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Summary

Uniformly Convergent Finite Element and
Finite Difference Methods for
Singularly Perturbed Ordinary Differential Equations

Guangfu Sun

Department of Mathematics

University College, Cork, Ireland

A thesis submitted for the degree of Doctor of Philosophy

August 1993

This thesis is concerned with uniformly convergent finite element and finite dif-
ference methods for numerically solving singularly perturbed two—point boundary
value problems.

We examine the following four problems: (i) high order problem of reaction-
diffusion type; (ii) high order problem of convection-diffusion type; (iii) second
order interior turning point problem; (iv) semilinear reaction—diffusion problem.

Firstly, we consider high order problems of reaction—diffusion type and convection-
diffusion type. Under suitable hypotheses, the coercivity of the associated bilinear
forms is proved and representation results for the solutions of such problems are

given. It is shown that, on an equidistant mesh, polynomial schemes cannot achieve



a high order of convergence which is uniform in the perturbation parameter. Piece-
wise polynomial Galerkin finite element methods are then constructed on a Shishkin
mesh. High order convergence results, which are uniform in the perturbation pa-
rameter, are obtained in various norms.

Secondly, we investigate linear second order problems with interior turning points.
Piecewise linear Galerkin finite element methods are generated on various piecewise
equidistant meshes designed for such problems. These methods are shown to be
convergent, uniformly in the singular perturbation parameter, in a weighted energy
norm and the usual L? norm.

Finally, we deal with a semilinear reaction—diffusion problem. Asymptotic prop-
erties of solutions to this problem are discussed and analysed. Two simple finite
difference schemes on Shishkin meshes are applied to the problem. They are proved
to be uniformly convergent of second order and fourth order respectively. Existence
and uniqueness of a solution to both schemes are investigated.

Numerical results for the above methods are presented.
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Chapter 1

Introduction

A singularly perturbed problem is a problem that depends on a parameter (or pa-
rameters) in such a way that solutions behave nonuniformly as the parameter tends
toward some limiting value of interest. Singularly perturbed differential equations
occur in many areas of application and have been widely considered both in asymp-
totic and numerical analysis. This thesis is concerned with finite element and finite
difference methods which are convergent, uniformly in the perturbation parameter,

for certain types of singularly perturbed two—point boundary value problems.

1.1 Singularly Perturbed Ordinary Differential Equa-
tions

Consider the two—point boundary value problem consisting of the differential equa-
tion of order m

—eu{™ + Po(u,,2) = 0, for z € (X1, Xa) (1.1.1a)

and the boundary conditions

By =, fork=1,...,m. (1.1.1%)



Here ¢ € (0,1] is a small parameter, Py (which is independent of ¢) is a linear or
nonlinear ordinary differential operator of order mg (< m) and the B, are auxiliary
functions.

Suppose that problem (1.1.1) has a solution %.(z). This solution depends not
only on the independent variable z but also on the parameter £. Let us observe
the behaviour of %,(z). We start by examining the model second order convection-
diffusion problem

—cul(z) + u)(z) =0, forz € (0,1), (1.1.2a)
u(0) =0, wu,(l)=1. (1.1.2b)

The solution of this problem is

_ exp(=(1 = 2)/) - exp(=1/¢)

u(2) 1 - exp(-1/¢)

For any fixed z € [0,1), the solution u,(z) converges to 0 as ¢ — 0, but u,(1) = 1
for all € € (0,1]. This indicates that u,(z) changes abruptly in a neighbourhood of
z = 1 when ¢ is small. The smaller ¢ is, the worse u,(z) behaves. Problem (1.1.2)
is a singularly perturbed problem.

For the more general problem (1.1.1), the behaviour of the solution u,(z) is more
complicated. Here we confine our discussion to singularities of the solution u,(z)
itself as £ — 0. ( For certain problems, e.g., Example 1.1.2 below, such singularities
occur not in #.(z) but in some of its derivatives.) Under appropriate conditions,
u,(z) will converge to a piecewise smooth function ug(z) for any fixed z € [X;, X3] as
€ - 0, except for a finite set of points z; (i = 1,...,l). We refer to the z; as critical
points. The limiting function ue(z) is a solution to the reduced problem of (1.1.1).
This reduced problem consists of the reduced equation Py(ue,z) = 0, obtained by
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setting ¢ = 0 in (1.1.1a), and mg conditions chosen from (1.1.1b). For small ¢,
u.(z) changes rapidly on small regions adjoining the critical points. The location of
these critical points and the nature of the solution u.(z) near them depend on the
character of the reduced operator Po and the boundary conditions (1.1.1b).

A critical point can be an endpoint of the interval [X;, X3). In this case we say
that u, exhibits a boundary layer in a neighbourhood of the critical point. If the
point is in the interior of [X;, X3], we say that u, has an internal layer at this point.

Many approaches have been developed to derive asymptotic expansions for solu-
tions to problems of type (1.1.1); see O’Malley [29], Smith [38], Wasow [51] and their
references. An asymptotic expansion is usually composed of an “outer solution” and
an “inner solution”. The outer solution approximates the exact solution ue(z) well
for values of z away from layers. The inner solution (also known as a boundary or
internal layer function) describes the singular behaviour of the solution in layers.
The solution of problem (1.1.1) exhibit various singular behaviour in layers. Let us
gives some examples which have different layer functions and which are typical of

the problems examined in this thesis.
Example 1.1.1 Convection—diffusion problem
—cug + a(z)u, + &(z)ue = f(z), for z €(0,1),

with u,(0) and u,(1) given, where a(z) > a > 0 for z € [0,1]. This problem has a

boundary layer exp(—a(l — z)/¢) of exponential type at z = 1.
Example 1.1.2 Linearized model of the extensible beam problem

—eul®) + (a(z)v!)' + Wz)e, = f(z), forz €(0,1),



where a(z) > a > 0 for z € [0,1), with clamped boundary conditions, i.e., u(0),
w,(0), ue(1) and ul(l) are given. This problem has two boundary layers

VvEexp(—az/\/5) and /e exp(—a(l — z)/\/€) of ezponential type.
Example 1.1.3 Simple attractive turning point problem
-e“:' - 3": + b(z)uc = f(z)a ,or z€ ("lv 1)’

with u,(—1) and u,(1) given, where b(z) > 0 and 50) > 0. This problem has an
internal layer (|z] + £1/2) of cusp type at z = 0, where A = ¥0).

Example 1.1.4 Semilinear reaction-diffusion problem
—cul + ¥(z,u,) =0, forz € (0,1),

with 4,(0) and u,(1) given, where by(z,u) > B > 0 for all (z,4) € [0,1] x RL.
This problem has two boundary layers exp(—az/\/€) and exp(—a(l — z)//E) of

exponential type.

Singularly perturbed problems of type (1.1.1) arise in many fields of application,
notably chemical-reactor theory, optimal-control theory, fluid mechanics, elasticity
theory and the physical theory of semiconductors and transistors. The purpose
of this thesis is to develop numerical methods for solving certain cases of problem

(1.1.1).
1.2 Uniformly Convergent Numerical Methods

It has long been recognized that severe difficulties can arise when “standard” nu-
merical methods are applied to problem (1.1.1) for small £. These difficulties often

result from the instability of the numerical process.
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Consider, for example, the model second order convection—diffusion problem (Ex-
ample 1.1.1) with b = f = 0 and a constant. Suppose that we use equidistant meshes
with mesh spacing A. On this mesh, the standard central difference scheme suffers
from spurious oscillations and is grossly inaccurate, unless ah/2c < 1. In other
words, a stringent restriction on the number of the mesh points is required to pre-
serve stability when ¢ is small.

To achieve stability without mesh restriction, one can use an upwinding scheme.
In fact, such a scheme is convergent as A — 0 for any fixed ¢. However, in the typical
case h > ¢, the scheme gives a good approximation of the behaviour of the exact
solution only outside the boundary layer. If a node lies inside the boundary layer,
the discrete solution at that node may be quite inaccurate when ¢ is small.

We shall consider methods which are both stable and accurate for all € € (0, 1).
Consider a numerical method for (1.1.1). Suppose that this method has a solution
uy. The method is said to be uniformly convergent, with respect to a norm || - ||, if
ll¥ — wn|| — 0 a8 N — oo, uniformly in the parameter £. Here and subsequently, N
is the number of subintervals in the mesh used. Furthermore, if ||u — ux|| < Cg(N),
where C is a constant independent of N and ¢, we say that the method is uniformly
convergent with order g(N).

Various approaches have been used to produce uniformly convergent methods.
One approach is to work with a uniform mesh and use special difference schemes
which take account of the nature of the solution to (1.1.1). Such schemes are called
fitted schemes. An alternative is to devise polynomial-based methods on nonequidis-
tant special meshes. The construction of these meshes is based on the boundary and

internal layer functions.



Much research has been carried out on the use of uniformly convergent fitted
schemes for convection—diffusion problems such as Example 1.1.1. See for example
Allen and Southwell [1], Doolan et al. [10], Gartland [16], Stynes and O’Riordan
[43] and their references.

Problems like those in Examples 1.1.2-1.1.4 have been less widely studied and it
is these types of problem which we shall examine in this thesis. (We give references
to earlier work on such problems in the appropriate chapters below.) Since fitted
schemes are related to the solution of the differential equation, they can be quite
complicated. This disadvantage makes it difficult to use fitted schemes to solve more
complex problems. For an example of this complexity in the context of higher—order
problems, see Roos and Stynes [35].

Consequently, instead of fitted schemes, we shall use the alternative approach
outlined earlier, of using simple schemes on special meshes.

Uniformly convergent polynomial-based methods on nonequidistant special
meshes date back to Bakhvalov [2], who introduced a graded mesh constructed by
a mesh-generating function to solve a reaction—diffusion problem. Based on this
idea several modifications and generalizations of Bakhvalov mesh were constructed.
They were used in finite difference schemes for various singularly perturbed second
order problems of type (1.1.1); see Vulanovié [46, 47, 48] and Herceg [21]. Gartland
[17] constructed and analysed a family of compact finite difference schemes on an
exponentially graded mesh for higher order problems of the form (1.1.1).

Recently, Shishkin [37) proposed a piecewise equidistant mesh suitable for sin-
gularly perturbed problems with layers of exponential type. The mesh of Shishkin

type is piecewise uniform and so much simpler than the graded meshes of the above



authors. We are not aware of any published work on finite element analysis of uni-
formly convergent methods on special meshes for problems of type (1.1.1). This
leads us to construct and analyse uniformly convergent polynomial-based methods
on the meshes of Shishkin type for various singularly perturbed problems of type

(1.1.1), using for the most part a finite element framework.
1.3 Outline of Thesis

An outline of this thesis is as follows:

In Chapters 2 and 3 we consider high order problems of reaction—diffusion type
and convection—diffusion type respectively. Under suitable hypotheses, the coercivity
of the associated bilinear forms is proved and representation results for the solutions
of such problems are given. Galerkin finite element methods based on piecewise
polynomial test/trial functions and Shishkin meshes are constructed and proved to
be uniformly convergent in various norms.

Chapter 4 investigates linear second order problems with interior turning points.
Piecewise linear Galerkin finite element methods are generated on various piecewise
equidistant meshes designed for such problems. These methods are shown to be
uniformly convergent in a weighted energy norm and the usual L? norm.

In Chapter 5 we deal with a semilinear reaction—diffusion problem. Asymptotic
properties of solutions to this problem are discussed and analysed. Two simple
finite difference schemes on Shishkin meshes are applied to the problem. Existence,
uniqueness and uniform convergence of a solution to both schemes are investigated.

Finally Chapter 6 draws some conclusions from our work.

Notation: Throughout this thesis we let C, sometimes subscripted, denote a generic
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positive constant that may take different values in different formulas, but is always
independent of N and €. We shall say that a quantity y is O(z) when we mean that

|yl < Cz for all sufficiently small z.
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Chapter 2

High Order Reaction—Diffusion
Problems

2.1 Introduction and Background

Consider the singularly perturbed two-point boundary value problem:

Leu = (-1)™e?u®) 4 (-1)™-! (Gt(a-l)u(""l))(n_l) + Lu
=) forze (@) (2.1.1a)
u(i)(o) = u(j)(l) =0, forj=0,....,m—-1, (2.1.1b)

where m > 2 is an integer, £ € (0,1] is a perturbation parameter, and
)('--5)

Liu= Z(_l)m-b (a’(,--leu(“-.+l) + az(m_.)u('l—ﬁ)
k=2

The functions a,(for r = 0,1,...,2(m — 1)) and f are assumed to be sufficiently
smooth with

83ym-1)(z) >a >0 on[0,1], (2.1.1¢)

and

1
Gy(m-1)(Z) — 5“’2(-;—&)«»1(’) > Om-p, fork=2,...,m, (2.1.1d)

12



for all z € [0,1] and some constants a1 = @ and am_s (k = 2,...,m) satisfying
[
Z am-i >0, fork=2,...,m. (2.1.1¢)
i=1

Condition (2.1.1c) excludes turning points, while (2.1.1c) - (2.1.1e) will to-
gether guarantee the coercivity of the associated bilinear form, and hence the solv-
ability of the given problem. We consider the homogeneous boundary conditions
(2.1.1b), since non-homogeneous conditions u()(0) = A; and ul)(1) = By, for
J = 0,1,...,m —~ 1, can be homogenized by the transformation #(z) = u(z) —

oo {(=1Y Ajém j(1 =~ ) + Bjém j(z)}, where the £m j(-) are defined by (2.5.39).

The solution of problem (2.1.1) has, in general, boundary layers at both end-
points of [0,1]. More precisely, |u{™)(z)| is unbounded in the neighbourhoods of
z=0andz=1as8¢ 0. See (2.2.7) - (2.2.11) below.

If we formally set m = 1 in (2.1.1a), we have a model second order reaction-
diffusion problem. For this reason we refer to (2.1.1) as being of reaction—diffusion
type. In chapter 3 we shall consider 2mth order singularly perturbed ordinary
differential equations which have a nonvanishing u(*~1) term; we say that such
problems are of convection—diffusion type.

When m = 2, (2.1.1a) is a variant of the Orr-Sommerfeld equation. This dif-
ferential equation also governs the deflection of an elastic beam with small flexural
rigidity under tension subject to a specified load f, according to the linearized Euler-
Bernoulli beam theory; see Semper [36]. The conditions (2.1.1b) correspond to the
ends of the beam being clamped.

In this chapter, we consider only “uniformly convergent” (also known as “ro-

bust”; see Babuska and Suri [3]) methods; these are methods whose solutions con-

13



verge to u, uniformly in ¢, in some norm.

The second order problem (m = 1 and L; = 0) has been extensively examined.
Ways of generating uniformly convergent, exponentially fitted schemes on equidis-
tant meshes are considered for example in Doolan et al. [10], Guo and Lin [19],
Hegarty et al. [20], Niijima (28], O’Riordan [30], O’Riordan and Stynes [31], Roos
[33] and Sun [44], while a uniformly convergent classical scheme on a special mesh
may be found in Herceg [21]. In contrast, there are only a few results on high order
problems in the literature (see Roos and Stynes [35] and its references).

Roos and Stynes [35] considered the fourth order problem

2u - (a(z)w)’ + Hz)w' + c(z)u = f(z), for z € (0,1), (2.1.2a)
u(0) = v'(0) = u(1) = ¥'(1) = 0, (2.1.2b)

with
a(z) > a>0, (2.1.2¢)

and
o(z) - %b’(z) > B> -a. (2.1.2d)

This is the problem (2.1.1) with m = 2. In Roos and Stynes [35] an approximate
solution is generated by using patched basis functions. The method is uniformly first
order convergent in the H'[0,1] norm. It appears to be the only published scheme
which achieves this degree of accuracy for this problem. However, the scheme is
quite complicated, since the patched basis functions ¢ are approximate solutions of

the problems

€’¢(‘)-.¢~+“I+c¢=l

14



and
26V — ag” + b4’ + ¢4 = 0,
with some boundary conditions on each mesh interval.
Semper [36] also considered the problem (2.1.2). He examines piecewise poly-
nomial finite element solutions on a quasi—equidistant mesh and gives the error

estimate

VH|(uv - un)llzs + lv - unllzs = O(H) + O(e/H),

when ¢ € H, where u is the solution of problem (2.1.2), uy is a piecewise cubic finite
element approximation and H is the mesh diameter. Numerical results in Semper
(36) show that this estimate is sharp. Thus the numerical solution may exhibit a
significant order of locking ; see Babuika and Suri (3], i.e., the order of convergence
obtained for small ¢ is significantly inferior to that obtained when ¢ = 1.

Gartland [17] studied compact finite difference schemes for differential operators

of the form
m-1

Lou=eu™ 4 Z apu®
k=0

without turning points (i.e., @m_1(z) # 0 for all z) on a special graded mesh. His
results are based on the stability theory of Niederdrenk and Yserentant [27], whose
assumption that a1 # 0 seems essential, so it is not possible to apply these results
directly to our problem (2.1.1).

In this chapter, we shall generate and analyse Galerkin finite element methods
for problem (2.1.1). First, in Section 2.2 we prove existence and uniqueness of a
solution to (2.1.1) and examine an asymptotic expansion of this solution. In Section

2.3, we consider equidistant meshes. We show (Lemma 2.3.1) that on an equidistant
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mesh standard polynomial (2m + 1)-point difference schemes for (2.1.1) cannot be
uniformly convergent of order greater than m — 1 in the discrete maximum norm.
Thus the optimal order of convergence is not attained. We also briefly discuss an
exponentially fitted scheme which for m = 2 is uniformly first order convergent in a
weighted energy norm and uniformly second order convergent in the usual discrete
maximum norm. In Section 2.4, we turn our attention to finite element methods.
Using piecewise polynomials as our basis functions on an arbitrary mesh, we obtain
a uniform error estimate. Section 2.5 contains an analysis of uniform convergence for
the finite element approximation when the mesh is of Shishkin type. This piecewise
equidistant mesh is much simpler than the graded meshes of Bakhvalov [2], Gartland
[17) and Herceg [21]; in general, it resolves part (but not all) of the boundary layers.
Furthermore, the resulting method has polynomial coefficients and is simpler than
that of Roos and Stynes [35]. We use a standard finite element analysis to prove that
the resulting method is uniformly convergent of order (N~!In N)™ with respect to
the weighted energy norm ||| - ||| associated with (2.1.1a). It does not seem possible
to use a standard duality argument to deduce a higher order of uniform convergence
in the H™~1[0,1] Sobolev norm || - ||m-1. We therefore employ another technique,
which is based on that of Stynes and O’Riordan (43}, to show that our method is
uniformly convergent of order (N~!1n N)™+! in ||-||m~1. These uniform convergence
results are almost optimal (see Remarks 2.5.1 and 2.5.2). Our method is significantly
more accurate than those of Roos and Stynes [35] and Semper {36]; see Remark 2.5.3

below. Section 2.6 contains numerical results for the fourth order problem (2.1.2).
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2.2 Coercivity, Existence and Uniqueness

We analyze the properties of the continuous solution % to problem (2.1.1). Let us

first introduce some notation. We denote by (-,-) the L?(0,1) inner product and

by H® = L? and H* (for k = 1,...,m) the usual Sobolev spaces on [0,1]. The

norm on H* will be written as || - ||s, with the usual associated seminorm | - |,

for k = 0,...,m. The essential supremum norm on L*[0,1] is denoted by || - ||e0-

For k = 0,1,...,m — 1, the maximum norm on C*[0,1] is denoted by || - ||a,ce, i-€.,

Ivllaeo = 35— 1)]|ao, for all v € C¥[0,1]. Set

Ay = {ve B™: o(0) = o)1) =0, forj=0,...,m- 1}.
We define our bilinear form A,(-,-) to be

A;(v,w) = (e’v('"),w(")) + (a,(,,._l)v(""), w(""l)) + Ay(v, w),
where

Al(v, w) = Z (a:(n_.)+‘v(ll—ﬁ+l) + a'(“-*)v(il—i)’ w(m-b)) ,
k=2

for all v, w € H®. Our weighted energy norm is given by
2,13 2 1/2 -
ol = {X1ol + o2, )} ", Vo e HP.

In what follows we shall make repeated use of the fact that

|vlg-1 < |vl,, forse€ {1,...,m} andall ve Hg .

(2.2.1)

We begin the analysis by showing that the bilinear form A,(-,-) is continuous

and uniformly coercive over HJ* x Hg*.
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Lemma 2.2.1 Assume that (2.1.1c) - (2.1.1e) hold. Then there ezist positive con-

stants Cy and Cy such that for all v,w € H,
[Ae(v,w)| < Cilllvlll - IHewll] (22.2)

and
CalllollI? £ As(v,v). (2.2.3)

Proof. It is easy to see that (2.2.2) is true, using the Cauchy-Schwarz inequality.
For (2.2.3), we have for each v € HJ*,

A‘(V, v) = e’ (v(u)’ v‘"‘)) + (a’(m-‘)v(ﬂ-l), v(ﬁ-l))
o 1
+3 ((“’(m—h) - 5“;(--&)“) vlm-b), v"“"’)
k=2

-
2%+ om-alvih s, (2.2.4)
h=1

by (2.1.1c) and (2.1.1d).

We now prove, by induction on r, that for r = 1,...,m,

r J
E ap-alvl}_s 2 ‘?’ig’.z.:x a,-alvlf_y, Vv e HP. (2.2.5)

The case r = 1 is trivially true. Fix s € {1,...,m — 1}. Assume that (2.2.5) holds

for r = 5. Then

+1

Y av-alvllia
=1

[ )
=a,lvl} + ) apalvlly
k=1

j
2 a-lvlf + 1‘?}2‘ {Z an—b} I”':—l’
== h=1

by the inductive hypothesis,
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3
. . )
> min {a,,a. + lrsx-l;g. {'?-l a._l,}} jvl;, from (2.2.1),

: Z 2
= min a - v],-
1<i<o+1 {h_l o+1 h} l In

This proves the case r = s + 1. By induction, the proof of (2.2.5) is complete.

Hence, (2.2.4) implies that

Ag(v,v) 2> e’lvl,..+ mm {Z am—h} lolm-1

J
2 elolp + m~ ,in {z ,.} Iolim-1s

=1
by (2.2.1), which is the desired result with

J
- . -1 . _ .D
C, nun{l,m 121"5“- {hz‘a.. .}}

We can now define our weak formulation of (2.1.1): find « € HJ* such that

Ae(u,v) = (f,v), Vve Hg. (2.2.6)

Clearly, the mapping v —— (f,v) is a bounded functional on HJ*. Combining

this with Lemma 2.2.1, the Lax-Milgram Lemma tells us that (2.2.6) has a unique

solution u(z) in H*. This weak solution is also the classical solution to (2.1.1), if

all the data are smooth.

The reduced problem of (2.1.1) is (see O’Malley [29], p.42)
-1
(1" (axmy?®™ ) " 4 Laz = f(a), for 2 € 0,1),
290) = )1)=0, forj=0,....m-2.
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From the proof of Lemma 2.2.1, we know that the reduced problem also has a unique
solution. It follows from Theorem 2 of O’Malley [29] that the solution u(z) of (2.1.1)

has the representation

w(z) = G(z) + €™ 'Gy(z) exp (—% /o. ‘/a,(,._l)(s) d.s)
+e™"1Gy(z) exp (—i— /‘.1 ‘/a,(,._l)(s) d.s) . (2.2.7)

where the functions G, G;, and G3 have asymptotic power series expansions in ¢
and are sufficiently differentiable for z € [0,1]. For convenience we will write this in
the form

u(z) = G(z) + E(z) + F(z), (2.2.8)

where for z € [0,1]} and j = 0,1,..., we have

|G<i)(z)| <C, (2.2.9)
lE(j)(x)l < Ce™ " exp(-az/e), (2.2.10)
|f<f)(z)| < Ce™ Vi exp(—a(l - z)/e). (2.2.11)
Thus, for z € [0, 1],
luU)(x)l <C, forj=0,....m—1. (2.2.12)

2.3 A Necessary Condition on an Equidistant Mesh

In this section, we consider the numerical solution of (2.1.1) on an equidistant mesh.
We show that, if a typical difference scheme is uniformly convergent of sufficiently

high order in the discrete maximum norm, then certain coefficients of that scheme



must have an exponential nature. This generalizes a result of Doolan, Miller and
Schilders [10], who considered the case m = 1.

Assume that G1(0) # 0 and G3(1) # 0, so that |u™(z)]| is not bounded uniformly
in € for z = 0 and z = 1. (For otherwise the problem is better behaved and is easier
to solve numerically.)

Let the mesh be {z; : z; = th, fori = 0,..., N}, where N is a positive integer.

Let the difference scheme be
- ™ un(z;
(-1) e’a.-(p)-—h,-'}',.i—'l

™1 (ag(m-1)(2:)8™1un(z;))

+H-1)™! hIm-3

+LY un(z;) = f(z;), fori=m,...,.N-m, (23.1)
with some appropriate discrete boundary conditions, where
6r(zi) = r(zi + h/2) - r(zi — h/2),

and L¥ is any standard approximation to L, satisfying

(LY - L)w(z:)| < Mh, fori=m,...,N —m, (2.3.2)
with
- 16)] . : -
M—org.a%(l{lu (z)|. forj=0,...,2m 2}.
We have

Lemma 2.3.1 Let u be the solution of problem (2.1.1). Recall our assumption that
G1(0) # 0 and G3(1) #£ 0. Let {un(z;):¢=0,1,...,N} be a solution of (2.5.1).

Suppose that uy converges to u, uniformly in ¢, with order greater than m —1 in the

21



discrete marimum norm. Then for fired p = h/c and each fizedi € {m,...,N -m},

3
lim i(p) = (;ifh%ﬁ) (2.3.3)
and
3
lim ox—i(p) = (ﬁfﬁ) . (2.3.4)
where

h h y
Po = ;‘ /az(n_l)(()) and py = 'e‘ az(u—l)(l)'

Proof. Fix p > 0 and i € {m,..., N — m}. Since uy converges to 4, uniformly in ¢,
with order greater than m — 1 in the discrete maximum norm, we have
LY un(zi) = L u(z:) + O (h™~1A™>"43)
= Lyu(z;) + O(he™™*!) + O(h™™*?),
by (2.3.2), with M < Ce~™*! from (2.2.8) - (2.2.11). Hence
LY un(z:) = Liw(z;) + O (h™™*?)
= 0(h~™*?),
since |Lyu(z;)| < Ce™™*2, from (2.2.8) - (2.2.11).
Multiplying (2.3.1) by (-1)™h?™-2, we obtain

g;f’i)""'ux(xi) = 8™ (Gagm-1)(2i)6™ " un(2:))

= (=1)™h™2 (f(z;) - LY un(z:))
= 0(h™). (2.3.5)
Moreover, our assumption of uniform convergence with order greater than m —1
implies that

lim g™y N (2) = lim g™+ ™ u(z;) (2.3.6)
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and

lim e™™ 6™ (ay(m-1)(2:)6™ " un(z:))

h—0

= li_rge"‘“"‘&"‘“ (a,(,._,)(z.-)6""1u(z,~)) . (2.3.7)
On the other hand, from the decomposition (2.2.7),

,l.in}’ ™5™ y(2;) = G1(0)6*™ exp(—pof) (2.3.8)

and

:l.i.'f'oe_nﬂr—‘ (az(u-x)(z.')é"‘“u(x.-))

= G1(0)a3(m-1)(0)6™ 2 exp( - poi). (2.39)

Combining (2.3.5) - (2.3.9) yields

{p36""" exp(—poi) p*0(h™) }
§2™ exp(—pot) e™=1G,(0)63™ exp(—pot)
_ Paexp(—poi) (exp(po/2) — exp(—po/2))™?
exp(—poi) (exp(po/2) — exp(—po/2))™
= (2L
sinh po/2

fim, 7(p) = fr

which completes the proof of (2.3.3). Then (2.3.4) can be proven similarly. O

An exponentially fitted scheme can be constructed in the following way on an
equidistant mesh. Consider a Galerkin finite element method with a bilinear form
based on approximating the coefficients in (2.1.1a) by piecewise linears. The basis

functions are simplified L-splines defined by

3 (2m)

el (3m-3)

- 53(--1)%. =0, forze (zb—lazb)’

with some boundary conditions, for k = 1,..., N, where Ga(m-1) i8 a piecewise

constant approximation of ay(m_1)(z). When m = 2, this scheme is much simpler
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than that of Roos and Stynes [35]. One can prove that it is uniformly first order
convergent in a weighted energy norm and uniformly second order convergent in the
usual discrete maximum norm, by employing an analysis similar to that of Stynes
and O’Riordan [43]. However, the resulting scheme is still complicated because of
the exponential fitting factors. In Section 2.5, we shall show that one can obtain
uniformly convergent numerical solutions on a certain piecewise equidistant mesh

without requiring any exponential factors in the scheme.

2.4 A Galerkin Finite Element Analysis on an Arbi-
trary Mesh

To construct a Galerkin finite element method for (2.1.1), we first work with a

general finite-dimensional approximation space SN C HJ®, on an arbitrary mesh
XM: 0=zo<zy<---<zN1<2zN=1.

Set hy =z;— z;_y,fori=1,...,N, and H = max; h;. For each i, denote by I; the
subinterval [z;_y, zg).
To take into account the effect of quadrature errors, we define a modified bilinear

form AN(-,-)on H® x HJ by
A¥(v,w)=¢? (v("‘), w("‘)) + (a:’(,‘_,)v(""), w(""l)) + A¥(v,w),

where
”m

Al'(v,w) = Z (ag(-—h)ﬂ"('-.“) + “:'(n-h)"("“), w("'"'))
k=2
and a¥ denotes a piecewise polynomial approximation of a, for r = 0,1,...,2(m~1)

respectively. For each r, these approximations are assumed to satisfy
|(a¥ —a,)(z)| < Chl, forzeLandi=1,...,N, (2.4.1)
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where [ is a fixed positive integer.
It is easy to see that the modified bilinear form A¥(-,-) is uniformly bounded,
ie.,
|4 (v, w)| < Cllloll} - lllwlll, VYo,w € H. (242)
We show that AYN(-,-) is also uniformly coercive over H x HJ*.
Lemma 2.4.1 There erists a positive constant hg (independent of €) such that for
H < hg, we have

Clloll* < A (v,v), Vve HE.

Proof. Let v € HP be arbitrary but fixed. Now

AN (v,0) = Ay(v,v) + (AN - A,) (v,v). (2.4.3)

For the second term of (2.4.3),

[(AY - A.) (v,0)|
= | ((alm-1) — 33m-1) ™D, 6D 4 (4 = A1) (v, )
< CHY||v|3_,

< CH|llol®

Combining this with (2.4.3) and Lemma 2.2.1 completes the proof. O

We are now in a position to introduce our approximate solution: find uy € S¥

such that
AY (uw,v) = (fY,v), VYoes¥, (2.4.4)

where fN is defined analogously to a¥ in (2.4.1).

It follows from Lemma 2.4.1 that uy is well defined.
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We begin the error analysis with a standard finite element estimate. We give
details of the proof here so the reader can see that certain constants are independent

of €.

Theorem 2.4.1 Let u be the solution of problem (2.1.1) and uy € SV the solution
of our method (2.4.4) on an arbitrary mesh X¥. Then

e - unill < C'iensf,|llu—vlll+CN". (2.4.5)
Proof. Let v € SN be arbitrary. Then by Lemma 2.4.1,
Clilo - unll?
< AY (v - uN,v - up)
= AN(v-u,0—un) + (AN - A,) (u,v - un)
+A.(u,v— uy)— AN (uy,v - uy)
=AN(v-u,v-uN)+ ((a;"(__,, - a,(,._l)) u(™=1) (p - u")('l-l))
+(AY - A) (w0 —un)+ (f - fN,0—un)
< Clilo = wlll - ilo = wwlll + CN | ullm-1llo = ¥nllm-1
+ CN7Yv - unllo
< ¢ (lllo = ulll + ¥~) lllo - wnlll
using (2.4.1), (2.4.2) and (2.2.12). Hence
lllo - uwlll < Clllo - il + CN .
Then
lw = unlll < |llw = ofif + e - wnlll
<Clllu-vll| +CN~L.
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Since v € SV is arbitrary, (2.4.5) follows. O
2.5 Uniform Convergence Results on a Shishkin Mesh

For arbitrary meshes and general approximation spaces, (2.4.5) will not yield a
bound which is uniform in . To achieve such uniformity (in various norms), we
shall work with piecewise polynomial spaces on a special piecewise equidistant mesh.

The construction and analysis of such meshes was initiated by Shishkin [37].
2.5.1 The Mesh

Given a positive integer N which is divisible by 4, the Shishkin mesh X is con-

structed by dividing the interval [0, 1] into three subintervals
[0,0], [0,1-0], and [1-o,1].

Equidistant meshes are then used on each subinterval, with N/4 points on each of

[0,0] and [1 - 0,1], and N/2 points on [0,1 — o). The parameter o is defined by
o=min {1/4, (m+1)a~'clnN},
which depends on £ and N. More explicitly, we have
Xf:0=z9<zl<...<z.-o<...<zy_.-,<...<z"=l,
with ig = N/4,z, =0, zN_4, =1 — 0, and
h;=40N7!, fori=1,...,ig,N-ig+1,...,N, (2.5.1)

hi =2(1-20)N"!, fori=ig+1,...,N —ig. (2.5.2)



This mesh is much simpler than other graded meshes which have been used for
singularly perturbed two-point boundary value problems, such as the Bakhvalov
mesh; see Bakhvalov (2] and Herceg [21], and the Gartland mesh [17].
We shall assume that
o=(m+1)a~leln N. (2.5.3)
For otherwise £~! < 4(m + 1)a~'In N, i.e., N~} is small relative to £, which is
unlikely in practice (and in this case the method can be analyzed in the classical

way).
From (2.5.1) - (2.5.3), one can easily see that the interval lengths satisfy

hi=(m+1)a'eN'lnN, (2.5.4)
fori=1,...,89,N—t9o+1,...,N,and ,
N'<h<2N7}, (2.5.5)
fori=19+1,...,N — 1.
2.5.2 Interpolation Error Estimates

We use standard approximation theory to estimate the interpolation errors in the
weighted energy norm ||| - ||| and the Sobolev norm || - ||m-1 on the Shishkin mesh.
However as we shall see, the analysis is not entirely straightforward.

Since the solution of the weak formulation (2.2.6) lies in HJ*, we define our

piecewise polynomial approximation space by

SN = {v(z) € HP : v|g, € Pr(L;) for i = 1,...,N},



where Pr(Il;) is the set of polynomials of degree at most R on I; and R is some
positive integer. In order to guarantee that S¥ ¢ C™-! C H™, we assume that
R>2m-1.

Consider a finite element (X;, Pr([;), I;), where I; is the set of degrees of freedom.
It will be assumed that the set ¥; is Pr—unisolvent, for i = 1,...,N. Let s; be
the greatest order of derivatives occuring in the definition of £;. From the Pp-
unisolvence of the set ¥;, we have R 4+ 1 > s;. Given v € C%(I[;), we denote by
Il;v the Pg-interpolant to v on ;. Set s = max{s : i = 1,...,N}. Then for
v € C*%(0,1), we will denote by II¥v the piecewise polynomial interpolant from S¥
to v. This interpolant satisfies (IIVv)|y, = Miv|y, fori=1,...,N.

Denote by || - ||j0ez; the maximum norm on C#(I;), with the usual associated

8eminorm | - |;,ee,7;- We have

Lemma 2.5.1 Let k be an integer satisfying R+ 1> k > 8;. Let v € C*U;). Then

there ezists a constant Cy, which is independent of h; and v, such that
v = Mivl g, < Coht ™ [0ly g, » (2.5.6)
fors=0,1,...,k.

Proof. From Theorem 3.1.5 of Ciarlet [7], (2.5.6) holds for R+ 1 > k > &;. The

case k = 3; can be shown by a similar argument. O

We remark that Lemma 2.5.1 is valid on an arbitrary mesh.
Next, we use Lemma 2.5.1 to estimate s — 1Y u on each interval I; of the Shishkin

mesh of subsection 2.5.1.



Recalling (2.2.8) - (2.2.11), we see that
|u("")(z)| <Ce™ 1, forze0,1) (2.5.7)

and

[ie™2)| <C, forzelon1-al, (2.5.8)

where g, = min {1/4,(m + 1)a~'¢In(1/¢)}.

Consider the realistic situation when N-! > ¢. In this case, we see that
[0¢,1-0,] C [0,1 - 0]. Consequently, as ¢ — 0 with N fixed, |ul9)(z)| is unbounded
for j > m when z € J; = ([0,0,)U (1 — 04,1 — 0]). Recall that the Shishkin mesh
XN is coarse on [0,1 — 0]. In particular, it is coarse on J,. It turns out that a
direct application of standard approximation theory to u yields suboptimal results
on J,. In the proof of Lemma 2.5.2 we shall need an asymptotic decomposition of
u in order to achieve the desired optimality. The estimate (2.5.6) with k = s; then
plays a special role in our error analysis.

Set

s=max{s:fg+1<i<iand N-4; +1<i< N -ip},

where i) = max {i : I; N (0,0,) # #}. We will assume that § = m — 1, so that (2.5.6)
can be used with k = m — 1 for those coarse subintervals I; where |u("‘)(x)| is

unbounded as ¢ — 0.

Lemma 2.5.2 Let u be the solution of problem (2.1.1). Leti € {1,...,N}. Then
on the Shishkin mesh XN, we have

£lu—Tnly, oz, SC(N“'In N)™ (2.5.9)



and

|u - M| < Ch™ Y (N-'la N)y™¥, (2.5.10)

jvo0 kg

forj=0,1,...,m—1.

Proof. Consider first the fine portions of the mesh, i.e., suppose that i € {1,...,ig}U
{N —ig+1,...,N}. Then it is clear, on taking k¥ = 2m in (2.5.6) and using (2.5.4)
and (2.5.7), that (2.5.9) and (2.5.10) hold.

Now suppose that we are on the coarse part of the mesh, i.e., suppose that
1€ {ig+1,...,N —ig}. We discuss two cases.

Case 1: N™! < ¢. Then [0,1 -0} C [0,,1 ~ 0,]. Hence
[%lam00,;; < C, for I; C[o,1 -] (2.5.11)

It is easy to see, on again taking k = 2m in (2.5.6) and using (2.5.5) and (2.5.11),

that

|6 - M|, ;. < CRMI"IN-™1, (2.5.12)
Jioo B (

for j =0,1,...,m, which implies (2.5.9) and (2.5.10).

Case 2: N-! > ¢. By the same argument as in Case 1, one can show that (2.5.12)
still holds fors € {i1 +1,...,N — i1 }.

Now suppose that i € {ig+ 1,...,02} U{N — 41 + 1,...,N — i)}, i.e., we are
dealing with the intersection of the coarse mesh and the boundary layers. Here we

need the decomposition (2.2.8). Write II;u in the form

Myu = ;G + ILE + I F, (2.5.13)
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where II;G, II;E and II;F denote the Pg-interpolants to G, E and F respectively.

We shall separately bound |G — G|, o 1;» |E — IKE|

j,00,1

j=0,1,...,m.

Firstly, by (2.2.9) and arguments similar to those of Case 1, we have

|G - I,G| < ChPIIN—™-1,

jroo I

forj=0,1,...,m.

and |F - II;F|; o 5, for

(2.5.14)

Secondly, we estimate |E — II,E|; , ;.. For j = m, we obtain, from (2.5.6) with

k=m,
IE - “‘.E'“v“rt‘ S C 'EL‘QGJ‘ °

Since I; C [0, 1], we get by (2.2.10)

|E = TGE|py o1, < Ce~'exp(-ao/c)

= CE-"N_--I,
by (2.5.3). For § =0,1,...,m — 1, using (2.5.6) with k=m - 1,

|E ~ iEl; s, S CHY ™77 | Elpy
< Ch? ¥ exp(-aa/e)

= Ch-"_"-l N—ﬂ—l'
Similarly, one may show that
|F = TF|p gz, < CeT'N™™1

and

|F = TFj 0 5, < CAP-3IN—™1,
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(2.5.17)
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forj=0,1,....,m-1.

Combining (2.2.8) and (2.5.13) - (2.5.18) yields
elu—Tul, oz SC(ENT™+N™™1)

and

ju — Miu| < ChPi-IN-m-1

iv“»’i
forie {io+1,...,55JU{N-41+1,...,N—io} and j € {0,1,...,m - 1}.

This completes the proof of Case 2. Combining Cases 1 and 2 yields
els— ity o, SC(eN™+ N7™1)

and .

lu - Mul; o 4, < CATIIN—™1,

foralls € {to+1,...,N—ig} and j € {0,1,...,m—1}. Recalling the first paragraph

of the proof, we are done. D

The next result follows immediately.

Corollary 2.5.1 Let u be the solution of problem (2.1.1). Let TIN u be the piecewise

polynomial interpolant from SN to u on the Shishkin mesh XN. Then
llle - T¥ull] < C(N"'In N)™

and
llu = ¥ tf|m_y < C(N~'In N)™+1,



Remark 2.5.1 Recall that S¥ contains piecewise polynomials of degree 2m — 1.
Away from the boundary layers the mesh is in practice coarse, with diameter O (N 1).

Consequently it can be seen a priori that one cannot do better than
o = TN u|jm-y < CN~™"1, (2.5.21)

Our estimate (2.5.20) thus shows that the Shishkin mesh is at least almost optimal,
in the sense that no mesh consisting of O(N) points can improve on (2.5.21).

2.5.3 Convergence Results

We first present a uniform convergence result in the weighted energy norm ||| - |||

Theorem 2.5.1 Let uy € SN be the solution of our method (2.4.4) on the Shishkin
mesh XN. Then for N sufficiently large (independently of ), we have

lllu—unlll < € (N N)™ + N~'). (25.22)

Proof. The result follows immediately from Theorem 2.4.1 and Corollary 2.5.1. O

Remark 2.5.2 Suppose that we use a sufficiently accurate quadrature rule, so that
! > m. Then our polynomially based method on a piecewise equidistant mesh is
optimal, in the sense that (2.5.19) and (2.5.22) correspond. In the terminology
of Babuska and Suri [3], it is robust (uniformly convergent) with uniform order
(N=In N)™ in the weighted energy norm ||| - ||| and only shows a slight amount of
locking, viz., order (In N )™,

Recalling (2.5.20), one may expect that ||u — un||m—1 has a higher order of

uniform convergence than that implied by (2.5.22). However, for the problem (2.1.1),
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one cannot in general use an Aubin—Nitsche approach to show that ||t — 4 x|lm—1 has
a higher order of uniform convergence than ||ju — un||| on an arbitrary mesh. For in
Stynes and O’Riordan [42] an example is presented with m = 1 and piecewise linear
functions on an equidistant mesh, where it is shown that ||u — un||q and |||u — up|||
are both O(N/3). Here || - ||q is & discrete L? norm.

We shall see that on a Shishkin mesh one does in fact achieve a higher order
of convergence in || - ||m-1 than in ||| - |||. However it does not seem possible to
prove this via an Aubin-Nitsche argument, since to get sharp interpolation error
estimates one needs a decomposition similar to (2.2.8). We shall instead show that
this higher order convergence occurs by using an analysis similar to that of Stynes
and O’Riordan [43].

Since S¥ C C™-1(0,1), it is natural to assume that the set T; includes pt/)(z;_,)

and pli)(z;), for p € Pr(l;) and j = 0,1,...,m — 1. Hence for v € C*(0,1),
(M¥0)D () = o)(z), (2.5.23)
fori=0,1,...,Nand j=0,1,...,m - 1.

Theorem 2.5.2 Under the same hypotheses as Theorem 2.5.1,

WM s - unll| < C ((N“ In N)™" 4+ N-') , (2.5.24)
v = wnllms < C (N N)™" 4 N7) (2.5.25)

and
% = u¥llm-2ee < C ((N'In )™ + NY). (2.5.26)



Proof. By the coercivity of AN(-,-) over H* x HJ®,

ClIMVu — uy||? < AN (MM u — uy, M¥u— upy)
= A¥ (IVu - «,MVu - uy)
+AY (w - un, ¥y — uy). (2.5.27)
We bound these two terms separately. First
AN (M - u, INu — uy)
= (e’ (MMu - u)(”) ,(MNu - un)("))
+ (a:{m_l) (N - u)(u-l) ,(MVu - uu)(“_‘))
+AY (MVy - «,u - up)
= (ag’(,__l) (M¥w - u)("-‘) (M w - uu)("-l))
+AY (V4 — w, TV - uy),
by (2.5.23) and using integration by parts, since (ITNu — uu)(’”) = 0 on each subin-
terval (z;-1,2;). Hence,
AV (Vs - o, - upy) < CIMu = vl T4 — tx|lm—1
<C(N ' N)™ |10V - up|l}, (2.5.28)
by Corollary 2.5.1.
Secondly,
AY (v - uy,Nu - uy)
= (AN - 4,) (v,T"u - up)
+A, (v, Vg - uy) — AN (uw, M¥s - uN)

36



= ((“ﬁm-x) _ a’(m_l)) u™-1) (NN - “N)(m-l))
+(AY - A1) (v, Mu—un) + (f = N, TVu — up)
< NN — wnlll, (25.29)
by (2.2.12) and (2.4.1).
From (2.5.27) - (2.5.29), we obtain (2.5.24). Combining (2.5.24) with (2.5.20)

yields (2.5.25).

Note that for all v € H*,

NoNlee < l9lj41 < livllj41, forj=0,...,m—2. (2.5.30)
We therefore have from (2.5.25)

(% - ww)? |loo < llu = unllisa

<C((N'mN)™+ N ), forj=0,...,m-2

This completes the proof of (2.5.26). O

Remark 2.5.8 Consider the case m = 2. Ifl > 3, then (2.5.25) shows that we
obtain uniform convergence of almost third order in H!. This is in contrast to the
first order uniform convergence in H! obtained by Roos and Stynes [35] using a
much more complicated scheme. QOur uniform convergence rate is also significantly

better than the O(N'/3) rate obtained by Semper [36].

When [ is odd, we can obtain a stronger convergence result, provided that G3(m-1)

is now approximated to a higher order of accuracy than the other a, in (2.1.1).
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Theorem 2.5.3 Let u be the solution of problem (2.1.1) and uy € SV the solution

of (2.4.4) on the Shishkin mesh X,". Assume also that fori=1,...,N,
|(a2N(m—l) - 0:(--1)) (1)| <Ch*, forzel, (2.5.31)

<Ch*?,  forr=0,1,...,2m -3, (2.5.32)

/.‘ (a¥ - a,) (2)dz

[ " -n@a

841

< Chit, (2.5.33)

Then for N sufficiently large (independently of ), we have

™ - wlll < € (V1 MY 4 N1, (25.34)
% = unllm-s < C (V10 N)™ 4 N711) (2.5.35)

and
e - ullm-2,0 < C (N1 In N)™* 4 N11) (2.5.36)

Remark 2.5.4 It is well known in the contezt of Newton-Cotes integration rules
that properties (2.5.32) and (2.5.33) are easily achieved using piecewise polynomials
of degree | — 1 when | is odd.

Proof of Theorem 2.5.3. Recalling the proof of Theorem 2.5.2, we only need to show
that

AY (w - upn, V% — up) < CN7Y||INw - up]l. (2.5.37)
Here

AN (u~uy, TNy - uy)

= ((a;'(’--l) - “:(m-l)) w1 (Ve - .N)(ﬂ-l))

+(AY - A1) (v, M~ wn) + (f = ¥ 16— wn).
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It is easy to see that

- -1
|((aftm-1y — @3tm-) 5™, (1 — u) )|
<CN IV u - unfmess
by (2.2.12) and (2.5.31).
We now bound |(AY - 4;) (u,1T¥u - ux)|. Fix i € {1,...,N}. Then set

{ ]
a,(z):/ (a!—-a,)(t)dt, forr=0,1,...,2m - 3.
[/

=1
We have
8(zi-1) =0, |sn(2)| < Ch{¥?
and

lse(z)] < Ch{FY,  for z € (2i-1,2:),

by (2.5.32) and (2.4.1). Hence

g /-:-n ((oBtmsror = armiyen) w0 + (s — ey =)

(N ~ uN)("_.) (z)da:l

= - (m—h+1) (m—h) s — )™ (™
Z;{(’a(-—b)ﬂ" + Sx(m-n)t )(t)( ¥ —up) (t)| .
& -—
= [ (oamonyr 8™ HD 4 sy yu™E4Y) (2) (1% - )" (2) de

83

_ /o. (a!(m-b)+l y(m—b+1) + ,’(‘-b)u(n—b)) (z) (nﬂu - "")(n—H»l) (z)dz}

)
SCRF?Y lullm-st1,00 1TV = 4N lm b0
k=2

+Chi*! f: {
h=2

+ / " ([ r )] + | H)|) |17 - )= dz}.
85y

/m‘ (Iu(ﬂ-ﬂi)(z)| + |u(ﬂ—b+l)(z)|) dz “H"a — ¥l mbeo

8-1
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Therefore,

(¥ - A1) (w.T%u = uy)|

N ™
SCY A lullm-brr, ool TV s = uN]lmoiee

i=1 h=2
+C ,‘i hi+1 g { ("u(m—uz) "L‘lo. . + "u("-bﬂ)"u[.' ‘]) % = wx oo

+ ([tlm-rs1 + |ulm—s) [T - upy |...-:.+1}

<CN? ||IINu - uN”

m-1"'

by (2.2.8) - (2.2.12) and (2.5.30).

The term (f — fN,I¥u — uy) is handled similarly. This completes the proof of
(2.5.37).

Combining (2.5.27), (2.5.28) with (2.5.37) yields (2.5.34). Then (2.5.35) and
(2.5.36) follow from the arguments similar to those of Theorem 2.5.2. O

Corollary 2.8.2 Let u and uy be defined as in Theorem 2.5.3. Then under the

same hypotheses as in Theorem 2.5.3,
lilw = walll < € (N1 N)™ + NI1).

Proof. Combining (2.5.19) and (2.5.34), the result follows. O
2.5.4 A Special Case: s; =m — 1 for each s

In this subsection, we give some results for finite element discretizations based on

the following Hermite basis function space:

VN = VooV @...0 Vi,



where V, = linear span of {¢} :i=1,...,N—-1},forr = 0,1,...,m — 1. The basis

functions {7}, for r = 0,...,m — 1, are defined by

h2 Emr ('—'E."‘) , for z € (i-1,2:), (2.5.38a)
G = | (-17hEabms (BE52),  for 2 € (20 2ina), (2.5.38b)
0, elsewhere, (2.5.38¢)

where &, o (3) satisfies

€3™)(s) =0, forall s € R, (2.5.39a)
€0.0)=0 and £9.(1)=6,;, forj=0,1,...,m-1. (2.5.39b)

From (2.1.5.3) of Stoer and Bulirsch [39], one can for example easily compute the

following explicit formulae for {m ().

m “ r=0 r=1 r=2
1 )

2 s*(-25+3) $(s—-1)

3 || s°(6s* — 158+ 10) | s%(s — 1)(—3s+4) | s°(s — 1)*/2

When m = 2 (i.e., we consider problem (2.1.2)) and | = 1, we can sharpen
Theorem 2.5.1.

We define a discrete H!-norm by

=1

N-1 1/3
vlg, = {Z (hiM (v - via)' + ﬂsw.?)} ,

forall v = YN ! [vip2(2) + wipd(z)] € V¥, where by = (hi + his1)/2. By a

calculation, one may show that for all v € VN,

V2/15|vl4, < Ivh £ V7/5]vlq,. (2.5.40)
That is, on V¥ the discrete H-norm |- |4, is equivalent to the usual seminorm |- |;.

41



Theorem 2.5.4 Let u be the solution of problem (2.1.2). Let uy € VN be the
N withm = 2. Let

e

solution of (2.4.4) on the Shishkin mesh X
aV(z)= M%a—(—-n-), forz € (zi—y,z;) and i =1,..., N,

with similar definitions of ¥V (z), ¥ (z) and f¥(z), sol = 1. Then for N sufficiently

large (independently of € ), we have
llls - unllf < CN-32
Proof. We shall prove that
NIMNu — unll| < CN-33, (2.5.41)
From (2.5.27) and (2.5.28) with m = 2, we need only bound

AY (u - un,TNu - upy)
_ (f _ f",ﬂ”u _ "N) + ((aN _ a) ul’ (IINu - uu)l)

+((ON - 0) ' + (N —c)u,MNu—uy). (2.5.42)
Recalling the proof of Theorem 2.5.3 with | = 1, one may see that
|(f- NV —un) + (VY =) w' + (N - ¢) u, MNu— uy)|
< N2 u — upl|l. (2.5.43)

We now examine the term ((a” —a)u,(MNu - uu)'). The term is split into

three parts:

((a” —a)e, (MNu - tm)')

/.‘o (a¥ - a) (z)w'(z) (MNu - wv)’ (z)dz
o
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+ /T"‘o (aV - a) (2)u'(z) (TVu — wp)' (z) dz
+ /1 (a¥ - a) (2)¥'(z) (MIVw - wp)' (z) dz (2.5.44)
1-a

Fix i € {1,2,...,N}. In what follows, we shall denote by Z; any quantity of

O(h‘?). Also set z;_y/3 = (21 + 7;)/2. Forz € (2i-1,2;), we have

(a¥ - 6) (2) = (zic1ya — 2)a'(2) + Z

Set
r(z) = / (%i-1/3 — t) dt, for z € [xi-1, 23]
®-1
Then

r(2i-1) = r(z;) = 0 and |r(z)| < Ch,?, for z € (%1, %;).

We are ready to bound the first term of the right hand side of (2.5.44). For ¢ €
{1,...,4},

/.‘ (a¥ - a) (z)u'(z) (INu - un) (z)dz

-1
L]

= (Zi-1ys = z)a'(2)v'(z) (TNw - wn) (2)dz

8i-1

+/" Z; (MVu - wy)' (z)dz

-1

=T / " o) (@@(2)) (T - u)' (2) dz

- /.‘ r(z)a'(z)u'(z) (Il”u - 3)1)"(3)“

&1

+[ Z: (MVw - wy)'(z) dz.

We have by (2.2.8) - (2.2.12) and (2.5.4)

- , ,
/ r(z) (a'(z)w'(2)) (“Nl - uy) (z)dz
=1
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7
< Chie™? / l(ﬂ"u - u;v)'(z)l dz
®i-

2 L
<C(N"'lnN) e/
8-y

|(H"u - un)'(z)l dz

and

®i N
/ r(z)a'(z)u'(z) (MNu — un) (z)dz

81

<Ch /" (%% - un)" (2)] de

3 4 [™
<C(N'InN) e’/

®-1

|(H"u - un)"(z)l dz.
Therefore,

I/% (a¥ - a) (2)v'(z) (MM u - un) (2)dz
0
<C(N I W) (™% = un )z, omg) + N8 = 48) s fo,01)

<C(N'InN) || u - unlll. (2.5.45)

Similarly

/1 (@™ - a) (2)w'(z) (TVu - un)' (2) dzl
1-84

<C(N 'InN)*ef||T¥u - upl]l. (2.5.46)

In order to estimate the second term of (2.5.44) more carefully, we use the de-

composition of (2.2.8). Then
/1-% (a¥ - a) (z)v'(z) (MM u - un)'(z)dz
®i e ,
= / (a¥ - a) (2)G'(z) (MVu - un)' (z) d2
%% oo '
+ / ‘ (a¥ - a) (z) (E"(2) + F'(z)) (MNu - uy) (z)dz. (2.5.47)
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We bound these two terms separately. Let i € {ig +1,..., N — ip}.

Firstly, we have
|E'(z) + F'(z)] <CN73, for z € [z;,1 — 2],

by (2.2.10), (2.2.11) and (2.5.3). Hence

/ e (a" - a) (2) (E'(z) + F'(2)) (M1Vw — un)' (z) dz
Big

<CN™* " (M - “")’"Ll[-.',,.l-u.,l

< CN~YIMNu - up]|]. (2.5.48)

We now bound the first term of (2.5.47). We introduce some notation. Set

¢ =IYu~ uy. Since VN = Vu @ V; (recall m = 2), we can write ¢ = €9 + €; where

eg € Vo and €; € V;. These ep and e; are uniquely determined by q. Then for each
s

/.‘ (a¥ - @) (2)G'(z) (T u - uy)' (z) dz

-1
L0

= [" @i - D) (D) (2)dz + [ Zig(z)dz

oy e
- / (2io1/2 - 2)a'(2:)G (i) (2) dz + / Zi/(z) dz
851 8-

= (@G @) [ (zicays - 2) (eb(z) + €l(2)) dx + / " Zid(z)ds.

T i1

(2.5.49)
Now for z € (23, z;),
eo(z) = eo(zi—1)i_1(2) + eo(zi)el(2),

with

) _1(z) = b2 (%‘h: z) and @%(z) = a0 (z -’:,-_l) .
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Since %22(s) = 6s(1 - 5) = —-%22(1 - ),
eo(z) = hi [eo(zi) — eo(zi-1)])6s(1 — 8),

where 8 = (z — z;_1)/h;. But 6s(1 - 3) is symmetric about s = 1/2, while z;_,/3 -z

is antisymmetric about r = z;_, /3. Consequently in (2.5.49),

- (zi—173 — z)eg(z)dz = 0. (2.5.50)

81

Next,

/' " (@i1ja - 2)el(z) de

J=i-1

= [ Gap-0 ¥ @) @) @)z
®i-1

= Z e(z5) - (2icaj2 = 2) () (z) dz

j=i-1 ®i-1

= [e}(z:) - €}(zi-1)) /'; h? (% - a) (i‘%:i(.g)) ds

= Kh? [e}(z:) - e}(2i-1)]

where the fixed constant K = [} (} - s) (‘-%l(s)) ds.
Combining this with (2.5.49) and (2.5.50), we get

/‘-.‘o (a™ - a) (2)G'(2)¢'(z) d=
.,

N-—sg . .
=Y {a'(z.-)c"(z.-) [ @an-sa@dss [ z.-q/(z)dz}
i=io+1 8-y 8-
N-—io
= 2 {Ix’h,?a'(z;)G’(z;) [€3(2i) — €l (ziza)] + Zﬂl'(z)dz}
i=io+1 &1
N+—t'o-l
=K Y ei(z) [hla'(2:)G'(2i) - hl110'(2i41)G (2in1))
i=ig+1
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+K [h_io8 (TN -4 )G (TN-io )e1 (TN —io) — B, 410" (Zio41)G' (Zio 41 )€1 (%i0)]

N-—4o P
+ Z / Ziq'(z) dz.
i=ig+1 " ®i-1

But |a'(z)G'(z)| < C for z € [0,1), hy = O(N~?) fori = ig 4+ 1,..., N — ip, and

la'(2:)G'(2:) — @'(2i41)G'(zi41)| SCN-Y, fori = ig+1,...,N — ig — 1. Hence

/.l—.io (a¥ - a) (2)G'(2)¢(z) d=

o
N-ig-1
SCN™* Y Jei(zi)l + CN7? [lef(zn—io)l + lef (zio)I]
t=ig+1

+CN ¢ llLrpo, )

N-ig-1 1/3 /N_ig—1 1/3
scN—’( 3 i;.-) ( ) fqe{(z,-))

t=to+1 t=io+1

+CN7IN 2l lla, + CN72||¢'lI2p0,1)
< CN~*3Y € |la, + CN2llqlll

< CN=¥||glll.

Substituting this and (2.5.48) into (2.5.47) yields

1-miy ’
/ (a¥ - a) (2)u'(z) (MNu - un) (z)dz

< CN¥)| My - wpl|l. (2.5.51)
Combining (2.5.44) - (2.5.46) and (2.5.51), we get
|((a"' —a)w, (N - u,,)')| < CN-¥Y| |\« - unll]. (2.5.52)
Consequently, from (2.5.42), (2.5.43) and (2.5.52), we obtain
AY (w - un,IVu — wy) SCN32 N w - up|l.
This completes the proof of (2.5.41). Recalling (2.5.19), we are done. O
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Remark 2.5.8 Numerical results of Section 2.6 show that the result of Theorem
2.5.4 is sharp.

2.6 Numerical Results

In this section we present numerical results for the method (2.4.4) with Hermite

basis functions (see subsection 2.5.4) applied to problem (2.1.2), with
a(z) = 1+ 2(1 - z), bz) = (z) =0,

where f(z) is chosen so that the solution of (2.1.2) is

_ _Jexp(=z/¢) +exp(-(1 - z)/¢)

o) = e EE RO )
1-exp(-1/¢)
1+ exp(-1/e)

(1 -2z)+ 231 - z) .
This u(z) exhibits typical boundary layer behaviour.
Set
N-1
un(z) = ) [un(zi)el(z) + un(zi)ed(2)] -
=1
The method (2.4.4), with m = 2, may be written in the form
riun(zio1) + riun(zi) + rFun(ziz)
+7 un(zio1) + tfun(z:) + tf un(zina) = Fu,
P uN(Zic1) + piun(i) + p un(zis1)
+g7 un(zi-1) + fun(z:) + ¢f wiy(zin1) = Fai,
fori=1,...,N-1. The coefficients r, t, p, q, F; and F; are some linear combinations

of €2 and point evaluations of a, b, ¢, and f, since only polynomials are used as our

basis functions. The coefficient matrix of the scheme can be easily permuted to yield
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a heptadiagonal matrix. The resulting system of 2(N — 1) equations is solved by
Gaussian elimination.

We compute the errors in the following two ways:

(i). The error between the exact solution u(z) and the computed solution un(z)

in the discrete maximum norm,

EY = max |u(z;) - wn(z:)|.

(ii). The error between the interpolant uy(z) and the computed solution un(z) in
the discrete H!-norm,

Ef = |uy — unly,
We calculate the convergence rate tables as follows; see Farrell and Hegarty (14]:

(i). Except for the last row, the table entries are given by the classical convergence
rate,

RN =(mE»™ - EN) /2.
(ii). The last row of each table is the uniform convergence rate,

RV = (nE™ —E¥)/In2,

where EN = max, E,” .
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£ N=8 16 32 64 128
2.50000e-01 | 2.109¢-03 5.367e-04 1.348¢-04 3.374e-05 8.435e-06
6.25000e-02 | 6.626e-03 1.709¢-03 4.313e-04 1.081e-04 2.704e-05
1.56250e-02 | 1.872e-02 3.738¢-03 7.385e-04 1.489¢-04 3.317e-05
3.90625e-03 | 3.537e-02 8.494e-03 2.020e-03 4.796e-04 1.137e-04
9.76562e-04 | 4.058e-02 1.013e-02 2.509e-03 6.208e-04 1.535e-04
2.44141e-04 | 4.195¢-02 1.057e-02 2.642e-03 6.597e-04 1.646e-04
6.10352e-05 | 4.229¢-02 1.068¢-02 2.675¢-03 6.696e-04 1.675e-04
1.52588e-05 | 4.238¢-02 1.071e-02 2.684e-03 6.721e-04 1.682e¢-04
3.81470e-06 | 4.240e-02 1.071e-02 2.686e-03 6.727¢-04 1.684e-04
9.53674e-07 | 4.241e-02 1.071e-02 2.686e-03 6.729e-04 1.684e-04

Table 2.6.1: Errors in Maximum Norm || - ||e for A Scheme

3 N=8 16 32 64
2.50000e-01 | 1.97 1.99 2.00 2.00
6.25000e-02 | 1.96 1.99 2.00 2.00
1.56250e-02 | 2.32 2.34 231 2.17
3.90625¢-03 | 2.06 2.07 2.07 2.08
9.76562¢-04 | 2.00 2.01 2.01 2.02
2.44141e-04 | 1.99 2.00 2.00 2.00
6.10352¢-05 | 1.99 2.00 2.00 2.00
1.52588¢-05 | 1.99 2.00 2.00 2.00
3.81470e-06 | 1.98 2.00 2.00 2.00
9.53674e-07 | 1.98 2.00 2.00 2.00

RV 1.98 2.00 2.00 2.00

Table 2.6.2: Convergence Rates in Maximum Norm || - ||e for A Scheme

Tables 2.6.1 - 2.6.4 present the errors and convergence rates for the A scheme;

this is the method (2.4.4) with the piecewise constant approximations
N(z)= &7—%"’—”9—, for z € (z5-1,z;) and i = 1,...,N,

where p can be a, b, c or f.



3 N=8 16 32 64 128
2.50000e-01 | 6.479e-03 1.673e-03 4.215¢-04 1.056e-04 2.640e-05
6.25000e-02 | 2.099¢-02 5.471e-03 1.386e-03 3.476e-04 8.697e-05
1.56250e-02 | 5.678e-02 1.174e-02 2.332¢e-03 4.800e-04 1.112¢-04
3.90625¢-03 | 1.055¢-01 2.860e-02 7.432¢e-03 1.793e-03 4.185e-04
9.76562e-04 | 1.217e-01 3.629¢-02 1.107e-02 3.304e-03 9.132e-04
2.44141e-04 | 1.260e-01 3.853e-02 1.233e-02 4.022¢-03 1.302¢-03
6.10352e-05 | 1.271e-01 3.911e-02 1.267e-02 4.232¢-03 1.433e-03
1.52588e-05 | 1.274e-01 3.925e-02 1.276e-02 4.286e-03 1.468e-03
3.81470e-06 | 1.275e-01 3.929e-02 1.278e-02 4.300e-03 1.477e-03
9.53674e-07 | 1.275e-01 3.930e-02 1.278e-02 4.303e-03 1.480e-03

Table 2.6.3 : Errors in Discrete H!-Norm for A Scheme

€ N=8 16 32 64
2.50000e-01 | 1.95 1.99 2.00 2.00
6.25000e-02 | 1.94 1.98 2.00 2.00
1.56250e-02 | 2.27 2.33 2.28 2.11
3.90625¢-03 | 1.88 1.94 2.05 2.10
9.76562e-04 | 1.75 1.71 1.74 1.86
2.44141e-04 | 1.71 164 1.62 1.63
6.10352¢-05 | 1.70 1.63 1.58 1.56
1.52588¢-05 | 1.70 1.62 1.57 1.55
3.81470e-06 | 1.70 1.62 1.57 1.54
9.53674e-07 | 1.70 1.62 1.57 1.54

RY¥ 1.70 1.62 1.57 1.54

Table 2.6.4: Convergence Rates in Discrete H!-Norm for A Scheme

We denote by A the method (2.4.4) with the piecewise linear approximations

T — X}

h;

pM(z) = "',; 2 Wzic1) + §zi)s

forz € (24-1,2z;)and i = 1,..., N, where p can be a, b, c and f. Tables 2.6.5 - 2.6.8

give the errors and convergence rates for the A scheme.
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€ N=8 16 32 64 128

2.50000e-01 | 1.065¢-03 2.691e-04 6.745e-05 1.687e-05 4.217e-06
6.25000e-02 | 3.627e-03 8.870e-04 2.180e-04 5.419¢-05 1.353e-05
1.56250e-02 | 1.097e-02 2.321e-03 4.571e-04 8.543e-05 1.699e-05
3.90625¢-03 | 1.648¢-02 4.081e-03 9.883e-04 2.380e-04 5.732e-05
9.76562e-04 | 1.783e-02 4.544e-03 1.134e-03 2.814e-04 6.982e-05
2.44141e-04 | 1.817e-02 4.662e-03 1.171e-03 2.926e-04 7.305e-05
6.10352¢-05 | 1.826e-02 4.692e-03 1.181e-03 2.955e-04 7.386e-05
1.52588e-05 | 1.828e-02 4.700e-03 1.183e-03 2.962e-04 7.407e-05
3.81470e-06 | 1.829¢-02 4.701e-03 1.183e-03 2.964e-04 7.412e-05
9.53674e-07 | 1.829¢-02 4.702e-03 1.184e-03 2.964e-04 7.413e-05

Table 2.6.5: Errors in Maximum Norm || - |je for A Scheme

€ N=8 16 32 64
2.50000e-01 | 1.98 2.00 2.00 2.00
6.25000e-02 | 2.03 2.02 2.01 2.00
1.56250e-02 | 2.24 2.34 242 2.33
3.90625¢-03 | 2.01 2.05 2.05 2.05
9.76562e-04 | 1.97 2.00 2.01 2.01
2.44141e-04 | 1.96 1.99 2.00 2.00
6.10352e-05 | 1.96 1.99 2.00 2.00
1.52588¢-05 | 1.96 1.99 2.00 2.00
3.81470e-06 | 1.96 1.99 2.00 2.00
9.53674e-07 | 1.96 1.99 2.00 2.00

RY¥ 1.96 199 200 2.00

Table 2.6.6: Convergence Rates in Maximum Norm || - || for A Scheme

£ N=8 16 32 64 128
2.50000e-01 | 3.294e-03 8.398e-04 2.109e-04 5.279e-05 1.320e-05
6.25000e-02 | 1.232¢-02 2.860e-03 7.008e-04 1.743e-04 4.352e-05
1.56250e-02 | 4.024e-02 8.283e-03 1.536e-03 2.786e-04 5.655e-05
3.90625e-03 | 5.753e-02 1.401e-02 3.332e-03 7.851e-04 1.85%9e-04
9.76562¢-04 | 6.193e-02 1.560e-02 3.875e-03 9.581e-04 2.354e-04
2.44141e-04 | 6.302¢-02 1.600e-02 4.011e-03 1.002e-03 2.498e-04
6.10352e-05 | 6.330e-02 1.610e-02 4.045¢-03 1.012e-03 2.530e-04
1.52588e-05 | 6.336e-02 1.613e-02 4.053e-03 1.015e-03 2.537e-04
3.81470e-06 | 6.338¢-02 1.613e-02 4.055e-03 1.015e-03 2.539-04
9.53674e-07 | 6.339¢-02 1.613e-02 4.056e-03 1.015e-03 2.540e-04

Table 2.6.7: Errors in Discrete H!-Norm for A Scheme
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€ N=8 16 32 64
2.50000e-01 | 1.97 1.99 2.00 2.00
6.25000e-02 | 2.11 2.03 2.01 2.00
1.56250e-02 | 2.28 2.43 2.46 2.30
3.90625¢-03 | 2.04 2.07 2.09 2.08
9.76562¢-04 | 1.99 2.01 2.02 2.03
2.44141e-04 | 1.98 2.00 2.00 2.00
6.10352e-05 | 1.97 1.99 2.00 2.00
1.52588¢-05 | 1.97 1.99 2.00 2.00
3.81470e-06 | 1.97 1.99 2.00 2.00
9.53674e-07 | 1.97 1.99 2.00 2.00

RY¥ 1.97 199 2.00 2.00

Table 2.6.8: Convergence Rates in Discrete H!-Norm for A Scheme

The predicted uniform accuracy is clearly observed. We note that, when errors
are measured in ||-||ee, the A scheme is almost as accurate as the more complicated A
scheme. We have observed a similar phenomenon with a higher order approximation
applied to problems with other data; both piecewise quadratic and piecewise cubic
approximations to a, b, ¢ and f yield fourth order accuracy in || - ||eo, uniformly
in €. Thus it seems that in cases where coefficients are approximated by piecewise
polynomials of even degree and ! < m + 1, the order of convergence in || - || i# OnE
more than that predicted by Theorem 2.5.2.

If instead of ||-||e One consider the errors measured in |-|4,, then Tables 2.6.4 and
2.6.8 show that the A scheme is superior. Nevertheless, the A scheme is O(N~3/3)
convergent, better than the O(N~!) predicted by Theorem 2.5.1. Theorem 2.5.4

furnishes a proof of this O( N ~3/3) result.



Chapter 3

High Order
Convection—Diffusion Problems

3.1 Introduction

This chapter is concerned with the numerical approximation by finite element meth-
ods of certain singularly perturbed high order two-point boundary value prob-
lems with one boundary layer. A model problem of this type is the second order

convection—diffusion problem
—ew” + a(z)w’ + Xz)w = f(z), forz € (0,1), (3.1.1a)

w(0) = w(1) = 0, (3.1.16)

with a(z) > a > 0, where ¢ is a small positive parameter. The problem (3.1.1)
has been extensively examined. Ways of using equidistant meshes and locally quasi-
equidistant meshes and of generating exponentially fitted schemes which are con-
vergent, uniformly in &, with respect to various norms are considered for example
in Berger et al. [5], El-Mistikawy and Werle [11], I'in {23], Kellogg and Tsan [24),
Stynes [40], and Stynes and O’Riordan [41, 43], while uniformly convergent classical
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difference schemes on special graded meshes may be found in Gartland [17] and
Vulanovié [46).

However, there are still some unsolved problems. For example, in Gartland (18]
there is numerical evidence that the standard central difference scheme is convergent,
uniformly in ¢, in the discrete maximum norm, when applied on a special mesh. This
is true even though the scheme does not satisfy a discrete maximum principle and
admits oscillatory solutions. Gartland [17] has proved that a hybrid scheme, where
upwinding is used only in a narrow “transition region” and central differencing is
used elsewhere, is uniformly convergent on a special exponentially graded mesh. We
shall show that in fact exponential grading of the mesh is unnecessary. Instead,
we construct a simpler piecewise equidistant mesh, on which we use polynomial
Galerkin methods. Then we analyse their convergence properties in energy and W2,
norms.

In fact, in this chapter, we consider the following more general problem:
- m_ (2m) m-1 (m) (m-1)
Leu=(-1)"¢cu +(-1) (a,..._l(z)u ) + Lyu

= f(z)v fOf zZE€ (0’ l)v (3.1.24)
u(0) = u)(1)=0, forj=0,....,m~-1, (3.1.2)
where m > 1 is an integer and £ € (0,1] is a perturbation parameter, and

Lyu= Z( -1)~-* (“2(-—5)+1 (z)u™b+1)(z )) ()
k=2

+ 3 (-1)™* (axm-ny(z)u™H)z)

k=1

)(ﬂ—i)
The functions a, (for r = 0,1,...,2m — 1) and f are assumed to be sufficiently
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smooth with
aam-1(z) > a >0 on [0,1)], (3.1.2¢)
and
Gagmi)(Z) - %a',(__m,(z) > Gmp, fork=1,...,m, (3.1.2d)

for all z € [0,1] and some constants a and am-j (k = 1,...,m) satisfying

[ ]
Y ami>0, fork=1,...,m. (3.1.2¢)

i=1
Under the conditions (3.1.2d) and (3.1.2e), problem (3.1.2) is well posed for ¢ > 0
and in fact possesses a coercive bilinear form associated with (3.1.2a). The condition
(3.1.2c) prohibits the development of turning points or interior layers.
We refer to the problem (3.1.2) as being of convection—diffusion type since it is
a generalization of (3.1.1). In Chapter 2 we considered the situation when agpm-1 =
0; we describe such problems as being of reaction—diffusion type, again using the
terminology associated with the second order case. See the discussion of problem
(3.1.5) below.
We take the above form of the operator L, for convenience. Any linear operator
L, of the form
Im-1
Le = (~1)™cul®™) 4 Z byu(®

k=0
can be rewritten in the form of L., with each a, (for r = 0,...,2m ~ 1) equal

to a linear combination of &,, by43,...,03m-1 and certain of their derivatives. We
consider the homogeneous boundary conditions (3.1.2b), since non-homogeneous
conditions ¥()(0) = A; and wU)(1) = B;,for j = 0,1,...,m—1, can be homogenized
by the transformation #(z) = w(z) - L 7oy {(~1) 4j6m (1 — 2) + Bj€m,j(7)}, where
the £m j(-) are defined by (3.3.8) below.
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In contrast to the second order problem (3.1.1), there are only a few results on
higher order problems with one boundary layer; see Gartland [17] and Roos [34].

Gartland [17] studied compact finite difference schemes for a problem of the form
n-1
o™ 4 E ax(z)v® = f(z), for z € (0,1), (3.1.3)
h=0
with an_31(z) # 0 and appropriate boundary conditions which fulfill certain condi-
tions due to Niederdrenk and Yserentant [27]. His schemes are higher order uni-

formly convergent on a special graded mesh in the weighted Sobolev norm

lHoll-y = ello® Dllew + 3 16| ee, (3.14)
=0
where || - |l = || - [lz=[o,1}- The Niederdrenk and Yserentant conditions guarantee

that the differential operator of (3.1.3) is uniformly stable (in the sense of Gartland
[17]) with respect to the norm (3.1.4). That is, in the case of homogeneous boundary
conditions,

[lollv-y < CllfllLrpoa)

where the constant C is independent of £. Now with n = 2m, one does not in general
have
llullv-y < Cllfllzifo.s
where u(-) denotes the solution of (3.1.2). See, e.g., the example in Gartland (17],
p.655. That is, (3.1.2) is less stable (and consequently more difficuit to solve numer-
ically) than (3.1.3).
Roos [34] applied an iterative approach to problem (3.1.3), assuming the Nieder-

drenk and Yserentant conditions. This approach is similar to the defect correction
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method and allows one to generate higher order schemes in a systematic way. How-
ever, the method is quite complicated since it is based on obtaining exact solutions
of boundary value problems with piecewise constant coeflicients.

In Chapter 2 we considered the problem of reaction—diffusion type

(_l)mev(’m) + (_l)ll—l (b’(’._‘)(z)v(n_l))(ﬂ—l)

4 31 (bagmotps (D4 4 by _(2)olmH) "
h=2

= g(z), forz € (0,1), (3.1.5a)
v)0) = o)1) =0, forj=0,...,m-1, (3.1.5b)

with by(m-1)(z) > B8 > 0 and some conditions analogous to (3.1.2d, e) above on &,
(for r = 0,1,...,2(m — 1)). Problem (3.1.5) is a generalization of the well known
second order reaction-diffusion problem. The mth order derivative of its solution
has a boundary layer of width O(¢!/?) at each endpoint of [0,1). Thus (cf. (3.2.6)
below) the solution of (3.1.5) is better behaved than that of (3.1.2). In Chapter 2,
some finite element methods for problem (3.1.5) were constructed and proved to be
convergent, uniformly in ¢, in various norms.

Employing a Sturm transformation

v(z) = w(z)e™ Y exp (—5-1--— /: a(a)ds) , (3.1.6)

me

one may eliminate the 4(*™-1) term of (3.1.2a) and reduce problem (3.1.2) to prob-

lem (3.1.5) with
o(z) = f(z)e™ " exp (—Q—Im—e /. '-(s)da) . (3.0.7)
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It is in principle possible to apply the methods in Chapter 2 to solve the problem
(3.1.5) with g(z) defined by (3.1.7), then to transform back to (3.1.2). However, from
(3.1.6) we can see that, since ¥(z) = O(1) (cf. (3.2.6) below), v(z) is exponentially
small and consequently it will be difficult to accurately compute an approximation
to it then transform back to u(z).

In this chapter, we generate and analyse Galerkin finite element methods for
problem (3.1.2). We consider only “uniformly convergent” methods; these are meth-
ods whose solutions converge to u, uniformly in ¢, in some norm. Since the bilinear
form associated with (3.1.2a) is not satisfactorily bounded in terms of an associated
weighted energy norm (see (3.2.2) below), a classical finite element analysis does
not yield uniform convergence results. We therefore use the technique of Stynes and
O’Riordan [43], which turns out to be effective for the problem (3.1.2). We obtain
convergence results in energy and W2 norms for k = 0,...,m — 2. These results
show that the accuracy of our method depends both on m and on how well we ap-
proximate the coefficients in (3.1.2a). We present numerical experiments to support
our claims.

In classical finite element analyses, one expects that by using an Aubin-Nitsche
argument one can show enhanced convergence of the computed solution in norms
weaker than the energy norm. This is not the case here when m > 2, as our

numerical results show. When m = 1 (i.e., the second order convection—diffusion
problem (3.1.1)), the situation is different; we shall prc:ve that the order of uniform
convergence in the L? norm is at least 1/2 higher than that in the energy norm
associated with (3.1.1a).

In contrast to the results of Chapter 2 for (3.1.5), we find here that the value of
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m poses a more severe restriction on the accuracy of the method; see Remark 3.5.2
for details.

The structure of the chapter is as follows: Section 3.2 contains existence and
uniqueness results and an asymptotic decomposition for the solution of (3.1.2). We
briefly discuss in Section 3.3 the necessity of using a special scheme to get high
order uniform convergence results for the given problem and generate finite element
methods using piecewise polynomials as our basis functions on an arbitrary mesh.
Section 3.4 gives interpolation error estimates on a piecewise equidistant mesh. This
type of mesh, which was recently introduced by Shishkin [37], is much simpler than
those of Vulanovié [46] and Gartland [17]. In Section 3.5, we prove that (assuming
a sufficiently accurate quadrature rule is used) the resulting polynomial methods
on the Shishkin mesh are uniformly convergent of order (N~!In N)™ in a weighted
energy norm associated with (3.1.2a). This implies uniform convergence of the
solution and its derivatives of up to the (m — 2)th order in the maximum norm. In
the final section, some numerical results are given for a second order problem and

fourth order problems to confirm the theoretical estimates.

3.2 The Continuous Problem

In this section we discuss those properties of (3.1.2) and of its solution u which we
shall need later for the analysis of our finite element methods.

Definitions and notation: Let (-,-) denote the usual L*(0,1) inner product. Let
H® = L® H* (for k = 1,...,m) denote the usual Sobolev spaces on [0,1]. Define
Il - la to be the norm on H* and |- |5 to be the usual associated seminorm for

k=0,...,m Let| |a denote the essential supremum norm on L*[0,1]. For



k =0,1,...,m - 1, the maximum norm on C*[0,1] is denoted by | - ||a,ee, i-e-,

lolinee = X 3-0 1o@leo, for all v € C*[0, 1]. Set
HY = {ve H™: vl)(0) = vU)(1) =0, forj=0,...,m-1}.
Then our bilinear form A,(:,-) is defined to be
Ag(v,w) = (ev("),w("‘)) + (a,..-,v("'), w("'")) + Ay(v, w), (3.2.1)

where

A(v,w) = i (az(--:.) (m ) w(u-h)) + i (a,(--‘)v(n—h)’ w‘"“"’) ,
Lo k=1

for all v,w € H3*. Our weighted energy norm is given by
llolll = {elvlm + llolm-1}/2, Vo € HE.

Our first lemma shows that the bilinear form A,(-,-) is uniformly coercive over

Hg* x H®, but is not satisfactorily uniformly bounded in terms of the energy norm.

Lemma 3.2.1 Assume that (3.1.2d) and (3.1.2¢) hold. Then there exist positive

constants C, and C3 such that for all v,w € Hg*,

|4e(v, w)| < Coe™2|jjo]l] - ||l (3-2.2)

and
Calllv]|? € Ae(v,v). (3.2.3)

Proof. It is easy to see that

Au(v,0)] < { Crlllvlll - lfollm (3.24)
v,w)| < 2.
Crliollm - Hlwlll
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using the Cauchy-Schwarz inequality. Then (3.2.2) follows immediately, since 0 <

€ < 1. For (3.2.3) we have, for each v € Hg*,

A(v,0)=¢ (.,("'), v(ﬂ))

m l _ _
+ z ((aa(n-h) - 50'3(--5)“) o™ "), v "))

h=1

m

)
2 Ell)l"n + z am—ll”";-h
k=1

by (3.1.2d). Using induction on r, one can readily prove (see Chapter 2) that for

r=1,...,m,

' J
. 2
"Z_;a'-slvlf_a > lr;;g,ga--alvl,-n Vo€ HY.

Hence

<j<m

J
o2 bl i {3 oma ol

)

2 -1 3

2 €|vlm + m™" min {E‘ a--b} lIollm-1s
which by (3.1.2e) is the desired result with

. Jj

Cy = min {l,m lnglél’.{g;a,_‘,}} .0

We can now define our weak formulation of (3.1.2): find u € HJ* such that
A(u,v) = (f,v), VYve Hg. (3.2.5)

For each fixed ¢ € (0, 1}, Lemma 3.2.1 shows that A,(-,-) is bounded and coercive
over H3* x Hg*. Furthermore, the mapping v — ( f, v) is a bounded linear functional

on Hg* with respect to the norm || - ||m- Thus the Lax-Milgram Lemma tells us that
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(3.2.5) has a unique solution u in H3*. Throughout this chapter, u will denote this
solution. This weak solution is also a classical solution to (3.1.2), if all the data are
smooth.

Using the characterization of the null space of L, given in Theorem 3.1.4 of
Gartland [17], we can prove a representation result for the solution of problem
(3.1.2). This result will be used in the error analysis for the methods derived in
Section 3.3.

Lemma 3.2.2 The solution u of (3.1.2) admits the representation

1
u(z) = G(z) + €™ 1Gy(z) exp (—-% / a,.._x(a)da) , (3.2.6)

[ J
where G and Gy and their derivatives up to any prescribed finite order can be bounded

independently of ¢.

Proof. This is essentially the same result as Theorem 3.1.4 of Gartland [17]. It
is proved using Gartland’s argument, the only difference being that since we have
lllull] £ C, which follows from (3.2.3) and (3.2.5), the layer function component of

u must be scaled as in (3.2.6). O

In what follows, we shall denote by E(z) the boundary layer term of (3.2.6).
Thus
u(z) = G(z) + E(z), (3.2.7)

where for z € [0,1) and j =0, 1,..., we have
|G(ﬂ(z)| <c, (3.2.8)
|EOz)| < Cem1) exp (~al - 2)/e). (3.29)
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Hence, for z € [0, 1],
|u(i)(z)| <C, forj=0,...,m—1. (3.2.10)
3.3 Galerkin Finite Element Methods

It is well known that classical difference schemes on an equidistant mesh for the
second order problem (3.1.1) do not converge uniformly with respect to the discrete
L*(0,1) norm. This result can be extended to the more general problem (3.1.2).
One may show, by arguments similar to Lemma 2.3.1, that if a typical difference
scheme is uniformly convergent of sufficiently high order in the maximum norm,
then certain coefficients of that scheme must have an exponential nature.

An exponentially fitted scheme can be constructed in the following way on an
equidistant mesh. Consider a Petrov-Galerkin finite element method with a bilinear
form based on approximating the coefficients in (3.2.1) by piecewise linear functions.

The basis functions for the trial space are simplified L-splines defined by

(3m)

Q™) — g1V =0 (3.3.1)

on the interior of each mesh subinterval, with some boundary conditions, where
G3m-1 i8 a piecewise constant approximation of agm-1(z). The test functions are
simplified L*-splines satisfying the adjoint equation of (3.3.1). One can expect
to prove that this scheme is uniformly convergent in a weighted energy norm, by
employing an analysis similar to that of Stynes and O'Riordan [43]. However, the
resulting scheme is quite complicated because of the exponential fitting factors.

We therefore consider classical Galerkin finite element methods on special meshes



for problem (3.1.2). We first work with an arbitrary mesh
XVN: 0=zo<21< - <2y <2zN=1,

where h; = 2 — z;1,fori=1,..., N, and H = max; h;.
Since the solution of the weak formulation (3.2.2) lies in HJ*, we define our

piecewise polynomial approximation space by
SN = {v(z) € H : v|1, € Pa(L;) fori=1,...,N},

where Pg(I;) is the set of polynomials of degree at most R on I; and R is some
positive integer. In order to guarantee that S¥ ¢ C™-! C H™, we assume that
R>2m-1.

To generate our computed solution, we define the modified bilinear form A¥(-,-)

on SN x SN to be
AN (v, w) = e(v™), (™) ¢ (af,._lv""), w(‘"“)) + AV (v, w),

where

A{’ (v,w) = i (af(m_.)“,,(--hn), w(--h)) + i (a;’(u_.)v(n—b)’ w(u-b))
k=2 h=1

and a¥ denotes a piecewise polynomial approximation of a, for r = 0,1,...,2m -1

respectively. For each r, these approximations are assumed to satisfy
|(aY - a,) (z)| < CH}, forz € (2i-1,2;) andi=1,...,N, (33.2)

where ! is a fixed positive integer. We also require that

N
a3m-1 € C[0, 1] C? (U(ze-a,z.-)) (3.33)

=1
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and
|(a8a-1 — 83m-1)'(2)] < Ch, (3.3.4)
forr € (zi-1,2i)andi=1,...,N.
The following lemma proves uniform coercivity of the discrete bilinear form
AN(.,.). This property will be used in the discretization error analyses of Section

3.5.

Lemma 3.3.1 There ezists a positive constant he (independent of € ) such that for
H < ho, we have
Gilllvll? < AN(v,v), Vve HP.

Proof. Let v € Hg* be arbitrary but fixed. Write
AN (v,0) = A, (v,0) + (AY - A,) (v,0). (3.3.5)
For the second term of (3.3.5),
|(4Y = A2) (o,0)] = | ((an-r — azm-) o™, o™D) 4 (AF - 41) (5,9)|.
We have, integrating by parts,

l((“:u-x — Gpm-1) (™), v("“l))|

- I(_% (03m-1 = ah-l)'”("—l)’"(m-l))l
< CHvl3,_,.
Also
|(AY = A1) (0,9)] < CHY[oll% s
Hence

[(AY - A,) (v,0)] < CH|||o||I*
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Combining this with (3.3.5) and Lemma (3.2.1) completes the proof. O

We may then pose the Galerkin discretization of problem (3.1.2): find uy € SN
such that

AY(un,0)=(fV,v), Wwes¥, (3.3.6)
where fN approximates f analogously to a¥ approximating a, in (3.3.2).
It follows from Lemma 3.3.1 that uy is well defined.
One choice of the approximation space SV is the following Hermite basis function
space:
VN = Voo V1 ®---® Vim-1,
where V, is the linear span of {¢ :i=1,...,N-1},forr=0,1,...,m ~ 1. The
basis functions {¢] }111» for r = 0,...,m — 1, are piecewise Hermite interpolation

polynomials of degree 2m — 1. That is,

h.tfn.' (!:'.r._l) ’ forz € (2‘-1, 2.'), (3.3.74)
Fi(z) = (=1)h%, 1 (ﬂy&;—') , for z € (x;,2i41), (3.3.7%)
0, elsewhere, (3.3.7¢)

where £, ,(3) satisfies

€3m)(s) =0, forall s€R!, (3.3.8a)
€0,0)=0 and €9.(1)=4; forj=0,1,...,m-1. (3.3.8b)

The &m - (s) can be easily computed from (2.1.5.3) of Stoer and Bulirsch [39]. We

see that

d'v'(z,) =34 6':'

fori=1,...,.N-1,forj=0,1,...,Nand forr,¢=0,...,m—1.
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When S¥ = V¥ the method (3.3.6) is equivalent to

AY (up, %) = (fN,¢f), fori=1,...,N-landr=0,1,...,m-1.

Write
N-1m-1
w(z)= Y Y dl@)uipz).
t=1 r=0
Set

- - T
U = (un(21),..., 7 Nar), . uw(an-n), oo ufr Nan-a))

Then the method may be written in the form
AU = F, (3.3.9)

where A is a m(N - 1) x m(N — 1) banded matrix with bandwidth 4m — 1. The non-
zero entries of the coefficient matrix A and the right hand side F are certain linear
combinations of € and point evaluations of a, (for r = 0,1,...,2m ~ 1) and f, when
a¥ and fN are Lagrange interpolants to a, and f respectively. When m = 1 (the
second order convection-diffusion problem), the resulting scheme is closely related
to the classical central difference scheme.

In Section 3.5, we shall show that uy is uniformly convergent to u in certain

norms provided that one takes X" to be a certain piecewise equidistant mesh.
3.4 Interpolation Error Estimates

In this section, we first introduce a Shishkin mesh, then estimate interpolation errors
in energy and Sobolev norms. The results will be used to analyse the uniform

convergence of the computed solution.




3.4.1 The Mesh

In the literature, several types of special meshes have been introduced for singularly
perturbed two-point boundary value problems. Bakhvalov [2] and Vulanovié [46)
construct a graded mesh using a special mesh-generating function. Gartland {17]
subdivided the interval [0, 1] into three regions: an inner region [z°, 1], a transition

region [z’,z*] and an outer region [0, z’], where
z*~1- Keln(K/h), z'=1- Keln(1/¢),

with K a positive integer, h a prescribed outer mesh spacing and K¢ < h. A special
mesh was generated by taking an exponentially graded mesh on [2*,1], a locally
quasi-equidistant mesh on [z’,z°] and an equidistant mesh on [0,2].
In this chapter we shall employ a Shishkin mesh, which is piecewise equidistant
and consequently much simpler than the Bakhvalov and Gartland meshes.
Given an even positive integer N, the Shishkin mesh XN is constructed by

dividing the interval [0, 1] into two subintervals
[0,1-0], and [1-o,1].

Equidistant meshes with N/2 points are then used on each subinterval. The param-
eter o is defined by

o =min{1/2, (m+1)a"lcln N},

which depends on £ and N. Set ig = N/2. Then z;, = 1 — o is the transition point
of the Shishkin mesh

X.NZO-—-J!Q(Z;("'(2.‘0<"'<1‘N-1<2N=1.




The mesh spacing on the inner interval [z;,, 1] is given by

hi=20N"!, fori=ip+1,...,N. (34.1)
On the outer region [0, z;,}, the mesh spacing is

hi=2(1-0)N"}, fori=0,...,1. (3.4.2)
Remark 3.4.1 The distinguished mesh point z;, is analogous to the point z* of the

Gartland mesh.

fo=1/2ie,1/2 < (m+1)alcln N, then N-! is very small relative to
€. This is unlikely in practice (and in this case the method can be treated in the

clasgical way). We therefore assume that
o=(m+1)a"tcln N. ' (34.3)
From this, (3.4.1) and (3.4.2), one may easily obtain that
hi=2(m+1)a"'¢eN"'In N, (3.4.4)

fori =49+ 1,...,N and
N-1<h;<2N7}, (3.4.5)
fori=1,...,1.

3.4.2 Interpolation Error Estimates

For the purpose of our interpolation error analysis, we first present some standard
approximation error estimates (Lemma 3.4.1) which are valid on an arbitrary mesh.

Consider a finite element (Z;, Pr(l;), I;), where ¥; is the set of degrees of freedom.
It will be assumed that the set ¥, is Pp—unisolvent, fori = 1,...,N. Let s; be the
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greatest order of derivatives occuring in the definition of L;. For v € C%([;), we
denote by II;v the Pp-interpolant to v on I;. Set s = max{s;:s=1,...,N}. Then
given v € C*(0, 1), we will denote by II¥ v the piecewise polynomial interpolant from
S¥ to v. This interpolant satisfies (I1Nv)|;, = I;v|y,, fori=1,...,N.

Let || - ||j.0,1; be the maximum norm on C(;), with the usual associated semi-
norm | - |je0,z;- Denote by || - |l;2,5; the norm on the Sobolev space HI(I;) and by

| - |5,3,5; the associated seminorm. We have

Lemma 3.4.1 Let k be an integer satisfying R+12> k > 8;. Letv € C"(I.-). Then

there erists a constant Cy, which is independent of h; and v, such that

o = i), g0z, < CrhY ™ [0y oo » (3.4.6)
Jorj=0,1....,k. fR+12 k2> 8 +1, then

v — Tivl;ap, < Cobi™ ol g, (34.7)
forj=0,1...,k.

Proof. From Theorem 3.1.5 of Ciarlet (7], (3.4.6) and (3.4.7) hold for R+ 1 >

k > s; + 1. The case k = s; of (3.4.6) can be shown by a similar argument. O

We now proceed to the estimation of the interpolation error ¥ — TN u on the
Shishkin mesh of subsection 3.4.1.

Recalling (3.2.7) - (3.2.9), we see that
lu("")(z)l <C(1+e™ lexp(~a(l - z)fe)), forz €[0,1] (3.4.8)

and

[0m@)| <, forzelo,1-al), (3.4.9)
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where o, = min {1/2,(m + 1)a~'¢In(1/¢)}.

Consider the local interpolation error « — Il;& on a subinterval I;. If I; is in
the fine portion of the mesh or lies outside the boundary layer, then the error
analysis can be done by standard approximation theory arguments. However, when
€ < N-1, the coarse mesh and the boundary layer have nonempty intersection,
viz., J, = (1 - 05,1 — 0] # 0. In other words, as ¢ — 0 with N fixed, |uli)(z)|
is unbounded for j > m when z € J, and the Shishkin mesh is coarse on J,. It
turns out that a direct application of standard approximation theory will not yield
a bound on |||u — I;u}|| which is uniform in €. In order to obtain such uniformity
on those I; C J,, we need an asymptotic decomposition of u. The estimates (3.4.6)
with k = s; and (3.4.7) with k = s; + 1 then play a special role in our error analysis.
To enable us to use (3.4.6) with k = m — 1 and (3.4.7) with k = m, we shall assume
that 3=m — 1, where s = max{s;:f; + 1 <i < ig} and iy = min {i : ;N J, # 0}.
In particular this assumption is satisfied if we take S¥ = VN the Hermite space

defined in Section 3.3.

Lemma 3.4.2 Let u be the solution of problem (3.1.2). Then on the Shishkin mesh

XN, we have for j = 0,1,...,m -1,
|6 = Mitl; gz, < CATFIN"™1, fori€ {1,...,i0} (3.4.10)
and
% - Miwl; 00y, S CAT I YN I N)™, fori€ {ie+1,...,N}. (34.11)
Proof. Follows from the argument of Lemma 2.5.2. O

The following interpolation error estimate in the Sobolev norm || - ||m-1 then

follows immediately from Lemma 3.4.2.
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Corollary 3.4.1 Let u be the solution of problem (3.1.2). Let IV u be the piecewise
polynomial interpolant from SV to u on the Shishkin mesh X¥. Then

It — TV tfjm—y < C(N"1In N)™+1, (3.4.12)

By arguments similar to those of Lemma 2.5.2, one may also show that
elu - Miuly oz < C(N~'In N)™, (3.4.13)

for i = 1,...,N. However, in contrast to the problem of reaction—diffusion type,
combining (3.4.13) with (3.4.10) and (3.4.11) here does not yield a bound for u—M"y,
which is uniform in ¢, in the weighted energy norm |||||| which was defined in Section

3.2. One needs a more precise analysis to achieve the desired uniform estimate.
Lemma 3.4.3 Under the same hypotheses as in Corollary 3.4.1, we have
flle - M¥ul|| < C(N"ln N)™. (3.4.14)

Proof. We first show that

e (u-m¥ u)""’" [SC(N 7 N™. (3.4.15)

L?[ei, 1
Let I; C [z4,1), i.e., I; lies in the fine portion of the mesh. Then from (3.4.7) with

j=mand k =2m,

lw - Mul?, 5 5 < CAI™|ufdpa (3.4.16)
<C(eN 'l N)™ |uldm 2z (3.4.17)
by (3.4.4). Hence
N )|
“(" ~17w) "v[..,,n
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<C(eN“'InN) ""||u("')||m% y

<C(eN mN)”"/ [14 6™ exp(-a(l - 2)/e)]" dz

<Ce' (N 'nN)™

by (3.4.8). This completes the proof of (3.4.15).

Secondly, we prove that

”(" " )(M)" SC(e+ NN (3.4.18)

L3[0, =,
We discuss two cases.
Case 1: N~! < ¢. In this case, we have [0,z;] C [0,1 — o). It is obvious, on

again taking j = m and k = 2m in (3.4.7) and using (3.4.5) and (3.4.9), that

"(“ -V« )("‘)

o=

|u[o.-‘.,1 2

<CN™™, (3.4.19)
Case 2: N~ > ¢. By the same argument as in Case 1, one can show that

|(u - 1™u )""’"m’_"l <CN™, (3.4.20)

since [0,z;,] C [0,1 - o).
We now deal with the intersection of the coarse mesh and the boundary layer.

It will be shown that

- |

! N YN, 3.4.21
Loy, 0] (¢+N7?) ( )

Recall the decomposition (3.2.7). Write [I¥u in the form

M¥u=1nVG +nVNE, (3.4.22)
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where IING and NIV E denote the piecewise polynomial interpolants to G and E
respectively. We shall separately bound

and [|(E-¥E)™)| : (3.4.23)

L3[e;,, 84)

i -y

L(s;, , #)
By (3.2.8) and arguments similar to those of Case 1, we have

|(c-n¥ G)(")":)[.iv%] <CN-™, (3.4.24)

For the second term of (3.4.23), we use (3.4.7) with j = k = m. Then

”(E - IINE)("')

tenma < CIE

<Ce? j"" exp (—2a(1 — z)/¢) dz
[

< Ce lexp(-2a0/c)

L3 (s, , m)

= Ce~IN-Hm+1)

by (3.4.3). Combining this with (3.2.7), (3.4.22) and (3.4.24) yields (3.4.21). This
completes the proof of Case 2. Then (3.4.18) follows.
Recalling (3.4.15), we have

&/ (u- 7)™ <o (N N)™.
Combining this with Corollary 3.4.1 yields the desired result. O
3.5 Uniform Convergence Results

In this section, we present uniform convergence results in various norms for the

classical finite element method (3.3.6) on the Shishkin mesh.
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3.5.1 Analysis of Convergence

Since the bilinear form A,(-,-) is not uniformly bounded in terms of the energy norm
1 -1l (see (3.2.4)), a classical finite element approach does not satisfactorily analyse
the errors in the computed solution uy. We shall employ an analysis similar to
Stynes and O’Riordan [43] to prove that the method (3.3.6) is uniformly convergent
in the energy norm ||| - |||

Recall that S¥ C C™-1(0, 1). It is natural to assume that for v € C*(0,1),
(¥ )W (2,) = oli(zy), (3.5.1)

fori=0,1,...,Nand j=0,1,...,m — 1. We shall also assume that R = 2m - 1,

as there seems to be little benefit in using polynomials of higher degree.

Theorem 3.5.1 Let uy € SN be the solution of (3.3.6) on the Shishkin mesh XN .
Then for N sufficiently large (independently of €), we have

NMu - unll| < C (N"" +(N'In N)‘) :
Proof. By Lemma 3.3.1, we have

Cl|IMNu - unff?
< AN (Vu - un, u - uy)

=AY (MMu—-u,M¥u-uy) + AY (- un,Mu-uy).  (35.2)
We begin by analyzing the first term:

AV (Y — u,TVu - wy)

= (E(H"l - u)("‘),(ﬂ"u - uy)("‘))
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+ (a’,v,,,_l(ﬂ"u - u)("),(H"u - u;v)("'“))
+AY (I¥u - w, Ty — uy)
= (aﬁ,_,(n"u — )™ (TN — u,)(--‘))
+AY MYy - u, Ny - uy), (3.5.3)
by (3.5.1) and using integration by parts, since (II¥ u — ux)(*™) = 0 on each element
(2i-1,2;). It is easy to see that
|AY (0 - w,TVu - uy)| < O = wllma 1T 6~ 4 [l
<C(N NIy - unlll,  (3.54)
by Corollary 3.4.1.
We now estimate the first term of (3.5.3). We have
(afaoy (M = u)™), (¥ — wy)=-1))
= — (ol y (MM — w)™D), (¥ w - wpy)™)

- ((af,,,_,)'(ll"u —u)m™-1) (N - tm)("“)). (3.5.5)
Clearly

I((azn—x)'(ﬂ"u - u)(ﬂ-l)’(nﬁu _ un)("_l))|

<C(N 'l N)™ )IVu - up]|l. (3.5.6)

Next, by (3.4.10),

/ " ()M - 0™ ()T - ) ™(z) da
(]

< CNT™ (MY w — uw) ™| ap0, o) (3.5.7)
<CN ™6 - ww)™ D150, 4, s (3.5.8)
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by an inverse estimate. Also, by (3.4.11),

/ ' a1 ()M e — )™z} MV u — un)™)(2) dz
.‘0

<C (N N)™*" /'

(MNy - uu)("‘)(z)l dz
<C(N I N)™ A1V u - wn )™ Lage,

<C(N ' N)™" 02 N|||T¥u - upll].

Hence, (3.5.8) and (3.5.9) yield

| (a8 (¥ — )0, (¥ — ™) | < CN ™IV - un]

Combining (3.5.3) - (3.5.6) ard (3.5.10), we have
| AN (MVu - o, MV u — up)| < CN7™||ITVu - unl]l.
Taking the second term of (3.5.2),

AN (u - uy,TIVu — uy)
= (AN - A,) (4,1u —uy) + A, (u,TNu — upy)
-AY (un, MVu - uN)

= ((af,._l — Gam-1) ul™) (TN« - mv)(""l))

+(AY - A) (w, M —un) + (F - Y. AVu - uy).

Since |u|y < C for k=0,...,m — 1, clearly

(3.5.9)

(3.5.10)

(3.5.11)

(3.5.12)

[(AY - 4)) (0, 1w — up) + (F = ¥, 1% - un)| < CNHIINu - up]|].
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For the first term of (3.5.12), we have by (3.3.2) and (3.2.7) - (3.2.9),

/ (s = tamet) (D)) = )™ -Vz) dz
%

< CeV (N 'In N) |iT¥w - wpll]. (3.5.14)
Also
/ " (aN_y — Gam-1) (2)G™N(2)(TT"w — up )™ )(2) dz
0
SCN Y u - up|lm-1- (3.5.15)
Since
/% |E™)(z)| dz < C/.‘. e Yexp(—a(l — z)/¢) dz
] [}]
= Ca™! (exp(—ao/c) — exp(-a/e))
< CN™™"1,
we have

l/ " (6o — 3mr) (D) E™N@ ) — uy)™D(z) dz
0

SCNT™ (4 - un)™ V| geopo, oy,

S CNT N w — wn )™ a0, 0 ) (3.5.16)
by an inverse inequality. From (3.5.14) - (3.5.16) and « = G + E, we obtain

I((“fu-x - Gam-1) u™ (MVu - ,,")(n-l))l

<C (N 'InN)' I u - unl|l. (3.5.17)
Therefore, from (3.5.12), (3.5.13) and (3.5.17),

|AY (v = up, T — up)| < C (N2 In M) [TV w = up]]]. (3.5.18)
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Combining this with (3.5.2) and (3.5.11), we obtain the desired result. O

Remark 3.5.1 Suppose that ¢ < N~} in Theorem 3.5.1. (This is reasonable in

practice.) Then instead of (3.5.14) we have, using a Cauchy-Schwar:z inequality,

[ (@~ ammea) )T ) e)

1
<C(eN7'In N)'/ (1 + e“e"'(“"/‘) |(M¥u — up)™~Y(z)|dz
8
<C(eN'In N)'e 3|V - wnl|

< CN7IIMNu - unl|l.
This inequality clearly allows us to replace the conclusion of Theorem 3.5.1 by
MY w - up|l| < CN-=mlm 1},
Corollary 3.5.1 Let uy be defined as in Theorem 3.5.1. Then
lilu — wnlll < € (N 1n N)=0™ 1 (3.5.19)
If in addition m > 2, then for j € {0,...,m — 2},
(s - 48) || < € (N~ 1n N)==l™T (3.5.20)

Proof. First, (3.5.19) follows from Theorem 3.5.1 and Lemma 3.4.3.

Note that for all v € HJ*,
loDleo < I0lj41 < llvlljr, forj=0,...,m-2.
We therefore have from (3.5.19) that for j = 0,1,...,m - 2,

(s — 4n) Ve < llw - unllisa

< C(N-tin N)=el=f



which is the desired result. O

Remark 3.5.2 Assuming that we use a sufficiently accurate quadrature rule, so
that | > m, Corollary 3.5.1 yields

lllu - unlll SC (N"'In N)™. (3.5.21)

In the classical case ¢ = 1, the Shishkin mesh is equidistant and it is well known
that one has
llu - unlll = O(N™™).

Consequently we see that (3.5.21) is at least almost optimal.
Remark 3.5.8 In Chapter 2 we gave the uniform estimate
lo - oNllm-1 < C ((N“ I N)™ 4 N, (3.5.22)

where v is the solution of problem (3.1.5) and vy is its computed solution, which
was obtained by a method similar to that of this chapter. When, e.g.,. m =1-1,
the order of convergence in (3.5.22) is greater than the order implied by (3.5.19).
This difference is intrinsic to the two problems under consideration, when m > 2.
Numerical results in Section 3.6 below will show that the exponent m in Corollary

3.5.1 is sharp; hence an inequality such as (3.5.22) does not hold for || — un|lm-1-

Corollary 3.5.2 Assume that in problem (3.1.2) the functions a, for r = 0,1,
...,2m — 1 and f are constant. Let uy € SN be the solution of (3.3.6) with a¥ =
&, forr=0,....,2m -1, and fN = f, on the Shishkin mesh X¥. Then for N

sufficiently large (independently of c), we have
lllw — uwrlll < € (N-"1n N)™.
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Proof. Our hypotheses imply that we can take ! arbitrarily large in (3.5.19). O

Remark 3.5.4 Consider now the proof of Theorem 3.5.1 from a classical viewpoint.
From (3.5.8), one has

/..% apm_1 ()M % — 0)™ ()M u - wy )™)(2) dz

< Ce VAN IV w - unl|l.
Combining this with (3.5.8) - (3.5.6) and (3.5.9) yields
|AY (MM u - u, T u - up)]
<C (e“/’ +In™+3/2 N) N=™=1|IT¥x - up||.
Following the proof of Theorem 3.5.1, this leads to
IMYu = unll| < € (€72 + ™ N) N==1 4 (N 1 V).
Combining this with Corollary 3.4.1, we have
lu = wnllm-t < C (72 + ™32 N) N==-1 4 (N1 V).

This shows that in the classical sense (i.e., for ¢ fired) the order of convergence in
the norm || - ||m—1 5 greater than the order of convergence in the energy norm ||| -|||.
On the other hand, when convergence uniformly in ¢ is considered with m > 2, this
phenomenon does not occur; numerical experiments in Section 3.6 show that one

may have the same order of convergence in || - |lm-1 a8 in ||| - |||

When ! is odd, some stronger uniform convergence results can be obtained, if
G3m—1 and a3 are approximated to a higher order of accuracy than the other a,

in (3.1.2a).



Theorem 3.5.2 Let uy € SN be the solution of method (3.3.6) on the Shishkin

mesh XN. Assume also the following: fori=1,...,N,
|(a¥ - a) ()| < CH*?
forz € (zi—1,z;) andr=2m -2,2m -1,

<Ch*  forr=0,1,...,2m -3

[ (@ -a)@)de

and

" (N - Pa)dz| < O,

8i-1

Then for N sufficiently large (independently of £ ), we have
lllu = unll] € C (N~ 1n N)==m 41}
Proof. We need to prove that
|AY (v - un, 1% = wp)| < C (N2 in M) )T - wpl],
where

AN (v- un, MVu - uy)

= (o8- — Gam-1) 8™, (¥ - wp)(™-1))

+(AY —A) (o, MNu—wy) + (F - N MV u - upy).

(3.5.23)

(3.5.24)

(3.5.25)

(3.5.26)

Inspecting the proof of (3.5.17) and using (3.5.23) with r = 2m — 1, one can

show that
|((afa-s — G3m1) 6, (¥ — )=}
<C(N 'l N)"* s - upl|.
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Imitating the proof of Theorem 2.5.3 of chapter 2 and using (3.5.23) with r =
2m - 2, (3.5.24) and (3.5.25), one may prove that

[(AY - A1) (u,TTVu — un)| < CN |V 6 — wp)l|

and

[(f = N, % — upy)| < CN7Y| IV w - wup|].

This completes the proof of (3.5.26).

Recalling the proof of Theorem 3.5.1, we are done. O

Remark 3.5.8 It is well known in the contezt of Newton-Cotes integration rules
that properties (3.5.24) and (3.5.25) are easily achieved using piecewise polynomials
of degree | — 1 when [ is odd.

3.5.2 A Special Case

We work with the special case of a second order problem (i.e., m = 1). For problem
(3.1.1), the conditions (3.1.2d, e) are equivalent to the inequality ¥ z)—a’'(z)/2> 0
and in fact this inequality can be deduced from a(z) > a > 0; see Stynes and
O’Riordan [43).

Consider the method (3.3.6) with the basis function space V¥ (for m = 1), i.e.,
a piecewise linear function space. We take ¢ = 3a~!¢In N in the Shishkin mesh,
which is different from our previous value of . Let w be the solution of problem
(3.1.1). The next result shows that if { = 2, then ||w — un}jo has order of uniform
convergence at least 1/2 higher than is implied by the bound on |||w —~ up||| given

in Corollary 3.5.1.



Theorem 3.5.3 Let w be the solution of problem (3.1.1) and let NN w € SN in-
terpolate to w at each node z;, i = 0,...,N. Let uy € SN be the solution of the

N witho =3a~lcIn N. Let

method (3.3.6) on the Shishkin mesh X

Zi— 2 T — T
hs h;
for z € (zi-1,%;) and i = 1,..., N, with similar definitions of b"(z) and f”(z).

a¥(z) =

a(zi-1) + a(z;),

Then for N sufficiently large (independently of €), we have
IM¥w — un|l| < CN-3/2 (3.5.27)

and consequently
[lw - unllo < CN-3/3, (3.5.28)

Proof. Recall the proof of Theorem 3.5.1 and take m = 1 and { = 2. In order to

obtain the desired accuracy, one needs to analyse the term
/ ° a¥(z) (I%w - w) (z) (TVw - uy)' (z) dz
°

more carefully.

We again use the decomposition (3.2.7). Then
/."'o a¥(z) (MM w - w) (z) (MVw - uy) () dz
- /0"'° a¥(z) (TG - G) (z) (T¥w — un)' (2) dz
+ /. " aN(z) (IVE - E) (z) (Y w - uy) (z)dz.  (3.5.29)
Firstly, it is clear, on taking k = j = 0 in (3.4.6), that fori =1,..., 14,
|E = 0iElg o 1, < C |Elo s
< Cexp{-ao/e)
=CN73,
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since o = 3al¢ln N. Hence

-
[ M@ @VE - £)2) (™o - ) (2)
o

< -3 N _ ’
<CN||(M¥w - un) ||m°%]
<CN7?||Mw - uyl|,, (3.5.30)

by an inverse estimate.
Secondly, we bound the first term of the right hand side in (3.5.29). Let i €

{1,...,40}. For z € (%4-1,%;), we have

Zi

("G - G)(2) =

i Gzi) + 25756 () - G(e)

= %(z - 2i1)(zi - 2)G"(z) + O(KY) .
In the sequel, we shall denote by Z; any quantity of O(N~?). Set
e = (MVw - un) ().
Also set
8i= [ a@) (16 - G) (2) (T - w)'(2) de

_ G- e [ (z = zi1 )(zi — 2)a(2)G"(x) dz + hiZi(e; - €;-1)

2hi  Ja;_,
€ — €1 & -
= TG(Z:‘)G"(&') (2= zi1)(zi— z)dz + hiZi(e; — €;y)
851

2
- %a(z.')(}‘"(z.-)(e; — eio1) + hiZie; — €i-1).

Therefore

I/:io a¥(z) (IVG - G) (2) (MVw - uy)'(:)dzl =

[
> a
=1
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0

Z [—a(z.)G'"(z.)(c, —ei1) + hiZi(ei - c|‘--1)] l

t—l

Z [A10(2i41)G*(2is1) - hla(2:)G™(zi)) &

=1

h.O a(zto)G"(zlo)eio + z hiZi(e; — ei-1)

=1

z hiZ;e; + a(z.o)G"'(z.o)e.o + Z hiZ;(e; — e;—y)

=1 i=1

since h; = hi_y = O(N7?),

’

hileil + Ieiol)

<CN~? ( hi | (MY w0 - u) ()] + [(TVw - uy) (z.-o)l)

1/2
<cN?? E hi |(M¥w - un) (23)] ) + (M0~ un) (z-'.)l)
=1
- (MY w — uw) (2i0)] N, _
<CN (1 + ™% — unl| M w — upnlll (3.5.31)

S CN7| MM w - unl|l,

by an inverse inequality. Combining this with (3.5.29) and (3.5.30) yields

| [ @) %0 - w) ) @ - -.)’(z)dz| < CNY||I¥ 0  ul]]

Recalling (3.5.3) - (3.5.6) and (3.5.9) with m = 1, we have

[AY (MMw - w,T¥w — ux)| < CN32| TV w - up||.

|AY (w - wn, TV w — un)| < C (N 'In N)? IV w - up|l,

by (3.5.18) with I = 2.
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Returning to (3.5.2), we get
GllMNw - unlil < CN 2|0 — wnlil.

This completes the proof of (3.5.27). Then (3.5.28) follows from (3.5.27) and (3.4.12)

withm=1.0

Remark 3.5.8 Instead of (3.5.27), the proof of Theorem 3.5.8 actually gives (see
(3.5.81)) that

H"w—tm)(l' )
M — unll] < [ (N1 N)? + N-2H |
MY w - unll| < (( ) + [ITNw — upl||

Numerical ezperiments show that if N is sufficiently large one has

| (MY w — uw) (23)]
1T w — un]

<C,
80 one may ezpect to achieve almost second order uniform accuracy of |||TIN w—uy|||.
Remark 3.5.7 One can get

N, _ , -1
2 [(M%w — un)(zi)| SCN7F,

on applying an inverse estimate to (3.5.27). Assume that b(z) > 0 for all z € [0, 1].
Now the method defined in Theorem 3.5.8 satisfies a discrete mazimum principle,

when restricted to XN N [z;,,1]. Hence we have

— . -l
iosl?gal)v(-xl(w un)(z:i)| SCN™.

This shows that the method is uniformly convergent of at least first order in the

discrete marimum norm.



3.6 Numerical Results

In this section are reported some numerical experiments to demonstrate the accuracy
of the method (3.3.6) applied to fourth order problems and the second order problem
(3.1.1). We shall take the trial and test space SN = VN Then the scheme has the
form of (3.3.9).

We shall examine both the error between the computed solution uy and the true
solution u and the error between the uy and the interpolant IINu. These errors
u — uy and IV u — uy will be measured in various norms || - ||. We calculate the
convergence rate tables as follows, where EN may denote |ju — un|| or |[TNu — uy||;

see Farrell and Hegarty [14]:

(i). Except for the last row, the table entries are given by the classical convergence
rate,

RN =(nE™ -mEN)/In2.
(ii). The last row of each table is the uniform convergence rate,

RYN =(n E*N —In EV)/In2,

where EN = max, EN.

We first consider the fourth order problem (i.e., m = 2)
e u® — (a(z)u” + B(z)u')' + c(2)v' + d(z)u = f(z), forz€(0,1), (3.6.1a)

u(0) = 4'(0) = w(1) = ¥'(1) = 0, (3.6.1b)
with
a(z) > a>0, (3.6.1¢)



b(z) - %a'(z) >a;>0 (3.6.1d)

and
d(z) - -;—c'(z) > a9 > -y, (3.6.1¢)
for 0 < z < 1. The matrix of the method (3.3.9), with m = 2, is heptadiagonal. The

scheme is solved by Gaussian elimination.

We compute the following three errors:

(i). The error between the exact solution u(z) and the computed solution uy(z)

in the discrete maximum norm,

EY = max |u(z:) - un(z:)l.

(ii). The error between the interpolant TN u(z) and the computed solution uy(z)
in a discrete H!-norm,

EY = |TVu - unly,-

(iii). The error between the interpolant 1N u(z) and the computed solution uy(z)

in a discrete energy norm,

EN = ||| - wplle.

The discrete H'-norm and the discrete energy norm are defined respectively by

N-1 1/2
vle, = { Y (M (m-wa) 4 EW.-’)}

=1

and

N
llellla = { 3 (1257 (b (5 = wio1) = (5 + wia) /2)°

=1

+ht (w; - l’i—n)’) + |vlq, }1/2 ,
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for all v = TN ! [0p%(2) + wip}(2)] € VN, where h; = (h; + hiy1)/2. By caleu-
lation, one may show that on V¥ the discrete H'-norm | - |4, is equivalent to the

usual seminorm |- |; and the discrete energy norm is equivalent to the energy norm

Example 3.6.1 (m=2). Consider (3.6.1) with a(z) = 10, z) =1, ¢(z) = d(z) =
0 and

u(z) = e’ exp (-10(1 - z)/¢) - €¥(z + (1 — 2)) exp (—10/e)
- (€(10 4 €) exp (—10/¢) - €?) z(z - 1)?
= ((10 — €) + e*exp (-10/¢)) (2 - 1)
+0.9z3(1 - z)2.

The function f(z) is then chosen to satisfy (3.6.1a); it satisfies

1f9)(2)] < C (1 + &' exp (-10(1 - 2)/e))
Jorz € (0,1)andj=0,1,....
Note that, since ||u”||ze=f,1) < C, the solution is in fact smoother than the typical
solution of (3.1.2) given in (3.2.6).

We shall confirm that the exponent m in Theorem 3.5.1 and Corollary 3.5.1 is

sharp. To do this, we use the method (3.3.6) with the piecewise quadratic approxi-

mations
(z-zi)z—zina) (z-zi )z - 2in1)
2h.'i1" P(za-l) + hihiry p(zl)
(z-zia)(z-2)
+ T P(Ziv1),
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for z € (2-1,2i41) and i = 1,3,...,N — 1, where p can be a, b, ¢, d or f. For this

scheme, which we refer to as the A scheme, we have ! = 3 in Theorem 3.5.1. We

take a = 9.5 in (3.4.3).

£

N=8

16

32

64

128

256

1.00000e+00
2.50000e-01
6.25000e-02
1.56250e-02
3.90625e-03
9.76562¢-04
2.44141e-04
6.10352¢-05
1.52588e-05
3.81470e-06
9.53674e-07
2.38419-07
5.96046e-08
1.49012e-08
3.72529¢-09
9.31323e-10

1.329e-03
6.191e-04
8.812e-04
2.007e-03
2.330e-03
2.394e-03
2.408e-03
2.412e-03
2.412¢-03
2.413e-03
2.413e-03
2.413e-03
2.413e-03
2.413e-03
2.413e-03
2.413e-03

7.760e-05
1.504e-04
4.830e-05
2.108e-04
4.539e-04
5.644e-04
5.965e-04
6.048e-04
6.069e-04
6.074e-04
6.075e-04
6.075e-04
6.075e-04
6.075e-04
6.075e-04
6.075e-04

4.890e-06
2.310e-05
2.912¢-06
1.352e-05
5.261e-05
1.113e-04
1.403e-04
1.490e-04
1.513e-04
1.519e-04
1.520e-04
1.521e-04
1.521e-04
1.521e-04
1.521e-04
1.521e-04

3.043e-07
2.903e-06
1.795e-07
8.386e-07
3.499¢-06
1.317e-05
2.771e-05
3.502¢-05
3.725e-05
3.783e-05
3.798e-05
3.802e-05
3.803e-05
3.803e-05
3.803e-05
3.803e-05

1.903e-08
3.057e-07
2.074e-08
5.195e-08
2.185e-07
8.839¢-07
3.296e-06
6.923e-06
8.752¢-06
9.311e-06
9.458¢-06
9.496e-06
9.505e-06
9.507e-06
9.508¢-06
9.508e-06

1.241e-09
1.902¢-08
2.200e-09
3.217¢-09
1.363e-08
5.529¢-08
2.216e-07
8.244e-07
1.731e-06
2.188e-06
2.328e-06
2.365¢-06
2.374e-06
2.376e-06
2.377e-06
2.377¢-06

Table 3.6.1: |4 — un|jcod for A Scheme




£ N=8 16 32 64 128
1.00000e+00 | 4.10 3.99 4.01 4.00 3.94
2.50000e-01 | 2.04 2.70 2.99 3.25 4.01
6.25000e-02 | 4.19 4.05 4.02 3.11 3.24
1.56250e-02 | 3.25 3.96 4.01 4.01 4.01
3.90625¢-03 | 2.36 3.11 3.91 4.00 4.00
9.76562e-04 | 2.08 2.34 3.08 3.90 4.00
2.44141e-04 | 201 209 234 3.07 3.89
6.10352e-05 | 2.00 2.02 2.09 2.34 3.07
1.52588¢-05 | 1.99 2.00 2.02 2.09 2.34
3.81470e-06 | 1.99 200 2.01 2.02 2.09
9.53674e-07 | 1.99 2.00 2.00 2.01 2.02
2.38419e-07 | 1.99 2.00 2.00 2.00 2.01
5.96046e-08 | 1.99 2.00 2.00 2.00 2.00
1.49012¢-08 | 1.99 2.00 2.00 2.00 2.00
3.72529¢-09 | 1.99 2.00 2.00 2.00 2.00
9.31323e-10 | 1.99 2.00 2.00 2.00 2.00

R¥ 1.99 2.00 200 200 2.00

Table 3.6.2: || — un||oo,g Convergence Rates for A Scheme

It is easy to see that
lu - unllood < llu = unlls < |ilu - unlll.
Combining this with Corollary 3.5.1, we have
4 = ulleos < lllw — unlll < C (NI N)?.

But now Table 3.6.2 implies that the exponent 2 here is best possible, i.e., the
exponent m in Corollary 3.5.1 is sharp.
Since |ju—un|loo,d = /1Y —tp||eo 4, a similar argument shows that the exponent

m in Theorem 3.5.1 is also sharp, since [ = 3 here.



£

N=8

16

32

64

128

256

1.56250e-02
3.90625e-03
9.76562¢-04
2.44141e-04
6.10352e-05
1.52588e-05
3.81470e-06
9.53674e-07
2.38419e-07
5.96046e-08
1.49012-08
3.72529e-09
9.31323e-10

7.797e-03
8.102e-03
8.112e-03
8.109e-03
8.107e-03
8.107e-03
8.107e-03
8.107e-03
8.107e-03
8.107e-03
8.107e-03
8.107e-03
8.107e-03

9.620e-04
1.634e-03
1.929¢-03
2.015e-03
2.037e-03
2.042¢-03
2.044e-03
2.044¢-03
2.044¢-03
2.044e-03
2.044e-03
2.044e-03
2.044e-03

7.524e-05
2.160e-04
3.932¢-04
4.775e-04
5.028e-04
5.095¢-04
5.112¢-04
5.116e-04
5.117e-04
5.117e-04
5.117e-04
5.117e-04
5.117e-04

4.991e-06
1.736e-05
5.274e-05
9.748e-05
1.191e-04
1.257¢-04
1.274e-04
1.278e-04
1.279¢-04
1.280e-04
1.280e-04
1.280e-04
1.280e-04

3.102e-07
1.159e-06
4.274e-06
1.312¢-05
2.433e-05
2.976e-05
3.141e-05
3.185e-05
3.196e-05
3.198e-05
3.199¢-05
3.199¢-05
3.199e-05

1.896e-08
7.344e-08
2.863e-07
1.065e-06
3.276e-06
6.079e-06
7.440e-06
7.853e-06
7.962e-06
7.989%¢-06
7.996e-06
7.998e-06
7.998e-06

Table 3.6.3: ||T¥u — uy||; for A Scheme

£

N=8

16

32

64

128

1.56250e-02
3.90625¢e-03
9.76562e-04
2.44141e-04
6.10352e-05
1.52588e-05
3.81470e-06
9.53674e-07
2.38419e-07
5.96046e-08
1.49012e-08
3.72529e-09
9.31323e-10

3.02
231
2.07
2.01
1.99
1.99
1.99
1.99
1.99
1.99
1.99
1.99
1.99

3.68
2.92
2.29
2.08
2.02
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00

3.91
3.64
2.90
2.29
2.08
2.02
2.00
2.00
2.00
2.00
2.00
2.00
2.00

4.01
3.91
3.63
2.89
2.29
2.08
2.02
2.00
2.00
2.00
2.00
2.00
2.00

4.03
3.98
3.90
3.62
2.89
2.29
2.08
2.02
2.00
2.00
2.00
2.00
2.00

RW

1.99

2.00

2.00

2.00

2.00

Table 3.6.4: ||INu ~ un||; Convergence Rates for A Scheme




Table 3.6.6: |||TINu — un||| Convergence Rates for A Scheme

€ N=8 16 32 64 128 256
1.56250e-02 | 1.992¢-02 2.852¢-03 3.184e-04 3.726e-05 4.216e-06 3.377e-07
3.90625e-03 | 1.987e-02 4.224e-03 5.328e¢-04 4.017e-05 2.960e-06 2.765e-07
9.76562e-04 | 1.977e-02 5.015e-03 1.034e-03 1.273e-04 8.98%e-06 5.796e-07
2.44141e-04 | 1.973e-02 5.251e-03 1.287e-03 2.601e-04 3.175e-05 2.223e-06
6.10352e-05 | 1.972e-02 5.313e-03 1.364e-03 3.268e-04 6.535e-05 7.950e-06
1.52588e-05 | 1.971e-02 5.328¢-03 1.384e-03 3.472e-04 8.225¢-05 1.637e-05
3.81470e-06 | 1.971e-02 5.332e-03 1.390e-03 3.526e-04 8.741e-05 2.061e-05
9.53674e-07 | 1.971e-02 5.333e-03 1.391e-03 3.539¢-04 8.876e-05 2.191e-05
2.38419e-07 | 1.971e-02 5.334e-03 1.391e-03 3.542e-04 8.911e-05 2.225e-05
5.96046e-08 | 1.971e-02 5.334e-03 1.391e-03 3.543e-04 8.919¢-05 2.233e-05
1.49012¢-08 | 1.971e-02 5.334e-03 1.391e-03 3.544e-04 8.922e-05 2.235e-05
3.72529¢-09 | 1.971e-02 5.334e-03 1.391e-03 3.544e-04 8.922¢-05 2.236e-05
9.31323e-10 | 1.971e-02 5.334e-03 1.391e-03 3.544e-04 8.922¢-05 2.236e-05

Table 3.6.5: |||lIVu — up||| for A Scheme

3 N=8 16 32 64 128
1.56250e-02 | 2.80 3.16 3.10 3.14 3.64
3.90625e-03 | 2.23 299 3.73 3.76 3.42
9.76562¢-04 | 1.98 2.28 3.02 3.82 3.95
2.44141e-04 | 1.91 203 231 3.03 3.84
6.10352¢-05 | 1.89 196 2.06 2.32 3.04
1.52588¢-05 | 1.89 1.94 2.00 2.08 2.33
3.81470e-06 | 1.89 1.94 198 201 2.08
9.53674e-07 | 1.89 194 197 2.00 2.02
2.38419¢-07 | 1.89 194 197 199 2.00
5.96046e-08 | 1.89 194 197 199 2.00
1.49012¢-08 | 1.89 194 197 199 2.00
3.72529¢-09 | 1.89 194 197 199 2.00
9.31323e-10{ 1.89 194 197 199 2.00

RY 1.89 1.94 197 199 2.00

Tables 3.6.4 and 3.6.6 demonstrate the same order uniform convergence of

MY — wnlly and ||ITT¥u — unl]].

Example 3.6.2 (m=2). Consider (3.6.1) with a(z) = 2 + exp(z - 1), ¥z) =
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2exp(z — 1) and ¢(z) = d(z) = 0, where f(z) is chosen so that the solution of

(3.1.2) is

u(z) = y(z) - (4'(0) + ¥(0) - p(1)) 2(z - 1)?

= (¥'(1) + ¥(0) - ¥(1)) X (z - 1) - ((1 — 2)y(0) + zp(1)),

with y(z) = eexp ((-3 + 2z + e*?) /¢).

This u(z) exhibits typical boundary layer behaviour.

We denote by A the method (3.3.6) with the piecewise linear approximations

P(z) =

Ti

hi

— = pzi1) +

T—-Zi1

hi

p(zi')i

for z € (24-1,25)and i = 1,2,..., N, where pcan be a , b, ¢, d or f. For this scheme

I = 2. We choose a = 2.99 in (3.4.3).

£

N=8

16

32

64

128

256

1.00000e+00
2.50000e-01
6.25000e-02
1.56250e-02
3.90625e-03
9.76562e-04
2.44141e-04
6.10352e-05
1.52588e-05
3.81470e-06
9.53674e-07
2.38419e-07
5.96046e-08
1.49012e-08
3.72529-09
9.31323e-10

9.944e-05
4.101e-03
7.773e-03
2.306e-02
4.960e-02
6.434e-02
6.900e-02
7.024e-02
7.055e-02
7.063e-02
7.065e-02
7.065¢-02
7.066e-02
7.066e-02
7.066e-02
7.066e-02

2.067e-05
2.777e-04
1.410e-03
1.900e-03
5.751e-03
1.172e-02
1.510e-02
1.618e-02
1.647e-02
1.654e-02
1.656e-02
1.656e-02
1.657e-02
1.657e-02
1.657e-02
1.657e-02

5.177e-06
3.362e-05
2.253e-04
1.712e-04
5.452e-04
1.464e-03
2.909e-03
3.734e-03
3.997e-03
4.068e-03
4.085e-03
4.090e-03
4.091e-03
4.091e-03
4.091e-03
4.091e-03

1.301e-06
8.467e-06
3.041e-05
2.571e-05
5.364e-05
1.489¢-04
3.710e-04
7.285e-04
9.330e-04
9.985e-04
1.016e-03
1.020e-03
1.022e-03
1.022¢-03
1.022e-03
1.022¢-03

3.257e-07
2.178e-06
4.368e-06
5.852e-06
7.074e-06
1.641e-05
3.882¢-05
9.331e-05
1.822¢-04
2.331e-04
2.494e-04
2.537e-04
2.548e-04
2.551e-04
2.552e-04
2.552e-04

8.140e-08
5.491e-07
8.504e-07
1.443¢-06
1.622¢-06
2.177e-06
4.50%e-06
9.886e-06
2.335e-05
4.546e-05
5.814e-05
6.220e-05
6.328e-05
6.356e-05
6.362¢-05
6.364e-05

Table 3.6.7 : |{u — ¥n|leo.q for A Scheme




€ N=8 16 32 64 128
1.00000e+00 | 2.27 2.00 1.99 2.00 2.00
2.50000e-01 | 3.88 3.05 199 1.96 1.99
6.25000e-02 | 2.46 2.65 2.89 2.80 2.36
1.56250e-02 | 3.60 3.47 2.74 2.14 2.02
3.90625¢-03 | 3.11 3.40 3.35 292 2.12
9.76562¢-04 | 2.46 3.00 3.30 3.18 291
2.44141e-04 | 2.19 238 297 3.26 3.11
6.10352e-05 | 2.12 2.12 2.36 2.96 3.24
1.52588¢-05 | 2.10 2.04 2.10 2.36 2.96
3.81470e-06 | 2.09 2.02 2.03 2.10 2.36
9.53674e-07 | 2.09 2.02 201 2.03 2.10
2.38419¢-07 | 2.09 2.02 2.00 2.01 2.03
5.96046e-08 | 2.09 2.02 2.00 2.00 2.01
1.49012¢-08 | 2.09 2.02 2.00 2.00 2.01
3.72529¢-09 | 2.09 2.02 2.00 2.00 2.00
9.31323e-10 | 2.09 2.02 2.00 2.00 2.00

RN 209 202 200 200 2.00

Table 3.6.8: ||x — uN||le,4 Convergence Rates for A Scheme

Recalling Remark 3.5.4 and the inequalities
olleoa < livlls < llvlll Vo € VN,

one can see from the rates of the first row of Table 3.6.8 that the exponent [ in the
bound of Theorem 3.5.1 is sharp in general.

However, we observed in all our numerical experiments with m = 2 that when
piecewise constants are used to approximate the functions a, b, ¢, d and f (i.e., when
| = 1), then |||I¥u — up||| is second order convergent, uniformly in €. That is, it
appears that when [ = 1 one can replace [ by [ + 1 in the conclusion of Theorem
3.5.1.

In our last example we consider the second order problem (3.1.1). Many schemes

have been proposed for this problem in the literature. We include results for it here
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in order to demonstrate that one may obtain a higher order of uniform convergence
for |||T¥w — uy||| than is implied by Theorem 3.5.1; see Theorem 3.5.3. We use
piecewise linear approximations of a, b and f as described in Theorem 3.5.3. The

resulting tridiagonal scheme can be written explicitly as
rTuN(zio1) + rfun(zi) + 1 un(ziy) =&, fori=1,...,N-1 (3.6.2a)
uN(zo) = un(zn) =0, (3.6.2b)
where
ri = —eht = (8i-1 + 2a;) /6 + hi (bi1 + b) /12,
rh = —eh} + (26; + aig1) /6 + hi (b + biya) /12,
ré=— (r7 4+ r}) 4 (hibica + 2(hi + hig1) bi + hig15i41) /86,
& = (hificr + 2(hi + hita) fi + higa finn) /6,

fori=1,...,.N-1.

Example 3.6.3 (m=1). Consider (3.1.1) with a(z) = 5 —sin(1 — z), ¥&z) =

cos(1 — z) and f(z) chosen such that

w(z) = exp((—4 + 5z — cos(1 — 2)) /) + (1 + 2)*

172 - (exp ((—4 - cos(1)) /€) + 1) (1 - 2).

In this case we define the discrete energy norm ||| - |||4 to be
N-1 1/3
ivllle = { Y bt - mia)t + Z hiv] }
=1

for all v = E.:x vip?(z) € VN. It can be shown that the discrete energy norm

Il - lll¢ is equivalent to ||| - ||| on VN,



£

N=64

128

256

512

1024

2048

2.50000e-01
6.25000e-02
1.56250e-02
3.90625e-03
9.76562¢-04
2.44141e-04
6.10352¢-05
1.52588e-05
3.81470e-06
9.53674e-07
2.38419e-07
5.96046e-08

8.896e-03
2.385e-02
2.329e-02
2.318e-02
2.340e-02
2.421e-02
2.468e-02
2.483e-02
2.487e-02
2.488e-02
2.488e-02
2.488e-02

2.238e-03
8.388e-03
8.207e-03
8.168e-03
8.161e-03
8.221e-03
8.433e-03
8.556e-03
8.594e-03
8.605e-03
8.607e-03
8.608e-03

5.604e-04
2.785€-03
2.730e-03
2.718e-03
2.715e-03
2.715e-03
2.730e-03
2.784e-03
2.816e-03
2.826e-03
2.828e-03
2.829e-03

1.413e-04
8.893e-04
8.732¢-04
8.696e-04
8.688e-04
8.686e-04
8.686e-04
8.726e-04
8.863e-04
8.943e-04
8.967e-04
8.974e-04

4.329¢-05
2.771e-04
2.717e-04
2.704e-04
2.702¢-04
2.702e-04
2.701e-04
2.701e-04
2.711e-04
2.746e-04
2.766e-04
2.772¢-04

8.479e-07
7.169e-05
8.184e-05
8.164e-05
8.155e-05
8.208e-05
8.208e-05
8.340e-05
8.173e-05
8.271e-05
8.342¢-05
8.352e-05

Table 3.6.9: |||TNw — up|||4 for Scheme (3.6.2)

£

64

128 256

512

1024

2.50000e-01
6.25000e-02
1.56250e-02
3.90625¢-03
9.76562¢-04
2.44141e-04
6.10352e-05
1.52588e-05
3.81470e-06
9.53674e-07
2.38419e-07
5.96046e-08

1.99
1.51
1.50
1.50
1.52
1.56
1.55
1.54
1.53
1.53
1.53
1.53

2.00
1.59
1.59
1.59
1.59
1.60
1.63
1.62
1.61
1.61
1.61
1.61

1.99
1.65
1.64
1.64
1.64
1.64
1.65
1.67
1.67
1.66
1.66
1.66

1.71
1.68
1.68
1.69
1.69
1.68
1.69
1.69
1.71
1.70
1.70
1.69

5.67

1.95
1.73
1.73
1.73
1.72

1.72
1.70

1.73
1.73
1.73
1.73

RV

1.53

1.61

1.66

1.69

1.73

Table 3.6.10: |||I¥w — up|||¢ Convergence Rates for Scheme (3.6.2)

The experimental rates in Table 3.6.10 verify Theorem 3.5.3 and are consistent

with Remark 3.5.6.




Chapter 4

Interior Turning Point
Problems

4.1 Introduction

Consider the singularly perturbed two—point boundary value problems
Leu = —ev” 4 2%(z)u' 4+ d(z)u = f(z), for z € (-1,1), (4.1.1a)

w(-1) = u(1) = 0, (4.1.18)

with a small parameter ¢ € (0,1] and k a positive integer. These problems arise in
modeling the flow of a viscous fluid between two coaxial rotating disks; see Smith
(38}, Section 8.5.
We assume that b, d and f are sufficiently smooth on [-1,1] and satisfy, for
z €([-1,1),
Iz)l >8>0, (4.1.1¢)
d(z)>0 and d(0)> 0. (4.1.1d)

Condition (4.1.1d) guarantees that the operator L, is inverse monotone on [-1,1].

From this it follows that (4.1.1) has a unique solution u(z). Since the coefficient of
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the first derivative vanishes only at z = 0 (by (4.1.1c)), problems (4.1.1) have an
isolated turning point at £ = 0. If £ = 1 the turning point is said to be simple.
When k > 2 it is called a multiple turning point. In the case b > 0, the turning
point is said to be repulsive and in the case b < 0 it is said to be attractive. In
what follows we shall denote by Py the problems (4.1.1), where the superscript is
the sign of &(-).

It is well known that the problems P.* may exhibit boundary layers of exponential
type or an interior layer of cusp type. The nature of these layers depends on the value
of k and the sign of b; see Section 4.2. Special methods must be designed to obtain
an accurate numerical solution for Pf’ without introducing an excessive number of
meshpoints. This leads naturally to the consideration of numerical methods which
are convergent, uniformly in the parameter ¢, in some norm. Finite difference
methods for P¥ have been extensively considered. Berger, Han and Kellogg [4]
applied a modified El-Mistikawy and Werle scheme to the problem P, with d(z) >
0 for z € [-1,1]. They proved that this scheme is uniformly convergent of order
N-=ia{A1} ip the L*°[-1,1] norm for P, where A = d(0)/5(0), provided that A # 1
(when ) = 1 they obtain order N~!In N). An improved uniform convergence rate of
N-! was obtained by Farrell and Gartland [13], using a scheme involving parabolic
cylinder functions. The same problem was considered in Farrell [12], where sufficient
conditions for uniform convergence in the discrete L* norm on an equidistant mesh
were investigated. Lin and Sun [25] constructed an exponentially fitted scheme for
the problem P, which they proved to be uniformly convergent of order N~2. All
of these discretizations use equidistant meshes. The schemes are quite complicated.

Clavero and Lisbona (8] consider a family of finite difference schemes, which includes
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the upwinded scheme, Samarskii scheme and exponentially fitted schemes, for the
problem P~ with 0 < A < 1. They showed that on a locally quasi-equidistant mesh
the family of schemes is uniformly convergent of order N~2 in the discrete maximum
norm. Vulanovié¢ [47] applied a variation of the Gushchin—Shchennikov scheme, on a
special graded mesh, to a simple boundary turning point problem. He proved that
the scheme is uniformly convergent of order N-? in the discrete L* norm.

In contrast, there are few results on finite element methods for turning point
problems. Stynes and O’Riordan [42] examined problems with arbitrary turning
points. In [42], finite element methods, based on an approximate L-spline trial
space and an approximate L*-spline test space, are constructed and proved to be
uniformly convergent in a weighted energy norm. Once again, the difference scheme
generated is somewhat complicated.

In this chapter, we generate and analyse Galerkin finite element methods for the
problems Pf. These methods use piecewise linear functions with special piecewise
equidistant discretization meshes. Shishkin meshes [37] are used to handle bound-
ary layers of exponential type. Such layers are the only source of difficulty in the
problems Pf, with the exception of Py (see Lemmas 4.2.2 and 4.2.3). The simple
attractive turning point problem P;” does not have any boundary layers of exponen-
tial type but rather an internal layer of cusp type. The interior layer is essentially
a Weber parabolic cylinder function. It is not clear how to construct an ordinary
Shishkin mesh for the problem P;". We therefore introduce a mesh which is a gen-
eralization of Shishkin’s. This mesh is equidistant in each of O(ln N) subintervals.
Due to the piecewise equidistance, the meshes used in this chapter are simpler than

the Bahkvalov-type mesh used by Vulanovié [47].
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Our difference schemes are similar to the classical central difference scheme.
They do not satisfy a discrete maximum principle. We shall analyse our methods in
a framework similar to that of Stynes and O’Riordan [43]. The methods are shown
to be uniformly convergent of order N-}In N in a weighted energy norm associated
with (4.1.1a) and order (N=*In N)*? in the L? norm.

In Section 4.2, we present a priori estimates for the continuous problems Pf. In
Section 4.3, Galerkin finite methods are constructed on an arbitrary mesh for the
problems Pf . Uniform convergence results on the piecewise equidistant Shishkin
mesh are given in Section 4.4 for those problems P,,t with boundary layers of ex-
ponential type. In Section 4.5, we introduce a more general piecewise equidistant
mesh. On this mesh, uniform convergence is obtained for the simple attractive

turning point problem Py . Section 4.6 gives numerical results.
4.2 The Continuous Problems

In this section we discuss those properties of (4.1.1) and of its solution ¥ which we
shall need later for the analysis of our finite element method.

Set a(z) = z*b(z). First we show that, if we have d(0) — 1a’(0) > 0, then we can
deduce an inequality needed later to show that certain bilinear forms associated with
the operator L, are coercive. The proof generalizes an idea of Stynes and O’Riordan

[43).

Lemma 4.2.1 Suppose that d(0) — §a'(0) > 0. Then without loss of generality, we

may assume that there ezists Cy > 0 such that for z € [—-1,1)] we have
1,
d- 2¢ (z) > 2C,. (4.2.1)
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Proof. Set 7 = ming¢(_y,1) (d - }a’) (). If ¥ > 0 then we are done, s0 suppose that
7<0.
Since d(0) — }a’(0) > 0, there exist §, m > 0 (both independent of ¢) such that

(d - %a') (z) > m, forze€[-4,6). (4.2.2)

Let 8, = Bsgnb, where S is given by (4.1.1d) and sgn b = b/|b]. Without loes of

generality, we can assume that ¢ is so small that
603 + 4e(y-1)> 0.

Set

_ 633, — (sgnb)\/64*87 + 4e(y - 1)
- 2e(k +1)
21-17)

T k1) (6"'[31 + (sgn b) \/E# BT + (7 — 1)) '

r

Then r satisfies

O<regnb<C (4.2.3)

and

—e(k+122 4+ (k+1)6%*8r4+7-1=0. (4.2.4)

Consider the differential operator L, defined by
Ly2(z) = —e2"(2) + @(2)2'(z) + d(z)2(z).

Here

a(z) = a(z) — 2e(k + 1)rz®

zh(b(z) - 2¢(k + 1)7)

z*h(z),
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say, and
d(z) = d(z) - ek(k + 1)rz* — g(k + 1)2r22% 4+ (k + 1)r2?b(2).
It is easy to see that, for z € [—1,1] and ¢ sufficiently small,
|b2)| > 872> 0,
d(z) > 0 and d(0) > 0,
by (4.2.3). Also for the operator L,,
(J— -2]5&') (z) = —e(k + 1)} 7222 4 (k + 1)rz2*b(z) + (d - %a’) (2).

We show that (J— }&') (z) > 2C; on [-1,1]. We discuss two cases.
Case 1: If z € [-6,6), then from (4.2.2) and (4.2.3)

(J - %a') (z)2 —e(k+1)*r*+m
2 m/2,

for ¢ sufficiently small.

Case 2: If z € [-1,1] \ [-4, 6], then using the definition of 3, and (4.2.3),
(J - %a') (2)2 —e(k+ 1)} + (k+1)6%5 7 + 4
=1,

by (4.2.4).
That is, L, satisfies the conditions we would like L, to satisfy, with 2C; =

min{m/2,1}. An easy computation shows that
L (7" w(2)) = € Lostr) = 7 1),
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so we can now work with the problem L, (v(z)) = =" f(z), which has the
required properties, then transform our results back to (4.1.1) by means of u(z) =
e™**'v(z). By (4.2.3) above, this transformation will at worst scale all quantities

by a factor C and so will not alter the orders of convergence in our results. O

Remark 4.2.1 Note that
1, 1 a1 1 ap
d(z) - 29 (z) =d(z)- Ek: z) - 37 b'(z).

Hence (4.1.1d) implies that the condition d(0) — }a'(0) > 0 of Lemma 4.2.2 holds

Jor all problems P,f ezcept possibly the simple repulsive turning point problem P .

Assumption 4.2.1 From now on, we shall assume that ({.2.1) is satisfied in ad-
dition to ({.1.1a) - (§.1.1d). By Remark {.2.1 and Lemma {.2.1, this assumption

is restrictive only for the problem P .

To construct our special meshes and analyse errors of the finite element schemes,
we need a priors estimates of the solution u(z) and its derivatives. The boundary
or interior layer behaviour of the solutions depends not only on the sign of b, but

also on whether k is even or odd.

Lemma 4.2.2 Fiz k and b. Let u(z) be the solution of (4.1.1). Then for z € [-1,1]
and j=0,1,...,

(i) for P} with k even,

|[u92)| < € (1+ &7 exp(=B(1 - 2)/¢)); (4.2.5)
(ii) for P{ with k even,

|[1@)] < € (1 4+ e exp(=B(1 + 2)/e)) (4.26)
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(i5i) for P} with k odd,
|[u2)| < € (1 4+ 67 exp(=B(1 - 2)/e) + e F exp(-B(1 + 2)/e)) ;s (4.2.7)

(iv) for P with odd k > 3,
|u(ﬂ(z)| <cC. (4.2.8)

Proof. See Vulanovié¢ and Farrell [50]. O

From the above bounds, one can see that in case (iv) no layer is present in the
solution and cases (i) — (iii) exhibit one or two boundary layers of exponential type.
A numerical method which is suitable for all four cases will be given in Section 4.4.

The solution of the simple attractive turning point problem P behaves very
differently from the cases listed in Lemma 4.2.2. Set A = d(0)/|5(0)|. Then A > 0.
We have

Lemma 4.2.3 There erists a constant C, which is independent of ¢, such that the

solution u(z) of problem Py satisfies

Cc (1 + (J=| + e‘/’)x-") , if A is not an integer, (4.2.9)
A-j ey .

o (1 + (Iz] + €/3) ’In mﬁm) ,» if A is an integer,  (4.2.10)

forze(-1,1)and j =1,2,....

|u2)| <

Proof. Let A = m + A where m is a non—negative integer and 0 < A < 1. Under the
assumption that d(z) > 0 for ¢ € [-1, 1], Berger at al. [4] showed that the solution
%(z) of problem P satisfies (4.2.9) and (4.2.10).

For the slightly weaker assumption (4.1.1d), one can obtain the same estimates

by applying the result of (4] to the problem

—ey”" +2*0(z)y’ + d(z)y = f(z), for z € (=4,8),
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¥(=6) = u(-8), y(8) = u(é),
where § € (0,1) is chosen such that d(z) > 0, for z € [-4,6]. O
We remark that a simpler proof of Lemma 4.2.3 for the case 0 < A < 1 is given
by Clavero and Lisbona [8].
From Lemma 4.2.3, one can see that the solution of P; has an internal layer at
z = 0. If A becomes smaller, then the solution is more badly behaved. In Section
4.5, we shall discuss a uniformly convergent numerical method for the most difficult

case 0 < A < 1.

4.3 A Galerkin Finite Element Method on an Arbi-
trary Mesh

In this section, we begin to analyse a Galerkin finite element method for the problems

PE. Let us first work with an arbitrary mesh
XN . 1=zp<zp41<...<zZp1<2zp=1.

Set h; =z;—z;_yfori=L+1,...,R, with H = max; h;.

Define the standard piecewise linear basis function ; by

(z = zi1)/hs, for z € (2i-1,23),
¢i(z) = { (zis1 — 2)/hipr,  for z € (2i,2i11),
0, elsewhere,

fori=L+1,...,R—1. Our trial and test spaces SV are taken to be the linear
spanof {p; :i=L+1,...,R-1}.
Let (-,-) denote the usual L3[-1,1] inner product. Denote the L3[(-1,1] norm

by || - |- Our weighted energy norm is defined by

1/3

Mol = {elle'l* + eI}
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for all v € H}(-1,1). Set
B.(v,w) = (ev',w') + (av’, w) + (dv, w),

for all v,w € H}(—1,1). Recall Assumption 4.2.1. A standard argument shows that
the bilinear form B,(-,-) is uniformly coercive over H}(-1,1) x H}(-1,1) in terms

of ||| - |ll, i.e., that there exists C > 0 such that
CllivllI* < Bu(v,v), (4.3.1)

for all v € HJ(-1,1).
We now define our weak formulation of (4.1.1): find v € H3(—1,1) such that

B.(%,v) = (f,v), forall ve Hy(-1,1). (4.3.2)

Clearly (4.3.2) has a unique solution u(z) in H3(—1,1). This weak solution is also
the classical solution of (4.1.1) when all the data are smooth.
Let p denote b, d or f. We denote by p the piecewise linear interpolant p to p

on [~1, 1], defined by

Ti— T Z—Zi-1

Hz) = Y P zi-1) + Y p(zi), (4.3.3)

for z € (2i-1,2;) and i = L + 1,..., R. Our modified bilinear form is given by
B(v,w) = (ev',v") + (av',w) + (dv, w),

for all v and w € H}(~1,1), where &(z) = z*¥z).
We begin the analysis by showing that the bilinear form B(.,) is uniformly

coercive over H3(—1,1) x H3(-1,1).
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Lemma 4.3.1 For H sufficiently small, independently of ¢, we have
Cliivlli* £ Be(v,v),
Jor all v € H}(-1,1).
Proof. For each v € H}(-1,1),
B(v,v) = (¢v',v') + (av',v) + (dv, v).

Taking the second term of this, we have

R .

(av',v) = Z / av'vdz

i=L+1 V%1
L] L]
- / 1(&)":’4:)
851 8- 2

B (1
= E (-2'&”’
( * '
-3¢ (::.-)+O(H))v dz.

i=L+1
R e

> [

i=L+1 %1

Also
R

(Ju,v)= 3 /" (d(z;) + O(H))v? d=.

i=L+1 7 ®-1
Hence

B2+ Y [

i=L41 %=1
> el|v'|] + Gullell?,

(d(z.-) - %a'(x.') + O(H)) vidz

for H sufficiently small, by (4.2.1). This implies the result. O

Our discrete solution uy € S¥ is defined by
B(un, i) = (f,9i), fori=L+1,....,R-1. (4.34)
It follows from Lemma 4.3.1 that the solution uy of (4.3.4) is well defined.
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When k = 1, (4.3.4) is given explicitly by the three-point scheme

riuN(zi1) + riun(zi) + rfun(zip) =@, fori=L+1,...,R-1,

uNn(zo) = un(zn) =0,

where
-8 (m_ M), Tk hd s 4 ds
T -—h"+(6 12)b’-!+(3 12)b.+h.(d._1+d‘)/l2,
po & (T R (E k)
= hiva (3+ 12)6‘ (6 12)";+1+h.(d‘+¢.+1)/12,

rf= = (7 1) + (hidica + 2(hi + his1) di + hisrdina) /6,
¢ = (hific1 + 2(hi + hiva) fi + hiv1 fir) /6,

fori=L+1,...,R- 1. On general meshes this scheme does not always satisfy
a discrete maximum principle. We shall prove that on certain special meshes the

scheme (4.3.4) is uniformly convergent in the weighted energy norm ||| - |||.

4.4 The Shishkin Mesh for Boundary Layers of Expo-
nential Type

In this section, we first introduce a Shishkin mesh. We then present uniform conver-
gence results in the weighted energy norm |||-||| and the L? norm for those problems
P.* which have boundary layers of exponential type (by Lemma 4.2.2, these are all
problems P except Py).

Consider the simple repulsive turning point problem P}. The solution has
boundary layers of exponential type at both end points z = -1 and z = 1.

We shall describe the mesh on the subinterval [0,1], then on [-1,0] the mesh

is constructed by symmetry about z = 0. Given an even positive integer N, the
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Shishkin mesh X/ is constructed by dividing the interval [0, 1] into two subintervals
[0,1-0], and [1-o,1].

Equidistant meshes with 14+ N/2 points are then used on each of these subintervals.

The parameter o is defined by
o =min{1/2, 287 '¢ln N},
which depends on ¢ and N. More precisely, we have
Xf:0=zo<zl<---<z.~,,<-~<zn-;<zu=l,
with ig = N/2 and z;, = 1 — 0. The mesh spacing is given by
hi=2(1-0)N7}, fori=0,...,i

and

h;=20N"!, fori=ig+1,...,N.

Theorem 4.4.1 Let v be the solution of P. Let un € SN be the solution of
(4.3.4) for the problem P on the Shishkin mesh X N. Then for N sufficiently large

(independently of € ), we have
|llu - uwlll SCN~'In N

and
llu - wnll SCN.
Proof. Consider the convection-diffusion problems
—ey + zb(z)y, + d(z)n = f(z), for z € (-1,-1/2),
n(-1)=0, n(-1/2)=«-1/2),
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and
~eys +2b(z)yy + d(z)1n = f(z), forz €(1/2,1),
1(1/2) = u(1/2), n(1)=0.

Recall (4.2.7). We have |1(—1/2)] < C and |y(1/2)] < C. Hence, from Gartland

[17], Theorem 1.4, y1(z) and y3(z) respectively admit the decompositions
n(z) = Gi(2z) + Er(2), for z € (-1,-1/2)

and

1(2) = Ga(z) + E4(z), for z € (1/2,1).

Here

)| <c, forze(-1,-1/2),
ED(2)| < CeFexp(-B(1 + 2)/e), for z € (-1,-1/2),
ng)(x) <C, forze(1/2,1),

E¥(z)| < Ce~dexp(—B(1 - z)[e), for z € (1/2,1),

for j = 0,1,.... It is easy to see that u(z) = p(z) for z € [~1,-1/2] and ¥(z) =
%(z) for z € [1/2,1]. Therefore,

G1(I)+E1(I), forz e (—17—1/2)’
uw(z) = { u(z), for r € [-1/2,1/2},
Gi(z)+ Ea(z), forz€(1/2,1),

where
@) <€, forze€(-1/2,1/2),
for j=0,1,..., by Lemma 4.2.2.
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Using this decomposition with arguments very similar to those of Chapter 3, one
can get the desired estimates. O
Analogous results may be obtained for the multiple turning point problems P.*

with k > 2.
4.5 The Simple Attractive Turning Point Problem P

We now design a piecewise equidistant mesh on which we apply the method (4.3.4)
to the simple attractive turning point problem P;". We shall assume that 0 < A < 1;
as we saw in Sections 4.1 and 4.2, this is the most difficult case. Then (4.2.9) can

be written as

. A-j
|u2)| < € (J=1 + €¥2) ! (4.5.1)
for z € (—1,1) and j = 1,2,.... Uniform convergence results are proved in the
weighted energy norm ||| - ||| and the L? norm.

4.5.1 The Mesh

The behaviour of the internal layer of problem Py is quite different from that of the
boundary layers which occur in the other P,f . The main difference is that the layer of
cusp type is “much” wider than O(c). In fact as ¢ varies, |u’| < C is not guaranteed
on [—¢?,¢?) for any fixed positive constant #. It is not clear how to construct a
Shishkin mesh of the usual type for this problem. Instead, we introduce a special
mesh which is equidistant on each of O(In N) subintervals; this is a generalization
of the standard Shishkin approach. We shall again describe the mesh on [0, 1] only,

since it is symmetric about z = 0.
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For any ¢ € (0, 1] and given a positive integer N, set

0 = max {e%(‘“”, N”} . (4.5.2)
and
K =int (1 - %) , (4.5.3)

where int(z) denotes the largest integer j which satisfies j < z. The interval (0, 1]

is divided into K + 1 subintervals:
(0,10°%], (10-%,10°%+], ..., (107%,1).

The closure of each of these subintervals is then partitioned by an equidistant mesh
containing 1 + int (ﬁ?) points. We shall refer to this mesh as XJ.

From (4.5.3), it can easily be seen that

) 1 A\ Ine InN
K+1< 2+mm{—-§ (1— 5) mq 3in—10}' (4.5.4)

We shall assume that N > 4; then (4.5.4) implies that K +1 < N. For convenience,
it will also be assumed that int (X%) = X% Let n = x’%,— Then the meshpoints

on [0,10~X] are given by
zi= (K +1)10°XNY, fori=0,1,...,n.
For j = 1,..., K, the meshpoints on (10~4,10~#+1] are defined by
2;=1079 + (K + 1)107IN"Y(i — (K - j + I)n),

fori=(K-j+1)n+1,....,(K—-j+2)n It is obvious that the mesh spacing

satisfies
hi = (K +1)10°XN-Y, for z; € (0,107%] (4.5.5)
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and
hi = 9(K + 1)107N~Y, forz; € (1079,107* | and j=1,...,K.  (4.5.6)
Also from (4.5.3), we have
107'¢<10X <o. (4.5.7)
It is clear from (4.5.4) that
K+1<ChN. (4.5.8)

This inequality will be used frequently in our analysis.
4.5.2 Analysis of Convergence

Since the bilinear form B,(:,) is not uniformly bounded in terms of the energy norm
i1+ 1Il, a classical finite element approach does not satisfactorily analyse the error in
the computed solution uy. We shall employ an analysis similar to that of Stynes
and O’Riordan [43] to prove that the method (4.3.4) for P is uniformly convergent

32 with respect to

of order N=!In N with respect to ||| - ||| and of order (N=*In N)
|-l on the mesh X§. (It does not seem possible to use an Aubin-Nitsche approach
to get this higher order in || - ||.)

In what follows, the analysis is performed only on the interval [0, 1]. The interval
[-1,0] can be handled similarly. We shall denote by wy € S™ the interpolant to
at each node z; of an arbitrary mesh XN. The notation (-,-) denotes that the
integration in (-,-) is only over [—1,1]\ X¥.

We first give some relationships between interpolation errors in different norms

on an arbitrary mesh.
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Lemma 4.5.1 Let u be the solution of problem P; . Then on any arbitrary mesh

we have
llw = wrll* < Cllw = wrl (4.5.9)
and
1
/ (z(u - ur)(z))? dz < Cllu - uf|. (4.5.10)
-1
Proof. We first prove (4.5.9). Integrating by parts, we get, using (4.1.1a) and u] =0
on each subinterval (z;_,, z;),
B,(u—-vur,u—uy) = (—e(u—ur)" +a(v—ur) +d(v - uy),u— u,)'
= (f — au} + duy,u — vj)

< IS - auy + dugl] - [ls — . (4.5.11)
Since ||u||L= < C by Lemma 4.2.3,

f —durl| < C. (4.5.12)

To bound |lau}||, suppose that 2 € (2;-1,%;), for some fixed i € {1,...,N}.

From Lemma 4.2.3,
jtu'()] < C, for all t € [-1,1]. (4.5.13)

Now

w(z;) — w(zi-1) = h;u'(8;) for some 6; € (zi-1, i)

Hence

Ju(z:) — w(zi-1)l

Itu"(:t)l =z hy

- (z _ ‘i)lu(z") -h:‘(zi—l)l + “ I“l(“”

<C,
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using (4.5.13), |z — 6;| < h; and ||u||z= < C. It follows that
flavjl < C.

Combining this with (4.5.11), (4.5.12) and (4.3.1) completes the proof of (4.5.9).
We now move to (4.5.10). For each i € {1,..., N}, using integration by parts
twice, we obtain

/.‘ (z(uw - u,)'(z))’ dz

8-}

= /.‘ (z2(v = up)'(2)) (w - wr)'(z) d=

= - /.‘ (u - ur)(z) [2z(u - ur)(z) + 2} (u - u,)"(:c)] dz

= [7 (- wie) - e - w)e)) de

< /.i ((w = ur)*(z) + Cl(u - ur)(z)|) dz, (4.5.14)

using (4.5.1). Hence

1
[ (ato = wr(@)” d < Iw = wal? + Ol = wllsien
-1
< fhw = wrl? + Cllw ~ wrll
< Clluw - ull,
using [|urljz < [lullz= < C. O
The next result gives a bound on ||jus — un||| on an arbitrary mesh.

Lemma 4.5.2 Let u be the solution of problem P;” and uy the solution of (4.3.4)
on an arbitrary mesh. Then for H sufficiently small (independently of ), we have

llur - wnlll < € (lls = sl + £7).
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Proof. By Lemma 4.3.1, we have

Clllur - un||® < B(uz - un,ur - un)
= f)‘(u, - 4,47~ uN) + ﬁ(u -un,ur—uy). (4.5.15)
We bound these two terms separately. Firstly, integrating by parts, we obtain
If’(ut —u,ur— tuv)l

= '(e(u; - u),(ur - uu)").+ (é(u; -u) + d(uy — u),ur — tm)'

= |(a(u, — ) + d(ur — ), ur - ~~)|

<c { (f : (2(u - ur)'(2))? dx)m + llur - uu} lur — wnl

< Cllur - uf*?|jur - unll, (4.5.16)

by (4.5.10) and |jur||ze < |jullz= < C.
Secondly,

|B(“- uN, ut-uu)l
= |(B - B.) (u,ur — un) + Be(u, 87 — un) — B(up,uz - uy)l
= |((& —-a)u', ¥y - "N) + ((J— d)u,uy - uy) + (f - f,l] - 'N)I

< CH?||lur - unll, (4.5.17)

since |zu'(z)| < C, for z € [-1,1].

Returning to (4.5.15), we have, from (4.5.16) and (4.5.17),
llur - wnlll? < € (hur = Wl + B?) ljng = wnll,

which with || - || < ||| - |I| yields the desired result. O
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The following lemma contains some technical bounds on the piecewise equidistant

mesh XJ.

Lemma 4.5.3 Consider the piecewise equidistant mesh X¥. Let z; € (10-KX,1].

Then
A-2
B (s +€?) " <CNT?N. (4.5.18)
Ifo=et(-1) then
A-3 1,2 -x
B (zia +642) SCNTPN,  for zi € (0,107K). (4.5.19)
Ifo = N3, then
A-2
h? (z.-_l + e'/’) <C(i-1)"2, forz; € (21,10°K). (4.5.20)

Proof. Firstly, let z; € (10~7,1079+] for some j € {1,...,K}. From (4.5.6), we
have
n (z.--: + E:/:)"" < 81((K +1)10-9N-1)? 100-24
<CN7Im?N,
by (4.5.8).
If o = e4(1-4), then for z; € (0,10-KX],
B (zica +7)" 7 < C (K + D107KN ) erd
<CN-*I?N,
using (4.5.5) - (4.5.8).
If o = N3, then for z; € (z;,10°X],
h? (z.'-x +eV ’)x_’ < Chiz7h
=C(i-1)"%
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This completes the proof. O

We now estimate the interpolation error ¥ — uy on the mesh X g .

Lemma 4.5.4 Let u be the solution of problem P . Let ur € SN interpolate to u

at each node of the piecewise equidistant mesh X{. Then
llu—ur) <CNIn® N (4.5.21)

and
llle—wrlll SCN~'In N. (4.5.22)

Proof. We first prove (4.5.21).

Let z € (z;_1,z;) for some i, where z; € (10~ 1]. Then for some &; € (zi-1, z;),

I(w — ur)(z)] < Ch}|u"(&)|
4 -
< Ch? (x.-_, + s‘/’)A ’, by (4.5.1),

<CN N,
by (4.5.18). Consequently
1
/ (w-ur)’(z) SCN~*In*N. (4.5.23)
10-X

Next, let z € (z;-1,;), Wwhere z; € (0, 10~X). There are two cases to be consid-
ered, depending on the value of o generated by (4.5.2).

fo= 5%(1"9), then as above

A-3
I(u - wr)z)| < C? (zia +€/2) T <CN '’ N,
by (4.5.19). Consequently

10-%
/ (v - 1) (z) <CN~*In* N. (4.5.24)
(]

121



Ifo=N-3 wefirst let z € (2i-1,2) C (21, 10“]. Then

(0 - w)(@)] < CR? (320 + %)

<SC@E-1)"2 fori= 2,...,m,

by (4.5.20). Hence

10-X% ﬂ'l' LY
[ le-u@rd =y [ - wpayiae

i
<CY h(i-1

< C(K +1)107XN1

<SCN*IN,
where we used (4.5.5) - (4.5.8). Secondly,

|7 1= wn@tes < o
<C(K+1)107%N2

<CN*mhN.
Thus when 0 = N-3,
10-X
/ (s — wr)z)Pdz < CN~*In N. (4.5.25)
(]

Combining (4.5.23) - (4.5.25) and using symmetry on [-1,0] yields (4.5.21).
Recalling (4.5.9), (4.5.22) follows immediately from (4.5.21). O

We now prove uniform convergence results in the energy norm and the L? norm.
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Theorem 4.5.1 Let u be the solution of problem P, . Let uy € SN be the solution
of (4.3.4) on the mesh X }{ Jor P{. Then for N sufficiently large, independently of

€, we have

Hu-unlll SCN'In N (4.5.26)

and
lu - unll < C (N 'In N)*? (4.5.27)

Proof. The bound (4.5.26) follows from a triangle inequality and Lemmas 4.5.2 and
4.54.
We now prove (4.5.27), by sharpening the argument of Lemma 4.5.2. The main

step is to use a more careful analysis to show that
|(a(ur - w),ur - ww)| S C (N7 'In N)'/’ [lur — unll. (4.5.28)
We discuss two cases, depending on the value of o in (4.5.2). Set
* e = (ur —uy)(z;), fori=0,1,...,N.

Case 1: 0 = e301-H),

Integrating by parts, one has

(a(ur — w)', 41 — wN)

= (6'(ug — ), wr - uy) — (a(ur — ), (vr - un)’). (4.5.29)

From (4.5.21),

(@'(ur — u), 81— wn) < CN~2In? N|jus — wn]l. (4.5.30)
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Next,

(&(u - "I)’("I - uyn)’)

=3 [ ato - o - w0 ds

l-l ®i-1

= E S- "" - a(z)(u - ur)(z)dz

l-l 8-
= E € {(h L -hi /.:m) a(z)(w— u;)(z)dz} s
i=1 i Vo

since eg = ey =0,

1 ®i41
-Ee.a(z.-;){( L f;;/ )(u—u,)(x)dx}

=1
+ 2_; « { (— / 3 ;‘-‘; / ) (8(2) - a(zi-1)) (8 — -u)(z)dz}
=Y, + 1, (4.5.31)

say. Set h; = (h; + hiy1)/2 for i = 1,2,..., N — 1. Inspecting the proof of (4.5.21)

and recalling that o = e30-9) | we have

llv — urllpepey) < CN~*In® N.

Hence

N-1
[Yal SCN*In* N Y hslel

=1

N-1 1/2
<CN-*In?N ( Y B.-e.?)

=1

< CN~21n? N|juy - unll, (4.5.32)

as it is easy to show that the discrete L? norm ( ‘_1' hi ((- )(z.))’) is equivalent

tofl-]| on SN.

!
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For Yy, we write

Y= (gw 2") esa(zi_1) { (;f; /: " ]:) (s~ -:)(z)dz},

where Z: means summation over those i for which A; = h;;,, and Z:' sums over
the remaining .

Suppose h; = h;y1; then
(i e [ o
= [ - wn)@) - - w4 o)
By the usual interpolation error estimate, for z € (2;-1, Z;),
(u=u)2) = 5(z = zia)(z = 20 (&), where 2i-1 < & < 7,
also
(8= wr)z 4+ h) = 3(z 4 s = 2:)(z 4 hi = 2" (m), where 2 < < .

Therefore,

',:T/.i [(w = wr)(z) = (8 = wr)(z + b)) dz

.1

L b " ")) d
= |35 [, (=~ mm)le - 20 (W)~ (w) dz
<on [t max o)z

8i-1

< Chlhy (zia +€/7)" T

_ A-1
< Chi (zia+6?) NN,
by (4.5.18) and (4.5.19). Consequently,

lZ'e.-a(z.-_,) { (i [ -l ) (v~ u:)(z)dz}
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<C z ‘leilzi—1 (za-x + e‘/’)x_‘ N3N
i

SCN?In?N Y 'hyled

1/3
<CNImn’N (Z 'i..-e,?)
<SCN7'In? N|jur - up]. (4.5.33)

We now deal with .

3 eialzica) { (% [ - +) (x- uz)(z)dz},

' K+1 A-3
<C Y lejmlzin-a [hg,, (z,-,.-, + e‘/’)

Jj=1
A-3
+hii (3iu + 81/’) ]

K41

<CY el [hf.. (33»-1 + 6‘/’) g 1 (25- + e"’) A-I]
i=1

K+1 _
SCN7'InN Y hjnlejnl
i=1

K+1 1/3 K+1 1/3
<CN'InN (Z iu,-..) (Z i.,,e;,)
J=1 =1
-1 3/2
SC(NInN)™ flur - unll, (4.5.34)
since 14! A = N4 10-K-14i(K 4+ 1)N-1 < CN-'In N.

Combining (4.5.31) - (4.5.34) yields
|(@(wr = u), (v1 - sw)')| < C(N~21n N)™? fjug - un|l.

Hence, recalling (4.5.29) and (4.5.30), we have proven (4.5.28) when o = e*("*).

Case 2: 0 = N3,
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It is easy to see that the argument of Case 1 yields

1
' /l o a(z)(w - u)'(z)(us - wn)(2)dz{ < C (N"1n N)*?|lug - unl|. (4.5.35)

Adding (4.5.14) over i = 1,2,...,n, we obtain

10-%
/o (2(u - ur)'(z))? dz

< liw = 1llag0,10-x) + Cllw = 81ll 310, 10-m)

< llw = wrll3ago, 10-2) + C107%72||u = uy |20, 10~y
by a Cauchy-Schwarz inequality,
S CN- '/ N,

using (4.5.7), (4.5.25) and 0 = N~3. Hence

o a(z)(u - ur)'(z)(ur - un)(z)dz| < CN-* I/ N||us — up.

Combining this with (4.5.35) completes the proof of (4.5.28) for Case 2.

Therefore, using (4.5.28) and (4.5.21) in the proof of Lemma 4.5.2, we obtain
lllur — wnlll < C(N "I N)*2.

Recalling (4.5.21), the proof is completed. O
4.6 Numerical Results and Conclusions

In this section we give some numerical experiments for the method (4.3.4) applied
to the simple attractive turning point problem Py .

Our test problem is
—cu"—z(142) ' +2(1+2)u=f, forze(-1,1),
w(-1)=u(1)=0,
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where f(z) is chosen so that the solution is
u(z) = (2 +6) 42 (@ +e) MV (14 142014071

This u(z) exhibits typical internal layer behaviour of cusp type. Similar examples
may be found in Berger et al. [4] and Farrell {12]. Since the behaviour of u(z)
near the turning point z = 0 depends specifically on £, we shall examine errors and
experimental rates of convergence for different values of £. We take A = 0.25 below;
numerical experiments with A = 0.5 and A = 0.75 yielded similar results.

We compute the errors in the following two ways:

(i). The error between the interpolant u;(z) and the computed solution unx(z) in

a discrete L3 norm,

EY = |lus - unlla.

(ii). The error between the exact solution u(z) and the computed solution uy(z)

in the discrete maximum norm,

EY = |lu~ unlleo,d = max Ju(z:) - wn(zi)].

The discrete L? norm is defined by
R-1 1/3
llvlle = { ) h,-v,"} )
s=L+1
forall v = z?;,l‘“ vivi(z) € SN. By a calculation, one may easily show that on SN
the discrete L? norm || - ||¢ is equivalent to the usual L? norm || - ||.

We calculate the convergence rate tables as follows; see Farrell and Hegarty [14]:
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(i). Except for the last row, the table entries are given by the classical convergence
rate,

RV =(nE¥ -lEF)/Im2. (4.6.1)
(ii). The last row of each table is the uniform convergence rate,

RN = (lnE*™ -In E¥) /In2,

where EN = max, EN.

Recall the definition of the mesh X }' . The number of meshpoints on the interval
(0,1) is (K + 1)n, which is less or equal to N. In order to use the formula (4.6.1) to
compute our convergence rates, we need exactly N meshpoints on (0,1]. Hence we
adjust the mesh X% as follows:

Let No = N — (K + 1)n. Then n points are used on each of the subintervals
0,10°K), ..., (107Nt 10~
and n + 1 points are taken on each of the remaining subintervals
(107N, 10~Net+1) . (107, 1).

The mesh is still uniform on each of the above subintervals.
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3 N=16 32 64 128 256
1.00000e+00 | 2.057¢-04 5.161e-05 1.201e-05 3.229¢-06 8.072e-07
2.50000e-01 [ 1.535¢-03 3.834e-04 9.582e-05 2.395¢-05 5.988¢-06
6.25000e-02 | 4.755¢-03 1.184e-03 2.956e-04 7.387e-05 1.847e-05
1.56250e-02 | 9.929¢-03 2.415¢-03 5.985e-04 1.493e-04 3.731e-05
3.90625e-03 | 1.583e-02 4.660e-03 1.159e-03 3.009e-04 7.504e-05
9.76562e-04 | 1.314e-02 3.675¢-03 8.766e-04 2.112¢-04 5.126e-05
2.44141e-04 | 1.324e-02 3.799e-03 1.027e-03 2.202¢-04 5.021e-05
6.10352e-05 | 1.279¢-02 3.911e-03 1.197e-03 2.575¢-04 5.572e-05
1.52588¢-05 | 2.535e-02 8.118e-03 2.287e-03 5.896e-04 1.341e-04
3.81470e-06 | 2.531e-02 8.278¢-03 2.358¢-03 6.090e-04 1.500e-04
9.53674e-07 | 2.541e-02 8.337e-03 2.428¢-03 6.294e-04 1.555e-04

Table 4.6.1: ||u;r — un|| Errors

€ N=16 32 64 128
1.00000e+00 | 1.99 2.00 2.00 2.00
2.50000e-01 | 2.00 2.00 2.00 2.00
6.25000e-02 | 2.01 2.00 2.00 2.00
1.56250e-02 | 2.04 201 2.00 2.00
3.90625¢-03 | 1.76 2.01 1.95 2.00
9.76562e-04 | 1.84 2.07 2.05 2.04
2.44141e-04 | 1.80 1.89 222 2.13
6.10352¢-05 | 1.71 1.71 222 221
1.52588¢-05 | 1.64 183 1.96 2.14
3.81470e-06 | 1.61 1.81 1.95 2.02
9.53674e-07 | 1.61 1.78 1.95 2.02

RN 161 1.78 1.95 2.02

Table 4.6.2: |juy — un|| Convergence Rates
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3 N=16 32 64 128 256
1.00000e+00 | 2.970e-04 7.434e-05 1.859e-05 4.648e-06 1.162e-06
2.50000e-01 | 2.063e-03 5.152e-04 1.291e-04 3.229e-05 8.075e-06
6.25000e-02 | 7.291e-03 1.823e-03 4.595e-04 1.149e-04 2.874¢-05
1.56250e-02 | 1.824e-02 4.890e-03 1.192e-03 2.964e-04 7.398e-05
3.90625e-03 | 2.765¢-02 1.140e-02 3.281e-03 7.986e-04 1.993e-04
9.76562e-04 | 2.633e-02 1.060e-02 3.439¢-03 8.866e-04 1.856e-04
2.44141e-04 | 2.599¢-02 1.030e-02 3.802¢-03 1.097¢-03 2.625¢-04
6.10352¢-05 | 2.472¢-02 1.017e-02 3.990e-03 1.181e-03 3.203e-04
1.52588e-05 | 4.282e-02 1.860e-02 6.741e-03 2.148¢-03 6.074¢-04
3.81470e-06 | 4.292¢-02 1.899-02 6.896e-03 2.167e-03 6.214e-04
9.53674e-07 | 4.308¢-02 1.912e-02 7.058e-03 2.211e-03 6.260e-04

Table 4.6.3: ||# — uN||oo,d4 Errors

£ N=16 32 64 128
1.00000e+00 | 2.00 2.00 2.00 2.00
2.50000e-01 | 2.00 2.00 2.00 2.00
6.25000e-02 | 2.00 1.99 2.00 2.00
1.56250e-02 | 1.90 2.04 2.01 2.00
3.90625¢-03 | 1.28 1.80 2.04 2.00
9.76562e-04 | 1.31 1.62 1.96 2.26
2.44141e-04 | 1.33 144 1.79 2.06
6.10352¢-05 | 1.28 1.35 1.76 1.88
1.52588¢-05 | 1.20 1.46 1.65 1.82
3.81470e-06 | 1.18 1.46 1.67 1.80
9.53674e-07 | 1.17 144 1.67 1.82

RN 1.17 1.44 1.67 1.82

Table 4.6.4: ||u — uN||co,4 Convergence Rates

From Table 4.6.2, one can clearly see that the uniform convergence rate of
lur — un|| is O(N-?). Lemma 4.5.4 shows that |[u — us|| = O(N~21n? N), so we
have numerical evidence that ||u—uy/| is also O(N~2In? N). This is better than the
O(N-3/210%? N) result proven in Theorem 4.5.1. We also notice that the uniform
convergence rates in the discrete maximum norm reported in Table 4.6.4 are almost

second order.
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Conclusions: In this work we introduced piecewise linear Galerkin finite element
methods on various piecewise equidistant meshes for the singularly perturbed inte-
rior turning point problem (4.1.1). The resulting schemes are much simpler than
exponentially fitted schemes. The meshes used in this chapter are relatively simple.
We proved the convergence, uniformly in €, of our methods in a weighted energy
norm ||| - ||| and the usual L? norm. Numerical experiments verified the convergence
in L? and showed that the schemes are also uniformly convergent of almost second

order in the discrete maximum norm.
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Chapter 5

A Semilinear
Reaction—Diffusion Problem

5.1 Introduction

Singularly perturbed nonlinear boundary value problems occur frequently in engi-
neering applications such as catalytic reactions or adsorption processes and fluid
dynamics.

In this chapter, we consider the semilinear problem
Fou(z) = —e?u"(z) + H(z,u) =0, for z € (0,1), (5.1.1a)

(0) = u(1) = 0, (5.1.1b)

where ¢ is a small positive parameter. Set X = [0,1]. We shall assume that b €

C*™(X x R}) for convenience.

Asymptotic and numerical solutions of problem (5.1.1) have been considered by
many authors, under various hypotheses on &(z,u). See for example Chang and
Howes [6], D’Annunzio (9], Fife [15], Herceg [21], Herceg and Petrovi¢ [22] and
Lorenz [26].
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One of the conditions occurring frequently in the literature is
bu(z,u) > b3 >0, forall (z,u)€ X x R.. (5.1.2)

Under this condition, there exists & unique solution ¥ € C*(X) to the problem
(5.1.1), (5.1.2); see Lorenz [26).
The reduced problem of (5.1.1) is defined by

bz,u)=0, forze€ X. (5.1.3)

Under the condition (5.1.2), this reduced problem has a unique solution we €
C*(X), as can be seen using the implicit function theorem and the compactness of
X. Note that in general wp does not satisfy either of the boundary conditions i
(5.1.1b). .

Generally speaking, the reduced problem (5.1.3) may have more than one so-
lution if condition (5.1.2) is not satisfied. Fife [15] and D’Annunzio [9] considered
problem (5.1.1) under the assumption that it has a stable reduced solution, i.e., that

there exists a solution ug € C*(X) of (5.1.3) which satisfies

bu(z,u0) > b3 >0, forall z € X, (5.1.4a)
- T € (u0(0),0], whenever 0 > ug(0), (5.1.4b)
/..,(o) K0, 8)ds > 0, for 7 € [0, u0(0)), whenever uo(0) > 0, (5.1.4¢)

and
’ 7 € (ug(1),0], whenever 0 > uo(1), (5.1.4d)
L(l,b(l”)d’ >0 fory [0, uo(1)), whenever ue(1) > 0. (5.1.4¢)
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The conditions (5.1.4) are obviously weaker than condition (5.1.2). Problem (5.1.1)
under the conditions (5.1.4) may exhibit multiple solutions. D’Annunzio (9] showed
existence and local uniqueness of a solution satisfying (5.1.1) and (5.1.4) using degree
theory.

In what follows, (5.1.1) under condition (5.1.2) and (5.1.1) under conditions
(5.1.4) will be referred to as problem (A) and problem (B) respectively.

In this chapter, we only consider uniform convergence with respect to the discrete
L™ norm.

A solution u(z) of (5.1.1) usually exhibits sharp boundary layers at the endpoints
of the interval X when the parameter ¢ is near zero. When polynomial-based nu-
merical methods are applied to (5.1.1), one does not obtain accurate results on all
of X, even in the linear case. This has lead to the development of uniformly conver-
gent numerical methods. In the linear case both uniformly convergent exponentially
fitted schemes on equidistant meshes and uniformly convergent polynomial based
schemes on special meshes have been considered; see Doolan et al. (10}, O’Riordan
and Stynes [31] and Vulanovi¢ [49)].

Herceg [21] considered problem (A) with additional hypotheses on ¥z, »), namely

that there exist functions ¢ and Q € C*[X] satisfying
9(z) < bu(z,¥) < Q(2), for (z,¥) € X x R! (5.1.5a)

and

A1 = min{5¢(z) - 2Q(2)} > 0. (5.1.5b)

He constructed a scheme by requiring it to be exact on all polynomials of degree

at most 4 and proved that this scheme is fourth order uniformly convergent on a
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Bakhvalov mesh, which is a graded mesh specially constructed a priori to fit the
problem.

D’Annunzio [9] examined a solution of problem (B), using a simple central dif-
ference scheme on a special locally quasi-equidistant mesh. This mesh contains
O(h~'1n1/¢) mesh points when & < h, where h is the maximum mesh spacing over
the interval X. She showed existence of a solution to this discrete problem and O(h)
uniform convergence of this solution to a solution of problem (B).

In this chapter, we consider both D’Annunzio’s scheme and the higher order
scheme of Herceg, which we refer to as the D-scheme and H-scheme respectively.
We shall use a piecewise equidistant mesh. This type of mesh, which was recently
introduced by Shishkin [37], is much simpler than the meshes of Herceg [21] and
D’Annunzio [9).

On this mesh, we shall apply both the D-scheme and the H-scheme to problem
(A). Existence and uniqueness of a solution to the D-scheme is proved by using
Hadamard’s Theorem; see Ortega and Rheinboldt [32]. We show that the D-scheme
is uniformly convergent of order 2N~ + N~2In? N. Similar existence and unique-
ness results are obtained for the H-scheme under the assumptions (5.1.5). We also
discuss existence and local uniqueness of a solution for the H-scheme without the ex-
tra conditions (5.1.5), using degree theory. The H-scheme is shown to be uniformly
convergent of order e2N-3 + N~4In* N.

For problem (B), we consider only the D-scheme on our Shishkin mesh. We use
degree theory to analyse the existence of a solution to the scheme. We construct
super and sub solutions which are within order £2In?(1/¢) of a solution of problem

(B); we also consider their discrete analogues for the D-scheme. This allows us to
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obtain uniform convergence of order N~?In? N for the D-scheme under the nonre-
strictive assumption ¢ < N~1. This result is a significant improvement on the first
order convergence obtained by D’Annunzio [9] for the same scheme on a different
mesh.

A summary of this chapter is as follows. Section 5.2 contains results concerning
the exact solutions of problem (5.1.1), including an asymptotic expansion of the
solution to problem (A) and super and sub solutions of problem (B). In Section
5.3, we bound truncation errors of the D-scheme and the H-scheme on Shishkin
meshes for problem (A). In Section 5.4, we analyse existence, uniqueness and uniform
convergence of solutions of both the D-scheme and the H-scheme for problem (A).
Section 5.5 shows the almost second order uniform accuracy of the D-scheme for
problem (B). In Section 5.6, we present numerical computations which confirm our

results.

5.2 The Continuous Problems

In this section, we discuss properties of the exact solutions of problem (A) and
problem (B). In the sequel, we use J to denote an arbitrary positive constant.

For problem (A), we have

Lemma 5.2.1 There erists a unique solution v € C*(X) of problem (A). This

solution admits the decomposition
w(z)=Y(z)+V(z), forz€X, (5.2.1)

where
|y(ﬂ(z)| <C (5.2.2)
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and
[VU2)| < Ce~fexp (~boz/e) + exp(~bo(1 = )/e)],  (5.2.3)

forz e X andj=0,1,...,J.

Proof. See Vulanovié¢ [48]. O

From (5.2.1) - (5.2.3), one may see that, in general, the solution %(z) of problem
(A) exhibits boundary layers at the endpoints of the interval X and has no interior
layers,

We now move on to problem (B). We shall suppose without loss of generality
that ug(0) < 0 and ug(1) < 0, as other cases can be handled similarly. The concepts
of super and sub solutions are important for the study of problem (B). Suppose that

there exist two functions a and 8 € C¥(X) with the following properties:

F,a(z) <0 < F,B(z), for z € X,
a(0) < 0 < 5(0),
a(1) <0 < B(1),

a(z) < H(z), forze€ X.

Then B(z) and a(z) are said to be super and sub solutions respectively of problem
(5.1.1).

In order to prove higher order convergence of the D-scheme for problem (B),
we shall introduce super and sub solutions which are more accurate than those in
D’Annunzio [9]. Let us first give some notation and definitions.

We define the usual cut off function o(z) for asymptotic analysis by
1, for0<z<1/4,
olz)= 0, for1/2<z<1,
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with o(z) > 0 infinitely differentiable for z € X.
Let v € C*(0,00). Let b; be a positive constant. If for each § € (0,5,) there
exists a positive constant Cj, depending on § and J, such that

|o9n)| < Caexp(~(b2 - 6)m),

for n > 0 and j = 0,1,...,J, then the function v(n) will be said to belong to the
class of e(b,J).

The following two lemmas are modifications of Lemmas 2.1 and 2.2 of Fife [15].

Lemma 5.2.2 Let A > 0 be a constant. Let g € C*|0, A] satisfy g(0) = 0, ¢’(0) > 0
and

/ofg(s) >0, forre€(0,A].
Then for n > 0, there ezists a uniqgue monotone solution v(n) of
o" - g(v)=0, forn>0, (5.2.4)
v(0)= A, ©v(00)=0. (5.2.5)
Furthermore, v belongs to the class of e(by,J) with by = /¢'(0).

Proof. By Lemma 2.1 of Fife [15], the solution v of (5.2.4) and (5.2.5) exists, is

monotonic and satisfies
Ci* exp(—(b1 + 6)n) < o) (n) < Csexp(—(b1 - 6)n),

for j = 0,1 and n > 0, where b, = /¢’(0), § € (0,b1) and Cs > 0 are constants.
Since g(0) = 0 and ¢'(s) is bounded for s € (0, ), we have from (5.2.4)

|v"(n)] = |¢'(v")| v(m), where v" € (0,v) C (0,1),
< Csexp(—(by — 8)n), forn >0,
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where we recall that Cj is a generic constant. The result then follows from differen-
tiating (5.2.4) repeatedly and induction on j, since the derivatives of g(s) up to any

prescribed order are bounded for s € (0,A). O

Lemma 5.2.3 Let A and g(s) be as in Lemma 5.2.2. Let v(n) be the monotone
solution of (5.2.4) and (5.2.5). Let a(n) belong to the class of e(by,J) with b, =
VvV 9'(0). Then there erists a unique solution vy(n) of

vy — ¢g'(v(n))n = a(n), forn >0, (5.2.6)

01(0) = A1, t(00) = 0. (5.2.7)
Moreover, v1(n) belongs to the class of e(by,J).

Proof. The result follows easily from an inspection of the proof of Lemma 2.2 in Fife
[15]. O
The next lemma is a modification of Lemma 3.1 of D’Annunzio [9].
Lemma 5.2.4 Let A and g(s) be as in Lemma 5.2.2. Let p be a constant. Then
there is a po > 0 such that if |p| < po, there ezists a unique solution v(n,p) of
% —-g(v)=—pv, forn>0, (5.2.8)
v(0,p) = A, v(o0,p)=0. (5.2.9)
(Here and in what follows a dot denotes partial differentiation with respect to 1).)

For each fired p € (—pe. pe), the solution v(n,p) is monotone in 1) and belongs to the
class of e(by,J) with g"(0) > p and by = \/¢'(0) — p.
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Also the derivative z(n,p) = g(n, p) ezists and satisfies

i-(g'(v)-p)z=-v, forn>0, (5.2.10)
#(0,p) = z(c0,p) = 0 (5.2.11)

and
z(n,p) >0 forn>0. (5.2.12)

Furthermore, there ezist positive constants Cy and Cy, independent of p, such
that

|z(n, p)| < C1ne=%",  for (n,p) € (0,0) x [~po, po). (5.2.13)

Proof. The results follow from arguments similar to those of Lemma 3.1 of

D’Annunzio [9]. O

We now define the required boundary layer functions. These are more accu-
rate than those of D’Annunzio. They will be used to construct our super and sub

solutions. Let
(vQ(z/e,p) + ev? (2 /€)) o(z), for0 <z <1/2,
w(z,6,p) = { (v ((1-z)/e,p) + v} (1 - 2)/¢)) o(1 — 2), (5.2.14)
for1/2<z <1,

where v3(7, p), v§(n,p), v§(n), and v}(n) are respectively defined by

9 — b (0, ue(0) + v) = —pvp, forn>0, (5.2.15)
v3(0,p) = —ug(0), vg(c0,p) =0, (5.2.16)
o — b(1,ue(1) + v3) = —prg, forn>0, (5.2.17)
v3(0,p) = —ve(1), 1v3(c0,p) =0, (5.2.18)
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3 - by (0, u0(0) + ©3(7,0)) o}
= 1 [be (0, u0(0) + v3(1,0)) + by (0, uo(0) + v§(n,0)) u5(0)] , for n >0,
(5.2.19)

v(0,p) =0, v{(c0,p) =0, (5.2.20)
and

81 — b (1, u0(1) + v3(n, 1)) v}

= 1 [ba (1, u0(1) + v3(n, 1)) + bu (1, 40(1) + v5(n, 1)) up(1)], for n > 0,
(5.2.21)

v(0,p) =0, vj(c0,p) =0. (5.2.22)

We remark that D’Annunzio uses only the first terms of our expansions, i.e., v{' =
v} =0 in D’Annunzio [9).
From Lemmas 5.2.2 — 5.2.4, one can see that there is a pg > 0, independent of

€, such that w(z,¢,p) is well defined for |p| < ps. Furthermore, we have
0<Pep<c (5.2.23)
-— ap ’ ?P - Y 2
and

%W’P)l < Ce™ (exp (~(b - b)z/e) +exp (—(B - 8)(1 - z)/e)), (5.2.24)

forz€ X and j = 0,1,...,J, where 83 > p, b = /b3 — p (b is given by (5.1.3))
and § is any fixed number in (0,3). Thus w essentially models boundary layers at

z=0andz=1.

142



Lemma 8.2.8 Set p, = ¢?In?(1/¢). Then we can choose positive constants C; and
C3, which are independent of €, such that when ¢ is sufficiently small, w(z,¢,Cyp,)
and w(z,e, —C,p,) are well defined, and

B(z,€) = uo(z) + w(z,€,C1pe) + Cape (5.2.25)

and

a{z,€) = uo(z) + w(z,6,—C1p¢) — Cape (5.2.26)
are super and sub solutions respectively of problem (B).
Proof. Fix ¢ € (0,1]. We shall specify C) and C; later in the proof. It is easy to see

from (5.2.23) that
a(z,€) < B(z,¢), forze€ X. (5.2.27)

By the construction of w(z,¢,p), we have
a(ov 5) = -Cﬂ’c <0< C:Pc = ﬂ(o’ 5)’ (5.2.28)

a(1,e) = —Cape < 0 < Caps = B(1,¢). (5.2.29)

To be a super solution, 3 must satisfy F;3 > 0, for £ € X. Proof of this will be
shown only for z € [0, 1/2] since the result for z € [1/2,1] may be obtained similarly.
In the rest of this argument, the notation { = O(M) stands for |(| < CM, where
C>0is any constant independent of Cy, C3 and ¢.

Set
= % In(1/¢). (5.2.30)

We have z* € (0,1/4), when ¢ is sufficiently small.
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Consider first 2 € [0,2*). Then o(z) =1 and (1 — z) = 0. Hence

B(z,€) = uo(z) + v9(n, C1pe) + £95(n) + Cape,

where 1 = 2 /¢. Therefore

F.B(z,¢) = —e’ﬂ"(z,e) +bz,B)
= —elug — 93 — €87 + bz, w0 + v§ + £v} + Cap,)
= -5 — e8? + b(z, uo + v9 + £v) + by(z, wo + v§ + €v?)Cap,

+0(e? + (Cape)?) - (5.2.31)
For the third term of (5.2.31), we have
bz, %0 + v] + £v?) = b(z, ug + v3) + bu(z, u0 + vd)ev} + O(€?) .
A Taylor expansion gives

bz, 4o + vp)
3
= (2. 50(0) + o + 54 (0) + ‘;u:.'(o) . where £ € (0,2°),
= b (0, uo(0) + v3(1,C1p¢)) + 254 (0, ue(0) + v3(n, C1p,))
+2by, (0, u0(0) + v3(n,C1P.)) u5(0) + O(2?)
=b (0? uo(0) + ”g('l’clpc)) + zb, (0’ uo(0) + ”s('h 0))
+zb,, (0, uo(0) + v3(n,0)) up(0)
0
+C12p¢ bou (ov “0(0) + "8(’7»?) %(”vp)l
p=p®
0
+C12Pcuf(0) buu (0, uo(0) + v3(n, p) ?;—°(n. r)l
P p=p°*
4+0(z?), where p*,p* € (0,C1p¢),
= b (0, ue(0) + v3(1,C1p¢)) + zba (0, %0(0) + v3(n,0))
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+2by (0, ug(0) + v5(n,0)) 15(0) + O(2* + Cr2py) ,
using (5.2.13). Also

bu(z, uo + vg) = by (0, uo(0) + v3(n, C1p¢)) + O(z)

= by (0, u0(0) + v3(n,0)) + O(z + C1p,).

Hence
b(z, uo + v + eo?
= b (0, uo(0) + v5(n,C1p.))
+€n (ba (0, u0(0) + v3(n,0)) + by (0, ue(0) + v3(n,0)) uh(0))
+by (0, uo(0) + v5(1,0)) €v? + O (e + 2 + 2¢ + Cizp, + Ciep,)
(5.2.32)
and
b..(z, tuo + "'g + E”f)C:P:
= by(2, u0)CaPe + buu(z,8")9Cape + O (Caepe), (5.2.33)

where u* € (uo, uo + v3).
Therefore, by (5.2.31) - (5.2.33),

F.5(z,€) = —85(1,C1pe) + b (0, u0(0) + v3(1, C1pe))
+e {=5(n) + bu (0, uo(0) + v3(7,0)) v3(n)
+1 (5 (0, 40(0) + ©3(n,0)) + by (0, uo(0) + 75(7,0)) ug(0)) }
+bu(z, %0)CaPe + buu(z, 4" )13(1, C1P¢)CaPe
+0(e? + 2% + z£ + C12p, + C16ps + Cape)
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= (C1 + Cabuu(2, ")) pev3(n, C1P¢) + bu(7, 40)Cape

+0(e* + 2* + C1zp + ze + Cirepe + Caeps)

by (5.2.15) and (5.2.19). Thus, there exists a constant C > 0, independent of C;,

Cs and ¢, such that

FeB(z,€) 2 (C1 = CC3)pevy(n,C1ps)
+b3Cap, — C (€ + 2* + z& + Crzps + Creps + Cacp,)
> (C1 = C1C)perg(n,Cipe)
+ (b3Ca — C (14 (Cy + Cy)eIn(1/¢))) pe,
by (5.2.30) and the definition of p,. Choosing C; and Cj such that b3Cy > 2C and

C; > CCj and taking ¢ sufficiently small, so that (Cy + C3)eoln(1/¢o) < 1, then

for 0 < € < ¢,

F.B(z,€) 2 (C1 = CaC)pavg(n,Crpe) + (85Ca — 2C) pi

>0, forze€l[0,2"),

since v3(n,C1p.) > 0 by Lemma 5.2.4.
We now deal with the case z € [z*,1/2). Take p = C1p, and § = bg/4 in (5.2.24).

Then, when ¢ is s0 small that Cyp, < b3/4, we get

%’g(z,e,m)l < Ce™d (exp (~boz/2¢) + exp (—be(1 - 2)/2¢))

< Cei*3,
for z € [z°,1/2] and j = 0,1,...,J, from the definition of z* in (5.2.30). Hence

F.B(z,¢) = —€28"(z,¢) + ¥z,B)
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=-¢ (ué'(r) + %(z,e,cm)) + &(z,%0 + w + Cap,)

= b(z,40) + bu(z, ug)(w + Cape) + O(e® + €2Cape + (Cap)?)
= bu(2, 0)(w + Cape) + O(€? + €2Cap, + (Cape)?)

> B (Cape — Ce?) = C (£* + €2Cape + (Cape)?)

>0,
by arguments similar to the case z € [0,2z*). This completes the proof of
F.5(z,e) >0, forze€ X. (5.2.34)
Analogously, one may show that
Fea(z,6) <0, forze X. (5.2.35)
Combining (5.2.34) and (5.2.35) with (5.2.27) - (5.2.29) concludes the proof. O
Theorem 5.2.1 Under the same hypotheses as in Lemma 5.2.5, problem (B) has o
solution u(z), which is the only solution satisfying
a(z,¢) < u(z) < B(z,¢), forze X. (5.2.36)

Here $(z,c) and a(z,c) are the super and sub solutions given by (5.2.25) and

(5.2.26).

Proof. Corollary 3.1 of D’Annunzio [9] tells us that if problem (B) has a super
solution 3(z,¢) and a sub solution a(z,¢), then there exists a solution w(z) of
problem (B) such that

ofz,e) < u(z) < B(z,¢), forz € X.
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Hence the existence of a solution follows from Lemma 5.2.5 above. The uniqueness
of the solution satisfying (5.2.36) can be shown by arguments similar to those of

Theorem 3.6 in D’Annunzio [9]. O

From the definition of our super solution 3(z,¢) and sub solution a(z,¢) and

recalling (5.2.23), one can see that
|B(z,€) — a(z,€)| < Ce*In*(1/¢), for z € X.

This shows that we have tighter control on the solution u(z) of Theorem 5.2.1 than
in Corollary 3.4 in D’Annunzio [9], where the super and sub solutions yield only an

O(e) estimate of u.

5.3 Discretizations and Truncation Errors on Shishkin
Meshes

We analyse the truncation errors of two schemes applied to problem (A) on Shishkin
meshes.

For a given positive integer N, we denote by X¥ an arbitrary mesh
0=2z9<21< - <zZN1 <2ZN =1,

with b; = z; — z;_y,fori=1,...,N, and h; = (b + hiyy)/2fori=1,...,N - 1.
We shall denote by RN*1 the real N + 1 dimensional linear space of all column

vectors
2= (20, 215-- 1 28)T.
In what follows, for any function y € C[X], we shall abuse the notation by also

writing y € RN+ with g = y(z;) fori = 0,1,...,N.
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The space R¥N+! will be assumed to be equipped with the usual /o—norm:

Izllee = oY, 2l

The induced norm of a linear mapping A = (a;;) : RN+! — RN+1 is given by

N
lAlleo = jmax > laisl
i< &

Let A be the (N +1) x (N + 1) tridiagonal matrix defined by

1 0 0
T ot
A= :
TN TRl TR
0 0 1
where
o1, 2 . 1
= — = —— rY = ——,
ERER T Thha T haks
Let B : RN+l _, RN+1 be the mapping:
0, fori=0,
8 Mz, 1) + 850(xi, % +l?b(3' rZig1 )y
(Bz) = ;b(‘n'zix) $(2i, %) + 8] M(zis1, zi41) (5.3.1)
fori=1,...,N -1,
0, fori=N,
where s, 55 and s} are as yet unspecified. Set
=-¢’A+ B. (5.3:2)
We shall use {F, XV} to denote the three-point scheme
Fuy =0. (5.3.3)

Define (F,x)(0) = u(0) and (Feu)(1) = w(1). The truncation error of F in

approximating F, is defined by ||F's — Fotlle = || Ftles, Where u(z) is the solution
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of problem (A). It is clear that (Fu)e = (Fu)y = 0. We shall bound |(Fu)], for

i=1,2,...,N —1, in the truncation error analysis of this section.
5.3.1 The Mesh

Since u'(z) is in general unbounded in the boundary layers at z = 0 and z = 1 when
€ — 0, a polynomial based discretization cannot be consistent uniformly in ¢, unless
it is constructed on a special mesh. In the literature, several types of special meshes
have been introduced for singularly perturbed two—point boundary value problems;
see Herceg [21], D’Annunzio [9] and Gartland [17]. In this chapter we shall employ
a Shishkin mesh [37], which is piecewise equidistant and consequently much simpler
than the above meshes.

Given positive integers m and N, where N is divisible by 4, the Shishkin mesh

XN is constructed by dividing the interval [0,1] into the three subintervals
[0,0m), [Om:1—0m], and [1-0m,1).

Equidistant meshes are then used on each subinterval, with 1 + N/4 points in each
of [0,0,] and [1 — Oy, 1], and 1 + N/2 points in [Om, 1 — 0w]. The parameter o, is
defined by

Om = min {1/4, mbsleln N}, (5.34)
which depends on £, N and m. The basic idea here is to use a fine mesh to resolve

part of the boundary layers.

More explicitly, we have

XN 0=2e<21<...<2<...<2N-4<...<2ZN =1,
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with t9 = N/4, 2, = Om, ZN-iy =1 — Om, and
hi =40 N7, fori=1,...,i9, N—ig+1,...,N, (5.3.5)

hi=2(1—-20m)N7}, fori=ig+1,...,N —iq. (5.3.6)

If om = 1/4,i.e., 1/4 < mbg'cIn N, then N-! is very small relative to £. This is
unlikely in practice (and in this case the method can be analysed using standard

techniques). We therefore assume that

Om = mbglcln N. (5.3.7)
From (5.3.5) and (5.3.6), it is clear that the interval lengths satisfy

h; = 4mbg'eN'In N, (5.3.8)

fori=1,...,59,N—-tg+1,...,N,and

N1<h <2N7}, (5.3.9)
fori=ig+1,...,N — 1.
5.3.2 The D-scheme
The D-scheme is described by (5.3.3) with
57=0, s£=1 and s} =0.

We shall denote by Fp = —¢2A + Bp the mapping corresponding to this scheme.

Lemma 5.3.1 Let u be the solution of problem (A). Then on the Shishkin mesh

XY, the truncation error of the D-scheme satisfies
| Fpulle < C (2N~ + N"*In? N). (5.3.10)
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Proof. Let i € {1,2,...,N — 1}. By a Taylor expansion, there exist {; € (%1, 7;)

and 1; € (2, 2i41) such that the truncation error of the scheme is

(Fpu) = —;j‘-u(z.-:) + h.h. ﬁ(z-) &Eu(zmH b(zi, w(z:))

E,
=-F_ (u(z.) hiw'(z:) + —u"(z )- —iu"'(z )+ —Lu“’(f.))

e ("“" +hiao'(z) + —i-u"(z.) + _l;L“”(z.)

b o ) .
+o Y (m) ) + &(z;, u(z;))

= —2u"(z;) + bz, u(z;))

h} — h? .
g et - " w&) - '*‘ ")

h - bl 2 m "’ 2,(0) "-'+n (@
= ——E’:—-e u"(z;) - _ZITE (&) - 24h, u'* (1), (5.3.11)

by (5.1.1a).
On the other hand, if a Taylor expansion with integral remainder is used, we

obtain instead

£
(Fpu) = —h‘—h (u(z.) hiu'(z;) + —’-u (2)
N (8= 21 )’u"(a)ds) u(z.;)
2 Juis h-h-
3
—Ef}h: (“(35) + higaw'(z:) + b“éﬂ“'(’i)
43 [ e - s)u"'(s)ds) + Hai,u(z2)
e? ) 2 ds.
= 2hih )., (8—3._1) u”(s)ds - ——— T h,/ (zig1 — 8)u™(s)

(5.3.12)
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Using the decomposition (5.2.1), one may split the truncation error in the form
(Fps)i = (I )i + (Iv ). (5.3.13)

Here for any y € C*4(X), we define

h —hlis 3w h} 2 (q) h1 s (o)
(Iy) = oh: ey (zi) - m—_e &) - 24’-“5 (), (5.3.14)

where § € (z4-1,2;) and ; € (2;,2i4+1) depend now on the function y, or, equiva-

lently,

2 - 2 8541
(L) = 2—;7; L _‘(a-x.-_l)’y'"(s)ds- 2’;5‘ L (Zis1 = 8)y™(s) ds. (5.3.15)

It is easy to see from (5.3.14), (5.2.2), (5.3.8) and (5.3.9) that
I(Iy )il < Ce*N~. (5.3.16)

We now bound (Iy);. Fori € {1,...,ig—1}JU{N -9+ 1,...,N — 1}, the
first term of (5.3.14) is zero, because of the uniformity of the mesh on [0,03] and

[1 — @3,1]. Hence, for these values of ¢,
I(Iv)il < CN~*In® N,
by (5.3.14), (5.2.3) and (5.3.8). If i = io, then from (5.3.15) and (5.2.3) we have

(vl < Ce™ / """ (exp(=bos/e) + exp(~bo(1 - 8)/e)) ds

®ig—1
= %(exp(-—bo:t.'._xls) — exp(—BoZig+1/£)

+exp(=bo(1 — zig41)/€) — exp(—bo(1 ~ zig1)/€))
< Cexp(—boziy-1/¢)
= CN~?exp(—bohs, /¢), since 24 = 03 = 2¢b5 I N,
<CN™3,
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Analogously, one may show that

(Iv)i)l SCN~2, fori=ig+1,... N —io.
Thus

I(Iv)id <CN“*In?N, fori=1,... N-1.
Combining this with (5.3.16) and (5.3.13) completes the proof. O

Under the reasonable assumption ¢ < N~1, the estimate (5.3.10) becomes
|Fpullee < CN-2In? N. This is much better than the O(h) result obtained by
D’Annunzio [9) for the same scheme with a more complicated mesh, where h is the

maximum mesh spacing.
8.3.3 The H-scheme

We now take

h} — 3., + hihiyy
12h;h; !

. h? + h3,, + 3hihi
‘ 6h;hi4q

“=

and

e hl,y — h? + hihiyy

s 12hi 4 b
in (5.3.1). The mapping corresponding to the H-scheme will be referred to as Fg =

(5.3.17)

-eA 4+ By.

This scheme can be found in Herceg [21]. He derives the scheme by using a
difference formula of Hermite type to approximate the differential equation (5.1.1a)
and requiring this formula to be exact on all polynomials of degree at most 4. The
scheme can be also constructed by modifying a finite element scheme, as we now

demonstrate.
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We use piecewise linear “hat” functions as our trial and test functions, viz., set

(z = z-1)/ M, for z € (2i-1,2i),
¢i(z) = { (Ziy1 — 2)/hiya,  for z € (24, 2i41),
0, elsewhere,

for i = 1,...,N — 1. Then the basis function space SV is taken to be the linear
span of {p;:i=1,...,N —1}. A finite element scheme is defined as follows: find

un = 201  un(zi)pi(z) € SN such that
e (ui, i) + (i" ﬁPi) =0, fori=1,...,.N~1, (5.3.18)

where we denote by b the piecewise linear interpolant to b, viz.,

zl—l

b(zly “N(zl))o

b(z) b(xo-h un(zi-1)) +

for z € (zi_1,z5) and ¢ =1,...,N.
Note that unx(zo) = un(zn) = 0. We write (5.3.18) together with these bound-
ary conditions as Fguy = 0, where Fg : RN+1 — RN+!_ A lengthy calculation

shows that for i = 1,..., N — 1, we obtain for its truncation error

h} + h} 7(h} — h
(Fu) = '%,',:id (2, %(2)) s —(——36—0-'“*—’)5’“(‘)(3,.)
h . (®)(¢r
+m€’ (-“(‘)(fn) + 5u'(E; ))
ht _ .
+?2—g-’-1“-.e’ (—u(')(m) + 5u(®)(n; )) , (5.3.19)

where g"a 6: € (zi—l’zi) and %, "i. € (zia xt‘+l)' Now set

h A3 1
(Fas)i = (Fazk - et (7;‘ Wzi-1, %-1)
h‘h.+1 b(tlv Z{) + h‘ b(2.+1, %41 )) ’
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for i =1,...,N — 1. This yields a higher order scheme
Fguy =0. (5.3.20)

By a simple calculation, we see that Fg has the form of (5.3.2) with s;, sf and s}

given by (5.3.17).

Lemma 5.3.2 Let u be the solution of problem (A). Then on the Shishkin mesh

X f’ , the truncation error of the H-scheme satisfies
|Frullee < C (2N~ + N™*In*N).

Proof. Using (5.3.19) and a Taylor expansion, we obtain

h? + 3 h? - h?
(Firuy = =572 (- ottt bz, u(z)

R} d* h-'-n
245'2—16(3,14(:)).-(: 24h; dz*
7(h -

360h.

By (@ o syt
+7205.-€ ( u'®)(%) + 5¢ (n.)),

where Eg!v Eiv f: € (zi—lszi) and 'k's ﬁiv 7): € (zl's zi+l),
( (h? + b3, )(h? - Rh},,) + 7(hf - .+1)) u®)(z;)

8T8

— (2, u(z))

)

—e? (-u®(&) + 544)E))

144h? 360h;

"+.+1z

576 (R4 + Atau )

Pt (~u®(E) + 5uOE))

T20h;° (-
+%§7§" (-9 k) + 5u(n)) -

On the other hand, by a Taylor expansion with integral remainder and using
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8; + 55 +sf =1, we have

2 L
(Fgu)i = “e.*.' ("(-‘f-') - hiw'(z;) + %‘?‘“”(ﬂ) - 1/ (t- 3-’-1)’“"'(‘)‘“)

hihy 2 Joi,
2¢3 3 h3
+E’—f;:;“(3&) - ri—;sh: (u(z.') + hiyaw'(2) + —’—;-lu"(;;‘)

+% -/..‘+l(z|'+l - t)u'”(t)dt)

% d
+o7 Mz w(z)) - [ Zb(tu(t))d
. ((: u(z:)) [.Hd,b(t O) z)
+o5b(2i,u(2)

+at (aatz) + [ S0, 1)

;.
»

I ™ I
B 2h'ht n—n(t z‘_l) * (t)dt i /li-x * (t)dt
a E’ S41 ' _ - +.2 8441 -
2_'—h,-+1h,- o (zigr — t)u"(t)dt + 5] ¢ /.‘ u™(t) dt,

where s; and s} are given by (5.3.17).
Recalling the choice of o4, one may show the desired estimate by arguments

similar to those of Lemma 5.3.1. O

5.4 Uniform Convergence of the Schemes for Problem

(A)

We investigate the existence, uniqueness and uniform convergence of solutions of the
D-scheme and the H-scheme on the Shishkin meshes XN for problem (A). We prove
that the D-scheme has a unique solution by employing Hadamard’s Theorem. We
give an O(e2N~! + N-2In? N) error bound for this scheme. This bound is uniform
in €. In a separate argument, we analyse the H-scheme with and without conditions

(5.1.5). Under the conditions (5.1.5), a similar uniqueness result is obtained for the
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H-scheme and the uniform error bound is proved to be O(¢2N~3+ N~*In*N). In
order to dispense with the strong conditions (5.1.5), we use degree theory and a local
version of the Hadamard Theorem. Existence, local uniqueness of a solution and
uniform accuracy of order 3N =34+ N=4In* N for the H-scheme are proved without
the conditions (5.1.5).

It is easy to see that F, as defined in (5.3.2), is continuously differentiable on
RN+1, The Frechet—derivative F¥(z) of F at any z = (2e,21,...,28)T € RN+ js

the tridiagonal matrix

1 0 O
I O g
F(z)= s ,
Iaa Tha JRa
0o 0 1
where fors = 1,2,...,N -1,

Ji = =] + 87 bu(zi1, %), (5.4.1)
Jf = —e¥rf + sfbu(zi, %), (5.4.2)
[ ==} + 8} bu(2is1, %) (5.4.3)

Set
p= 1<?éiNn—l {'f:l - 'fl—l - |f|+|} :

For each scheme, we shall find a constant u* > 0, which is independent of N and

€, such that
p>u*>0, forall z€sS, (5.44)

where § is an open ball in R¥+1. By Theorem A of Varga [45], (5.4.4) implies that
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F'(z)™! exists and

1

I1F(2) e < L)’

for z € S. (5.4.5)

This inequality plays an important role in proving existence, uniqueness and uniform
convergence of a discrete solution of both the D-scheme and the H-scheme for
problem (A).

We also use degree theory to analyse the local uniqueness of a solution of the

H-scheme.
8.4.1 Uniform Convergence of the D-scheme

We use Hadamard’s Theorem to show the uniform convergence of the D-scheme on

the Shishkin mesh for problem (A).

Theorem 5.4.1 Assume that (5.1.1) and (5.1.2) hold. Let u denote the solution
of problem (A). For any arbitrary mesh XN, the D-scheme {Fp, XN} has a wnique

solution in RN+1. If uy € RN*1 is the solution of {Fp, XY}, then
flu — unllo < C (2N + N 2In?* N). (5.4.6)

Proof. For the D-scheme on an arbitrary mesh X N we have in (5.4.1) - (5.4.3)

__ e _2e . o
5= B gy thGen), f=-per

Hence, fori = 1,2,...,N -1,

1FF) = 1= 10 = bz, %)
>3, forall z € R¥*,
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by (5.1.2). Thus Theorem A of Varga [45] implies that F},(z)™! exists and

-1 1 N41
1Fp(2) " Hlee < TR for all z € RN+, (5.4.7)

It follows from Hadamard’s Theorem (see Theorem 5.3.10 of Ortega and Rheinboldt
(32)) that Fp is a homeomorphism of R¥+! onto R¥N+1. This implies that Fpuy = 0
has a unique solution in R¥N+!, Moreover by the inverse function theorem, the

function Fp! is continuously differentiable on R¥+! and
(F5')' (Fpz) = Fp(2)™?, for all z € RV*. (5.4.8)
From Lemma 5.3.1, we have

|Fpu - Fpunllee < C (N + N"2In? N), (5.4.9)

where uy is the solution of { Fp, X}

Now by Theorem 3.2.3 of Ortega and Rheinboldt [32], we obtain

v - unlle

= ||Fp!(Fpu) — Fp'(Fpun)llee

< sup || (Fp') (Fpu+t(Fpu — Fpun))lle - |Fp% — FDtN|leo
0<t<1

(Fp!)' (Fp2t)los - | FD% = FDUN||cos

sup ||
0<e<1
for some z € RN*1, since we know that Fp maps onto R¥+1. Now by (5.4.7) -

(5.4.9),

1
- € - F
[le — unlloo < mn{L,5) |Fps — Fpun|les

<C(N'+Nm?N),

which is the desired result. O
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5.4.2 Analysis of Uniform Convergence of the H-scheme
In order to apply the Hadamard Theorem to the H-scheme, we need the extra
assumptions (5.1.5) as in Herceg [21].

Theorem 5.4.2 Assume that (5.1.1), (5.1.2) and (5.1.5) hold. Let

Ag = max {I¢'(z)l, 1Q'(2)I}-

0<s<1

Then for N > 8A3/A; (cf. (5.1.5)), the H-scheme {Fu, XN} has a unique solution

uny € RN*1, Moreover, with u denoting the solution of problem (A),
llu - unlleo S C (N2 + N-*In* N). (5.4.10)

Proof. For the scheme {Fg, XN}, we have in (5.4.1) - (5.4.3)

E’ h.’ - hl’+l + hi'h"'fl

fi = " hihy + 12hihg bu(Zi-1, %i-1),
_ 2 hl4 A, +3hihin

fi= hihisa 6hihis bu(=s, %),
& R -Rthkha,

S VY ¥ 12hy 31 hs bu(Zis1, Zi41),

fori=1,2,...,N - 1. It follows immediately from Herceg [21] that
If:' - 'f:' - |j.'+| > min {b;vAl/G - A)h"+1/3} ’ for i = 1'29“-9” -1

On the Shishkin mesh X2, we have h; < 2N~!, for i = 1,2,...,N. Hence for

N> 8A3/A1,

IfE1 = 1£71 = 141 2 min {63, A1/6 — 245/3N }

> min {b3,4,/12}, fori=1,2,....N-1
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The theorem then follows from Lemma 5.3.2 and arguments similar to those of

Theorem 5.4.1. O

The strong assumptions (5.1.5) are imposed to guarantee the uniqueness of a
solution of the H-scheme in the whole space RN+!. Since the continuous problem
(A) has a unique solution assuming only the condition (5.1.2), we would naturally
prefer to eliminate the assumptions (5.1.5) from the discrete problem. The following
theorem gives existence of a solution for the scheme { Fiy, X2V} without the condition
(5.1.5).

Given 2° € RN+! and r > 0, we shall denote by S(z° r) the open ball

{z€RN* ||z - 2% < 7}
in RN+,

Theorem 5.4.8 Assume that (5.1.1), (5.1.2) hold. Then there ezists a constant
Co > 0, independent of ¢, such that the H-scheme {Fu, XN} has a solution uy €

RN+ which satisfies
lu - unllew < Co (2N + N~*In*N), (5.4.11)
Jor N > N, where No depends on Cp but is independent of €.
Proof. On the Shishkin mesh Xf' , Lemma 5.3.2 yields
|Frulle < C1 (e2N~*+ N~*In*N),
where C; is a fixed positive constant, independent of ¢ and N. Set

Ce = 2C1/ min{1,83/6}.
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Then
1

—_ -3 —47.4
min(i 5176y el < Co (€N~ + N~ N). (5.4.12)

We now prove that there exists a positive integer Ng, depending on Cp but
independent of ¢, such that for N > N,

1

min(1, 53/6}" forall z € (4,Co (2N~ + N~*In* N)). (5.4.13)

Fg(2) " fleo <

We have, for i = 1,2,...,N - 1, in the notation of (5.4.1) - (5.4.3),

=151 = 1A
h + h},, + 3hihisy bulzi, 2) — h} + by + hibiy
6hihint i 12h;h;
_h} 4+ A}, + hihina
12h; 41 h;
bu(zl') 2.')
h., + hl?-{rl + h!'hl'+l
12hsh;
_h} + A}, + hihisa
12hs 41 b

bu(Zi-1, zi-1)

bu(Zis1, Zi41)

-—
-

[ X

(-h"bﬁ(il" ;'l) - (Z‘ - %1 )b“(il's i‘))

(his1dua(Es, %) = (2ig1 — z)buu(Zi, %)), (5.4.14)

where (%;, ;) is between (z;-1, zi-1) and (24, %), and (%;, %;) is between (2;, ) and

(Zig1y zisr)-

By Lemma 5.2.1, maxgex |u(z)| < C3 for some positive constant C3. Hence
[bou(Z, 2)| + |buu(Z,2)| < C, for (z,2) € X X [-C3-1,C3 + 1]. (5.4.15)

Let z = (z,...,2N) € 5§ (¢,Co (62N~2 + N~*In* N)). We choose N, such that for
all N > Ny, Co(e2N"3+ N~*In*N) < 1. Hence || < Ca+1fori=0,1,...,N.
Consequently for N > Nj,

5] <Cs+1 and |H|<Ca+1, fori=1,...,N-1. (5.4.16)
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On the other hand, using Lemma 5.2.1, one may easily show that on the Shishkin
mesh XN

|4; — 453/ <CN'InN, fori=1,...,N.
Therefore for N > N,

[ — 21| € |z — | + |21 — i | + [ = %y

<2Co(*N"*+ N *in*N)+CN'In N, (5.4.17)

fori=1,...,N.
From (5.4.14) - (5.4.17), we obtain for N > N, that

=171 = 212 3b(za %) = CoN N, fori=1,...,N,

where Cj is a positive constant which depends on Cp but is independent of N and ¢.
Choose N3 > 0 such that CyN~'In N < b3/6 for N > N;. Set Ng = max{Ny, Na}.
Then for N > N,

IfEL=1f71 =1 > 63/6, fori=1,...,N -1

Thus
IfEL = £ = 1£F) 2 min{1,83/6}, fori=0,1,...,N.

This yields (5.4.13), by Theorem A of Varga [45].

Now from (5.4.12) and (5.4.13) we see that the mapping Fg : RN+! - RN+
satisfies the conditions of Theorem 5.3.11 of Ortega and Rheinboldt (32]. Hence
Fuuy = 0 has a solution uy € S (v0,Co (2N"34+ N~¢In* N)), i.e., [ju — upllee <

Co(¢2N-*+ N-*n*N). O
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To prove local uniqueness of solutions of the scheme {Fyy, XV} for problem (A),
we shall use degree theory. In order to do this, we imbed problem (A) in the following

family of problems:

Fy(ii,t) = —€diige(z,t) + ¥z, t,i(z,1)) = 0 forz € (0,1), (5.4.18)

4(0,t) = u(1,t) =0, (5.4.19)
where ¢t € [0, 1] is a parameter,
b(z,t, #(z, 1)) = th(z, #(z, 1)) + (1 - t) (@(z,t) — vo(z)), (5.4.20)

for (z,t,&) € [0,1] x [0,1] X R, and wuo is the solution of (5.1.3). Clearly, for each
z and ¢, 5(1:,!, uo(z)) = 0.
Set b3 = min{b3,1}. Then
5'(2,‘, “) = lb-(!,ﬂ) + (l - t)
=ty +(1-1)

> b, (5.4.21)

for all (z,u,t) € [0,1] x R? x [0,1]. Hence, for each ¢, problem (5.4.18) - (5.4.19) is
of the same type as problem (A).
Define the mapping Fu(-,-): RN+! x [0,1) = RN+ by

Fr(z,t) = -e?Az + Bg(z,1),

where Bg(-,-): RN+ x [0,1] — RN*! is given by

0, fori=0,

-’;i’(fi—l,h zZi1)+ 325(1.', t,z)+ 8?3(3;41.‘, Zi1)
fori=1,...,.N-1,

0, fori=N.

(Ba(z,t)) = (5.4.22)
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Here and in the rest of this section s, sf and s} are given by (5.3.17). Then the

H-scheme for problem (A) is imbedded in the family of schemes
Fy(z,t)=0. (5.4.23)

Let us introduce some more notation and definitions.
For z! and 22 € RN+!, we denote by z! < z? (or 3! < 2?) the natural partial
ordering on R¥*1 je., 2} <2} (orz} < 2}) fori=0,1,...,N.

Let M : RN+1 _, RN+1 be a mapping. Let a, B € RN+ If

Ma <0, (5.4.24)
M3g>0 (5.4.25)

and
a<f, (5.4.26)

then B and a are said to be super and sub solutions of Mz = 0, respectively.
Let a, 8 € RN*+! satisfy a < §. Let G be a mapping: RN*! — RN+1, Define
G™ : RN+1 _, RN#1 by
(GBY + (% - B), ifz2p
(G™2)i = { (GB), if o < z < i, (5.4.27)
(GB) +(as — %), ifz<ao
fori=0,1,...,N. Then G™ is called a modification of G.

We give a strengthening of Theorem 5.1 of D’Annunzio [9).
Lemma 5.4.1 Let D = (d;;) be an (N + 1) x (N + 1) matriz satisfying

di; <0, for0<i,j<Nandi#;j (5.4.28)
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and

N
Y dj>20, foro<i<n. (5.4.29)
J=1

Let G : RN+ — RN+1 e g mapping. Let a, 8 € RN*+! satisfy a < B. Let G™ be
as in (5.4.27). Define M : RN+1 _, RN+1 3y

M =D+ G™ (5.4.30)
I
M:z =0, (5.4.31)
Ma<0 (5.4.32)
and
M3 >o, (5.4.33)
then
a<z<p.

Proof. We shall only prove z < S, since z > a may be proved analogously.
Set v = z — 3. We prove that ¥ < 0. Suppose that v < 0 is false. Then for some

i€ {0,1,...,N}, 5 > 0. Let k be an integer such that

"= orsn‘g{v.-}. (5.4.34)
Clearly
w20 (5.4.35)
By (5.4.31),

0=(Dz)a+(G™2h
=(D2)a+(GBh + (2 — ),
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from (5.4.27) and (5.4.35). Hence, using (5.4.27) and (5.4.33),

- = (Dz2)a + (G
= (Dz)a+(G™Bhs
> (Dz)a - (DB

= (Dv)y

N
= Z d.,'llj

=0

;

20,

M=

v

d.,-) va, by (5.4.28) and (5.4.34),

by (5.4.29) and (5.4.35). That is, 1 < 0. This contradicts (5.4.35) and the proof of

Lemma 5.4.1 is completed. O

D’Annunzio (9] obtained the same result under the extra conditions dy > 0 for
t=0,1,..., N and assuming that strict inequality holds in (5.4.29) for at least one
i

For each t € [0, 1], set

59 (z/e,t,p) o(2), for0<z<1/2

ir(-‘l:.l,E,P)= { 63((1—2)/6,‘,?)0(1 —Z), for 1/2 <z<l1,

where 3(n,t,p) and 53(n,t, p) are respectively defined by

59 — 5(0,,ue(0) + 53) = —péy, forn>0, (5.4.36)

9(0,1,p) = —uo(0), g(00,t,p) =0 (5.4.37)
and

%o — b (1.1, ue(1) + 83) = —pt3, forn>0, (5.4.38)
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53(0,1,p) = —ug(1), ®(c0,t,p)=0. (5.4.39)

Recalling (5.4.21), one may show, by the arguments of Section 5.2, that there is
a po > 0, independent of ¢ and ¢, such that w(z,t,¢,p) is well defined for |p| < fo.
Furthermore, we have

oo
. < 4.
0< ap(z,t,e,p)_C (5.4.40)

and

w ) - .

7u -j —(b - —(b - -

527 s toeop)| < e (exp (=6 - d)a/e) + exo (- )1 - 2)fe))
(5.4.41)

for (z,t) € [0,1] x [0,1] and j = 0,1,...,J. Here 53 >pand b= \/5; — p with by

given by (5.4.21) and é any fixed number in (0, b).

Assumption 5.4.1 In what follows, we shall assume that ¢ < N}, which is non-

restrictive in practice.

Lemma 5.4.2 Set py = N"'InN. Lett € [0,1]. Then we can choose a constant
G > 0, which is independent of N, ¢ and t, and a positive integer No, which depends
on C; but is independent of ¢ and t, such that for each fizred t € [0, 1], when N > N,,

tb(z,t,e,C‘lﬁN) and w(z,t,¢, —C'ﬂ’m) are well defined, and
B¥(z,t) = uo(z) + 9(z,t,6,Crin) + Crpn (5.4.42)

and
a¥(z,1) = ue(z) + (z,t,6,~C1pn) — Crbw, (5.4.43)

are super and sub solutions respectively of (5.4.23) on the Shishkin mesh X, N,
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Proof. For each t € [0, 1], it is clear that
aV(.,t) < g¥(,0). (5.4.44)
We now prove that Fg(3"V,t) > 0. From the definitions of the terms involved,
i (AN — (Fu(AN — g
(Fa(B".0), = (Fa(8™.1) = Cibw > 0. (5.4.45)
For i€ {1,2,...N - 1}, we have

(FH([’N’t))‘ = ((FH(BN’t)) - (F,([?N,t)) (1‘.’,1,8))

+ (f.(ﬁ" ,z)) (2i,t,€). (5.4.46)

We separately analyse these two terms. In the following argument, the notation
¢ = O(M) stands for |(| < CM, where C > 0 is any constant independent of ;,

N,eandt.
Firstly, take Ny > 0 such that Cypn < 53/4 for N > N;. Then for N > N; and

§ = by/4 in (5.4.41), we have
l%(am.&h)' < @ei (exp (—E.z/ze) +exp (—5,(1 - z)/2e)) , (5.4.47)

for (z,t) € [0,1]x[0,1] and j = 0,1,...,J. By arguments similar to those of Lemma

5.3.2, we see that on the Shishkin mesh XY one has, using ¢ < N1,
l(iﬂ(ﬂ-n’ t))‘ - (PC(B"’ t)) (zl's L, 5)' < éi’"‘ (5.4.48)
Secondly, we have for z; € (0, z4,)

BN (z,1) = ue(z) + 53(n.t,C1pn) + Crpw,
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where 9 = z/¢. Therefore

F(BY, t)(zi t,¢)

= —e*ul — g + B(zi, 1, u0 + 5 + Ciiy)

= g + Kz,t, w0 + 83) + bu(i, 1, ue + 88)C1 5N
+0(e* +(Cién)?)

= —1"';: + 0,1, u9(0) + 89) + bu(2i, ¢, ue + 83)Crn
+ O(z; +e+ (élﬁu)’)

= C1pNDg + bu(ist, w0 + 39)CriN
+0(zi+€* + (Cipn)?)

> Cipwi + (OB - C) i - ¢ (1+C3) v, (5.4.49)

by (5.4.21), since 0 < z; < 74 = O(¢In N).
For z; € (2, 1/2), we have by (5.4.47)

dis i . , -
aT':.’(z,:,e,c,p,)l < Cei (exp (—b.z.-.,/Ze) +exp (—bo( 1- zs.)/2e))
< C'E—’.N—,«)
for j=0,1,...,J. Hence
i’.(é”,t)(l.’, t,E)
= "E’ (u:(zg’) + z—:;(zl" ta EvéliN))
+¥z;,t,u0 + 9 + C1pN)
= 8(2.', t, uﬁ(zi)) + 5.(3.‘, t, ﬂo(zi)) (".’(351 te, C'IP.N) + élﬁ”)

+ 0(5’ +N?4 (C'lim)’)

171



> 8 (Ciow - CN"?) =€ (2 + N2 + (Cuéw)?)
> 5 (C'l - C') n-C (1 + C'x’ﬁu) PN- (5.4.50)
Recalling 9 > 0 (by Lemma 5.2.4), (5.4.46) and (5.4.48) - (5.4.50), one may

choose C; (independent of N, ¢ and t) and N (depending on C; but independent of

€ and t) sufficiently large such that
(i,(ﬁ",:)), >0, forz; € (0,1/2). (5.4.51)
1 ]
Similarly, one may show that

(i‘,(ﬁ”,t)) >0, forz; € (1/2,1).

i
Combining this with (5.4.45) and (5.4.51) yields Fg(3¥,t) > 0.
Analogously, one can prove that Fg(a",t) > 0. The proof is complete. O

We now introduce a modified problem corresponding to (5.4.23). Consider
Fg(z,t)=0, (5.4.52)
where the mapping Fp(-,-) : R¥N*! x [0,1] = RN+! is defined by
FP(z,1) = —€Az + BR(2,1).

Here B7(-,t) is the modification of By(-,t) with A~ and &¥ given by (5.4.42) and
(5.4.43) respectively for each t; see (5.4.27).
Define an open and bounded set D, C RN+ for each t € [0,1] by

Dq = {z eRVM:aV(, 1)<z < B”(-,t)}.

We shall denote by D; and @D, the closure and the boundary respectively of Dy in

RN+,
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Define the mapping T'(:,-) : Dy x [0,1] = RN+1 by

BN (1)
BN, 1)-a¥(-1)

for i = 0,1,...,N. It is easy to see that for each t € [0,1], T(-,t) is a linear

d;'"("t)
BN 1) -aN (1)

(T(z,0)); = (= - &F(-,1)) + (BN - =)

transformation from D, onto D;.

We finally define a mapping H(:,:): Dy x [0,1] — RN+1 by
H(z,t) = FR(T(z,1),t), for (z,t) € Dy x [0,1].
This is a continuously differentiable mapping. We shall prove that
Deg(A(-1), D1,0) = 1,

where Deg denotes topological degree (see, e.g., Ortega and Rheinboldt [32]), by
using the Homotopy Invariance Theorem; see Ortega and Rheinboldt [32], Theorem

6.2.2. We first show the following

Lemma 5.4.3

H(z,0)#£0 for all (2,t) € 3D, x [0,1).
Proof. Suppose that H(z*,t*) = 0 for some (z*,t*) € Dy x [0,1]. Set T* = T(z*,¢*).
Then T* € Dy satisfies

Fg(T*,t*)=0. (5.4.53)

From the definition of f",!‘( -,-) and Lemma 5.4.2, we have

FR@aN(-,17),t") = Fg(aM(,1°),t7) < 0 (5.4.54)
FRa¥(,t),1) = Fg(B¥(-.t"),r") > 0. (5.4.55)
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Setting D = —e?A, the condition (5.4.28) and (5.4.29) are fulfilled. Combining
(5.4.53) - (5.4.55) with Lemma 5.4.1 yields

&, t") < T < G, 1%). (5.4.56)

From the definition of T'(-,-), we obtain

* = (Tr-aN( 1t A1) BN 1°) - T &', 1)
L= (T‘! 1 (vt )) ,BiN(-,t‘)— &‘N(',t') + (ﬂl (9‘ ) 7:‘) B.'N('yt‘) —&'-N'(',f'),
fori=0,1,...,N. Hence

av(- 1)<z <AV,

ie., 2* ¢ 3D, which is the desired result. O

Lemma 8.4.4 If C; in (5.4.42) and (5.4.43) is chosen sufficiently large, then
Deg(H(-,0),D,,0)| = 1.

Proof. We start with the problem

Fu(z,0)=0, forze RN*. (5.4.57)
Set
(0 0 0 \
s, 5 at

\ o o0 0

Then (5.4.57) can be written in the form
(—s’A + 8)z— Suw =0,
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from (5.4.20) and (5.4.22). Since a calculation shows that

E’
TRk T

3 2
2¢ +af €

hihiyy hiv1h;
fori =0,1,..., N, we obtain, by Theorem A of Varga [45], that (—c? A+ §)~! exists

+ s}

1
> -
..39

and

H(-e*A+ 5) e < 3- (5.4.58)

Consequently (5.4.57) has a unique solution z* = (—¢24 4+ §)"'Sug € RN+,

We wish to prove that z* € Dy. For this purpose, set
#(z,€) = uo(z) + ¥(z,0,6,0), for z €[0,1].
Along the lines of Lemma 5.4.2, we can show that on the Shishkin mesh xy
|Fa(2,0)]lee < CN"'ln N.

Thus, by (5.4.58),
Iz = 2*llo = I(—€?4 + §) 7} (~* A+ 5)(2 = ")llee
<3(—*A+ SHE—2")llee
= 3)(=e?A + 5)% - St — (~e'A+ )2 + Stollee
= 3|| Fr(2,0)llee
<CN'InN.
Fori=0,1,...,N and C; chosen as in Lemma 5.4.2, using (5.4.40) we have
2 <%+CN'haN
< up(z:) + (z.-,o,e,é,;m) +CN'InN (5.4.59)
< BY(,0),
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provided that C; > C, where C is the constant of (5.4.59).
Similarly,

7 > al(.,0),

fori=0,1,...,N. That is, 3* € Dy.

We now consider the problem

A(2,0)=0, forz€ D,.

(5.4.60)

As T(z,0) € Dy, the problem (5.4.60) is equivalent to Fx(T(z,0),0) = 0. But from

above (5.4.57) has a unique solution z* € Dy. Consequently we only need look for

solutions 2* € D, of
T(z,0) = 2°.

(5.4.61)

Recalling that T'(-,0) is a linear mapping from D, onto D, s0 Do = T(8D,,0),

we conclude that (5.4.61) has a unique solution # € D;. That is, (5.4.60) has a

unique solution, which lies in D,.

Furthermore, we have for z € D;,

3 (z 0)— (T(z 0)’0)0 (2,0)
aF"(T(z 0),0)5- (z 0)
=(-e?A + S)E(z,oy
From above, we know that
det(—e*A+ S) #£0.

Since a¥(-,0) < A¥(-,0), we have

det (%(z,o)) £0, forall z€ RN*.
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Therefore

det (%};(1,0)) #£0, forall z€ Dy.

We have shown that (5.4.60) has a unique solution z*, which lies in D, with
det (92

Theorem 5.4.4 There ezists a positive integer No, independent of ¢, such that for

) # 0. This completes the proof. O
=g®

N > No, the H-scheme {Fg,Xf'} has a solution uy € D,. Moreover, this solution

is unique in D,.
Proof. From Lemma 5.4.3,
Deg(H(-,t), D,,0) is constant for ¢ € [0,1],

using the Homotopy Invariance Theorem; see Ortega and Rheinboldt [32], Theorem

6.2.2. Hence
Deg(fI(-,l),D,,O)I = IDeg(f{(-,O), Dy,0)| =1, (5.4.62)

by Lemma 5.4.4. This implies that the equation

H(z,1)=0 (5.4.63)

has at least one solution uy € D;.

We now prove the uniqueness of this solution in D,. Since T(-,1) is an identity
mapping for z € Dy,
H(z,1) = Fg(z,1)
= f.(z, 1)

= Fg(2). (5.4.64)
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By arguments similar to those of Theorem 5.4.3 we may show that there exists a
constant C > 0, which is independent of N and ¢, such that Fg(z) is nonsingular

forall ze § (u,C’N “/’). Note that, for N sufficiently large,
aN(,1) < w() < BN(1),

when C, is chosen (independently of N) as in (5.4.42) and (5.4.43). Hence, for any

ZGDI,

lz = wllao < 1B (1) - G (-, 1)lleo

<O N“'InN.

One may choose N, depending on C and C; but independent of ¢, such that D c
S (u,C‘N "1/’) for N > No. Consequently det(Fj(z)) has constant sign on D;.

Since

Deg (1‘1(.,1).1),,0) = ¥ det (fl'(z, 1)),
{s€D,:H(s,0)=1}
it follows from (5.4.62) and (5.4.64) that our solution is unique in Dy. O

Let un be a solution of Fuy = 0 specified in any of the Theorems 5.4.1 - 5.4.4.
In each case, the proofs of these theorems show that det (F'(ux)) # 0. Hence uy is
a point of attraction of a Newton iteration. In Section 5.6, we shall give numerical
results for both the D-scheme and the H-scheme by using Newton’s method with

an initial guess obtained from sampling the reduced solution.

5.5 Uniform Convergence of the D-scheme for Prob-
lem (B)
We analyse the D-scheme applied to problem (B) on the Shishkin mesh XN. We

shall prove that the D-scheme is uniformly convergent of order N=2In* N on this
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piecewise equidistant mesh.

The D-scheme is: find uy € RN*! such that
Fpuy =0, (5.5.1)

where Fp is given by (5.3.2) with 5] = s} = 0, &§ = 1 for each i.
Recall the boundary layer function w of (5.2.14). Define

BN (z,€) = uo(z) + w(z,e,Capn) + Capn (5.5.2)

and

a¥(z,€) = uo(z) + w(z,e,-Cspn) - Cepn. (5.5.3)

Here py = N-21n? N; C; and C, are positive constants, independent of N and ¢.

Lemma 5.5.1 One can choose positive constants Cy and C4, which are independent
of N ande, and a positive integer N, which depends on Cy and C, but is independent
of €, such that when N > Ny, w(z,c,Cspn) and w(z,e,—Cspy) are well defined,
and gN (z,€) and a¥(z,¢) are super and sub solutions respectively of the D-scheme

{Fp,X f }.
Proof. By inspection of the proof of Lemma 5.2.5, one may show that

FoB¥(z;,€) 2 (C3y - CiC)pnvy(zi/e,Capn)
+(b3Ce-C (1+(Cs+Ci)N"'InN)) pw,

for z; € (0,2;,), and

FuB"(zi,€) 2 83 (Capw - CN7?) = C (N2 + (Capn)?)
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for z; € (z4,,1/2). The result then follows from arguments similar to those of Lemma

54.2. 0

Let Fp : RN+1 _, RN+1 pe the modification of Fpp defined by

—e}Az)i+ (n-BY), if %28V,
(Fp)={ —€*(Az)i + b(zi, %), ifa <z <Y,
—-e}Azk+ (¥ -z), ifz<al,

for i =0,1,..., N. This modification is of the same type as (5.4.27).
The following theorem gives almost second order uniform convergence for the

D-scheme applied to problem (B).

Theorem 5.5.1 Let u(z) be the solution of problem (B) guaranteed by Theorem

5.2.1. Assume that ¢ < N~}. For N sufficiently large, independently of ¢, the

scheme {Fp, XN} has a solution uy such that

| — 4nlle < CN~2I?N.

Proof. Let a and B be given by (5.2.25) and (5.2.26). Then

a<u<p, (5.5.4)

by Theorem 5.2.1.
By arguments analogous to those of subsection 5.4.2, one can show, using degree

theory, that F'z = 0 has a solution uy € RN+1_ Also, from Lemma 5.5.1, we have

FpB = FpB > 0and Fja = Fpa < 0. Then Lemma 5.4.1 yields

oV < ¥ < gV, (5.5.5)

This implies that Fpuy = Fpunx = 0.
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Choose C3 and C¢ in Lemma 5.5.1 sufficiently large such that C; > C; and

C4 2 C3, where C; and C; are given in Lemma 5.2.5. Then C;p, < Cspn and

Cape < Cypn, since £ < N-1. Hence

oV <a<p<pV, (5.5.6)
by (5.2.23).
We have
Be - oy =N - o
=2C,N*m’N

and, fori=1,..., N -1

*

1B - ol | = |8¥(2i,¢) - a¥(2;,¢)|
< 2C3N-*In3 N ,%'f(z.',e, p')' +2CN*In? N,
where p* € (~Capn,Cspn),

< CN-'n?N,

by (5.2.23).
Therefore, from (5.5.4) - (5.5.6),

s — unlleo < 18N — @¥||ee
<CN7*m?N,
which is the desired result. O

The uniform accuracy of Theorem 5.5.1 is aimost one order higher than that of

D’Annunzio [9], who used a more complicated locally quasi-equidistant mesh.
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5.6 Numerical Examples

In this section we present numerical results to confirm the uniform accuracy of the
schemes{Fp, X} and {Fg, XN} analysed in Sections 5.4 and 5.5.
When 2 < N1, the uniform error estimates obtained in Theorems 5.4.1 - 5.4.3

and 5.5.1 have the form of
lu - unllo < C(N'In N)",

where r equals 2 for the D-scheme and 4 for the H-scheme.

For both Fp and Fpg, the nonlinear system of equations is solved using Newton’s
method with the initial guess u}, = (0, uo(z1),...,%0(zN-1),0)T. Here, in the case
of Problem (A), u is the reduced solution and in the case of Problem (B), ug is a

stable reduced solution. We iteratively compute u¥, for k = 1,2,.... The stopping

criterion used is
max { | Fuyllo, e - vl < 0.8~}

For each N and ¢ in the tables, it only takes about 5 iterations to satisfy this

criterion.

The exact solutions of our test problems are unknown. We use a double mesh
method; see Doolan et al. [10], to compute the experimental rates of convergence.
In order to do this, we shall in addition to computing uy also compute another
approximate solution #y which we now describe.

Let @ix € RN*+! be a solution of { Fp, X'} or {Fg, X[V}, where XX is a Shishkin
mesh with the mesh parameter oy of (5.3.4) altered slightly to

Gm = min{1/4,mby cIn(N/2)}.
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Then for i = 0,1,..., N, the ith point of the mesh XN coincides with the (2i)th
point of the mesh X2V,

By inspecting the arguments of Sections 5.4 and 5.5, one may see that
lu - inllee < C(N"'ln NY,
where C is independent of N and ¢. Hence fori =0,1,...,N,
l(un)i — (ian)al < C(N'In N)".
For each N and ¢, we shall report

EY = max |(un)i — (Gaw)xl

in the error tables below.
Assuming convergence of order (N~!1n N)* for some r, the classical convergence

rate r will be computed by

InE2N —In EN
In (L5%)

In E3N _ o EN

in (2)

The last row of each rate table is the uniform convergence rate,

RN

, for N=22and k=5,6,...,11.

RN = In E3N —in EV
ECE
where EN = max, EN.
Example 5.6.1 Consider the problem
—w"+(1+u)(1+(1+u)?) =0, forz€(0,1),

u(0) = u(1) = 0.
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Since by(z,u) = 1+ 3(1 + u)? > 1, for all (z,u) € [0,1] x R, this is a problem of

type (A). The reduced solution is ug = —1.

3 N=64 128 256 512 1024
2.500000e-01 | 1.3865e-04 3.4760e-05 8.6956e-06 2.1744e-06 5.4361e-07
6.250000e-02 | 2.0211e-03 5.2618e-04 1.3331e-04 3.3418e-05 8.3622¢-06
1.562500e-02 | 4.2603e-03 1.5289e¢-03 4.9980e-04 1.5632¢-04 4.7415e-05
3.906250e-03 | 4.2592e-03 1.5288e-03 4.9978e-04 1.5632e-04 4.7415e-05
9.765625e-04 | 4.2599e-03 1.5288e-03 4.9976e-04 1.5631e-04 4.7415e-05
2.441406e-04 | 4.2604e-03 1.5289¢-03 4.9978e-04 1.5631e-04 4.7414e-05
6.103516e-05 | 4.2605e-03 1.5289e-03 4.9979¢-04 1.5631e-04 4.7415e-05
1.525879¢-05 | 4.2606e-03 1.528%¢-03 4.9980e-04 1.5632e-04 4.7415e-05
3.814697¢-06 | 4.2606e-03 1.5289e-03 4.9980e-04 1.5632e-04 4.7415e-05
9.536743e-07 | 4.2606e-03 1.5289¢-03 4.9980e-04 1.5632e-04 4.7415e-05

Table 5.6.1: Example 5.6.1, D-scheme errors

£ N=64 128 256 512
2.5000000-01 | 2.57 2.48 2.41 2.36
6.250000e-02 | 2.50 2.45 2.40 2.36
1.562500e-02 | 1.90 2.00 2.02 2.03
3.906250e-03 | 1.90 2.00 2.02 2.03
0.765625¢-04 | 1.90 200 2.02 2.03
2.441406e-04 | 1.90 2.00 2.02 2.03
6.103516e-05 | 1.90 2.00 2.02 2.03
1.525879¢-05 | 1.90 2.00 2.02 2.03
3.814697¢-06 | 1.90 2.00 2.02 2.03
9.536743¢-07 | 1.90 2.00 2.02 203

R¥ 1.90 200 202 2.03

Table 5.6.2: Example 5.6.1, D-scheme convergence rates
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£ N=64 128 256 512 1024
2.500000e-01 | 4.1617e-07 2.6122¢-08 1.6339¢-09 1.0208¢-10 6.1062e-12
6.250000e-02 | 9.9833e-05 6.6272¢-06 4.1955¢-07 2.6356e-08 1.6486e-09
1.562500e-02 | 1.9653e-03 2.4192e-04 2.6229e-05 2.5718¢-06 2.3682e-07
3.906250e-03 | 1.9653e-03 2.4192¢-04 2.6229¢-05 2.5718e-06 2.3682e-07
9.765625e-04 | 1.9653e-03 2.4192e-04 2.6229¢-05 2.5718¢-06 2.3682e-07
2.441406e-04 | 1.9653e-03 2.4192e-04 2.6229e-05 2.5718e-06 2.3682e-07
6.103516e-05 | 1.9653e-03 2.4192e-04 2.6229¢-05 2.5718e-06 2.3682¢-07
1.525879e-05 | 1.9653e-03 2.4192¢-04 2.6220¢-05 2.5718e-06 2.3682¢-07
3.814697e-06 | 1.9653e-03 2.4192e-04 2.6229¢-05 2.5718e-06 2.3682¢-07
9.536743e-07 | 1.9653e-03 2.4192e-04 2.6229e-05 2.5718e-06 2.3682e-07

Table 5.6.3: Example 5.6.1, H-scheme errors

£ N=64 128 256 512
2.500000e-01 | 5.14 4.95 4.82 4.79
6.250000e-02 | 5.03 4.93 4.81 4.72
1.562500e-02 | 3.89 3.97 4.04 4.06
3.906250e-03 | 3.89 3.97 4.04 4.06
9.765625¢-04 | 3.89 3.97 4.04 4.06
2.441406e-04 | 3.89 3.97 4.04 4.06
6.103516e-05 | 3.89 3.97 4.04 4.06
1.525879¢-05 | 3.89 3.97 4.04 4.06
3.814697¢-06 | 3.89 3.97 4.04 4.06
9.536743e-07 | 3.89 3.97 4.04 4.06

R¥ 380 397 4.04 4.06

Table 5.6.4: Example 5.6.1, H-scheme convergence rates

Tables 5.6.2 and 5.6.4 show respectively that the D-scheme is second order ac-
curate but the H-scheme is fourth order accurate, as predicted by our theory.
Example 5.6.2 Consider the problem (Herceg [21])

- +(6® +u-0.75)(v* +¥-3.75) =0, forz €(0,1), (5.6.1a)

w(0) = u(1) = 0. (5.6.18)
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We have

bu(z,¥) = (2u + 1)(2u® + 2w — 4.5).
The reduced problem

Kz,v)=0

has four solutions u; = —2.5, 3 = —1.5, u3 = 0.5 and uq = 1.5. It is easy to get
bu(z,u1) = =12, by(z,u3) =6, by(z,us) = —6 and by(z,u¢) = 12.

Hence u; and us are not stable reduced solutions of (5.6.1). By a calculation, one
may show that u3 and u4 satisfy the condition (5.1.4). Therefore, (5.6.1) is a problem
of type (B) with two stable reduced solutions u3 and u4. Each of u3 and u4 is “close”
(in the sense of Theorem 5.2.1) to a solution of (5.6.1) when ¢ is sufficiently small.

We apply the D-scheme to compute these solutions of (5.6.1).

£ N=64 128 256 512 1024
2.500000e-01 | 3.4316e-04 8.6686e-05 2.1679e-05 5.4227¢-06 1.3557e-06
6.250000e-02 | 3.5179¢-03 1.1715e-03 3.4384e-04 8.6876e-05 2.1726e-05
1.562500e-02 | 3.5180e-03 1.1715e-03 3.7359e-04 1.1596e-04 3.5084e-05
3.906250e-03 | 3.5180e-03 1.1715e-03 3.7359e-04 1.1596e-04 3.5084e-05
9.765625e-04 | 3.5179e-03 1.1715e-03 3.7359e-04 1.1596e-04 3.5084e-05
2.441406e-04 | 3.5179e-03 1.1715e-03 3.7359e-04 1.1596e-04 3.5084e-05
6.103516e-05 | 3.5179e-03 1.1715e-03 3.7359e-04 1.1596e-04 3.5084e-05
1.525879¢-05 | 3.5179e-03 1.1715e-03 3.7359e¢-04 1.1596e-04 3.5084e-05
3.814697e-06 | 3.517%-03 1.1715e-03 3.7359e-04 1.1596e-04 3.5084e-05
9.536743e-07 | 3.5179e-03 1.1715e-03 3.7359e¢-04 1.1596e-04 3.5084e-05

Table 5.6.5: Example 5.6.2, D-scheme errors with solution near
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€ N=64 128 256 512
2.500000e-01 | 2.55 2.48 2.41 2.36
6.250000e-02 | 2.04 2.19 2.39 2.36
1.562500e-02 { 2.04 2.04 2.03 2.03
3.906250e-03 | 2.04 2.04 2.03 2.03
9.765625¢-04 | 2.04 2.04 2.03 2.03
2.441406e-04 | 2.04 2.04 2.03 2.03
6.103516e-05 | 2.04 2.04 2.03 2.03
1.525879¢-05 | 2.04 2.04 2.03 2.03
3.814697¢-06 | 2.04 2.04 2.03 2.03
9.536743e-07 | 2.04 2.04 2.03 2.03

RN 204 204 203 203

Table 5.6.6: Example 5.6.2, D-scheme convergence rates

with solution near ug

£

N=64

128

256

512

1024

2.500000e-01
6.250000e-02
1.562500e-02
3.906250e-03
9.765625e-04
2.441406e-04
6.103516e-05
1.525879%-05
3.814697e-06
9.536743e-07

1.1820e-03
5.5968e-03
5.6164e-03
5.6057e-03
5.5976e-03
5.5951e-03
5.5944e-03
5.5943e-03
5.5942¢-03
5.5942e-03

2.9456e-04
1.8000e-03
1.8021e-03
1.8022e-03
1.8008e-03
1.8002e-03
1.8000e-03
1.8000e-03
1.8000e-03
1.8000e-03

7.3582e-05
5.6725¢-04
5.6737e-04
5.6760e-04
5.6743e-04
5.6731e-04
5.6727e-04
5.6726e-04
5.6726e-04
5.6726e-04

1.8397e-05
1.7490e-04
1.7490e-04
1.7493e-04
1.7493e-04
1.7491e-04
1.7490e-04
1.7490e-04
1.7490e-04
1.7490e-04

4.5991e-06
5.2884e-05
5.2884e-05
5.2885e-05
5.2888e-05
5.2886e-05
5.2884e-05
5.2884e-05
5.2884e-05
5.2884e-05

Table 5.6.7: Example 5.6.2, D-scheme errors with solution near uq
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£ N=64 128 256 512
2.500000e-01 | 2.58 2.48 2.41 2.36
6.250000e-02 | 2.10 2.06 2.04 2.03
1.562500e-02 | 2.11 2.07 2.05 2.04
3.906250e-03 | 2.11 2.06 2.05 2.04
9.765625¢-04 | 2.10 2.06 2.05 2.04
2.441406e-04 | 2.10 2.06 2.04 2.03
6.103516e-05 | 2.10 2.06 2.04 2.03
1.525879¢-05 [ 2.10 2.06 2.04 2.03
3.814697¢-06 | 2.10 2.06 2.04 2.03
9.536743e-07 | 2.10 2.06 2.04 2.03

RY 2.10 2.06 2.04 2.03

Table 5.6.8: Example 5.6.2, D-scheme convergence rates

with solution near ug

The numerical results for Example 5.6.2 show that the D-scheme is capable of
computing those solutions of the problem (B) which lie close to particular reduced
solutions. Furthermore, the scheme achieves second order accuracy for this difficult

problem, confirming our theoretical results.
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Chapter 6

Conclusions

In this work we considered four singularly perturbed two—point boundary value
problems. They were (i) 2mth order problem of reaction-diffusion type (which
has two boundary layers of exponential type in the (m — 1)th order derivative of
the solution), (ii) 2mth order problem of convection-diffusion type (which exhibits
one boundary layer of exponential type in the (m — 1)th order derivative of the
solution), (iii) second order interior turning point problem (which has a boundary
layer of exponential type or an internal layer of cusp type), and (iv) semilinear
reaction—diffusion problem (which has two boundary layers of exponential type).
Classical numerical methods do not in general yield satisfactory numerical solutions
for any of these problems. We set out to construct and analyse uniformly convergent
methods for these problems; that is, methods whose solutions converge, uniformly
in the singular perturbation parameter, to the analytical solution of the problem.
We constructed and analysed polynomial-based finite element and finite differ-
ence methods on piecewise equidistant meshes for our four problems. The idea of
using such a mesh is due to Shishkin; he considered only schemes which satisfied

a discrete maximum principle, but we have extended his approach to more general

189



schemes generated by finite element methods. This mesh is fine only in part of
the layer(s) and coarse elsewhere. It works well for those problems with layers of
exponential type, such as occur in problems (i), (ii) and (iv) above. For layers of
cusp type, which may occur in problem (iii), it does not yield satisfactory results.
Consequently for (iii) we devised a mesh which is a generalization of Shishkin’s. This
mesh is also piecewise equidistant.

Galerkin finite element methods based on piecewise polynomial basis functions
and Shishkin meshes were constructed for problems (i) and (ii). Almost optimal
uniform convergence results were obtained in the weighted energy norms associated
with the original equations for both problems. We achieved a higher order of uniform
convergence in the Sobolev norm || - ||m-1 than in the energy norm for the problems
of reaction—diffusion type. On the other hand, this phenomenon does not occur,
in general, for the higher order problems of convection—diffusion type. This is in
contrast to convergence results in standard finite element analysis.

Piecewise linear Galerkin finite element methods were generated on the gener-
alized Shishkin mesh for simple attractive turning point problems, which form a
subclass of problem (iii). These methods were shown to be uniformly convergent in
a weighted energy norm and the usual L? norm.

We also investigated the use of finite difference methods on Shishkin meshes. Two
simple difference schemes for problem (iv) were proved to be uniformly convergent
of second order and fourth order respectively in the discrete maximum norm.

The methods of this thesis are polynomially based and are uniformly convergent.
No exponential fitting factors are used.

We believe that uniformly convergent polynomial-based finite element and finite
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difference methods on piecewise equidistant meshes can be also devised for other
singularly perturbed one-dimensional problems, such as boundary turning point
problems, initial value problems and systems of equations. It also seems possible to
extend the methods and analyses to problems in more than one dimension, using

dimension-splitting arguments.
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