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First-principles investigation of the alloy scattering potential in dilute Si1−xCx
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2Department of Physics, University College Cork, Cork, Ireland

(Received 24 November 2011; revised manuscript received 11 April 2012; published 23 April 2012)

A first-principles method is applied to find the intra and intervalley n-type carrier scattering rates for
substitutional carbon in silicon. The method builds on a previously developed first-principles approach with the
introduction of an interpolation technique to determine the intravalley scattering rates. Intravalley scattering is
found to be the dominant alloy scattering process in Si1−xCx , followed by g-type intervalley scattering. Mobility
calculations show that alloy scattering due to substitutional C alone cannot account for the experimentally
observed degradation of the mobility. We show that the incorporation of additional charged impurity scattering
due to electrically active interstitial C complexes models this residual resistivity well.

DOI: 10.1103/PhysRevB.85.165209 PACS number(s): 72.20.Dp, 72.20.Fr, 72.80.Cw

I. INTRODUCTION

The introduction of carbon into SiGe/Ge heterostructures
is of technological interest due to the dual effects of strain
compensation in the Si1−yGey layers1 and suppression of the
out-diffusion of p-type acceptors, in particular, boron2 and
indium,3 during wafer fabrication. The transport properties of
the material are expected to be modified by two competing
processes. On the one hand, in silicon, the induced strain will
lift the degeneracy of the � valleys allowing the conduction
electrons to see a smaller effective mass for transport in the
appropriate direction and reducing intervalley scattering. On
the other hand, the substitutional carbon is likely to introduce
alloy scattering, acting to reduce the mobility.

Transport measurements by Osten et al.4 of tensile strained
Si1−xCx and compressive strained Si1−y−xGeyCx show a
degradation of the n- and p-type Hall mobility, respectively,
as the carbon concentration is increased. This is in contrast
to the earlier measurements of Eberl et al.,5 who reported
an improvement of the mobility with C doping. However,
Osten et al. reported that their findings showed evidence of
the formation of electrically active defects due to interstitial
carbon complexes. This is consistent with the identification
of both donor6 and acceptor states7 due to interstitial carbon
in silicon, Ci (a C and Si atom sharing the same lattice site).
Additionally, the CiCs complex (a C interstitial bonded to a
substitutional C atom) has been found to exist in positive,
negative, and neutral charge states.8,9

Such electrically active states would introduce strong
ionized impurity scattering at low temperatures in addition to
any deliberate doping, whilst neutral impurity scattering would
be expected to lower the mobility over all temperatures. It is
important, then, to disentangle the contributions of interstitial
and substitutional carbon.

In the current work, we investigate electron scattering due to
substitutional carbon via a first-principles approach developed
by Murphy-Armando and Fahy.10,11 The aims of this work
are threefold: (1) given the large difference in covalent radii
and electronegativity between C and Si, we might speculate
that C would produce a localized state, resonant with the
conduction band in analogy to nitrogen in III-V materials
such as GaInAs.12 If this proved to be the case, we might
expect very strong alloy scattering much as we do in the

dilute nitrides.13 Moreover, the method for calculating the
alloy scattering parameters developed in Refs. 10 and 11 and
extended in the current work would not be directly applicable
to such a resonant state.

(2) The validity of our method for calculating the alloy
scattering matrix has already been demonstrated for elemental
alloys in Refs. 10,11. In this paper, we extend the method
by introducing a q-point interpolation scheme to overcome
the problem of the arbitrary zero of the potential (discussed
in detail in Sec. III D) and better facilitate the calculation
of intravalley scattering. We can then directly compare the
methods for the calculation of g-type scattering (see Sec. II)
to ensure consistency.

(3) The transport measurements for Si1−xCx by Osten
et al.4 show a severe degradation of the mobility with C
doping, showing the imposition of a limiting mobility with
a temperature dependence characteristic of scattering from
ionized impurities. This is believed to be due to electrically
active C interstitials. Since we are able to calculate the
scattering rate for substitutional carbon (rather than take this
as a fitting parameter as is usually done for alloy scattering),
we are able to fit the residual mobility using a model of
ionized impurity scattering and thereby obtain estimates of
the unknown electrically active interstitial concentrations.

Note that we do not attempt to apply the first-principles
method of impurity scattering to the C interstitials for two
reasons. Firstly, a first-principles study of all possible C
interstitials would constitute a major piece of work in itself
that has already been pursued by other authors. However, since
we would need the full output files for these computations, we
would still need to reproduce this. Secondly, the method we
use would only be applicable to neutral impurity scattering
from the non-ionized dopants. This would only be significant
at very low temperatures where carrier freeze out pertains.
At higher temperatures, the scattering from these impurities
would be dominated by the Coulomb interaction for which
very good models already exist. The original motivation for
investigating alloy scattering via a first-principles approach
is that models based on a physical understanding of the
scattering potential do not exist and it is the magnitude
of the matrix element that is usually taken as a fitting
parameter.
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In the next section, we discuss electronic transport in
biaxially strained Si, presenting expressions for the drift
mobility in non-degenerate, parabolic bands. The formal
model of alloy scattering is then presented, introducing the
scattering matrix elements that we wish to calculate using the
first-principles techniques described in Sec. III. In Sec. IV, we
use our results to calculate the alloy scattering-limited mobility
and compare this to the experimental data.

II. MOBILITY IN BIAXIALLY STRAINED SI(1-X)C(X)

A. General expressions

In silicon, low-electric field electron transport occurs in
the six equivalent spheroidal valleys along each � line in
the Brillouin zone. In the following discussion, we shall treat
the energy dispersion as parabolic in both the longitudinal
(major axis of spheroid) and transverse (minor axis) directions.
The valleys are then characterized by the longitudinal and
transverse effective masses, ml and mt , respectively.

The transport properties are calculated via the low-electric
field solution of the Boltzmann transport equation (BTE). For
purely elastic scattering processes, this yields a momentum
relaxation time τn,k for a state with band index n, wave vector
k, and energy εn,k given by

1

τn,k
=

∑
n′

∫
sn′n

k′k(1 − cos α′)
VC

(2π )3
d3k′ ≡ W (εn,k), (1)

where α′ is the angle between k and k′, VC is the crystal
volume, and W (εk) is the energy dependent scattering rate.
From time-dependent perturbation theory, we have

sn′n
k′k = 2π

h̄

∣∣Mnn′
kk′

∣∣2
δ(εk′ − εk), (2)

where Mnn′
kk′ is the matrix element for scattering from electron

state labeled by (n,k) to state (n′,k′). Note that, in general,
Mnn′

kk′ will be a sum of matrix elements for all elastic processes.
Moreover, we may also find an effective τn,k including inelastic
processes via solution of the BTE, although not usually in such
a simple form (see, for instance Ref. 14).

We now restrict our consideration to scattering within and
between the � valleys. Dropping the band index notation, the
scattering rate in a particular valley labeled by α may be written
as a sum of different scattering processes:

Wα(ε) =
∑

i

Wi(ε). (3)

The processes summed over in Eq. (3) are classified into three
types: intravalley, f -type intervalley, and g-type intervalley
scatterings. f -type scattering occurs from a valley lying along
one � line to one of the other four valleys lying in an orthogonal
direction, whereas in g-type scattering, the scattering is into
the valley diametrically opposite the initial valley along the
same Cartesian direction.

Since the lattice constant of Si1−xCx is less than that
of silicon, Si1−xCx grown on an Si substrate is subject to
a biaxial tensile strain. This leads to a splitting of the six
degenerate � valleys. The two valleys along axes parallel to
the growth direction (the out-of-plane direction) are lowered
in energy (referred to as “lower” valleys), whilst the other

four orthogonal valleys (parallel to the in-plane direction) are
raised (“upper valleys”). We shall denote the energy splitting
between the upper and lower valleys by �ε.

In the absence of biaxial strain, the mobility is the same in
all directions, with the conduction electrons seeing a combined
effective mass of 3(1/ml + 2/mt )−1. As �ε/kBT → ∞,
where kB is Boltzmann’s constant and T is the absolute
temperature, the in-plane conduction electrons see only the
transverse effective mass mt . Conversely, the out-of-plane
conduction electrons see only ml . Since ml > mt , if all
other factors remained equal, we would expect to see an
enhancement of the in-plane mobility and a degradation of
the out-of-plane mobility relative to unstrained Si.

Additionally, at low temperatures, we would also expect
to see a suppression of intervalley scattering into the upper
valleys. Hence the scattering originating in either of the two
lower valleys at low temperatures may only be intravalley
or g-type intervalley. This mobility enhancement will be in
competition with any degradation due to alloy scattering or
any other process induced by the introduction of C into Si.

For non-degenerate, parabolic bands, the in-plane and out-
of-plane drift mobilities μin and μout are found to be

μin(T ) = e

mt

〈τ1〉(1 + mt/ml)e−�ε/kBT + 〈τ0〉
(2e−�ε/kBT + 1)

(4)

and

μout(T ) = e

ml

2〈τ1〉(ml/mt )e−�ε/kBT + 〈τ0〉
(2e−�ε/kBT + 1)

, (5)

where

〈τα〉 =
∫ ∞

0 τα(ε)e−ε/kBT ε3/2dε∫ ∞
0 e−ε/kBT ε3/2dε

. (6)

The indices 1 and 0 label the higher and lower valleys,
respectively, and τα(ε) = 1/Wα(ε) is the relaxation time. Note
that, in general, the energy-dependent relaxation times will
also be temperature dependent (for example, when an effective
relaxation time is used including phonon scattering). 〈τα〉
represents an energy averaging of the relaxation time, requiring
a factor of εD(ε), where D(ε) is the density of states, in the
integrals. In the parabolic case, this is proportional to ε3/2.

Equations (4) to (6) are the expressions that we solve
numerically to determine the mobility. Note that in these
expressions, the scattering rate should be expanded in terms
of the rates for intravalley, f -type, and g-type scatterings,
denoted by W�(ε), Wf (ε), and Wg(ε), respectively, according
to

W0(ε) = W�(ε) + Wg(ε) + 4Wf (ε − �ε) (7)

and

W1(ε) = W�(ε) + Wg(ε) + 2[Wf (ε) + Wf (ε + �ε)]. (8)

B. The alloy scattering rate

The model of alloy scattering developed by Flinn,15 based
on the virtual crystal approximation (VCA) due to Nordheim,16
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and later by Asch and Hall17,18 for binary metallic alloys
suffices as the formal framework for the current work based
on the first-principles approach. The first-principles approach
takes as its starting point the construction of supercells mod-
eling a perturbed system for which we find the ground-state
density and, subsequently, the Hamiltonian of the system via
the supercell eigenvalues and eigenstates, as described in detail
in the next section. For the formal model of alloy scattering, we
simply reinterpret the number of ions in the sample N as the
number of atoms in a supercell and VC as the supercell volume.
(Note that the alloy scattering rate introduced by Harrison and
Hauser for ternary III-V semiconductor alloys19 is based on the
more fundamental work of Flinn, Asch, and Hall but with the
incorporation of specific modeling simplifications not imposed
here).

The alloy scattering model assumes that the potential can
be decomposed into two parts: the VCA potential, being an
average potential weighted according to the proportions of
each species, and a random part due to the difference in
potential �V (r) arising from the substitution of one atomic
species for the other. It is this random part that provides a
perturbation giving rise to scattering. Hereafter, we refer to
�V (r) as the alloy scattering potential.

Following through the analysis in the above references, we
find that the squared modulus of the alloy scattering matrix
element for the transition of a state |α〉 to a state |β〉 in a
completely random alloy is given by

|Mαβ |2 = x(1 − x)

N
|〈Vαβ〉|2, (9)

where we have defined

〈Vαβ〉 = N〈β|�VAB(r)|α〉. (10)

The calculation of the quantity 〈Vαβ〉 will be the principal task
of the present work.

In the case that the scattering matrix element is isotropic,
Eq. (1) reduces to Fermi’s golden rule, with the indices α and
β now taken to label valleys. The alloy scattering rate may
then be written down as

1

τα(ε)
= x(1 − x)

(2m∗
d )3/2a3

0

16πh̄4

∑
β

|〈Vαβ〉|2(ε − εβ)1/2. (11)

Here, md is the density of states effective mass defined by
m∗3

d = m∗
l m

∗2
t , εβ is the band-edge energy of the βth valley

and we have made the substitution VC/N = a3
0/8 for Si (eight

atoms per cubic cell with lattice constant a0).
Neglecting the suppression of f -type scattering at low

temperatures, we may use Eq. (11) to find an approximate
analytical expression for the alloy scattering-limited mobility

μal(T ) = e[(1 + mt/ml)e−�ε/kBT + 1]

mt (2e−�ε/kBT + 1)

× 64π1/2h̄4

3x(1 − x)(2m∗
d )3/2a3

0

∑
β |〈Vαβ〉|2(kBT )1/2

.

(12)

C. Charged impurity scattering

The observed mobilities for Si1−xCx offer evidence of
additional charged impurity scattering at low temperatures due
to electrically active carbon interstitial complexes. This may be
modeled by the Brooks-Herring formula for ionized impurity
scattering,20 derived using Eq. (1) with the matrix element for
electron scattering from a screened Coulomb potential. The
scattering rate is given by

WII (ε) = NIZ
2e4

16πε2(2m∗
d )1/2ε3/2

S(ε,T ), (13)

where NI is the density of ionized impurities, Z is the
ionization number, ε is the permittivity in the material, and
S(ε,T ) is a screening factor given by

S(ε,T ) = ln[λ(ε,T ) + 1] − λ(ε,T )

λ(ε,T ) + 1
(14)

and

λ(ε,T ) = 8m∗
dε

h̄2q2
0 (T )

. (15)

q0 models the effect of an exponential decay imposed onto the
Coulomb potential and is given by14

q2
0 (T ) = e2ne

εkBT
, (16)

where ne is the electron density. We shall assume that Z = 1
and that the material is uncompensated, so that ne = NI .

D. Inelastic scattering processes

In a fully rigorous solution of the BTE, all relevant scat-
tering processes, including inelastic phonon scattering, would
be included from the start. Moreover, given the dependence of
charged impurity scattering on electron density, assumptions
of non-degeneracy and parabolic bands should be dropped
and the Fermi level calculated. However, this would greatly
increase our work load and distract from the central message
of the current work. This is to calculate the alloy scattering
rate due to substitutional carbon and highlight both the effect
of this and the possible effect of charged interstitials on the
mobility. Therefore additional scattering processes are only
incorporated in an empirical manner by inferring an effective
relaxation time from the measured mobility of pure Si and
adding this into our numerical calculations (see Sec. IV B for
details).

III. THE FIRST-PRINCIPLES APPROACH

The approach to alloy scattering used here is based on first-
principles calculations via density functional theory (DFT).
The first step is to obtain the ground state (GS) densities
for both an unperturbed system (i.e., a perfect lattice) and
a perturbed system with an impurity atom via self-consistent
calculations. For the former, we construct primitive two-atom
cells whilst for the latter, we build large supercells. Having
obtained the GS densities, we then proceed with non-self-
consistent eigenvalue calculations for the conduction band
states. These are then used to construct the scattering matrix
elements as described in more detail in the next section.

165209-3
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It is well known that the DFT band structure does not
necessarily reproduce the correct quasiparticle band structure
that is relevant for carrier dynamics. Nevertheless, the largest
error typically occurs in the band gap, rather than in the
conduction or valence band dispersions. For Si and Ge, the
DFT conduction-band dispersions and pressure dependence
of the band gap, are generally in good agreement with
experiment.21,22 In SiGe, the conduction-band deformation
potentials and alloy composition dependence have been shown
to be in excellent agreement with experiment.10,11 Indeed, this
is the basis for using the DFT approach to calculate the carrier
scattering, where it is the difference between the perturbed and
unperturbed band states and energies that we are concerned
with.

The self-consistent GS calculations and subsequent
eigenvalue calculations were carried out using the ABINIT

package.23 Pure Si primitive cells and Si(N-1)C(1) supercells
were constructed using Troullier-Martins pseudopotentials24

with the local density approximation (LDA) for the
exchange-correlation functional. An energy cutoff of 40
Ha was used based on the convergence of eight-atom
supercells with a single C atom. Calculations with and
without ionic relaxation were performed, using modified
Broyden-Fletcher-Goldfarb-Shanno minimization25–27 for the
former, which takes into account both the total energy as well
as the energy gradients.28 For the Si(N-1)C(1) systems, we
constructed fcc 54-atom, cubic 64-atom, and cuboid 128-atom
supercells (two cubic 64-atom cells stuck together).

A. The scattering matrix elements

We shall denote the eigenvalues and eigenvectors of the
unperturbed system by ε0

i and |φ0
i 〉, respectively, whilst those

of the perturbed system will be denoted by εi and |φi〉.
The perturbed states may be written as an expansion in the

|φ0
i 〉

|φj 〉 =
∑

i

αij

∣∣φ0
i

〉
, (17)

so we have

αij = 〈
φ0

i

∣∣φj

〉
. (18)

The Hamiltonian of the perturbed system may then be
represented in terms of the unperturbed eigenstates |φ0

i 〉 and
written in matrix form as

Hα = αE, (19)

where the elements of H are given in terms of the unperturbed
eigenvalues ε0

i and the perturbing potential �V as

Hij = δij

2

(
ε0
i + ε0

j

) + Vij , (20)

where the Vij = 〈φ0
i |�V |φ0

j 〉 are the scattering matrix
elements.

The columns of α are the eigenvectors of the perturbed
system expanded in terms of the |φ0

i 〉 as in Eqs. (17) and (18),
whilst E is a diagonal matrix containing the perturbed eigen-
values εi . Hence the individual elements of H are given by

Hij =
∑

k

αikεkα
−1
kj , (21)

and the scattering matrix elements by

Vij = Hij − δij

2

(
ε0
i + ε0

j

)
, (22)

where α−1
kj implies the kj element of α−1.

Note that the diagonal elements of Vij involve both the
perturbed and the unperturbed eigenvalues εi and ε0

i . However,
since these both involve an arbitrary constant due to arbitrary
zero of the periodic pseudopotentials, the difference in these
energies cannot be known without some way of fixing a
common zero of potential for both systems. On the other hand,
the off-diagonal elements of Vij only involve the perturbed
energy eigenvalues. Given these elements in the form of
Eq. (22), it is easy to show that the diagonal elements are
insensitive to any constant shift in the energy eigenvalues.

In the case of having complete sets of perturbed and
unperturbed wave functions |φi〉 and |φ0

i 〉, we may write
Eq. (21) in the form

Hij =
∑

k

〈
φ0

i

∣∣φk

〉
εk

〈
φk

∣∣φ0
j

〉
. (23)

For complete sets, the diagonal elements of Hij , as given by
Eq. (23), also have the same insensitivity to constant shifts in
the energy eigenvalues. In practice, however, we will always
be working with finite sets of eigenstates. Moreover, as the size
of the system is allowed to increase to infinity, we require that
|φi〉 → |φ0

i 〉 far from the impurity—a condition not necessarily
met in the construction of a finite supercell. In this case, the
elements Vij represent the first Born approximation to the true
scattering matrix as discussed in Ref. 10. It then becomes
profitable to limit the summation in Eq. (23) by design to
eliminate the contributions from the perturbed states with very
different energies from those of the unperturbed states. As
one restricts the energy range on the summation of perturbed
states, one tends toward the result of infinite-order perturbation
theory.

B. Bloch representation

Equation (22) gives a generalized expression for the
scattering matrix elements Vij in terms of perturbed and
unperturbed eigenstates and their eigenvalues. We now wish
to specialize to the case where the |φi〉 are states of a supercell
and the |φ0

i 〉 are the Bloch states of the unperturbed system. In
the latter case, the Bloch states are labeled by wave vector k
and band index n. A Bloch wave function may then be written
as a plane wave expansion over the reciprocal lattice vectors
G of the primitive cell,

φ0
n,k(r) = V

−1/2
C

∑
G

Cn,k+Gei(k+G)·r, (24)

where the plane-wave coefficients are normalized such that∑
G

|Cn,k+G|2 = 1. (25)

The wave functions of a supercell may be expanded analo-
gously except that the summation will be over the reciprocal
lattice vectors g of the supercell,

φm,k(r) = V
−1/2
C

∑
g

CS
m,k+ge

i(k+g)·r. (26)
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Here, however, the k appearing in Eq. (26) is only uniquely
defined within the much smaller supercell Brillouin zone
(SBZ). Wave vectors beyond this that still lie within the
primitive Brillouin zone (PBZ) may be mapped to a k point
within the SBZ via a g vector. The eigenvalue of this k + g
point is then folded back into the SBZ as a supercell band state
at k. Hence, for definiteness, we may restrict k to be within
the SBZ and label the wave vector of any given Bloch state by
k + g0, where g0 is a g vector lying within the PBZ. Allowing
i and j to be compound indices running over n and k + g0, the
required scattering matrix elements may now be written as

Vij = 〈
φ0

n′,k′+g′
0

∣∣�V
∣∣φ0

n,k+g0

〉
. (27)

The calculation of this quantity via Eq. (22) requires
evaluation of the projections αik , where k is a compound index
running over supercell band indices m and k points within the
SBZ:

αik = 〈
φ0

n,k′+g′
0

∣∣φm,k
〉
. (28)

Now, the set of all supercell reciprocal lattice vectors g will
contain the G as well as vectors g0 + G. Hence, the summation
over g may be written

∑
g

=
∑
G,g0

. (29)

The inner product of Eq. (28) is then
〈
φ0

n,k′+g′
0

∣∣φm,k
〉 =

∑
G′,G,g0

C∗
n,k′+g′

0+G′C
S
m,k+g0+G

× δk′+g′
0+G′,k+g0+G. (30)

Since g0 lies within the PBZ, it may never be a G vector.
Similarly, since we have restricted k to lie within the SBZ, it
will never be a g0 vector. Hence the Kronecker δ in Eq. (30)
may be decomposed into

δk′+g′
0+G′,k+g0+G = δk′kδg′

0g0δG′G (31)

and Eq. (30) becomes
〈
φ0

n,k+g0

∣∣φm,k
〉 =

∑
G

C∗
n,k+g0+GCS

m,k+g0+G. (32)

Note that this summation involves only the g0 + G components
of the supercell wave function expansion.

Calculation of the projection in Eq. (32) requires (i) having
the plane-wave representations of the Bloch state with wave
vector k′ = k + g0 and supercell state with wave vector k and
(ii) a method of selecting those g vectors in the supercell ex-
pansion corresponding to g0. The first requirement is provided
for via the non-self-consistent calculations of the conduction
band states based on the GS density using a plane-wave code
such as ABINIT. The second may be achieved by converting
the g vectors to primitive cell G coordinates via a matrix
transformation. The integral parts are then subtracted and
the fractional parts transformed back to g-coordinates via the
inverse transformation. This is essentially the generalization
of modular arithmetic to matrix multiplication, so that the we
might write symbolically g0 = g(modG).

C. Mixing of originally degenerate states

In Refs. 10 and 11, scattering was considered between states
that were degenerate in the unperturbed system and that folded
back to the � point in the SBZ. In this case, the k point
associated with the supercell states is k = 0 and the perturbed
Hamiltonian may be written

Hg′
0g0 =

∑
m

〈
φ0

g′
0

∣∣φm

〉
εm

〈
φm

∣∣φ0
g0

〉
, (33)

where the summation is over the bands at the � point.
As a particular example, the g0 may map to points along

the � line, so that the scattering matrix elements obtained
from Eq. (33) are for intravalley (g′

0 = g0), f -type intervalley
(g′

0 orthogonal to g0) and g-type (g′
0 = −g0) intervalley

scatterings. These may be denoted by V�, Vf , and Vg ,
respectively. Rather than calculating these elements directly
from an expression of the form of Eq. (22), a reduced 6 × 6
matrix defined by Eq. (33) in terms of the six possible g′

0
vectors may be diagonalized, yielding one, two, and threefold
degenerate eigenvalues ε1, ε2, and ε3, respectively, which may
only be known with respect to an arbitrary additive constant
δV , as discussed in the next section. The Vi may then be
expressed in terms of the εi according to11

V� = 1
6 (ε1 + 2ε2 + 3ε3) − δV, (34)

Vg = 1
6 (ε1 + 2ε2 − 3ε3), (35)

and

Vf = 1
6 (ε1 − ε2). (36)

One advantage of this approach is that it automatically takes
care of any arbitrary mixing of degenerate states. It may be
shown that the diagonalization of a matrix Hij for which the
unperturbed states are degenerate is insensitive to the way in
which the states are mixed. This is not the case for the matrix
elements obtained from the more general expression in Eq.
(22) using either Eq. (21) or Eq. (23).

D. q-point interpolation

A remaining problem with the application of Eq. (34) for
intravalley scattering arises from the arbitrary zero of energy
for a periodic potential. This means that the relative shift
δV between the potentials in the perturbed and unperturbed
systems will be undetermined. Moreover, we see from Eq. (10)
that the error in the calculation of the alloy intravalley
scattering parameter is equal to NδV , so that for the above
prescription to be useful, we would need some way of finding
δV such that it gets smaller with supercell size at least as fast
as 1/N .

In Refs. 10,11 and 29, a method of averaging the difference
in the local potentials of the perturbed and unperturbed systems
was employed. In that work and a previous application of
the method to C in Si,30 the matrix elements were based on
a supercell representation, i.e., the unperturbed states were
calculated for supercells without any scattering perturbation.
The accuracy of this approach then depends on the precision
with which the potentials may be determined.

An important factor affecting the accuracy of DFT calcu-
lations is the cutoff energy εcut used to determine the number
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of plane-waves used in the construction of the GS density.
In the present work, the cutoff energy is kept fixed for all
calculations, so this will not have any supercell size dependent
effect on the determination of the potential. However, εcut

does determine the fast Fourier transform (FFT) grid on which
periodic functions such as the potential are defined. The real
space FFT grid points are given in terms of the reduced direct
space lattice vectors, which will be different for different
supercell geometries. Hence, direct point-to-point comparison
between potentials is only possible for cells with the same FFT
grids. Otherwise, some interpolation method must be used and,
as we shall see, this can introduce unacceptable errors.

If the unperturbed and perturbed systems are both con-
structed using supercells with the same geometry, then the
error in determining the difference between the potentials
will decrease with supercell size. This is because the relative
contribution of the perturbation becomes smaller and the
potentials far from the impurity site will tend more closely to
one another. Since supercells with the same size, geometry, and
cutoff energy will use the same FFT grid, a direct comparison
may be made such that the error in the alloy scattering
parameter will be canceled by the increased accuracy with
which the difference in potentials may be determined.

The comparison of commensurate supercells will still be
subject to a further problem. The supercell states, subsequently
calculated non-self-consistently using the GS density, will
generally be arbitrary superpositions of Bloch states. Hence
the scattering matrix constructed from them will also be a
(generally unknown) superposition of the required matrix be-
tween Bloch states. However, trying to calculate the difference
between the potentials in the primitive cell and perturbed
supercell leads to the immediate problem that the potentials for
the two systems are usually defined on incommensurate FFT
grids. Thus the accuracy with which the difference between
the potentials can be known will be limited by the accuracy
of the numerical interpolation used, as opposed to finding
the difference at the same FFT grid points without the need
for interpolation. Since the FFT grids are fixed by the cutoff
energy, the error in δV cannot decrease with cell size and
the error in the alloy scattering potential must increase in
proportion to N .

A way of circumventing this problem is to use the more
general formulation of the model and calculate off-diagonal
matrix elements for nonzero scattering vectors q = k − k′. In
this case, the eigenvalues of the unperturbed system disappear
from the calculation as pointed out in Sec. III, so the difference
between the arbitrary zeros of the potentials is no longer a
problem. As the size of a supercell increases, the reciprocal
lattice vectors, which are the allowed q vectors for the system,
become smaller. This then offers the possibility of interpolating
the scattering matrix elements to q = 0. The strategy employed
here to overcome limitations on the computational resources
needed for very large supercells is to construct long supercells
that have much smaller reciprocal lattice vectors along one
axis. In particular, we construct cuboid 128-atom supercells
by concatenating two cubic 64-atom cells.

Possible problems with the interpolation may arise due to
the arbitrary phase of a Bloch function, which may cause the
relative phase between the Bloch functions involved in the
alloy scattering matrix element to change discontinuously. To

deal with this problem, we monitor the behavior of the the
overlap factor I n′n

k′k , defined as the inner product of the periodic
parts of the Bloch functions φ0

n′k′ and φ0
nk integrated over the

primitive cell. Hence, writing a Bloch function in the form
φ0

nk(r) = unk(r)eik·r, we have [c.f. Eq. (24)]

I n′n
k′k =

∫
PC

u∗
n′k′(r)unk(r)d3r,

=
∑

G

C∗
n′,k′+GCn,k+G. (37)

I n′n
k′k therefore contains information about the relative phase

between the Bloch functions.
Since the scattering matrix of Eq. (27) is constructed

entirely from Bloch functions and the real energy eigenvalues
of the supercell, if I n′n

k′k varies smoothly with q = k − k′, we
may attribute any sudden change in phase (in practice, sign
reversal) to the effect of the scattering potential. On the other
hand, in certain cases, such as when the scattering vector q
translates the initial k point through the � point or into the
adjacent BZ, the sign of Ik′k may reverse. In this case, the sign
reversal is a feature of the Bloch functions. Hence, to counter
any anomalous artifacts of the matrix diagonalizer used to
calculate the Bloch functions, we impose any sudden change
in the phase of I n′n

k′k onto the scattering matrix.

IV. RESULTS

A. Alloy scattering parameters

In Figs. 1 and 2, we show the results of calculations for
scattering by substitutional C in Si for unrelaxed and relaxed
structures using Eq. (33) for the reduced 6 × 6 matrix method
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Δ minima

FIG. 1. (Color online) Calculations for the scattering parameters
in unrelaxed Si1−xCx using the 6 × 6 matrix method of Eq. (33).
Points at kz = 1/2 and kz = 1 were obtained from a cubic 64-atom
supercell. For the points at kz = 2/3 and kz = 4/3 an fcc 54-atom
supercell was used. The criterion used for the number of supercell
states to include in the scattering matrix was based on the absolute
difference of the perturbed supercell energies ε and the originally
sixfold degenerate unperturbed Bloch-states energies ε0 being less
than or equal to 4 eV. The white triangles mark the polynomial
interpolation to the � valley minimum, with values of −0.4, −0.6, and
−1.8 eV for intravalley, g-type, and f -type scatterings, respectively.
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FIG. 2. (Color online) Calculations for the scattering parameters
in relaxed Si1−xCx using the 6 × 6 matrix method of Eq. (33). The
same comments given in the caption to Fig. 1 apply here. The
polynomial interpolations to the �-valley minimum yield values
of −4.5, −1.2, and −0.7 eV for intravalley, g-type, and f -type
scatterings, respectively.

for originally degenerate eigenvalues that fold back to the �

point in the constructed supercell. The supercells used for these
calculations were an FCC 54-atom cell and a cubic 64-atom
cell. In these cells, points along the � line are mapped back to
k = 0 via reciprocal lattice vector translations. In particular,
as a fraction of the distance along the � line to the X point,
the 54-atom cell gives us points at 2/3 and 4/3, whilst the
64-atom cell gives us points at 1/2 and 1. These points are
then interpolated to the �-valley minimum shown as white
triangles in the graphs.

The choice of which perturbed supercell states in Eq. (21) to
use for the construction of the scattering matrix Hij is based on
the difference in energy between the perturbed and unperturbed
states. Specifically, we only include states with energies within
4 eV of the unperturbed eigenvalues. The rationale behind this
is that we wish the wave-function states in the scattering matrix
element to match that of a specific unperturbed Bloch state of
the pure Si system far from the impurity, while matching that
of an eigenstate with the defect present near the C atom, and
hence to reproduce the distorted wave approximation (or the
scattering amplitude in the Lippmann-Schwinger equation)
more closely.10

The fact that the calculated values of the alloy scattering
potential do not diverge with cell size indicates that the
splittings of the originally degenerate eigenvalues reduce as
1/N [c.f. Eq. (10)]. Although we have only shown results in
this paper for 54-atom, 64-atom, and 128-atom cuboid cells,
calculations have also been carried out for a 16-atom, 32-atom,
and 128-atom fcc cells bearing out the same conclusion. This
indicates that the substitutional carbon does not produce a
localized state, since if it did, we would see the emergence of
a fixed energy state that varied little with k vector.

In the case of intravalley scattering, δV was estimated by
a twofold process. First, SCF calculations are carried out for
commensurate supercells of pure Si and Si perturbed by a
substitutional carbon atom. The potentials at fixed positions
(under ionic relaxation) furthest from the substitutional site
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V

ij
(e

V
)

V
g
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V
g
 (128 unrel) 

V
g

V
g
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Δ minima

FIG. 3. (Color online) Comparison of the calculations for g-type
scattering in Si1−xCx using (i) the 6 × 6 matrix method and (ii)
from the elements of the unreduced scattering matrix of a cuboid
128-atom supercell. The data points for method (i) are the blue
squares (unrelaxed structure) and red diamonds (relaxed structure),
also plotted in Figs. 1 and 2, respectively. For method (ii), the
down-pointing cyan triangles are for the unrelaxed structure and the
upright green triangles are for the relaxed structure. Interpolating
to the �-valley minimum for the second set of calculations gives
values of −0.6 and −1.1 eV for the unrelaxed and relaxed structures,
respectively.

are found and the difference taken. We may denote these
values by VSi(N) and VSi(N−1)C(1) for the pure and perturbed
systems, respectively, and define δVSC = VSi(N−1)C(1) − VSi(N).
Next, the difference between the eigenvalues of the pure Si
supercell εSi(N) and the primitive cell εSi(2) at the appropriate
k point is found δεSi = εSi(N) − εSi(2). These are then both
incorporated into the total difference δV = δVSC + δεSi. This
is a similar approach to that used previously for SiGe.10

As a comparison of the methods using the 6 × 6 matrix
and q-point interpolation, Fig. 3 shows the results for g-type
scattering calculated using the former method and the more
general scattering matrix for a cuboid 128-atom supercell. The
reciprocal lattice vectors of the 128-atom cell along its long
axis (in real space) give points along the � line separated by
1/4 as a fraction of the distance to the X point.

The same energy criterion is chosen in both cases to
compare like with like, although with q-point interpolation
there are two unperturbed energy values for each matrix
element to consider. Here, the criterion is taken to be that
the supercell eigenvalues are within 4 eV of either of the
unperturbed energies.

Figure 4 shows the calculation for intravalley scattering in
the 128-atom cell with the q relative to the �-valley minimum.
Here the possible discrepancies between the methods due to
the accuracy in determining δV show up in the unrelaxed
case. We find here that q-point interpolation gives a value
for intravalley scattering of 0.2 eV, whereas the 6 × 6 matrix
method gives −0.4 eV (shown on the graph for comparison).
If this is attributed to the error in δV , then for the size of the
supercells used it would correspond to an error of ∼0.01 eV.
To put this figure into perspective, the interpolation utility
that comes bundled with the ABINIT package gives an error of
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FIG. 4. (Color online) Calculations for intravalley scattering in
Si1−xCx using the elements of the unreduced scattering matrix for
a cuboid 128-atom supercell. Here, the matrix elements are for the
q-point scattering vector from the �-valley minimum. Hence, the
interpolation is to q = 0, giving values of 0.2 and −4.5 eV for
the unrelaxed and relaxed structures, respectively. Also shown for
comparison are the values interpolated to the �-valley minimum
calculated via the 6 × 6 matrix method, −0.4 and −4.5 eV for the
unrelaxed and relaxed structures, respectively (c.f Figs. 1 and 2).

∼0.03 eV between the potentials at the basis atom sites in the
Si primitive cell. The results for the calculated alloy scattering
potentials are summarized in Table I.

B. Calculated mobilities

Figure 5 shows a comparison of experimental mobilities
by Osten et al.4 and calculated mobilities using Eq. (4) with
the results of the last section for the alloy scattering matrix
elements in relaxed Si1−xCx . The results of Osten et al. show
a degradation of the mobility, even for lower C concentrations.
These researchers grew 0.2 μm thick Si1−xCx layers with
a nominal antimony doping of 1 × 1017 cm−3. Note that as
well as the suppression of the mobility at higher temperatures
following a T −1/2 dependence, consistent with alloy scattering,
there appears to be additional limiting processes at lower
temperatures following a T 3/2 dependency, characteristic of
ionized impurity scattering. Indeed, Osten et al. argue for the
formation of electrically active defects due to interstitial carbon
complexes suppressing the mobility.

In the theoretical calculations, the scattering processes in
pure Si have been incorporated by fitting the experimental
mobility to combined scattering rates with ε−3/2, ε1/2, and

TABLE I. Calculated alloy scattering parameters [see Eq. (10)]
for substitutional C in Si. All values are in eV.

Method Unrelaxed Relaxed

6 × 6 Intravalley −0.4 −4.5
matrix f type −1.8 −0.7

g type −0.6 −1.2

q-point Intravalley 0.2 −4.5
interpolation g type −0.6 −1.1
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FIG. 5. (Color online) Experimental Hall mobilities by Osten
et al. (symbols) and calculated mobilities for the same C doping.
The scattering processes in pure Si have been incorporated by fitting
the experimental mobility to combined scattering rates with ε−3/2,
ε1/2, and ε3/2 dependencies, including a screening factor on the
ε−3/2 rate (representing ionized impurity scattering). These are then
combined with the rates for alloy scattering due to substitutional
carbon (dashed lines) and both alloy scattering and additional charged
impurity scattering due to electrically active defects (solid lines).
At the high-temperature side (right of graph), the lines decrease in
mobility with increasing x. The highest dashed line is the fit to the
pure Si mobility.

ε3/2 dependencies. The process varying as ε−3/2 is taken to
be ionized impurity scattering and multiplied by the screening
factor given by Eq. (14) using the experimentally measured
carrier concentration to determine the reciprocal screening
length q0. The highest dashed line on the high-temperature
side of Fig. 5 shows this fit.

Alloy scattering due to substitutional C is then added in
(the dashed lines in Fig. 5). For the energy splitting, we used
�ε = 5.6x eV from Ref. 31, where this dependency was fitted
to tight-binding band-structure calculations. This value was
confirmed by our own DFT calculations for strained Si, which
had the concomitant result of confirming that there was a
negligible change in the effective masses.

We note that, in the absence of any other scattering mecha-
nisms, the addition of C initially increases the mobility at low
temperature for the lower x concentrations (0.15% and 0.31%).
However, it is clear that alloy scattering alone does not explain
the observed degradation of the mobility in the samples.

To model the experimental results, we assume that the
additional scattering is due to ionized impurity scattering
caused by electrically active defects. It is known that sub-
stitutional C reacts with interstitial Si, being “kicked out” to
form the highly mobile C interstitial Ci .32 Although these
defects may be electrically active, they tend to migrate until
they are captured by another substitutional C atom to form
the immobile CiCs complex.33 These interstitial defects are
known to have a bistable configuration in which they may be
either positively or negatively charged.8 Further C complexes
are also possible depending on the environmental conditions.33

The actual number of stable interstitial sites will determined
by the solid solubility limit (∼1017cm−3).4
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TABLE II. Concentrations of charged interstitials NI used to
model the additional charged impurity scattering.

x NI

(%) (cm−3)

0.15 3.8 × 1016

0.31 1.2 × 1017

0.57 1.6 × 1017

0.85 3.7 × 1017

Without a priori knowledge of the concentrations of
electrically active interstitials NI , we use Eq. (13) to model the
additional charged impurity scattering, fitting the number of
scattering centres to the experimental results. The calculations
are shown in Fig. 5 as the solid lines passing (very closely)
through the associated data points. The charged interstitial
concentrations used are given in Table II.

We note that although the experimental results of Eberl
et al.5 do not show the same degradation in mobility, our
results for alloy scattering alone are not inconsistent with
the measured data. In particular, the peak value of the
mobility measured by Eberl et al. for Si1−xCx with x = 0.4%
occurs at T ≈ 45 K with a value of ∼6750 cm2(Vs)−1. At
the same temperature, the calculated alloy scattering-limited
mobility (i.e., the mobility calculated via Eqs. (4)–(6) in the
absence of all other scattering process) is 9900 cm2(Vs)−1

and remains greater than the measured mobility at all other
temperatures. One difference between the samples studied by
Eberl et al. and Osten et al. is that the former used phosphorus
at a concentration of ∼3×1017 cm−3 as the n-type donor,
whereas the latter used antimony doped at ∼1 × 1017 cm−3.
We tentatively suggest that P may then passivate the charged
C interstitials in some way, or react with the C complexes to
form mobile interstitials that then diffuse out of the Si1−xCx

layers. This would explain the absence of additional charged
impurity scattering in the P-doped samples.

A possible shortcoming of the mobility calculations pre-
sented here is that the contribution due to phonon-scattering
is only implicitly incorporated via fitting of unstrained Si. In
a more rigorous approach, we should include each scattering
process explicitly, including the effect of the splitting of the �

valleys due to the biaxial strain.

V. CONCLUSIONS

We have investigated alloy scattering due to substitutional
carbon in silicon via the application of a first-principles
approach. A more effective way of obtaining the intravalley

scattering rate has been introduced via interpolation to q = 0
of the scattering matrix elements as a function of q. However,
this method is less useful than that used in Refs. 10 and 11
for the calculation of f -type scattering (since the scattering
to the �-valley minimum in an orthogonal valley generally
requires interpolation over a plane in k space) and does not
automatically cope with degenerate states as the 6 × 6 matrix
method does. The results of both methods are compared in
Figs. 3 and 4, showing good agreement for g-type scattering.

This work has led to a number of conclusions. Firstly,
both concomitant band-structure calculations and the non-
divergence of the alloy scattering potential with increasing
cell size indicated that substitutional carbon does not form a
localized state. This is important for two reasons. Firstly, if a
localized state is being formed, we might reasonably expect
this to produce very strong scattering in analogy with N in
III-V semiconductors.12 Secondly, if, as in the case of dilute
nitrides, the localized state was resonant with the conduction
band then our present first-principles model would not be
directly applicable.

However, the alloy scattering potential is still very strong,
certainly in comparison with values of ∼0.6 eV found in
SiGe systems.10 In relaxed Si1−xCx the strongest scattering
process is intravalley scattering, with a matrix element of
−4.5 eV, followed by g-type intervalley scattering with −1.1 to
−1.2 eV. The weakest process is f -type intervalley scattering
at −0.7 eV. We note that ionic relaxation has a large effect on
the intravalley scattering.

The validity of the scattering model for elemental alloys
was previously demonstrated in Refs. 10 and 11. Calculations
for the alloy scattering-limited mobility in biaxially strained
Si1−xCx show that scattering by substitutional C cannot
account alone for the degradation in the mobility observed
by Osten et al. Assuming that some proportion of interstitial
C complexes form electrically active scattering sites and mod-
eling this via the Brooks-Herring model for charged impurity
scattering, we have shown that the observed mobilities can be
fully accounted for. Moreover, the concentrations of additional
electrically active defects found from this fitting are consistent
with solid solubility limits for C interstitials and show a
monotonic increase with C doping. These findings suggest
that the effect of interstitial C on the transport properties of
Si1−xCx is much greater than that due to substitutional C. This
provides the motivation for a deeper study of the effect on
transport of interstitial complexes in the presence of P or Sb.
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