7 inde
pendently identified the basic forms of unstructured
ness, while transformations based on the identification
and elimination of these constructs have been. given by

2

Williams,' Williams and Ossher' and Oulsnam.'
Dijkstra,22 echoed by Knuth,23 has cautioned against

expecting mechanical transformations of schemas to
yield more comprehensible programs, while Knuth23 has
examined the problem of efficiency.relating to programs
translated to structured form. A comprehensive survey
of program transformation systems is given in Partsch
and Steinbruggen. 2 ' Van Emden25 has questioned the
need for structured programming and has proposed a
method for deriving programs directly with minimal
function and predicate duplication.

The remainder of this thesis is organized as follows.
Section 2 introduces some necessary definitions and
concepts, Section 3 briefly reviews the basic forms of
unstructuredness in schemas, while in Section 4 a
method for their removal based on structured transforms
is given. A proof of the effectiveness of the trans
forms in general is given in Section 5; Section 6 is
concerned with the identification of the basic forms
of unstructuredness in arbitrary schemas and Section 7
gives the full structuring algorithm. Section 8 is
addressed to the practical application of the struc
turing method, while Section 9 is concerned with the
space-time overheads incurred by structuring.

3

2. DEFIN.ITIONS

A schema is a labelled program flowgraph 26 which shows
the control structure of the program whilst leaving
the transformations on the program's variables to be
determined by an interpretation of the labelling.
Thus a schema represents a family of programs having a

common control structure. A program schema is defined
as the triple G • (V,r,I) where V is a set of vertices
or nodes, r is a mapping r: V + 2v, and I an alphabet. *
of operators. If u,v E V, V E ru, and a E I then
(u,v:a) is an arc of G directed from u to v labelled
by a. Vertex u is the tail of the arc, and v the

-1' n
head. If v E ru then u E r v. By extension r u •
rn - 1 .ra and r-nv • r-n+l.r-~v, for n > 1. The set of

arcs {(u,v:a) Iv E ru} will be written (u,ru:*), and
the set of all arcs'{(u,ru:*) lu E V} will be written
E. Whenever convenient, G will be considered to be
defined equivalently by (V,E,I). When the label of an
arc is not of immediate concern it will be elided and
the arc written in the abbreviated form (a,v); G simi
larly will be written (V,r) or (V,E).

r*u ··{u} u ru u r 2u ••• is the set of vertices reach-
-* 1able from a. Similarly r u. {u} u r- a •• ~ is the

set of vertices that reach u. For A c V, rA = {vlv •
ra, a E A}, with corresponding definitions for r-1A,
~A, and so on. If u,v E V and v E r*u then u is a
predecessor of v, and v is a successor of u. If vEra
then a is an immediate predecessor of v, and v is an
immediate successor of a.

A path [u,v:a] is a sequence of arcs (u o,u1:01) •••

(aj_1,uj:a i) ••• (un_1'un:on) where uj E ra j :..1,

4

*Uo • u, un • v, a i € E , and a • al •••ai ••• a n , for
1 SiS n •. The length of the path is n, the number of
arcs on the path. An elementary path is one on which
no vertex occurs more than once, while a simple path

is one on which no arc occurs more than once. Any
simple path [u,u:a] is a cycle, and a cycle of length
one is called a loop.

*Every arc of G is labelled with some string over E •
The elements of E represent functions which operate on
program variables. A program has three sets of vari
ables: the input set X, the local set Y, and the out
put set Z. The operators of E over these variables
are of three types. Let r,g,p € E, then f: X x Y + Y

is a local function, g: X x Y + Z is an output func
tion, and p: X x Y +'{true, false} is a predicate.
The logical negation of p is written p. The composi
tion of two local functions rl,f2 € E, r2(X,rl(X,Y»,

is written rlr2' which in programming terms corres
ponds to the sequencing operation: Y + rl(X,Y); Y +

r2(X,Y). Similarly g(X,r(X,Y» is written rg, while
the conditional execution of a function ir p(X,Y) then

Y + r(X,Y) is written pr.

*Let u,v,w € V, and a,B € E. The vertices of a schema
form five equivalence classes. These are start with
in-degree 0 and out-degree 1; chain with in-degree 1
and out-degree 1; decision with in-degree 1 and out
degree 2; collector with in-degree 2 and out-degree 1;
halt with in-degree 1 and out-degree O. A schema with
vertices having higher in-degree than 2 can be put in
the above form using a cascade of collectors, while a
cascade of decisions can be used in place of vertices
with out-degree greater than 2. By extension it can
be assumed that every schema has exactly one start
vertex and exactly one halt vertex. A chain vertex v

5

on a path (u,v:a) (v,w:B) can be elided by replacing
the path by a new arc (u,w:aB). Unless otherwise
stated schemas are assumed to have had all chain ver

tices elided by this form of path compression. The
two arcs (u,v:a) and (u,w:B) of a decision vertex are
labelled pa and pB respectively, where p is the predi
cate associated with the decision u.

Notational,conventions

Unless otherwise stated the following notational con
ventions are henceforth adopted throughout to avoid
repetitious definitions: G,= (V,r,t) or (V,B,t), u,v,

*••• E V, a,B, ••• E t , a,b, ••• E t denoting functions,
p,q, ••• E t denoting predicates, and A,B ••• S V. All
symbols may also be sub- or superscripted. A is used
to denote the empty string.

Subschemas

G
A

• (A,rA,t) is a subschema of G when r A is defined
such that rAu S ru n A, u E A. Thus an arc (u,v) in G
with u,v E A is not necessarily an arc of GA. The

difference G - GA is defined to be the subschema GD •

(D,rD,t) where rDu • ru - rAu and D • {ulrDu ~ _ or
r;lu ~ _}. Let G

A
be a subschema of G, then the pre-

decessors of G
A

are defined by r-A ·'{ulv E ru n A and

(u,v) ~ B
A

}. Thus if (u,v) is an arc of G but not of
GA , and v is in A, then u is a predecessor vertex of

GA. Vertex u mayor may not be in A - see Figure 1.
The successors of G

A
are defined similarly by r+A •

'{vlu E r-1v n A, (u,v) ~ E
A

} - Figure 1. It will
often prove convenient to augment a subschema G of G

A
as follows. ALet SA ·"{sls € r+A}, P

A
• {pip € r-A},

then define GA • (B,rB,t) such that B • A U SA U PA ,

and rBu • ru n B. a is the augmented subschema G
A A

with respect to G.

6

Paths and back arcs

An advancing path is any elementary path [s,u:a] where
s E S, the start set of G. A forward path is any elem
entary path [s,h:a] where h E H, the halt set of G.

Let Pa • [s,h:a] be a forward path and let v be a ver
tex on Pa. If there exists a cycle (v,w:Y} ••• (u,v:a)

then (u,v:a) is a back latch of Pa. Deletion of the
back latch eliminates the cycle. A cycle may contain
back latches from several different partially over
lapping forward paths - see Figure 2, for instance.
A back latch of one forward path may itself lie on
some other forward path - again see Figure 2. The
notion of back latch is extended recursively as fol
lows. The back latches of the forward paths of G are
back latches of G. If Gp is that subschema of G

which consists of just the forward paths of G, then
the back latches of G - GF are also defined to be back
latches of G - see Figure 3.

Let B be a subset of the back latches of G such that
if G

B
is the schema comprising the arcs "of B then G

GB is acyclic. Further, if for all b E B, G - GB_{b}

is not acyclic then B constitutes a minimal set of
back latches whose deletion from Gleaves G acyclic.
Such a set is called a back arc set of G, and the cor
responding subschema G

B
is called a back arc subschema

of G. Back arc sets and subschemas are not necessarily
unique. Any subschema G - GB, where Gs is a back arc
subschema of 0, is called an advancing path subschema

of G, and by definition is acyclic. Let G be a schema
with some back arc set B. For each arc (u,v:aa) of B

replace (u,v:aa) in G by the arcs (u,g :a) anduv
(x ,v:a) where x ,g i V. The resultant schema

A uv A A UV uv
G • (V,E,E) is called the augmented advancing path sub-

A .

schema of G, where V • V u {x ,g I (u,v) E B}, and
A uv uv
E· B - B + {(u,g), (x ,v)1 (u,v) € B}.uv uv

7

computation sequences

A regular expression over an alphabet E describes a
*regular set of strings S E·, and is defined recursively

as follows. The empty string A and elements of E are
regular expressions. If a and a are regular expressions* .
then so are a.a, a+a, a and (a), where 1+' is used
here to denote set union. Usually the concatenation
operator I.' and the pair () will be elided if no ambi
guity is thereby introduced.

The computation sequences of a schema are defined as
follows. Let [u,v:a] be a path in the schema, then a

represents a possible computation sequence from u to v.

The set of all such computation sequences from u to v

is called the end set of u with respect to v and is
written E(u,v). Let u € A c V and v E B c V, then the
notion of end set is extended to include E(A,v), the
union over A of all E(u,v), with corresponding exten
sions for E(u,B) and E(A,B). Following Kleene 27 it is
known that end sets are regular sets over E. Let S be
the start set and H the halt set of a schema G, and
let E(u,H) be abbreviated to E(u), then E(S) is the

computation sequence set of G, and represents all pos
sible terminating computations over the schema.

* .Any vertex u such that r S n {u} • _ is unreachable
from S, so E(u) contributes nothing to the computation

*sequence set. Any vertex v such that r v n B = _ can-

not reach the halt set, wi th the result that E (v) is
undefined and represents a non-terminating computation
of the schema. Vertices such as u and v do not lie on
any path from S to B. For simplici ty it is assumed
throughout that all vertices that do not lie on any

path from S to B have been elided from the schemas.

8

Let (u,~:a) be an arc of a schema G, then it follows

from the definition of end set that E(u) • aE(v). If
u is a decision vertex such that (u,v:pa) and (u,w:pB)

are arcs of G, then E(u) • paE(v) + pBE(w). If there
are paths from v to u such that E(v,u) • y, then E(u)

- payE(u) + pBE(w), from which it can be shown28 that
*E(u) -(pay) pBE(w).

Structured schemas

A structured regular expression (sre) is defined recur
sively as follows. The empty string is an sre, as are
the elements of t. If p € t is a predicate, and a,B

are sre's, then so too are (a), a.B, p.a+p.S and
*-a(pSa) p. An arc (u,v:a) corresponds to the program

construct u: Y + a(X,Y);goto v, where u,v are program
labels. Similarly a.S corresponds to Y + a(X,Y); Y +

B(X,Y), and pa+pS to if p(X,Y} then Y + a(X,Y) else
*-Y + B(X,Y). The loop construct a(pBa) p, which is

* -equivalent to (apB) ap, corresponds to repeat Y +

a(X,Y); P + p(X,Y); if P then Y + B(X,Y) until not P;
where P ~ X, .1, or Z. P is an introduced flag or
auxiliary variable. If a • A, the no-op function that

. *-leaves .1 unchanged, then (pB) p corresponds to while
*-p(X,Y) do Y + B(X,Y). If B • A, then a(pa) p corres-

ponds to repeat Y + a(X,Y) until p(X,Y).

A schema is structured if and only if its computation
sequence set is an sre.

If E(u,v) is an sre for some u,v € V, and the arc (u,v)

- if it exists - is not the only simple path from u to

v, then the simple paths from u to v can be replaced
by a new single arc (u,v:E(u,v». When all such re
placements have been made the schema is in reduced

form. If a schema is structured then it follows that

9

its reduced form consists of the si~gle arc (8,H:o),

where a is a structured regular expression describi~g

the schema's computation sequence set.

Unless otherwise stated it is assumed throughout that
schemas are always in reduced form.

Regular expression notation

As stated above, the loop construct is represented by
the regular expression a(pBa)*p or equivalently
(apB)*ap. Unfortunately both forms of regular expres-
sion each contain two instances of a, whereas the loop
construct only contains one. To make the notation re
flect more closely the schema being represented the
convention is adopted that both regular expressions
will be written as (apB)+p.

10

." 3 •.. BASIC UNSTRUCTURED FORMS

There are six basic unstructured forms (bur's) that
can occur in a schema. These are:

jump into a decision - IO,
jump out of a decision - 001
jump into the advancing path of a loop - ILl
jump out of the advancing path of a loop - OL,
jUmp into the back latch of a loop - lS,
jump out of the back latch of a loop - OS

and are depicted in Figure 6. The last two, IS and OB,
are not independent forms but are morphologically
identical to IL and OL respectively, as shown in Figure
7. Referring back to Figure 6, there are three pos
sible positions for vertex E in the schema: on a path
from the start vertex to vertex AI on a path from ver
tex C to the halt vertexl or on a path from the start
vertex to the halt vertex which does not include any
of the vertices A, B, or C. Analysis of all possible
placings for vertex E with respect to each of the six
bur's shows that unstructuredness always occurs in
possibly overlapping combinations of the six unstruc
tured subschemas depicted and named in Figure 8, and
that none of the bur's can ever occur alone.

To see that none of the bur's can occur alone consider
the IO construct shown in Figure 6. Vertex E must be
reachable from the start vertex S, say. Since S only

has out-degree 1, there. must be a.decision vertex,.D
say, somewhere on the path [S,B], where B is the halt
vertex, and such that there is a path [D,E]. If D is
a predecessor of A then there are paths [S,D][D,A] and
[S,D][D,E]. But now D is the entry of a decision sub
schema with paths [D,A][A,B] and [D,E][E,B], with a

11

jump out at A to C,. .that is, .an ODe If D is a succes

sor of C then D is the exit ".ver.tex and B. the entry of

a cycle [B,D][D,E][E,B] with a jump in at C from A -"

an IL construct•. If D occurs on [A,C] then A is the
entry and B the exit of a decision subschema with paths
[A,B] and [A,D][D,E][E,B] with a jump out at D to C

an OD construct. Finally, if D occurs on either [A,B]

or [B,C] then structured subschemas result and there
is no ID construct present. Similar arguments can be
advanced for the other 'jump-in' constructs IL and lB.

Turning to the OD construct, the halt vertex 8 must be
reachable from E and therefore there must be a collec
tor K somewhere on [S,8] such that there is a path
[E,K]. By considering all possible placings of K with
respect to the OD construct instances of OL and ID are
found to occur with the ODe Similarly, the other
'jump-out' constructs OL and OB can be shown not to

occur in isolation.

Examination of each of the six possible forms of un

structuredness depicted in Figure 8 reveals that they
each comprise pairs of buf's taken from the set ID,
OD, IL and OLe Thus:

DD - ID + OD;
LD =- OD + OL;
BL =- ID + OL;

DL =- ID + IL;
LL =- IL + OL;
LB =- OD + IL.

That this is so for the first four forms is clear from
the Figure. To see the result for BL observe that BL
certainly contains an instance of OB, which as shown
in Figure 7 is equivalent to OL, whilst the ID compo
nent, in the notation of Figures 8 and 6, is found by
setting vertex 3 to A, 1 to B, 2 to C and the immedi
a te predecessor of the BL construct to E. For LB, the

IB construct is equivalent to IL, and the OD component
is found by setting 3 to A, 4 to B, 2 to C and the im
mediate successor of the LB construct to E.

12

From the foregoi~g it is now evident that it is suffi

cient to consider just ID, OD, IL and OL as the basic

units of unstructuredness whose removal will result in
a structured schema. In fact it is sufficient to con
sider just ID, 00, and ILl structuring all instances
of ID removes all occurrences of DO, DL, and BL, and
then structuring all OD's removes LO and LB constructs
to leave just LL's. These can then be removed by
structuring just the IL's, so consideration of the OL
forms is not necessary. Since each of the basic forms
occurs in combination with each of the other three,
anyone of the forms 10, OD, IL, OL can be the form
neglected in the structuring process, but for reasons
to be given later it is advantageous to omit OLe

Although the various buf's have been depicted with just
one jump in or out, a decision or cycle subschema may
have several such jumps on any or'all of its constit
uent paths and therefore gives rise to multiple and
possibly overlapping instances of basic unstructured
forms. Each buf can be· considered in isolation and,
as is easily seen, can only occur paired with one of
the other buf's. The problem of structuring single
jump entry or exit buf's is considered in the next
Section whilst that of multiple overlapping buf's is
taken up in Section 5.

McCabe21 considered the buf's here named as 10, OD, IL
and OL, but did not consider IB and OB. (As already
noted, these are in any case not independent forms but
are equivalent to IL and OL respectively.) MCCabe21

and Williams7 independently derived the unstructured
forms described here as OD, OL, LD and LL, but neither
recognized the forms BL and LB. With these forms now

included it can be seen from the foregoing that each
buf is paired with one of the other three - as might

13

be expected from symmetry - to produce a unique un-
. .

structured single-entry si~gle-exit subschema. Clearly

no buf can be paired with itself to produce such a

subschema, so the six forms DD, ••• , LB are the para
digms of all possible forms of unstructuredness.
Williams added a fifth form to DD, ••• , LL termed
parallel loops, but as Williams also recognized, this

form is expressible in terms of the other four under
the restriction of a single exit vertex.

14

4. THE STRUCTURING TRANSFORMS

Two schemas having identical functions and predicates
are computationally equivalent if their computation
sequence sets are described by the same regular set.
The first step in the structuring process is therefore
to recast the regular expressions describing the buffs
into sre formats. The strategy for transforming an
unstructured schema into structured form is then as
follows:

1. If the schema is structured then stop.
2. Identify a buf and replace it with a compu

tationally equivalent but structured schema.
(Since buffs cannot occur alone a second buf

will also be removed.)
3. Go to step 1.

In this Section the structured equivalents of the buffs
are derived. Where possible two alternative transforms

are given: one which avoids predicate duplication but
necessarily incurs function duplication, called here
Type 0, and one which avoids function duplication but
necessarily incurs predicate duplication, called Type
1. The 0 and 1 represent the number of predicate
duplications in the transform. For ID and IL both
types of transform exist, but for OD and OL it will be
shown that only Type 1 is possible. Proofs that the
structuring algorithms can always be applied and always
terminate will be given in the next Section.

Consider first the 10 subschema shown in Figure 9. It
is required to find a structured regular expression
for the end set expression E(N) + E(E). From the

Figure it can be seen that

15

(2)

E(N) • c.E(A)

E (A) • q.e.E(C) + q.d.E(B)

E(E) • b.E(B)
E(B) -a.E (C)

E (C) =- ~.E (X) .(1)

It is required to solve these equations in a form
which is an sre expressed in terms of E(X).
Bainbridge!! has. given three rules for solving end set
equations to yield sre's. Letting %, y denote sre's
and p a predicate these rules are:

1. if E(v) =- x.E(u) or E(v) - x

then eliminate E(v) by substitution;
2. if E(v) =- p.%.E(u) + p.y.E(u)

then deduce E(v) =- (p.% + p.y).E(u);

3. if E(u) • p.x.E(u) + p.y.E(u) or
if E(u) - p.x.E(u) + p.y
then deduce

* -E (u) =- (p • %) • p • y • E (u) or

E(u) - (p.x)*.P.y respectively.

Bainbridge asserts that if application of these rules
yields an sre then the sre is minimal with respect to
a count of the number of occurrences of functions and
predicates, but if a stage is reached where none of
the rules applies then there is no sre solution for
the end set equations. Applying these rules to equa

tions (1) for ID gives

E(N) =- c.(q.e + q.d.a).E(B)

E (E) =- b. a.E (B)

E (B) =- f.E (X)

which is in the required sre format and has also
eliminated vertices A and C as chain vertices in the
structured subschema. The structuring transform has

thus effectively deleted the entry and exit vertices
of IO by placing them on structured arcs in the

16

transformed schema whilst retaining the topological

relationship between the vertices originally incident
on the 10. Unlike equations (1), equations (2) con
tain one duplication of function a. The corresponding
subschema is shown in Figure 9 as 10-0, the 0 denoting
that the decision entry vertex of the 10 has not been
duplicated. Structuring has been achieved at the ex
pense of a single function duplication.

For the IL depicted in Figure 10 the end set equations
are:

E(N) =- f.E(A)
E (A) =- a.E(B)

E (E) =- b.E(B)
E(B) • c.E(C)
E (C) == q.e.E (A) + q.d.E (X) (3)

Following the example of 10, the intent is to elimi
nate A and C as the cycle entry and exit vertices and
to find sre's for E(N) and E(E) in terms of E(B), and
E(B) in terms of E(X). By substitution for E(A) and
then E(B) in E(C) is obtainedt

E(C) =- q.e.a.c.E(C) + q.d.E(X)

== (q.e.a.c)*.q.d.E(X)

hence

E(B) == c.(q.e.a.c)*.q.d.E(X)

=- (c.q.e.a)+.q.d.E(X)

and then

E(N) =- f.a.E(B)

E(E) =- b.E(B)

E(B) =- (c.q.e.a)+.q.d.E(X) (4)

t Direct substitution in the equation for E(B) gives a
form on which Bainbridge's Rules cannot be used.

17

Again structuring has been achieved at the expense of
one function duplication, namely a in E(N) and in E(B),

but without duplication of the cycle exit vertex q.

The resulting structured subschema is shown in Figure
10 as IL-O, where it can be seen that the topological
relationship between vertices incident on IL has been
preserved.

Next consider OD, Figure 11.
E(N) is required in terms of
terms of both E (X) and E (E) •

the end set equations are:

In this case an are for
E(B), and for E(B) in

As seen from the Figure

E (N) =- a.E(A)

E(A) =- q.e.E (C) + q.d.E(B)

E(B) =- p.b.E(E) + p.c.E(C)

E (C) =- .f.E(X) (5)

Substituting for E(A) and E(C) gives

E(N) • a.(q.e • .f.E(X) + q.d.E(B»

E(B) • p.b.E(E) + p.c • .f.E(X) (6)

which is not in sre format and none of the Bainbridge
Rules can be applied further.

To achieve sre format it is necessary to expand terms
with the general format

r • .f.E(U) + r.g.E(V)

into the factored sre form

(r • .f + r.g).(r'.E(U) + r'.E(V»

where r' is an introduced predicate whose computation
yields the same Boolean value as that originally com
puted for r. Given that r' can be so computed, then

being a predicate its computation will not alter the
local or output variable sets Y and Z respectively of

the schema. Now the only possible computation

18

sequences of the factored sre are r.f.r'E(U) and
r.g.r'.E(V) which respectively produce the same se
quences for the values of Y and Z as r.f.E(U) and
r.g.E(V). Thus the unfactored and factored expressions
are computationally equivalent under the assumption
concerning r'. Remembering that r is a predicate and
f, g are local functions of the schema such that

r: Z x Y +"{true, false}

f, g: X x Y + Y

it follows that r' cannot in general be replaced by a
recomputation of r because the local functions f and g

could have subsequently changed the arguments of r.

Thus it is necessary to record for later use the value
of r at its point of computation by the introduction
of an auxiliary variable, or flag, which is distinct
from the variables of the schema. To preserve compu
tational equivalence the flag is introduced in the
following way.

At a decision vertex the associated predicate p, say,

is computed as before but its value is immediately as
signed to a flag P, say, uniquely associated with p.

It is this flag that is used, rather than the original
predicate, as the discriminant in choosing the exit
path from the decision vertex. In programming terms

if p then ••• else •••

is replaced by

P + p; if P then ••• else •••

Whereas in the original schema the value of a predicate
is known only at its point of computation, the intro
duction of a corresponding flag preserves the predi
cate's value until recomputed. Ih the sequel the

convention is adopted that schema predicates will be
denoted by p, q, r, ••• and the corresponding uniquely

19

associated flags by P, Q, R •••• It will also prove

convenient to allow direct assignment of truth values

to the flags. Again, such assignments do not affect

the original schema's computations. Bainbridge's Rules

can now be extended to allow for the introduction of

flags as follows, where 1 denotes true, 0 denotes
false, and _ denotes the non-existent or null string:

4. if E(u) • p.a.E(v) + p.b.E(w) then introduce

E(u) • (P+p).(P.a l + 15.bl).

(P.a2. E (v) + '.b2 ·E(w»

where

al.a2 • a and b l .b2 • b;

5. from (P+l).(P.a + F.b) deduce a, and from

(P+O).(P.a + F.b) deduce b,

6. if x, g are sre's that do not contain assign-

ments to P, then from
P.z.P.g deduce P.x.y,
P.r.'.g • _,

P.x,.'.g • '.x.g,
. '.x.P.g • _;

7. from (P + P).E(u) deduce E(u);
8. from _.x deduce _, and from

x._ deduce _.

Returning to the end set equations (5), E(B) can be re

cast in the form

E (B) • (P+ p) • (P. b1 +, ,. c) • (P. b2 • E (E) +. P. E (C))

where b l _b2 • b, cl • c, and c2 = l. In order to pro
vide a common sre factor for E(A) - and hence E(N)

E(C) can be expanded into the computationally equiva

lent form

(P+0).(P.b2 _E(E) + ~.E(C»,

which explains the choice of c2 • l in the sre for E(B).

Now follows after some collection of terms

20

E(N) =- a.E(A)

• a.[q.e.(P+O) + q.d. (P+p). (P.b1 + P.e)J.E(B')

E(Bl) ". P.b .E(E) + P.f.E(X) (6')

This is the desired sre format but in terms of a new
B' in place of the original B. The corresponding sub
schema is shown in Figure 11 as 00-1, with b 2 • band
bl -~. This choice is made because the new arc
(B',E;P.b) is then closely similar to the original
jump-out arc (B,E;p.b).

Structuring has removed the buf's entry and exit
vertices, but in this case the resulting sre can be
expressed only in terms of duplication of a predicate
- that which provided the jump-out construct. The
original jump-out decision vertex is incorporated in
the new structured arc (6 ,B') as the entry to the con
struct P +" P.e while the duplicated vertex B' takes
over the role of tail to the original arc (B,E).

Again, the topological relationship of the vertices
incident upon the buf has been preserved.

Now consider OL, Figure 12. For this buf

E(N) :II f.E(A)

E(A) :II a.E(B)

E(B) :II p.b.E(E) + p.e.E(C)

E(C) :II q.e.E(A) + q.d.E(X) (7)

As for 00, it will be found that no sre solution can
be formulated using function replication alone.
Introducing flags for p and q, and after substituting
for E(C) and E(B), E(A) "takes the form

a. (P+ p) • (P. b •E (E) + P. e. (Q+q) • (Q. e •E (A) +" Q. d •E (X))

The first disjunctive term can be extended to the form

P. (Q+ 0) ". Q•b •E (E)

for reasons that will shortly become apparent.

21

Applying the expansion formula

P.a.x +:~.v.y - (P.a +: ~.v).(P.% ~ ~.y)

"gives

E (A) :a a. (P+p). (P. ('1+0) + P.e. ('1+q».

[P.Q.b.E(E) + ~.('1.e.E(A) +. ~.d.E(X»]

which can be recast in the computationally equivalent
form

E(A) :a a.(P+p).(P.('1+O) +" P.e.('1+q».

['1.e.E(A) + ~.(P.b.E(E) + ~.d.E(X»]

Defining

% - a. (P+p). (P. ('1+0) + P.c.('1+q»

E (B') • P.b.E (E)· + ~.d.E (X)

gives

E (A) - x. ('1. e •E (A) +. Q. E (B '))

- x.E (A '), say.

Thus

E(A') - '1.e.x.E(A') + Q.E(B')
* -=- ('1,•e • %) • '1 •E (B ')

from which

* -E(A) - x. ('1.e.x).'1.E(B')

= (x.'1.e)+~~.E(B')

and finally

+ -E(N) =- f. (x.'1.e) .'1.E(B')

E(B') - P.b.E(E) + ~.d.E(X) (8)

Thus structuring requires the duplication of the jump
out decision at B, with the original vertex now con
tained on the structured arc (N,B') and duplicated at
B'. The resulting subschema is depicted as OL-l in
Figure 12. As for all other structured forms of the
buf's the topological relationship of the incident
vertices is preserved.

22

Whilst 00-1 and OL-l each contain one duplicated deci
sion vertex, neither contains a duplicated function.

It is also possible to structure both 10 and IL without
function duplication at the expense of one duplicated
decision vertex as shown by 10-1 and IL-l in Figures
11 and 10 respectively. Thus each of the basic un
structured forms 00, 10, IL and OL can be structured
at the expense of at most one duplicated decision ver
tex and no function duplication, but only 10 and IL
can be structured by function duplication alone.

As noted on Section 3, the six paradigms of unstruc-
turedness are composed of pairs of buffs:

00 • 10 + 00; OL -ID + IL; LO -00 + OL;
LL -IL + OL, BL -10 + OLi LB -00 + IL

and all of these except LD can be structured without
predicate duplication by a suitable application of
either 10-0 or IL-O. However, as LO consists of 00 +
OL it can only be structured at the expense of one
introduced decision vertex using either 00-1 or OL-l.

It was remarked in Section 3 that of the four buffs
it was only necessary to consider structuring trans
forms for three of them and the preferred three were

10, 00, and IL. The reason for this is now clear.
Whereas the transforms for these three buffs require
at most one flag each, that for OL requires two, and
is in any case the most complex of all the transforms.

It remains to be established under what conditions, if
any, the transforms developed in this Section can be
applied in the presence of overlapping buffs. This is

taken up in the next Section.

23

5. EFFECTIVENESS OP THE TRANSFORMS

A transform is considered to be effective only if it
results in another valid schema and if it gives a re
duction in the total number of buffs left in the
schema.

In the previous Section it was assumed in the deriva
tion of the structuring transforms that there was no
overlap between the buffs. The effect of overlap is
to introduce decision or collector vertices on what
would otherwise be arcs of buf' s, and then there is no
guarantee that the structuring transforms can still be
applied effectively. In this Section it is shown that
whilst some forms of overlap can invalidate certain
transforms, nonetheless for every schema there is
always at least one transform that can be applied ef
fectively, thus enabling every schema to be progres
sively transformed into structured format.

Consider 10, Figure 9, and the 10-1 transform. A col
lector on path [A,B] of 10 gives rise to a second
instance of 10. Applying the 10-1 transform to the
jump-in at B from B still effectively removes the first
instance of 10 but now leaves [N,B] not as a structured
arc but as an instance of 10 on the path originally
labelled q.e. A second application of 10-1 effectively
removes this 10 buf. By extension it is possible to
effectively remove any number of overlapping IO's
arising from collectors on the original path [A,B].

Similarly, 10-1 is effective with respect to the orig
inal arc (B,B) in the presence of any number of collec
tors on paths [B,C] and [A,C]. Clearly 10-1 is also

equally effective in the presence of any number of
decisions on the original paths [A,B], [A,C] and [B,C],

24

or indeed for any combination of decisions and collec
tors. Thus 10-1 can always be applied effectively to
any 10 buf.

10-0 is also effective with respect to introduced ver
tices on the original arcs (A,B) and (A,C) of 10, but
not for vertices on (B,C) because 10-0 duplicates this
arc. However, consider an introduced collector B' on
[B,C] and let B' have an external immediate predecessor
E'. The ID comprising vertices AB'E'C can be regarded
as the original 10 having a collector B on its path
[A,B'] for which as already noted 10-0 is effective.
This argument can be extended to any number-of collec
tors on [B,C] of the original 10. In the presence of
decision vertices on [B,C] 10-0 is ineffective but, as
already seen, 10-1 can be used instead. Hence

Lemma 1. There is always an effective transform for

the removal of ID constructs from any schema.

Consider 00 and 00-1, Figure 11. The presence of col
lector vertices on any path of 00 introduces instances
of 10 which by Lemma 1 can always be r~moved effective
ly so it is sufficient to consider introduced decision
vertices alone. Each such vertex introduces one addi
tional instance of 00. Now the [N,B] path of 00-1

contains two nested decision subschemas, namely
q.e. (P+O) + q.d. (P+p). (P +- P.c) and P +- P.c. Each
decision vertex on paths [A,B:q.e] and [A,C:q.d] there
fore gives rise to one 00 construct on the otherwise
structured path [N,B] of 00-1 whereas each such vertex
on path [B,C:p.c] of 00 necessarily produces two OO's

in 00-1 - one for each decision subschema on [N,B].
Thus 00-1 is effective for decisions on paths [A,B]

and [A,C] of 00, but not [B,C]. However, let B' be
that decision on [S,C] which has vertex C as an imme

diate successor, and let 8' be its other immediate

25

successor. Subschema AB'E'C is now an instance of OD
with decision vertices on its [A,B'] path, for which
as already noted 00-1 is effective. Hence':

Lemma 2. In the absence of ID constructs there is

always an effective transform for tbe

removal of OD constructs from any schema.

Summarizing thus far, IO-l can always be applied on
any IO such that the jump-in vertex is the most immedi
ate successor of the IO subschema's entry vertex, and
00-1 can always be applied on any OD such that the
jump-out vertex is the immediate predecessor of the
OO's exit collector. Lemmas 1 and 2 together assert
that it is always possible to transform an unstructured
schema to one that contains no instances of ID or 00.
Thus it is now necessary to consider schemas contain
ing only IL and OL buf's. Since, as noted in Section
3, neither buf can occur in combination with itself,
the only possible remaining unstructured form is IL +
OL, and the effective removal of one component ensures
the removal of the other.

Consider IL, Figure 10, and the transform IL-O. Since
path [B,X] of IL-O contains a cycle with label
Cc.q.e.a)+.q it follows that any vertex introduced on
[B,C:c] or [C,A:q.e] of ILleaves IL-O as an effective
transform, with the introduced buf's being transferred
to path [B,X} of IL-O. However, IL-O is not effective
in respect of vertices introduced on path [A ,B.: a] of
IL due to the duplication of the path. The path
[B,X] of IL-l contains a cycle [CQ.a+Q).c.CQ+q).e]+.Q

with nested decision subschema Q.a + Q. As for IL-O,
IL-l remains effective in the presence of introduced
vertices on [B,C] and [C,A] in IL, but not for [A,B:a]

which due to the nested decision cause two buf's in
IL-l - one for the cycle and one for the nested deci

sion subschema.

26

However, as will now be shown, for every schema com
prising LL forms alone there is at least one IL for
which there is no vertex on the path [A, B: a] • Since
by assumption all IO and 00 forms have been removed
there can be no vertices on path [C,A] of ILbecause
these imply the presence of LB's and BL's which in the
absence of OD's and IO's respectively cannot exist.
Thus all decisions are cycle exits and all collectors
are cycle entries·.with the result that all vertices
necessarily lie on the forward path [s,h]. Let d be
that decision vertex which is the most immediate suc
cessor decision of the start vertex s, and let (d,c)

be the corresponding back latch. The cycle [c,d](d,c)

can comprise IL constructs only, since by definition
[c,d] is decision-free apart from d.

Consider the IL constructs of this cycle and let B' be
that collector on [c,d] which has c as one of its im
mediate predecessors and E', say, as its other. Now
cB'E'd can be regarded as an IL buf with no vertices
on its path [A,B)], that is, on (c,B') and so can be

structured using either IL-O or IL-l. The argument
can be repeated on the resulting schema, hence:

Lemma 3. In the absence of ID and OD constructs there

1s always an effective transform for the re

moval of at least one IL construct from any

schema.

Lemmas 1-3 taken together lead to the principal result

of this thesis:

~h.orem. It is always possible to put an unstructured

schema into a computationally equivalent

structured form using only the transforms

ID-O, ID-l, OD-l, IL-O and IL-l. If function

dup11cation is not requ1red then ID-l, OD-l

and IL-l compr1se the minimum set of trans

forms necessary.

27

A no~e on. A-paths.

A-paths may be present in the original schema, or may
arise during the structuri~g process in the presence
of overlapping buffs. The presence of a A-path in a
buf may enable simplification of the equivalent struc
tured form by eliminating the need for a duplicate
function, a duplicate test on a flag, or even the flag
itself.

For instance, consider 10, Figure 9. If a • A then
10-0 becomes simply:

E(N) • e.(q.e + q.d).E(B)

E(E) • b.E(B)

E(B) • f.E(X)

with no function or predicate duplication necessary,
and no need for any flags. 10-1 is redundant in this
case.

Next consider IL, Figure 10. Setting a • A makes IL-O

E(N) • f.E(B)

E(E) • b.E(B)
E(B) • (e.q.e)+.q.d

where again there is no predicate or. function dupli
cation, or any introduced flag. IL-l is redundant.

Finally consider 00, Figure 11. Setting e = A makes
the nested decision (P + P.e) superfluous to yield

E(N) • a.(q.e.(P+O) + q.(p+p».

(P.b.E(E) + ~.f.E(X»

I
In this case the flag P must be retained, because
although the original jump-out predicate p has now
dropped out of the decision subschema due to the
presence of the A-path, nonetheless p must not be

28

computed after the precedinq computation of q has

returned • true • •

It is assumed throuqhout the rest of this thesis that
all such simplifications due to the presence of A-paths
are duly made, and done so usually without further
reference.

29

6 • IDENTIFYING BASIC UNSTRU.CTURED. FORMS.

Throughout the development of the structuring trans
forms in the earlier Sections it was assumed that it
was always possible to identify the basic unstructured
forms and, in particular, to identify them in such a
way that structuring could be carried out in the pre
scribed order of ID's, OD's and IL's. In this Section
algorithms are developed to justify that assumption.

Although the recognition of buf's seems straight
forward when looking at carefully drawn schemas,their
recognition is less obvious when one is faced with the
description of the schema in the form of, say, an ad
jacency list of vertices. Thus some algorithmic

j

technique is required. The first requirement in any
algorithmic method is to partition the vertices (other
than start and halt) into four equivalence classes:
the entry vertices of decision subschemas, the exits
of decisions, the entries of cycles, and the exits of
cycles. Given these partitions, decision subschemas
are identified by finding for each entry decision the
set of exit collectors such that there are exactly two
disjoint simple paths from the entry to the exit col
lectors. Each such decision - collector pair, to
gether with the two associated simple paths, consti
tutes a decision subschema. Cycle subschemas can be
identified in an analogous manner.

However, it is not possible in general to partition all
vertices uniquely into the required equivalence
classes. Consider, for instance, the schemas depicted
;in Figure 4b. Partitioning the vertices of schema A

into decision entries, decision exits, cycle entries
and cycle exits gives respectively {a,e}, {b,f}, {d},

30

"{a}, whilst for the schema B the respective partitions
are"{a,e},"{d,f},"{b}, {e} - yet the schemas are iden

tical having the same vertex set V and arc function r.
The ambiguity surrounding vertices b, a, d and e arises
as follows. There are two forward paths in the schema
(as depicted by the vertically drawn paths in forms A

and B) with back latches (a,d) and (e,b) respectively.
Both back latches lie on the only cycle in the schema,
namely d-e-b-a-d, and the removal of either leaves the
schema acyclic. Treating {(a,d)} as the back arc set
suggests the partition associated with schema A,
whereas selecting {(e,b)} suggests that for schema B.

Either group of partitions is equally acceptable for
the purposes of applying the structuring transforms,
although some particular interpretation of the schema
may make one group preferred over the other.

Since there can be no ambiguity in an acyclic schema
the foregoing example shows that the first step in
identifying buf's must be to determine a back arc set
for the schema, whose deletion would leave the schema
acyclic. Having found such a set, the heads of the
back arcs are designated cycle entry collectors and
all other collectors of the schema as decision exits.
Partitioning the decision vertices is then straight
forward, as will be shown later in this Section.

DeLining baak arc sets

One way to define back arcs of a schema G • (V,E)

might be by means of a depth first traversal of the

schema, beginning at the start vertex. Let T • (V,E~),

E~ S E, (or equally T • (v,r T)) be a depth first span
ning tree of G and let the vertices of T (and hence of
G) be numbered upwards in pre-order (number the root,

number the left subtree, number the right subtree) with
vertex u being numbered N(u), say. The arcs of G can

31

now be p~titioned into four equivalence classes:

tree arcs -' { (u, v) I (u, v) E E T} ,

forward arcs - {(u,v)IN(u)' < R(v) and (u,v) ~ ET}' I

cross arcs -{(u,v)IN(u) > R(v) and u ~ r;v},
back arcs - {(u,v)IN(u) > R(v) and u € r;v}.

Back arcs can be distinguished from cross arcs by re
numbering the vertices of T in reverse pre-order
(number the root, number the right subtree, number the
left subtree) with vertex u numbered R(u}, say, to
yield R(u) < R(v) for cross arcs but R(u) > R(v) for
back arcs.

Unfortunately this straightforward method of defining
back arcs can cause failure to recognize even the
simplest of decision subschemas. Consider for instance
the schema of Figure 4c, where the vertices have been
numbered in a possible depth first search order. This
numbering yields (4,2) as the back arc and then 1-4
and 1-2-3-4 as the two paths of a rather improbable
decision subschema, instead of the much simpler decision
paths 1-2 and 1-4-2, with back arc (3,4). The intui
tive preference for the simpler decision subschema is
justified by the fact that it lies wholly on forward
paths of the schema, whereas the alternative one does
not. The reason for the failure of the depth first
search to find the back arc (3,4) was that it did not

fUlly traverse all forward paths before exploring other
paths.

A suitable definition of back arcs in terms of forward
paths is the following. Let F be a forward path of a
schema G, and let L be the set of back latches of F.

Each back latch is by definition associated with a
distinct cycle in G, and no two back latches lie on

32

one cycle and no other. For suppose that (a,v) and

(w,r) are two back latches lyi~g on the same cycle but
no other. Then this cycle is composed of paths [a,v],

(v,w], (w,r], [r,a]. But v,r both lie on P so either
(v,r] or [r,v] is also a path. Suppose the former,
then there exists a distinct cycle [a,v], (v,r], [r,u]

which does not include backlatch (v,r), contrary to
assumption. Similarly if [x,v] is a path then there
is a cycle (w,w] which does not include (u,v).

Each backlatch of P is therefore in a back arc set B

of G. The remaining members of B are defined recur
sively by considering the not necessarily connected
subschema G - P, regarding P as a schema. Since, as
shown above, back latches of different forward paths
can lie on a single cycle, and can be part of some
other forward path, it is evident that B will depend
upon the order in which forward paths are found.

'lndlng forward paths

A suitable goal-oriented depth first search algorithm
for finding forward paths is the following. Starting

from some initial vertex u, a depth first search is
carried out until either a halt vertex h is found, in
which case the depth first path (u,h] is accepted as an
elementary path from u to h, or no further progress is

possible. To improve computational efficiency, the
set of goal vertices is extended from the halt set to
include all those vertices already found to lie on

some elementary path from u to h.

Specifically, let I· (VF,EF); or equivalently let p.

(vF,r
F

), where p. S G, and let a s VF be the set of halt
vertices in G. It is required to construct P from the
given H such that P is a maximal acyclic forward path

subschema of G. Let U, U S v-a, denote the set of

33

vertices whose membership of F is yet to be determined.

The required forward path function dfs is defined by

where

dfs(u) + U -'luI;
for all x.x € ru n U do

dfs(x);

for all x.x E (ru~{u}) n Vp do

(Vp,EF) + (VF+{u}, Ep+{(u,x)});

It is shown in Appendix 1 that, in the modified nota
tion of Hoare's2! axiomatics,

{u € U A I} dfs(u) '{r*u n U = _ A I}

where

I: I O A I l
I O: (U c V) A (Vp S V) A (BS Vp) A ·(U n Vp = _)
I l : (Vw,x,g.w,x,y € V).

-* *[(x,g € Vp - x,g E r p B) A (g E rpx - x ~ rFy)

A (w ~ Vp - w ~ rFx)]

Invariant I guarantees that F is acyclic, while the
* .condition run U = _ guarantees that all paths from u

have been considered and hence that F is maximal with

respect to u.

It now follows that under the pre-condition

"{(S E' U) A I A (Vp = H) A (Ep = _>}

dfs(s) yields

{r*s n U' = _ A I}

from which is easily deduced

{ r-*B}s € VF - s E p

with F • (VF,E p) being a maximal forward path subschema

34

of G.. In. general F will depend on the order of selec

tion of the vertices in dfs(s).

If G contains a set of start vertices S then all for
ward paths are found from

for all s.s E S do

dfs(s).

The correctness of this is easily seen by introducing
a new vertex t ~ V and extending r to include S = rt.
Then dfs(t) over V u {t} yields FI • (Vp,Ep), say, from

which F • (VF-{t},E}-{(t,rt)}).

Finally the back latch set L of F is given by

which is a subset of the back arc set B of G. As noted
earlier, B is found by recursively applyi~g the dfs

algorithm to G - F.

Ident1fg1~g decision subschemas

To identify decision subschemas in a schema G • (V,E)
first find the back arc set B of G as described above
and then define four sets of vertices

c: the set of collectors in V;

D: the set of decisions in V;

E: . {vi (u,v) E B}

X: {ul (u,v) E· B 1\ U E D}

E is the set of cycle entry collectors and X the set
of cycle exit decisions. Whilst the head vertex of
every back arc is necessarily a collector, not every

tail is necessarily a decision - see Figure 4a for in
stance, where (e,a) is a back arc and e is a collector.

Thus it remains to find the complete set of cycle exit
decisions as well as identifying decision subschemas.

3S

For the purposes of identifyi~9 basic unstructur.ed
forms it-is required to find simple decision subschemas

where by simple is meant that the subschema properly
. contains no other with the same entry. An algorithm
will now be. given to determine for' each vertex d E D

whether or not d is a decision entry vertex, and if so,
simple decision subschemas for which it is the entry
vertex. Applying the algorithm to each element of D

results in finding all simple decision subschemas, and
the unique partitioning of all decision and collector
vertices into the four classes: decision entries,
decision exits, cycle entries and cycle exits. The
algorithm does not, however, identify simple cycles.

Algorithm 6.1. To find for each decision vertex of a
schema G whether or not it is a decision entry vertex
and if so the simple decision subschemas for which it
is the entry.

Input. The advancing path subschema GA of a schema G,
and the sets C,D,E,X: being respectively the collectors,
decisions, cycle entries and cycle exits of G.

output. For each vertex d, d E D, a list Ld of topo~'

logically ordered sets, each set comprising the verti
ces of a simple decision subschema with d as its entry.

Nethod.

O. Define U - D - X.
1. If U' = _ then stop.

2. Choose d, d E a, and define fAd ··{x,y}.
L

d
+ _; U + a -'{a};

* *~efine Ra - (fAx n fAY) n (C - E) and let Ra be
topologically ordered. [R d comprises the collec
tors reachable from d by two or more paths.]

3. If Rd = _ then

begin X + X u {a}; goto step 1 end.

4~ Let c - first (R d), where first (8) returns the
first element of ordered set S.

36

•Rd + R d - fAC.

Vd + _. [Vd is a set used to hold vertices

of a simple decision subschema.]
. • *

Define P =- {c} u (fAd - fAc) and let Vd, P be
topologically ordered.

5. If p' = _ then goto step 7.

6. Let u = first (P) •
•If C € fA u then

begin Vd + Vd u'{u}; P + P ~'{u} end

else

•P + P - fAu.

goto step 5.
7. L d + L d • Yd.

If Rd = _ then goto step 1 else goto step 4.

Notes.

1. Rd contains all decision exit collectors reachable
from d by two or more distinct paths. If Rd is
empty then there are no such collectors and d must
therefore be a cycle exit.

2. Since Rd is topologically ordered, [d, first(R d)]

must be a simple decision subschema. For suppose
the contrary, then there exists some collector u,

say, which lies on either [x, first(R d)] or on

[g, first (Rd)] where fAd - {x, g} • In either case u

must topologically precede flrst(R d) which is in
contradiction to the definition of first.

3. The preceding argument explains why r~c is sub
tracted from Rd in Step 4 rather than just c.

4. In Step 6, if u, u € P cannot reach c, then neither
•can any vertex reached by u, hence rAu rather than

u is subtracted from F in this case.

As suggested by the above algorithm, a decision entry
may have more than one simple decision subschema as

sociated with it. As an example consider the schema of
Figure 5 where decision dO has the simple decision

37

subschemas (d o ,dl,d2 ,cl) and (~o,dl,d2,c2). Conversely
there may also be a collector associated with two over

lapping subschemas. Again referring to F~gure 5, c3

has (d1 ,cl,c2,c3) and (d 2 ,cl,c2,c3) as overlappi~g

simple decision subschemas.

It is to be noted that whilst a simple decision does
not properly contain another with the same entry vertex
it may properly contain another with a different entry.
Simple decisions that do not properly contain others
are called basic decision subschemas, and it is these
that comprise the basic unstructured forms ID and ODe
It is not necessary, however, to find all basic deci
sions in the forward path subschema before commencing
structuring. It is sufficient at each stage merely to
identify the topologically last basic decision and
then structure it, repeating the process until all
basic decisions have been structured.

Identification of the last basic decision is straight
forward. Let U be a set of decision entry vertices in
the forward path subschema arranged in topological
order, and let u, u € U be the last decision vertex of

U. Then each simple decision subschema with entry u

is also a basic decision. The proof is immediate:
suppose that Vu is a simple decision with u as its
entry but which is not basic. Then Vu must contain a
decision entry vertex which is topologically later in
U than u, contrary to the assumption that u was the
last.D Any of the simple decisions of u can be
chosen as the last basic decision, but in view of the
desire to structure IDs first, one with no cycle exits
(if it exists) would be chosen preferentially.

38

Identj.fgj~g egele .subsellemas

To identify cycle subschemas of a schema G for the pur

poses of structuring, the decision subschemas on the
• A

augmented advanc1ng path subschema G of G are progres-

sively detected and removed by structuring as described
A

above. Since G is acyclic, after the removal of all
A

decision subschemas G will be reduced to the form of a
A A

tree, T say. Reinstating the back arcs of G onto T

restores the cycles of G, to give a schema R, say.

These cycles may be in structured form or in the form
of possibly overlapping instances of LL (1L + OL), and
BL (10 + IL). It might be expected that LB (00 + IL)
could occur as well, but in fact it cannot because both
of the constituent paths of the OD component of any LB

construct in G are necessarily contained in the ad
vancing path subschema Gof G, and therefore the OD is
removed before R is constructed. The ID component of
BL on .the other hand has a back arc as the first arc
on each of its constituent paths, and so cannot occur

A

in G.

Detection of each structured cycle is straightforward.
If (u,v) is a back arc then, recalling that R is in
reduced form, if (v,u) is an arc of R then u-v-u is
a structured cycle, and can be replaced by a single
arc, making u and v chain vertices, which are then
elided to preserve reduced form.

The unstructured cycles of R are now found as follows.
Let (u,v) be a back arc of G in R, then the elementary
path (v,u] in R together with (u,v) constitutes a cycle.
By analogy with decision subschemas, a simple cycle is
defined to be one which does not properly contain an-

other having the same exit decision, whilst a basic

•

39

cycle is one .that does not properly contain another

with a different exit decision~ However, before iden
tifying IL constructs for the purposes of structuring
it is first necessary to identify and remove the ID
constructs of BL. This, and the final identification
and removal of the IL constructs, is taken up in the
next Section.

40

7 • THE STRUCTURING PROCESS

General Strat~gg

The first step is to identify a back arc set of the
schema G, and then consider the augmented advancing

"path subschema G derived from G by cutting the back
arcs and introducing new vertices at the cut ends of

"the arcs. Since by definition G is acyclic, it com-
prises at most the ID and OD bufs. To remove these,
first identify the topologically last basic decision

'"in G. (Where a choice among such decisions exists,
choose the one with the least number of cycle exits.)

"Structure this decision to produce G1 I say, and re-
A

peat the structuring process on Gl to produce a se-
quence of pr~gressively more structured schemas, until
allID and OD constructs have been removed, that is,
until all decision entry vertices have been reduced to
chain vertices. At each stage any chain vertices pro
duced are elided to keep the schemas in reduced form.
Since cycle exit decisions are not decision entries,
no cycle exit will be elided in the structuring process.

A

The resultant schema is in the form of a tree, .T say.
Disregarding the cut back-arcs and their introduced
end vertices yields the structured advancing-path tree,
T say, of G whose vertices (apart from start and halt)

comprise only the cycle entries and exits of G. Each
leaf of T (other than halt) is necessarily a cycle exit
decision, and by a process to be described below can be
pruned to yield a tree, Tl say. Tl has the same prop
erty as T regarding its leaves, and so the pruning
process can continue until a tree in the form of a sin

gle non-branching path is obtained. At this stage any
remaining IL and OL constructs can be removed by iden

tifying and removing the ILs, to yield the final

41

structured form of .G.

~he structurj~g method.

To illustrate the various steps in the structuring
algorithm a detailed example of a hypothetical schema
designed for the purpose will be worked out. The ap
plication of the structuring algorithm to some prac
tical problems is done in the next Section.

Consider the schema G shown in Figure 13 for which
S = {O}, a' ='{lO}, and V ='{v los v s 2l}. The de
sired forward path Gp = (Vp.E p) of G with respect to
start vertex 0 and halt vertex 10 is initialised by
setting Vr = a, Ep ' = _, and the set of unconsidered

vertices U = V - Vp • Clearly the invariant

is satisfied, as is also in a vacuuous manner invariant

the latter being the condition for Gp to be acyclic.
The precondition for dfs(O) to be executed, namely
I A (0 E U), is met so after. dfs(O) terminates Gp will
be as depicted in Figure 14, omitting the cut back arcs
and their introduced end vertices. Arcs not in Gp but
incident on it such that the head vertices are in vp

are the back latches of Gp and are therefore back arcs
of G. These are: (6,1), (19,2), (21,11), and (15,12).

The next step is to form G1 = G - Gp , and if this is
non-empty to repeat the process of finding forward
paths and their associated back latches. For the pre
sent example G1 is not empty and is as depicted in

Figure 15, from which it can be seen that G1 comprises

two disjoint subschemas collectively having 8 1 ='{S,
9, I3} and 8 1 ='{l, 2, 12, l3}. Applying dfs over 81

42

with GF1 " = (Hl-_>,Vpl " = Hl and U""= Vl " - Vpl yields

the forward path Gpl for GF , shown in Figure 16.

GFl has two disjoint components but only the larger
has back latches, these being (20,14) and (20,17).

Repeating the process to form G2 = Gl - GFl yields a

subschema which has no back latches, so the search for

the back arcs of G ends. The back latches of GF and
GFl together comprise the back arc set of G.

The next step in the structuring algorithm is to cons-
"-

truct the augmented path subschema G of G by cutting
the back arcs and introducing new vertices at their

"-

ends. G is shown in Figure 17. Omitting the cut back
arcs gives the advancing path subschema GA from which
it is required to identify and structure the topologi-

"-
cally last decision subschema in G, repeating the

process until none remains.

One possible topological ordering of the vertices of

GA is:

012 3
14 15 16

4 5 7 11 12 13
17 21 18 19 20.

8 9 6 10

In the notation of the previous Section, the back arc,

collector, decision, cycle entry and cycle exit sets

are respectively

B: "{(6,1), (19,2), (21,11), (15,12), (20,14),

(20,17)}
c: .{l, 2, 7, 11, 12, 8, 6, 14, 17, l8}

D: {3, 4, 5, 13, 9, 15, 16, 21, 19, 20}

E: {l, 2, 11, 12, 14, 17}
z: .{15, 21, 19, 20}.

With six cycle entries but only four cycle exits iden

tified it is clear that two further cycle exits remain

to be found.

43

Applying Algorithm 6.1 gives

o. U + D - ·X

" =' {3 r 4, 5, 13, 9, l6}

1. U - ~ hence
2. Choose d as 16, the last decision in U. Then

U + U - {d}

. =' {3, 4, 5, 13, 9}

L 16 "+ ~ and

f A 16 = {17, 21} so that
* *R16 + (fA17 n f A2l) n (C - E)

= ({IS, 19, 20}) n ({7, S, IS})
=·{lS}.

Thus lS is identified as the only decision exit
corresponding to decision entry 16. To find the
vertices of the decision subschema:

3. R16 - _ so
4. e + lS

*+ R16 - fAlS

= -
V16 + ~

* *F + {e} U {fAd - fAe}

= {16, 17, 21, lS}

from which repeated application of
5,

6. eventually gives
V16 = {16, 17, 21, IS}
the vertex set of a topologically last decision
subschema headed by 16.

7. L16 + V16 and as
R16 = _ there are no other decision subschemas

headed by 16.

Since 17 is a collector and 21 a decision the decision
subschema comprises one ID and. one OD construct. As

shown in Section 5, 'structuring effectively deletes
the entry and exit vertices 16 and 18 respectively to

44

leave GA in the form shown in Figure IS, .in~ part.

Returning to Algorithm 6.1, the next decision to be
considered is 9 so that
2. U -+- {3, 4, 5, l3}

L 9 -+- _ and

r A 9 =O{6, lO} so that

R 9 -+- ({6} n {lO}) n ({7, S, IS})

3. R 9 = ~ and hence
X -+- {9, 15, 21, 19, 20}.

Thus vertex 9 has been identified as a cycle exit.

Continuing with Algorithm 6.1, 13 is likewise found to
be a cycle exit, so

X -+- {13, 9, 15, 21, 19, 20}.

Next, decision vertex 5 is found to have 6 as its only
collector, the paths of the decision being (5,6) and
5-7-S-9-6. Structuring the decision, which comprises
two IO's and one 00, effectively removes 5 and 6 to

yield the schema partially depicted in Figure 19.
The next decision vertex, 4, heads a structured deci
sion [4,7] and so 4 and 7 are elided as chain vertices
following replacement of [4,7] by a single arc. Fi
nally, vertex 3 is found to be a decision entry with

paths (3,S) and 3-ll-l2-l3-S, which after structuring
the IO's at 11 and 12 and then the 00 at 13 gives the
schema depicted in Figure 20, in part. The final form
of GA is thus a tree, P say, which after adding the cut
back arcs and their introduced end vertices gives the

"-
schema P depicted in Figure 21.

Referring to Figure 21, it can be seen that vertex 13
is the only branch vertex of T whilst vertex 9 is the
tail of the only back latch (9,1) of the forward path
of T. Vertices 13 and 9 are precisely those which were

added to the cycle exit set X in Step 3 of Algorithm

6.1. It is easy to see that for any schema G a deci-

45

sion ver.tex d is added·to X only if it is not the head

ver.tex of a decision subschema and "is not the tail of

a back latch of G. Thus all such vertices d are neces
sarily branch vertices of the derived structured tree
T of the advancing path subschema GA of G. In the pre
sent example, vertex 9 is a branch vertex for which
one of its subschemas (the arc 9-6) has been elided in
the structuring process, leaving 9 as the tail of the
derived back latch (9,1) which has subsumed the orig
inal arcs (9,6) and (6,1).

It remains to explain how to structure GA following the
reinstatement of the back arcs, some of which as noted
already may have been extended by the elision of their
tails during the structuring of GA.

Let R denote the schema obtained by reinstating the
back arcs of G on the structured form of GA. If R has
a tree P as its advancing path subschema rather than
just the forward path [s,h], then instances of BL, and
hence IO, are present in R. If d is a leaf vertex of
P other than the halt vertex then d is necessarily a
decision vertex and therefore the head of two back arcs
(d,b

1
) and (d,b 2), say. (If d were a leaf collector

of Tit would be the exit of some decision subschema
in GA contrary to the fact that all such subschemas

have been removed from GA.) Both bl and b2 must lie
on the path [s,d] (otherwise they would not have been
treated as back arcs by the forward path algorithm)
with b 1 say such that [b 1 ,b2] is an elementary path in
P. (d,bl)[b 1 ,b2] is one path of a decision subschema
D and (d,b 2) the other, with an IO component at b 1 •

The path [b 1 ,b2] may itself comprise both decision and
collector vertices so D contains the one IO construct
at b

1
and possibly several IO and 00 constructs over

the vertices between b 1 and b 2 on [b1 ,b2]·

46

Structuri~g D. eliminates d and b
2

t~gether with

(d,b.2) from R and replaces (d,b1) by an arc (p,b
1

)

where d"€ rp. Vertex p is never the same one as b 2

since if it were then b 2-d-b2 would be a structured
cycle and therefore would have been replaced earlier
by a single arc in R. Let R1 be the resultant schema
wi th advancing path tree Pl. If p is not on the for
ward path of P1 it is a decision vertex leaf of T1 and
as such is the exit decision of two nested cycles.
The inner cycle mayor may not be structured. If it
is, then the outer cycle surely may not be structured
also. t Figure 22 illustrates the possibilities. After
eliding any structured cycles associated with p, a new
schema R' say is obtained for which the process of
pruning decision leaves from the underlying advancing
path tree P' can be repeated until all such leaves
have been elided. What remains is a schema in the form
of a single forward path [s, h] together with back arcs.

Since there is now only a single forward path there
can be no remaining instances of 1D and hence BL, thus
only 1L and OL constructs remain to be structured.

The 1L constructs are easily identified and structured
as follows. Let the vertices on the forward path
[s,h] of R' be numbered in ascending order - the topo
logical numbering given to the vertices for Algorithm
6.1 will suffice - with vertex v being numbered N(v),

and let D be the ordered set of decision vertices so
numbered. Choose a vertex d € D such that d is the
lowest numbered vertex of D, and let e € rR,d such
that N(e) < N(d). Then the cycle (d,e)[e,d] contains
1L constructs alone. For suppose the contrary, then
there must be a decision vertex d' on [e,d] and hence

t Because p would lie on a cycle from which the halt

vertex h was unreachable.

47

such that N (d')' < N (d), .contradicti~q the fact that d

is. the lowest numbered vertex in D. ·Structuring the

cycle effectively deletes d and c from R',. and the

structuring process can then be repeated until R'

comprises just the derived structured arc (s,h).

Returning to the example, let R be the schema derived
from GA by reinstating the back arcs, then since GA is

a tree there are instances of BL in R. Figure 23(i)
shows GA with the back arcs from the leaf vertex 20

restored. Vertex 14 corresponds to b 1 and 17 to b 2 •

Since decision vertex 15 lies on [14,17], the decision

subschema headed by 20 comprises one instance of ID at
14 and one of OD at 15. Structuring the decision re
moves 20 and 17. Figures 23(ii) to (v) show the pro
gressive steps in pruning the leaves of the advancing
path tree of R. In this instance two nested structured
cycles 2-13-2 and 1-2-13-9-1 are left after removing
all ID constructs, so the schema when put into reduced
form is structured. The steps sketched in Figure 23

are set out fully in Figures 24 to 28.

The sre for the original schema G is thus

a[b(X.W.U+O)(etT£K)+fY~f]+S

where
I(= U+li~[W+Wk(X+%)]

e = U(P+O)+Un(X+Xa)

n = W(P.X+O)+W[x+Xc(P+p)]

1; = X(Y+g)(T+O)+XS[T+T(Y+O)]

£ = Y(V.U+O)+Yi(U+u)[u+U(V+v)]

~ = V(W+w)+Vj(W+O)

y = R(S+O)+Re(S+s)

S = P(T+O)+Ph(T+t)

a = P[q(R+r)+q(R+O)](R+Rd)+Pg.

Note that a, ••• , K are all sre's.

48

As an illustration of the consequences of structuring

consider the following computation sequence in the

original schema G:

abc p q des

For the structured form of G this becomes

a b (X. W. U + 0)

ii Ii X c (P + p), ,
n

X P q (R + 0) R d
1 1

a

x P (T + 0) T
1 1

B

T R e (8 + s)
1 1

y

8.

1

1

1

1 e
1

__ I

--I

1
1 l;__ I

Thus the order of evaluation of the original functions

and predicates is

abc p q de;

as expected, but the structured schema requires seven
assignments to, and thirteen tests on, predicate vari
ables as against no assignments and just three tests
for the unstructured schema. structuring is achieved

only at a price.

49

8. EXAMPLES

In this Section the structuring method is applied to

some practical problems •
• zamp1e 1.

First consider the problem of searching an unordered
list for a given key where it is not guaranteed that
the key sought is present in the list. It is required
to return found false if the key is not present and
found true together with the entry index value if the

key is present. Assuming that the list indices range
from 1 to size inclusive then a typical solution is

0: found + false;
entry + 1;

l' :

1: while entry $ size do

2: if list[entry] s key then

found + true;
goto 3;

else

entry + entry + 1;
3: "{found - list[entry] = key}

where indentation is used to "indicate statement group

ings. Define

a: found + false; entry + 1;

p: list[entry] -key

q: entry> size

b: entry + entry + 1;

c: found + true;

then the schema for the search algorithm is as shown

below and, as can be seen, comprises one instance of
LD. Structuring the OD component yields the structured

form shown which has the computation sequence set

so

0 0!a !a

I' 0

!A

A
~
0

1
1 q(P+p)

!q ...
P 1) Pc

2

pc ! 0

I3 A

~
V
C)-

~
A

2

~P

- + -a.[(q.(p+p).(P +. P.e) + q.(P+O».P.bl.P

The structured form of the algorithm can be recovered
by substituting for the labels and writing NotFinished
for P. However, to avoid constructs such as •••
until not NotFinished, the algorithm will be written

in terms of the flag P: Finished rather than P.

After transcribing expressions such as NotFinished +

false to Finished + true, the final structured form
of the algori thIn becomes as shown below. Al though
longer than its equivalent unstructured form the algo

rithm nonetheless retains the same predicates and the

same tests on them, albeit duplicated for Finished.

51

found + false;

entry + 1;

repeat

if entry $ size then

Finished + list[entry] - key;
if Finished then

found + true;
else

Finished + truei

if not Finished then

entry + entry + 1
until Finishedi

'{found. list[entry] - key}.

Structured Algorithm for List Search.

Bzample 2.

As a second example consider the problem of processing
the nodes of a non-empty binary tree in post-order.
An iterative solution is given below in terms of ab

stract data type (adt) operations on the tree and a
stack.

'{t is a non-empty binary tree}

s + create_stack;
1:, while not empty_tree(left(t»do '{go left}

pushes, <t, goright»;

t + left(t)i

2' :

2: if not empty_tree(right(t» then'{go right}

pushes,' <t, goback»i

t + right(t);

goto li

3: process(root(t»i

52

4: if not empty_stack(s) then" {go back up}

<t, action> + top(s);
pop(s);

5: if action = goright then

. goto 2

else

goto 3;

6:

Let
a: S + create_stack;

b: while not e~pty_tree(left(t» do

push(s, <t, goright»;
t + left(t);

c: push(s,· <t, goback»;

t + right(t);
d: process{root(t»;
e: . <t, action> + top{s);

pop{s);
p: empty_tree{right{t»
q: empty_stack{s)
r: action. goright

then the schema for the post-order traversal algorithm

is as shown below. The back arcs are easily found to

be (5,2'), (5,3) and (2,1), while the advancing path

tree is seen to have one branch vertex 4, and one
decision vertex leaf,S. To prune the leaf back arcs
(5,2) and (5,3) are reinstated to give a decision sub-
schema with paths 5-3 and 5-2'-2-3 which, because 2'
is a collector and 2 a decision, comprises one ID and
one 00. Structuring this in the prescribed order of
of ID and OD and eliminating redundant constructs
which arise due to the presence of l-paths yields the

LL schema also shown below. Structuring the LL compo

nent then gives the structured regular expression

53

0

~~ a a

1 1

~ ~
b(R+O)

2' 2'

rtt A
Pc

~ R+R<P+p)

2

r ~
p

~
Pd

5 t>3 4

~~
d q

~ qe(R+r)

6
qe ~ q.

6

a.(P+l).[[(P.b.(R+O) +. P.e.(R+r».

(R + R.(P+p».P.c]+.P.d.(P+O).q]+.q

The term (P+O) is redundant since it will be executed
only when P is false. Writinq EmptyRight for P and
BackUp for R finally gives the structured iterative
algorithm below for the post-order traversal of a
binary tree.

s + create_stack1

EmptyRight + false1

repeat

repeat

if not EmptyRight then

while not empty_tree(left(t» do

push(s, <t, goright»;
t + left(t);

BackUp + false

else

<t, action> + top(s);

pop(s);

BackUp + action - goright;

if not Backup then

EmptyRight + empty_tree(right(t»;

54

jf not EmptyRight then

pushes,' <t, goback»;
t + right(t);

until EmptyRight;
process(root(t»;

until empty_stack(s).

Structured Post-Order Traversal Algorithm.

B%ample 3.

As a third example consider the unstructured algorithm
given below for merging two sorted files 1 and r into
a single sorted file s. It is assumed that 1 and r

are sorted in ascending order and that both are non
empty initially. The algorithm uses the following adt
file operations

eof(f):

. get(f) :

put(f,i):

return 'true' if f is empty, 'false'
otherwise;
if not eof(f) then return <f', i>

where i is the first item on f and f'
is the remainder of f, otherwise un
defined;
append item i to file f and return
the updated file;

return the composite file f l .f2 •

"{-eof(l) A -eof(r)}

<l,u> + get(l);

<r,v> + get(r);

1', 1",
1: if u ~ v then

s + put(s,u);

2: if eof(l) then

s + copy(put(s,v),r)

ss

else "{-eof(l)}

<1, u> + get(l);
goto 1

else '{u > v}

s + put(s,v);
3: jf eof(r) then

s + copy(put(s,u),l)
else

<r,v> + get(r);
goto 1;

4:

Algorithm for File Merge

Defining

a: <l,u> + get(l); <r,v> + get(r);
b: s + put(s,u);
c: s + put(s,v);
d: s + copy(put(s,v),r)
e: s + copy(put(s,u),l)
f: <l,u> + get(l);
g: <r,v> + get(r);
p: eof (1)

q: eof (r)

then the resulting schema G is as shown below. Since
arcs (l',l ft

) and (l ft ,l) are both A-paths, l' and 1 ft

can be interchanged without any change to the computa
tion sequences of the schema. This could be of advan
tage to avoid what might otherwise be an IL construct
at a later stage in the structuring process.

The back arcs of G are (2,1') and (3,l ft
) while the for

ward path includes two 00 constructs. Applying 00-1 to

the jump-out arc (2,1') first, followed by a further
application of 00-1 yields the schema also shown below.

S6

Observing that P.(Q+O).Q.P.f can be rewritten as
P.f.(Q+O).Q and Q.A.Q.g as Q.g.A.Q without affecting
any other computation sequence, the sre for the merge
files problem becomes

a. [[s. b. (P+p) • (P. f + P. d) • (Q+O) +
- + - +-(Q+q) • (Q . g +. Q. e. (P+O))) •Q] •Q. P] •P

from which the corresponding interpretation is:

57

<l,u> + get(l) J

<r,v> + get(r);

repeat

repeat

if u ~ v then

s + put(s,u);
EofL + eof(l);

if EofL then

s + copy(put(s,v},r)

else

<1 , u> + ge t (l) ;

EofR + true

else

II + put(s,v};
EofR + eof(r);

if EofR then

s + copy(put(s,u},l);
EofL + true

else

<r ,v> + get(r)
until EofR

until EofL

where EofL a· P and EofR a· Q.

Although correct the algorithm can scarcely be regarded
as more intelligible than the unstructured form. In
deed, the setting of EofR to 'true' when u ~ v, simply
to enable escape from the inner loop, is positively
misleading.

This example shows that the structuring method is not
guaranteed to give sre's whose interpretations are

clearer or more 'logical' in some sense than the un
structured original. In the present example the loss

of clarity arises because of the overloading of mean
ing on the inner loop exit test for Q, that is, EofR.

58

If the loop exit test is reached by the sequence

s.b • ••• • (Q+O) then Q • false (EofR • true) means

'finished' if P • false also (EofL • true), otherwise
it means 'continue to compare files'! Specifically,

at the inner loop exit test point. the following mean
ings hold

continue comparisonsQ:
-Q A P:

. Q A· P:

•
finished •

•

The last condition suggests that the two loops be

combined into one and a new flag R: Finished be intro
duced to give

a.[(s •. b.(P+p).(P.f.(R-+-O) +. P.d.(R-+-1» +
. - - +

i.c.(Q-+-~).(Q.g.(R+O) + Q.e.(R-+-1»·.R] .R

from which the term (R-+-O) can be deleted and placed

immediately after a. In this form the sre represents

the same computation sequence set as the unstructured

schema with regard to the latter's functions and vari

ables and, like the original, is also symmetric. It

is clear that the structuring transforms alone could
not have produced this result for the reason that the

final stages of development were dependent upon the

particular interpretation. given to the schema.

The final form of the File Merge Algorithm is

<1 , u> + ge t (1) ;

<r,v> + get(r);

Finished -+- false;

repeat

if u ~ v then

s -+- put(s,u);

EofL -+- eof(l);

if EofL then

s + copy(put(s,v) ,r);

Finished + true

59

else O{-EofL}

. <l,u> + get(l)

else ·{u > v}

B + put (s , v) 1

EofR +-eof(r);

if EofR then

s + copy(put(s,v),l);

Finished + true

else

<r , v> + get (r)

until Finished.

Structured Algorithm for File Merge.

60

9. SPACE AND TIME OVERHEADS

In developing and proving the effectiveness of the
structuring transforms one important question was l~ft

unasked: how efficient are the resulting schemas in
respect of space and time? This question is now taken
up and it will be shown that structuring can only ever
be achieved at a price: increased space requirements
in the form of function duplication, introduced flags
and assignments to the flagsJ increased time require
ments in the form of duplicate tests on predicates;
or some combination of the two.

It is desirable to have some general measure of the
overheads incurred which is independent of particular
interpretations of the schemas. Such a measure can of
course give no guidance in general on the efficiency
of the transformations for particular interpretations
where for example reductions in overheads may be pos
sible through optimizations over local functions or
introduced flags, but could nonetheless be useful as a
means of comparing the results produced by the struc
turing process. One such measure is the space-time
hierarchy for embedded graphs described by Lipton,
Eisenstat and DeMillo'o and refined by them in DeMilIo
et al.'l This measure can be defined informally as

follows. Let G ~ eV,E) be a schema in which the ver
tices V represent functions and predicates and the
arcs E the flow of control between them. (This defi
nition is different from that used elsewhere in this
thesis.) Let dist(u,v) be the minimum path length,
calculated as the number of arcs between the vertices
u,v € V, with u • v. G is said to be embedded in a

strictly equivalent schema G' ~ (V',E') with respect
to space S and time P if S is the largest number of

61

duplications of any function of predicate of G con
tained in GI, and T is the least value satisfying
dist(u',v') ~ T x dist(u,v), where u',v' in GI corre

spond to u,v in G. Thus S - s means that there are s
occurrences of some function in GI as against one in
G and no other function in G' has more occurrences
than s. Tat means that two distinct functions or
predicates having one arc in between them in G have t

arcs in between them in G', and no other pairs of
distinct functions or predicates in G have a greater
separation than t in G'.

Returning to the structuring transforms and noting
that each introduced reference (test or assignment) to
a flag adds an arc to the embedding schema, the space
time measures of DeMillo et ale can be derived directly
from the computation sequence sets of the embedded and
embedding schemas. Thus for lO, Figure 9, the compu
tation sequence sets for IO and its two transforms are

ID lO-O ID-l

(1) c.q.e.f c.q.e.f c.(Q+q).Q.e.Q.f

(2) c.q.d.a.f c.q.d.a.f c.(Q+q).Q.d.Q.a.f

(3) b.a.f b.a.f b • (Q+O) •Q• a • f

from which it can be seen that Tal for all sequences

in ID-O but T a 3 for ID-l in consequence of sequences
(1) and (2). The space overheads can be seen by re-
writing the computation sequences as

IO

c.(q.e + q.d.l:a).f

b. tl

IO-O

c.(q.e + q.d.a).2:f

b.a.t2

where n: denotes the target of a goto action tn.
Thus S a 2 for IO-O, whilst for IO-l Sal with respect

to the original functions and predicates of IO since

62

the DeMi110 et ale space measure takes no account of
introduced flags or assignments to them. The S, T

values over all transforms are found similarly and are
given in the table below:

ID-O 2, 1 IL-O 2, 1

ID-l 1, 3 IL-1 1, 3

OD-1 1, 3 OL-1 1, 4

Thus the Type-O transforms require an increase of
space alone (from function duplication), whereas the
Type-1 transforms require an increase in time alone
(from predicate duplication in the form of flags).

Because S and T are defined in terms of extreme values
rather than total ones, they are generally not additive
over successive applications of the transforms, so that
the space-time penalties incurred in. producing any par
ticular structured schema have to be computed from that
schema rather than from the transforms used to produce
it. Nonetheless it is clear that since structuring

must use at least one of the Type-O or Type-1 trans
forms some space or time overheads are necessarily
incurred in general, although the presence of A-paths
may in some instances reduce these to nothing by making
some form of duplication redundant. Thus a = A in the
paradigm for ID means that there is no function dupli
cation in ID-O and that the decision subschema Q + Q.a
is redundant in the form Q + Q.A in ID-l, thereby
removing the need for predicate duplication. Con
versely, the transforms do not introduce space-time
savings which, because of the restrictive nature of

structured control mechanisms, is as to be expected.

63

CONCLUSION

It has been shown that an arbitrarily complex unstruc
tured program schema can always be put into structured
form using just three transforms on basic unstructured
forms. These transforms require in. general either a
duplication of a predicate or, under special conditions,
a duplication of a function instead. In the presence
of A-paths in the buf undergoing transformation it may
be possible to avoid function or'predicate duplication
but in general structuring always requires some loss
of computational efficiency compared with optimal un
structured schemas.

Algorithms for the identification of buf's have been
given and an ordering in. which the buffs should be
removed has been proposed.

Application of the transformational method to some
practical problems shows that clear well formed struc
tured algorithms can be produced, but it has also been
shown that the method does not necessarily produce such
results under all conditions and that further trans
formations based on considerations of particular inter

pretations may be required to achieve clear logical
structured programs.

Finally it must be said that the structured schemas
produced can at best be only as good as the unstruc

tured originals - tangled nonsense cannot be trans

formed into logical poetry.

64

Predecessor vertices of GA

Successor vertices of GA

Figure 1.

65

u, u l

Vi, X

s s

1
a

a /,--'~l
w x

,,- 1", ~
u v u

f
1x

t v

Iw y

~

y

I
h h

(u,v) is a back latch of s-a-v-y-h

(w,x) is a back latch of s-a-x-u-v-y-h

Figure 2.

66

G

s

t~--,
v b

! f
a x w!"--.../ ,~_ ../
h

Op G - GF

S a

~ ~/--,,
v x w

! !
a b

! !
h v

(w,x) is a back latch of G and G - GF

(b,v) is a back latch of G.

Fiqure 3.

67

s

". - --II' "
a 'e

c d

~

h

Back arcs (e I a) , (f,b)

Decision entries d

Decision exits e

Cycle entries a , b

Cycle exits f, c

Figure 4a.

68

A B

•
I

•

!
a

1
b

1
c

1\
d

1
e

1
f
I
•
I
I

t

••

~
a

1
d

1
e

l\
b

1
c

. 1
f

I
I
I
I

Figure 4b.

69

I
I

•

J
1

I
4

I
2

I
3

I
I
I
I

Figure 40.

70

s

r
h

Overlapping simple decisions

(do ,d1 ,d2 ,cl) with (dO,d1 ,d2 ,c2)

Figure S.

71

IO 00 IL

N N N

~ ~. ~
A A A

t t !
B c:::::I B B c:aB B <3 B

! ~ t
c c c

! ! !
x x x

OL IS os

N N N

! ! t
A A A

! f f
B ~B Bc:::::I B B t:::>B

! f I
c c c

! ! !
X X X

Figure 6.

72

IB

N

!
A

I
f~--B ...
C

!
x

OB

N

t
A

f '
f ~B -

C

!
x

Figure 7.

73

IL

B

~
B

!
Acd N

!
c

~
x

OL

N

!
A

. !
c r:::r X

!
B

~
B

DD DL LD

111

! J · !
222

! ! !
333

t ! !
444

LL BL LB

111

! ! 1
222

! t f
333

~ 1 t
444

Figure 8.

74

ID ID-O

N N

Q ! !Q
N

A A

!
c(qe+qda)

qe qd !(qe+qda)

b ba ba

B<J B B <J B B<:1 B

!a t).

f

C C

f ! ! f
X

X X

ID-l

N

c(()+q).

(()e 1 +Od)

c (()+q)

b(()+O)

B c<J:;,----- B B<J

b (()+O)

B

f

c

!
x

x

Figure 9.

75

fa

IL

N

f

1
A

1a
b

B<J B

qe 1c

C

1
qd

X

IL-O IL-1

N N

flQ+l)

B<:J

b

B B<3

blO+O)

B

+lcqea) qd

x
Figure 10.

76

lxoe)+Od where x •

lOa+O). c lO+q)

x

OD

a

N

A

qe

1
qd

pb

B C>B

1
pc

OD-1
c

1
f

N

X a (qJC+qg) where

JC •
e (P+O)

9 =- d (P+p) • (P+Pc)

Pb

B'

Pf

x

Figure 11.

77

OL

x

N

B'

x

OL-1

f(xoe)+o where
x =- a(P+p).

(P(O+O)+pc(O+q))

Pb

C>B

Pd

Figure 12.

78

G

0

a !
1!b

2 19 20

c ! k f g

f pI~ If:,\
w

4 11~ 21 17

q ! q g! v f/
r

6<2 5

h l(~fur !
7 13 15

d ! ~1
8 14

!e

9

i !
10

Figure 13.

79

o

1
Q) ---(>1

1
2<J---@

!
l~
4 11cQ--@

! !&<J--- 5 12<3---@

! !
7 13---C>~

!
8

1&<2--- 9

!
10

Figure 14.

80

Back arcs:
(6,1), (19,2), (21,11),

(15,12).

Cycle entries:
1, 2, 11, 12.

Cycle exits:
15, 19, 21.

1

6<J

9

5

2

Figure 15.

81

1

13

!
14<2--@

!£<2-- -15

!/16
~--21· 1~ __@

~1
!
19---e>~

!
2

Figure 16.

82

Back arcs:
(20,14), (20,17).

Cycle entries:
14, 17.

Cycle exits:
20.

19

t
20

/\
17 14

A

G

Figure 17.

83

15

u !
16

20
'1
V!~

:l/l
Ii

18

k !
19

..

20 _'1_(V_+_O)

Vj(W+O)

+ V(W+w)

Figure 18.

84

15

l u(V+ v)

19

P
4<1 3

q J
5

r ! r

-q
7<:J 4!d

t
81Q 13

!e -s
9 t>10

~!s P
3 1>11

6 p[q(R+r)+q(R+O)].

!f (R+Rd)

1

t(R+O)
8c::::J 13

R(S+O)+Re(S+s)

Figure 19.

85

p[q(R+r)+

q(R+O)].

(R+Rd)

-u

9

P[q(R+r)+q(R+O)].

(R+Rd)+Pg

T[R(S+O)+Re(S+s)]

2!c(P+p)

W(P+O)
11<:1 21

! u(P+O)
12<:1 15

! T
13 C> 14

l
9

Figure 20.

86

o

9 1

i 1b

@)---c- 2

l
c(P+p)

W(P+O)

@----<>11

ii(P+O) 1(J

@)----c-12

1B
T

13----r>14

1
Try

A_ Sf
~<::J~--9

1S

10

a = P[q(R+r)+q(R+O)].(R+Rd)+Pg

B = P(T+O)+Ph(T+t)

y =R(S+O)+Re(S+s)

~ = Vj(W+O)+V(W+w)

Figure. 21.

87

13
I,,

It.:) 9 ®

1:<P+O) A
15 C>~

1
u(V+v)

y(V+O)

17c::J ®

1:(P+O~~
1Wk %

19 r>&

1%

20 9 e:-&
1g(V+O)

~

q,
" "

q

..

Figure 22.

88

o
I
1

I
2

I
11

I
12

I
13--14I --ls--17~"

9 --21--19~20

I
10

(i)

o
I
1

I
2

I
li\
13 ""15
I
9

I
10

o
I
1

I
2

I
11

I
12

I
131-14~

21-- 199

I
10

(ii)

o
I
1

I
2

l~)
I
9

I
10

(iii) (iv)

Figure 23.

89

(v)

19

I %O'+y)

~ 2'0'+0)

14<J 13

1eU(P+O)

15 1>12

1U~

19

1%

20

!y

g(V+O)
P

14<J 13

!i

ii(p+O)

15 1>12

1
u(V+v)

17

1~
21

£ = Y(V+O)(U+O)+

Yi(U+u)[U+U(V+v)]

21

Figure 24.

90

21

1
Wk

19

%(Y+g)

1
%

b
2·<J 1

1c(P+p)

W(P+O)
11 co 21

1a U(P+O)
12 co 15 21

1
B 1h(x+x)

Ty b(X+O) .
13 1>9 2<J 1

1
P(Y+O) l X+Xc(P+p)

W(P+O)(X+o)
14 11 <3 21

1e
1X+Xa

U(P+ 0) (X+ 0)

15 12 '<3 15

1
t

1; = X(Y+g)(P+O)+

XS[T+P(Y+O)] Ty
13 c:a 9

Fiqure 25.
1Te

15

91

Ii (P+O) (X+ 0)

15

21

I Wk(X+z)

~ b(X+O)
2<3 1

1X+Xc(P+p)

11

1X+Xa

12

n = W(P+O)(X+O)+

W[X+Xc(P+p)]

15

1
fJ~ [W+Wk(X+x)]

b(X+O) (W+O)
2<1 1

1T)(X+Xa
o

)

12

Figure 26.

92

13

!7'£

15

U(P+O)

1
UO [W+Wk(X+JC)]

b (X+ 0) (W+ 0)

2.0 1

!n(X+Xa)

12

1
t

13

13!T£K
e = U(p+O)+un(x+Xa)

b(X+O)(W+O)(U+O)
Ie = U+Uo[W+Wk(X+JC)] 2c::J 1!at

13

Figure 27.

93

. 'Sf

o

fa

10

Figure 28.

94

APPENDIX 1.

Proof of the forward path algor1t"hm

Let G - (V,r), let GF a (Vp,EF) or (Vp,r p) be an acyclic
subschema of G, with halt set H, and let U represent
the set of vertices whose membership of any acyclic path
terminating in H is yet to be determined. Define

I :

(UcV) A (Vp£V) A (UnVp=~) A (H£Vp)-. .
(V%,y.%,y£Vp).[(%,y~rp H) A (y£rp~xtrFY)]

I o A I 1

Invariant I asserts that Gp is an acyclic path termi
nating at H and is a subschema of G. Define

such that

dfs(u) ...
1: U + U - {u};

2: for all v £ runU do

3: dfs(v);

4: for all v £ runVp do °

5: (Vp,E p) + (Vpu{u}. Epu{(u,v)});

6:

It is asserted that I A (U£U) O{dfs(u)} adds to Gp all

paths [u,v] where v£Vp and no other vertex on [u,v] is

in VI" and preserves the acyc1icity of Gp •

~e proof is by induction. Let the predicates at

labels 1, 2, ••• in the algorithm be denoted by Pl ,

P2' ••• • There are three mutually exclusive possi
bilities to consider: v £ runVp , (v£ru) A (vtUuVp),

and v E runu. Consideration of the first two forms

95

the basis step in the proof, and that of the third the
induction step.

Basis.

(i) Consider all v such that v € ru n VF • Then

P1 : I A (u E U) ~ u ~ VF
P 2 : I A (u ~ U u VF) A (v E ru n VF)

~ (v ~ U) A (u· ~ v).

As v is not in U, statement 3 is not executed, so

P4 : P 2 •

P4 includes the precondition for statement 5 to be
executed, so

..
I- (u ~ v) A (Vy. y € VF) (u ~ r Py)..
I- (v E Vp) A (u i r pV) A (v € ru).

Ps asserts that arc (u,v) exists in G, that it is not
a loop, and that there are no paths from any vertex of
GF to u. Thus adding (u,v) to EF and u to Vp in
statement 6 cannot introduce a cycle. Hence

P6: I A (u i U) A (Vv.v € ru n Vp)(v ~ U).

The first conjunctive term establishes the invariance
of I, whilst the second and third terms state that u

and its successors in VF are left by dfs(u) in V - U,
that is, their membership or otherwise of GF is estab
lished by dfs(u). In this case, of course, u and its

successors in Vp are left in Vp •

(ii) Consider all v such that (v ~ U u VF) A (v € ru),

that is, v is a successor of u and is known not to be

in Gp • Then

P1 : I A (u € U) I- (u i Vp)

P 2 : I A (u ~ U u Vp) A (v € ru) A (v ~ U u VF)

I- (v ~ ru n U) A (v t ru n Vp) •

Statements 3 and 5 are not executed as their pre
conditions are not satisfied. Hence

96

P 6 : I 1\. (a t. .U) A (Vv • V E: fa - (U u Vp» (v t. U)

Again the invariance of I is established, with u and
any of its immediate successors not in either U or Vp

being left as non-members of U.

Induction.

For all v such that v E: fa n U assume that

I A (v E: U)"{dfs(v)} I A (v t U) A (fv n U = ~).

Then

P1 : I A (u E U) ~. a t Vp

P 2 : I A (a t U U Vp) A (v· E: fa n U)
~ (a"~ v)

Since the precondition for statement 3 is satisfied

P 3: I A (v E U) A (a t U U Vp) A (a ~ V).

Before inferring P4 it is necessary to show that
dEs (x) terminates for all x, x E U. To see that it
does, note that a calIon dEs (x} immediately deletes x

from U thus ensuring that dEs (x) cannot be called more
than once. Since U is a finite set, the number of
calls on dEs is also finite. As both Eor statements
in dEs have a limited range, dEs must terminate.
Further, vertex w not in U prior to a call on dEs can
not ever become an argument to later calls on dEs.

Thus w t U is invariant over dEs. Hence from the in
duction hypothesis

P4: I A (Vv.v E: fa)(v t U) A (fv n U = ~)] A

(a t U U VF).

Consider all v such that v E fa n VF• Then

Ps : P 4 A (v E: fu n Vp)

(a - v) A (v E: fa)
..

~ A (v E: Vp) A (a i fFv)

which after statement 5 gives

P6: I A (u i U) A (Vv. V E fa n Vp).

(v t U) A (fv i U)]

97

"

Returni~g to P4' consider the only possible remaining
condition for v, namely that (v i. u u Vp) 1\, (v E fu).

As the precondition for statement 5 is not satisfied

P 6 : P 4 ~

I 1\ (u i. U) 1\ (Vv.v E fu - Vp).

[(v i. U) 1\ (fv i. U)].

Combining the results for P6 over all v.v E fu is
finally obtained

Since dfs(u} terminates only after all calls dfs(v},

v E fu have terminated, it follows by induction from
the third conjunctive term of P6 that

It
I 1\ (u E U) "{dfs(uJ} I 1\ (f u i. U). 0

98

REFERENCES

1. J. Bruno and K. Steig1itz, The expression of

algorithms by charts, Journal of the ACN 19 517
525 (Oct. 1972).

2. C. Boehm and G.Jacopini, Flow diagrams, Turing
Machines and languages with only two formation
rules, Communications of the ACH 9 366-371 (Sep.
1966).

3. E. Ashcroft and Z. Manna, The translation of 'GO'1'O'
programs to 'WHILE' programs, in Information

Processing 71, ed. by C.V. Freiman, Vol. 1, pp.
250-255. Amsterdam, North-Holland (1972).

4. D.E. Knuth and R. W. Floyd, Notes on avoiding GOTO

statements, Information Processing Letters 1 23
31 (1971); corrections 1 177 (1972).

5. B.D. Mills, Mathematical foundations for structured
programming, Federal Systems Division, IBM Corp.,
Gaithersburg, MO, FSC 72-6012 (1972).

6. T. Kasai, Translatability of flowcharts into While
programs, Journal of Computer and Systems Sciences

9 177-195 (Oct. 1974).
7. M.H. Williams, Genarating structured flow diagrams:

the nature of unstructuredness, Tbe Computer Journal

20 45-50 (Feb. 1977); 20 381-383 (Nov. 1977).
8. M.H. Williams and B.L. Ossher, Conversion of un

structured flow diagrams to structured form, The

Computer Journal 21 161-167 (May 1978).
9. G. Ou1snam, Cyclomatic Numbers dO.not measure

complexity of unstructured programs, Information

Processing Letters 9 207-211 (Dec. 1979).

10. D.C. Cooper, Boehm and Jacopini's reduction of

flow charts, Communications of the ACN 10 263, 463

(1967).

99

11. E.S. Bainbridge, Minimal while programs, in
Lecture Notes in Computer Science, ed. by A.
Mazurkiewicz, Vol. 45 pp. 180-186. Springer
Verlag, Berlin (1976).

12. W.W. Paterson, T. Kasami and N. Tokura, On the
capabilities of While, Repeat and Exit statements,
Communications of the ACM 16 503-512 (Aug. 1973).

13. S.R. Kosaraju, Analysis of structured programs,

Journal of Computer and Systems Sciences 9 232
255 (Dec. 1974).

14. W.A. Wu1f, Programming without the GOTO, in
Information Processing 71 Vol. 1, pp. 408-413,
ed. by C. V. Freiman, North-Holland, Amsterdam
(1972).

15. H. Ledgard and M. Marcotty, A genealogy of control
structures, Communications of the ACM 18 629-639
(Nov. 1975).

16. J.C. Cherniavsky, J. Keohane and P.B. Henderson,
A note concerning top down program development and
restricted exit control structures, Information

Processing Letters 9 8-12 (Jul. 1979).
17. G. Ursch1er, Automatic structuring of programs,

IBM Journal of Assearch and Development 19 181
194 (Mar. 1975).

18. B.S. Baker, An algorithm for structuring flow
graphs, Journal of· the ACM 24 98-120 (Jan. 1977).

19. E. Enge1er, Structure and meaning of elementary

programs, in Lecture Notes in Mathematics, ed. by
E. Engeler, Vol. 188, pp. 89-101. Springer-Verlag

Berlin (1971).
20. E. Wegner, Tree-structured programs, Communica

tions of the ACM 6 704-705 (NOV. 1973).

21. T.J. MCCabe, A complexity measure, IBEB Trans

actions on Software Bngineering SE-2 308-320 (Dec.

1976).
22. E.W. Dijkstra, Go To statement considered harmful,

Communications of the ACN 11 147-148, 538, 541

(Mar. 1968).

100

23. D.E. Knuth, Structured programming with go to

statements, ACM Computing Surveys 6 261-301 (Dec.
1974) •

24. H. Partsch and R. Steinbrugger, Program trans

formation systems, ACN Computing Surveys 15 199
236 (Sep. 1983).

25. M.B. van Emden, Programming with verification

conditions, IEEB Transactions on Software Bngi

neering SE-5 148-159 (Mar. 1979).
26. D.C. Luckham, D.M.R. Park and M.S. Paterson, On

formalized computer programs, Journal of Computer

and Systems Sciences 4 220-249 (Aug. 1970).
27. s.C. Kleene, Representation of" events in nerve

sets, in Automata Studies, ed. by C.E. Shannon
and J. McCarthy, pp. 3-40. Princetown University
Press, Princeton, New Jersey (1956).

28. P.J. Denning, J.B. Dennis and J.E. Qua1itz,
Machines, Languages and Computation, Prentice
Hall, Englewood Cliffs, New Jersey (1978).

29. C.A.R. Hoare, An axiomatic basis for computer
programming, Communications of the ACM 12 576

580 (Oct. 1969).
30. R.J. Lipton, S.C. Eisenstat and R.A. DeMillo,

Space and time hierarchies for classes of control
structures and data structures, Journal of the ACN

23 720-732 (Oct. 1976).
31. R.A. DeMilIo, S.C. Eisenstat and R.J. Lipton,

Space-time tradeoffs in structured programming:
an improved combinatorial embedding theorem,

Journal of the ACM 27 123-127 (Jan. 1980).

101

, .

Unravelling Unstructured Programs

G.OIIIIuae
Department of Computet Scicace, Uaivenity ofQueenslaDd, SLlucia. QueeIIIIaDd 4067, AuatraIia

A Is prelBte4 lor ca.'eniIII iiMICIatat4 to IDicdJ 1U1Icta't4 I... n.
predJcata of tile ortpw schema are left IatKt widt stnIdartIIa bema adlieYeci by tile daplkatto. 01 die ortPal
4Iedsioe aodes llritboat tbtIa~ofcompoaM predicatetX~ or, wbtre ~bIt, by 11IIICdoII daplkatto.
.... II Is silo" daat str1IdIIrt4 scbttnu IDIIIt batt at Itat u, cItc:Wo. DCMIts u tile oriIiuJ lIRRruct1U't4
ICbtma. lad IDlilt batt 100ft wtaN tbt oriIiuJ !dItma c:a.tai8I braIIcba eMIt of a1terudoa coatnIc:U. The str1Ic:t1uWI
BIttbo4 allows tile complete noWuce 01 IIIDCdolI duplkadoa, ... a.ly It tile exptlBt of dtdsioII DeMIt dupUcatto.. It
Is silo" dlat strlIdm'td scbttnu a1wlYS rcqabe .. iIIc:rna .. .,.ee-dIDI~ ... It Is dIaC dill
iIIcraIe CM be I ca.plexitJ 8e-.e lor die ortpW

I. INTRODUCTION

This paper presents a method for transforming unstruc
tured program ftowgraphs into structured equivalents in
D-chart format. I The form of the derived structured
programs is such that the original unstructured programs
can be easily recovered, thus revealing what overheads
in space and time are inherent in the structured forms.
The method enables the user to opt for minimization of
time overheads, minimization of space overheads, or
some intermediate compromise. A measure for the
introduced overheads is given which can be used to
compare the relative conceptual complexities of unstruc
tured programs. A feature of the structuring method is
that the number of introduced auxiliary Boolean varia
bles, or ftags, is kept to a minimum, and where such fta~

are introduced, they correspond exactly to some condi
tional expression, or predicate, in the original program.
Thus the method preserves as far as possible the logic of
the original program.

The problem of transforminl ftowgrapbs into some
standard form has been widely addressed in the literature.
Methods based on yielding a ftowgraph in while-program
form have been given bl Jacopini, Z Ashcroft and
Manna, 3 Knuth and Floyd, Bruno and Steiglitz, I Mills,5

Kasai 6 Williams,7 Williams and Ossher' and Oulsnam.9

Jacopini"s method was shown ~y .Cooperlo ~ yield i~ a
trivial way a ftowgraph conststmg of a smgle whale
statement enclosing a sequence of alternations based on
introduced auxiliary variables. Jacopini's conjecture that
in general auxiliary variables would be necessary to
transform arbitrary flowgraphs into D-chart form was
proved by Ashcroft and Manna.) Knuth and Floyd~ and
Bruno and Steiglitz. I Kasai6 and Bainbridge I I describe
methods of reducing while-programs to minimal form.
while the general capabilities and limitations ofD-ch~
as a standard form were considered by Paterson, Kasanu
and Tokura 1Z and Kosaraju. I)

The necessity for auxiliary variables, coupled with the
fact that ftowgraphs in while-program form were shown
by Paterson et al. I Z to generally require ~~e duplication
of basic functiona or predicates of the ongmal ftowgrapb,

-Present addraa: Dcpartmel 01 COIDplIlCt ScieDce, UaiwnitJ
CoIJqe. Cort, Eire.

bas led to consideration of more general standard fOl'lDl
than D-charts. Wulf '4 proposed the use of multi-Ievd
control structures and further generalizations were
analysed by Kosaraju ll and Ledgard and Marcotty, IS

with some refinements of their results by Cherniavsky d
0/. 16 Proposals based on the DOn-duplication of the
original ftowgraph" functions and predicates have been
given by Urschler17 (using a technique based on back
dominators of the original ftowgrapb), and Baker. '1 Of
necessity both methods allow the use ofGOTOstatements
although Ref. 17 restricts these to backward jumps only.
A standard form based on binary trees has been proposed
by Engeler l9 and Wegner. zo The former allows only
jumps to ancestor nodes in the tree, while the latter allows
jumps in both directions. Proposals to convert 80wgrapbs
to recursive form have been made by Knuth and Floyd~

and Urschler. 17 McCabe21 and Williams7 independently
identified the basic forms of unstrueturedncss, and
transformations based on the identification and elmina
tion of these constructs have been fven by Williams,7

Williams and Ossher' and Oulsnam. Dijkstra. zz echoed
by Knuth,2) has cautioned against expecting mechanical
transformation of ftowgraphs to yield more comprehen
sible programs, while Knuth2) has examined the problem
ofefficiency relating to programs translated to standard
or structured-form. Van Emdenz~ has dismissed the
need for structured programming altogetber and proposes
a metbod for deriving programs directly with minimal
function and predicate duplication.

The remainder of this paper is organized as follows.
Section 2 introduces some necessary definitions and
concepts, Section 3 briefty reviews the basic forms of
unstructuredness in ftowgraphs while in Section 4 a
method for their removal based on structured transforms
is given. The proof of the effectiveness of the structurin.
algorithm is given in Section 5. Section 6 contains an
example of the use of the method and the paper concludes
in Section 7 with a discussion on the space-time efficiency
of the structuring transforms.

1. SCHEMAS

The method of structurin. to be introduced in Section 4
involves transformations on pfOlr&lll flowgrapbs or

CCC~I0--t620112/002S-0J79S04.SO

C Heydea • SoD LId. 1912

O. OULSNAM

which is to be undentood as an abbreviation for.
S: Y:-/(X), where S is a prop1UD (node) label.

schemas. 25 This Section briefly reviews sehemu aDd an .
associated algebra for describing them.

A schema shows the control structure of the program
whilst leaving the details of the program's computation
to be defined as an interpretation of the schema. A
schema therefore represents a family ofdistinct programs
sharing a common control structure. Each program of a
schema is considered to operate on three types of
variables:

input variables xl, .•• , XII

Ioca1 variables ,1, ,yb
output variables :1, , zc

which are represented coUectively by X, Y and Z
respectively. The operations of the program on these
variables are of two types:

functiona Il(X, Y), ,fn<X, Y)
predicates pl(X, Y), , pm(X, Y)

Functions map their arguments into either Yor Z, while
predicates map theirs into {true, false}. The composition
of functions such as fi(X,jj(X, Y» is denoted by jj(X,
Y) .fl(X, Y), where the fuU point (.) denotes the
sequencing operator. The logical negation of a predicate
pi(X, Y) is denoted by pi(X, Y). For both functions and
predicates the argument list usuaUy wiu be elided.

The specification of the variables, functiona and
predicates for a particular program is caUed an inter-
pretationofthe schema. The transformational structurina
process described in this paper is independent of such
interpretations.

Schemas are constructed by compolitioD of the
following statements.

STAR.T: 0--'-~·a

Every schema conaists of exactly one START and ODe
HALT statement, and any number of uniquely labelled
ASSIG N and TEST statements such that every statement
lies on some path from START to HALT. The node ofa
TEST statement is called a decision node, and that ofan
ASSIGN statement a collecting node.

In addition to the geometrical representation of
schemas it is advantageous to have an algebraic repre
sentation as an aid to the transformational process.
FoUowing Kleene26 it is known that the computations
associated with a ftowgraph schema can be represented
by a regular set. The regular ellpressions of the set are
derived by regarding the schema as a finite state generator
(fsg) whose states correspond to the nodes of the
flowgraph and whose transitions correspond to traversal
of ftowgraph edges. Each transition causes the function
or predicate identifier of the corresponding edge to be
appended to the fsg's output string. Any string output by
the fsg in going from the START node to the HALT
node represents a possible computation sequence of the
schema, and the set of aU such strings represents the
schema's computation sequence set. The regular set
operators of union (+), concatenation (.) and Kleene
star closure (.) are related to schema operations and
statements as follows:

(a) + (b)

(a).(6) 0-----<)-_6_-).

ASSIGN: 0~-JJ--~..~
whichdeootea/: Y:-J)(X, Y)

PI

TEST:

which denotes;: IF pj(X, Y) GOTO the left branch
target node ELSE GOTO the right branch target
node.

HALT:~

which deootea I: Z:- jj(X, Y)

_ 11tE CQMIU1Dl JOURfW.. VOL 2l NO. 3. 1112

(a)".(b)~

Here, 'a' and 'b' denote strinp of function and predicate
identifiers and the star closure postfix operator means
'concatenated zero or more times', The string grouping
operators (,) wiU be elided where their omission does not
cause ambiguity.

A complete forward path in a schema is any path that
begins at the START node and ends at the HALT node
without going through the same node twice. An edge of
the ftowgraph on some complete forward path is called a
forward edge, and an edge which is not a forward edge is
caUed a backward edge. Any path which does not include
a backward (forward) edge is caUed a forward (backward)
path.

The end set E(/,)) of a node ',.. with respect to a not
necessarily distinct node 'j' is defined 21 as the set of
strings that the fsg would output in traversing aU paths
from 'i' to 'j'. Thus E(S. H) is the computation sequence

C HcydeD 6; Soa Ltd, 1912

UNRAVELLINO UNSTRUcruRED PROGRAMS

IL

0818

ODID

OL

set of the schema. For brevity E(i, H) will be writteD
E(i). By convention E(H) .. (), the empty steiJll.

A structured regularexpressioD(sre)isdefinedrecunively
as follows:

(1) Functions and predicates are sre's.
(2) If x and y denote any two sre's and p is a predicate

then the following are also sre's: (a) a sequence
x.y (b) a decision (p.x+p.y) (c) a loop
(x .p.y)•. x.p or equivalently x .(p.y. x)· .p.

The familiar WHILE-DO construct is a special case of
the loop in which x .. (), whilst the REPEAT-UNTIL
construct is obtained by setting y ,. () instead. For loops.
x.p is a forward path with respect to the loop's entry and
exit nodes whilst p .y is a backward path. A loop here is
what Dijkstra reportedlyU termed a n + i loop.

It is to be noted that whilst the ftowgraph for a loop
contains only one instance each of x and y, the
corresponding regular expressions given in 2(c) above
each contain two occurrences of x. In fact tbe second of
the two expressions can be written in Prosramminl tenDI
u:

x; WHILEp DO BEGIN y; x END;

sbowinl that it is always possible (but only at the expense
of duplicating tbe function on the forward path) to
express a loop in terms of the WHILE ... DO construct.
Througbout tbis paper the (n + t> loop is taken as tbe
terminal form for a structured loop since it contains both
the WHILE ... DO and REPEAT ... UNTIL constructs
as special cases and, as just seen, can always be converted
to WHILE ... DO format if so desired.

A schema is structured if and only if ill computatioa
leQuence set E(S) is a sre.

3. THE BASIC FORMS OF
UNSTRUCTUREDNESS

There are six basic unstructured forms (buf's) that can
occur in a schema: jump into a decision-IO; jump out
of a decision-QD; jump into the forward path of a
loop-IL; jump out of a forward path of a loop--OL;
jump into tbe backward path of a loop-IB; and jump
out of the backward patb of a loop--OB. These are
depicted in Fig. I. The last two, IB and OB, are additional
to the forms considered by McCabe. %I Referring to Fi..
I, tbere are three possible placings for tbe node E: on a
patb from tbe START node Sto node A; on a patb from
node C to the HALT node H; on a path from S to H
wbich does not include nodes A, B or C. Analysis of all
possible placings of node E with respect to eacb of tbe six
buf's shows tbat unstructuredness always occurs in
possibly overlapping combinations of tbe six unstruc
tured subgrapbs depicted and named in Fil. 2, and that
none of tbe basic forms can ever occur by itself. For
example, tbe scbema of Fig. 7 comprises one instance
eacb of LD, DL and LL. McCabe%\ and Williams'
independently derived the forms described here as DD,
DL, LD and LL. Williams' added a fiftb form called
parallel loops but, as be recopized, this form i.

expressible in terms of the other four UDder the restrictioD
of a single HALT node.

Examination of each of the six forms DD ... LB of
Fil. 2 reveals that they are constructed from pairs chosen
from the basic forms 10, OD, IL and OL. Thus DD ..
10 + OD;DL - ID + IL;LD -OD +OL;LL .. IL +
OL; BL - 10 + OL; LB - 00 + IL. (For instance, for

C Heydal A SoIl Ltd, 1912

10

O.OULSNAM

10-0 10-1

BL the 10 component is obtained with node I equivalent
to B, node 2 to C, node 3 to A and the immediate
predecessor ofnode I to E. The OL component comprises
the loop 2-4-3-2 with node 2 equivalent to A, node 3 to
C, node 4 to B and the immediate successor node of the
BL construct to E.) From this it follows that it is sufficient
to consider just 10, 00, IL and OL as the basic units of
unstructuredness whose removal wiU result in a structured
schema. In fact, since none of these can occur alone in a
schema. it is sufficient to consider any three of them u
the minimum set for removal.

4. THE STRUcnJRING TRANSFORMS

Two schemas havinl identical functions and predicates
are computationally equivalent if their computation
sequence sets are described by the same reauIar set. The
first step in the structurinl process is therefore to recast
the reaular expressions describinl the buf's into sre
formats. The strategy for transforming an unstructured
schema into structured form is then as follows. (1)
Identify a buf and replace it with a computationally
equivalent but structured subaraph. (Since buf's cannot
occur alone, a second buf will also be removed.) (2)
Repeat the process until a structured schema is obtained.

In this Section the structured equivalents of the buf's
are derived, whilst a proof that the structuring procedure
can always be applied and wiU always terminate is given
in Section 5.

Consider first 10, Fi,. 3. for which it is required to

fiDel an Itfl for E(A) + E(E). From Fil. 3 it is ICleD that

E(A) - q.e. E(C) + f.d. E(B)
E(E) :a b. E(B)
E(B) - a. E(C) (I)

Bainbridgell has given three rules for soIvins end set
equations to yield sre's. LettiDl x, y denote Itfl'S and p a
predicate these are:

1. if E(v) - x. E(u) or E(IJ) - X. then eliminate E(IJ) by
substitution;

2. ifE(v) .. p.x. E(u) +p.y.E(u)
then deduce E(v) - (p. x + p. y)~u);

3. ifE(v)-p.x.E(v)+p.y.E(u}or
E(v) - p. x . E(v) + p. y then deduce
E(v) ,. (p. x)- .p.y. E(u) or E(v) - (p. x)- .p.y
respectively.

Bainbridge asserts that if application of these rules yields
a sre then the sre is minimal with respect to a count of the
number of occurrences of functions and predicates, but
if a stage is reached where none of the rules can be
applied then there is no sre solution. Applying these rules
to the end set equations for 10 to eliminate E(B) gives:

E(A) - (q.e + q.d.a).E(C)
E(E) - b.a. E(C) (2)

which is in the required see format. However, unlike
Eqns (1), Eqns (2) contain one duplication of identifier
'a'. The ftowgraph corresponding to Eqns (2) is shown in
Fig. 3 as 10·0, the 0 denoting DO duplication of the
predicate 'q'.

For IL. FiB. 4, the end set equations are:

IL

_ THE COMPUTER JOURM. VOL 21. NQ. 1 ll1Z

IL-o

UNRAVELLING UNSTRUCTURED PROGRAMS

E(.4) - a. E(B)
E(E) =- b. E(B)
E(B) - e. E(C)
E(C) - q.~.E(.4) + f.

Eliminatilll E(B) and E(C) Jives

E(.4) - a.e.(q .•. E(.4) + f)

from which can be shown

E(.4) - a.(e.q .•.a}-.c.,
- a. E(8'). say.

E(E) - b. E(8')

to give IL~, Fig. 4. (Actually IL~ can be obtained
directly by simply substituting for E(A) in the equation
for E(C).) Again it has been necessary to duplicate just
edge 'a' to achieve sre format.

Now consider 00. Fig. S. In this case a see for E(.4) is
required since B-E is an outgoing edge from the decision.
The end set equations are:

E(.4) =- q.•. E(C) + f.d.E(B)
E(B) - p.b. E(E) +p.e. E(C) (3)

Since an expression for E(A) is required in terms of E(C)
and E(E) it is necessary to eliminate E(B), but none of
the Bainbridge rules can be applied to achieve this. Thus
00 cannot be structured by function replication alone.
so predicate replication must be considered instead.

Predicate replication is achieved by introduciDl
auxiliary predicate variables, or flags. with identifien
distinct from those of the schema's functions, predicates
and variables. In order to preserve the schema's compu
tations over its variables. the flags are introduced in the
following way. At a TEST statement node. the TEST
predicate 'p' is computed as before. but its value is
immediately assigned to a flag 'P' uniquely associated
with the predicate. It is tbis flag that is used. rather than
the original predicate, as the discriminant in cboosin.
the exit path from the TEST node. In proarammiDl
terms.,

IF p THEN ... ELSE ..•

is replaced by
P:-p; IF PTHEN ... ELSE .••

Whereu in the original schema the value of a predicate
is known only at its point of computation (since
subsequent functions will in general change the values of
the predicate's arguments), the introduction of a c0rre

sponding flag preserves the predicate's value until that
value is recomputed. In tbe sequel the convention is
adopted that schema predicates will be denoted by p, q.
'. . . . and the corresponding uniquely UIOCiated flap by
P.Q.R

It will also prove convenient to allow direct assignment
of truth values to flags. Again, such assignments do not
affect the original schema's computations. Bainbridge'.
rules can now be extended to allow for the introduction
of flags as foUows, where 'I' denotes TRUE. '0' denotes
FALSE and '@' denotes the non-existeDt or nuD steiDl:

4. if E(u) - p. a. E(I7) + p.. b. E(w) introduce
E(u) - (P:- p).(P.a + P.b).(P. E(I7) + 1'. E(w»

5. from (P:- 1). (P.x + P.y) deduce x aod
from (P:- 0). (P.x + 1'.y) deduce,

6. if x. , do not contain assignments to p. then from
P. x . P .,deduce P .x .,and from P. x . l'.,deduce
@

1. from (P + 1'). EM deduce EM
8. from @ .x and x. @ deduce @.

In eacb of rules 4-7. P and l' can be inta'cbanaed.
Returning to the end set Eqna (3).tor 00, the tenD

q.e. E(C) can be recast as

q .• ,(P:-O).(P. E(E) +1'. E(C»

aadE(B)as

(P:-p).(P.b + 1'.c).(P.E(E) + 1'. E(C»

to yicId the are:
E(.4) - (q .•. (P:-O) + f.d.(P:-p).(P.b + 'I.e».

(P. E(E) + P. E(C»

The corresponding ftowgrapb i. shown in FiJ. 5 as
OD-I, the 'I' indicating that the TEST statement at node
B has been duplicated at B'. (In the Figure the assignment
P:- p has been 'pushed back' onto the A-B path for the
sake of giving a slightly simpler ftowgraph.)

Now consider OL, Fig. 6. For this buf

E(.4) - a.p.b.E(E) + a.,.c.(q .•. E(A) + f).

OD OD-I OL 01.-1

'...... Jump out ole dIciIlon.

c Hc,deD • SolI Ltd, 1911

,...... Jump out oIeloap.

THE CClIIPUTEtI .lOUIIIML ¥OL a JIQ. 11112 _

G.OULSNAM

Introducing ftags for 'p' aod 'q', aad after IOIDe
rearrangement of terms, then

E(A) - a.(P:... pl. (P.c. (Q:- q). Q.~. E(A) +
P.b. E(E) + P.e.(Q:- q). Q).

By expansion, the three disjunctive terms in parentbesel
can be written respectively as:

(P.b.(Q:-O) + P.c.(Q:-q».Q.~.E(A)
P.b.(Q:... 0). a. P. E(E) and
P.e. (Q:- q). Q."

USilll the expansion formula

P.u.P.x + P.o.P.y - (P.u+ P.o).(P.x + P.y)

on the last two expressions, aod then coIlectina te.rmI,
pves the are

E(A) - a.(P:-p).(P.b.(Q :-0) + P.c.(Q:-q».
(Q .~. E(A) + Q.(P. E(E) + P»

depicted as OL-I in Fig. 6, where the oripnal decisioD
node B has been duplicated at 8'.

Whilst aD-I and OL·I each contain one duplicated
decision node. neither contains the duplication of a
function. It is also possible to structure both 10 and IL
without function duplication at the expense of one
duplicated decision node as shown by ID-I aod IL-l in
Figs 3 and 4 respectively.

Thus each of the basic unstructured forms 00, 10, IL
and OL can be structured at the expense of at most one
duplicated decision node and no function duplication,
but only ID and IL can be structured by function
duplication alone.

As noted in Section 3, the six paradigms of unstruc
turedness are composed of pairs of basic unstructured
forms:

OO-ID+OO; OL-IO+IL; LO- OO+OL;
LL-IL+OL; BL- ID+Ol; LB-OO+IL

and all of these except LO can be structured without
decision node duplication by a suitable application of
either 10.0 or IL-o. However. as LD consists of OD +
OL it can only be structured at the expense of one
introduced decision node using either aD-I or OL·I.
Since the former requires only one ftq to the latter's two,
OD-I is the preferred choice.

It remains to be established under wha~conditions, if
any, the transforms can be applied in ttie presence of
overlapping buf·s. This is taken up in the next Sectioo.

5. EFFECIlVENESS OF THE TRANSFORMS

A transform is considered to be effective only if it results
in another valid schema and if it gives a reduction in the
total number of buf's left in the schema.

In the previous Section it was assumed inthederlvatioo
of the structuring transforms that there was no overlap
between the buf's. The effect of overlap is to introduce
decision or collecting nodes on what would otherwise be
edges of buf's, and there is then no guarantee that the
structuring transforms can stiD be applied effectively. In
this Section it is shown that whilst some forms ofoverlap
can invalidate certain transforms. nonetheless for every
schema there is always at least one transform that can be

applied effectively. thus proving that every schema can
be progressively transformed into structured format

Consider 10, Fig. 3, and transform ID-I. The
introduction of a collecting node on any of the edges
A-B. A-C or B-C of 10 gives rise to one additional
instanceoflD. ApplicationoflD-lleaves the introduced
ID intact. but still effectively removes the originallD. In
fact it can be seen from Fig. 3 that ID-I remains effective
in the presence of any number of collecting nodes on the
edges of 10 and abo for any number of introduced
decision nodes.

Similarly, 10-0 is effective with respect to introduced
nodes on edges A-B and A-C of 10. but. because of edge
duplication, not for nodes on B-C. Consider an intro
duced collecting node B' on B-C. and let B' have an
external immediate predecessor E. The subgraph A8'CE
can be regarded as an ID form with node B a coUectinl
node on the A-e edge for which. as already seen. 10-0 is
effective. This argument can be extended to any number
of collecting nodes on edge B-e of the original 10. With
regard to introduced decision nodes on edge B-e, the UIC

of 10.0 is inappropriate as at best it would give rise to
duplicated predicates-precisely what 10.0 was designed
to avoid. However, u noted above. ID-I can be used
instead. Hence:

u-a I. There is always an effective tranlform for me
removal of ID constructs from any schema.

Consider aD and aD-I, Fi,. S. The praeace of
collecting nodes on the edges A-B,A-eor 8-Cintroduces
instances of 10. From Lemma I it is known that these
instances can always be removed effectively. 10 it remaina
to consider introduced decision nodes alone. It can be
seen from Fig. 5 that OD-I remains effective for decisioo
nodes on A-B and A-e. but not for those on B-C. (Since
E can always be chosen to make B-E an edge. there is no
need to consider nodes on 8-E.) Let B' be the decision
node 00 B-e which has node C u an immediate
successor. and let E' be its other immediate successor.
Subgraph A8'CE' is now an instance ofaD withdecisioo
nodes on its A-8' edge. for which aD-I declive. Henc:c:

u-. 2. In the absence of ID coostruc:ts there i. always
an effective transform for the removal ofOD coostructI,

Lemmas I and 2 lOIether assert that it is always
possible to transform an unstructured schema toone that
contains no instances of 10 or aD. Thus it is now
necessary to consider schemas containina only IL and
OL constructs. Since, as noted in Section 3. neither IL
nor OL occur in combination with themselves. the only
possible remaining constructs are of the form IL + OL,
and the effective removal of one component paraIlteel
the removal of the other.

Consider IL and its transforms. Fie- 4. Any noda
introduced 00 the B-e or C-A edges leave both IL-o and
IL-I as effective transforms. Collecting nodes 00 A-B
introduce further instances of IL, and there is always one
of these that has no coIlectina nodes on its correspond in.
A-B edge. Thus IL-o and IL·I can always be applied
effectively to this IL consuuct in the absence of decisioD
nodes on the A-B edge.

It remains only to consider decision noda 00 the A-B
path. Let these nodes be BI, ...• Bn with correspondina
external taIJet ooda £1, . .. , FA. Since by auumptioa

UNRAVELLING UNSTRUCTURED PROGRAMS

aU instances of 10 and 00 have been removed. all the
edges BI-El, ... , B~En are backward edges, and
together give rise to other instances of IL + OL, that is.
of LL. Since the schema is finite, there must be at least
one LL that has no backward edge leading out of it. (The
first instance of LL encountered on a forward path from
START is an example.) But an LL construct which has
no such edge cannot have an (introduced) decision node
on any of its edges and, in particular, its IL component
cannot have an introduced decision node on its A-B edge.
As already noted, both IL~ and IL-l can be applied
effectively to this instance of IL.

u-a J. In the absence of 10 and 00 c:onstru<:ts. there
is always an effective transform for the removal of IL
constructs. and hence of OL constructs as weU.

Lemmas 1-3 taken together lead to the principal result
of this paper.

11Ieore& It is always possible to put an unstructured
schema into a computationally equivalent structured
form using only the transforms 10"'0. 10.1, 00.1, IL-o
and IL-1.

In fact. as is easily sbown. the result can be strengthened
to use 10.1,00.1 and IL-l as the minimum set if the
avoidance of decision node duplication is DOC a
requirement.

6. AN EXAMPLE

Consider the schema shown in Fig. 7. This is a sliptll
generalized version of a schema which Tausworthe1

calls Flynn's Problem No. S. To recover the original
problem from Fig. 7 it is merely necessary to set '/', 'g'
and 'h' to (). the empty string. It can be seen that the
schema comprises one instance each of LO (OL + 00).
OL (10 + IL), and LL (IL + OL). Two structuring
strategies might be: (l) avoid function duplication; (2)
avoid decision node duplication (as far as possible). For
the purposes of illustration the second approach will be
chosen here.

Since decision node duplication is to be avoided it it
required to apply the Type-o transforms of 10 and IL
wherever possible, but the presence of LO in the schema
suggests that some decision node duplication it
unavoidable.

Consider first the 10 construct comprising nodes B, C.
Ewith external node F. The presence of decision node D
on path C-E precludes the use of I~. Next consider the
IL comprising nodes C, E, F with external node B. The
decision node D on path C-E again prevents the use of a
Type~ transform-this time IL~. Next consider the IL
comprising nodes A, C, D with external node F. Now it
is decision node B on path A-e that prevents the use of
IL~ and so there is no effective Type-O transform
available.

Applying 10.1 removes the OL construe:t to leave a
schema with one LL and one LO for which again no
Type.() transform is effective. Applying 10.1 and finally

C HeycIeD a. Son lid. 1982

' 7,~ Flynn'. Problem No. 5.

c:c:

F..... Embedc:lir'9ofIDinl~1.

CONCLUSION

.shown that 105(2, l) I~ and 10 S 0, 3) 10-1, and
similarly for IL. For 00 tbe relationsbip is 00 S (I, 3)
00-1 wbile for OL it is OL S (I, 4) OL-!. Thus the
Type-O transforms require an increase of space alone
(from function duplication), whereas the Type-I trans
forms require an increase in time alone (from the
introduction of flags).

Because 5 and Tare defined in terms ofextreme values
rather tban total ones, they are not necessarily additive
over successive applications of the transforms. Thus for
the generalized Flynn's Problem, denoting the original
and final ftowgraphs by G and G* respectively gives G S
0, 3) G· despite three applications ofType- I transforms.

Intuitive concepts of the relative complexities of the
basic unstructured forms and their structured counter
parts are to some extent reftected by 5 (5, n but the
important topological distinction between duplicated
functions and duplicated decision nodes is lost. It might
be worthwhile replacing 5 by (5, D) where 5 is uncbanged
in meaning and D is Computed like 5 but in respect of
decision nodes only. For tbis purpose a test on a ftag in
G* is regarded as the same action as a test on the
corresponding predicate in G. Thus for tbe generalized
Flynn's Problem is now obtained G S «(I, J). J) G* indi
cating no duplicated functions, a maximum of three
occurrences of at least one decision node (the TEST on
Q) and an increased time factor (path lengtb) of three for
at least one path. This is the price to be paid for achieviDa
structured form.

It bas been shown that any unstructured schema can be
put into strictly equivalent structured form using simple
transforms on basic unstructured forms. Further, tbe
transforms used do not rely on the introduction of
compound predicate expressions and therefore preserve
the original schema's logic as closely as possible.
However, it must be said that the structuring process
presented here is no substitute for good design. The
transforms developed in this paper might help to unravel
some knotty problems, but they cannot produce logical
poelly from tangled DODJeI1le.

O. OULSNAM

IL-I gives the structured scbema shown in Fi.. 8. The
end set equations for this scbema are:

E(5) a (Q :- l). E(U)

E(U) - (Q.a.(P:-p).(P.f+ 1'. e) + Q.h).
(P. b.(Q:" q) .(Q.d + Q.g) + ,. (Q :-0».
(Q. E(1)") + Q. c. (r. (Q:- 0). E(U) + r))

from wbich it can be seen that tbe assignment Q:- 0 it
redundant in the expression Q. c. r. (Q :- 0). E(1)") and
so can be eliminated. Tbus the structured schema
contains one duplication of decision node 'p' and two of
'q', together with four assignments to ftags. Whether or
not the structured schema is more perspicuous than tbe
original is left to the reader's judgement.

7. SPACE-TIME OVERHEADS

In developing and proving the effectiveness of the
transforms, two important questions were left unasked:
how are the basic unstructured forms identified in a
general ftowgraph, and how efficient are the resultina
flowgraphs in respect of space and time?

With regard to the first question, whilst decision and
loop subgraphs are easily identified in suitably drawn
flowgraphs their presence is less obvious in arbitrary
ones. The identification of such subgrapbs is a major
topic outside the scope of this paper. The interested
reader is referred to standard texts such as Schaeferl9

and Aho and UllmanJO where suitable techniques and
further references can be found.

On the question of efficiency, it is desirable to have
some general measure for program schemas which is
independentofparticular interpretations. Such a measure
could of course give no guidance in general on the
efficiency of the transformations for particular interpre
tations of schemas, but could be useful as a means of
comparing the results produced by the structuring
process. One such measure is the space-time hierarchy
for embedded graphs described by Lipton, Eisenstat and
DeMilio (LEO)J' and refined by them in Ref. 32. This
measure can be defined informally as follows. Let G
(V, E) be a flowgraph in which the nodes V represent
functions and predicates and the edges E the flow of
control between them. (This definition is different from
that used elsewhere in this paper-see Fig. 9 for the
depiction of ID and 10-1 in this form.) Let dG(u, v) be
the minimum path length, calculated as the number of
edges, between two nodes u, vof V, with u " v. G is said
to be embedded in a strictly equivalent flowgraph G*
W*, E*) with respect to space 5 and time T if 5 is the
largest number of duplications of any function or
predicate of G contained in G*, and T is the least value
satisfying dG*(u*, v*) 5 T. dG(u, v). Thus 5 == n means
that there are n occurrences of some function in G* as
against one in G and no other function in G* has more
occurrences than n. T - m means that two distinct
functions (or predicates) having one edge between tbem
in G have m edges between them in G*, and no otber
pairs of distinct functions in G have a greater separation
than m in G*. The embeddina is denoted by G 5
(5, T)G*.

Returning to the structuring transforms. and notiDJ
that each introduced reference (assignment or test) to a
flag adds a node to the LED grapb of a buf, it can be

C Heydee • Soa L&d. 1912

UNRAVELLINO UNSTRUcruRED PROGRAMS

REFERENCES

1. J. Bruno end K. Steiglitz. The exprMlion of aI90ritflmI b¥
chans.JournMofth.ACM1.517-525 (Oct. 1972).

2. C. Boehm and G. JacoplOi. Flow diagrams. Turing mac:hinee.
end languages with only two lonnation ru_ Communiutlo".
oftMACM9. 366-371 (Sep. 1966).

3. E. Ashcroft and Z. Manna. The translation of 'GOTO'~
to WHILE' programs. in InfOf~tion Procusing 71. ed. by
C. V. Freimen. Vol. 1. pp. 26G-255. AmIIerdam. North·HoIlMd
(1972).

4. D. E. Knuth and R. W. Floyd. Not.. on avoiding GOTO
statemeflts.lnforlNtion Proceuing btt.,.1, 23-31 (1971);
corr.ctionl 1. 177 (1972).

5. H. D. Millt. Mathematical foundationl fOf lIrUC1ured program
ming. Federal Systems Division. IBM Corp.• Gaithertbutg. MD.
FSC 72~12 (1972).

8. T. Kasai. Translatability of lIowcharta into While progl'IIN.
JournM of Computwllftd Sy6tMn St:iwtcN t. 177-195 (Oct
1974).

7. M. H. Williams. Generating ttructured flow diegrlml: the Mtute
of unstructuredn... TM Computw Jour"" ZO. 45-60 (Fib.
1977); 20. 381-383 (Nov. 1977).

8. M. H. Williams and H. L Oaher. ConVWlion of unacructuted
flow diagrame to structured form. TM Computet Jour"" 21.
181-167 (May 1978).

I. G. Oultoam. Cyclomalic numbal'l do not ",...". complexity
of unstructured programt, Inform«Jon Proceuing L.nerr t.
207-211 (Dec. 1979).

10. D. C. Coopet. Boehm end Jac:opinrl~ of flow cNrtI.
Communic.ion. of~ ACM 10. 263. 463 (1967).

11. E. S. Bainbndga. Minimal while programs. in LectlnN~ In
Computer SCiMC•• ad. by A. Mazurkiewicz. Vol. 45. pp. 180
186. Springer-Verlag. Berlin (1978).

12. W. W. Paterson. T. Kasami and N. Tokura,On the cepabilitieeof
While. Repeat and Exit statements. CommuniutioM of the
ACM 11.503-512 (Aug. 1973).

13. S. R. KOIIraju. Analysis of structured pt09ramI, JOUfMI of
COmputarMJt/Sy6tMnSCiMC.... 232-255 (Dec. 1974).

14. W. A. Wulf. Programming without the GOTO. in Inlorm«/on
Proc.ssing 7'. Vol. 1. pp.~13. ad. by C. V. FNiINn. North·
Holland. Amsterdam (1972).

15. H. Ledgard and M. Marcotty. A genealogy of con1rolllNCtu.....
CommuniCMion.oftMACM 11. 629-639 (Nov. 1975).

18. J. C. CharniavskY. J. KlIOhane and P. B. Hendarton. A note
conc:arning top down program daYeiopment and rat1rictad exit
controlltrUCturee.lnltxf'MtionProceuingbtt•••• 8-12 (Jul
1979).

C Hcydn a SoD Ltd, 1912

17. G. Urac:hlar. Automatic: ItrUCturing of progrema.IBMJounMIof
R..NfchMdDttV.'opm.nt 11.181-194 (M•. 1975).

18. B. S. Baker. An algorithm IOf Itructuring fIow9raphs. Jour"" of
IMACM 24.98-120 (Jan. 1977).

19. E. Engel•. StruCtu,. and meaning of elementary progrema. in
LtlCtur. Not•• in ~tMm«ic.. ed. by E. Engalar. Vol. 188.
pp. 89-101. Springer-Verlag. Serlin (1971).

20. E. Wegner. Tree'ltructured progrema. ComtrtUnit:«JoM of the
ACMe. 704-705 (Nov. 1973).

21. T. J. McCabe. A complexity me.,,.. IEEE rrMlMCtioM 011
So/tw.,. EnginNfing SE-2. 308-320 (D.c. 1978).

22. E. W. DiJkstra. Go To "atamant considered hannful. Commu
nic.tion. of tM ACM 11. 147-148 [the aacond oc:currence of
these pages). 538. 541 (M•. 1968).

23. D. E. Knuth. Structured programming with go to~
ACMComputingSurv..,.e. 261-301 (Dec. 1974).

24. M. H. van Emden. Progr~ing with vwificanon conditiona.
IEEE Tr.nuetioM on Sohw_ Engi"..,ing SI!·I. 148-15.
(M•. 1979).

25. D. C. Luckham. D. M. R. PM and M. S. PatarIOl'I. On formalized
computer programs. Jour"" of Comput. MHJ SY"Mn Sci
.nc... 4. 22G-249 (Aug. 1970).

28. S. C. Kleana. RepreeenlltionofevanllinMrVesetl.inA~
Studi... ed. by C. E. Shannon and J. McCarthY. pp. ~.
Princeton UniYar'lity P,.. Princeton. New JarMy (1956).

27. P. J. Denning. J. B. Dennis and J. E. Qualilz. MtlChi".
LMlgu."" Md ComputMion. ~1ic:a·HaII. EngIawood CI~
NawJ_y (1978).

28. R. C. Tau_orIhe. StMdMdiz«l o.v.Iopmarrt of Comput.
SoItw••• Pranlic:a· Hall. Englewood Cliffs. New Jersey (1977).

29. M. Schaaf.. A M.u.-ticM Th«Ny of GlobM PrOfllMt
Optimiz.ion. P,.,.Iic:a· Hall. EngIawood CIifh. New J....,
(1973).

30. A. V. Aho and J. D. Ullman. Prlnciplu of Compiler Duit/n.
AddMon-WesIey. Reading. MlSMChuaena (1977).

31. R. J. LJP1Of1. S. C. EiMnstat and R. A. DeMilio. Space and lime
hierarch... lor cl.... of controlllrUCluree and dall~
JoumMoftMACMU. 72G-732 (Oct. 1978).

32. R. A. DeMilio. S. C. EiNnlllt and R. J. Lipton. $pKe-1ime
tradeofflln Itructured progranvning: an improved combinatorial
embedding theoNm, JourMI of 1M ACM %7. 123-127 (Jan.
1980).

Rac.ived October 1911

C Hayden. Son ltd. 1112

	OulsnamG_PhD1984_0001
	OulsnamG_PhD1984_0002
	OulsnamG_PhD1984_0003
	OulsnamG_PhD1984_0004
	OulsnamG_PhD1984_0005
	OulsnamG_PhD1984_0006
	OulsnamG_PhD1984_0007
	OulsnamG_PhD1984_0008
	OulsnamG_PhD1984_0009
	OulsnamG_PhD1984_0010
	OulsnamG_PhD1984_0011
	OulsnamG_PhD1984_0012
	OulsnamG_PhD1984_0013
	OulsnamG_PhD1984_0014
	OulsnamG_PhD1984_0015
	OulsnamG_PhD1984_0016
	OulsnamG_PhD1984_0017
	OulsnamG_PhD1984_0018
	OulsnamG_PhD1984_0019
	OulsnamG_PhD1984_0020
	OulsnamG_PhD1984_0021
	OulsnamG_PhD1984_0022
	OulsnamG_PhD1984_0023
	OulsnamG_PhD1984_0024
	OulsnamG_PhD1984_0025
	OulsnamG_PhD1984_0026
	OulsnamG_PhD1984_0027
	OulsnamG_PhD1984_0028
	OulsnamG_PhD1984_0029
	OulsnamG_PhD1984_0030
	OulsnamG_PhD1984_0031
	OulsnamG_PhD1984_0032
	OulsnamG_PhD1984_0033
	OulsnamG_PhD1984_0034
	OulsnamG_PhD1984_0035
	OulsnamG_PhD1984_0036
	OulsnamG_PhD1984_0037
	OulsnamG_PhD1984_0038
	OulsnamG_PhD1984_0039
	OulsnamG_PhD1984_0040
	OulsnamG_PhD1984_0041
	OulsnamG_PhD1984_0042
	OulsnamG_PhD1984_0043
	OulsnamG_PhD1984_0044
	OulsnamG_PhD1984_0045
	OulsnamG_PhD1984_0046
	OulsnamG_PhD1984_0047
	OulsnamG_PhD1984_0048
	OulsnamG_PhD1984_0049
	OulsnamG_PhD1984_0050
	OulsnamG_PhD1984_0051
	OulsnamG_PhD1984_0052
	OulsnamG_PhD1984_0053
	OulsnamG_PhD1984_0054
	OulsnamG_PhD1984_0055
	OulsnamG_PhD1984_0056
	OulsnamG_PhD1984_0057
	OulsnamG_PhD1984_0058
	OulsnamG_PhD1984_0059
	OulsnamG_PhD1984_0060
	OulsnamG_PhD1984_0061
	OulsnamG_PhD1984_0062
	OulsnamG_PhD1984_0063
	OulsnamG_PhD1984_0064
	OulsnamG_PhD1984_0065
	OulsnamG_PhD1984_0066
	OulsnamG_PhD1984_0067
	OulsnamG_PhD1984_0068
	OulsnamG_PhD1984_0069
	OulsnamG_PhD1984_0070
	OulsnamG_PhD1984_0071
	OulsnamG_PhD1984_0072
	OulsnamG_PhD1984_0073
	OulsnamG_PhD1984_0074
	OulsnamG_PhD1984_0075
	OulsnamG_PhD1984_0076
	OulsnamG_PhD1984_0077
	OulsnamG_PhD1984_0078
	OulsnamG_PhD1984_0079
	OulsnamG_PhD1984_0080
	OulsnamG_PhD1984_0081
	OulsnamG_PhD1984_0082
	OulsnamG_PhD1984_0083
	OulsnamG_PhD1984_0084
	OulsnamG_PhD1984_0085
	OulsnamG_PhD1984_0086
	OulsnamG_PhD1984_0087
	OulsnamG_PhD1984_0088
	OulsnamG_PhD1984_0089
	OulsnamG_PhD1984_0090
	OulsnamG_PhD1984_0091
	OulsnamG_PhD1984_0092
	OulsnamG_PhD1984_0093
	OulsnamG_PhD1984_0094
	OulsnamG_PhD1984_0095
	OulsnamG_PhD1984_0096
	OulsnamG_PhD1984_0097
	OulsnamG_PhD1984_0098
	OulsnamG_PhD1984_0099
	OulsnamG_PhD1984_0100
	OulsnamG_PhD1984_0101
	OulsnamG_PhD1984_0102
	OulsnamG_PhD1984_0103
	OulsnamG_PhD1984_0104
	OulsnamG_PhD1984_0105
	OulsnamG_PhD1984_0106
	OulsnamG_PhD1984_0107
	OulsnamG_PhD1984_0108
	OulsnamG_PhD1984_0109
	OulsnamG_PhD1984_0110
	OulsnamG_PhD1984_0111
	OulsnamG_PhD1984_0112
	OulsnamG_PhD1984_0113
	OulsnamG_PhD1984_0114

