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First principles calculation of electron-phonon and alloy scattering
in strained SiGe

F. Murphy-Armando1,a) and S. Fahy1,2

1Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland
2Department of Physics, University College, Cork, Ireland

(Received 6 September 2011; accepted 11 November 2011; published online 20 December 2011)

First-principles electronic structure methods are used to predict the mobility of n-type carrier

scattering in strained SiGe. We consider the effects of strain on the electron-phonon deformation

potentials and the alloy scattering parameters. We calculate the electron-phonon matrix elements

and fit them up to second order in strain. We find, as expected, that the main effect of strain on

mobility comes from the breaking of the degeneracy of the six D and L valleys, and the choice of

transport direction. The non-linear effects on the electron-phonon coupling of the D valley due to

shear strain are found to reduce the mobility of Si-like SiGe by 50% per % strain. We find increases

in mobility between 2 and 11 times that of unstrained SiGe for certain fixed Ge compositions,

which should enhance the thermoelectric figure of merit in the same order, and could be important

for piezoresistive applications. VC 2011 American Institute of Physics. [doi:10.1063/1.3669446]

I. INTRODUCTION

The performance of CMOS devices is inextricably

linked to the mobility of their active regions. Higher mobility

results in faster switching times and lower power consump-

tion. There are several ways in which these two desirable

properties have been achieved in the past. To mention a few,

the reduction in device size, the incorporation of higher mo-

bility materials, and strain engineering have all successfully

been applied to CMOS technology. However, having

reached the size limits possible in this technology and with

the scarcity of new materials compatible with the CMOS

fabrication process, the further increase in performance has

largely relied on strained architectures.

The carrier mobility is also important in thermoelectric

applications. Increasing the mobility by strain in these alloys

results in an increase of the thermoelectric figure of merit,1

Z¼ S2r=j, where S is the Seebeck coefficient, r the electrical

conductivity, and j the thermal conductivity. The change in the

thermal conductivity and the Seebeck coefficient are expected

to be small compared to the change produced in the electrical

conductivity by strain. Since r¼ nel, with l the mobility and

n the carrier occupation, an increase in mobility is accompanied

by the same increase in the thermoelectric figure of merit.

Furthermore, the rate of change in the mobility is related

to the performance of piezoresistive applications. The pie-

zoresistance gauge factor gives a measure of the sensitivity

of a piezoresistive device. The gauge factor G is proportional

to the rate of change of the conductivity with strain,

G ¼ �Dr=ðreÞ, where e is the strain.2 Thus, the larger the

change in conductivity with strain the more sensitive a pie-

zoresistive sensor is.

In Si, Ge, and their alloy, the mobility can be substan-

tially enhanced by the application of small amounts of strain,

resulting in the lowering (raising) of a conduction (valence)

band valley with a lower effective mass in the direction of

transport and a reduction in inter-valley scattering. The

increase in mobility will thus depend on the symmetry of the

band and that of the strain applied, the amount of strain and

the direction of transport.3

To predict the effects of strain on the material proper-

ties, a thorough understanding is needed of the relative im-

portance of various scattering mechanisms and how they are

affected by strain. While carrier mobility measurements in

bulk systems provide much information, they do not always

uniquely determine the separate contributions.3,4 Therefore,

a method to theoretically predict the charge transport proper-

ties from only a knowledge of the atomic positions is of

practical and physical importance. Many works3,5–11 have

explored the effects of strain on these alloys using empirical

or phenomenological models. However, it has been shown4

that phenomenological models of the scattering parameters

do not give the correct ratio of intra- to inter-valley scatter-

ing. Getting this ratio right is important when one of these

scattering mechanisms is suppressed by strain.

Our aim in this paper is to include the effects of strain

in our recently developed first principles methods4,12,13 to

calculate the alloy and electron-phonon scattering parame-

ters in SiGe and apply them to map the n-type carrier mobil-

ity enhancement as a function of strain configuration and

SiGe alloy composition. A further contribution of this work

is the validation of the deformation potential approach in

strained systems against the full electron-phonon scattering

matrix treatment. We find that strain can enhance the mobil-

ity from two to eleven times that of the unstrained alloy, at a

desired composition. In absolute terms, however, the mobil-

ity is still largely hampered by alloy scattering, so the largest

values of the mobility are obtained for strained Ge.

II. BANDS AND STRAIN

The conduction band minimum of Si is located along

the D crystallographic line and is composed of six degenerate

a)Author to whom correspondence should be addressed. Electronic mail:

philip.murphy@tyndall.ie.
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equivalent valleys in the [00n], 00�n
� �

, [0n0], 0�n0
� �

, [n00],
�n00
� �

crystallographic directions, where n ¼ 0:83 2p
a0

and a0

is the cubic lattice constant. The conduction band minimum

of Ge is located at the L point in the Brillouin zone, with

four equivalent valleys at p
a0

111½ �, p
a0

�111½ �, p
a0

1�11½ �, and
p
a0

11�1½ � (see Figure 1). For Si1� xGex with x< 0.85, the con-

duction band valleys are Si-like, otherwise they are Ge-like.

All the conduction band valleys have parabolic energy dis-

persions, with two effective masses: ml along the crystallo-

graphic direction of the valley and mt<<ml perpendicular

to it.

The effects of strain on the electronic structure of an fcc

lattice such as SiGe can be understood from the deformation

potential theory developed by Herring and Vogt.14 The shifts

in the D valley at [n00] and the L valley at p
a0

111½ � due to

strain are given by

DED
c ¼ ND

d þ
1

3
ND

u

� �
e1 þ e2 þ e3ð Þ

þ 1

3
ND

u e1 � e2ð Þ þ e1 � e3ð Þ½ �; (1)

DEL
c ¼ NL

d þ
1

3
NL

u

� �
e1 þ e2 þ e3ð Þ

þ 1

3
NL

u e4 þ e5 þ e6ð Þ; (2)

respectively, where Nd and Nu are the dilatational and uniax-

ial deformation potentials, and ei are the Cartesian strain ten-

sor components defined as

e1 ¼ exx; e2 ¼ eyy;

e3 ¼ ezz; e4 ¼ exy þ eyx;

e5 ¼ ezy þ eyz;

e6 ¼ ezx þ exz: (3)

Therefore, strain in the [100] direction of magnitude e results

in e1 ¼ e and e2¼ e3¼ e4¼ e5¼ e6¼ 0. Likewise, strain in

the [111] direction yields e1 ¼ e2 ¼ e3 ¼ e4=2 ¼ e5=2

¼ e6=2 ¼ e. Strain in the ½�111� direction yields

e1 ¼ e2 ¼ e3 ¼ �e4=2 ¼ e5=2 ¼ �e6=2 ¼ e, and so on.

It is easily seen that strain in the [100] axis will lift the

degeneracy of the [n00] and ½�n00� valleys from the [0n0],

½0�n0�, [00n], and ½00�n� D valleys, while the four L valleys

remain degenerate. Correspondingly, [111] strain removes

the p
a0

111½ � L valley from the quadruplet, and the D valleys

remain degenerate. The lifting of the degeneracy of the vari-

ous valleys is the most important effect increasing the mobil-

ity in SiGe.

We have also included in our analysis the effects of

strains on the C band, which have been treated elswhere.15

III. PHONON SCATTERING

A. Intra-valley scattering

We calculate the full electron-phonon (el-ph) matrix

element using the frozen phonon approach, as discussed in

Ref. 13. For the unstrained system, we find that the deforma-

tion potential approach gives an excellent fit to the full el-ph

matrix for long wavelength phonons. In Deformation Poten-

tial Theory, the dependence of the el-ph matrix on phonon

momentum q is assumed to be linear, and in Fig. 1 we

observe that this holds true for the el-ph matrix elements

due to long-wavelength phonons (wavelength> 10a0). This

approach continues to be good for the strained system, with

the inclusion of corrections up to second order in strain.

These corrections may be calculated by perturbation theory

from the second term in the following expansion of the

energy shift in terms of the strain:16

dE ¼
X6

i¼1

@E

@ei
ei þ

X6

j¼1

@2E

@ei@ej
eiej

 !
: (4)

FIG. 1. (Color online) The surfaces of constant energy in the D valleys

(upper panel) and L valleys (lower panel) for SiGe alloys. The inter-valley f-
type and inter-valley g-type scattering matrix elements are indicated by lines

between the D valleys, and the inter-valley LL scattering matrix elements by

a line between two of the L valleys. The primed labels indicate a matrix ele-

ment between valleys that are degenerate in the unstrained case, but are no

longer equivalent when the crystal is strained in the h100i or h111i direction

for the D and L valleys, respectively.
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From group theory, we can work out that six additional terms

to Eq. (1) are needed to account for the second order energy

shifts in the D and L valleys, so that the total shifts are given by

dE100 ¼ ND
d þ

1

3
ND

u

� �
e1 þ e2 þ e3ð Þ

þ 1

3
ND

u e1 � e2ð Þ þ e1 � e3ð Þ½ � þ AD e2
2 þ e2

3

� �
þ BDe2

1 þ CDe2e3 þ DD e1e3 þ e1e2ð Þ
þ EDe2

5 þ FD e2
4 þ e2

6

� �
; (5)

for the [100] D valley and

dEL
c ¼ NL

d þ
1

3
NL

u

� �
e1þ e2þ e3ð Þ þ 1

3
NL

u e4þ e5þ e6ð Þ

þAL e2
1þ e2

2þ e2
3

� �
þBL e1e2þ e1e3þ e2e3ð Þ

þCL e1e4þ e2e5þ e3e6þ e1e6þ e2e1þ e3e5ð Þ
þDL e1e5þ e2e6þ e3e4ð Þ þEL e2

4þ e2
5þ e2

6

� �
þFL e4e6þ e4e5þ e5e6ð Þ; (6)

for the [111] L valley, where Ai, Bi, Ci, Di, Ei, and Fi are the

second order deformation potentials of valley i. The shifts

for the other equivalent valleys can be easily obtained by

permuting the ei.

1. Frozen phonon calculations

In the deformation potential approach, the effect of a

long-wavelength phonon on the electronic bands is assumed

to be equivalent to a slowly varying potential, arising from

the displacements dR of the atoms from their equilibrium

positions due to the presence of a phonon of momentum q,

dRðrÞ ¼ dR0 sinðq � r� xtÞ: (7)

The strain produced by this displacement is given by17

eijðrÞ ¼
1

2

@dRi

@rj
þ @dRj

@ri

� �
; (8)

where dRi is the ith Cartesian component of the atomic

displacement vector at r. More explicitly, Eq. (8) becomes

eijðrÞ ¼
1

2
ðqidR0j þ qidR0jÞ cosðq � r� xtÞ: (9)

Inserting Eq. (9) into Eq. (6), the matrix element of

hkjdELjk0i with electron states jki and jk0i at t¼ 0 will

contain terms with

hkj cosðq � rÞjk0i ¼ dk�k0;q þ dk0�k;q

2
(10)

and

hkj cos2ðq � rÞjk0i ¼ dk�k0;2q þ dk0�k;2q

4
þ dk0;k

2
: (11)

We can obtain the deformation potentials by calculating the

electron-phonon matrix element from first principles. For

example, a longitudinal phonon in the x̂ direction, which

introduces a strain e1¼ dR0qcos(qx), will produce the

electron-phonon matrix element between states jki and

jkþ qi of band EL,

hkjdELjkþ qi ¼ 1

2
N1dR0q; (12)

yielding as a result the deformation potential N1 for the L
valley. In like manner, introducing a uniform strain e01 in the

x direction, the total strain becomes

e1 ¼ dR0q cosðqxÞ þ e01; (13)

and hence the matrix element,

hkjdELjkþ qi ¼ 1

2
N1 þ Ae01

� �
dR0q: (14)

We notice in Eq. (14) that the effect of a uniform strain on

the crystal is to introduce a change in the deformation poten-

tial proportional to that strain. These quantities can be read-

ily extracted from supercell frozen phonon calculations at

different values of q and e0, as in Ref. 13, Section C. As seen

in Fig. 2, the el-ph matrix elements are linear in q for long-

wavelength phonons, and higher order terms in q can be

neglected with little effect on the overall scattering. As we

shall see later, the quadratic dependence on strain is in some

cases comparable to the linear part and has to be included in

the calculation of the mobility.

B. Inter-valley scattering

The effect of strain on inter-valley scattering transitions

depends on their symmetry. In the unstrained case, there are

two types of inter-valley scattering at the D valley, namely

g- and f-type for transitions along and perpendicular to the

valley axis, respectively, and one for L valley scattering.

Strain along the [100] direction affects the scattering param-

eters in the following way (see Fig. 1):

(i) There is an additional type of g-type scattering,

depending on whether the transition is parallel or per-

pendicular to the strain direction.

FIG. 2. First principles electron-phonon matrix element vs q for unstrained

Ge, calculated using the frozen phonon approach. The slopes, as q ! 0,

yield the deformation potentials, Nd and Nu, for the L valley.
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(ii) There is an additional type of f-type scattering,

between the now inequivalent valleys.

(iii) There is an additional type of L-type scattering,

depending on whether the momentum change is

parallel or perpendicular to the strain direction.

Likewise, strain in the [111] direction introduces:

(iv) An additional type of L-type scattering, between the

now inequivalent valleys.

(v) An additional type of f-type scattering, depending on

whether the momentum change is parallel or perpen-

dicular to the strain direction.

Under tensile strain, the C valley lowers in energy faster

than the L valley. The strains considered here are not enough

for the C valley to become the lowest conduction band

valley. However, due to their proximity, we have considered

the scattering between the L, D, and C valleys.

IV. ALLOY SCATTERING

As in the case for electron-phonon scattering, the

effect of strain can be separated into intra- and inter-valley

contributions. The same symmetry treatment applies for

inter-valley alloy scattering as for inter-valley scattering by

phonons. As strain breaks the degeneracy of the original

valleys, so it changes the value of the intra-valley scattering

parameters belonging to these valleys. We shall calculate

these values directly, following the methods used in Refs. 4

and 13.

V. METHOD

To calculate the alloy and el-ph scattering parameters,

we employ the methods of Refs. 4 and 13. The calculation of

the effects of strain on the el-ph matrix elements requires

performing the frozen phonon calculation under strain in the

[100], [110], and [111] directions. The different second order

deformation potentials are obtained by applying these strains

to phonons in particular directions and branches. Table I

shows the required combinations of strain and phonon wave-

vector, which yield the deformation potentials for the D and

L valleys.

All the calculations of the band structure have been per-

formed with the Abinit code.18–20 We use the local density

approximation (LDA) for exchange and correlation. FHI

pseudopotentials of the Trouiller-Martins type (available in

the Abinit website19) are used for all calculations in this

paper. We use an energy cut-off of 18 Hartree for the expan-

sion of wavefunctions in all our calculations, except for

those of the second order deformation potentials, which

require a cut-off of 43 Hartree. The supercell sizes are the

same as described in Ref. 13. The required number of

Monkhorst-Pack irreducible k-points for the first and second

order deformation potentials is 134 and 198, respectively.

The convergence criteria for the calculation of second order

deformation potentials are more stringent than in the case of

Ref. 13, since the parameters are obtained from the differ-

ence with the unstrained deformation potentials. The GW

approximation21 is used to obtain the band energy differen-

ces between the D, L, and C valleys.

VI. RESULTS

A. Scattering parameters

The electron-phonon and alloy scattering parameters

have been calculated from first principles including the

effects of strain. The intra-valley el-ph matrix elements are

found to depend up to second order in strain, therefore the

deformation potential approach requires no further correc-

tions. Table II shows the second order deformation potentials

for the D and L valleys in SiGe. Except for the E deformation

potential for the D valley, all other values will have little

influence on the overall scattering. As implied by Eq. (5),

scattering of type E will increase electron phonon scattering

drastically only when strain components eij, with i= j are

present, as is the case for [111] and [110] strains.

The fractional variation of the alloy scattering parame-

ters with strain is on the same order as the strain, and has

little influence on the overall mobility. The same is true for

the inter-valley electron-phonon scattering parameters,

except the L to L scattering, which changes by 25% for 1%

strain. However, this type of scattering is very small in com-

parison to acoustic phonon and alloy scattering, resulting in

no perceptible change in the mobility.

We have considered the inter-valley electron-phonon

scattering of the L and D valleys with the C valley. The cal-

culated C intra-valley and C�L and C�D inter-valley alloy

scattering parameters labelled VC, VCL, and VCD, respec-

tively, are shown in Table III. The calculated inter-valley

TABLE I. Combination of phonon momentum, polarization, and strain

tensor to obtain the different second order deformation potentials for the D
and L valleys.

Def. Pot. Valley q̂ dR̂0 e

A D 010 010 e2

L 100 100 e1

B D 100 100 e1

L 010 010 e1

C D 010 010 e3

L 010 100 e1

D D 100 100 e3

L 010 100 e3

E D 010 001 e5

L 010 100 e4

F D 100 010 e4

L 010 100 e5

TABLE II. Calculated second order deformation potentials for the calculation

of the electron-phonon scattering.

D(eV) L(eV)

A �5 17

B 3 �23

C �4 6

D 5 �27

E 197 �4

F 0 �14
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electron-phonon scattering parameters are DCL¼ 4.1 eV/Å

and DCD¼ 2.5 eV/Å, also shown in Table III, which are in

excellent agreement with previous calculated22 and experi-

mental23,24 values.

B. n-type carrier mobility

We have computed the n-type carrier mobility in a bulk

strained SiGe alloy using the calculated scattering parame-

ters in the Boltzmann Transport Equation within the relaxa-

tion time approximation.13 We have considered the mobility

enhancement produced by two types of uniaxial strain,

namely, in the [100] and [111] directions up to 61% strain.

The transport directions were chosen to highlight the highest

mobility enhancement possible when transport occurs along

the direction with the lowest effective mass. For the [100]

strain, we have calculated the mobility enhancement for

transport in the [100] and [010] directions. For strain in the

[111] direction, the chosen transport directions were [110]

and ½1�10�.
The results are shown in Figs. 3–6. From the figures it is

clear that strain can do little to suppress the very strong alloy

scattering. The expected effect of mobility increase in Si-like

SiGe with [100] strain can be observed in Fig. 3. Compres-

sive strain in the [100] direction lifts four of the six D valleys

in energy. If current is allowed to flow in the direction of the

lightest effective mass, i.e., perpendicular to the strain direc-

tion, the mobility increases two- to fourfold (see Fig. 7). For

an illustration of how f-type phonon and alloy scattering

affect the mobility for Si-like alloy compositions, compare

Figs. 7 and 8, which represent the mobility enhancements for

the cases in Figs. 3 and 4, respectively. In the first case, com-

pressive strain lowers two of the six valleys in energy,

removing all sources of f-type scattering. In the second case,

TABLE III. Calculated C intra-valley and C�L and C�D inter-valley

alloy scattering parameters, denoted by Vi, and C�L and C�D inter-valley

deformation potentials, denoted by Di.

Value

VC (eV) 1.28

VCL (eV) 0.82

VCD (eV) 0.38

DCL (eV/Å) 4.1

DCD (eV/Å) 2.5

FIG. 3. (Color online) Mobility of Si1� xGex strained uniaxially in the [100]

direction, with transport along the [010] direction.

FIG. 4. (Color online) Mobility of Si1� xGex strained uniaxially in the [100]

direction, with transport along the [100] direction.

FIG. 5. (Color online) Mobility of Si1� xGex strained uniaxially in the [111]

direction, with transport along the ½1�10� direction.

FIG. 6. (Color online) Mobility of Si1� xGex strained uniaxially in the [111]

direction, with transport along the [110] direction.

FIG. 7. (Color online) Mobility enhancement of strained SiGe over

unstrained SiGe as a function of Ge content, for exx ¼ �0:01 (solid line) and

exx ¼ 0:01 (dashed line), with transport in the [010] direction.
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tensile strain lowers four of the six valleys, and f-type scat-

tering remains present. In both cases, transport is through the

lower effective mass direction. The mobility enhancement in

the first case is 50% larger than the second case for pure Si,

and nearly twice as much for alloy compositions of x� 0.5,

due to the increased alloy f-type scattering in the latter case.

This type of strain does not affect the degeneracy of the L
Ge-like valleys.

The L valleys are split in energy by [111] strain. Com-

pressive strain in this direction lifts three of the four L
valleys in energy. The conduction band minimum in Ge-like

SiGe is therefore located at the p
a0

1; 1; 1ð Þ valley, with the

lightest effective mass transverse to this direction. If, for

example, transport is confined to the ½1�10� direction, the

mobility at �1% strain will be 40% larger than in the

unstrained case, and 4 times larger than that of unstrained Si,

as seen in Figs. 5 and 9. Tensile strain in the [111] direction,

with transport along the [110] direction can only achieve an

increase in the mobility of 10% for pure Ge, as it is not possi-

ble to effect transport along the lowest effective mass direc-

tion (see Fig. 10). While the degeneracy of the D valleys is

not affected by this type of strain, the non-linearities in the el-

ph coupling with strain (second order deformation potentials)

increase the electron-acoustic phonon scattering, reducing the

Si-like mobility by almost half.

It is interesting to see what happens to the mobility of

Ge-like SiGe under tensile [111] strain. Irrespective of the

transport direction, tensile (compressive) strain lowers three

(one) of the four L valleys with respect to the D valley, result-

ing in the Si- to Ge-type alloy crossing over lower than

x¼ 0.85. This increases the mobility of SiGe from four to

eleven times the unstrained case for compositions between

0.80� x� 0.90, as seen in Figs. 9 and 10.

The effect on the mobility of applying higher compres-

sive strains would in general continue the same trends

observed for up to �1%. Large tensile strains, however, cause

the C valley to cross below the L valley in pure Ge, potentially

increasing the mobility enormously, due to the much smaller

effective mass and scattering rates of the C valley. The effects

of this type of strain on Ge have been treated elsewhere.15

VII. CONCLUSIONS

We have calculated the mobility of strained SiGe alloys

from first principles. The earlier method13 for calculating scat-

tering in semiconductor alloys has been expanded to include

the effects of strain on the phonon and alloy scattering param-

eters. We find increases in mobility of up to 11 times at 1%

strain, at fixed alloy compositions, for both tensile and com-

pressive strain. These enhancements in mobility could prove

important in defining the best strain configuration to use SiGe

for piezoresistive and thermoelectric applications.

We find that the deformation potential approach is an

excellent approximation, even for strained systems, com-

pared to using the full electron-phonon matrix. Non-linear

terms in the deformation potentials are found in general not

to be important, except for the D valley in SiGe under shear

strain, which results in a drastic decrease in mobility. The

influence of strain on the alloy scattering parameters is found

to be small (within 1%) for the strains considered here.
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FIG. 8. (Color online) Mobility enhancement of strained SiGe over

unstrained SiGe as a function of Ge content, for exx ¼ �0:01 (solid line) and

exx ¼ 0:01 (dashed line), with transport in the [100] direction.

FIG. 9. (Color online) Mobility enhancement of strained SiGe over

unstrained SiGe as a function of Ge content, for e111 ¼ �0:01 (solid line)

and e111 ¼ 0:01 (dashed line), with transport in the ½1�10� direction.

FIG. 10. (Color online) Mobility enhancement of strained SiGe over

unstrained SiGe as a function of Ge content, for e111 ¼ �0:01 (solid line)

and e111 ¼ 0:01 (dashed line), with transport in the [110] direction.
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