
Title Planning the deployment of fault-tolerant wireless sensor networks

Author(s) Sitanayah, Lanny

Publication date 2013-01

Original citation Sitanayah, L. 2013. Planning the deployment of fault-tolerant wireless
sensor networks. PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2013, Lanny Sitanayah
http://creativecommons.org/licenses/by-nc-nd/3.0/

Item downloaded
from

http://hdl.handle.net/10468/905

Downloaded on 2017-02-12T14:55:02Z

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://hdl.handle.net/10468/905

Planning the Deployment of
Fault-Tolerant Wireless Sensor Networks

Lanny Sitanayah

Value Ordering for Offline and
Realtime-Online Solving of Quantified

Constraint Satisfaction Problems

DAVID STYNES

A Thesis Submitted to the National University of Ireland

in Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science.

November, 2009

Research Supervisor: Dr. Kenneth N. Brown.
Head of Department: Prof. James Bowen

Department of Computer Science,
National University of Ireland, Cork.

A Thesis Submitted to the National University of Ireland

in Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

January 2013

Research Supervisors: Prof. Cormac J. Sreenan

Dr. Kenneth N. Brown

Head of Department: Prof. Barry O’Sullivan

Department of Computer Science
National University of Ireland, Cork

Declaration

This thesis is submitted to University College Cork, in accordance with the require-

ments for the degree of Doctor of Philosophy in Computer Science. The research

presented in this thesis are entirely my own work and have not been submitted

to any other university or higher education institution, or for any other academic

award in this university. Where use has been made of other people’s work, it has

been fully acknowledged and referenced.

———————————–

Lanny Sitanayah

January 2013

iii

iv

Abstract

Wireless Sensor Networks (WSNs) are comprised of many low-cost sensor nodes

that communicate using wireless links. Since WSNs are subject to failures, fault-

tolerance becomes an important requirement for many WSN applications where

messages from all sensor nodes must be delivered to data sinks in a reliable and

timely manner. Fault-tolerance can be enabled in a number of different areas of

WSN design and operation, including the Medium Access Control (MAC) layer

and the initial topology design. We show that MAC protocols and topology plan-

ning algorithms can be designed together to create fault-tolerant WSNs for volatile

environments.

To be robust to failures, a MAC protocol must be able to adapt to sudden traffic

fluctuations and topology dynamics, for which we design ER-MAC, a hybrid MAC

protocol for emergency response WSNs. ER-MAC is able to switch from energy-

efficient operation in normal periodic monitoring to reliable and fast delivery for

emergency monitoring, and vice versa. It also has a special functionality to prioritise

high priority packets and guarantee fair packet deliveries from all sensor nodes.

Topology design can support fault-tolerance by ensuring that there are alterna-

tive acceptable routes to data sinks when failures occur. We provide solutions for

four topology planning problems: Additional Relay Placement (ARP), Additional

Backup Placement (ABP), Multiple Sink Placement (MSP), and Multiple Sink and

Relay Placement (MSRP). Our solutions use a local search technique based on

Greedy Randomized Adaptive Search Procedures (GRASP).

v

GRASP-ARP deploys relays for (k, l)-sink-connectivity, where each sensor node

must have k vertex-disjoint paths of length ≤ l. To count how many disjoint paths

a node has, we propose Counting-Paths and its dynamic programming variant.

While GRASP-ARP ensures the length-bound with the basic Counting-Paths, it

runs faster with the dynamic programming variant. GRASP-ABP deploys fewer

relays than GRASP-ARP by focusing only on the most important nodes – those

whose failure has the worst effect. To identify the most important nodes, we define a

new centrality measure, Length-constrained Connectivity and Rerouting Centrality

(l-CRC).

For the MSP and MSRP problems, besides presenting GRASP-MSP and GRASP-

MSRP, we also develop greedy algorithms, which we called Greedy-MSP and Greedy-

MSRP. Greedy-MSP and GRASP-MSP place multiple sinks with minimal cost to

ensure that each sensor node in the network is double-covered, i.e. has at least

two length-bounded paths to two sinks. Greedy-MSRP and GRASP-MSRP deploy

multiple sinks and relays with minimal cost to make the network double-covered

and non-critical. Non-critical means all sensor nodes must have length-bounded

alternative paths to sinks when an arbitrary sensor node fails.

We evaluate the fault-tolerance of each deployment result in multi-hop data gather-

ing simulations using ER-MAC. In simulation, the topologies of GRASP-ARP and

GRASP-ABP show comparable performance, even though GRASP-ABP requires

fewer relays than GRASP-ARP. For the multiple sink scenario, the topologies of

GRASP-MSRP achieve the best performance because of better sink positions.

vi

Acknowledgements

Praise be the Lord because of His blessing and guidance, I am able to present this

thesis on the completion of my PhD study. At the end of this 3 years and 10 months

journey, I would like to thank many people who has helped and supported me.

I would like to thank my supervisors Prof. Cormac Sreenan and Dr. Ken Brown

for their precious time given in supervising, valuable advice, help and never-ending

support. I really appreciate their effort to read my drafts and make corrections,

without which this thesis would have not been possible.

I also wish to thank my thesis examiners: Prof. Silvia Santini from Technische

Universität Darmstadt and Dr. Steve Prestwich from University College Cork for

the priceless suggestions and recommendations for the thesis revision.

I wish to thank NEMBES and CTVR fellows: Dr. Tatiana Tabirca, Dr. Yuanyuan

Zeng, Dr. Xiuchao Wu, Dr. Tarik Hadzic, Dr. David Stynes, and Seán Óg Murphy

for fruitful discussions and suggestions for my research. I would like to express my

special thanks to Ms. Mary Noonan for taking care of administrative matters. I

would also like to acknowledge Tony O’Donovan for his friendship and help. May

he rest in peace.

My study is fully funded by the NEMBES project, supported by the Irish Higher

Education Authority PRTLI-IV research program.

The last but not the least, I wish to thank my mother, my sister and my husband for

their understanding and continuous emotional support through the difficult times.

vii

viii

Publication

Some of this work has already been published in peer-reviewed publications. The

bibliographical details of the works and where they appear in this thesis are out-

lined below.

[1] L. Sitanayah, K. N. Brown, and C. J. Sreenan. Multiple Sink and Relay Place-

ment in Wireless Sensor Networks. In Proc. 1st Workshop Artificial Intelligence

for Telecommunications and Sensor Networks (WAITS’12), 20th European Conf.

Artificial Intelligence (ECAI’12), pages 18–23, Aug. 2012.

This paper forms Chapter 7 of this thesis.

[2] L. Sitanayah, K. N. Brown, and C. J. Sreenan. Fault-Tolerant Relay Deployment

Based on Length-Constrained Connectivity and Rerouting Centrality in Wireless

Sensor Networks. In G. P. Picco and W. Heinzelman (editors), Proc. 9th European

Conf. Wireless Sensor Networks (EWSN’12), Volume 7158 LNCS, pages 115–130,

Feb. 2012.

This paper forms Chapter 6 of this thesis.

[3] L. Sitanayah, K. N. Brown, and C. J. Sreenan. Fault-Tolerant Relay Deployment

for k Node-Disjoint Paths in Wireless Sensor Networks. In Proc. 4th Int’l Conf.

IFIP Wireless Days (WD’11), pages 1–6, Oct. 2011.

This paper forms Chapter 5 of this thesis.

ix

[4] L. Sitanayah, C. J. Sreenan, and K. N. Brown. ER-MAC: A Hybrid MAC Pro-

tocol for Emergency Response Wireless Sensor Networks. In Proc. 4th Int’l Conf.

Sensor Technologies and Applications (SENSORCOMM’10), pages 244–249, Jul.

2010.

This paper forms Chapter 4 of this thesis.

[5] L. Sitanayah, C. J. Sreenan, and K. N. Brown. Poster Abstract: Emergency

Response MAC Protocol (ER-MAC) for Wireless Sensor Networks. In Proc. 9th

ACM/IEEE Int’l Conf. Information Processing in Sensor Networks (IPSN’10),

pages 364–365, Apr. 2010.

This paper contains the preliminary findings of the work in [4].

My contributions in these publications were at least 85%. I developed, implemented,

and simulated the proposed solutions and wrote the papers. My supervisors, Prof.

Cormac Sreenan and Dr. Ken Brown, reviewed the papers and provided useful

feedback to improve the quality and readability of the papers.

x

List of Acronyms

1tFTP Single-tiered Fault-Tolerant Relay Placement

1tRNP Single-tiered Relay Node Placement

1tTSP Single-tiered Traveling Salesman

2CRNDC 2-Connected Relay Node Double Cover

2tFTP Two-tiered Fault-Tolerant Relay Placement

2tRNP Two-tiered Relay Node Placement

2tTSP Two-tiered Traveling Salesman

ABP Additional Backup Placement

ACK Acknowledgement

APC Alternative Path Centrality

ARP Additional Relay Placement

B-MAC Berkeley-MAC

BSL Find the Best Sink Location

BSLFT Find the Best Sink Locations for Fault-Tolerance

CBS Cluster-Based Sampling

CBS-BSL Cluster-Based Sampling for Finding the Best Sink Locations

CBS-MSP Cluster-Based Sampling for Multiple Sink Placement

CBS-MSRP Cluster-Based Sampling for Multiple Sink and Relay Placement

CCA Clear Channel Assessment

COLA Coverage and Latency Aware Actor Placement

CRNSC Connected Relay Node Single Cover

CSMA Carrier Sense Multiple Access

xi

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CT Connectivity Centrality Threshold

CTL Control

CTP Collection Tree Protocol

CTS Clear-To-Send

DECOMP Iterative Decomposition

DP Dynamic Programming

DSSS Direct-Sequence Spread-Spectrum

EB-MAC Event Based MAC

ER-MAC Emergency Response MAC

ECN Explicit Congestion Notification

FDMA Frequency-Division Multiple Access

FLAMA FLow-Aware Medium Access

FTSP Flooding Time Synchronisation Protocol

GADO Genetic Algorithm for Distance Optimisation

GAHO Genetic Algorithm for Hop Count Optimisation

GRASP Greedy Randomised Adaptive Search Procedure

GRASP-ABP Greedy Randomised Adaptive Search Procedure for

Additional Backup Placement

GRASP-ARP Greedy Randomised Adaptive Search Procedure for

Additional Relay Placement

GRASP-MRP Greedy Randomised Adaptive Search Procedure for

Multiple Relay Placement

GRASP-MSP Greedy Randomised Adaptive Search Procedure for

Multiple Sink Placement

GRASP-MSRP Greedy Randomised Adaptive Search Procedure for

Multiple Sink and Relay Placement

Greedy-MSP Greedy Algorithm for Multiple Sink Placement

Greedy-MSRP Greedy Algorithm for Multiple Sink and Relay Placement

xii

GRASP-SPG Greedy Randomised Adaptive Search Procedure for

Steiner Tree Problem in Graphs

HCL High Contention Level

HOMP Heuristic Opt Multisink Place

K-CONN-REPAIR The Partial k-Connectivity-Repair Algorithm

l-CC Length-constrained Connectivity Centrality

l-CRC Length-constrained Connectivity and Rerouting

Centrality

l-RC Length-constrained Rerouting Centrality

LAND Localised Algorithm for Finding Node-Disjoint Paths

LCL Low Contention Level

LPL Low Power Listening

MAC Medium Access Control

MBCP Maximally Balanced Connected Partition

MINLP Mixed Integer Non-linear Programming

MRP Multiple Relay Placement

MRP-1 Minimum Relay-Node Placement for 1-Connectivity

MRP-2 Minimum Relay-Node Placement for 2-Connectivity

MSFT Minimise the Number of Sinks for Fault-Tolerance

MSP Multiple Sink Placement

MSPOP Minimise the Number of Sinks for a Predefined Minimum

Operation Period

MSRFT Minimise the Number of Sinks and Relays for Fault-

Tolerance

MSRP Multiple Sink and Relay Placement

MTWP Multi-hop Traffic-flow Weight Placement

PEQ Periodic, Event-driven and Query-based routing protocol

PMAC Pattern-MAC

PMP P-Median Problem

xiii

QoB Quality of Backup

QoS Quality of Service

RNPC Connected Relay Node Placement

RNPS Survivable Relay Node Placement

RRMAC Real time and Reliable MAC

RSS Received Signal Strength

RSSI Received Signal Strength Indicator

RT Rerouting Centrality Threshold

RTS Request-To-Send

S-MAC Sensor-MAC

SPG Steiner Tree Problem in Graphs

STR Shortest Path Tree Routing

T-MAC Timeout-MAC

TA-MAC Traffic Adaptive-MAC

TDMA Time-Division Multiple Access

TPSN Timing-sync Protocol for Sensor Networks

TRAMA TRaffic Adaptive Medium Access

TSP Traveling Salesman Problem

UDP User Datagram Protocol

VTS Virtual TDMA for Sensors

WiseMAC Wireless Sensor MAC

WSN Wireless Sensor Network

Z-MAC Zebra-MAC

xiv

Contents

Declaration iii

Abstract v

Acknowledgements vii

Publication ix

List of Acronyms xi

1 Introduction 1

1.1 Objectives . 3

1.2 Thesis Contributions . 4

1.2.1 Thesis Statement . 4

1.2.2 Proposed Solutions . 4

1.3 Thesis Overview . 6

2 Literature Review 7

2.1 Introduction . 7

2.2 WSN Communication Architecture 7

2.3 MAC Protocols for WSN . 9

xv

2.3.1 Contention-based MAC Protocols 13

2.3.2 Schedule-based MAC Protocols 23

2.3.3 Hybrid MAC Protocols . 27

2.3.4 Discussion . 36

2.4 Relay Placement Algorithms . 37

2.4.1 Single-tiered Relay Placement Problem 41

2.4.2 Two-tiered Relay Placement Problem 47

2.4.3 Discussion . 50

2.5 Disjoint Path Algorithms . 51

2.6 Centrality and Alternative Path Centrality 53

2.6.1 Centrality . 55

2.6.2 Alternative Path Centrality 56

2.7 Multiple Sink Placement Algorithms 56

2.7.1 Minimise the Number of Sinks 58

2.7.2 Fixed Number of Sinks . 64

2.7.3 Discussion . 69

2.8 Greedy Randomized Adaptive Search Procedures (GRASP) 71

2.9 Summary . 73

3 Research Methodology 75

3.1 Introduction . 75

3.2 WSN Model and General Assumptions 75

3.3 WSN Requirements . 77

3.4 Simulation Model . 79

3.4.1 Input and Output . 79

xvi

3.4.2 Protocol Stack . 80

3.4.3 WirelessPhy Model . 81

3.4.4 Radio Propagation Model 81

3.4.5 Simulation Parameters . 82

3.5 Performance Metrics . 83

4 A Hybrid MAC Protocol for Emergency Response 87

4.1 Introduction . 87

4.2 Problem Definition . 89

4.2.1 Assumptions . 89

4.2.2 Requirements for MAC . 90

4.3 ER-MAC Protocol Design . 91

4.3.1 Topology Discovery . 93

4.3.2 TDMA Slot Assignment . 97

4.3.3 Local Time Synchronisation 102

4.3.4 Priority Queue . 104

4.3.5 MAC Prioritisation . 106

4.3.6 New Nodes . 109

4.3.7 Dead Nodes . 112

4.3.8 Protocol Overhead . 113

4.4 Evaluation of ER-MAC . 113

4.4.1 Protocol Comparison . 114

4.4.2 Behaviour When a Cluster of Nodes Detects Fire 122

4.4.3 Behaviour Under Variable Traffic Load 125

4.4.4 Behaviour When Topology Changes 127

xvii

4.4.5 Behaviour Using Different Topologies 128

4.4.6 Behaviour Using Different Sink Positions 131

4.5 Conclusion . 134

5 Fault-Tolerant Relay Deployment for k Vertex-Disjoint Paths 137

5.1 Introduction . 137

5.2 Counting-Paths . 140

5.2.1 Single Source – Single Sink Problem 141

5.2.2 Multiple Sources – Single Sink Problem 148

5.2.3 Single Source – Multiple Sinks and Multiple Sources – Mul-

tiple Sinks Problems . 151

5.3 Evaluation of Counting-Paths . 151

5.3.1 Single Source – Single Sink Problem 153

5.3.2 Multiple Sources – Single Sink Problem 157

5.4 Greedy Randomised Adaptive Search Procedure for Additional Relay

Placement (GRASP-ARP) . 161

5.4.1 Construction Phase . 163

5.4.2 Node-based Local Search . 164

5.4.3 Algorithm Description . 164

5.4.4 Acceleration Scheme . 167

5.5 Evaluation of GRASP-ARP . 167

5.5.1 Multiple Sources – Single Sink Problem 169

5.5.2 Multiple Sources – Multiple Sinks Problem 173

5.6 Conclusion . 176

6 Fault-Tolerant Relay Deployment Based on Length-Constrained

xviii

Connectivity and Rerouting Centrality 177

6.1 Introduction . 177

6.2 Length-constrained Connectivity and Rerouting Centrality (l-CRC) 179

6.2.1 Length-constrained Connectivity Centrality (l-CC) 180

6.2.2 Length-constrained Rerouting Centrality (l-RC) 182

6.2.3 l-CRC Ranking . 183

6.2.4 l-CRC Example . 184

6.3 Greedy Randomised Adaptive Search Procedure for Additional Backup

Placement (GRASP-ABP) . 187

6.3.1 Construction Phase . 187

6.3.2 Node-based Local Search . 188

6.3.3 Algorithm Description . 188

6.4 Evaluation of GRASP-ABP . 190

6.4.1 Multiple Sources – Single Sink Problem 192

6.4.2 Multiple Sources – Multiple Sinks Problem 195

6.5 Conclusion . 198

7 Multiple Sink and Relay Placement 201

7.1 Introduction . 201

7.2 Multiple Sink Placement (MSP) . 203

7.2.1 Greedy Algorithm for Multiple Sink Placement (Greedy-MSP) 204

7.2.2 Greedy Randomised Adaptive Search Procedure for Multiple

Sink Placement (GRASP-MSP) 206

7.3 Evaluation of Greedy-MSP and GRASP-MSP 208

7.4 Multiple Sink and Relay Placement (MSRP) 215

xix

7.4.1 Greedy Randomised Adaptive Search Procedure for Multiple

Relay Placement (GRASP-MRP) 216

7.4.2 Greedy Algorithm for Multiple Sink and Relay Placement

(Greedy-MSRP) . 219

7.4.3 Greedy Randomised Adaptive Search Procedure for Multiple

Sink and Relay Placement (GRASP-MSRP) 220

7.5 Evaluation of Greedy-MSRP and GRASP-MSRP 224

7.6 Conclusion . 234

8 Evaluation of Network Performance 237

8.1 Introduction . 237

8.2 Preliminary Discussions and Details of Simulation 238

8.2.1 Preliminary Discussions . 239

8.2.2 Details of Simulation . 240

8.3 Evaluation of Network Topologies with Multiple Sources and One Sink241

8.3.1 Experiments Using ER-MAC 242

8.3.2 Experiments Using Z-MAC 247

8.4 Evaluation of Network Topologies with Multiple Sources and Multi-

ple Sinks . 249

8.4.1 Evaluation of Network Topologies with Four Sinks 250

8.4.2 Evaluation of Network Topologies with Variable Numbers of

Sinks . 254

8.5 Conclusion . 257

9 Conclusion and Future Work 259

9.1 Summary of Contributions . 259

xx

9.1.1 A Hybrid MAC Protocol for Emergency Response 260

9.1.2 Fault-Tolerant Relay Deployment for k Vertex-Disjoint Paths 261

9.1.3 Fault-Tolerant Relay Deployment Based on Length-Constrained

Connectivity and Rerouting Centrality 262

9.1.4 Multiple Sink and Relay Placement 263

9.1.5 Evaluation of Network Performance 264

9.2 Future Work . 266

Appendices 268

A Graph Model for WSN 269

A.1 Notations and Definitions . 269

A.2 The Ford-Fulkerson Algorithm . 271

B The Disjoint Path Algorithms 273

B.1 Shortest Vertex-Disjoint Paths with Modified Dijkstra by Bhandari 273

B.2 Fast Pathfinding by Torrieri . 274

B.3 Maximum Paths by Torrieri . 277

C The Partial k-Connectivity-Repair Algorithm for Relay Placement279

D The Multiple Sink and Relay Placement Algorithms 283

D.1 The Multiple Sink Placement Algorithms 283

D.1.1 Minimise the Number of Sinks for Fault-Tolerance (MSFT) . 283

D.1.2 Cluster-Based Sampling for Multiple Sink Placement (CBS-

MSP) . 285

D.2 The Multiple Sink and Relay Placement Algorithms 287

xxi

D.2.1 Minimise the Number of Sinks and Relays for Fault-Tolerance

(MSRFT) . 287

D.2.2 Cluster-Based Sampling for Multiple Sink and Relay Place-

ment (CBS-MSRP) . 289

Bibliography 291

xxii

List of Tables

1 Summary of existing MAC protocols 12

2 Comparison of existing MAC protocols 37

3 Summary of existing relay placement algorithms 42

4 Comparison of existing relay placement algorithms 50

5 Summary of existing multiple sink placement algorithms 59

6 Comparison of existing multiple sink placement algorithms 70

7 Simulation parameters in ns-2 . 83

8 ER-MAC and Z-MAC simulation parameters in ns-2 115

9 Disjoint paths algorithms’ runtime for single source – single sink . . 154

10 Disjoint paths algorithms’ runtime for multiple sources – single sink 159

11 Additional relay placement algorithms’ runtime for multiple sources

– single sink in 25-node networks 171

12 Additional relay placement algorithms’ runtime for multiple sources

– single sink . 172

13 Additional relay placement algorithms’ runtime for multiple sources

– multiple sinks in 25-node networks 174

14 Additional relay placement algorithms’ runtime for multiple sources

– multiple sinks . 175

xxiii

15 Additional backup placement algorithms’ runtime for multiple sources

– single sink . 193

16 Additional backup placement algorithms’ runtime for multiple sources

– multiple sinks . 195

17 Multiple sink placement algorithms’ runtime with different maximum

path length . 212

18 Multiple sink placement algorithms’ runtime with different sink cost 213

19 Multiple sink placement algorithms’ runtime with different average

degree . 214

20 Multiple sink and relay placement algorithms’ runtime with different

sink cost . 226

xxiv

List of Figures

1 An overview of a WSN . 2

2 WSN protocol stack . 8

3 Collision in CSMA . 10

4 The hidden terminal problem in CSMA 10

5 Slot structure of S-MAC with fixed duty cycle 14

6 Slot structure of T-MAC with adaptive duty cycle 15

7 The early sleeping problem in T-MAC 15

8 Long preamble in B-MAC . 16

9 Latency of B-MAC versus S-MAC 17

10 Power consumption and end-to-end delay of WiseMAC versus CSMA/CA,

S-MAC and T-MAC . 18

11 Delivery ratio and average delay of TA-MAC versus IEEE 802.11 and

S-MAC . 20

12 Delivery ratio and delay versus energy efficiency of contention-based

MAC protocols and the parameters used 22

13 Delivery ratio and average delay of FLAMA versus TRAMA and

S-MAC . 25

14 VTS TDMA frame . 26

15 Z-MAC frame format . 28

xxv

16 PMAC frame format . 29

17 Funneling-MAC framing . 30

18 Crankshaft frame format . 32

19 RRMAC superframe structure . 33

20 Examples of vertex-disjoint and edge-disjoint paths 38

21 Relay placement problem classification 39

22 Tmote sky . 82

23 TOPOLOGY DISCOVERY packet format 94

24 A data gathering tree of six nodes 94

25 Message exchange in topology discovery 95

26 State transition diagram of topology discovery 96

27 Message exchange in TDMA slot assignment 98

28 State transition diagram of TDMA slot assignment 99

29 Schedule packet format . 100

30 ER-MAC nodes’ transmit schedules 101

31 SYNCHRONISATION packet format 103

32 A pair of priority queues . 105

33 Data packet format . 105

34 ER-MAC’s frame structure . 107

35 Addition of a new node . 111

36 Energy consumption of ER-MAC versus Z-MAC 117

37 Energy consumption of ER-MAC versus Z-MAC for increasing load

up to 1 packet/node/sec . 117

38 Delivery ratio of ER-MAC versus Z-MAC 118

xxvi

39 Delivery ratio of ER-MAC versus Z-MAC for increasing load up to

1 packet/node/sec . 119

40 Latency of ER-MAC versus Z-MAC 120

41 Latency of ER-MAC versus Z-MAC for increasing load up to 1 packet/

node/sec . 120

42 Completeness of ER-MAC versus Z-MAC 121

43 A cluster of nodes detects fire . 122

44 Energy consumption of ER-MAC versus Z-MAC when a cluster of

nodes detects fire . 123

45 Delivery ratio of ER-MAC versus Z-MAC when a cluster of nodes

detects fire . 124

46 Latency of ER-MAC versus Z-MAC when a cluster of nodes detects

fire . 124

47 Energy consumption of ER-MAC versus Z-MAC under variable traf-

fic load . 126

48 Delivery ratio of ER-MAC versus Z-MAC under variable traffic load 126

49 Latency of ER-MAC versus Z-MAC under variable traffic load . . . 127

50 Energy consumption and latency of ER-MAC for network reconnec-

tivity when some nodes die gradually 128

51 Energy consumption and latency of ER-MAC for network reconnec-

tivity when some nodes die simultaneously 129

52 An example of a 100-node network which is easy to partition 130

53 An example of a more robust network with five relay nodes 130

54 Energy consumption of ER-MAC using different topologies 131

55 Delivery ratio of ER-MAC using different topologies 132

56 Latency of ER-MAC using different topologies 132

xxvii

57 Delivery ratio of ER-MAC using different sink positions 133

58 Latency of ER-MAC using different sink positions 133

59 Counting-Paths example . 143

60 Vertex-splitting and external edge replacement in Counting-Paths . 147

61 Number of table lookups versus number of sensor nodes for single

source – single sink . 153

62 Number of table lookups versus transmission ranges for single source

– single sink . 155

63 Storage capacity versus number of sensor nodes for single source –

single sink . 156

64 Number of disjoint paths versus number of sensor nodes for single

source – single sink . 156

65 Number of disjoint paths versus path length for single source – single

sink . 157

66 Number of table lookups versus number of sensor nodes for multiple

sources – single sink . 158

67 Storage capacity versus number of sensor nodes for multiple sources

– single sink . 160

68 Number of disjoint paths versus number of sensor nodes for multiple

sources – single sink . 161

69 Number of additional relay nodes needed versus number of disjoint

paths required for multiple sources – single corner sink in 25-node

networks . 170

70 Number of additional relay nodes needed versus number of disjoint

paths required for multiple sources – single centre sink in 25-node

networks . 171

xxviii

71 Number of additional relay nodes needed versus number of sensor

nodes for multiple sources – single corner sink 172

72 Number of additional relay nodes needed versus number of disjoint

paths required for multiple sources – multiple sinks in 25-node networks174

73 Number of additional relay nodes needed versus number of sensor

nodes for multiple sources – multiple sinks 175

74 l-CRC example . 185

75 Number of backup nodes needed versus number of sensor nodes for

multiple sources – single sink . 193

76 Number of disjoint paths found for multiple sources – single sink in

GRASP-ABP topologies . 194

77 Percentage of nodes with disjoint paths for multiple sources – single

sink in GRASP-ABP topologies . 194

78 Number of backup nodes needed versus number of sensor nodes for

multiple sources – multiple sinks . 196

79 Number of disjoint paths found for multiple sources – multiple sinks

in GRASP-ABP topologies . 197

80 Percentage of nodes with disjoint paths for multiple sources – multi-

ple sinks in GRASP-ABP topologies 197

81 Illustration of the MSP problem . 203

82 Number of sinks needed for multiple sink placement algorithms versus

maximum path length . 211

83 Total sink cost for multiple sink placement algorithms versus sink cost213

84 Number of sinks needed for GRASP-MSP and the optimal solution

versus average degree . 214

85 Illustration of the MSRP problem 215

xxix

86 Total sink and relay cost for multiple sink and relay placement algo-

rithms versus sink cost . 226

87 Total numbers of sinks and relays for GRASP-MSRP with MaxIter

=1 versus sink cost . 227

88 Total numbers of sinks and relays for GRASP-MSRP with MaxIter

=10 versus sink cost . 228

89 Total numbers of sinks and relays for Greedy-MSRP versus sink cost 228

90 Total numbers of sinks and relays for MSRFT versus sink cost . . . 229

91 Total numbers of sinks and relays for CBS-MSRP versus sink cost . 229

92 Total numbers of sinks and relays for GRASP-MSRP versus maxi-

mum path length . 230

93 Total numbers of sinks and relays for GRASP-MSRP versus number

of candidate relays . 231

94 Total numbers of sinks and relays for GRASP-MSRP versus number

of candidate sinks . 232

95 Total numbers of sinks and relays for GRASP-MSRP versus average

degree . 232

96 Total numbers of sinks and relays for GRASP-MSRP versus number

of nodes . 233

97 Delivery ratio of high priority packets for multiple sources – single

sink with ER-MAC where a node dies every 1,000 seconds 244

98 Delivery ratio of low priority packets for multiple sources – single

sink with ER-MAC where a node dies every 1,000 seconds 244

99 Latency of high priority packets for multiple sources – single sink

with ER-MAC where a node dies every 1,000 seconds 245

xxx

100 Latency of low priority packets for multiple sources – single sink with

ER-MAC where a node dies every 1,000 seconds 246

101 Connectivity for multiple sources – single sink with ER-MAC where

a node dies every 1,000 seconds . 247

102 Delivery ratio for multiple sources – single sink with Z-MAC where

a node dies every 1,000 seconds . 248

103 Connectivity for multiple sources – single sink with Z-MAC where a

node dies every 1,000 seconds . 249

104 Delivery ratio of high priority packets for multiple sources – four

sinks with ER-MAC where a node dies every 250 seconds 251

105 Delivery ratio of low priority packets for multiple sources – four sinks

with ER-MAC where a node dies every 250 seconds 251

106 Latency of high priority packets for multiple sources – four sinks with

ER-MAC where a node dies every 250 seconds 252

107 Latency of low priority packets for multiple sources – four sinks with

ER-MAC where a node dies every 250 seconds 252

108 Connectivity for multiple sources – four sinks with ER-MAC where

a node dies every 250 seconds . 253

109 Delivery ratio of high priority packets for multiple sources – variable

numbers of sinks with ER-MAC where a node dies every 250 seconds 255

110 Latency of high priority packets for multiple sources – variable num-

bers of sinks with ER-MAC where a node dies every 250 seconds . . 256

111 Connectivity for multiple sources – variable numbers of sinks with

ER-MAC where a node dies every 250 seconds 256

xxxi

Chapter 1

Introduction

Rapid improvements in wireless communication and electronics technologies have

enabled the development of small, low-cost, low-power, multifunctional devices,

known as sensor nodes. A sensor node (also known as mote) is a battery-powered

device with integrated sensing, processing and communication capabilities. A Wire-

less Sensor Network (WSN) is composed of many sensor nodes, which transmit their

data wirelessly over a multi-hop network to data sinks, where data is either pro-

cessed or transmitted on through a high-speed connection. Unlike sensor nodes

which are typically resource-constrained because of a desire to keep them low-cost,

small, energy-efficient and easy to deploy, a sink usually has more energy, storage,

processing and communication capabilities allowing it to act as a gateway between

sensor nodes and an end-user. That is, the sensor readings can simply be relayed

by the sink to a database over the Internet. Figure 1 illustrates a typical WSN

configuration, which consists of several sensor nodes and a sink. The arrangement

and management of a WSN depends on the application for which it is used [10, 46],

such as military [53], environmental [74, 105, 15], health [75, 66], home [64] and

some commercial applications [30, 29]. These applications require the network to

monitor changes in a variety of physical conditions, such as temperature, humid-

ity, light, sound, chemicals, or the presence of certain objects [108] without human

intervention.

1

Internet

End user

Sensor nodes

Sink

Figure 1: An overview of a WSN consists of several sensor nodes and a sink that
acts as a gateway between the sensor nodes and an end-user

Due to the scarce physical resources of sensor nodes, WSN applications must be

designed to be energy-efficient, so the operational lifetime can be maximised [12].

Many routing protocols, such as [54, 69, 23], have been designed where energy

awareness is an essential design issue. Besides a routing protocol, a Medium Access

Control (MAC) protocol also has a major influence on the energy efficiency as it

controls the wireless radio, which is the most energy-costly aspect of a sensor node.

Both energy-efficient MAC and routing protocols are well-studied in the WSN lit-

erature, but their efficiency depends on the physical network topologies that must

be well-planned before the actual deployment. In the context of WSN deployment

planning, sensor deployment to maximise sensing coverage and guaranteeing con-

nectivity [118, 13, 121], additional relay deployment to improve connectivity [112],

and multiple sink placement [85, 8, 122] are also well-studied.

Fault-tolerance is important for many WSN applications as they operate in volatile

environments and should remain operational even if some failures occur. WSN

failures are for instance caused by dropped packets due to wireless interference,

overload, node/link failures, and disconnected networks [18]. To be able to main-

tain efficient operations, WSNs must be designed to be resilient to these network

dynamics. The extreme case would be during emergency response, for example in

fire, flood, volcano monitoring and military surveillance. In this case, MAC pro-

tocols must be robust to traffic fluctuations and topology changes. Even though

reliable routing protocols for WSNs such as those proposed in [24, 33, 47, 125] exist

2

and are well-understood, the physical network topology must ensure that alternate

routes with an acceptable length to the sinks are in fact available when failures

occur. This requires a sensor network deployment to be planned with an objective

of ensuring some measure of robustness in the topology, so that when failures do

occur the protocols can continue to offer reliable delivery.

1.1 Objectives

The primary concern of most WSN communication protocols is energy efficiency,

while latency and data delivery rate are typically considered as secondary [123].

However, sometimes the application might need to sacrifice the energy efficiency for

a high packet delivery ratio and low latency, for instance when a hazard situation

occurs and the WSN needs to monitor it. Since in WSNs these functionalities are

controlled by the MAC layer, our first objective is to design a new fault-tolerant

MAC protocol that can adapt its behaviour from energy-efficient operation in nor-

mal monitoring to reliable and fast delivery in emergency monitoring, and vice versa.

This MAC protocol should be able to adapt to traffic and topology dynamics.

Besides requiring a reliable communication protocol, the efficiency and effectiveness

of data gathering in an unreliable WSN is also influenced by its physical topology

that ensures alternative routes with an acceptable length to the sink are avail-

able. Therefore, our second objective is to design fault-tolerant topology planning

algorithms, which take into account a path length constraint as sometimes WSN

applications have data latency requirements. While in most cases the positions of

sensor nodes are predefined because they have to monitor phenomena at certain

locations, we aim to find the best locations to deploy additional relay nodes, which

do not sense, but only forward data from other sensor nodes. We also aim to deploy

multiple sinks for robustness. Because installing many sinks and relays comes at

a cost that includes not only the hardware purchase but also the installation and

ongoing maintenance, we aim to find the minimal cost deployment.

3

1.2 Thesis Contributions

1.2.1 Thesis Statement

In this thesis, we demonstrate that medium access control protocols and topology

planning algorithms can be designed together to create fault-tolerant wireless sensor

networks that trade-off robustness and deployment cost.

1.2.2 Proposed Solutions

The following solutions are the main contributions of this thesis.

1. ER-MAC is a novel hybrid MAC protocol for emergency response WSNs.

It tackles the most important emergency response requirements, such as au-

tonomous switching from energy-efficient normal monitoring to emergency

monitoring to cope with heavy traffic, robust adaptation to changes in the

topology, packet prioritisation and fairness support. Performance evaluation

in ns-2 [2] shows the superiority of ER-MAC over Z-MAC [97], a state-of-the-

art hybrid MAC protocol, due to its higher delivery ratio and lower latency

at low energy consumption.

2. We define a WSN to be robust if at least one acceptable length route to a sink

is available for each sensor node after the failure of any k−1 nodes. Firstly,

we propose the Counting-Paths algorithm to identify the maximum k such

that a node has k disjoint paths. Counting-Paths looks for k shortest disjoint

paths, where the sum of the lengths plus the spread between the lengths of

the k paths is minimal. Secondly, we introduce its dynamic programming

variant. Then, we introduce Greedy Randomised Adaptive Search Procedure

for Additional Relay Placement (GRASP-ARP) that uses Counting-Paths to

minimise the number of deployed relays. Empirically, it deploys 35% fewer

4

relays with reasonable runtime compared to the closest approach from the lit-

erature. With the basic Counting-Paths, GRASP-ARP ensures length-bound,

while it improves on the runtime with the dynamic programming variant.

3. We look at an alternative solution to reduce the deployment cost by only

deploying relays around the most important nodes – those whose failure has

the worst effect. To identify such nodes, we define a new centrality mea-

sure, Length-constrained Connectivity and Rerouting Centrality (l-CRC). We

then introduce Greedy Randomised Adaptive Search Procedure for Additional

Backup Placement (GRASP-ABP) to minimise the number of deployed relays

around the most important nodes identified by l-CRC. GRASP-ABP allows

us to trade-off the level of fault-tolerance against the runtime.

4. We provide solutions for protecting networks against one sink failure by plac-

ing multiple sinks with minimal cost. We look at two heuristics – Greedy Al-

gorithm for Multiple Sink Placement (Greedy-MSP) and Greedy Randomised

Adaptive Search Procedure for Multiple Sink Placement (GRASP-MSP). We

show that Greedy-MSP has the shortest runtime, but GRASP-MSP achieves

the lowest deployment cost.

5. We propose solutions for protecting networks against either a sensor or a sink

failure by deploying multiple sinks and relays with minimal cost. We present

Greedy Algorithm for Multiple Sink and Relay Placement (Greedy-MSRP) and

Greedy Randomised Adaptive Search Procedure for Multiple Sink and Relay

Placement (GRASP-MSRP). Empirically, GRASP-MSRP’s solutions are over

30% less costly than those of Greedy-MSRP and it also has shorter runtime.

6. We evaluate the fault-tolerance of each deployment result by simulations in ns-

2 using ER-MAC. In simulation, GRASP-ARP and GRASP-ABP topologies

show comparable performance, even though GRASP-ABP deploys fewer re-

lays than GRASP-ARP. For the multiple sink scenario, the best performance

is achieved by the GRASP-MSRP topologies due to better sink positions.

5

1.3 Thesis Overview

The remainder of this thesis is organised as follows.

In Chapter 2, we review related work on MAC protocols, algorithms for relay

deployment and algorithms for multiple sink deployment.

In Chapter 3, we summarise the assumptions we made for the WSN, the simulation

tool and the performance metrics.

In Chapter 4, we develop ER-MAC, which includes topology discovery, slot assign-

ment, local time synchronisation, priority queue design, MAC prioritisation

to cope with large volume of traffic, as well as robust adaptation to new

node addition and dead node removal.

In Chapter 5, we present Counting-Paths and GRASP-ARP to design topologies

with relays. Specifically, we discuss the problems of single source – sin-

gle sink, multiple sources – single sink, single source – multiple sinks, and

multiple sources – multiple sinks.

In Chapter 6, we define l-CRC and present GRASP-ABP to design topologies

with relays. GRASP-ABP uses l-CRC to identify important nodes in the

network.

In Chapter 7, firstly we describe the problem of Multiple Sink Placement (MSP).

For this problem, we propose Greedy-MSP and GRASP-MSP to design

topologies with multiple sinks. Then, we discuss the problem of Multi-

ple Sink and Relay Placement (MSRP), and present Greedy-MSRP and

GRASP-MSRP to design topologies with multiple sinks and relays.

In Chapter 8, we utilise ER-MAC from Chapter 4 in a data gathering applica-

tion to evaluate the network performance of topologies that resulted from

topology planning algorithms in Chapter 5, 6 and 7.

In Chapter 9, we conclude the thesis and identify some further directions for

advancing this research.

6

Chapter 2

Literature Review

2.1 Introduction

In this chapter, we review work related to this thesis. Firstly, we present the gen-

eral communication architecture of a Wireless Sensor Network (WSN) and review

the relevant work on Medium Access Control (MAC) protocols. The comprehen-

sive literature review on MAC protocols contributes toward Chapter 4. Then, we

look at algorithms for relay deployment, as well as algorithms for finding disjoint

paths, which become the literature study of Chapter 5. We also review the existing

centrality and alternative path centrality measurements, which contribute toward

Chapter 6. After that, we discuss the relevant literature on multiple sink deployment

for Chapter 7 and briefly introduce Greedy Randomised Adaptive Search Procedure

(GRASP). The summary of notations and definitions of the graph model for WSNs,

which are used in this thesis, can be found in Appendix A.1.

2.2 WSN Communication Architecture

The general WSN communication architecture consists of five layers: the applica-

tion layer, transport layer, network layer, data link layer, and physical layer, as

7

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

P
o

w
e

r M
a

n
a

g
e

m
e

n
t P

la
n

e

M
o

b
ility

 M
a

n
a

g
e

m
e

n
t P

la
n

e

T
a

s
k
 M

a
n

a
g

e
m

e
n

t P
la

n
e

Figure 2: WSN protocol stack [11]

illustrated in Figure 2 [11]. Added to the five layers are the three cross layers

planes: power management, mobility management, and task management planes

to monitor the power, movement, and task distribution among the sensor nodes,

respectively.

1. Application layer. In this layer, the application code that is specific for each

application is built. It also handles the network management functionalities

and query processing to obtain certain information from the network.

2. Transport layer. The transport layer protocol helps to maintain the flow

of data required by the sensor network application. It provides hop by hop

reliability and congestion control.

3. Network layer. The main function of this layer is routing the data sup-

plied by the transport layer over multiple hops between nodes that cannot

communicate directly.

4. Data link layer. MAC protocol resides in this layer to manage channel

access policies, scheduling, buffer management and error control.

5. Physical layer. The physical layer addresses the modulation, transmission

and receiving techniques.

8

Since WSNs are subject to failures, adaptive and reliable routing has been an active

research area. To improve the resiliency of a network, a routing protocol must be

able to discover new routes for efficient data delivery to the sinks. However, for a

successful communication, not only robust routing protocols, but also reliable MAC

protocols are needed. In WSN protocol stack, a MAC protocol resides directly

below a routing protocol and one of its fundamental task is to either detect or avoid

collision by ensuring that no two nodes within interference range transmit at the

same time. It relates to the routing protocol for scheduling of packet transmission

purposes in multi-hop networks. A MAC protocol also has a major influence on the

energy efficiency of a WSN because it sits directly on top of the physical layer and

controls the wireless radio, which dominates the energy consumption of a node, by

scheduling its wake-up and sleep periods (duty cycle).

2.3 MAC Protocols for WSN

MAC protocol design may be broadly divided into contention-based and schedule-

based medium access [68]. A common contention-based MAC protocol is the Carrier

Sense Multiple Access (CSMA) protocol. In CSMA, a node simply senses the

channel for a small period of time before transmitting a packet. If it does not sense

any activity, it assumes that the channel is clear and starts transmitting the packet.

If the channel is busy, the node defers its transmission and continues to monitor

the channel until it becomes available.

Figure 3 illustrates a collision that is likely to occur in the CSMA protocol. Suppose

nodes b, c and d are within node a’s transmission range. When node a sends a packet

to node b, nodes c and d can overhear a’s transmission and wait until it finishes.

However, at the end of a’s transmission, c and d will transmit their packets to node

e simultaneously and cause collision. To prevent collision, CSMA uses random

backoff, where nodes wait for a random amount of time before they transmit a

packet.

9

a

c

b

d

e

Figure 3: Collision in CSMA: nodes c and d send at the same time after a finishes
its transmission

Unfortunately, CSMA protocol also suffers from the hidden terminal problem, where

collision in any two-hop neighbourhood of a node may occur. Figure 4 illustrates

the hidden terminal problem in a network with three nodes. Suppose that nodes a

and c can only hear from b, but b can hear from both a and c. When a sends packets

to b, c is not aware because it cannot hear a’s transmission. If c sends packets when

a still transmits, both transmissions will collide at b and all information cannot be

retrieved.

a cb

Figure 4: The hidden terminal problem in CSMA: nodes a and c are hidden to each
other

CSMA with Collision Avoidance (CSMA/CA) is developed to solve the hidden

terminal problem. It exchanges Request-To-Send (RTS) and Clear-To-Send (CTS)

packets before data transmission to avoid collision. In Figure 4, if a wants to send

data to b, it firstly sends an RTS packet to b. Upon receiving the RTS, b will

reply a with a CTS packet. Even if c cannot hear the RTS from a, it can receive

the CTS packet from b and refrain from transmitting. The IEEE 802.11 [104] is

10

a well known contention-based MAC protocol, which is based on the CSMA/CA

technique. In the IEEE 802.11, every transmission between a sender and a receiver

follows the sequence of RTS/CTS/DATA/ACK, where the receiver must respond

with an acknowledgement for each data frame received.

CSMA protocol is popular because of its simplicity and flexibility. It is simple

because nodes do not need to synchronise their clocks, and this protocol is able to

adapt to traffic fluctuations and changes in node density easily. However, collision in

CSMA may still occur when two interfering nodes choose the same random backoff

time. In addition, CSMA/CA does not completely eliminate the hidden terminal

problem because the RTS packets may also collide. Other sources of energy waste

in CSMA are protocol overhead, idle listening and overhearing. Protocol overhead

is caused by exchanging RTS and CTS packets before every data transmission. Idle

listening occurs when a node turns on its radio and listening to the channel but

there are no transmissions. Overhearing happens when a node receives packets that

are not intended for it.

Time-Division Multiple Access (TDMA) is a schedule-based MAC protocol that

controls the access to the channel by scheduling when a node should transmit, re-

ceive, or sleep to conserve energy. TDMA divides time into slots, which are grouped

into frames, and requires nodes to be synchronised. The TDMA schedule specifies

which slot is to be used by which node to transmit or receive its packet without

contending for medium access. The frame size and the slot allocation procedure

differ in each TDMA-based protocol, which will be explained in Section 2.3.2. Al-

though TDMA can solve the problems of CSMA, i.e. collision, idle listening and

overhearing because of its collision-free schedule guarantee, the scalability issue and

the inability to maintain the schedule when the traffic and topology changes are

major problems of this protocol.

Many MAC protocols have been designed for WSNs. Below, we present a selection

of protocols that have relevance to our problem, i.e. traffic and topology adaptive

during emergency monitoring. Based on the mechanisms to access the medium

11

Table 1: Summary of existing MAC protocols

Protocols Summary
Contention-based
S-MAC [123] Introduces a fixed active-sleep duty cycle.
T-MAC [114] Modification of S-MAC with adaptive active period.
B-MAC [88] Uses adaptive preamble sampling to reduce duty cycle.
WiseMAC [39] Uses a wake-up preamble of minimised size by letting every node learn

the sampling schedule of its neighbours.
TA-MAC [48] Modifies the constant size contention window of S-MAC to be

dynamic to current load.
X-MAC [27] Introduces a series of short preambles with target address to avoid

overhearing and reduce energy expenditure on non-target receivers.
MaxMAC [56] Doubles the duty cycle when the traffic rate reaches the threshold.

Switch to CSMA when the traffic rate reaches CSMA threshold.

Schedule-based
TRAMA [94] Uses a distributed hash function to determine collision-free slots

within two-hop neighbourhood.
FLAMA [93] Extends TRAMA to reduce idle listening overhead from neighbourhood

traffic information exchange.
VTS [38] Adaptively adjusts the virtual TDMA superframe length based on the

number of nodes in range. Reduces the sleep interval if new nodes join
the network.

Hybrid
Z-MAC [97] Under low contention, nodes can compete in any slots. Under high

contention, only the owner of the slot and one-hop neighbours of the
owner of the slot can compete for the slot.

PMAC [127] Adaptively adjusts the sleep/wake-up schedules of the nodes based on
its own traffic and the traffic patterns of its neighbours.

Funneling-MAC [7] Implements CSMA in the entire network with localised TDMA only in
the funneling region.

Crankshaft [50] One frame consists of a number of slots for unicast and for broadcast.
RRMAC [64] Reduces end-to-end latency by assigning time slots hierarchically and

delays ACKs.
EB-MAC [80] Calculates schedules based on the received signal strength of the

detected event.
BurstMAC [98] Adapts to bursts in traffic by utilising multiple channels for parallel

communication.
i-MAC [32] Assigns the same slot to nodes that have no or low possibility of

transmitting together. Assigns different transmission slots to nodes
that have high possibility of transmitting together.

12

for data transmission, we follow the common classification for the MAC protocols:

contention-based, schedule-based and hybrid that combines the features of both

contention-based and schedule-based protocols. We will analyse the protocols based

on their traffic and topology adaptability. Specifically, the key criteria that we

address in our reviewed protocols are either delivery rate or throughput, delivery

latency of packet transmissions, energy efficiency and fairness over the packets’

sources. We seek protocols that are energy-efficient when the traffic load is light,

have high delivery rate and low latency when the traffic load increases, and support

fairness in both situations. The respective protocols are summarised in Table 1.

2.3.1 Contention-based MAC Protocols

Sensor-MAC (S-MAC)

S-MAC [123] is a slotted protocol that is categorised as contention-based because it

contends for the medium before data transmission. S-MAC introduces a fixed duty

cycle, which periodically puts nodes into sleep to reduce energy consumption in

idle listening. With S-MAC, nodes follow the RTS/CTS/DATA/ACK sequence to

avoid collision. When some nodes want to send data, they independently contend

for the medium using RTS packets. The first sender whose RTS packet reaches the

intended receiver wins the medium and the receiver replies the sender with a CTS

packet. After starting data transmission, nodes do not follow their sleep schedule

until they finish the transmission. S-MAC avoids overhearing, which is one of the

major sources of energy waste, by letting neighbours of the sender and the receiver

go to sleep after hearing RTS/CTS packets.

S-MAC requires nodes to be synchronised, so they have the same listen/sleep sched-

ule. These schedules coordinate nodes to minimise additional delivery latency. A

node first listens for a certain amount of time. If it does not hear a SYNC from

another node, it broadcasts a SYNC packet that includes its address and the time

of its next sleep. Receivers of the SYNC will adjust their timers immediately after

13

receiving the SYNC packet. This method helps new nodes join the network later

by listening to the SYNC packet that is broadcast regularly to inform the com-

mon schedule. The slot structure of S-MAC with the fixed duty cycle is shown in

Figure 5.

Listen Sleep

Time

Frame Frame

Listen Sleep

SYNC Active

Figure 5: Slot structure of S-MAC with fixed duty cycle

S-MAC trades off latency for energy efficiency by periodically putting nodes to

sleep. Therefore, it does not adapt to the changes of the traffic very well. Under

a heavy traffic, the latency increases due to the periodic sleep of each node, which

is accumulated at each hop. S-MAC also sacrifices fairness by letting a node who

has more data get more time to access the channel. The simulations in [123] only

measure the energy consumption of source and intermediate nodes. The results are

compared to 802.11. For the source nodes, 802.11 uses twice as much energy as

S-MAC under heavy traffic and three times under light load. For the intermediate

nodes, S-MAC consumes around 15% more energy than 802.11 during heavy traffic,

but consumes around 40% less energy when the traffic is light.

Timeout-MAC (T-MAC)

T-MAC [114] is a slotted protocol that tries to improve on S-MAC by using an

adaptive duty cycle, which dynamically adjust nodes’ sleep and active cycles based

on communication of neighbouring nodes. T-MAC ends the active time using time

out on hearing nothing. Simulations in [114] have shown that under variable loads,

T-MAC’s energy consumption outperforms S-MAC by a factor of 5. Similarly to

S-MAC, nodes in T-MAC communicate using RTS/CTS/DATA/ACK. The slot

structure of T-MAC is shown in Figure 6.

14

Listen Sleep

Time

Frame Frame

Listen Sleep

SYNC Active Timeout

Figure 6: Slot structure of T-MAC with adaptive duty cycle

Unfortunately, it is common to all contention-based protocols including T-MAC

that the chance of collision increases rapidly during high traffic loads. Moreover, T-

MAC’s early sleeping problem effectively increases latency and reduces throughput.

This problem is illustrated in Figure 7. Suppose messages flow from node a to node

d. When node c overhears a CTS packet from node b to node a, it remains silent.

Node d is not aware of the communication between a and b, and hear nothing from

c, so the timeout forces d to sleep early. When c wants to send data to d, it has to

wait until the next wake-up schedule.

a

b

c

d

Contend

Contend

RTS CTS DATA ACK

RTS?

Listen for timeout secs Sleep

Figure 7: The early sleeping problem in T-MAC: d goes to sleep before c can send
an RTS to it [114]

Berkeley-MAC (B-MAC)

B-MAC [88] is an asynchronous duty-cycled protocol that introduces adaptive

preamble sampling to minimise the active duration of receivers, and thus reduces

duty cycle and minimises idle listening. As an asynchronous duty-cycled protocol,

15

Time

Time

Sender

Receiver

DATA

DATA

Long preamble

Extended wait time

Wake up Continue listening

Figure 8: Long preamble in B-MAC

B-MAC does not wake up nodes simultaneously. Therefore, before sending data

to a receiver, a sender sends a long preamble, which has the same length as the

channel check interval, i.e. the interval where a node periodically wakes up and

checks for activity on the channel. Using a long preamble allows the receiver to

wake up, detect activity on the channel, receive the preamble and then receive the

data.

B-MAC is the first Low Power Listening (LPL) protocol. In this scheme, each time

a receiver wakes up, it turns on the radio and checks for any activity on the channel.

If an activity is detected, the receiver powers up and stays awake to receive incoming

packets as shown in Figure 8. Otherwise, a timeout forces it back to sleep. Idle

listening still occurs in B-MAC when the node wakes up but there is no activity on

the channel. B-MAC is able to assess whether the channel is clear or busy, which is

referred to as Clear Channel Assessment (CCA). It searches for the outliers in the

received signal such that the channel energy is significantly below the noise floor.

If an outlier exists, the channel is clear. If five samples are taken and no outlier is

found, the channel is busy. B-MAC takes five samples of signal strength to reduce

the possibility of false alarms because of random noise. This protocol also uses

random backoff when sending a packet.

The simulation results in [88] compare the performances of B-MAC to S-MAC.

Without duty cycling, B-MAC achieves over 4.5 times the throughput of S-MAC

16

Figure 9: Latency of B-MAC versus S-MAC [88]

because S-MAC has overhead from RTS/CTS exchanges. The energy consumption

of B-MAC under heavy loads is 50% less than S-MAC. However, B-MAC consumes

25% more energy than S-MAC when the traffic is light because the long preamble

dominates the energy usage. To test the latency, 11 nodes are arranged to form a 10-

hop linear topology, where the source node and the sink node are separated 10 hops

away. The end-to-end latency of B-MAC versus S-MAC is shown in Figure 9. As a

contention-based protocol, B-MAC provides flexibility to handle dynamic changes

in node densities. However, the use of a long preamble before every data transmis-

sion contributes to additional latency at each hop, especially when the traffic load

increases.

Wireless Sensor MAC (WiseMAC)

WiseMAC [39] is a MAC protocol based on the preamble sampling technique. In

this technique, each node listens to the channel for a short duration for possible

reception of packets. If the medium is busy, the receiver continues to listen until a

data frame is received or until the medium becomes idle again. If a node wants to

send data, it adds a wake-up preamble in front of every data frame to ensure that

17

WiseMAC: An Ultra Low Power MAC Protocol 29

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

Fig. 5. Random network
topology

0

0.5

1

1.5

2

A
ve

ra
ge

 p
ow

er
 [m

W
]

CSMA/CA
SMAC1

SMAC10
TMAC1

TMAC10
WiseMAC

Idle
Distributed traffic
Events

Fig. 6. Average power
consumption

0

20

40

60

80

100

120

140

A
ve

ra
ge

 e
nd

−
to

−
en

d
de

la
y

[s
]

CSMA/CA
SMAC1

SMAC10
TMAC1

TMAC10
WiseMAC

Distributed traffic
Events

Fig. 7. Average end-to-
end delay

40 seconds (which will be the case in this experiment), only one packet is in
the network at any time. The simulation is run for 4000 seconds. A total of
100 packets is hence generated.

Events. The black nodes generate periodically, with a period of 400 s, a packet
of 48 bytes (56 bytes with MAC header). They all start at the same times 0,
400, 800, ..., 3600 s. This generate periodically a burst of traffic. Again, the
simulation is run for 4000 seconds and a total of 100 packets is generated.

The purpose of the distributed traffic experiment is to explore the behavior
of MAC protocols in low traffic conditions. Such a traffic pattern can be ex-
pected in many environmental monitoring applications, such as for the periodic
measurement of soil moisture in smart agriculture.

The purpose of the events experiment is to explore the behavior of MAC
protocols in momentary high traffic conditions. Such a traffic pattern can be
expected in alarm systems, such as fire or motion detection sensor networks.

In both experiments, a total 100 packets are forwarded towards the sink. In
the events experiment, events have been spaced sufficiently such that only 10
packets are in the network at any time. The buffer capacity on each sensor node
being of 10 packets, no packets will be lost. Some protocols will require more
time to transport the 10 packets than others.

A comparison of the power consumption and delay performances of
WiseMAC, S-MAC, T-MAC and CSMA/CA is made in the next sub-section.

Power Consumption and Delay. The bars in Fig. 6 show, for the different
experiments and MAC protocols, the average power consumption spent by the
nodes. To compute the average power, the total consumed energy is divided by
the number of nodes and the simulation time. This average power gives informa-
tion about the total energy spent in the network. As the lifetime of a network is
often bounded by the lifetime of its weakest nodes, it is important to consider
also the maximum average power consumed by any node. It is shown as the ”+”
markers in Fig. 6.

Figure 10: Power consumption and end-to-end delay of WiseMAC versus
CSMA/CA, S-MAC and T-MAC [39]

the receiver will be awake when the data portion of the packet arrives. The novelty

of WiseMAC is using a wake-up preamble of minimised size by letting every node

learn the sampling schedule of its neighbours. The first communication between two

nodes always uses a long wake-up preamble of size equal to the sampling period.

However, when the schedule is acquired, a wake-up preamble of reduced size can

be used. WiseMAC is traffic adaptive because the length of the wake-up preamble

is proportional to the packet inter-arrival time, which is small when the traffic is

high.

WiseMAC does not need the whole network to be synchronised. An acknowledge-

ment packet in WiseMAC is not only used to acknowledge the reception of a data

packet, but also to inform other nodes of the remaining time until the next sam-

pling time. In this way, a node can keep a table of sampling time offsets of all

its usual destinations up-to-date. WiseMAC also has a more bit in the header of

data packets. When a data packet is received with the more bit set, the receiver

will continue to listen for another data packet after having sent the acknowledge-

ment. The sender will send the following data packet right after having received

the acknowledgement.

18

Figure 10 show the power consumption and the end-to-end delay of WiseMAC,

CSMA/CA, S-MAC and T-MAC during idle, distributed traffic and event exper-

iments. There is no traffic in the idle experiment. In the distributed traffic and

event experiments, the source nodes generate traffic not at the same time and at

the same time, respectively. The CSMA/CA protocol provides the lowest average

latency with the highest power consumption compared to all other protocols. S-

MAC and T-MAC with 1% duty cycle provide a low average power consumption,

in the order of what is provided by WiseMAC. However, the corresponding latency

is very high, while it remains low for WiseMAC. S-MAC and T-MAC with 10%

duty cycle are able to provide a relatively low latency, but at the price of a power

consumption that is much higher than the one of WiseMAC.

The disadvantages of this protocol are that the long wake-up preambles cause

throughput limitation and large power consumption overhead in transmission and

reception. Moreover, the decentralised listen/sleep schedules result in different sleep

and wake-up times for each neighbour of a node. This contributes to additional per-

hop latency and causes the hidden terminal problem, where a preamble from a node

can interfere with a data packet from another node that is not within range.

Traffic Adaptive-MAC (TA-MAC)

Another contention-based protocol that tries to improve on S-MAC is TA-MAC [48].

It modifies the constant size contention window of S-MAC to reduce the probability

of collision. TA-MAC introduces dynamic contention window according to the cur-

rent traffic load of the network. The current load is defined as the average number of

collision. A sender detects a collision if it does not receive an acknowledgement after

sending a data packet.The average number of collision is calculated as a combined

weight metric of the previous average number of collision and the current number of

collision. If the average number of collision exceeds a threshold, TA-MAC assumes

the traffic load has increased and doubles the contention window. Otherwise, it

knows that the traffic has decreased and the contention window is halved.

19

Figure 11: Delivery ratio and average delay of TA-MAC versus IEEE 802.11 and
S-MAC with 10% duty cycle [48]

TA-MAC achieves energy savings by reducing the time spent in idle listening during

backoff procedure after collisions happen. The simulation results in [48] have shown

that TA-MAC achieves 15%–20% energy savings compared to S-MAC with 10%

duty cycle. It also has a slightly lower latency and higher delivery ratio than S-

MAC when the traffic load is high as depicted in Figure 11. This is due to the fact

that TA-MAC’s probability of collision is lower than that of S-MAC. Even though

TA-MAC improve on S-MAC, it inherits S-MAC’s limitation on the additional

per-hop latency due to periodic sleep at each node, which is not acceptable for

emergency monitoring. In addition, collisions still occur during heavy traffic after

the contention window reaches its maximum value and cannot be extended any

further.

X-MAC

X-MAC [27] is an asynchronous duty-cycled MAC protocol that tries to solve the

problems of standard asynchronous duty-cycled MAC, such as B-MAC. The stan-

dard asynchronous duty-cycled MAC has a long preamble that increases latency

and energy consumption at both senders and receivers. X-MAC introduces a series

of short preambles with target address to avoid overhearing of low power listening

and to reduce the energy expenditure on non-target receivers. X-MAC also inserts

pauses between short preambles. This enables the target receiver to send an early

acknowledgement and thus shorten the preamble period. This scheme is claimed

20

to achieve further energy savings and reduce latency. However, waiting for an ac-

knowledgement from a receiver before sending a data packet has a disadvantage.

A sender will fail to send its data if its preambles are not acknowledged by the

intended receiver within a given time interval. X-MAC also utilises random back-

off when a sender node wants to send data but it detects a preamble. However,

this does not solve the hidden terminal problem, because collision still occurs when

several backed off senders send their data without preambles.

X-MAC performances are compared to a basic asynchronous Low Power Listening

(LPL) MAC protocol. Unlike the LPL protocol, X-MAC’s energy consumption is

relatively constant with increasing network density. The LPL protocol consumes

more energy when the network density increases. X-MAC also has 50% lower latency

and higher delivery ratio compared to the LPL protocol because LPL has longer

preamble.

MaxMAC

Hurni and Braun [56] introduce MaxMAC, a traffic adaptive MAC protocol that tar-

gets at higher throughput, lower latency and lower energy consumption. MaxMAC

uses WiseMAC’s preamble sampling scheme and X-MAC’s overhearing avoidance by

adding target address in the preamble. When the rate of incoming packets reaches a

predefined threshold T1, a receiver doubles the duty cycle and stays in the new state

S1 for a predefined LEASE timespan. The receiver informs the sender about this

change through an acknowledgement. When the rate of incoming packets reaches

a threshold T2, the receiver enters the state S2 and doubles the duty cycle again.

Then, when the rate of traffic reaches a further threshold TCSMA (TCSMA > T2 > T1),

MaxMAC switches to CSMA state.

MaxMAC does not introduce any control messages. All necessary control informa-

tion is communicated in the header of data frames as well as in acknowledgment

frames. When the traffic is light, MaxMAC is energy-efficient as other energy-

efficient MAC protocols, but it falls to CSMA energy consumption to achieve

21

Figure 12: Delivery ratio and delay versus energy efficiency of contention-based
MAC protocols and the parameters used [56]

22

higher throughput and lower latency when the traffic bursts. As a combination

of WiseMAC and X-MAC, it inherits their limitations, where the use of wake-up

preambles contributes to additional per-hop latency and may interfere with data

transmissions (hidden terminal problem).

Figure 12 show the comparisons of delivery ratio and delay of the reviewed contention-

based MAC protocols and the simulation parameters used in [56]. The IdealMAC

protocol is used as a reference to show the lower bounds of network performance.

With IdealMAC, nodes always know when they need to switch to receive/transmit

in order to handle data transmissions. IdealMAC has the lowest-possible latency,

the highest possible energy efficiency, does not suffer from overhearing or idle lis-

tening, and can always avoid collisions. In this simulation, one event is triggered

every 30 seconds at a random location of the simulated 49-node network and only

nodes that can sense the event are required to generate traffic. The simulation re-

sults show that MaxMAC outperforms the other contention-based protocols in this

scenario.

2.3.2 Schedule-based MAC Protocols

TRaffic Adaptive Medium Access (TRAMA)

TRAMA [94] is designed for periodic data collection and monitoring applications.

It organises time into random access and scheduled access slots. Nodes send signal-

ing packets for neighbour discovery and time synchronisation during the random

access slots and data packets during the scheduled access slots. TRAMA uses a dis-

tributed hash function to schedule collision-free slots for data transmissions. Every

data packet contains a summary of a node’s schedule. Therefore, each node has to

listen to the last data messages from its one-hop neighbours in order to synchronise

its schedule with theirs. With TRAMA, nodes are allowed to exchange information

about network topology and traffic conditions regularly in their two-hop neighbour-

hood. Based on this information, TRAMA uses a distributed election scheme to

23

determine the state of a node, i.e. transmit, receive, or sleep. Although TRAMA

adapts to topology changes by utilising CSMA periods to allow new nodes to join

the network, it only provides limited capabilities to adjust to traffic fluctuations.

This is achieved by allowing a node to release its slot to be used by other nodes if

it has no data to send.

Compared to S-MAC with 10% duty cycle, TRAMA is more energy-efficient. S-

MAC has a fixed duty cycle, so it has a constant percentage of sleep time, i.e.

around 80% during both light and heavy traffic. Nodes with TRAMA sleep 6%

more than S-MAC when the traffic is light, but wake up 18% more when the traffic

load is high to achieve high delivery ratio. The simulation results in Figure 13

have shown that TRAMA achieves higher delivery ratio, which is around 40% to

60% over S-MAC when the traffic load increases. However, as other schedule-based

protocols, TRAMA suffers higher latency, which is around 10 times higher than

S-MAC.

FLow-Aware Medium Access (FLAMA)

FLAMA [93] is a schedule-based MAC protocol that extends TRAMA in an attempt

to reduce idle listening overhead from neighbourhood traffic information exchange.

TRAMA requires nodes to exchange traffic information regularly to maintain sched-

ules during the scheduled access periods. Unlike TRAMA, FLAMA exchanges traf-

fic information implicitly only during the random access periods. FLAMA uses a

data gathering tree, where a node has incoming traffic flows from all its children

and it has only one outgoing flow to its parent. Because of this predictable traffic

pattern, FLAMA uses flows to represent one-hop traffic information and to specify

the senders, the receivers and the packet’s rate. The traffic information of a node

is determined based on a function of incoming flow rates from its children. These

flows are used to set up transmit, receive and sleep schedules of nodes in the network

using a distributed election algorithm. In FLAMA, nodes that produce or forward

more traffic are assigned more slots.

24

Figure 13: Delivery ratio and average delay of FLAMA versus TRAMA and S-MAC
with 10% duty cycle [93]

Simulations conducted in [93] have shown that FLAMA outperforms TRAMA and

S-MAC with 10% duty cycle for better delivery ratio and energy consumption.

Nodes with FLAMA sleep around 85% regardless of the traffic loads, but achieve

5% higher delivery ratio than TRAMA. However, S-MAC outperforms these two

protocols in terms of average latency as depicted in Figure 13.

Virtual TDMA for Sensors (VTS) MAC Protocol

VTS [38] is designed for soft real-time applications, where a packet has a bounded la-

tency. This protocol adaptively adjusts a virtual TDMA superframe (set of frames)

length according to the number of nodes in range. Virtual means that nodes know

neither superframe limits nor their relative position in the superframe. They only

know that they can transmit packets every superframe length cycle. Using the

flexible superframe length, VTS allows nodes to join or leave the network easily.

When new nodes join the superframe, latency increases. Thus, VTS tries to keep

the latency below a given threshold value by reducing the sleep interval (which

corresponds to increasing the duty cycle).

This protocol assumes a network with a single-hop cluster. Therefore, there is a sink

to start the setup by broadcasting a control (CTL) packet with an initial predefined

value of the duty cycle. The sink then dynamically adjusts the superframe length

25

by recomputing the new duty cycle value based on the number of nodes belonging

to the superframe and informs it to the nodes with its CTL packet. VTS uses

the CSMA/CA mechanism for data delivery, where a unicast transmission follows

the RTS/CTS/DATA/ACK sequence. The TDMA frame of VTS is illustrated in

Figure 14. A CTL packet can be used as a SYNC, an RTS or a keep-alive beacon.

A1

A2

A3

A4

Cluster A/Cycle 1 2 3 4 1 2

A1 A2 A3 A4 A1 A2

Time
Frame

Superframe

CTL Active Sleep

Figure 14: VTS TDMA frame

VTS sacrifices average latency for energy efficiency at low loads, but guarantees

latency at high loads. VTS is compared to 10% duty-cycled S-MAC with and

without adaptive listening. With adaptive listening, nodes which overhear an RTS

or CTS packet wake up at the end of the transmission, instead of waiting for their

next schedules. This scheme achieves higher throughput and lower average latency

at the cost of higher energy consumption. The results in [38] have shown that VTS

has the lowest maximum latency compared to the two types of S-MAC at high

loads, but S-MAC with adaptive listening has the lowest average latency. S-MAC

with and without adaptive listening suffer 8 and 15 times the maximum latency of

VTS, respectively, because the latency of VTS never exceeds the superframe length.

VTS’s throughput is slightly better than S-MAC without adaptive listening. The

throughput of S-MAC with adaptive listening is three times better than VTS at

high loads, but its power consumption is twice as much as VTS. In addition, VTS

consumes less energy than the two types of S-MAC at both high and low loads.

26

2.3.3 Hybrid MAC Protocols

Hybrid MAC protocols are protocols that combine the features of both contention-

based and schedule-based mechanisms. It takes advantages of the simplicity and

flexibility of the contention-based scheme and the collision-free nature of the schedule-

based one. We review the hybrid MAC protocols that are designed to be traffic

adaptive and have the ability to cope with topology changes too.

Zebra-MAC (Z-MAC)

Z-MAC [97] is a hybrid MAC protocol that dynamically switches between CSMA

and TDMA depending on the traffic load in the network. Each node gets a collision-

free TDMA slot by executing a distributed slot selection algorithm based on its

two-hop neighbourhood schedule information. Z-MAC’s frame format is depicted

in Figure 15. Each slot begins with a small contention period where nodes can

compete to access the channel. When competing for the channel access, the slot

owner has a higher priority to transmit than the non-owners if it has data to send.

If the slot owner has no data to send, it allows other nodes to use its slot. For

example, if a node has data to send and it is the owner of the slot, it back offs

within To period, else it back offs between To and Tno. Then, it performs CSMA

(using B-MAC’s random access approach) and if the channel is clear, it sends its

data.

Under Low Contention Level (LCL), nodes in the network can compete in any time

slots and thus achieve high channel utilisation and low latency. However, under

High Contention Level (HCL), only the owner of the slot and one-hop neighbours

of the owner of the slot can compete for the slot. Therefore, it reduces collisions.

Z-MAC determines the state of low or high contention based on packet loses due

to hidden terminals. In high contention networks, Z-MAC uses Explicit Congestion

Notification (ECN) messages to reduce hidden terminals. When a sender node

detects heavy traffic loads, it broadcasts the ECN message to its one-hop neighbours

27

and they propagate the ECN message to their neighbours. Therefore, nodes within

two-hop neighbourhood of the sender are notified of the current traffic. These

neighbours can only compete for its scheduled slot and its direct neighbours’ slots,

but return to their previous states when they receive no more ECN messages.

Time

Owner Non-owner Data

Time slot

Frame

Contention

To Tno

Figure 15: Z-MAC frame format

Switching states from LCL to HCL and vice versa make Z-MAC adaptive to traffic

fluctuations. It also adapts to topology changes because the distributed slot selec-

tion algorithm can performs a localised time slot assignment for new nodes. Z-MAC

builds a TDMA structure on top of CSMA, using B-MAC’s backoff mechanism,

Clear Channel Assessment (CCA) and Low Power Listening (LPL) to reduce en-

ergy consumption. Hence, it inherits B-MAC’s limitation in idle listening. Results

in [97] have shown that Z-MAC achieves 20%–30% higher throughput compared to

B-MAC under high contention, even though B-MAC’s throughput is slightly better

(5%–10%) than Z-MAC under low contention. In terms of energy efficiency, Z-MAC

is slightly worse (10%) than B-MAC under low traffic rate, because of the larger

backoff window size and the use of synchronisation messages. However, its energy

efficiency improves under high traffic rate and beats B-MAC by 40%.

Pattern-MAC (PMAC)

PMAC [127] combines CSMA and TDMA, and adaptively adjusts the sleep/wake-

up schedules of the nodes based on its own traffic and the traffic patterns of its

neighbours. Based on expected traffic patterns, a node can sleep for several time

frames when there is no traffic in the network. If there is any activity in the local

28

neighbourhood, the node will know this through the patterns and will wake up

when required. A pattern is basically a repetition of n times sleep and one wake-up

cycle. Figure 16 illustrates PMAC’s frame format. A frame consists of pattern re-

peat period for data transmission and pattern exchange period for pattern exchange

task. The numbers of slots in the pattern repeat period and the pattern exchange

period depend on the user’s application and the maximum number of neighbours

a node could have, respectively. During the pattern repeat period, a node fol-

lows its sleep/wake-up schedule and transmits data using RTS/CTS/DATA/ACK

mechanism. Then, during the pattern exchange period, every node contends for the

channel access to announce its pattern information. If during this period, a node

does not receive new pattern information, it will use the old traffic pattern for the

next frame.

Time
Data Broadcast Pattern exchange

Pattern repeat period Pattern exchange

period

Frame

Figure 16: PMAC frame format

The main advantage of PMAC is the adaptability to traffic changes. The simulations

conducted in [127] have shown that PMAC can achieve the same throughput as

10% duty-cycled S-MAC at light loads and seven times higher at high loads, with

30% less total energy consumption at any traffic loads. However, using traffic

pattern leads PMAC to be more prone to error. For example, some nodes may

receive incorrect patterns due to interference signals while other nodes successfully

receive the correct pattern. This problem increases energy consumption because of

collision, idle listening and wasted transmissions. Moreover, the fixed numbers of

slots for both pattern repeat and pattern exchange periods make PMAC less robust

to topology changes, especially when the network requires addition of new nodes

beyond the numbers of pre-assigned slots.

29

Funneling-MAC

Funneling-MAC [7] tries to solve the problem of increasing packet loss at nodes

closer to the sink, which is known as the funneling region, even at low traffic loads. It

implements CSMA in the entire network with a localised TDMA algorithm overlaid

only in the funneling region. Funneling-MAC localised TDMA is triggered by a

beacon broadcast by the sink. Any nodes receiving this beacon become f-nodes

and synchronise with other f-nodes by initialising their clock. Funneling-MAC is

sink-oriented, because the sink monitors the traffic, calculates and broadcasts the

TDMA schedule using the same transmission power as sending beacons. The sink

computes the TDMA schedule by allocating time slots per path basis and taking

into account slot reuse within more than two hops. The number of slots given to

a path is equivalent to the traffic rate of the path and the number of hops in the

path. To enhance robustness and flexibility, a CSMA frame is reserved between

two TDMA frames, and carrier sense is performed even for scheduled transmission.

In funneling-MAC, the superframe duration is fixed while the TDMA duration

changes dynamically according to the current traffic rate. Figure 17 illustrates the

funneling-MAC framing.

Figure 17: Funneling-MAC framing

Funneling-MAC is traffic adaptive because the sink can increase its transmission

power to send beacons and schedules, which in turn increases the size of the funnel-

ing region, when the traffic load increases. It also topology adaptive because of the

CSMA mechanism. Funneling-MAC is built on top of B-MAC and uses B-MAC’s

Low Power Listening (LPL) and preamble technique. Nodes outside the funneling

30

region, which communicate using CSMA, use a long preamble before data trans-

mission, while nodes in the funneling region with TDMA use a short preamble.

This makes funneling-MAC inherit B-MAC’s limitation in idle listening, especially

for nodes outside the funneling region. Moreover, concentrating on the traffic in-

side the funneling region makes it difficult for funneling-MAC to control high data

contention at nodes outside the intensity region.

The simulation results in [7] have shown that compared to B-MAC, funneling-MAC

achieves lower loss rate at nodes around one and two hops from the sink. At high

traffic rate, B-MAC’s loss rate is 81% at one hop and 40% at two hops from the sink,

while funneling-MAC only loses 48% at one hop and 22% at two hops. Funneling-

MAC achieves higher throughput than B-MAC and Z-MAC at low loads (around

50%) and medium loads (around 30%), but shows similar performance at high loads.

Crankshaft

Another protocol that combines CSMA and TDMA is Crankshaft [50]. This pro-

tocol is designed for dense WSNs. Similar to PMAC, Crankshaft schedules receive

slots. It tries to reduces overhearing by offsetting wake-up schedules. Crankshaft

divides time into frames and each frame consists of a number of slots for unicast

and broadcast communication. The frame format of Crankshaft is illustrated in

Figure 18. This protocol allocates one unicast slot in a frame for every node in the

network based on the nodes MAC address. By doing so, a sender knows precisely

when the intended receiver wakes up. Any senders that want to send message to a

node contend for the channel. Since a node’s receive slot is calculated as the node’s

MAC address modulo the number of unicast slots in a frame, two neighbours may

be assigned the same slot. To allow the two neighbours to communicate, nodes

are allowed to act as senders in their own receive slot, but revert to receive mode

if they lose contention. During the unicast period, each node listens in one slot

but sinks, which are assumed to be more powerful than sensor nodes, listen to all

unicast slots. Then, during the broadcast period, all nodes wake up to listen.

31

Time

Unicast Broadcast

Frame

Figure 18: Crankshaft frame format

Crankshaft is suitable for long-lived monitoring application, where throughput can

be traded for energy efficiency. Crankshaft has 10% lower delivery ratio but 20%

lower latency and consumes a factor of 8 less energy than a basic Low Power Lis-

tening (LPL) MAC protocol.

Real time and Reliable MAC (RRMAC)

RRMAC [64] is a hybrid MAC designed for hard real-time and reliable communica-

tion, where a successful communication depends on the performance time, otherwise

the system fails. This protocol uses convergecast network with multiple single-hop

clusters and assumes that sensor nodes have shorter transmission range than base

station and sinks (cluster heads). Therefore, the base station can communicate di-

rectly to sinks and sink can communicate directly to sensor nodes within one cluster.

RRMAC attempts to reduce end-to-end latency in two ways. First, time slots are

assigned in a sequence so that a packet can flow continuously from leaf node to the

base station and the base station can get all data in one superframe duration. Sec-

ond, RRMAC delays acknowledgment. Receiver may send acknowledgment upon

successful transmission in the next beacon frame.

The time slot assignment in RRMAC is hierarchical, where the base station allo-

cates time slots to sinks and sink assigns time slots to sensor nodes. This mech-

anism makes RRMAC topology adaptive because sensor nodes’ TDMA schedules

for single-hop communication are assigned periodically. Sensor nodes and sinks

transmit latency sensitive data to their parents using the assigned time slots. If

32

Time

Beacon

period

Contention-free period Sleep

Beacon interval

Sensor data period Forwarding period

Contention

period

Figure 19: RRMAC superframe structure

sensor nodes or sinks do not need real time or reliable data transmission, the su-

perframe structure will contain only a beacon block and contention access period.

With RRMAC, all sensor nodes are synchronised during beacon period, which is

owned by the base station and sinks. RRMAC’s superframe structure is illustrated

in Figure 19.

The simulation results in [64] have shown that when the traffic is stable, RRMAC

achieves constant delivery ratio and latency, which is beneficial for real-time re-

quirements. When the traffic load increases, RRMAC can utilise the contention

access period for data transmission. However, having only one contention period

in every superframe while the TDMA slots are contention-free makes RRMAC’s

capability to adapt to high traffic load is limited.

Event Based MAC (EB-MAC)

EB-MAC [80] is tailored for event based applications. In such applications, nodes

generate traffic when they detect events, but otherwise sleep. When some neigh-

bouring nodes detect an event, they will cause high contention due to simultaneous

event reporting. This MAC protocol tries to reduce contention by scheduling packet

transmissions for nodes that can sense the event and are within each other transmis-

sion range. EB-MAC operates using B-MAC’s Clear Channel Assessment (CCA)

and Low Power Listening (LPL) techniques. When nodes detect an event, they

exchange RTS/CTS packets to form a group and the first node to send the RTS

packet becomes the group leader. The group leader builds transmit schedules for

33

other nodes in its group according to their Received Signal Strength (RSS) of the

event detected. The higher the RSS reading, the earlier the slot is given to a node.

The schedule is informed to the group members in CTS packets. In order to syn-

chronise the timers of nodes in the group to the leader, EB-MAC uses Flooding

Time Synchronisation Protocol (FTSP) [76].

The simulation results in [80] show that EB-MAC improves on B-MAC by 10 times

higher throughput with around 50% lower latency when events are detected. How-

ever, built on top of B-MAC makes EB-MAC suffer B-MAC’s idle listening. More-

over, TDMA schedules are only built for nodes around a detected event, leaves the

message passing to the sink in unreliable contention mode.

BurstMAC

BurstMAC [98] utilises TDMA techniques and multiple radio channels for parallel

communication to handle correlated traffic burst. It targets low overhead both

in idle mode and during correlated traffic bursts. With an assumption that the

available number of radio channels n is larger than the maximum number of two-

hop nwighbours of a node in the network, BurstMAC uses n−2 interference-free

channels for data transmissions, one control channel for time synchronisation and

one dedicated wake-up channel for network startup. With BurstMAC, each node is

assigned a colour ID c≤n−2 that is unique within two-hop neighbourhood. This

colour ID is used by a node as a channel ID for data transmissions and to schedule

broadcasting of control messages on the control channel.

BurstMAC requires a rigid network-wide synchronisation. Every data transmission

must be preceded by a request bit from a sender, a synchronisation message by the

receiver, a request bit from the sender again in the corresponding colour segment,

schedule transmission by the receiver, data by the sender and an acknowledgement

by the receiver. This sequence benefits packet bursts because a sender can send

a sequence of packets with only a single preamble and a single acknowledgement.

However, it incurs high overhead when the traffic is light. BurstMAC supports

34

dynamic topology changes by letting nodes broadcast information about selected

colour IDs in their control messages. A new node can learn the colour sequence

and randomly pick a colour ID from the remaining free colours. BurstMAC sup-

ports fairness by randomly selecting a sender if there are burst requests by multiple

senders. However, in convergecast scenario, the main benefit of BurstMAC’s multi

channel approach is only the reduction of collision and energy consumption, be-

cause its effectiveness is limited by the fact that all traffic has to go up to the sink

through a single channel. In the experiment, BurstMAC is reported to achieve less

than 1% duty cycle in idle mode and can deliver burst packets five times faster than

scheduled MAC protocols.

i-MAC

i-MAC [32] is a MAC protocol developed for manufacturing machines. This protocol

is designed to work with repetitive traffic patterns and is adaptive when the traffic

loads increase or decrease. i-MAC is a hybrid of TDMA and Frequency-Division

Multiple Access (FDMA) approaches. The base station has several channels for

simultaneous communication with several sensor nodes within a time slot. i-MAC

is topology adaptive because the author assumes that the monitoring area is very

dense, where all sensor nodes are within one-hop of each other including the base

station. The base station knows the traffic pattern of the network and periodically

executes the slot assignment algorithms. The schedules are then disseminated to

all sensor nodes.

i-MAC attempts to minimise the transmission latency by reducing the number of

time-frequency slots. Therefore, it may assign the same slot to several nodes that

have no or low possibility of transmitting at the same time, while sensor nodes that

have high possibility of transmitting together are assigned different transmission

slots. This approach can reduce the transmission latency when the traffic load is

light. However, if two nodes are given the same slot and traffic load increases, trans-

missions may fail because they keep trying to transmit in the same slot. This scheme

35

introduces more collisions that can delay data transmissions. When collisions still

occur after several consecutive frames, the two nodes randomly choose other time-

frequency slots for their next transmissions until new schedules are generated by

the base station.

2.3.4 Discussion

Table 2 shows the comparison of the existing MAC protocols that we review in this

thesis. We compare all important issues in MAC protocol design for emergency

response WSNs, which include the main objectives of the protocols, the ability

to adapt to traffic and topology changes, as well as the availability of the design

criteria to prioritise high priority packets and to support fairness. A MAC protocol

is fair if all nodes have opportunity to access the channel for data transmissions

and therefore the sink can receive complete information from all sensor nodes in

the network.

Among all existing MAC protocols, only MaxMAC [56] satisfies the objectives for

emergency response WSNs, i.e. energy-efficient during light traffic load, has high

delivery rate and low latency when the load increases. MaxMAC also has ability

to adapt to traffic and topology changes. However, this protocol does not support

packet prioritisation and and does not guarantee fairness. When the traffic load is

light, MaxMAC behaves like WiseMAC [39] and it changes to pure CSMA when the

load is heavy. Both WiseMAC and CSMA do not guarantee fairness because nodes

with lots of data dominate the transmissions. Besides MaxMAC, BurstMAC [98]

can be utilised for emergency response as it is designed for event-triggered appli-

cations with correlated traffic bursts. It has low overhead and high throughput

because traffic is handled using multiple radio channels. Even though BurstMAC

guarantees fairness, it does not support packet prioritisation.

Judging solely from the ability to adapt to traffic and topology changes, besides

MaxMAC and BurstMAC, only Z-MAC [97] and Funneling-MAC [7] have these

36

Table 2: Comparison of existing MAC protocols

Protocols Main Objectives
Traffic Topology Packet

Fairness
Adaptability Adaptability Priority

Contention-based
S-MAC [123] ↓ energy medium good no no
T-MAC [114] ↓ energy medium good no no
B-MAC [88] ↓ energy medium good no medium
WiseMAC [39] ↓ energy medium good no no
TA-MAC [48] ↑ delivery, ↓ latency medium good no no
X-MAC [27] ↓ energy, ↓ latency medium good no medium
MaxMAC [56] ↓ energy, ↑ delivery, ↓ latency good good no no
Schedule-based
TRAMA [94] ↓ energy medium good no yes
FLAMA [93] ↓ energy medium good no yes
VTS [38] bounded latency medium good no yes
Hybrid

Z-MAC [97] ↑ throughput good good no yes
PMAC [127] ↓ energy, ↑ throughput good medium no yes
Funneling-MAC [7] ↑ throughput good good no medium
Crankshaft [50] ↓ energy medium good no medium
RRMAC [64] ↑ delivery, ↓ latency medium good no yes
EB-MAC [80] ↑ delivery, ↓ latency medium good no no
BurstMAC [98] ↓ overhead, ↑ throughput good good no yes
i-MAC [32] ↓ latency medium good no medium

capabilities. While Z-MAC supports fairness, Funneling-MAC only guarantees fair-

ness in the region closer to the sink. Moreover, both of them do not distinguish

high and low priority packets. We identify a gap in the research literature for a

MAC protocol that satisfies all of the requirements, i.e. minimises energy consump-

tion when the traffic load is light, has high delivery rate and low latency when the

traffic load increases, adapts to traffic fluctuations and topology changes, supports

packet prioritisation and has fair packet deliveries in both normal and emergency

situations. Our novel MAC protocol in Chapter 4 is designed to satisfy all of these

criteria.

2.4 Relay Placement Algorithms

To be able to offer reliable delivery when failures occur, a communication protocol

depends on a physical network topology that guarantees alternative routes to the

sink are in fact available. Therefore, one key objective in the topology planning

37

of a WSN is to ensure some measure of robustness. In particular, one standard

criterion is to make sure routes to the sink are available for all remaining sensor

nodes after the failures of some sensor nodes or radio links. In addition, since there

are sometimes data latency requirements, there may be a limit to the path length

from sensor to sink. This can be achieved by planning the deployment so that every

sensor node in the initial design has disjoint paths with a length constraint to the

sink. To ensure that the sensors have sufficient paths, it may be necessary to add a

number of additional relay nodes, which do not sense, but only forward data from

other nodes.

In network topology planning, sensor nodes, relays and sinks are represented by

vertices, and the radio links between them by edges. Two paths are vertex-disjoint

(respectively edge-disjoint) if both of them do not share any vertices (respectively

any edges), except the source and the sink. Vertex-disjoint paths are more resilient

to failures than edge-disjoint paths [106], because if a source node has k vertex-

disjoint paths, it is guaranteed to have a path to the sink after the failure of up to

either k−1 nodes or k−1 radio links. On the other hand, edge-disjoint paths only

protect against link failures. Figure 20(a) illustrates a network where the source

node s has 2 vertex-disjoint paths to the sink t, while the example in Figure 20(b)

shows a network where s has 2 edge-disjoint paths to t, but the paths are not vertex-

disjoint. Since we are only interested in vertex-disjoint paths, we will use the term

disjoint paths for short throughout this thesis, unless we want to differentiate it

from the edge-disjoint ones.

b

s

d

t

a

c

s

c

t

b

(a) (b)

a

Figure 20: Examples of (a) vertex-disjoint and (b) edge-disjoint paths from the
source s to the sink t

38

Finding several disjoint paths between a source and a sink is motivated by the

following advantages [113]:

1. Improving network reliability and survivability. The network can use

the alternative paths on demand to deliver messages if a path fails or becomes

congested and cannot provide the required quality of service. The availability

of k disjoint paths is able to tolerate failure of up to k−1 nodes.

2. Providing multi-path routing capability. Multi-path routing protocols

can use all routes simultaneously to minimise latency or to provide redundancy

in data transmission. Multi-path routing makes failure much less likely as all

disjoint paths must become disconnected to interrupt the transmission.

Installing additional relay nodes, to ensure that sensor nodes have sufficient paths,

comes at a cost that includes not just the hardware purchase but more significantly

the installation and ongoing maintenance, thus motivating solutions that minimise

the number of additional relay nodes. The relay placement problem for WSNs

is concerned with deploying a minimum number of relay nodes into the networks

to guarantee certain connectivity and survivability requirements. A classification

scheme for relay placement problems is shown in Figure 21.

Relay placement problem

Routing structures

Connectivity requirements

Deployment locations

Fault-tolerant requirements

Single-tiered

Two-tiered

Connected (k = 1)

Survivable (k > 2)

Unconstrained

Constrained

Full fault-tolerance

Partial fault-tolerance

Figure 21: Relay placement problem classification according to [81] and [90]

39

Misra et al. [81] classify the relay placement problems based on the routing struc-

tures, the connectivity requirements and the deployment locations. Based on the

routing structures, relay placement problems are categorised into single-tiered and

two-tiered. In single-tiered, a sensor node also becomes a relay node to forward

packets received from other nodes. The two-tiered network is a cluster-based net-

work, where a sensor node only forwards its own data to a cluster head. Based on

connectivity requirements, the problems are categorised into connected and surviv-

able. In the connected relay placement, a small number of relay nodes is deployed

to guarantee that the sensor nodes and the sinks or base stations are connected. In

survivable relay placement, the relay nodes are placed to guarantee k-connectivity,

where k ≥ 2. Based on the deployment locations, the problems are divided into

unconstrained and constrained. In the unconstrained relay placement, relay nodes

can be placed anywhere. However, in practice, there are some limitations on the

possible locations to deploy relay nodes. For example, relays cannot be placed at

physical obstacles. In the constrained relay placement, relay nodes can only be

deployed at a subset of candidate locations.

The relay placement problem is also classified based on the fault-tolerant require-

ments, i.e. full fault-tolerance and partial fault-tolerance [90, 51]. Full fault-

tolerance aims to deploy relay nodes in a network to establish k-connectivity be-

tween every pair of sensor nodes (original nodes) and relay nodes (additional nodes).

Partial fault-tolerance aims to deploy relay nodes to establish k-connectivity only

between every pair of sensor nodes as the original nodes. Full fault-tolerance has

two properties [26]:

1. the network requires k node failures to disconnect it, and

2. there exist at least k vertex-disjoint paths between every pair of nodes in the

network, not just between every node to a dedicated sink.

However, in some cases, partial fault-tolerance is preferable [90], because:

40

1. only the original nodes serve a useful purpose, the additional nodes merely

provide additional connectivity,

2. partial k-connectivity is more economical than the full k-connectivity, because

it requires fewer deployed relays.

The relay node deployment problem has long been acknowledged as significant.

In this section, we discuss the range of existing algorithms to deploy relay nodes

for fault-tolerance. We categorise the reviewed algorithms based on the routing

structures, i.e. single-tiered and two-tiered relay placement problems. Recall that

in the two-tiered cases, sensor nodes are only within one hop from the relays that

serve as cluster heads. Hence, the objective of the partial fault-tolerance is not to

provide alternative paths for sensor nodes, but for relay nodes. The reviewed relay

placement algorithms for WSNs are summarised in Table 3.

2.4.1 Single-tiered Relay Placement Problem

k-Connectivity-Repair

Bredin et al. [26] develop k-Connectivity-Repair as a centralised greedy algorithm

and its distributed version for the single-tiered unconstrained full fault-tolerant re-

lay placement problem to guarantee vertex k-connectivity. They assume that relay

nodes have the same transmission range as sensor nodes and the range is nor-

malised to one. The algorithm firstly computes a weighted complete graph, where

the weight of an edge is one less than the Euclidean distance between a pair of

sensors. The edge’s weight represents the number of additional relays required to

connect two sensors by a straight path. After that, this algorithm finds an approx-

imate minimum-weight vertex k-connected subgraph by repeatedly adding edges in

increasing order of weight until the subgraph is k-connected. If the subgraph is

already k-connected, it repeatedly attempts to remove edges in decreasing order of

weight, but putting the edge back if it is important for k-connectivity. Finally, it

41

Table 3: Summary of existing relay placement algorithms

Algorithms Summary
Single-tiered
k-Connectivity-Repair [26] From a weighted complete graph, finds a minimum-weight

vertex k-connected subgraph by adding edges in increasing
weight. For each edge, deploys k relays every transmission
range distance and k−1 relays at endpoints of the edge.

Partial k-Connectivity-Repair [90] Similar to k-Connectivity-Repair, but only places one relay
every transmission range distance and none at endpoints.

Connectivity-First [51] From a weighted complete graph, finds a minimum k-
connected spanning graph by adding edges that have the
highest contribution to connectivity and the least weight.

Redundant Router Placement [6] Uses Ford-Fulkerson to count the number of paths from
sensor to sink. It adds paths by placing relays start from
the furthest sensor from the sink.

1tFTP and 2tFTP [126] 1tFTP constructs a complete graph, finds a 2-connected
spanning subgraph and steinerises the edges. 2tFTP finds
the fewest relays as cluster heads, connects them using the
Steiner minimum tree and duplicates each relay found.

RNPC and RNPS [81] Assign edges’ weight as the number of candidate relays they
are incident with. RNPC computes a low weight connected
subgraph. RNPS computes a low weight 2-connected
subgraph. Relays are deployed at the candidate locations
that appear in the subgraph.

Two-tiered
2CRNDC [52] In each iteration, it selects a relay that can cover as many

sensors, which are not covered by two relays, as possible.
Then, it selects some relays that can make the previously
selected relay have two disjoint paths.

CRNSC and 2CRNDC [110] Divide region into cells, find possible positions to deploy
relays, find a solution to cover (k=1) or double cover (k=2)
sensors in each cell using exhaustive search, then add extra
relays if needed.

MRP-1 and MRP-2 [70] MRP-1 finds the fewest relays that can cover all sensors
and connects them using the Steiner minimum tree. MRP-2
adds three relays in the transmission range’s circle of each
relay found in MRP-1.

k-Vertex Connectivity [61] From a complete graph of cluster heads, calculates edges’
weight, finds a minimum cost vertex k-connected spanning
subgraph, and deploys relays along the subgraph’s edges.

42

places clusters of k relays along each edge every one unit distance and k−1 relays

at both endpoints of the edge.

The simulation results show that the distributed version of the algorithm nearly

achieves the same number of required additional relays as the centralised greedy

version. Moreover, compared to the random repair algorithm, where relays are

scattered randomly until the k-connectivity is achieved, the two versions of k-

Connectivity-Repair only require one seventh of the random repair cost to restore

graph 3-connectivity.

Partial k-Connectivity-Repair

Pu et al. [90] propose Partial k-Connectivity-Repair by modifying the k-Connectivity-

Repair algorithm by Bredin et al. [26] to guarantee only partial fault-tolerance.

Partial k-Connectivity-Repair follows the same procedure as k-Connectivity-Repair

to compute a weighted complete graph and to find a minimum-weight vertex k-

connected subgraph. After that, instead of placing clusters of k relays along each

edge every one unit distance and k−1 relays at both endpoints of the edge for full

fault-tolerance, the proposed modification for partial fault-tolerance only deploys

one relay every transmission range distance and none at the endpoints of each edge.

Connectivity-First

Han et al. [51] develop algorithms for the single-tiered unconstrained partial and

full fault-tolerant relay placement problem for k ≥ 1. They assume heterogenous

WSNs, where sensors have different transmission radii, while relays use the same

transmission radius. This asymmetric communication links together with the level

of desired fault-tolerance divide the problem into four categories: one-way and

two-way partial fault-tolerant, and one-way and two-way full fault-tolerant relay

placement. The algorithms firstly calculate the weight of additional edges between

each pair of sensors in a complete graph. The weight determines how many relays

43

needed along a straight line between two sensors. It is calculated by dividing the

Euclidean distance of the two sensors by the relay’s transmission radius.

A greedy heuristic algorithm called Connectivity-First is then proposed to find the

minimum k-connected spanning graph. It adds edges that can best help improving

the connectivity until the graph becomes k-connected. An additional edge is se-

lected because it has the highest contribution to the connectivity and has the least

weight, i.e. the number of relays. The connectivity is checked using a maximum

network-flow-based checking algorithm [86] as is used in [95]. When the graph is

k-connected, the algorithm tries to remove redundant edges in decreasing order of

weight as long as the removal does not break the k-connectivity. Finally, a number

of relays is deployed along the selected additional edges. The results show that the

algorithm by Bredin et al. [26] is more efficient for partial fault-tolerance, while

Connectivity-First is more efficient for full fault-tolerance in terms of the number

of relays that needs to be added to the network.

Redundant Router Placement

Ahlberg et al. [6] study the problem of single-tiered unconstrained partial fault-

tolerant relay placement for k=1 and k≥2. In the non-redundant relay placement

(k=1), they propose three algorithms:

1. Trivial Router Placement simply deploys relays on a straight line from each

and every sensor to the sink.

2. Trivial Placement Reusing Routers sorts the sensors according to their dis-

tances to the sinks, connects the closest sensor to its sink by deploying relays

on a straight line, and then connects the next closest sensor to the closest

deployed relays or to the sink.

3. Cluster Router Placement groups nearby and connected sensors into a cluster

and uses the Trivial Router Placement algorithm to connect clusters, instead

of connecting each sensor separately.

44

For the redundant relay placement (k≥2), firstly the algorithm counts the number

of available paths from each sensor to the sink using the Ford-Fulkerson maximum

flow algorithm (see Appendix A.2 for the pseudocode). If the number of available

paths is not sufficient, the algorithm places redundant relays start from the furthest

sensor from the sink.

Further, to reduce the number of deployed relays, Ahlberg et al. suggest two opti-

misation techniques:

1. For the non-redundant placement (k= 1), all sensors are reconnected to the

relay that has the shortest path to the sink. Relays with only connection to

another relay are removed.

2. For the redundant placement (k≥ 2), each relay is temporarily removed and

the number of available paths are recalculated, but placing it back if necessary.

Single-tiered and Two-tiered Fault-Tolerant Relay Placement (1tFTP

and 2tFTP)

Zhang et al. [126] study the single-tiered and two-tiered unconstrained partial fault-

tolerant relay placement problem for k-connectivity, where k= 2. Relay nodes are

assumed to have larger transmission range than sensor nodes. The network may

also have base stations. The proposed algorithms are:

1. Single-tiered Fault-Tolerant Relay Placement (1tFTP). It constructs a com-

plete graph, computes a 2-connected spanning subgraph and steinerises the

edges of the subgraph. The steinerisation process calculates edges’ weight by

dividing the Euclidean distance of any two vertices by the relay’s transmission

radius. For each edge, a number of relays is deployed along the straight line.

2. Two-tiered Fault-Tolerant Relay Placement (2tFTP). It uses the Two-tiered

Relay Node Placement (2tRNP) algorithm that is developed for 1-connectivity

45

proposed by Lloyd and Xue [71]. 2tRNP finds the minimum number of re-

lays that can cover all sensors into one-hop clusters. Relays in all clusters

are then connected by paths of additional relays. For this, 2tRNP finds the

Steiner minimum tree with minimum number of Steiner points. 2tFTP then

duplicates each of the relays found by 2tRNP.

1tFTP and 2tFTP are compared to two heuristics, 1tTSP and 2tTSP, that may pro-

duce close to optimal solutions. 1tTSP and 2tTSP compute a Traveling Salesman

(TSP) tour of the graph and steinerise the edges of the tour to deploy relays. The

simulation results show that in all cases with varied network density, the numbers

of relays required by 1tFTP and 2tFTP are no more than 1.5 times the numbers of

relays required by 1tTSP and 2tTSP.

Connected and Survivable Relay Node Placement (RNPC and RNPS)

Misra et al. [81] study the single-tiered constrained partial fault-tolerant relay place-

ment problem for both the connectivity (k=1) and the survivability (k=2) require-

ments. They assume that the transmission range of sensor nodes is smaller than

the transmission range of relay nodes. Misra et al. propose:

1. Connected Relay Node Placement (RNPC) for k= 1. It firstly constructs the

communication graph for sensors, base stations and relays’ candidate loca-

tions. Then, it assigns edges’ weight as the number of candidate relays they

are incident with. Finally, the low weight tree subgraph is computed, from

which the locations to place relays are identified. The unconstrained version

of RNPC is Single-tiered Relay Node Placement (1tRNP) studied by Lloyd

and Xue [71], where there is no restriction on the locations of the relays.

2. Survivable Relay Node Placement (RNPS) for k = 2. The algorithm con-

structs the communication graph and assigns edges’ weight too. It then as-

signs connectivity requirements between every pair of vertices in the following

way: c(v, w) = 2 if neither v, nor w is the candidate for relay. Otherwise,

46

c(v, w) = 0. Then, the low weight 2-connected subgraph that meets the con-

nectivity requirements is computed. Relay s’ candidate locations that appear

in the subgraph are the positions to deploy additional relays.

In the simulation, RNPC and RNPS are compared to simulated annealing. The

results show that they are able to produce almost the same numbers of relays as

the results obtained by simulated annealing. Simulated annealing has 10 times

longer running time, but only finds slightly better solutions in a few cases.

2.4.2 Two-tiered Relay Placement Problem

2-Connected Relay Node Double Cover (2CRNDC)

Hao et al. [52] propose an algorithm to solve the two-tiered constrained partial

fault-tolerant relay placement problem for 2-connectivity. Under an assumption

that the distributed sensor nodes are already 2-connected, they want each sensor

node to be able to communicate with at least two relay nodes and the network

of the relays is 2-connected. They also assume that the relay nodes’ transmission

range is at least twice the transmission range of sensor nodes. In each iteration, the

algorithm selects one relay from the set of candidate positions that can best cover

as many sensor nodes, which are not covered by two relays, as possible. Then, it

selects some relays from the set of candidate positions that can make the previously

selected relay have two disjoint paths and become 2-connected. The algorithm

proceeds until all sensors in the network are covered by at least two relays.

Connected Relay Node Single Cover (CRNSC) and 2-Connected Relay

Node Double Cover (2CRNDC)

Tang et al. [110] study the problem of two-tiered unconstrained partial fault-tolerant

relay placement for k = 1 and k = 2. Under an assumption that the transmission

range of relay nodes is four times the range of sensor nodes, they propose:

47

1. Connected Relay Node Single Cover (CRNSC). It requires that each sensor

node to be covered by at least one relay node, and that the set of relay nodes

is connected.

2. 2-Connected Relay Node Double Cover (2CRNDC). It requires that each sen-

sor node to be covered by at least two relay nodes and that the network

induced by the relay nodes is 2-connected.

The main ideas of the algorithms are:

1. Divide the region into small cells of size l.2r, where l is an integer partition

factor and r is the transmission range of sensor nodes.

2. For each cell, find all possible positions to deploy relays. Possible positions

are the intersections of sensors’ transmission circles of radius r. If a possible

position is outside of a cell, it is replaced with the closest point on the border

of the cell.

3. Without considering the connectivity, find the optimal solution to cover (k=1)

or double cover (k = 2) the sensor nodes within each cell using exhaustive

search.

4. Make the network of relays connected (k=1) or 2-connected (k=2) by adding

extra relays at some specific locations if necessary.

Minimum Relay-Node Placement for 1 and 2-Connectivity (MRP-1 and

MRP-2)

Liu et al. [70] address the two-tiered unconstrained full fault-tolerant relay place-

ment problem for k= 1 and k= 2. In the hierarchical network, relay nodes act as

cluster heads and are connected with each other to perform data forwarding task.

The proposed algorithms are:

48

1. Minimum Relay-Node Placement for 1-connectivity (MRP-1). The first step

is finding the minimum number of relay nodes that can cover all sensor nodes.

The network of relays may not be connected if the distance between them is

larger than the transmission range. Therefore, more relays are needed. The

second step is constructing Steiner tree to connect the relays such that the

number of Steiner points, in this case the additional relays, is minimised.

2. Minimum Relay-Node Placement for 2-connectivity (MRP-2). To achieve 2-

connectivity, MRP-2 adds three additional relay nodes in the transmission

range’s circle of each relay found in MRP-1.

These two algorithms can be utilised to the cases where the transmission ranges of

sensor nodes and relay nodes are either the same or different.

k-Vertex Connectivity

Kashyap et al. [61] give algorithms for the two-tiered unconstrained and constrained

partial fault-tolerant relay placement problem for edge and vertex k-connectivity,

where k ≥ 2. They assume a hierarchical network, where sensors forward data to

cluster heads. Therefore, the network should have vertex-disjoint (or edge-disjoint)

paths between each pair of cluster heads. Relay nodes are assumed to have the same

communication capabilities as the cluster heads and the range is normalised to one.

The algorithm for vertex k-connectivity starts by constructing a complete graph

of cluster heads and calculating the edges’ weight as the number of relays needed.

The weight is calculated from the edge’s length minus one. Then, the minimum

cost vertex k-connected spanning subgraph is sought. After that, relays are placed

along the additional edges of the resulting subgraph. Finally, the algorithm tries to

remove relays, which are sorted arbitrarily, one by one by still preserving the vertex

k-connectivity. The resulting graph is vertex k-connected.

49

Table 4: Comparison of existing relay placement algorithms

Algorithms k R vs r Routing
Deployment Fault-
Locations Tolerance

Single-tiered
k-Connectivity-Repair [26] ≥1 R=r 1-tiered unconstrained full
Partial k-Connectivity-Repair [90] ≥1 R=r 1-tiered unconstrained partial
Connectivity-First [51] ≥1 R≥r 1-tiered unconstrained full/partial
Redundant Router Placement [6] ≥1 R≥2r 1-tiered unconstrained partial
1tFTP and 2tFTP [126] 2 R≥r 1/2-tiered unconstrained partial
RNPC and RNPS [81] 1, 2 R≥r 1-tiered constrained partial
Two-tiered
2CRNDC [52] 2 R≥2r 2-tiered constrained partial
CRNSC and 2CRNDC [110] 1, 2 R≥4r 2-tiered unconstrained partial
MRP-1 and MRP-2 [70] 1, 2 R=r, R 6=r 2-tiered unconstrained full
k-Vertex Connectivity [61] ≥2 R=r 2-tiered un/constrained partial

2.4.3 Discussion

We show the comparisons of the reviewed relay placement algorithms for WSNs in

Table 4. We compare the algorithms based on the connectivity requirements (k), the

assumption made on the transmission ranges, i.e. R and r denote the transmission

ranges of relay nodes and sensor nodes, respectively, the routing structures, the

deployment locations, and the fault-tolerant requirements. Recall that for k = 1,

the algorithm only guarantees that the network is connected. If k≥2, it guarantees

survivability. Relay nodes can only be placed at a subset of candidate locations in

the constrained deployment, but can be placed anywhere if the deployment locations

are unconstrained.

In this thesis, we assume that an initial WSN topology is connected and additional

relays may be required for fault-tolerance. Even though relays may die during the

network operation, we only protect the network against sensor node failures be-

cause relays only provide additional connectivity to improve the network reliability

and survivability. Hence, we focus our research on the partial fault-tolerant relay

placement. Furthermore, since in practice relays cannot be placed anywhere inside

the monitoring region, we only consider the constrained relay placement. Based

50

on the state-of-the-art relay placement algorithms that we reviewed in this thesis,

we identify two research opportunities. Firstly, there is a gap in the research lit-

erature for a relay placement algorithm for the single-tiered, constrained partial

fault-tolerant relay placement problem for k≥2. The closest approach is RNPS by

Misra et al. [81], but it is designed only for k=2. Other algorithms, namely Partial

k-Connectivity-Repair [90], Connectivity-First [51] and Redundant Router Place-

ment [6], are designed for unconstrained deployment locations. Secondly, there is a

research opportunity for a relay placement algorithm that takes into account a path

length constraint, since all reviewed algorithms do not consider this issue. We will

discuss a new solution for the single-tiered, constrained partial fault-tolerant relay

placement problem for k≥2 disjoint paths with a length constraint in Chapter 5.

2.5 Disjoint Path Algorithms

Offline algorithms to discover k shortest vertex-disjoint and edge-disjoint paths

in existing networks are well studied in the literature. A maximum flow algo-

rithm, such as the Ford-Fulkerson algorithm [43], can be used to find edge-disjoint

paths [65] in a graph. Since in this thesis we consider both node and link failures,

we will only focus our research on vertex-disjoint paths and omit the discussion

about edge-disjoint paths as they can only protect a network against link failures.

We present below the existing algorithms to compute the shortest vertex-disjoint

paths.

Fast Pathfinding, Maximum Paths and Refined Maximum Paths

Torrieri [113] presents three algorithms to calculate a set of short disjoint paths,

which do not exceed the longest acceptable path length, between a source and a

sink. In each iteration, all three algorithms select the shortest path, remove the

intermediate vertices in the path from further use by zeroing the rows and the

columns of the intermediate vertices in the adjacency matrix and then select the

51

next shortest path using only the remaining vertices. The three algorithms proposed

by Torrieri are:

1. Fast Pathfinding. This is the simplest approximate algorithm, which executes

only the first step in the construction of the optimal set. In this algorithm,

if two or more remaining paths of length l are the shortest, one of them is

chosen arbitrarily.

2. Maximum Paths. This approximate algorithm executes the first two steps in

the construction of the optimal set. That is, if two or more remaining paths

of length l are the shortest and they exclude the fewest other paths of length

l, then one of the remaining paths is chosen arbitrarily.

3. Refined Maximum Paths, which constructs an optimal set of short disjoint

paths without approximation. This is similar to Maximum Paths except when

two or more paths have the same length and exclude the same number of other

paths of that length, two or more parallel computations occur.

Vertex-Disjoint Shortest Pair of Paths

The disjoint shortest pair of paths algorithm proposed by Bhandari [19] requires

two runs of a modified Dijkstra algorithm to find two shortest paths between a

source and a sink. In this paper, Dijkstra’s algorithm is slightly modified to handle

negative directed edges. The main idea is to exclude all possible paths between

the source and the sink that intersect with the first shortest path found during the

search for the second shortest path. Exclusion of such path is achieved by vertex-

splitting along the first shortest path found. Bhandari’s algorithm begins by finding

the first shortest path for a pair of vertices under consideration using the modified

Dijkstra algorithm. The graph is then modified by:

1. replacing edges on the shortest path by negative directed edges toward the

source,

52

2. splitting vertices on the shortest path, joining them by zero weighted directed

edges toward the source, and

3. replacing edges connected to vertices on the shortest path by two oppositely

directed edges of the original weight.

After that, the modified Dijkstra algorithm is run again on the modified graph. The

original graph is then restored and the overlapping edges of the two paths found

are removed to obtain the shortest pair of disjoint paths. For the shortest k disjoint

paths problem, where k>2, the algorithm is performed iteratively to obtain more

disjoint paths in a given network graph, provided such paths exist.

Localised Algorithm for Finding Node-Disjoint Paths (LAND)

Hou and Shi [55] propose LAND, a localised algorithm to find the shortest dis-

joint paths from every deployed sensor node to a sink and also to provide localised

path restoration. The sink starts the algorithm by sending a message to its direct

neighbours. The message that is flooded throughout the network contains the infor-

mation about the shortest path length and the path identifier, which is the identifier

of a sink’s neighbour. Upon receiving the message, each sensor node updates its

routing information if the message contains shorter path length for a specific path

identifier. When a node updates its routing information, it sends an update message

to its neighbours. In addition to finding disjoint paths, the path restoration mech-

anism works as follows: a neighbour of an exhausted node will broadcast a request

message and the receivers will initiate the sending of the shortest path message to

reconstruct the path.

2.6 Centrality and Alternative Path Centrality

Providing k-connectivity to the whole network [26, 51] so each sensor node has

k disjoint paths [19] is costly because it may require the addition of an excessive

53

amount of relay nodes. Therefore, as other alternatives to k disjoint paths, the

concept of maximally (partial) disjoint paths is introduced in [20] and non-disjoint

paths is used in [60] to reduce the resource cost. Two paths from a source s to a

sink t are maximally disjoint if there are no disjoint paths from s to t and the two

paths share a minimum number of common vertices and edges [20]. Two paths are

non-disjoint if both of them overlap [60].

Another solution to reduce the cost of relay deployment is by placing relays to

provide additional connectivity only around the most important nodes. The im-

portance of a node in network analysis is called its centrality. Originally, it is

measured by counting the number of the shortest paths passing through a certain

node. However, since we are dealing with node failures, we define the importance

of a node based on the effect of removing the node from the network. That is, the

node is important if its failure would disconnect many other nodes, or cause traffic

from many other nodes to be delivered late. In this situation, we need a centrality

measurement where the shortest paths are actually bypassing the node, not passing

through it.

The use of centrality index to analyse network robustness has been proposed in

the literature. Shavitt and Singer [101, 102] present two new centrality measures

based on the existence of a non-disjoint backup path if a node fails. This notion

of alternative path centrality is proposed for mesh networks. So, it calculates the

backup paths between every pair of nodes, not only between nodes and sinks. It also

does not consider a path length constraint in its calculation, which is an important

aspect for data latency requirements.

In the following subsections, we will discuss the concept of centrality and alternative

path centrality. We will present a new variation of alternative path centrality, which

takes account of a path length constraint, for WSNs with sinks in Chapter 6. We

will also discuss a new solution for the relay placement problem using this new

centrality.

54

2.6.1 Centrality

Centrality is a core concept in social network analysis, which was introduced by

Bavelas [16] in 1948. A centrality score is originally calculated by counting the

number of the shortest paths passing through a node. In its development, there are

several centrality indices that are mostly used. In [44], Freeman distinguishes three

basic centrality measures:

1. Degree centrality of a vertex v is measured by the number of vertices adjacent

to v,

CD(v)= |N(v)|

2. Closeness centrality of a vertex v is an inverse sum of distances from v to all

other vertices in the graph,

CC(v)=
1∑

s6=v∈V d(s, v)

3. Betweenness centrality of a vertex v is the sum of the probability that v falls

on a randomly selected shortest path between all pairs of vertices (s 6= t 6=v),

CB(v)=
∑

s6=t6=v∈V

∑
t6=s6=v∈V

σst(v)

σst

where σst denotes the number of shortest paths between s and t and σst(v)

denotes the number of shortest paths between s and t that pass through v

other than s and t.

Brandes [25] gives the variants of the shortest path betweenness, which do not only

consider the intermediaries, but also the influence of endpoints, distance, edge,

group, etc. In vehicular networks, the concept of centrality is used for access-points

deployment [62, 63] and discovering link criticality [99]. In WSN, it is used for

routing [84] and load balancing [87].

55

2.6.2 Alternative Path Centrality

The new centrality measures proposed by Shavitt and Singer [101, 102] are Quality

of Backup (QoB) and Alternative Path Centrality (APC). The idea behind these is

the failures of nodes with perfect backups do not affect connectivity nor increase

the path length in the network. QoB is a measure of path rerouting from a vertex’s

direct parents to its direct children. QoB of a vertex v is

ρ(v)=

∑
u∈πv

∑
w∈Cv

1
max{dv(u,w)−1,1}

|πv|·|Cv|

where πv is a set of v’s direct parents and Cv is a set of v’s direct children. ρ(v)=1

if v has perfect backups and ρ(v)=0 if v has no backup.

APC is the difference between vertices’ topological centrality before and after a

vertex fails. The topological centrality of a vertex u∈V , denoted χ(u), depends on

the number of vertices connected to u and their distances from u,

χ(u)=
∑

w∈V\{u}

1

d(u,w)

Therefore, 0≤χ(u)≤|V |−1;∀u∈V . The APC value of a vertex v is

ϕ(v)=
∑

u∈V\{v}

χ(u)−
∑

u∈V\{v}

χv(u)

where χv denotes the centrality values calculated using alternative paths which

bypass v. Although QoB and APC indices include connectivity information of a

network, neither of them can be used to identify which node failures would cause

the network to be disconnected. Moreover, they do not consider a length-bound in

the calculation.

2.7 Multiple Sink Placement Algorithms

While a relay node has similar resources to a sensor node except the sensing capa-

bility, a sink is usually powered, has large storage capacity and has WiFi/ethernet

56

backhaul. Therefore, the cost of a sink is assumed to be more expensive than a relay

node. In a traditional WSN, there is only one single static sink (or a base station)

that gathers data from sensor nodes in multi-hop communication, performs data

processing and reports it to the end-users. This single sink scenario has several

drawbacks, such as the energy hole problem and poor scalability. Moreover, the

reliance on one device is also a drawback, because any malfunction of that device

disconnects everything.

Having only one sink results in a many-to-one (convergecast) traffic pattern. It

means sensor nodes closer to the sink must relay traffic from farther nodes that

cannot reach the sink directly. This creates an energy hole around the sink, where

nodes near the sink fail quickly because of energy depletion. An energy hole parti-

tions the network and means that other sensor nodes are unable to reach the sink.

Moreover, having only one sink that serves the entire network is not scalable since

a WSN may consist of hundreds of nodes. This results in low quality of service in

the network, such as low throughput and high data delivery latency. In addition,

even though a sink has more resources than a sensor node, this electronic device

may fail too and is a single point of failure that disconnects the entire network.

To mitigate these problems, it is necessary to deploy more than one sink in the

monitoring region.

Multiple sink deployment has been extensively studied in the WSN literature. Sim-

ilar to sink deployment in WSN, many algorithms have also been developed to find

the optimal positions of routers or gateways in wireless mesh networks, access point

deployment in wireless neighbourhood networks, and core node placement in optical

networks, all of which will be discussed in this section. Generally, these algorithms

have different objectives from one another. Their objectives, such as minimising

energy consumption to prolong the network lifetime, maximising throughput, min-

imising latency, or supporting fault-tolerance, influence the algorithm designs. To

simplify the discussion, we will refer to routers, gateways, access points, core node,

cluster heads, data sinks and base stations as sinks, while other nodes, such as mesh

57

nodes, clients and sensors as nodes. We categorise the range of existing multiple

sink placement algorithms based on the number of sinks, whether it is given as an

input parameter (fixed) or becomes the function that the algorithms try to min-

imise. Table 5 presents the summary of our reviewed algorithms. A brief discussion

will follow later at the end of this section.

2.7.1 Minimise the Number of Sinks

Heuristic Opt Multisink Place (HOMP)

Xu and Liang [122] propose Heuristic Opt Multisink Place (HOMP), a heuristic

algorithm to place an optimal number of sinks to prolong the network lifetime. The

algorithm consists of two sub-problems: finding the optimal number of sinks from

a set of candidate locations so each node’s hop count to the sink is no longer than

a hop count bound, and building a load-balanced tree-based routing protocol for

data collection to maximise the network lifetime. To find the optimal number of

sinks, HOMP iteratively selects a sink such that it covers as many nodes, which are

within the hop count bound from the sink, as possible. The algorithm terminates

when all nodes are covered by the selected sinks. Then, for each cluster, a load-

balanced routing tree rooted at the sink is built by minimising the maximum number

of descendants of the sink’s direct children. Simulation results show that HOMP

achieves 13% longer network lifetime compared to the breadth first search tree-based

heuristic.

2-Connectivity

Ivanov et al. [58] present an algorithm to deploy a minimum number of sinks in a

wireless multi-hop backbone to provide fault-tolerance when one sink fails or one

link fails (2-connectivity). In graph theory, the minimum degree is necessary but

not sufficient condition for k-connectivity. The proposed algorithm starts by check-

ing each node’s degree. Then, it performs connectivity testing. If the graph is

58

Table 5: Summary of existing multiple sink placement algorithms

Algorithms Summary
Minimise the Number of Sinks
HOMP [122] Iteratively selects a sink that covers as many nodes, which

are within a hop count bound from the sink, as possible.
2-Connectivity [58] Identifies 2-connected components and articulation points,

then deploys additional sinks to achieve 2-connectivity.
Greedy Placement [91] Iteratively selects a sink to maximise the flow demands in

conjunction with the previously chosen sinks.
Negative Selection [120] Decides which candidate sinks will be eliminated from

further consideration.
OPEN/CLOSE [89] Lists sinks in a decreasing order of capacities, selects a

minimum number of sinks from the top of the list, forms
clusters, and updates the solution recursively with lower
capacity sinks to reduce cost.

Iter. Greedy DS [17] Divides a network into a minimum number of clusters with
bounded radius by selecting sinks greedily. Each cluster is
then divided into sub-clusters if either relay load or cluster
size constraints are violated.

Weighted Recursive [14] Greedily selects high degree nodes as sinks and builds
spanning trees. In each iteration with increasing hop count,
greedily reselects nodes that can cover as many nodes as
possible as sinks.

Incr. Clustering [111] Uses R-step transitive closure to identify sinks.
MSPOP [85] Deploys sinks one by one while evaluating the network

lifetime. Identifies sink positions using k-means clustering.

Fixed Number of Sinks
BSL [85] Uses k-means clustering to find sink positions.
CBS [28] Uses a variant of k-means clustering to form overlapping

clusters. A node joins the clusters of the two nearest sinks.
Cluster Balancing [73] Finds the optimal location of a sink such that the total

shortest hop distance of the cluster is minimised.
MBCP [103] Partitions a network into connected sub-networks of equal

size and places a sink randomly in each sub-network.
Global, 1hop [115] Sinks form clusters by grouping close-by nodes, then find

the centroid of the clusters as their new positions.
DECOMP [82] Optimises node-sink connections by finding the minimum

power of each node to p sinks and optimise each sink’s
location by moving it to the centre of mass of all nodes
connecting to it.

COLA [8] Divides a region into cells, places a sink at the centre of a
cell, forms clusters, and reposition sinks to minimise latency.

GAHO, GADO [124] Uses genetic algorithms to place each sink at or close to the
geometric centroid of all nodes in the same cluster.

PMP [72] Finds the best position for one sink by moving it across all
candidate positions, places all sinks at that position, then
tries to find the best positions for them one by one by
keeping other sinks untouched.

Greedy, Local Search [22] The greedy algorithm selects sinks one by one to improve
the data rate. Local search starts with a random placement
of sinks and relocates them to improve the data rate.

MTWP [128] Iteratively selects a sink with the highest traffic-flow weight.

59

2-connected, the algorithm stops. Otherwise, it performs an incremental correction

by firstly identifying 2-connected components and articulation points shared be-

tween the 2-connected components. An articulation point is a node whose removal

disconnects a graph. Finally, the algorithm deploys additional sinks to make the

graph 2-connected.

Greedy Placement

Qiu et al. [91] study the problem of minimising the number of sink placements to

maximise the bandwidth utilisation in three scenarios: ideal link model, bounded

hop count model and smooth throughput degradation model. In the ideal link

model, the throughput of each link along a path is assumed to be one. In the

bounded hop count model, the throughput is one if the path length is not more than

a hop count threshold, otherwise it is zero. In the smooth throughput degradation

model, the amount of throughput on an link along a path of length l is 1
l
. Given

a capacity constraint for each link, node and sink, the authors propose greedy

placement algorithms for these three models, where a sink is iteratively picked that

maximises the total flow demands satisfied in conjunction with the sinks chosen in

the previous iterations. The greedy algorithms utilise the Ford-Fulkerson network

flow algorithm to calculate the total flow demands. In the simulation, it is observed

that an increase in the communication radius results in fewer number of sinks

chosen to satisfy the flow demands. The simulation results also show that the

three proposed greedy algorithms performs very close to the optimal solutions and

achieves 2 to 10 times as few sinks compared to the random deployment.

Negative Selection Statistically-tuned

In [120], Wong et al. propose the Negative Selection Statistically-tuned heuristic

algorithm to find locations of a minimum number of sinks to minimise communica-

tion delay and hop count from nodes to the nearest sinks. Unlike other heuristics,

60

at each step the proposed heuristic algorithm decides which of the candidate sinks

will be eliminated from further consideration based on the weighted sum of four

components: lower bounds, average node difficulty for coverage, greedy heuristic

and randomised greedy heuristic. The lower bound is calculated as the sum of the

inverse of the maximum number of nodes covered by a sink, i.e. nodes to which the

sink can communicate. The difficulty to cover a node is the inverse of the square

of the number of sinks that currently cover that node. The greedy heuristic selects

the sink with the largest number of covered nodes. The randomised version of the

greedy algorithm probabilistically selects a sink based on the coverage by the sink.

OPEN/CLOSE

Prasad and Wu [89] investigate the problem of deploying a minimum number of

sinks to minimise the network installation cost and balance the traffic by taking into

account the sinks’ maximum capacity to handle traffic. The network installation

cost takes into account the total number of hops from each node to the sinks and

the cost of choosing the sinks. Note that a higher capacity sink has a higher cost.

The authors propose a heuristic algorithm called OPEN/CLOSE. The heuristic

algorithm picks the initial solution by listing all potential sinks in a decreasing order

of bandwidth capacities and picking a minimum number of sinks from the top of

the list whose combined capacities satisfies the total bandwidth requirement of the

network. Clusters are formed where each node finds the shortest path to the nearest

sink that still has remaining bandwidth capacity. The initial solution consists of

high capacity sinks, so the total cost is high. The algorithm then recursively updates

the solution by replacing one sink at a time with a few other sinks from the candidate

locations to reduce the cost but still satisfy the network’s bandwidth requirement.

The simulation results show that OPEN/CLOSE deploys 20% lower cost sinks than

a greedy approach.

61

Iterative Greedy Dominating Set

In [17], Bejerano proposes the Iterative Greedy Dominating Set algorithm to parti-

tion the network into a minimum number of disjoint clusters and find the position of

sinks. The formed clusters must satisfy several constraints: the delay bound (clus-

ter radius), the relay load (a node can serve as relay only for a limited number of

other nodes), and the bandwidth requirement of all nodes in the cluster. In the first

step, the algorithm divides the network into a minimum number of clusters with

bounded radius by selecting the sinks greedily. In each iteration, a node which can

cover the maximum number of other nodes in its radius-bounded neighbourhood is

selected as a sink. Then, clusters are formed and the shortest path trees are built,

where each node selects the nearest sink to join. If a tree violates the bandwidth

or relay load constraints, it is divided into smaller subtrees that meets all of the

requirements. To further reduce the maximum relay load, a heuristic algorithm is

employed to reposition the sinks by considering all nodes in the clusters that can

serve as the root of the tree.

Weighted Recursive

Aoun et al. [14] propose Weighted Recursive, a recursive greedy algorithm to deploy

a minimum number of sinks such that the Quality of Service (QoS) requirements are

satisfied. The QoS constraints concerned here are the delay bound (cluster radius

is at most R hops), the relay traffic (a node can only relay at most L other nodes’

traffic), and the sink capacity (cluster size is at most S nodes). The algorithm

recursively computes minimum weighted dominating sets. The weight of a node v

is not simply the number of nodes it covers, but a weighted sum, i.e. a node farther

from v will have a lower contribution to the total weight of v. The algorithm starts

by greedily selecting nodes with high degree as sinks and building spanning trees. In

each iteration with increasing hop count, it greedily reselecting nodes that can cover

as many nodes as possible as sinks and reconstructing the spanning trees. When

62

reconstructing the spanning trees, the relay traffic and the sink capacity bounds

are checked to guarantee QoS. The algorithm stops when each cluster’s radius is at

most R hops. Simulation results show that the weighted recursive outperforms the

iterative greedy dominating set [17] and the augmenting placement by 50% fewer

sinks. The augmenting placement is similar to the iterative greedy placement, but

it does not make greedy decisions for the next sink placement. Any placement

providing subsequent coverage to uncovered nodes is considered.

Incremental Clustering

Tang [111] proposes the Incremental Clustering algorithm that incrementally iden-

tifies sinks and assigns nodes to the identified sinks. The algorithm is designed to

satisfy three QoS constraints, namely the delay bound (communication is at most

R hops), the relay load (a node can only relay at most L other nodes’ traffic), and

the sink capacity (a sink can only serve at most S nodes). The algorithm firstly

builds the R-step transitive closure from the graph representation of the network.

An edge in the R-step transitive closure represents a path in the original graph that

has length less than or equal to R. The ith row of the R-step transitive closure is a

cluster representing a set of nodes that can be covered by the ith node. Sinks are

then identified based on the R-step transitive closure. A node is selected as a sink if

it is not present in any other cluster. Finally, nodes, which do not violate the delay,

relay load and sink capacity constraints, are assigned to the selected sink. The pro-

cess is repeated until all nodes are assigned to the sinks. The incremental clustering

algorithm is compared to the weighted recursive [14], the iterative greedy dominat-

ing set [17] and the augmenting placement. The results show that the incremental

clustering’s number of sinks is similar to that of the weighted recursive and less

than that of the iterative greedy dominating set and the augmenting placement.

63

Find the Best Sink Location (BSL) and Minimise the Number of Sinks

for a Predefined Minimum Operation Period (MSPOP)

Oyman and Ersoy [85] study two problems: Find the Best Sink Location (BSL)

and Minimise the Number of Sinks for a Predefined Minimum Operation Period

(MSPOP). In the BSL problem, the number of sinks is known prior to the deploy-

ment. The k-means clustering algorithm is used in this case to find the positions of

the sinks, i.e. in the centres of disjoint clusters. In the MSPOP problem, the min-

imum required network lifetime is given. The algorithm deploys sinks one by one

while evaluating the network lifetime. The search stops when the desired network

lifetime is reached. Similar to the BSL problem, the sinks’ positions are identified

using the k-means clustering algorithm.

2.7.2 Fixed Number of Sinks

Cluster-Based Sampling (CBS)

Cambazard et al. [28] propose the Cluster-based Sampling (CBS) algorithm to find

the optimal positions to deploy a given number of sinks to minimise the total Eu-

clidean distance from all nodes to the two nearest sinks. CBS uses the concept of

the k-means clustering algorithm. In the k-means clustering algorithm, a network

is divided into disjoint clusters and each sink is placed in the centre of a cluster.

CBS applies a variant of the k-means clustering algorithm to compute overlapping

clusters. It starts by selecting the positions of k sinks randomly from the available

nodes. Then, the overlapping clusters are formed, where each node joins two clus-

ters, i.e. the clusters of its nearest and second nearest sinks. The centroid of each

cluster is calculated and each sink is moved to the node’s location near the new

centroid. The iteration stops when no further improvements can be made in terms

of the total distance of all nodes to two nearest sinks. CBS results are compared

to the optimal solution found using mixed integer linear programming, where in all

scenarios, CBS’s total distances are not more than 0.05% longer.

64

Cluster Balancing

Mahmud et al. [73] present heuristic algorithms for partitioning the networks into

k disjoint clusters and place one sink for each cluster to minimise and balance the

total energy consumption of all clusters. They find the optimal location of the

sink such that the total shortest hop distance of the cluster is minimised. It is

basically constructing the connectivity graph and computing the total shortest hop

distance by trying to deploy a sink in each possible location between two nearby

nodes. The heuristic works in two phases. In the first phase, it creates k initial

clusters by using a greedy approach. Initially, there are n clusters with one node

in each cluster. Then, the algorithm repeatedly finds a cluster with the smallest

total shortest hop distance and merges it with the best neighbouring cluster that

minimises the total shortest hop distance of the resulting merged cluster. In the

second phase, the algorithm keeps moving one node from the largest total shortest

hop distance cluster to a neighbouring cluster with the smallest total shortest hop

distance until the balance is reached.

Maximally Balanced Connected Partition (MBCP)

Slama et al. [103] extend the problem of Maximally Balanced Connected Partition

(MBCP) to deploy multiple sinks. The MBCP algorithm partitions a network

into connected sub-networks of equal size. It firstly divides the network into two

connected sub-networks with equal number of nodes. To have more sub-networks,

MBCP divides the sub-networks again. In each sub-network, a sink is randomly

deployed. The simulation results show that this technique can prolong the network

lifetime around 10%–20% longer compared to the random deployment.

Iterative Decomposition (DECOMP)

Ning and Cassandras [82] address the problem of optimally determining the location

of sinks to minimise communication power of nodes which are directly connected

65

to the sinks. For reliability, each node is required to connect to at least p sinks

but each sink can only accept at most q connections. The problem is formulated as

a Mixed Integer Non-linear Programming (MINLP) problem. It tries to minimise

the total transmission power of the nodes. Since the MINLP solver has the scal-

ability issue and the optimal solution depends on the initial feasible solution, the

authors propose the Iterative Decomposition (DECOMP) algorithm and use ran-

dom placement for initial locations. The iteration consists of two steps: optimise

the node-sink connections by finding the minimum power of each node to connect

to p sinks and optimise each sink’s location by moving it to the centre of mass of

all nodes connecting to it. This process stops when no further improvements on the

sinks’ locations can be made. The simulation results show that DECOMP finds the

same best solution with 10%–60% shorter runtime compared to the MINLP solver

for small network cases, i.e. up to 75 nodes. MINLP is not scalable and thus it

cannot find solutions for large cases.

Global and 1hop

Vincze et al. [115] present two algorithms for multiple sink deployment, namely

Global and 1hop. Global is a centralised iterative algorithm, where in each step the

sinks form clusters by grouping nodes which are closer to them. Then, they find

their new positions by finding the centroid of the clusters, i.e. locations where the

sinks’ resultant vector is zero. 1hop is the distributed version of the algorithm, where

the sinks only know location information of neighbouring nodes. After collecting

messages for t time period, the sinks can approximate the locations of distant nodes

using the number of nodes that actually send packets through the sinks’ neighbour-

ing nodes. Based on this assumption, the authors extend the two algorithms to

Global Relocation and 1hop Relocation. Both algorithms relocate the sinks from

time to time during the network operation to extend the lifetime. In the simula-

tion, 1hop Relocation can prolong around 30% of the network lifetime compared to

Global Relocation, and about 50% compared to Global and the random deployment.

66

Coverage and Latency Aware Actor Placement (COLA)

Akkaya and Younis [8] propose Coverage and Latency Aware Actor Placement

(COLA), a heuristic algorithm that considers both delay requirement and cover-

age by deploying a number of sinks. COLA initially distributes the sinks evenly

in the region for maximising coverage. The region is divided into equal sized cells

as many as the number of sinks. Each sink is then placed at the centre of one

cell. After that, all nodes select their nearest sinks to form clusters. Each sink

then reposition itself at a location that enables minimum latency in data collection.

COLA uses vertex 1-centre formulation to pick new locations for sinks. Firstly, it

creates the minimum distance matrix of all nodes within a cluster. Then for each

node, it finds the longest path from that node to any other nodes by searching in

the corresponding row of the matrix. Finally, the smallest value is picked among

the list of the longest path. The vertex 1-centre will be the location of the node

which has this smallest value in its row. Simulation results show that COLA has

about 30% increase in coverage and up to 40% delay reduction compared to the

random deployment.

Genetic Algorithm for Hop Count Optimisation (GAHO) and Genetic

Algorithm for Distance Optimisation (GADO)

Youssef and Younis [124] propose two algorithms, namely Genetic Algorithm for

Hop Count Optimisation (GAHO) and Genetic Algorithm for Distance Optimisa-

tion (GADO), using genetic algorithms. The two algorithms deploy a given number

of sinks to reduce packet latency. GAHO tries to minimise the number of hops be-

tween a node and one of the sinks, while GADO uses distances as the cost factor

for optimisation instead of hop counts. The sink placement problem is viewed as

a cluster assignment problem where a sink is placed at or close to the geometric

centroid of all nodes in the same cluster. For a small number of sinks, GADO’s

topologies achieve the lowest delivery latency compared to topologies of GAHO,

67

COLA [8] and random deployment, which are higher by 12.5%, 75% and 125%, re-

spectively. The simulations also indicate that the latency decreases as the number

of sinks increases and for a large number of sinks, the algorithms perform very close

to each other.

P-Median Problem (PMP)

Luo et al. [72] present a heuristic algorithm to deploy a given number of sinks

to improve energy efficiency by shortening the distance between nodes and sinks.

The algorithm deploys multiple sinks and optimises the total minimum weighted

distance by taking into account the demand generated at nodes. Firstly, it will find

the best position for one sink by moving it across all candidate positions. The initial

deployment set is constructed by placing all sinks at the best identified position.

Then, the algorithm tries to find the best positions for them one by one by keeping

the other sinks untouched. The heuristic algorithm is proved to be applicable to

large scale WSNs as the simulation time increases linearly with the increment of

the number of sinks.

Greedy and Local Search Algorithms for Sink Positioning

Bagdanov et al. [22] study the problem of sink positioning for maximising the data

rate while minimising the energy consumption of the network. By assuming that

the sinks are located only at node positions, they propose two heuristics: a greedy

algorithm and a local search algorithm. The greedy algorithm deploys sinks incre-

mentally. That is selecting the sinks one by one to improve the data rate as much

as possible, while keeping the positions of the deployed sinks fixed. The local search

algorithm, on the other hand, starts with a random placement of sinks. Then, it

tries to relocate any of the sinks to improve the data rate. After several iterations

with random initial configuration, the deployment with the highest data rate is

68

picked as the best solution. The simulation results show that the local search al-

gorithm produces a better sink positioning that yields a better power consumption

than the greedy algorithm. The power consumption of both algorithms is similar

for up to five sinks, but for a larger number of sinks, i.e. up to 20, the local search

algorithm only consumes about half as much power as the greedy one.

Multi-hop Traffic-flow Weight Placement (MTWP)

Zhou et al. [128] propose the Multi-hop Traffic-flow Weight Placement (MTWP)

algorithm to choose some nodes as sinks to maximise the throughput of the network.

MTWP is an iterative algorithm to determine the best location of a given number of

sinks. In each iteration, the node with the highest traffic-flow weight will be selected

as a sink. MTWP is computed by taking into account the number of nodes and

sinks, traffic demand, locations of sinks and interference from existing sinks. In the

simulation, MTWP has been shown to achieve around 10%–30% more throughput

than the random deployment.

2.7.3 Discussion

Table 6 shows the comparisons of the existing algorithms for the multiple sink

placement problem. We compare the algorithms based on their objectives, the

deployment locations and the constraints assumed. In the constrained deployment,

sinks can only be placed at candidate locations. If the deployment locations are

unconstrained, sinks can be placed anywhere. Co-located deployment means nodes

and sinks’ locations are overlapping. In this literature study, most of the algorithms

use a linear programming method for small cases, where a network only consists of

several nodes, and a heuristic or local search algorithm for bigger cases.

To be robust to sink failure, it is necessary for each node to be able to commu-

nicate with more than one sink. Among all existing algorithms, only CBS [28],

2-Connectivity [58] and DECOMP [82] address the fault-tolerant issue in multiple

69

Table 6: Comparison of existing multiple sink placement algorithms

Algorithms Objectives
Deployment Additional
Locations Constraints

Minimise the Number of Sinks
HOMP [122] ↓, balance energy constrained hop count
2-Connectivity [58] fault-tolerance (2-connected) unconstrained –
Greedy Placement [91] ↑ bandwidth, co-located link, node, sink capacity
Negative Selection [120] ↓ delay, ↓ hop count co-located –
OPEN/CLOSE [89] ↓ cost, load balancing constrained node capacity
Iter. Greedy DS [17] QoS (delay, load, capacity) co-located hop count, load, capacity
Weighted Recursive [14] QoS (delay, load, capacity) co-located hop count, load, capacity
Incr. Clustering [111] QoS (delay, load, capacity) co-located hop count, load, capacity
MSPOP [85] required lifetime unconstrained minimum required lifetime
Fixed Number of Sinks
BSL [85] efficient clustering unconstrained –
CBS [28] ↓ distance, fault-tolerance co-located –
Cluster Balancing [73] ↓, balance energy unconstrained –
MBCP [103] ↑ lifetime unconstrained –
DECOMP [82] ↓ energy, fault-tolerance unconstrained –
Global, 1hop [115] ↓ energy unconstrained –
COLA [8] ↓ delay, ↑ coverage co-located –
GAHO, GADO [124] ↓ delay unconstrained –
PMP [72] ↑ lifetime constrained node demand
Greedy, Local Search [22] ↑ data rate, ↓ energy co-located –
MTWP [128] ↑ throughput co-located –

sink placement. With an assumption that the communication to sinks is within one

hop, CBS and DECOMP require each node to be able to communicate to two sinks

for fault-tolerance. Unlike CBS and DECOMP, 2-Connectivity assumes multi-hop

communication among sinks and deploys sinks to make the network of sinks become

2-connected. Research opportunities arise as these three algorithms do not consider

hop count limit in the algorithm designs. Therefore, there is a gap in the research

literature for a multiple sink placement algorithm to design multi-hop networks

where each node can communicate to multiple sinks with constrained path length.

In addition, since the problems of deploying sinks and relays are solved separately

in the literature, the second research opportunity is to minimise the total com-

bined cost of sink and relay deployment by taking into account the fault-tolerant

requirements. Our designed algorithms in Chapter 7 address these problems.

70

Algorithm 1: GRASP
Input : max iterations, seed
Output: best solution
1: Read-Input()
2: for k←1 to max iterations do
3: solution←Greedy-Randomised-Construction(seed)
4: solution←Local-Search(solution)
5: Update-Solution(solution, best solution)
6: end for
7: return best solution

2.8 Greedy Randomized Adaptive Search Proce-

dures (GRASP)

GRASP [41, 42, 96] is a metaheuristic which captures good features of pure greedy

algorithms and random construction procedures. It is an iterative process. In each

iteration, it consists of two phases: the construction phase and the local search

phase. The construction phase builds a feasible solution as a good starting solution

for the local search phase. At each construction iteration, the next element to be

chosen is determined by ordering all elements in a candidate list with respect to a

greedy function that estimates the benefit of selecting each element. The probabilis-

tic component of a GRASP is characterised by randomly choosing one of the best

possible candidates in the list, instead of the overall best one. Since the solution

produced by the construction phase is not necessarily the local optimum, the local

search phase works iteratively to replace the current solution with a better one from

its neighbourhood. It terminates when there are no better solutions available. The

generic GRASP implementation for minimisation is given in Algorithm 1, in which

max iterations iterations are performed and seed is used as the initial seed for the

pseudorandom number generator. When we increase the number of iterations, the

computation time increases, but we will get a better solution.

Algorithm 2 gives the pseudocode for the construction phase. At each iteration,

instead of selecting the best element, a Restricted Candidate List (RCL) is built by

greedily selecting the best elements that can be incorporated to the current partial

71

Algorithm 2: Greedy-Randomised-Construction
Input : seed
Output: solution
1: solution←∅
2: Evaluate the incremental costs of the candidate elements
3: while solution is not a complete solution do
4: Build the restricted candidate list (RCL)
5: Select an element s from the RCL at random
6: solution← solution ∪{s}
7: Reevaluate the incremental costs
8: end while
9: return solution

Algorithm 3: Local-Search
Input : solution
Output: solution
1: while solution is not locally optimal do
2: Find s ′∈N(solution) with f(s ′)<f(solution)
3: solution←s ′

4: end while
5: return solution

solution and have the smallest incremental costs. An element e, which is associated

with a cost c(e), is included in the RCL if c(e)∈ [cmin, cmin +α(cmax−cmin)], where

0 ≤ α ≤ 1, while cmin and cmax denote, respectively, the smallest and the largest

incremental costs. The case α= 0 corresponds to a pure greedy algorithm, while

α = 1 is equivalent to a random construction. Each element is then randomly

selected from those in the RCL. After the selected element is incorporated to the

partial solution, RCL is updated and the incremental costs are reevaluated.

The solution that resulted from the construction phase is not necessarily the local

optimum, so local search is utilised to improve it. A local search algorithm works

in an iterative fashion by replacing the current solution by a better solution in

the neighborhood of the current solution. It terminates when no better solution is

found. The pseudocode of a basic local search algorithm is given in Algorithm 3.

GRASP has been shown to be very powerful in solving combinatorial problems as

its results are close to the optimal. Some applications of GRASP including the set

covering problem [41], the Steiner tree problem [77, 78], power system transmission

72

network planning [21] and a capacitated location problem [35]. We refer to Resende

and Ribeiro [96] for some references focusing the main applications of GRASP. In

this thesis, we utilise the GRASP technique for the relay placement problem in

Chapter 5 and 6, as well as the relay and sink placement problem in Chapter 7.

2.9 Summary

We identify the following gaps in the research literature for a MAC protocol and

topology planning algorithms. Based on the existing MAC protocols that we re-

viewed in this thesis, none of them address all of the requirements for emergency

response WSNs, i.e. behaves energy-efficiently when the traffic load is light, achieves

high delivery rate and low latency when the traffic load increases, adapts to traffic

fluctuations and topology changes, supports packet prioritisation and has fair packet

deliveries in both normal and emergency situations. Our novel MAC protocol in

Chapter 4 is designed to satisfy all of these criteria.

Based on the state-of-the-art relay placement algorithms that we reviewed in this

thesis, we identify two research opportunities. Firstly, none of the algorithms ad-

dress the single-tiered, constrained partial fault-tolerant relay placement problem

for k≥2. Secondly, none of them take into account a path length constraint. Our

solution that solves these problems is presented in Chapter 5. Another solution

that relaxes the k-disjointness using centrality calculation is presented in Chap-

ter 6. Based on the reviewed sink placement algorithms, none of them constrained

path length and consider minimising the total combined cost of sink and relay de-

ployment for fault-tolerance. Our solutions in Chapter 7 address these problems.

We use the GRASP technique to design these topology planning algorithms.

73

74

Chapter 3

Research Methodology

3.1 Introduction

In this chapter, we summarise the general assumptions we made for the Wireless

Sensor Networks (WSNs), list the requirements for the MAC protocol design and

deployment planning, describe the simulation tool for the implementation of our

algorithms, and define performance metrics for evaluating the performance of our

algorithms against existing algorithms in the literature. All results presented in this

thesis are based solely on simulation study. We choose to implement our approaches

using simulations because of the practicalities of design evaluations, especially when

we conduct experiments in various environments using different system configura-

tions.

3.2 WSN Model and General Assumptions

In this thesis, we use some assumptions in our simulations for purpose of simplicity.

The assumptions and the implication to the real-world situation are discussed below.

We note that the assumptions made here are not only for emergency response as it

is only one of the extreme applications.

75

1. Perturbed grid deployment. The initial WSN is connected, which means there

is a routing path between every sensor node in the network. We make no

assumptions on the geographical or physical properties of the area in which

the WSN is to be deployed. However, for the ease of simulation purposes, we

deploy up to 100 nodes within randomly perturbed grids of a two-dimensional

network area. In the perturbed grid deployment, a sensor node is placed inside

one unit grid square and the coordinate locations within each grid square

are randomly perturbed. This is an approximation of manual deployment

of sensor nodes, such as in a building or a city that has regular symmetry.

The shape of the sensor field does not influence the performance of the MAC

protocol and topology planning algorithms.

2. Homogenous network. All nodes are homogenous, i.e. they have identical

hardware specification and capabilities, equal amount of initial energy, which

is not time-dependent, and also the same level of power consumption for the

same task, e.g. send or receive messages. Even though in reality all nodes

are different, for example they have different initial energy so they may die

in different order than what is expected, this assumption will not affect our

simulation results. Our solutions allow the network to continue to receive

data from all other nodes, and so we have time to replace a depleted battery

without losing data.

3. Static network. All nodes are static, so they remain in the same position

during the simulation period. This assumption is realistic because sensor

nodes have no mobility, except if they are attached to moving agents, such

as humans, robots, or vehicles. Moreover, the focus of this research is on

in-building nodes, and not on-person nodes which would necessitate mobility.

4. Single radio and omni-directional antenna. Each node is equipped with a

single radio transceiver and an omni-directional antenna. In a single radio

architecture, nodes cannot transmit and receive data simultaneously. For

76

simplicity we also assume that all nodes operate in a single channel, even

though the multi-channel techniques could be used to complement our pro-

posed techniques to yield even better reliability.

5. Bi-directional links. The radio links are bi-directional. So, two nodes are

neighbours if and only if they are within transmission range of each other.

We use this assumption to simplify our simulations due to the fact that there

is usually a site survey before sensor node deployment to know which nodes a

sensor node can communicate with, and we assume that locations have been

chosen to ensure bi-directional links. In reality, a link can be asymmetric and

it affects the connectivity graph, where a node v has node w as its neighbour

but w does not have v as its neighbour. Link asymmetry is beyond the scope

of this thesis.

6. Unit disk graph model with fixed transmission range. To have bi-directional

links in our simulations, we assume that the communication graph follows the

unit disk graph model. In this model, a node v can communicate directly to a

node w if the distance between these two nodes≤r, where r is the transmission

range of the nodes. This model represents the transmission range as an ideal

circle. In the simulation, we use 10 metres as the transmission range of a

node for communicating with its neighbours. This assumption is realistic for

0 dBm transmission power in an indoor environments [119].

7. Single sink and multiple sinks. The WSN can have either one static sink that

gather data from all sensor nodes, or multiple sinks.

3.3 WSN Requirements

WSNs must be designed with fault-tolerance in mind in order to be resilient to

network dynamics, including traffic fluctuations and topology changes. The extreme

case to these dynamics would be during emergency response, such as in fire, flood

77

and volcano monitoring. In the following, we list the network requirements for such

an application:

1. Traffic load is light during normal day-to-day monitoring but increases when

an emergency event occurs. In this thesis, we focus on in-building traffic type,

where during non-emergency, sensor nodes report their sensed data not very

often, for example one message every 30 seconds or one minute. However,

in emergency monitoring, they generate data in a higher rate, approximately

every 10 seconds.

2. The network must achieve high delivery ratio in both normal and emergency

monitoring from all sensor nodes in the network. In order for a MAC protocol

to achieve high delivery ratio, especially when topology changes, the physical

topology must ensure the availability of k disjoint paths that can tolerate k−1

node failures.

3. Normal monitoring is usually delay-tolerant, but emergency monitoring is not.

Therefore, the network must offer low delivery latency when a hazard occurs.

For example, a high priority message must reach a sink within 10 seconds.

Delivery latency of a MAC protocol is influenced by the length of the paths

from sensor nodes to reach the sink, so we bound the path length in our

topology planning algorithms.

4. Sensor nodes must behave in energy-efficient manner to prolong its lifetime.

Only those who participate in emergency monitoring can sacrifice their energy

efficiency to achieve high delivery ratio and low latency. By not switching all

nodes into emergency monitoring mode, their battery will not be drain when

a false alarm happens.

5. Even though the network is designed to be fault-tolerant, its deployment cost

must also be minimised. This is due to the fact that installing many devices

comes at a cost that includes not only the hardware purchase but also the

installation and ongoing maintenance.

78

3.4 Simulation Model

While our topology planning algorithms are implemented in C++, the communica-

tion protocols are implemented in the open-source network simulator ns-2 version

2.33 [2]. Ns-2 is a discrete-event, packet-level network simulator that is widely used

for WSN and other network simulations, such as wired, wireless and satellite net-

works. In its distribution, it has a large number of libraries and tools for WSN

simulations. Ns-2’s main functionality and detailed protocol implementation are

written in C++, while the simulation configuration is controlled by Tcl scripts. We

will describe the simulation components that we used in the following subsections.

3.4.1 Input and Output

Ns-2 takes as input Tcl scripts and topology files. In the Tcl scripts, we define

simulation configurations, including global configurations for nodes (protocol stack,

radio propagation model, antenna type, energy model, etc that will be explained

in details in the consecutive subsections), a simulation event scheduler to indicate

when nodes should start or stop transmitting packets, traffic load, network topology

and output files.

To generate static network topologies in a perturbed grid deployment, we implement

a topology generator using C++. The two-dimensional network area is divided into

grid cells, where one node is placed inside one unit grid square and the coordinates

are randomly perturbed. The topology generator produces topology files using ns-2

topology format, where the coordinates of each node in the network are written as

the following:

$node (<node id>) set X <x coordinate>

$node (<node id>) set Y <y coordinate>

$node (<node id>) set Z <z coordinate>

All variables are self-explanatory. The topology files are read as input by ns-2 and

used to construct the topology to be simulated.

79

Ns-2 produces trace files as its output to allow packet tracing, where we can get

information such as node that sends or receives a packet, time when the action

happened, layer where it happened, the remaining energy of the node, etc. We can

also generate our personalised trace files to save CPU resources by selecting which

parameters to be traced.

3.4.2 Protocol Stack

The five core layers of a sensor node consist of the application layer, transport layer,

routing layer, MAC layer and physical layer. At a simulated node, the application

layer generates data packets at regular time intervals and passes them down to the

transport layer. At the transport layer, a node implements User Datagram Protocol

(UDP), where no connection setup is needed prior to data transfer. It adds nothing

to the packets and passes them to the routing layer [57]. Our proposed technique,

ER-MAC in Chapter 4, has its own forward-to-parent routing mechanism, where

every node sends packets to their parent nodes in the routing tree. Therefore, upon

reception of a packet, ER-MAC arranges channel access and passes the packet to

the physical layer for transmission. Later in the evaluation of ER-MAC, we use

Z-MAC [97] as a comparison. Z-MAC does not have any routing policies. So,

we implement Shortest Path Tree Routing (STR), which is similar to the routing

protocol from Collection Tree Protocol (CTP) [47], at the routing layer. While

CTP uses expected transmissions as the cost metric, our implementation of STR

uses hop counts. When STR receives a packet, it finds a one-hop neighbour that

has the shortest route to the destination. After that, STR passes the packet down

to Z-MAC for arranging channel access, and then Z-MAC passes it down to the

physical layer for transmission. When a node receives a packet at another side of

the transmission, the packet is passed up the stack until received by the application

layer.

80

3.4.3 WirelessPhy Model

Each node has a WirelessPhy interface which represents the hardware interface and

the properties of its radio. The interface puts transmission data, such as trans-

mitted signal power, into the header of each packet. When a packet is received,

the propagation model uses the transmission data to determine whether it has the

minimum signal power to be received by the receiving node. If the received sig-

nal power is below the receiving threshold RXThresh, the packet will be dropped.

This model approximates the Lucent WaveLAN Direct-Sequence Spread-Spectrum

(DSSS) radio interface. We can specify the transmission range of a node by setting

an appropriate value of the transmitted signal power and the receiving threshold.

To get a 10-metre transmission range in ns-2, we set the transmitted signal power

Pt equal to 5.35395e-05 and the receiving threshold RXThresh equal to 3.65262e-

10. While RXThresh is set to ns-2 default value, we use a separate C program, i.e.

threshold.cc, that comes with the ns-2 installation to compute the value of Pt.

The WirelessPhy interface also has a direct access to control the properties of a

node’s radio, which can be set to either on or off mode. When the radio is turned

off, all received packets are discarded.

3.4.4 Radio Propagation Model

To represents the transmission range of a sensor node as an ideal circle, we select

a simple wireless channel using the two-ray ground radio propagation model. The

radio propagation model is used to predict the received signal power of each packet.

Using a standard model, the received signal power at a distance d is calculated by

Pr(d) =
PtGtGrh

2
th

2
r

d4L
(1)

Pr(d) is the received signal power given a transmitter-receiver distance,

Pt is the transmitted signal power,

Gt is the antenna gain of the transmitter,

81

Gr is the antenna gain of the receiver,

ht is the height of the transmit antenna above ground,

hr is the height of the receive antenna above ground,

d is the distance between the transmitter and the receiver, and

L is the system loss in the transmit/receive circuitry.

The omni-directional antenna that we use in the simulation can radiate or receive

energy equally well in all directions. It has the following specifications: Gt = Gr =

1, ht = hr = 1.5 metres, and no system loss (L = 1) [116].

3.4.5 Simulation Parameters

We set the transmission power of each sensor node at 0 dBm, where its transmission

range in an indoor environment is about 10 metres [119]. Our simulation uses the

energy model of the Tmote sky hardware [4]. Tmote sky, which is depicted in

Figure 22, is a popular wireless sensor node. Its current consumption for radio

transmitting at 0 dBm is 17.4 mA and for radio receiving is 19.7 mA. Tmote uses 2

× AA batteries. Each AA battery is 1.5 Volts and has energy up to 10,000 Joules.

Note that we need one joule of energy to produce one watt of power for one second.

Our simulation parameters are presented in Table 7. These parameters are used for

our ns-2 simulations to evaluate the proposed ER-MAC protocol in Chapter 4 and

the network performance of designed topologies in Chapter 8.

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (2/6/2006) Page 1 of 28

Ultra low power IEEE 802.15.4 compliant
wireless sensor module
Humidity, Light, and Temperature sensors with USB

Product Description
Tmote Sky is an ultra low power wireless
module for use in sensor networks,
monitoring applications, and rapid
application prototyping. Tmote Sky
leverages industry standards like USB and
IEEE 802.15.4 to interoperate seamlessly
with other devices. By using industry
standards, integrating humidity,
temperature, and light sensors, and
providing flexible interconnection with
peripherals, Tmote Sky enables a wide
range of mesh network applications.
Tmote Sky is a drop-in replacement for Moteiv’s successful Telos design. Tmote Sky includes
increased performance, functionality, and expansion. With TinyOS support out-of-the-box,
Tmote leverages emerging wireless protocols and the open source software movement. Tmote
Sky is part of a line of modules featuring on-board sensors to increase robustness while
decreasing cost and package size.

Key Features
• 250kbps 2.4GHz IEEE 802.15.4 Chipcon Wireless Transceiver
• Interoperability with other IEEE 802.15.4 devices
• 8MHz Texas Instruments MSP430 microcontroller (10k RAM, 48k Flash)
• Integrated ADC, DAC, Supply Voltage Supervisor, and DMA Controller
• Integrated onboard antenna with 50m range indoors / 125m range outdoors
• Integrated Humidity, Temperature, and Light sensors
• Ultra low current consumption
• Fast wakeup from sleep (<6μs)
• Hardware link-layer encryption and authentication
• Programming and data collection via USB
• 16-pin expansion support and optional SMA antenna connector
• TinyOS support : mesh networking and communication implementation
• Complies with FCC Part 15 and Industry Canada regulations

Figure 22: Tmote sky [4]

82

Table 7: Simulation parameters in ns-2

Simulation parameters Default value
Transmission range 10 m
Transmit power (txPower) 17.4 mA × 3 V = 52.2 mW
Receive power (rxPower) 19.7 mA × 3 V = 59.1 mW
Idle power 19.7 mA × 3 V = 59.1 mW
Sleep power 1 µA × 3 V = 3 µW
Transition power 19.7 mA × 3 V = 59.1 mW
Transition time 580 µs
Node initial energy 20,000 J (2 × AA batteries)

3.5 Performance Metrics

In this thesis, communication protocols are implemented and evaluated in the net-

work simulator ns-2. To measure the network performance in ns-2, we use one or

more of the following metrics:

1. Average energy consumption per node is presented to compare the

energy efficiency of communication protocols. Since our protocol design does

not involve load balancing, we evaluate neither the lifetime of the network

nor the maximum/minimum energy consumption of nodes. Without load

balancing, the energy expenditure of nodes in the network is not balanced

and thus these two metrics may be biased toward nodes that die earlier than

expected. The average energy consumption per node is calculated as the

total energy consumed by the entire network during the simulation period for

listening, transmitting, receiving, switching from sleep to idle mode and vice

versa, averaged over the total number of nodes in the network. The unit of

energy is the Joule.

2. Packet delivery ratio is the total number of packets received at the sink

divided by the total number of packets generated by the source nodes during

the lifetime of an experiment. In our experiments, we distinguish between the

delivery ratio of high and low priority packets, because we assume that there

are two types of packets and the high priority ones must be delivered first.

83

So we expect that their delivery ratio is higher than the low priority ones.

Delivery ratio takes a value in the interval [0, 1].

3. Average per packet latency measures the total time needed for each packet

to reach the sink since it was sent by the source node, averaged over the total

number of packets received at the sink. We also present the latency of high

and low priority packets separately, because we expect to see that the latency

of high priority packets is lower than the low priority ones. The unit of latency

is the second.

4. Completeness of packets received is presented to show if the sink can

have a balance of information from all sensor nodes in a network, no matter

how far they are from the sink. Firstly, the network is divided into zones,

where sensor nodes that have the same hop distance to the sink are grouped

into one zone. Completeness measures the percentage of packets received per

zone, where we distinguish the high priority packets from the low priority ones.

We choose to present this metric rather than the fairness index [59] because

we want to show the fairness over the packets’ sources per zone, while the

fairness index only shows the fairness of the whole network.

5. Connectivity is the percentage of alive source nodes that are still connected

to the sink through multi-hop communication. A source node is counted as

connected if at least one of its generated packets is received by the sink.

We present this metric to show the adaptability of protocols when topology

changes.

We implement and evaluate our topology planning algorithms in C++. We use

C++ because we do not evaluate network protocols and operations when we evalu-

ate the performance of the algorithms in planning a network. We will later evaluate

the network performance of the designed topologies using ns-2. We use the following

metrics to evaluate the performance of topology planning algorithms:

84

1. Number of table lookups measures the efficiency of an algorithm by the

total number of table lookups. We count how many times an algorithm gets

information from and updates information in the table representing the graph.

2. Storage capacity measures the efficiency of an algorithm in terms of the

memory size required. This metric counts the total number of array cells

needed to store graph’s information. The unit of storage capacity is the cell.

3. Number of disjoint paths is the total number of disjoint paths per node

found averaged over the total number of nodes in the network. We present

this metric to compare the accuracy of algorithms in finding disjoint paths.

4. Percentage of nodes with disjoint paths shows the percentage of sensor

nodes that have k disjoint paths over the total number of sensor nodes in the

network. When we deploy fewer relay nodes in the network to reduce the

deployment cost, some sensor nodes do not have k disjoint paths. Therefore,

we present this metric to show the relationship between deploying fewer relays

and the number of nodes that have k disjoint paths in the network.

5. Number of additional relay nodes measures the effectiveness of a relay

deployment algorithm by the total number of relay nodes that are required

to be deployed in the network. A relay deployment algorithm is the most

effective if it places the fewest relays.

6. Number of sinks needed measures the effectiveness of a sink deployment

algorithm by the total number of sinks deployed in the network. A sink

deployment algorithm is the most effective if it places the fewest sinks to

satisfy the deployment requirements.

7. Total sink cost also measures the effectiveness of a sink deployment algo-

rithm but using the total cost of deployed sinks. Since the deployment costs

of an individual sink may be different, we present this metric to show that the

most effective sink deployment algorithm not only deploys the fewest sinks

85

but also finds the lowest cost solution. In the results presented, cost is shown

in units.

8. Total sink and relay cost presents the total deployment cost of a sink and

relay deployment algorithm, which includes the cost of sinks and the cost of

relays. This metric is shown in units.

9. Number of devices shows the total number of deployed sinks and relays.

This metric is presented because we cannot infer how many sinks and relays

are deployed from the total cost metric. It is important to see the relationship

between the increment of sink costs and the number of deployed sinks and

relays. When the sink cost increases, we expect to see fewer deployed sinks and

more relays, because some sinks are traded for relays to reduce the deployment

cost.

10. Runtime is the total time needed for an algorithm to finish its execution.

Even though topology planning is an offline process, shorter runtime is impor-

tant because a topology planning algorithm may be executed several times to

evaluate different topologies as a result of either moving or adding/removing

a node. Runtime is measured in seconds.

All experiments are carried out in 2.40 GHz Intel Core2 Duo CPU with 4 GB of

RAM. We present the simulation results as the mean values of multiple simulation

runs, enough to achieve a 95% confidence in the standard error interval, which are

shown as error bars in the results. In this thesis, we do not show error bars in line

graphs and graphs with logarithmic scale to improve readability of the graphs.

86

Chapter 4

A Hybrid MAC Protocol for

Emergency Response

4.1 Introduction

In this chapter, we present ER-MAC, a novel hybrid MAC protocol for emergency

response Wireless Sensor Networks (WSNs). This protocol is energy-efficient dur-

ing normal monitoring, achieves high delivery ratio and low latency for emergency

monitoring, adapts to traffic and topology changes, prioritises high priority packets

and supports fairness over the packets’ sources. All of these design criteria make

ER-MAC a novel contribution to the research literature.

For energy efficiency, ER-MAC adopts a TDMA approach to schedule collision-

free transmission toward the sink. Sensor nodes wake up to transmit and receive

messages according to their schedules, but otherwise switch into sleep mode to

save energy. When an emergency event occurs, nodes involved in the emergency

monitoring change their MAC protocol autonomously to emergency mode to allow

contention in TDMA slots to cope with large volumes of traffic. This scheme trades

off energy efficiency for higher delivery ratio and lower latency. Nodes involved in

the emergency monitoring are nodes caught in hazard, their one-hop neighbours,

87

their ancestors (toward the sink) that receive emergency packets and the direct

neighbours of the ancestors, while the rest of the network operates using the normal

mode of ER-MAC.

A node in emergency mode may have neighbours which are not in emergency mode.

Therefore, before contending for its neighbours’ transmit slot, it has to listen for

any activities on the channel. If it does not sense any activities, it may contend for

the slot. Otherwise, it knows that the neighbour which is not in emergency mode

is still using its transmit slot. In addition, to prevent a node sending an emergency

packet while its receiver is sleeping, the first emergency packet is always sent in a

scheduled transmission slot. This will allow the ancestors of the node toward the

sink to switch their MAC protocol to the emergency mode when they receive the

emergency packet. The implication of this method is the delivery latency of the

first emergency packet is the same as the normal situation. However, ER-MAC

guarantees fast deliveries of high priority packets when nodes that involved in the

emergency monitoring have switched their MAC protocol to the emergency mode.

This delay to switch is bounded by one data gathering cycle period.

ER-MAC maintains two priority queues to separate high priority packets from low

priority ones. The low priority packets are sent if the high priority queue is empty.

Therefore, the high priority packets are propagated faster to the sink. ER-MAC

also offers a synchronised and loose slot structure, where nodes can modify their

schedules locally. This mechanism enables the addition of new nodes and removal

of dead nodes without restarting the whole network.

The rest of this chapter is organised as follows. We formulate the problem definition

in Section 4.2. We present the proposed ER-MAC protocol in Section 4.3. We show

our simulation results in Section 4.4. Simulation results validate the performance of

ER-MAC, which outperforms Z-MAC [97], a state-of-the-art hybrid MAC protocol,

with higher delivery ratio and lower latency at low energy consumption.

88

4.2 Problem Definition

In this section, we describe some assumptions for the network and identify the

requirements for our MAC protocol.

4.2.1 Assumptions

We assume a pre-deployed WSN for fire emergency that has a connected finite set of

sensor nodes and one or more sinks, which are static. We also assume that there are

two types of packets: high priority packets and low priority packets. The priority of

a packet is determined based on its content. For example, data from temperature

sensors can be tagged as high priority, while light measurements are considered as

low priority. We assume these priority do not change when the WSN detects a

hazard, but their reporting frequency increases, because high priority packets are

more important than the low priority ones. Therefore, they must be delivered first

either in normal or emergency monitoring.

In ”fire emergency situation”, a combination of sensors, such as smoke, temperature

and CO [31], ION and CO [49], can collaborate to detect the presence of fire when

its sensor reading is above a specified threshold. In this hazard situation, the WSN

must be able to assist fire fighters by dynamically providing important information

such as the location of the fire, the estimation of the spread of the fire, as well as

evacuation routes [109] to both evacuees and the fire fighters.

We assume two different network situations: no-fire and in-fire. No-fire is the normal

situation where the communication is delay-tolerant and must be energy-efficient

to prolong the network lifetime. When a sensor node or a group of sensor nodes

senses fire, it changes the MAC behaviour to emergency mode autonomously. The

communication of in-fire nodes is not delay-tolerant and energy efficiency is not as

important as achieving high delivery ratio and low latency. However, the rest of

the network that is not involved in the fire monitoring must be energy-efficient.

89

4.2.2 Requirements for MAC

When designing the MAC protocol for emergency response, there are several im-

portant factors that have to be taken into account:

1. Traffic load of the network depends on the reporting frequency of the sensor

nodes. It is light during normal monitoring, but increases significantly when

an emergency occurs and may be unbalanced. The MAC protocol is expected

to offer reliable delivery when the traffic load increases. That is, when the

WSN generates more traffic, it does not lose performance as specified by the

metrics in Section 3.5.

2. Energy efficiency is one of the most critical factors for WSN applications.

The lower the energy consumed by each node, the longer the WSN can perform

its mission. Therefore, during normal day-to-day monitoring, the network

must be energy-efficient to prolong its lifetime. However, energy efficiency

can be sacrificed for low latency and high delivery ratio during emergency.

3. Successful communication of the WSN not only requires a robust and reliable

communication protocol to transport the important messages to the sink, but

also depends on delivery latency . Normal monitoring is delay-tolerant, but

emergency monitoring is not, as high priority packets need timely delivery at

the sink.

4. The MAC protocol has to achieve high delivery ratio in both normal and

emergency situations.

5. Detection delay must be bounded, so any messages, especially the emer-

gency ones, can reach the sink within predictable duration.

According to these requirements, the MAC protocol must be energy-efficient when

the network performs normal monitoring, has low packet latency and high packet

delivery ratio when the network monitors a hazard, adapts to very heavy traffic and

90

topology changes, prioritises high priority packets and has fair packet deliveries.

Since none of the existing MAC protocols reviewed in Section 2.3 are designed for

emergency response, none of them address all of our MAC protocol requirements.

Specifically, none of them try to address both packet prioritisation and fairness

issues at the same time. Hence, we design ER-MAC that satisfies all of these design

criteria. Packet prioritisation is necessary during emergency response to prioritise

high priority packets, which are more important than the low priority ones. Fairness

is important when a hazard occurs, so the sink can receive complete information

from all sensor nodes in the network and monitor the spread of the hazard.

4.3 ER-MAC Protocol Design

The main functions of ER-MAC are to:

1. establish a data gathering tree with a sink as the root of the tree and retrieve

neighbourhood connectivity (topology discovery),

2. establish nodes’ schedules (TDMA slot assignment),

3. manage local time synchronisation to minimise clock drifts,

4. manage two priority queues for different priority packets,

5. respond to emergency events by changing MAC behaviour (MAC prioritisa-

tion) to cope with large volume of traffic, and

6. manage the network when the topology changes.

ER-MAC initially communicates using the Carrier Sense Multiple Access with Col-

lision Avoidance (CSMA/CA) with a random backoff mechanism to avoid collision,

where each transmission follows the sequence of RTS/CTS/DATA/ACK. During

the startup phase, the data gathering tree and TDMA schedules for exclusive com-

munication among nodes are created. We integrate routing functions into ER-MAC

91

because even though it is less flexible [88], it is known to be more efficient in a net-

work protocol design for WSNs [79]. Firstly, it can improve energy efficiency by

eliminating the use of unnecessary protocol overheads at both MAC and routing

layers. Secondly, it can improve resource management by sharing resources between

the two layers. In the data gathering tree, every node (except the sink) has one

parent node and every non-leaf node (include the sink) has one or more children.

The TDMA schedules enable each node to send its own data and forward its de-

scendants’ data to its parent in collision-free slots. Each node also has a special slot

to broadcast a synchronisation message or any messages to its children. Besides

contention-free slots, ER-MAC has a contention period at the end of each frame to

support the addition of new nodes.

ER-MAC uses two queues for two kinds of packets: high and low priority packets.

The low priority packets are transmitted only if the high priority queue is empty.

Furthermore, inside a queue, packets are ordered based on their slack. That is,

the time remaining until the packet deadline expires. The deadline is assigned by

the WSN application to specify the desired bound on the end-to-end latency and

is initialised by a source node. When a queue is full, the packet with the shortest

slack is dropped because it may miss the deadline.

With the normal mode of ER-MAC, a node only wakes up to transmit and receive

messages in its scheduled time slots, and spends most of its lifetime in sleep mode

to conserve energy. However, when an emergency event occurs, nodes that are

affected by the hazard change their MAC to emergency mode. In the emergency

mode, ER-MAC allows nodes within one-hop neighbourhood to contend for a slot

if they have priority data to be sent and if the schedule does not conflict with their

two-hop neighbours’ schedules. In the contention, the owner of the slot has higher

priority to use its own slot than the non-owner of the slot, because it can transmit

a packet immediately if it has a high priority packet to send. Furthermore, during

an emergency, a node that has changed its MAC to emergency mode will wake up

in the beginning of each TDMA slot for possible reception of packets.

92

4.3.1 Topology Discovery

During the initial startup phase, the sink initiates the tree construction using a

simple flooding mechanism. Our process is similar to the hop tree configuration of

the Periodic, Event-driven and Query-based (PEQ) routing protocol [24] and the

level discovery phase of the Timing-sync Protocol for Sensor Networks (TPSN) [45].

However, in our context, the goal of the topology discovery is not only to setup a

routing tree, but also to find neighbours and to track changes in the tree. Topology

discovery is only performed once during the initial startup phase as nodes with

ER-MAC can modify their schedules locally during the network lifetime.

The sink generates a TOPOLOGY DISCOVERY message, which consists of:

1. src ID is the sender of the message,

2. hop count stores the number of hops to reach the sink,

3. new parent id stores the new parent ID of a node, and

4. old parent id stores a node’s previous parent ID.

The format of a TOPOLOGY DISCOVERY message is depicted in Figure 23. This

message is broadcast by a node to find its prospective children, as well as a reply to

its parent and a notification to its previous parent when it wants to change parent.

A node replies its new parent, so the parent can add it to its children list. When

choosing a new parent, which has shorter hop count to the sink, the node has to

inform its previous parent to remove it from the parent’s children list. Figure 24

illustrates a tree built for data gathering in a network of six nodes. A node has to

record its parent ID because it will be used as the next hop destination in every

packet transmission toward the sink. A node also needs to maintain a children list,

so if it does not receive any messages from a particular child, it may know that the

child is dead. We will discuss dead nodes later in Section 4.3.7.

The sink initialises hop count as zero and leaves new parent id and old parent id as

undefined. It broadcasts the message to its neighbours within its transmission range.

93

type src_ID hop_count new_parent_id old_parent_idField

Field size (bytes) 1 2 2 2 2

Figure 23: TOPOLOGY DISCOVERY packet format

1

2

3

4 5

6

Sink

parent-child communication

one-hop communication

Figure 24: A data gathering tree of six nodes

In this phase, each node records the number of hop counts to the sink, its parent ID,

a list of its children and its one-hop neighbour list. Communications among nodes

during this phase use CSMA/CA with random-access to avoid collisions, because

the TDMA schedules for exclusive communication have not been created yet.

Figure 25 shows the message exchange between a node, its parent, its child(ren) and

a new parent during the topology discovery. Note that we do not show message over-

hearing in this figure because we want to focus the illustration on messages received

and broadcast by a node. When a node receives its first TOPOLOGY DISCOVERY

message, it sets the sender of the message as its parent, increments the hop count

by one and sets it as its hop count to the sink. The node then stores its parent

ID in new parent id, sets old parent id as undefined, waits for a random amount of

time and re-broadcasts the message. If the node has already received a TOPOL-

OGY DISCOVERY message before, it compares the new message’s hop count with

its current hop count. If the new message’s hop count incremented by one is less

than its hop count, it updates its parent ID and its hop count value. Then, it

stores the new parent ID in the message’s new parent id, the previous parent ID in

old parent id, waits for a random amount of time and re-broadcasts the message.

94

Otherwise, if the new message’s hop count incremented by one is greater or equal

to its hop count, the node ignores and does not re-broadcast the message.

1. TOPOLOGY_DISCOVERY

node x's
new parent

node x's
parent node x node x's

child(ren)

2. TOPOLOGY_DISCOVERY

3. PARENT_ACK

4. TOPOLOGY_DISCOVERY

5. TOPOLOGY_DISCOVERY

6. OLD_PARENT_ACK

7. PARENT_ACK

Figure 25: Message exchange in topology discovery

Upon receiving a TOPOLOGY DISCOVERY message, a node also checks the mes-

sage’s new parent id and old parent id. If new parent id is the same as the node’s

ID, it adds the sender’s ID to its list of children. If the node’s ID is the same as

old parent id, it removes the sender’s ID from its list of children.

For reliability, a parent node replies its children with a PARENT ACK message to

confirm that each child has been added to its children list. If a node does not receive

a PARENT ACK message after broadcasting a TOPOLOGY DISCOVERY mes-

sage for a certain period of time (user parameter), it re-broadcasts the message. The

node keeps broadcasting the TOPOLOGY DISCOVERY message until it receives

a PARENT ACK message or exceeds the number of maximum retransmission. In

another case, if a node updates its parent ID and its hop count value, it also needs

a reply from its old parent after re-broadcasting the TOPOLOGY DISCOVERY

message. The old parent replies the node with an OLD PARENT ACK message to

inform the node that it has been removed from the children list. If the node does

not receive the OLD PARENT ACK message, it will re-broadcast the TOPOL-

OGY DISCOVERY message. The OLD PARENT ACK message helps keeping

the children list up to date. If the children list is not updated, the old parent

may waste energy in idle listening, tries to receive some packets from the child for

95

several data gathering cycle before deciding to remove it from the list. The node

will keep broadcasting the TOPOLOGY DISCOVERY message until it receives the

PARENT ACK and the OLD PARENT ACK messages, or exceeds the number of

maximum retransmission.

Idle listening

New parent

Old parentDecide positionChild

Receive
TOPOLOGY_

DISCOVERY

old_parent_id =
node ID

hop_count + 1 <
current hop count

new_parent_id =
node ID

Broadcast
TOPOLOGY_

DISCOVERY
Do not receive

PARENT_ACK or
OLD_PARENT_ACK

Send OLD_

PARENT_ACK

Send
PARENT_ACK

Receive PARENT_ACK

and OLD_PARENT_ACK

Figure 26: State transition diagram of topology discovery

During the topology discovery phase, a node may overhear transmissions from other

nodes within its transmission range. The node records the senders of the messages

as its one-hop neighbours in the one-hop neighbour list. This phase ends when all

nodes in the network have already received the TOPOLOGY DISCOVERY mes-

sage. When this phase ends, each node knows the number of hops to reach the sink,

its parent, the children list and the one-hop neighbour list. Figure 26 illustrates the

state transition diagram of the topology discovery process.

96

4.3.2 TDMA Slot Assignment

During this phase, nodes perform slot assignment and exchange schedules, so no

two nodes within a two-hop neighbourhood use the same slot. If two nodes are

two hops away from each other and have the same time slot, their transmissions

may collide at a node that is one hop away from both of them. At the end of

this phase, each node maintains its own schedule, as well as its one-hop and two-

hop neighbours’ schedules to avoid schedule conflict. Our TDMA slot assignment

follows a bottom-up approach, where a leaf node (a node with no children) starts

the slot assignment. Our purpose of starting the slot assignment from the leaf

nodes is to have transmission schedules that can support message flow toward the

sink. During the TDMA slot assignment phase, all communications that are used

to schedule conflict-free slots still use CSMA/CA.

Figure 27 shows the message exchange between a node, its parent and its two-

hop neighbourhood during the TDMA slot assignment. A node deems itself as

a leaf node if it has no children after broadcasting TOPOLOGY DISCOVERY

messages for a certain period of time. It selects its own time slot to send data to

its parent. A leaf node always selects the smallest available slot. It then generates

a SCHEDULE ANNOUNCEMENT message, appends its schedule (the ID of the

slot) and broadcasts the message to its one-hop neighbours. Nodes in its one-hop

neighbourhood then re-broadcast this message to the two-hop neighbours.

When a node receives a SCHEDULE ANNOUNCEMENT message, it copies the

schedule into its one-hop neighbours’ schedules if the sender of the message is

its direct neighbour. Otherwise, the schedule is copied into the two-hop neigh-

bours’ schedules. All nodes that receive the SCHEDULE ANNOUNCEMENT mes-

sages from the sender’s one-hop neighbours know that they are two hops away

from the sender. Every node within a two-hop neighbourhood of the message’s

sender checks if there is a possible conflict between its own schedule and the

newly announced schedule. If it happens to be a conflict, the node generates a

97

1. SCHEDULE_ANNOUNCEMENT

node x's
parent node x node x's

one-hop neighbor(s)
node x's

two-hop neighbor(s)

3. SCHEDULE_CONFLICT/

 SCHEDULE_NOT_CONFLICT

2. SCHEDULE_ANNOUNCEMENT

4. SCHEDULE_CONFLICT/

 SCHEDULE_NOT_CONFLICT
5. SCHEDULE_CONFLICT/

 SCHEDULE_NOT_CONFLICT

9. PARENT_ACK

8. SCHEDULE_NOTIFICATION

6. SCHEDULE_ANNOUNCEMENT
7. SCHEDULE_ANNOUNCEMENT

Figure 27: Message exchange in TDMA slot assignment

SCHEDULE CONFLICT message, appends its schedule to the message and sends

it back to the sender of the SCHEDULE ANNOUNCEMENT message. When

the sender of the SCHEDULE ANNOUNCEMENT message receives the SCHED-

ULE CONFLICT, it updates the conflict schedule in either its one-hop neighbours’

schedules or its two-hop neighbours’ schedules, depends on the origin of the SCHED-

ULE CONFLICT message. Then, it re-assigns the schedule and broadcasts a new

SCHEDULE ANNOUNCEMENT to its two-hop neighbourhood.

Keeping in mind that collisions on the channel exist during this random-access

period, we take into account lost and duplicate messages. Because the SCHED-

ULE CONFLICT message may be lost during transmission, we make other neigh-

bours that receive the SCHEDULE ANNOUNCEMENT message send SCHED-

ULE NOT CONFLICT messages to the SCHEDULE ANNOUNCEMENT ’s sender

if their schedules do not conflict. In order to reduce further collisions, the sender

of the SCHEDULE ANNOUNCEMENT saves a list of neighbours’ ID whom it

receives the SCHEDULE NOT CONFLICT messages from and appends this list

to the SCHEDULE ANNOUNCEMENT message. Neighbours do not send the

SCHEDULE NOT CONFLICT messages if they are already in the list. The sender

of the SCHEDULE ANNOUNCEMENT is convinced that its schedule does not

98

Idle listening

Check
schedule

Receive SCHEDULE_

ANNOUNCEMENT,
source is one-hop

neighbour

Rebroadcast SCHEDULE_

ANNOUNCEMENT

Receive SCHEDULE_

ANNOUNCEMENT,
source is two-hop

neighbour

Report
conflicting
schedule

Check
SCHEDULE_

NOT_

CONFLICT

sender's list

Conflict Not conflict

Send SCHEDULE_

CONFLICT

Report that
schedule is not

conflicting

On the list

Not on the list

Send SCHEDULE_

NOT_CONFLICT

Rebroadcast to
two-hop

neighbours

Check
notification

from all
children

Acknowledge
schedule
reception

Assign conflict-
free schedule

Receive SCHEDULE_

NOTIFICATION

Have received SCHEDULE_

NOTIFICATION from all children

Send PARENT_

ACK

Broadcast
SCHEDULE_

ANNOUNCEMENT

Is a leaf node

Have not received
SCHEDULE_

NOTIFICATION

from all children

Check
message

destination

Forward to
destinationNotify schedule

to parent

Receive SCHEDULE_

CONFLICT or
SCHEDULE_NOT_

CONFLICT

Intended receiver of
SCHEDULE_CONFLICT

Intended
receiver of

SCHEDULE_

NOT_

CONFLICT

Not intended
receiver

Forward
SCHEDULE_

CONFLICT or
SCHEDULE_NOT_

CONFLICT

Have received
SCHEDULE_NOT_

CONFLICT from all
two-hop neighbours

Have not received
SCHEDULE_NOT_

CONFLICT from all
two-hop neighbours

Send SCHEDULE_

NOTIFICATION

to parent

Check this
message from

all two-hop
neighbours

Figure 28: State transition diagram of TDMA slot assignment

99

conflict with its two-hop neighbours’ schedules if it receives no more SCHED-

ULE NOT CONFLICT messages from its two-hop neighbourhood after broadcast-

ing the SCHEDULE ANNOUNCEMENT messages several times. The node then

sends its assigned schedule in a SCHEDULE NOTIFICATION message directly

to its parent. The parent acknowledges the reception of this message with PAR-

ENT ACK. We show in Figure 28 the state transition diagram of the TDMA slot

assignment process.

Figure 29 illustrates the format of a message that is used for schedule exchange pur-

poses, i.e. SCHEDULE ANNOUNCEMENT, SCHEDULE CONFLICT, SCHED-

ULE NOT CONFLICT and SCHEDULE NOTIFICATION. A schedule packet con-

sists of:

1. src ID is the sender of the message,

2. dest ID is broadcast if used by SCHEDULE ANNOUNCEMENT, the destina-

tion’s ID if used by SCHEDULE CONFLICT /SCHEDULE NOT CONFLICT,

the parent’s ID if used by SCHEDULE NOTIFICATION,

3. neighbour level specifies whether a node is in one-hop or two-hop neighbour-

hood of the sender of SCHEDULE ANNOUNCEMENT,

4. slot list records the schedule,

5. highest slot specifies the TDMA frame length, and

6. neighbour list is a list of neighbours’ ID.

type src_ID dest_ID neighbour_level slot_listField

Field size (bytes) 1 2 2 2 2 x num_slot

highest_slot neighbour_list

2 2 x num_neighbour

Figure 29: Schedule packet format

100

We introduce an idea of broadcast slot, so a node can send a SYNCHRONISATION

message to synchronise its children. A non-leaf node (except the sink) waits until

all of its children inform it of their schedules before assigning:

1. one unicast slot to send its own data,

2. several unicast slots to forward its descendants’ data, and

3. a broadcast slot to synchronise its children.

A node assigns a slot to itself by selecting the smallest available slot which is not

used within its two-hop neighbourhood. This means the same slot can be used by

two nodes that are separated by more than two hops away. The node also assigns

several slots that are equal to the number of descendants it has to forward its

descendants’ data. For each forwarding slot, the node selects the smallest available

collision-free slot. In addition, the node also selects a special broadcast slot to

synchronise its children. This assigned schedule is then informed to the two-hop

neighbourhood.

Each node executes the slot assignment until the SCHEDULE NOTIFICATION

message reaches the sink. The slot assignment phase ends when the sink receives

SCHEDULE NOTIFICATION messages from all of its direct children and assigns

a broadcast slot to synchronise them. Figure 30 illustrates assigned transmit slots

in a data gathering tree of six nodes.

1

2

3

4 5

6

Sink

parent-child communication

one-hop communication

[0]

[1]

[1]

[2]

[3, 4, 5, 6]

[7, 8, 9]

[10]

transmit slot(s)[...]

Figure 30: ER-MAC nodes’ transmit schedules

101

The sink switches the communication mode to TDMA by sending the first SYN-

CHRONISATION message to all of its children, together with the information

about the TDMA frame length. The purpose of propagating the TDMA frame

length is to allow nodes in the network to keep the period of one TDMA frame

length up to date. When a child receives the SYNCHRONISATION message, it

switches its communication mode to TDMA and synchronises its children using its

special broadcast slot. When all leaf nodes in the network receive a SYNCHRONI-

SATION message, the whole network is switched to TDMA mode, synchronised,

and each node in the network knows the exact duration of one TDMA frame.

4.3.3 Local Time Synchronisation

Time synchronisation is important in MAC protocols that adopt the schedule-based

mechanism because nodes that have the same schedules for communication need to

be active at the same time to transmit and receive messages. If the synchronisation

messages are sent too often, they will incur a large amount of protocol overhead. If

they are sent rarely, nodes will experience a large clock drift [40, 100].

We design ER-MAC with a local time synchronisation. Note that during the topol-

ogy discovery of ER-MAC, each node discovers its parent and its children. Then,

during the TDMA slot assignment, each node is assigned a special broadcast slot for

synchronisation purposes. ER-MAC manages the local time synchronisation using

a parent-children broadcast synchronisation, which is similar to the root-neighbours

synchronisation of Flooding Time Synchronisation Protocol (FTSP) [76]. This sim-

ple mechanism is sufficient for our approach because each child only needs to have

the same clock as its parent to ensure that the parent is in receive mode when it

starts transmission and vice versa.

In the synchronisation slot, a parent broadcasts a SYNCHRONISATION message,

which consists of:

102

1. src ID is the parent’s ID.

2. current slot informs the current slot number to allow nodes that are not syn-

chronised, such as new nodes, to synchronise themselves when they overhear

this message.

3. highest slot is the highest number of contention-free slot, that informs the

TDMA frame length to allow nodes in the network to keep the period of one

TDMA frame length up to date.

4. clock that informs the parent’s clock to help children to synchronise their

clock.

5. hop count is the parent’s hop count to the sink. This information helps a

new node to select its prospective parent by choosing a parent node with the

lowest hop count to the sink.

The format of a SYNCHRONISATION message is shown in Figure 31.

type src_ID current_slot highest_slot clockField

Field size (bytes) 1 2 2 2 4

hop_count

2

Figure 31: SYNCHRONISATION packet format

In ER-MAC, the local time synchronisation is performed once by each node that

has child(ren) in each data gathering cycle to minimise clock drift. If a network has

n nodes, there will be less than n SYNCHRONISATION messages sent during one

data gathering cycle period because leaf nodes do not send these messages. This

amount of overhead is fair and fixed regardless of the traffic rate. This scheme is

more efficient than the scheme that requires a network-wide synchronisation before

several contention-free slots, which is adopted by RRMAC [64]. There is also a

traffic-based synchronisation, which is adopted by PMAC [127] and Z-MAC [97].

In the traffic-based synchronisation, each node sends one synchronisation message

103

according to the traffic rate in the network. With PMAC, a node sleeps for several

time frames when there is no traffic in the network. It only sends a synchronisation

message when it wakes up. With Z-MAC, a node sends a synchronisation message

after sending 100 data packets. Compared to the traffic-based scheme, ER-MAC has

more synchronisation overhead if the traffic load is light. However, the traffic-based

scheme incurs large clock drift because of infrequent synchronisation. Additionally,

if the traffic load is heavy, which is expected during an emergency monitoring, ER-

MAC has less overhead. In the case of synchronisation error, an ER-MAC node can

turn on its radio to overhear its neighbours’ SYNCHRONISATION messages.

4.3.4 Priority Queue

ER-MAC uses two queues to separate high priority from low priority packets as

shown in Figure 32. This multiple-queue system for sensor networks has been

suggested in [9, 67, 37]. In our implementation of the priority queue, a packet is

ordered based on its slack, i.e. the time remaining until the global packet deadline

expires and is part of the packet header [33]. The format of ER-MAC’s data packet

is shown in Figure 33. The deadline is assigned by the WSN application to specify

the desired bound on the end-to-end latency. A source node, which generates a

data packet, initialises the slack with a deadline. The slack is updated at each

hop by subtracting the queuing and transmission delays from it. To measure the

queuing delay, a packet is timestamped when it is enqueued and dequeued. The

queueing delay is the time difference between the enqueue and dequeue time. Then,

to measure the transmission delay, a packet is timestamped when it is transmitted

by a sender and received by a receiver. When a packet is re-transmitted, the slack

is updated. The transmission delay is the time difference between the transmission

time and the arrival time of a packet, given that the sender and receiver are locally

synchronised.

We put the packet with the shortest slack in the front of the queue. Therefore, the

shorter the slack, the sooner the packet should be transmitted. The rule of getting

104

High priority packet queue

Low priority packet queue

High priority packet

Low priority packet

Figure 32: A pair of priority queues

type src_ID dest_ID priority slackField

Field size (bytes) 1 2 2 1 4

flag payload

1

timestamp

4

Figure 33: Data packet format

packets out of the queue is the high priority packets are transmitted first until the

high priority queue is empty. If the high priority queue is empty, the packet in the

front of the low priority queue is transmitted. A packet may be enqueued in a full

queue. If this situation happens, we drop a packet with the shortest slack because

it is most likely to miss its deadline and we assume that a packet that misses its

deadline is useless. The consequence of this technique, however, is that messages

from leaf nodes are dropped more frequently than others.

We also modify the implementation of the priority queue by considering fairness

over the packets’ sources, so the sink can have a balance of information from all

sensor nodes. When the reporting frequency increases, a node may have lots of its

own data in the queue. If the node always takes a packet from the head of the

queue, it may happen that the node sends its own generated data more than its

descendants’ data. So, we modify our priority queue to transmit one packet from

each descendant during one data gathering cycle period. We use an array, where

the indexes correspond to nodes’ ID, to record sources whose packets have been

forwarded. We mark cell i in the array if node i’s packet is dequeued. This array

is reset every data gathering cycle. To dequeue a packet, we search through the

queue to find a packet whose source has not been marked in the array. If such a

packet exists, it will be dequeued and the source’s cell is marked. If one packet

105

Algorithm 4: Fair-Dequeue
Input : Queue, Source
Output: packet to send
1: packet to send←null
2: if Queue is not empty then
3: for all packet in Queue do
4: if Sourcepacket.source address=0 then
5: packet to send← packet
6: end if
7: end for
8: if packet to send = null then
9: packet to send←Queue.head.packet

10: end if
11: Sourcepacket to send.source address←1
12: end if
13: return packet to send

from every descendant has been forwarded, we take the packet from the head of

the queue. This approach, however, has search time equivalent to the length of

the queue in the worst case, because we may need to search the queue to the end

for each transmitted packet. The pseudocode for this technique is presented in

Algorithm 4.

4.3.5 MAC Prioritisation

The ER-MAC frame consists of contention-free slots with duration tS each and a

contention period with duration tC as depicted in Figure 34. In each contention-free

slot, except for the synchronisation slot, there are sub slots t0, t1, t2 and t3, which

only appear in emergency mode for contention. Note that in the emergency mode,

the period of tS − (t0 + t1 + t2 + t3) is sufficient to carry a packet and a sub slot is

big enough to carry a MAC header (a source, a destination and a flag). However,

the sub slots are not used in the normal mode, where a sender occupies a slot from

the beginning of the slot and sleeps after transmitting a packet or at the end of the

slot. We include a contention period at the end of each frame to support addition

of new nodes. When a new node joins the network after a startup phase, it can use

this contention period to find its parent and exchange schedules with its neighbours.

106

The exchange schedule process due to the addition of a new node, which will be

discussed in Section 4.3.6, is carried out to the sink in each contention slot of data

gathering cycle.

In normal monitoring, communication between sensor nodes follows the nodes’

schedules. Every node sends its own data and forwards its descendants’ data to

its parent in collision-free slots. A node also has a special slot to broadcast syn-

chronisation message or any messages to its children. To further conserve energy,

a sender node turns off its radio if it has no data to send and a timeout forces a

receiver node back to sleep if it does not receive any packets.

Time

Frame

Contention-free period Contention period

tS tC

t0 t1 t2 t3

Figure 34: ER-MAC’s frame structure

When fire is detected by some nodes’ sensors, they change their MAC to emer-

gency mode and set the emergency flag in their high and low priority packets. Note

that only their parents can receive the packets with emergency flag because they

are scheduled to wake up. To inform other neighbours of the emergency event,

nodes that detect fire also broadcast FIRE messages to their one hop neighbours

using their contention slots. The one-hop neighbours that receive the FIRE mes-

sages change their MAC to emergency mode so they can give up their transmit slots

when needed by the nodes sensing the fire. The ancestors of the nodes caught in fire

change their MAC to emergency mode when they receive data packets with emer-

gency flag. These ancestors inform their one-hop neighbours to switch to emergency

mode by broadcasting FIRE messages using their contention slots. The ancestors’

one-hop neighbours change their MAC so they can give up their transmit slots when

107

needed by the nodes that are relaying emergency traffic. During the emergency sit-

uation, the whole network’s MAC protocol is not switched in an instant, but hop

by hop depending on the spread of the hazard. Nodes that do not participate in

the emergency monitoring remain in the normal mode of ER-MAC.

Nodes change the behaviour of their MAC to emergency mode to achieve high

delivery ratio and low latency by allowing contention in TDMA slots with the

following rules:

1. An owner of a slot wakes up in the beginning of its own transmit slot. If it

has a high priority packet to send, it transmits the packet immediately. If the

owner has no high priority packet to send, it allows its one-hop neighbours

with high priority packets to contend for the slot.

2. All non-owners of the slot wake up in the beginning of every slot to listen to

the channel for possible contention or reception of packets. If a non-owner

with a high priority packet senses no activities on the channel during t0, it

contends for the slot during t1 by sending a SLOT REQUEST message to

the owner of the slot. The owner of the slot replies the request by sending a

SLOT ACKNOWLEDGEMENT to the requester.

3. The owner of the slot with low priority packets can only use its own slot if

during t0 + t1 it does not receive any SLOT REQUEST messages from its

neighbours.

4. A non-owner with low priority packet can contend for the slot if during t0+t1+

t2 it senses no activities on the channel. Then, it contends for the slot during t3

by sending a SLOT REQUEST message to the owner of the slot. The owner

of the slot replies the request by sending a SLOT ACKNOWLEDGEMENT

to the requester. Therefore, a node with low priority packets has a chance in

every slot to contend for sending a packet.

108

A node that has switched to emergency mode may have neighbours that still op-

erate in normal mode. Hence, it has to sense the channel before contending for its

neighbours’ transmit slot to avoid collision. If it does not sense any activities, it

may contend for the slot, else it knows that the neighbour which is not in emergency

mode is using its transmit slot. Moreover, to prevent a node sending an emergency

packet to a sleeping parent, the first emergency packet is sent in a scheduled trans-

mission slot. This will allow the ancestors of the node to switch their MAC protocol

to the emergency mode when they receive the emergency packet. The delivery la-

tency of the first emergency packet is however the same as in normal situation, but

when nodes that involve in the emergency monitoring have switched their MAC

protocol to the emergency mode, the latency of high priority packets is reduced.

A false alarm may happen in the network, where a node mistakenly thinks that it

detects fire. If it happens, this node will inform its one-hop neighbours by sending a

FALSE ALARM message to change their MAC behaviour back to the normal mode.

The ancestors of the node on the route to the sink that have already switched to

emergency mode will change their MAC back to the normal mode if they do not

receive any emergency packets after n data gathering cycle. They will also inform

their one-hop neighbours regarding the false alarm.

4.3.6 New Nodes

The length of ER-MAC frame depends on the number of nodes in the routing

tree. When a new node is added, the number of TDMA slots increases. ER-MAC

supports addition of new nodes by utilising the contention slot at the end of each

TDMA frame. When a new node is deployed, it has to listen to its neighbours’

SYNCHRONISATION and data messages for at least one data gathering cycle. The

SYNCHRONISATION message has several pieces of information that are useful to

support addition of new nodes. The information about sender’s ID and sender’s hop

count to the sink help the new node to select its parent. The new node will select

a parent that has the lowest hop count to the sink. The SYNCHRONISATION

109

message also reports the current slot number, the highest slot number and the

clock of the prospective parent to help the new node synchronises its clock and wait

until the next contention slot to perform schedule exchange.

The slot assignment for a new node is similar to the slot assignment during the

initial setup phase as described in Section 4.3.2, except that the new node takes

the highest slot number incremented by one to be its slot number and the schedule

exchange is performed in a contention slot. The new node generates a SCHED-

ULE ANNOUNCEMENT message, appends its schedule and broadcasts the mes-

sage to its one-hop neighbours. Nodes in its one-hop neighbourhood then re-

broadcast this message to the two-hop neighbours. The new node has to wait

until it receives no more SCHEDULE NOT CONFLICT messages from its two-hop

neighbourhood after broadcasting the SCHEDULE ANNOUNCEMENT. The new

node then sends its assigned schedule in a SCHEDULE NOTIFICATION message

directly to its new parent. When the parent receives SCHEDULE NOTIFICATION

message from the new node, it acknowledges the new node as its child and adds the

new node’s transmit schedule to its receive schedule.

The parent then has to allocate one transmit slot to forward the new node’s data

and one slot to synchronise it if the parent has no children before. The transmit slot

and the synchronisation slot are the new node’s slot number incremented by one

and two, respectively. The parent then performs schedule exchange during the next

contention slot. The process of allocating new transmit slots because of the addition

of the new node is carried out along the new node’s routers toward the sink in each

contention slot of data gathering cycle. It takes approximately (l + 1) × t seconds

until the slot assignment reaches the sink since the new node is deployed, where l is

the new node’s hop count to the sink and t is one data gathering cycle period. Note

that the one additional data gathering cycle is used by the new node to overhear its

neighbours’ SYNCHRONISATION and data messages prior to assigning its own

schedule. The process of allocating new transmit slots because of the addition of a

new node is illustrated in Figure 35.

110

1

2

3

4 5

6

Sink

parent-child communication

one-hop communication

[0]

[1]

[1]

[2]

[3, 4, 5, 6]

[7, 8, 9]

[10]

transmit slot(s)[...]

1

2

3

4 5

6

Sink

[0]

[1, 12, 13]

[1]

[2]

[3, 4, 5, 6]

[7, 8, 9, 14]

[10]

7

[11]

(a) (b)

Figure 35: Addition of a new node, where (a) is the original network and (b) shows
the network after node 7 is added

The addition of new slots lengthens the TDMA frame. Therefore, these changes

must be informed to all nodes and they have to adjust their TDMA frame length

simultaneously in the beginning of a data gathering cycle. The new node and the

routers also start using their new allocated slots in the same data gathering cycle.

This will prevent schedule clash where some part of the network has already changed

its TDMA frame length while some other still use the old TDMA frame length. To

apply the changes, a count down timer, set to be lmax× t seconds, is piggybacked in

the sink’s SYNCHRONISATION message and is propagated to the whole network

when a node synchronises its children. lmax is the highest hop count of the network.

As the timer expires, all nodes simultaneously use the new schedules. The process

of disseminating the new frame length proceeds until all nodes change their TDMA

frame length and takes at most lmax data gathering cycle periods. Hence, the total

time needed for a new node to operate in TDMA mode after it is deployed is

(lmax + l + 1)× t seconds.

The frame length inconsistencies, where some nodes use old frame length and some

nodes use new frame length, are unlikely to happen because the synchronisation

slots are collision-free. Moreover, it takes lmax data gathering cycle periods to

disseminate the new frame length information. If a node does not receive a SYN-

CHRONISATION message due to temporary noisy links, it will receive it in the

next period. If the links are permanently noisy, the node will find a new parent.

111

4.3.7 Dead Nodes

A node is dead if it runs out of battery or is destroyed by fire. We can also assume

a node is dead if it cannot communicate with its parent or its children due to

noisy links or obstacles. If a parent does not receive any data during all scheduled

receive slots of a child after n consecutive data gathering cycles (user parameter),

where n is usually greater than one to deal with temporary link failure, it assumes

that the child is dead. The parent then removes the child from its children list.

It also removes m scheduled receive slots that are associated with that child to

prevent idle listening. If the child is the only child of that parent, it also removes

the synchronisation’s broadcast slot. Moreover, the parent also removes m transmit

slots to forward that child and its descendants’ data. The parent is then responsible

to inform all the routers toward the sink to remove m receive slots associated with

the removal of one of its children and m transmit slots from their schedules. This

information is piggybacked on the data packet sent in the immediate transmit slot.

All of the unused slots are then informed within two-hop neighbourhood in the

contention slot.

When a node does not receive SYNCHRONISATION messages after n data gath-

ering cycle from its parent, it may assume that its parent is dead. The orphan

node then finds a new parent by following the same procedure as the new node

deployment. In a contention slot, the orphan node will send its transmit slots’

schedule in a SCHEDULE NOTIFICATION message directly to its new parent, so

the descendants of the orphan node do not need to rebuild their schedules. When

the parent receives the SCHEDULE NOTIFICATION from the orphan node, it

acknowledges the orphan node as its child and adds the orphan node’s transmit

schedule to its receive schedule. The parent then assigns new transmit slots to

forward its new child and new descendants’ data. This schedule assignment is the

same as the new node’s assignment, except that there may be more than one slot

that needs to be allocated because the orphan node may have children and descen-

dants. To reuse some released slots, this schedule assignment will firstly search for

112

the smallest available slot, which does not conflict with the schedule of the node’s

two-hop neighbours.

4.3.8 Protocol Overhead

ER-MAC incurs higher protocol overhead at the beginning, i.e. during topology

discovery and TDMA slot assignment phases. During this initial startup, ER-

MAC communicates using CSMA/CA, where there are RTS/CTS/ACK in each

transmission. After the initial startup, ER-MAC’s protocol overhead during normal

monitoring is only caused by SYNCHRONISATION messages, which are sent once

each data gathering cycle by every node with child(ren). This amount of overhead

is fixed regardless of the traffic rate and bounded by the number of nodes.

During emergency monitoring, besides SYNCHRONISATION messages, FIRE or

FALSE ALARM, SLOT REQUEST, and SLOT ACKNOWLEDGEMENT messages

also contribute to the amount of protocol overhead. These four types of messages are

generated only by nodes involved in emergency monitoring. Therefore, the amount

of the overhead depends on those nodes. While FIRE or FALSE ALARM messages

are sent once every data gathering cycle in the contention slot, SLOT REQUEST

and SLOT ACKNOWLEDGEMENT messages might be sent by several nodes in

every TDMA slot for possible contention.

4.4 Evaluation of ER-MAC

By these experiments, we want to show that ER-MAC delivers low latency for high

priority packets especially during emergency monitoring, it has fair packet delivery

and nodes in non-emergency mode behave in an energy-efficient manner. In the

simulation, we use the following metrics to measure the performance of ER-MAC:

1. Average energy consumption per node . We want to show that ER-MAC

is energy-efficient in normal situations.

113

2. Packet delivery ratio. We want to show that ER-MAC has high packet

delivery ratio, especially for high priority packets, for both normal and emer-

gency situations.

3. Average per packet latency . We want to show that the average per packet

latency, especially for high priority packets, is reduced during an emergency

situation.

4. Completeness of packets received . We want to show that the sink can

always have a balance of information from all sensor nodes in either normal

situation or emergency situation.

We implemented ER-MAC in ns-2 [2]. Our simulation results are based on the

mean value of five different network deployments that are simulated five times each

using random seeds. The network consists of 100 nodes deployed within randomly

perturbed grids. This is an approximation of manual deployments of sensor nodes,

for example in a building layout. In the random perturbed grids, each node is placed

in one unit grid square of 8 m × 8 m and the coordinates are slightly perturbed.

This grid size is chosen in relation to the use of 10-metre transmission range, which

is realistic for 0 dBm transmission power in an indoor environment [119]. The

location of the sink was fixed at the top-left corner of the network. We randomly

select up to n links and for each drop up to m packets, where m is large enough to

model unreliable links. Moreover, for simplicity, we assume the links are symmetric.

Our simulation parameters were based on Tmote sky hardware [4]. Table 8 presents

our simulation parameters.

4.4.1 Protocol Comparison

We compared the performance of ER-MAC with Z-MAC, because this protocol has

several similar characteristics with ours, such as hybrid designs and allowing con-

tention in TDMA slots when the traffic load increases. We followed the Z-MAC ns-2

114

Table 8: ER-MAC and Z-MAC simulation parameters in ns-2

Simulation parameters Default value
Transmission range 10 m
Transmit power (txPower) 52.2 mW
Receive power (rxPower) 59.1 mW
Idle power 59.1 mW
Sleep power 3 µW
Transition power 59.1 mW
Transition time 580 µs
Node initial energy 20,000 J (2 × AA batteries)
ER-MAC TDMA slot size 50 ms
ER-MAC TDMA sub-slot size 5 ms
Z-MAC TDMA slot size 50 ms
Z-MAC owner contention window size (To) 8
Z-MAC non-owner contention window size (Tno) 32

installation manual detailed in [5] and configured Z-MAC according to the default

settings in [97]. Z-MAC’s configuration is shown in the simulation parameters’s

table (Table 8). In addition, we use the same 10-metre transmission range as in

ER-MAC’s simulations. In each experiment, we simulated a data gathering for 300

seconds, where every node except the sink is a source node that generates packets

with fixed intervals.

In the simulations, we compared the performance of ER-MAC with Z-MAC in terms

of average energy consumption per node, packet delivery ratio, average per packet

latency, and completeness of packets received at the sink. For ER-MAC simulations,

we considered two network scenarios, i.e. no-fire and in-fire situations. In the no-fire

situation, communication among nodes follows their TDMA schedules. However, in

the in-fire situation, ER-MAC allows contention for the TDMA slots within one-hop

neighbourhood if the owner of the slot has no data to send. To simulate the in-fire

situation, we assume all nodes operate in emergency mode from the beginning of

the simulation. For Z-MAC simulations, we forced Z-MAC to operate in either

Low Contention Level (LCL) or High Contention Level (HCL) to model our no-fire

and in-fire situations, respectively. Note that in LCL, any node can compete to

115

transmit in any slots, but in HCL only the owner of the current slot and their one-

hop neighbours are allowed to compete for the slot. Our simulation results show

that ER-MAC outperforms Z-MAC especially when the traffic load increases.

Figure 36 shows the average energy consumption per node during the simulations.

ER-MAC nodes in both no-fire and in-fire situations consume less energy than Z-

MAC nodes that operate in LCL and HCL modes. This is because in ER-MAC,

the owner of the slot does not need to contend to access the channel if it has

data to send. However, in Z-MAC, although the owner of the slot has priority to

access the medium, it has to contend for the medium before sending its own data.

The figure also shows that during the in-fire situation, ER-MAC nodes spend more

energy than the no-fire situation, because they wake up in every slot for possible

contention. The energy consumption of ER-MAC nodes during the in-fire situation

is high when the traffic load is low (less than 0.1 packets/node/sec) because more

nodes do not use their own transmit slots to send their data, but contend for their

one-hop neighbours’ transmit slots if the neighbours have no data to send. In other

words, during the in-fire situation, the lighter the load, the more the possibilities

for contention in the network.

We also extend our simulations by increasing the traffic load up to 1 packet/node/sec.

The average energy consumption per node for the whole simulation is shown in

Figure 37. In our simulation, the network reaches its peak load at around 0.2

packets/node/sec. Hence, the energy consumption of nodes above the peak load is

stable as the nodes can only communicate using their own scheduled time slots even

though they have more data to send in the queues. The possibility of contention

above the peak load is also minimal because nodes always have data to send in their

own slots.

In this simulation, we want to compare the delivery ratio of high and low priority

packets. So, we force source nodes to generate the two kinds of packets at the

same time. Figure 38 shows that ER-MAC’s high priority packets achieve better

delivery ratio than Z-MAC’s packets and ER-MAC’s low priority packets. In the

116

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

5

10

15

20

25

Load (packets/node/sec)

E
ne

rg
y

co
ns

um
pt

io
n

(a
vg

. J
/n

od
e)

ER−MAC − no fire
ER−MAC − in fire
Z−MAC − LCL
Z−MAC − HCL

Figure 36: Energy consumption of ER-MAC versus Z-MAC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Load (packets/node/sec)

E
ne

rg
y

co
ns

um
pt

io
n

(a
vg

. J
/n

od
e)

ER−MAC − no fire
ER−MAC − in fire
Z−MAC − LCL
Z−MAC − HCL

Figure 37: Energy consumption of ER-MAC versus Z-MAC for increasing load up
to 1 packet/node/sec

117

figure, the lines for Z-MAC’s low priority packets are hidden below the high prior-

ity. Z-MAC delivers the same delivery ratio for the two types of packets because

it does not prioritise the high priority ones. When the traffic is very light, Z-MAC

that operates in HCL mode achieves higher delivery ratio than ER-MAC because

of data retransmissions when the packets are lost and the senders do not receive

acknowledgements. On the other hand, ER-MAC does not acknowledge every data

packets and so it does not retransmit lost data. Even though the delivery ratios

of ER-MAC’s high priority packets decrease when the traffic load increases, its de-

livery ratio in the in-fire situation is slightly higher than in the no-fire situation.

This phenomenon is caused by contention in TDMA slots to prioritise the propa-

gation of high priority packets during the emergency. However, the delivery ratio

of ER-MAC’s high priority packets does not change much from no-fire to in-fire

because when nodes generate more traffic, the chance for contention is minimal.

Figure 39 shows the packet delivery ratio when we increase the traffic load up to 1

packet/node/sec.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Load (packets/node/sec)

D
el

iv
er

y
ra

tio

ER−MAC − no fire − high priority

ER−MAC − no fire − low priority

ER−MAC − in fire − high priority

ER−MAC − in fire − low priority

Z−MAC − LCL − high priority

Z−MAC − LCL − low priority

Z−MAC − HCL − high priority

Z−MAC − HCL − low priority

Figure 38: Delivery ratio of ER-MAC versus Z-MAC

118

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Load (packets/node/sec)

D
el

iv
er

y
ra

tio

ER−MAC − no fire − high priority
ER−MAC − no fire − low priority
ER−MAC − in fire − high priority
ER−MAC − in fire − low priority
Z−MAC − LCL − high priority
Z−MAC − LCL − low priority
Z−MAC − HCL − high priority
Z−MAC − HCL − low priority

Figure 39: Delivery ratio of ER-MAC versus Z-MAC for increasing load up to 1
packet/node/sec

We want to show that the high priority packets have lower latency to reach the

sink than the low priority packets. Figure 40 shows the average per packet latency

of our simulations. ER-MAC’s high priority packets generally have lower latency

compared to Z-MAC’s high priority packets. This is because ER-MAC maintains

two priority queues that separates high priority packets from low priority ones and

the high priority packets are always transmitted first until the queue is empty. On

the other hand, Z-MAC only uses one queue and sends the high and low priority

packets one after another. That is why the latency of Z-MAC’s high and low

priority packets almost have no differences. Moreover, ER-MAC prioritises high

priority packets and so the latency of low priority packets is high. During the in-

fire situation, ER-MAC’s high priority packets’ latency is reduced because nodes

can propagate data quickly by contending for some unused slots.

Figure 41 shows the average per packet latency when we increase the traffic load

up to 1 packet/node/sec. When the traffic load increases, the latency of ER-MAC’s

119

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

10

20

30

40

50

60

70

80

90

100

Load (packets/node/sec)

A
vg

. p
er

 p
ac

ke
t l

at
en

cy
 (

se
c)

ER−MAC − no fire − high priority
ER−MAC − no fire − low priority
ER−MAC − in fire − high priority
ER−MAC − in fire − low priority
Z−MAC − LCL − high priority
Z−MAC − LCL − low priority
Z−MAC − HCL − high priority
Z−MAC − HCL − low priority

Figure 40: Latency of ER-MAC versus Z-MAC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Load (packets/node/sec)

A
vg

. p
er

 p
ac

ke
t l

at
en

cy
 (

se
c)

ER−MAC − no fire − high priority
ER−MAC − no fire − low priority
ER−MAC − in fire − high priority
ER−MAC − in fire − low priority
Z−MAC − LCL − high priority
Z−MAC − LCL − low priority
Z−MAC − HCL − high priority
Z−MAC − HCL − low priority

Figure 41: Latency of ER-MAC versus Z-MAC for increasing load up to 1
packet/node/sec

120

high priority packets rises. On the other hand, the latency of Z-MAC’s packets and

ER-MAC’s low priority packets drops as we observe in the simulations that fewer

packets are received at the sink and most of them are from nodes near it. This

argument is validated by the low delivery ratio in Figure 39.

As explained in Section 4.3.4, we implement priority queues by considering fairness

over the packets’ sources. The reason behind this modification is we want the sink

to have a balance of information from all sensor nodes in the network. Figure 42

shows the completeness of the packets received at the sink when the network reaches

its peak load, i.e. 0.2 packets/node/sec. We measure the completeness as the

percentage of packets received plotted against hop count. The graph shows that

the completeness of ER-MAC’s high priority packets for both no-fire and in-fire

situations are higher than Z-MAC’s packets and ER-MAC’s low priority packets.

This happens because of packet prioritisation and priority queue modification in

ER-MAC to transmit one packet from each node during one data gathering cycle

period.

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

Hop count from the sink

C
om

pl
et

en
es

s
(%

)

ER−MAC − no fire − high priority

ER−MAC − no fire − low priority

ER−MAC − in fire − high priority

ER−MAC − in fire − low priority

Z−MAC − LCL − high priority

Z−MAC − LCL − low priority

Z−MAC − HCL − high priority

Z−MAC − HCL − low priority

Figure 42: Completeness of ER-MAC versus Z-MAC

121

4.4.2 Behaviour When a Cluster of Nodes Detects Fire

We consider the situation when some nodes in a network detect fire. Nodes that

detect fire become in-fire nodes. They change their MAC behaviour to emergency

mode, set the emergency flag in each of their high and low priority packets and

broadcast emergency messages to their one-hop neighbours during contention slots.

The one-hop neighbours also switch to emergency mode but do not set the emer-

gency flag in their data packets. When the ancestors of the in-fire nodes receive

data packets with emergency flag, they change their MAC to emergency mode and

broadcast emergency messages to their one-hop neighbours to change their MAC.

Neither the ancestors nor their one-hop neighbours set the emergency flag in any

of their packets. This situation is illustrated in Figure 43.

Sink

In-fire nodes

1-hop neighbours of the in-fire nodes

Ancestors of the in-fire nodes

1-hop neighbours of the in-fire nodes' ancestors

Figure 43: A cluster of nodes detects fire

We evaluate the performance of ER-MAC against Z-MAC when a cluster of nodes

detects fire. For each simulation, we run a 500-second data gathering, where all

nodes are the sources of high and low priority packets. They generate a constant

0.1 packets/node/sec traffic rate. 100 seconds after the simulation starts, a random

location in the network is on fire. We choose five nodes, which are the closest nodes

to the fire location, as in-fire nodes. The in-fire nodes double the traffic generation

rate to 0.2 packets/node/sec and halve the packet deadline.

122

Figure 44 shows the average energy consumption per node during the 500-second

simulations. The results reported at the 100th second is when the network is not on

fire. As the fire starts at the 100th second, we start to plot the emergency monitoring

results from the 200th second. The simulation results show that ER-MAC is energy-

efficient during this emergency monitoring as nodes consume less than one fifth of

Z-MAC’s energy consumption. The figure also shows that with ER-MAC, nodes

that participate in the emergency monitoring, i.e. the in-fire nodes, the one-hop

neighbours of the in-fire nodes, the ancestors of the in-fire nodes and the ancestors’

one-hop neighbours, dominate the energy consumption of the network. Conversely,

the rest of the network, which operates in the normal mode of ER-MAC, is very

energy-efficient. Z-MAC does not distinguish between nodes that participate in the

emergency monitoring and the normal monitoring. It switches from LCL to HCL

mode if it detects heavy traffic loads. In addition, nodes that operate in the HCL

and LCL modes of Z-MAC have been shown to consume almost the same amount

of energy in Figure 36 and 37.

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

Time (sec)

E
ne

rg
y

co
ns

um
pt

io
n

(a
vg

. J
/n

od
e)

ER−MAC
Z−MAC
ER−MAC − emergency mode
ER−MAC − normal mode

Figure 44: Energy consumption of ER-MAC versus Z-MAC when a cluster of nodes
detects fire

123

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

D
el

iv
er

y
ra

tio

ER−MAC − high priority − emergency data

ER−MAC − high priority − normal data

ER−MAC − low priority − emergency data

ER−MAC − low priority − normal data

Z−MAC − high priority − emergency data

Z−MAC − high priority − normal data

Z−MAC − low priority − emergency data

Z−MAC − low priority − normal data

Figure 45: Delivery ratio of ER-MAC versus Z-MAC when a cluster of nodes detects
fire

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

110

Time (sec)

A
vg

. p
er

 p
ac

ke
t l

at
en

cy
 (

se
c)

ER−MAC − high priority − emergency data
ER−MAC − high priority − normal data
ER−MAC − low priority − emergency data
ER−MAC − low priority − normal data
Z−MAC − high priority − emergency data
Z−MAC − high priority − normal data
Z−MAC − low priority − emergency data
Z−MAC − low priority − normal data

Figure 46: Latency of ER-MAC versus Z-MAC when a cluster of nodes detects fire

124

Figure 45 presents the delivery ratio of high and low priority packets with and

without emergency flag. Recall that only in-fire nodes generate packets with emer-

gency flag and their reporting frequency is twice as much as the normal data. Be-

cause of the ability to prioritise packets, ER-MAC achieves higher delivery ratio for

emergency and normal high priority packets compared to Z-MAC, even though it

sacrifices the low priority ones. ER-MAC also delivers the emergency high priority

packets with the lowest latency as shown in Figure 46. This happens because emer-

gency packets have shorter deadline than normal packets and so they are placed in

the front of the queue. In our priority queue modification, the emergency packets

are given the priority to be transmitted after one packet from each descendant of a

node has been sent.

4.4.3 Behaviour Under Variable Traffic Load

In this simulation, we vary the traffic load during 500-second simulations. The

traffic changes every 100 seconds. It jumps from 0.1 to 0.4 packets/node/sec, then

drops to 0.1 packets/node/sec, and so forth. We vary the load in order to illustrate

the changes in network conditions from no-fire to in-fire, then from in-fire to no-

fire, and so on. When a node generates more traffic, it changes the MAC behaviour

from the normal mode to the emergency mode. When it generates less traffic, it

changes back to the normal mode. Figure 47, 48 and 49 show the comparison of ER-

MAC against Z-MAC when the traffic changes over time in terms of average energy

consumption per node, packet delivery ratio and average per packet latency, respec-

tively. Overall, ER-MAC outperforms Z-MAC because it is more energy-efficient

and its high priority packets have better delivery ratio and latency compared to

Z-MAC’s. In Figure 48 and 49, the delivery ratio and latency of Z-MAC’s high

and low priority packets overlap because Z-MAC only uses one queue and sends the

high and low priority packets one after another. That is why the results are almost

the same.

125

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

Time (sec)

E
ne

rg
y

co
ns

um
pt

io
n

(a
vg

. J
/n

od
e)

ER−MAC
Z−MAC

Figure 47: Energy consumption of ER-MAC versus Z-MAC under variable traffic
load

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

D
el

iv
er

y
ra

tio

ER−MAC − high priority
ER−MAC − low priority
Z−MAC − high priority
Z−MAC − low priority

Figure 48: Delivery ratio of ER-MAC versus Z-MAC under variable traffic load

126

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

Time (sec)

A
vg

. p
er

 p
ac

ke
t l

at
en

cy
 (

se
c)

ER−MAC − high priority
ER−MAC − low priority
Z−MAC − high priority
Z−MAC − low priority

Figure 49: Latency of ER-MAC versus Z-MAC under variable traffic load

4.4.4 Behaviour When Topology Changes

We want to show that ER-MAC is topology adaptive by simulating networks while

sensor nodes are failing. In the simulation, we increase the number of dead nodes

from one to five and calculate the average energy consumption and time needed

to reconfigure the network. The energy consumption to reconfigure the network

is the amount of energy spent by orphan nodes to find their new parents and to

announce new schedules in contention slots. The network reconnectivity latency is

calculated from the time a node knows that its parent is dead until it uses its new

TDMA schedules. In this simulation, a node is considered dead if after two data

gathering cycles, its parent and children do not receive any packets from it. These

simulation results are depicted in Figure 50. The amount of energy spent by a node

to find a new parent is very small, i.e. less than 0.000125% of its initial energy.

The reconnectivity latency slightly increases when more nodes die because the path

length of an orphan node to the sink may be lengthened when it finds a new parent.

127

1 2 3 4 5

0.01

0.015

0.02

0.025

0.03

E
ne

rg
y

co
ns

um
pt

io
n

(a
vg

. J
/n

od
e)

Number of dead nodes

8

10

12

14

16

A
vg

. n
et

w
or

k
re

co
nn

ec
tiv

ity
 la

te
nc

y
(g

at
he

rin
g

cy
cl

e)

Energy consumption

Latency

Figure 50: Energy consumption and latency of ER-MAC for network reconnectivity
when some nodes die gradually

We also simulate the situation where several nodes die simultaneously. The sim-

ulation results are depicted in Figure 51, where we increase the number of dead

nodes from 5 to 20. The energy consumption and latency to reconfigure the net-

work decrease when the number of dead nodes goes over 15 because the network

gets partitioned as the number of failed node increases. Hence, we only measure the

energy expenditure and time to reconfigure the network from the remaining nodes

that still form a connected network to the sink.

4.4.5 Behaviour Using Different Topologies

We want to evaluate the performance of ER-MAC by considering different topolo-

gies. The first topology, as shown in Figure 52, is a 100-node network which is easy

to partition if a single node fails. The second one is the same network with five

relay nodes as shown in Figure 53. The addition of five relays, i.e. node 100–104

in the network makes the network more robust against a single point of failure. At

128

5 10 15 20

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

E
ne

rg
y

co
ns

um
pt

io
n

(a
vg

. J
/n

od
e)

Number of dead nodes

15

16

17

18

19

20

21

22

23

A
vg

. n
et

w
or

k
re

co
nn

ec
tiv

ity
 la

te
nc

y
(g

at
he

rin
g

cy
cl

e)

Energy consumption

Latency

Figure 51: Energy consumption and latency of ER-MAC for network reconnectivity
when some nodes die simultaneously

this stage, we only want to assess ER-MAC’s performance in using a more robust

topology, i.e. a topology with relay nodes. We will discuss the relay deployment

problem to improve the network robustness in the subsequent chapters.

In the experiment, we simulate five runs of 1000-second data gathering on each

topology using 0.03 packets/node/sec load, i.e. each sensor node generates two

packets (high and low priority) every 60 seconds. Note that the relay nodes in the

second topology do not generate traffic, but only forward sensor nodes’ data. We

evaluate ER-MAC while the network is in both no-fire and in-fire conditions. We

place the sink at node 0’s position and turn node 53 off during the simulation after

the setup phase.

In the original topology, when node 53 fails we lose a significant portion of the

network that consists of 31 sensor nodes. In the topology with relays, the network

remains connected after the failure of node 53 and all nodes still relay traffic from

the 31 sensor nodes toward the sink. Therefore, in both no-fire and in-fire situations,

129

Figure 52: An example of a 100-node network which is easy to partition

Figure 53: An example of a more robust network with five relay nodes: 100–104

130

No fire In fire
0

5

10

15

20

25

Network situation

E
ne

rg
y

co
ns

um
pt

io
n

(a
vg

. J
/n

od
e)

Topology with relays Original topology

Figure 54: Energy consumption of ER-MAC using different topologies

they consume slightly more energy than the nodes in the original topology as shown

in Figure 54. When the network is partitioned, the delivery ratios of both high and

low priority packets of the original topology decrease as illustrated in Figure 55. The

topology with relays, on the other hand, has better delivery ratios as the network

is still connected after the failure of node 53. Figure 56 shows the delivery latency,

where the topology with relays has lower end-to-end latency because the addition

of five relays into the network shortens some sensor nodes’ paths toward the sink.

4.4.6 Behaviour Using Different Sink Positions

We use different sink positions to investigate the performance of ER-MAC when

the path lengths from sensor nodes to the sink are shortened. We use the topology

in Figure 52 and run the simulation using two sink positions: at the top-left corner

of the network (node 0’s position) and in the centre of the network (node 44’s

position). When we move the sink to the centre of the network, we reduce the path

131

No fire − High priority No fire − Low priority In fire − High priority In fire − Low priority
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Network situation and packet type

D
el

iv
er

y
ra

tio
Topology with relays Original topology

Figure 55: Delivery ratio of ER-MAC using different topologies

No fire − High priority No fire − Low priority In fire − High priority In fire − Low priority
0

5

10

15

20

25

30

35

40

Network situation and packet type

A
vg

. p
er

 p
ac

ke
t l

at
en

cy
 (

se
c)

Topology with relays Original topology

Figure 56: Latency of ER-MAC using different topologies

132

High priority Low priority
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet type

D
el

iv
er

y
ra

tio

Centre sink Corner sink

Figure 57: Delivery ratio of ER-MAC using different sink positions

High priority Low priority
0

5

10

15

20

25

30

35

Packet type

A
vg

. p
er

 p
ac

ke
t l

at
en

cy
 (

se
c)

Centre sink Corner sink

Figure 58: Latency of ER-MAC using different sink positions

133

length of distant nodes to reach the sink. Figure 57 and 58 show the delivery ratio

and latency using each sink position, which are the average of five runs of data

gathering simulation. The network gives a better performance when the sink is in

the centre, because packet delivery ratio and the average per packet latency are

influenced by the diameter of the network.

4.5 Conclusion

In this chapter, we present ER-MAC, a hybrid MAC protocol for emergency re-

sponse WSNs with flexibility to adapt well to traffic and topology changes. ER-

MAC schedules collision-free slots, so during the normal monitoring, nodes only

wake up for their scheduled slots, but otherwise sleep to save energy. During an

emergency, nodes that participate in the emergency monitoring change their MAC

behaviour by allowing contention in each slot to achieve high delivery ratio and low

latency, but have to sacrifice energy efficiency. ER-MAC is designed to prioritise

high priority packets. It also offers a synchronised and loose slot structure, where

nodes can modify their schedules locally. Our ns-2 simulation results demonstrate

the scalability of ER-MAC and show that ER-MAC achieves higher delivery ratio

and lower latency at low energy consumption compared to Z-MAC. We also show in

our experiment that the performance of ER-MAC is greatly influenced by network

topologies. ER-MAC gives a better performance on topologies that are not easy to

partition and have shorter path length to the sink.

Network security is important in this emergency response application to prevent an

attacker from switching the network into emergency mode as often as possible to

deplete nodes’ energy and flooding the network with high priority packets to fill in

the queue with bogus data. The security aspect is out of scope of this thesis, but

might be addressed using techniques, such as anomaly detection [92], sensor node

behaviour profile modeling [117], and malicious node detection scheme [83]. In this

thesis, we do not incorporate dynamic link estimation into ER-MAC. However, in

134

practice we can adapt one of the techniques from the literature, such as using the

Received Signal Strength Indicator (RSSI) [107].

135

136

Chapter 5

Fault-Tolerant Relay Deployment

for k Vertex-Disjoint Paths

5.1 Introduction

Ensuring that Wireless Sensor Networks (WSNs) are robust to failures requires

that the physical network topology will offer alternative routes to the sinks. This

requires sensor network deployments to be planned with an objective of ensuring

some measure of robustness in the topology, so that when failures do occur, routing

protocols can continue to offer reliable delivery. In the WSN deployment planning

process, which usually includes requirements gathering, site survey, topology design

and optimisation, our research focuses on the topology design and optimisation

phases. Our contribution is a solution that enables fault-tolerant WSN deployment

planning by judicious use of a minimum number of additional relays. We define

a WSN to be robust if at least one route with an acceptable length to a sink is

available for each remaining sensor node after the failure of up to k−1 nodes.

In this chapter, we define a novel problem for increasing WSN reliability by de-

ploying a number of additional relays to ensure that each sensor node in the initial

design has k length-bounded disjoint paths to one or more sinks. We define the

137

single-tiered, constrained partial fault-tolerant relay placement problem for k dis-

joint paths with a length constraint for WSNs with data sinks, which we call the

Additional Relay Placement (ARP) problem. In single-tiered networks, all nodes

can forward packets from other nodes. In constrained problems, relays can only

be placed at candidate locations due to, for example, physical obstacles. Partial

fault-tolerance requires k-connectivity only between every sensor node. We choose

to focus on single-tiered networks as this is most common in the research literature

and for published WSN deployments. We assume the constrained approach for re-

lay locations, which we believe is more reasonable for real-world deployments. We

also assume partial fault-tolerance, reflecting the fact that relays are deployed for

connectivity only and do not have a sensing role. We assume that we are given

a pre-planned WSN with a connected finite set of sensors and one or more sinks.

We make no assumptions on the geographical or physical properties of the area in

which the WSN is to be deployed, but we assume a set of possible locations for

relays, and a connectivity graph, showing the set of feasible links between nodes.

We present two centralised algorithms to be run during the initial topology planning,

i.e. prior to network deployment and operation, to solve this problem. Counting-

Paths is a heuristic algorithm that counts the number of disjoint paths from each

sensor node and finds the shortest disjoint paths to sinks. Greedy Randomised

Adaptive Search Procedure for Additional Relay Placement (GRASP-ARP) is a local

search algorithm that uses Counting-Paths to minimise the number of relays that

need to be deployed. Specifically, the contributions of this chapter are:

1. The basic Counting-Paths algorithm uses a maximum flow algorithm, such

as Ford-Fulkerson [43], to count the number of disjoint paths from sensors to

sinks and to find the actual k shortest disjoint paths. For each sensor node,

a set of disjoint paths to the sinks is sought, where:

(a) the sum of the lengths is minimal, because we want to find for the shortest

disjoint paths, and

138

(b) the length difference between the shortest path and the longest path is

minimal, because we do not want a huge difference in alternative paths.

It is formulated as minimise
∑k

i=1 li+(lmax−lmin), where k is the number of

disjoint paths, l is a path’s length, lmin is the shortest length, and lmax is the

longest length of the disjoint paths.

2. A dynamic programming variant of the Counting-Paths algorithm to count

the number of disjoint paths from sensors to sinks and to find k shortest

disjoint paths to k neighbours that already have k disjoint paths. If we are

not interested in global routing paths during the deployment planning, it is

not necessary for us to discover the actual paths, but only the number of

disjoint paths and the neighbours that have k disjoint paths. The algorithm

cannot find the actual paths because it does not store the complete paths.

3. GRASP-ARP is a local search algorithm that uses Counting-Paths for the

single-tiered constrained partial fault-tolerant relay placement problem for

k disjoint paths. It uses the concept of the GRASP algorithm to deploy a

minimum number of additional relays at the possible candidate locations.

The rest of this chapter is organised as follows. We present Counting-Paths in

Section 5.2 and its simulation results in Section 5.3. We show that Counting-

Paths runs faster than the closest approaches that we compared with and is able

to identify the maximum k such that a node has k disjoint paths. In addition, its

dynamic programming variant improves on the runtime. We introduce GRASP-

ARP in Section 5.4 that ensures length-bound with the basic Counting-Paths, but

runs faster with the dynamic programming variant. We demonstrate empirically in

Section 5.5 that it finds solutions requiring 35% fewer additional relays for small

values of k compared to the closest approach from the literature. We also show that

GRASP-ARP scales better, finding solutions in reasonable time for problems with

hundreds of nodes. This represents a quantifiable improvement, making it possible

to compute cost-effective WSN designs that offer an assured level of reliable delivery.

139

5.2 Counting-Paths

Counting-Paths is a heuristic algorithm to count the number of disjoint paths from

a node. It utilises the Ford-Fulkerson [43] maximum flow algorithm, which is de-

scribed in Appendix A.2, to find the actual disjoint paths. In each of its iterations,

Counting-Paths finds the shortest path from a source node to a sink using the

breadth first search technique. Without graph modification, Ford-Fulkerson can

only discovers edge-disjoint paths [65] because if the capacity of all edges is one

unit, Ford-Fulkerson’s paths will not share a common edge, but may share common

vertices. Therefore, before we find the second shortest path, we need to modify the

original graph by using a vertex-splitting technique as is used in the algorithm pro-

posed by Bhandari [19]. Vertex-splitting along the paths that have been discovered

can exclude all possible paths that intersect them. To count the number of disjoint

paths for all nodes in the network, we propose a dynamic programming variant of

Counting-Paths, where we start counting the paths from sensor nodes closer to the

sink. Dynamic programming solutions to problems are solutions to simple subprob-

lems in a recursive fashion [86, 34]. This scheme speeds up the counting process for

the entire network.

Existing disjoint paths algorithms by Torrieri [113] and Bhandari [19] are similar to

Counting-Paths, which is designed to discover the shortest disjoint paths. However,

Counting-Paths, which uses Ford-Fulkerson with the breadth first search technique,

has lower time complexity than the two algorithms. Breadth first search has O(|V |+

|E|), which is slightly better than Bhandari’s with Dijkstra’s O(|V |2) and Torrieri’s

polynomial time. The time complexity of the Ford-Fulkerson algorithm is O(|E|f),

where f is the maximum flow in the graph. When we want to find k disjoint paths

using Ford-Fulkerson, the time complexity becomes O(|E|k). Moreover, with the

dynamic programming variant, we can further reduce the time complexity.

We will discuss the problem of finding disjoint paths by firstly presenting the basic

Counting-Paths algorithm to solve the single source – single sink problem. In this

140

problem, we want to check whether or not a node has k disjoint paths to a sink.

Then, we will present the dynamic programming variant of Counting-Paths to solve

the multiple sources – single sink problem. After that, we will discuss the variations

of the algorithm to solve cases with multiple sinks.

5.2.1 Single Source – Single Sink Problem

In finding k shortest disjoint paths for the single source – single sink problem, given

a graph G=(V,E), we check if a source s∈V has k disjoint paths to a destination

t∈V , t 6=s, by finding the k shortest disjoint paths, if they exist, from s to t, where∑k
i=1 li+(lmax−lmin) is minimised. k denotes the number of disjoint paths, l is the

length of a path, lmin is the shortest length, and lmax is the longest length of the

disjoint paths. If k=∞, we find all possible disjoint paths from s to t.

Counting-Paths uses the Ford-Fulkerson method, which is iterative. It starts by

giving an initial flow of value zero. Then at each iteration, the flow value is increased

by finding an augmenting path from the source to the sink along which we can send

more flow. A path P has a cost attribute, denoted as cost(P). The cost of pushing a

flow along an edge is defined as one unit of cost to send one unit of flow from a vertex

to one of its adjacent vertices. A path cost is the total amount of cost to push each

flow along each edge on a path. The cost is subtracted with a flow if the direction

of the path is opposite to the direction of the flow. Given a flow network and a

flow, the residual network consists of edges that can admit more flow. Formally, if

we have a flow network G with a source and a sink, the residual network Gres is the

network with residual capacity capacityres(v, w)=capacity(v, w)−flow(v, w).

A flow network is a directed graph, where each directed edge has a stated capacity.

In our scenario for k disjoint paths, the WSN topology is an undirected graph and

the total capacity of each edge is one. Therefore, we need a slight modification of

the Ford-Fulkerson method to work with our specific network requirements. We also

utilise the vertex-splitting technique [43] as is used in Bhandari’s algorithm [19] to

141

Algorithm 5: Counting-Paths
Input : G, s, t, k
Output: Pi, ∀i=1,. . ., k
1: for i←1 to k do
2: if i>1 then
3: Split vertices on the shortest paths except s and t
4: Modify the residual network Gres

5: Replace external edges connected to the vertices on the shortest paths
except s and t

6: end if
7: if there exists a path Pi from s to t in Gres then
8: Push flow along Pi towards t
9: end if

10: if i>1 then
11: Remove overlapping edges
12: end if
13: end for
14: return Pi, ∀i=1,. . ., k

exclude all possible paths that intersect the previously discovered paths. Because

we utilise the vertex-splitting technique, we need to modify the breadth first search

algorithm so that it is able to find the shortest path with the least path cost. This

modification will be explained later in the description of Counting-Paths.

We present the basic Counting-Paths algorithm in Algorithm 5 to solve the k short-

est disjoint paths for the single source – single sink problem. Counting-Paths is a

combination of Ford-Fulkerson with breadth first search and the vertex-splitting

technique. It takes as input a graph G, a source s, a destination t, and the number

of disjoint paths sought k. The details of the steps are given below and an example

to illustrate the steps when we explain the algorithm is shown in Figure 59.

Suppose we have an input network as depicted in Figure 59(a). We want to find

two shortest disjoint paths from the source s to the sink t. An undirected edge

(v, w) in the residual network shows that a directed edge may exist either from v to

w or from w to v with the total capacity of one. For example, the first augmenting

path found is P1 ={s, a, c, t} as shown in Figure 59(a). The flow is pushed from s

to t along P1 as shown in Figure 59(b). We follow Algorithm 5, which is described

in details below, to find the second disjoint path.

142

a

t

b

d c

s

Iteration

1

a

t

b

d c

s

1

1

1

-1 0

0

0 0
00

-1

-1

0

0

a

t

b

d

s

Iteration

2

a

t

b

d c

s

1

0

1

-1 1

-1

1 -1
-11

0

-1

a'

c

c'

0

0

1

1

1

1

e

f

g

-1

1

e

f

g

0

0

0

00
0

0
0

0

0
0

0

e

f

g

0

0

0

00
0

0
0

0

0
0

0

e

f

g

1

1
1

1

1

(a) (b)

(c) (d)

Residual Network Flow Network

Figure 59: Two successive iterations of the execution of Counting-Paths for k= 2.
(a) and (c) are the residual network Gres of each iteration with a bold augmenting
path P from the source s to the sink t. (b) and (d) show the new flow. For clarity,
the directed edges with zero capacity are not drawn in the residual network, except

from the primed vertices to the original vertices.

143

1. Split vertices. This step explains line 3 in Algorithm 5. Each vertex on

the shortest paths in the residual network Gres, except the source s and the

sink t, is split into two vertices, namely the original vertex and the primed

vertex. The two vertices are joined by a directed edge of zero capacity and

directed from the primed vertex to the original vertex. This is illustrated

in Figure 59(c). Vertices a and c are split into vertices a and a′, c and c′,

respectively. We draw directed edges of zero capacity from a′ to a and from

c′ to c. Details for other edges will be given in the following steps.

2. Modify residual network. This step explains line 4 in Algorithm 5. Recall

that the residual network Gres is the network with residual capacity and the

total capacity of each edge in our scenario is one. Therefore, for each edge

(v, w) on the shortest paths, we have two cases:

(a) If v is not the source vertex:

capacityres(v
′, w)=capacity(v, w)−flow(v, w)

capacityres(w, v
′)=capacity(v, w)−capacityres(v

′, w)

(b) If v is the source vertex:

capacityres(v, w)=capacity(v, w)−flow(v, w)

capacityres(w, v)=capacity(v, w)−capacityres(v, w)

In our example, capacityres(s, a), capacityres(a
′, c) and capacityres(c

′, t) in the

residual network in Figure 59(c) are zero. However, for the clarity of the

drawing purposes, the directed edges with zero capacity are not shown in

the residual network’s figure, except from the primed vertices to the original

vertices. Moreover, capacityres(a, s), capacityres(c, a
′) and capacityres(t, c

′) are

all one as shown in the figure.

3. Replace external edges. This step explains line 5 in Algorithm 5. We

replace external edges connected to the vertices on the shortest paths with

two oppositely directed edges of the same capacity, and connected to the

two split-vertices. External directed edges terminate on the original vertices,

144

while they originate from the primed vertices. In the residual network in

Figure 59(c), we need to replace external edges connecting to vertices a and

c, i.e. (e, a), (d, a) and (b, c). Then, we draw directed edges of capacity one

to the original vertices, i.e. from e to a, d to a, and b to c. We also draw the

opposite directed edges from the primed vertices, i.e. from a′ to e, a′ to d,

and c′ to b. Note that other edges, i.e. edges in the residual network that are

neither on the previously discovered shortest path nor incident to the vertices

on the shortest path, are left unmodified.

4. Find an augmenting path using a modified breadth first search. This

step explains how we find the shortest path from s to t in line 7 of the algo-

rithm. In each iteration, we find an augmenting path from s to t that has the

lowest path cost using the breadth first search technique. Recall that the path

cost, denoted as cost(P), is the total amount of cost to push each flow along

each edge on the path in the residual network Gres. The cost is subtracted

with the flow from the flow network if the direction of the path is opposite

to the direction of the flow. We also add a little modification to breadth first

search by giving advantage moves to the vertices on the previously discovered

shortest paths, i.e. the split vertices. It means, when we discover a split

vertex, we do not put it in the breadth first search’s queue but examine it

directly. This modification is aimed to tackle longer paths that are caused by

overlapping edges. In our example network in Figure 59, there are two possible

augmenting paths in the second iteration. They are P2 = {s, b, c, a′, d, t} and

P3 ={s, e, f, g, t}. Breadth first search found that cost(P2)=3, because (c, a′)

has an opposite flow direction in Figure 59(b), while cost(P3)=4. Therefore,

we take P2 as the next augmenting path because it has the lowest path cost

as shown in bold edges in Figure 59(c).

5. Push flow. This steps explains line 8 in Algorithm 5. If an augmenting path

P exists, we merge the primed vertices with their original vertices. Then, the

flow is pushed along P from s to t. Thus, for each edge (v, w) on P , we have:

145

flow(v, w)←flow(v, w) + 1

flow(w, v)←−flow(v, w)

Figure 59(d) shows the new flow after we push the flow along P2 ={s, b, c, a, d, t}.

Note that flow(a, c) and flow(c, a) are now zero.

6. Remove overlapping edges. This steps explains line 11 in Algorithm 5. We

remove the overlapping edges of the paths found to obtain the shortest disjoint

paths. The removal of overlapping edges can be done by crossing over the two

paths. If we have two paths, say P1 = {v1, v2, v3, v4} and P2 = {v5, v3, v2, v6},

the common edge is (v2, v3) or (v3, v2). When we cross over the two paths,

the results are P1 = {v1, v2, v6} and P2 = {v5, v3, v4}. In Figure 59, we have

P1 = {s, a, c, t} and P2 = {s, b, c, a, d, t}. These two paths share a common

edge. i.e. (a, c) or (c, a). After removing the overlapping edge, the results are

P1 ={s, a, d, t} and P2 ={s, b, c, t}. The length of both paths is three.

We prove the correctness of the Counting-Paths algorithm by comparing to the

Ford-Fulkerson algorithm and showing that in each of its iterations:

1. the modifications made to Ford-Fulkerson’s residual graph, i.e. vertex-splitting

and external edge replacement, do not remove any augmenting paths for

breadth first search to find, and then, since breadth first search is complete,

if there are currently k−1 paths in the collection of the disjoint paths, there

must be at least one augmenting path remaining, and breadth first search

must find this new path,

2. Counting-Paths always produces vertex-disjoint paths, and so once the size

of the current collection of the disjoint paths is k, the algorithm terminates

because it has found the maximum set of disjoint paths and there are no other

augmenting paths remaining to be discovered by breadth first search.

We first show that both vertex-splitting and external edge replacement in the resid-

ual graph do not change the problem for breadth first search. A vertex v on the

146

previously discovered shortest path is split into two vertices v and v′. When v is

split, the zero-length directed edge from v′ to v enables breadth first search to in-

clude all possibilities of augmenting paths passing through v. Note that we call an

edge that is not on the discovered shortest path but incident to v as an external

edge. If the degree of v is two, v has no external edges because the two neighbours

of v must also be on the discovered shortest path. If the degree of v>2, v may be

adjacent to one or more vertices that are not on the shortest path. Suppose there is

a vertex w that is not on the shortest path and adjacent to v. In order for breadth

first search to include all possibilities of augmenting paths from v to w and from w

to v, the external edge is replaced with two directed edges from v′ to w and from

w to v, respectively, as illustrated in Figure 60. Since the vertex-splitting and the

external edge replacement do not change things for the breadth first search part, if

there are currently k−1 paths in the collection of the disjoint paths, breadth first

search will find the last remaining augmenting path because it is complete.

v v'

w

0

1
1

Figure 60: Vertex-splitting and external edge replacement in Counting-Paths

Secondly, we show that in each of its iterations, Counting-Paths produces disjoint

paths. The Counting-Paths algorithm allows the edges of the new discovered short-

est path to overlap with the previously found shortest paths. If there are some

overlapping edges, Counting-Paths merges and reconstructs the paths by remov-

ing the overlapping edges that results in disjoint paths with no common edges and

vertices, except the source and the destination vertices. Since at the end of each

iteration it produces disjoint paths, it stops when the number of disjoint paths is

k. When Counting-Paths terminates, k is the maximum set of disjoint paths and

there are no augmenting paths from the source to the destination remaining.

147

Counting-Path is different to Modified Dijkstra [19] because it works with two

graphs, i.e. residual and flow networks for Ford-Fulkerson’s algorithm, while Modi-

fied Dijkstra only works with one graph. In Counting-Paths, edges on the shortest

paths in the residual network are replaced with positive edges directed towards the

source. In Modified Dijkstra, the directed edges have negative values.

5.2.2 Multiple Sources – Single Sink Problem

Multi-hop WSNs are often characterised by many-to-one (convergecast) traffic pat-

terns, where many sources report data to a sink or a base station. In this kind of

topology, we need to find whether all sources have k disjoint paths to the sink, so

we need to use Counting-Paths repeatedly. If the network has n sources, we need

to execute Counting-Paths n times which increases the worst time complexity to

O(|V ||E|k). However, if we do not need to know the complete routing paths during

the deployment process, it is not necessary for us to discover the actual paths, but

only the number of disjoint paths and the neighbours that have k disjoint paths.

This local information is used by nodes to forward their data to the nearest neigh-

bours and the neighbours will decide where to forward them further. This motivates

the dynamic programming variant of Counting-Paths, where we start counting the

paths from sensor nodes closer to the sink.

In finding k shortest disjoint paths for the multiple sources – single sink problem,

given a graph G = (V,E), we check if a source s ∈ V has k disjoint paths to a

destination t∈V , t 6=s, by finding the k shortest disjoint paths, if they exist, from

s to t or v, where v∈V and v has k disjoint paths. Below, we prove the result that

justifies our dynamic programming approach.

Lemma 5.1. Let v be a vertex which has vertex-disjoint paths to a subset W of k

vertices none of which have a cutset of size <k. Then v has no cutset of size <k.

Proof. Suppose v does have a cutset, C, of size < k. A set of size < k can break

at most k−1 of the paths from v to W . Let w ∈W be any of the vertices whose

148

Algorithm 6: Counting-Paths-DP
Input : G,S, t, k
Output: Pi,j , ∀i=1,. . ., |S|, ∀j=1,. . ., k
1: T←{t}
2: for i←1 to |S| do
3: for j←1 to k do
4: if j>1 then
5: Split vertices on the shortest paths except si∈S and r∈T
6: Modify the residual network Gres

7: Replace external edges connected to the vertices on the shortest paths
except si∈S and r∈T

8: end if
9: if there exists a path Pi,j from si∈S to r∈T in Gres then

10: Push flow along Pi,j towards r
11: end if
12: if j>1 then
13: Remove overlapping edges
14: end if
15: end for
16: if si∈S has k disjoint paths then
17: T←T∪{si}
18: end if
19: end for
20: return Pi,j , ∀i=1,. . ., |S|, ∀j=1,. . ., k

paths from v are not broken by C, and so v is still connected to w. But w must be

connected to S, since w has no cutset of size <k. Therefore v is still connected to

S. Therefore C is not a cutset for v. Contradiction.

As a corollary, if a vertex v has vertex-disjoint paths to k vertices, each of which has

k vertex-disjoint paths to the sink, then v must also have k vertex-disjoint paths to

the sink.1

In the dynamic programming variant of Counting-Paths, we start finding the k

disjoint paths from vertices closer to the sink. For each vertex, if we can find k

vertices that have k disjoint paths, we do not need to find the k disjoint paths

to the sink and we can proceed to the next one. The algorithm for the dynamic

programming variant of Counting-Paths is given in Algorithm 6. It takes as input

1We have not proven that the dynamic programming variant of Counting-Paths guarantees the
length-bound, but in all problems that we tested in simulation it does obey the length-bound.

149

a graph G, a set S of source vertices, a destination t, and the number of disjoint

paths sought k. T represents a collection of destination vertices, which are the sink

and the vertices which have k disjoint paths to the sink. Note that line 3 to 15 are

similar to Algorithm 5, but the shortest path may terminate at any vertices in T .

In the multiple sources – single sink problem, we vary the heuristic techniques to

pick which vertex is examined first. Here are the heuristic techniques that we use:

1. Breadth first search with the smallest vertex’s ID to break ties. We

find the k disjoint paths from vertices which are closer to the sink first, so an

m-hop vertex can use the information from its neighbours which are (m−1)-

hop away from the sink. There must be several vertices with the same hop

distances to the sink. In this case, we pick the one with the smallest ID.

2. Breadth first search with the highest vertex’s degree to break ties.

The same as the previous technique, but we choose the one with the highest

degree if there are ties. If there still exists more than one vertex, we pick the

one with the smallest ID.

3. Breadth first search with the most processed neighbours to break

ties. Similar to the previous two, however, we select the one which has the

most neighbours that have already known that they have k disjoint paths. If

there are still ties, we choose the one with the smallest ID.

4. Best first search with the most processed neighbours to break ties.

In this technique, we select a vertex which has the most neighbours with k

disjoint paths. If there are ties, we take the one closer to the sink, i.e. the

vertex with shorter hop count to the sink. But if there still exist several

vertices that satisfy these two conditions, we choose the one with the smallest

ID.

We will evaluate the contributions of these four heuristic techniques to the perfor-

mance of the dynamic programming variant of Counting-Paths later in Section 5.3.2.

150

5.2.3 Single Source – Multiple Sinks and Multiple Sources

– Multiple Sinks Problems

Two other variations of our problems are the single source – multiple sinks and

multiple sources – multiple sinks problems. In these multiple sink cases, a well-

known approach is by adding a supersink as an imaginary vertex that has connection

to the original sinks. By doing this, we reduce the problem of single source – multiple

sinks to the problem of single source – single sink, while the problem of multiple

sources – multiple sinks is simplified to the problem of multiple sources – single

sink.

When there are many sinks, we have two cases where the disjoint paths terminate

at: different-sinks and any-sinks. The different-sinks problem is where the k disjoint

paths must terminate at k different sinks to guarantee reliability of the network.

Furthermore, the any-sinks problem is the case where the k disjoint paths may

terminate at any sinks. In the different-sinks problem, for each connection from an

original sink t to the supersink t′, we set capacity(t, t′)=1, so the edge can be used

at most once. However, for the any-sinks problem, we set capacity(t, t′)=k, so the

paths can traverse some original sinks more than once, but at most k times before

reaching the supersink.

5.3 Evaluation of Counting-Paths

By the simulation, we want to show the efficiency and the accuracy of Counting-

Paths compared to closely related algorithms. In the simulation, we use the follow-

ing metrics to measure the performance of the algorithms:

1. Number of table lookups . We want to evaluate the efficiency of Counting-

Paths compared to other algorithms in terms of the total number of table

access.

151

2. Runtime . This metric also shows the efficiency of the algorithm. We want

to compare the runtime of Counting-Paths to other algorithms. Because a

disjoint path algorithm is used by a topology planning algorithm and is usually

executed repeatedly for every node in a network, the shorter the runtime is

the better.

3. Storage capacity . This metric shows the efficiency of the algorithm to

find disjoint paths by using the number of array cells needed to store graphs’

information, which in turn becomes a good indication of the memory size

required.

4. Number of disjoint paths . We present this metric to show the accuracy of

the algorithm. We expect that Counting-Paths can discover the maximum k

such that a node has k disjoint paths and that the length difference between

the shortest path and the longest path is minimal.

All algorithms are written in C++ and simulations are carried out in 2.40 GHz Intel

Core2 Duo CPU with 4 GB of RAM. We do not use standard network simulators

because we are not evaluating network protocols and operations, but rather the

performance of algorithms that are used in planning a network. Our simulation

results are based on the mean value of 20 different randomly generated network

deployments. Note that we do not show error bars in graphs with logarithmic scale

to improve readability of the graphs. The network consists of up to 100 nodes

deployed within randomly perturbed grids of a two-dimensional area, where a node

is placed in a unit grid square of 8 m × 8 m and the coordinates are perturbed. In

this simulation, we generate 5 × 5, 7 × 7 and 10 × 10 grid squares to deploy 25, 49

and 100 nodes, respectively. Unless otherwise stated, we use 10 metres transmission

range and assume that the communication graph follows the unit disk graph model

and the links are bi-directional. We use the unit disk graph model for the ease

of simulation purposes to have symmetrical links. However, any communication

models can work with our algorithms as long as the links are symmetrical.

152

We compared the performance of Counting-Paths to the Modified Dijkstra algo-

rithm by Bhandari [19] and the two algorithms proposed by Torrieri [113], namely

Fast Pathfinding and Maximum Paths. These algorithms were reviewed in Sec-

tion 2.5 and the pseudocode for each of them is given in Appendix B. We choose

these algorithms because they have similar objectives to ours, i.e. finding k shortest

disjoint paths between source nodes and sinks. We followed the three algorithms

detailed in [19] and [113], implemented them and then verified the results by using

the examples illustrated in the papers.

5.3.1 Single Source – Single Sink Problem

In each topology, the location of the sink is fixed at the top-left corner of the network

and the location of the source is at the bottom-right corner, so as to maximise the

distance between them. By the simulation of single source – single sink, we want

to evaluate how many disjoint paths each algorithm can find, so we set k=∞.

25 49 100
1

 10

 100

 1000

 1e+004

 1e+005

 1e+006

Number of sensor nodes

N
um

be
r

of
 ta

bl
e

lo
ok

up
s

Counting−Paths Modified Dijkstra Fast Pathfinding Maximum Paths

Figure 61: Number of table lookups versus number of sensor nodes for single source
– single sink

153

Table 9: Disjoint paths algorithms’ runtime for single source – single sink

Algorithms
Runtime (sec)

25-node 49-node 100-node
Counting-Paths 0.000313 0.001156 0.004609
Modified Dijkstra 0.000337 0.001212 0.004976
Fast Pathfinding 0.001140 0.002938 0.013624
Maximum Paths 8.001600 11.829600 16.473550

Figure 61 shows the total numbers of table lookups when the transmission range is

10 metres. The results show that Counting-Paths and Modified Dijkstra are more

efficient than Fast Pathfinding and Maximum Paths. The numbers of table lookups

for the two algorithm by Torrieri increase significantly when the number of nodes

increases, because they try to find all possible combinations of paths. The more

the sensor nodes, the more the combinations of paths discovered. The results also

show that Counting-Paths has fewer table lookups compared to Modified Dijkstra,

because in the worst case, breadth first search has lower complexity, i.e. O(|V |+|E|),

than Dijkstra’s O(|V |2) [34]. These results correspond to the runtime in Table 9.

We want to show the impact of network density on the efficiency of the algorithms,

in terms of the number of table lookups. Hence, we increase the transmission range

of the sensor nodes to 15 metres and 20 metres to have denser networks. Even

though the number of hops in the network becomes very low when we increase

the transmission range, our objective here is only to compare the efficiency of the

algorithms when the network density increases. We show the number of table

lookups with increasing transmission range in 100-node networks in Figure 62. The

numbers of table lookups for Counting-Paths and Modified Dijkstra slightly increase

because when the network becomes denser, a sensor node has more neighbours to

be visited by breadth first search and Dijkstra’s algorithm. On the contrary, the

numbers of table lookups for Torrieri’s algorithms decrease. This happens because

a sensor node has more neighbours in a dense network and when it is selected to

be an intermediate node in a path, more neighbours are removed. This reduces the

search space in the next iterations.

154

10 15 20
1

 10

 100

 1000

 1e+004

 1e+005

 1e+006

Transmission range (m)

N
um

be
r

of
 ta

bl
e

lo
ok

up
s

Counting−Paths Modified Dijkstra Fast Pathfinding Maximum Paths

Figure 62: Number of table lookups versus transmission ranges for single source –
single sink

We present the comparison of the storage capacities in Figure 63. Counting-Paths

uses more storage than Modified Dijkstra because it has to maintain the residual

network and the flow network for the Ford-Fulkerson algorithm, as well as a queue

for breadth first search. Maximum Paths uses more storage than Fast Pathfinding

because it stores all possible combinations of paths in each iteration, whereas Fast

Pathfinding only stores sets of nodes to construct the paths.

Figure 64 depicts the average number of disjoint paths found. Counting-Paths and

Modified Dijkstra discover more disjoint paths than Fast Pathfinding and Maximum

Paths. This happens because the first two algorithms allow overlapping edges, which

will then be removed, and paths reconstruction. However, in Fast Pathfinding and

Maximum Paths, once a path is selected, the intermediate nodes are removed from

further search.

The relationship between the average number of disjoint paths found and the path

length in 100-node networks is presented in Figure 65. This figure shows that,

155

25 49 100
1

 10

 100

 1000

 1e+004

 1e+005

 1e+006

Number of sensor nodes

S
to

ra
ge

 c
ap

ac
ity

 (
ce

ll)

Counting−Paths Modified Dijkstra Fast Pathfinding Maximum Paths

Figure 63: Storage capacity versus number of sensor nodes for single source – single
sink

25 49 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of sensor nodes

N
um

be
r

of
 d

is
jo

in
t p

at
hs

 (
av

g.
 /n

od
e)

Counting−Paths Modified Dijkstra Fast Pathfinding Maximum Paths

Figure 64: Number of disjoint paths versus number of sensor nodes for single source
– single sink

156

on average, Counting-Paths and Modified Dijkstra find disjoint paths with lengths

between 13 and 17 for the node at the bottom-right corner of the network and most

of them are of length 15. Fast Pathfinding and Maximum Paths find longer paths,

i.e. up to 18. These results are reasonable for our simulated topologies, where the

average hop count from the source node to the sink is 15. We further compare

Counting-Paths and Modified Dijkstra’s results, especially for path lengths 14 to

16. The Modified Dijkstra algorithm discovers more shorter paths and more longer

paths. On the other hand, Counting-Paths tries to balance the lengths of the paths

found, where the length difference between the shortest path and other alternative

paths is minimal.

12 13 14 15 16 17 18 19
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Path length (hop)

N
um

be
r

of
 d

is
jo

in
t p

at
hs

 (
av

g.
 /n

od
e)

Counting−Paths Modified Dijkstra Fast Pathfinding Maximum Paths

Figure 65: Number of disjoint paths versus path length for single source – single
sink

5.3.2 Multiple Sources – Single Sink Problem

For the multiple sources – single sink problem, the location of the sink is still at

the top-left corner of the network, while all sensor nodes are the source nodes.

157

In this simulation, we want to find whether all nodes in the network have two

disjoint paths, so we set k = 2. We compare the performance of Counting-Paths

to Modified Dijkstra, Fast Pathfinding and Maximum Paths. Besides using the

basic Counting-Paths algorithm which is executed multiple times, we implement

its dynamic programming (DP) variant and vary the heuristic techniques to select

which node is examined first. In addition, we also implement Modified Dijkstra

using the dynamic programming method.

25 49 100
1

 10

 100

 1000

 1e+004

 1e+005

 1e+006

 1e+007

 1e+008

Number of sensor nodes

N
um

be
r

of
 ta

bl
e

lo
ok

up
s

Counting−Paths−DP−Most Proc Neigh−BestFS

Counting−Paths−DP−Most Proc Neigh

Counting−Paths−DP−Highest Degree

Counting−Paths−DP−Smallest ID

Counting−Paths−Most Proc Neigh−BestFS

Counting−Paths−Most Proc Neigh

Counting−Paths−Highest Degree

Counting−Paths−Smallest ID

Modified Dijkstra−DP−Most Proc Neigh−BestFS

Modified Dijkstra−DP−Most Proc Neigh

Modified Dijkstra−DP−Highest Degree

Modified Dijkstra−DP−Smallest ID

Modified Dijkstra−Most Proc Neigh−BestFS

Modified Dijkstra−Most Proc Neigh

Modified Dijkstra−Highest Degree

Modified Dijkstra−Smallest ID

Fast Pathfinding

Maximum Paths

Figure 66: Number of table lookups versus number of sensor nodes for multiple
sources – single sink

Figure 66 and Table 10 show the number of table lookups and the runtime of the

algorithms, respectively, for the multiple sources – single sink problem. Without

dynamic programming, the number of table lookups is not influenced by which node

158

Table 10: Disjoint paths algorithms’ runtime for multiple sources – single sink

Algorithms
Runtime (sec)

25-node 49-node 100-node
Counting-Paths-DP-Most Proc Neigh-BestFS 0.000515 0.003626 0.027218
Counting-Paths-DP-Most Proc Neigh 0.000476 0.003299 0.023007
Counting-Paths-DP-Highest Degree 0.000588 0.003531 0.025343
Counting-Paths-DP-Smallest ID 0.000563 0.003485 0.025336
Counting-Paths-Most Proc Neigh-BestFS 0.001304 0.008187 0.062821
Counting-Paths-Most Proc Neigh 0.001351 0.008257 0.062984
Counting-Paths-Highest Degree 0.001328 0.008296 0.063125
Counting-Paths-Smallest ID 0.001258 0.008171 0.062727
Modified Dijkstra-DP-Most Proc Neigh-BestFS 0.000453 0.003055 0.022899
Modified Dijkstra-DP-Most Proc Neigh 0.000453 0.002953 0.022859
Modified Dijkstra-DP-Highest Degree 0.000492 0.003131 0.022913
Modified Dijkstra-DP-Smallest ID 0.000492 0.003102 0.022906
Modified Dijkstra-Most Proc Neigh-BestFS 0.000836 0.005751 0.047040
Modified Dijkstra-Most Proc Neigh 0.000851 0.005829 0.047104
Modified Dijkstra-Highest Degree 0.000826 0.005821 0.046295
Modified Dijkstra-Smallest ID 0.000851 0.005859 0.046985
Fast Pathfinding 0.015026 0.070181 0.577030
Maximum Paths 125.522800 373.737500 1010.415550

is selected first, because we have to find two disjoint paths from all nodes to the

sink. In this case, Counting-Paths has the fewest number of table lookups compared

to the other algorithms as has been shown in Figure 61 for the single source – single

sink cases. However, the runtime of Counting-Paths is slightly longer than Modified

Dijkstra, because Counting-Paths needs to repeatedly update two graphs, i.e. the

residual network and the flow network, while Modified Dijkstra only works with one

graph.

With dynamic programming, we show that we are able to reduce the complexity of

the algorithms significantly when we only find k disjoint paths to k nearest neigh-

bours that have already had k disjoint paths. In this case, Counting-Paths achieves

around 5, 7, and 17.5 times improvement for the 25-node, 49-node, and 100-node

topologies, respectively. Similarly, Modified Dijkstra also experiences improvements

with the dynamic programming method. Moreover, comparing the heuristic tech-

niques to pick the nodes, either breadth first search or best first search with the

most processed neighbours has fewer number of table lookups compared to breadth

159

first search with the highest node’s degree and the smallest node’s ID. This hap-

pens because a node with more processed neighbours needs fewer shortest path

iterations.

We show the storage capacity and the average number of disjoint paths found per

node in Figure 67 and 68, respectively. Recall that in this simulation, we set k=2.

We only present the results for Counting-Paths and Modified Dijkstra using one

bar for each group because they have the same results regardless the variations on

the experiments. We observe in these two figures that the storage capacity and the

average number of disjoint paths found per node have similar trends with the single

source – single sink cases, which have been shown in Figure 63 and 64

25 49 100
1

10

100

1000

1e+004

1e+005

1e+006

1e+007

Number of sensor nodes

S
to

ra
ge

 c
ap

ac
ity

 (
ce

ll)

Counting−Paths Modified Dijkstra Fast Pathfinding Maximum Paths

Figure 67: Storage capacity versus number of sensor nodes for multiple sources –
single sink

160

25 49 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of sensor nodes

N
um

be
r

of
 d

is
jo

in
t p

at
hs

 (
av

g.
 /n

od
e)

Counting−Paths Modified Dijkstra Fast Pathfinding Maximum Paths

Figure 68: Number of disjoint paths versus number of sensor nodes for multiple
sources – single sink

5.4 Greedy Randomised Adaptive Search Proce-

dure for Additional Relay Placement

(GRASP-ARP)

In this section, we introduce GRASP-ARP, a local search algorithm based on

GRASP [41, 42, 96] to deploy additional relay nodes for ensuring the existence of k

disjoint paths in WSNs with data sinks. GRASP-ARP requires repeated counting of

the number of disjoint paths for each node, for which we use either Counting-Paths

or its dynamic programming variant. With the basic Counting-Paths, GRASP-

ARP ensures a length constraint. On the other hand, it has shorter runtime with

the dynamic programming variant.

Recall that in this chapter, we focus our research on the single-tiered, constrained

partial fault-tolerant relay placement problem. All of the algorithms reviewed in

161

Section 2.4 try to achieve k-connectivity, and are designed for WSNs without des-

ignated sinks. Unlike our algorithm, the published algorithms do not place any

constraints on the lengths of the paths. On the other hand, our GRASP-ARP is

designed to place a minimum number of relays in the existing network so that the

sensors have k disjoint paths to the sinks, and to minimise the path length. The

closest problem definition to ours is Misra et al.’s [81]. However, it can only es-

tablish up to 2-connectivity. Other work with similar objectives to ours include

Bredin et al. [26], Pu et al. [90] and Han et al. [51], although they are for uncon-

strained deployment locations. Bredin et al.’s [26] considers full fault-tolerant relay

node placement. This was then modified by Pu et al. [90] for partial fault-tolerance

after noting that there is no need to ensure multiple paths for the relay nodes. The

simulation results in Han et al.’s work [51] show that Bredin et al.’s [26] is more

efficient for partial fault-tolerance, while Han et al.’s [51] is more efficient for full

fault-tolerance in terms of the number of additional relay nodes. Therefore, among

all existing algorithms that we review in this thesis, we infer that the most relevant

one for our work is Pu et al.’s [90], except that it assumes unconstrained relay node

locations, where relays are deployed along straight lines between pairs of sensor

nodes. This assumption is unrealistic due to the existence of physical obstacles in

the monitoring region. We make some modifications to Pu’s algorithm, which is

described in Section 5.5, to work in constrained deployment locations.

In [77, 78], Martins et al. use GRASP to solve the Steiner tree problem in graphs

(SPG). SPG is similar to the relay placement problem, in that it must select from

a set of candidate nodes in order to connect a number of designated terminals,

although its aim is to find a minimal spanning tree rather than a forest with disjoint

paths.

We consider WSNs where the vertices are partitioned into sensors, relays and sinks,

and so in the graph representation V = T ∪R∪S. We define a WSN to be (k, l)-

sink-connected if and only if for every vertex v∈T , there are k disjoint paths from

v to S of length ≤ l.

162

We can now define the additional relay placement problem: given a graph G =

(T ∪A∪S,E), where A is a set of candidate locations to deploy relays, find a

minimal subset R⊆A such that H=(T∪R∪S,E↓T∪R∪S) is (k, l)-sink-connected.

For our algorithm, we introduce some secondary definitions. kv is the number of

length-bounded disjoint paths a sensor currently has. X ⊆ T is the set of sensors

with kx<k,∀x∈X. Y ⊆T is the set of sensors with ky≥k,∀y∈Y , and such that y

is on a path of a sensor x∈X to a sink or a vertex with at least k disjoint paths.

Z⊆T is a set of sensors with kz≥k,∀z∈Z, such that z does not appear on a path

of a sensor x∈X to a sink or a vertex with k disjoint paths.

Before the execution of GRASP-ARP, we use Counting-Paths to find k disjoint

paths from all sensors to sinks. Then, for each sensor, we count how many disjoint

paths that satisfy the length restriction lmax. Based on this result, we determine

the sets X, Y , and Z, which become inputs to GRASP-ARP.

5.4.1 Construction Phase

The first step in any GRASP algorithm is to construct an initial solution. We

generate a graph G′ = (V ′, E ′), where V ′ =X∪Z∪S and E ′ = {(v, w), v ∈X,w ∈

Z ∪ S | ∃srp(v, w)}. srp(v, w) denotes the shortest relay path from v to w in the

original graph G= (V,E) in terms of cost c, where all intermediate vertices in the

path are candidate relays. Cost is a non-negative function c : E → R associated

with each edge. The edge’s cost c′(v, w) = srp(v, w) is associated with each edge

(v, w)∈E ′. After that, we find a minimum forest F of G′ such that for each v∈X,

we select k−kv least cost edges to w∈Z∪S. Then, we replace the edges in F with

the edges in the shortest relay paths in the original graph G and save this set of

paths P . Two shortest relay paths from v ∈X to w ∈ Z ∪ S may overlap. Since

we are dealing with vertex-disjoint paths, the selection of the second shortest relay

path must exclude all candidate relays on the first shortest path.

163

To vary the local optima solutions found by the local search phase in each iteration,

we vary the initial solution. In order to add randomisation to the initial solution,

we make the following modification to the computation of the minimum forest F of

G′. Instead of selecting edges with the least cost, we build a restricted candidate list

with all edges (v, w)∈E ′ such that c′(v, w)≤ c′min+α(c′max−c′min), where 0≤α≤1.

c′min and c′max denote the least and the largest costs among all unselected edges,

respectively. Then, k−kv edges are selected at random from the restricted candidate

list. In the construction phase, the initial solution is pure greedy when α=0, while

α=1 is equivalent to a random construction. Later in the simulation, we select the

value of α randomly in each iteration.

5.4.2 Node-based Local Search

The next stage in a GRASP algorithm is to explore the neighbourhood of the initial

solution, looking for lower cost solutions. Let R be the set of relays in the current

forest F and rused(P) denotes the number of relays used in the current set of paths

P . We explore the neighbourhood of the current solution by either adding a new

relay r∈A\R into R, or by eliminating a relay t∈R from R. In each iteration of

the local search, the evaluation of elimination moves is performed only if there are

no improving insertion moves.

5.4.3 Algorithm Description

We describe GRASP-ARP that consists of the construction phase and the node-

based local search phase. The pseudocode for GRASP-ARP is given in Algorithm

7. The algorithm takes as input the original graph G=(V,E), the set S of sinks, the

set A of candidate relays, the set X of sensors with kx<k, the set Z of sensors with

kz ≥ k but do not appear on any discovered paths, the number of disjoint paths

sought k, and the number of iterations (max iterations). Graph G′ = (V ′, E ′) is

computed in line 2. The procedure is repeated max iterations times. max iterations

164

Algorithm 7: GRASP-ARP
Input : G,S,A,X,Z, k,max iterations
Output: R∗, P ∗

1: best value←∞
2: Compute G′=(V ′, E′) and c′(v, w), ∀(v, w)∈E′
3: for i←1 to max iterations do

/* Construction phase */
4: Find F of G′=(V ′, E′) with R and P as the result
5: do
6: do
7: insertion← false, elimination← false

/* Insertion moves */
8: best set←R, best number←rused(P)
9: for all r∈A\R do

10: Count disjoint paths ∀x∈X from F+r, result in Pnew

11: if rused(Pnew)< best number then
12: best set←R∪{r}, best number←rused(Pnew)
13: end if
14: end for
15: if best number <rused(P) then
16: R←R∪{r}, F←F+r, P←Pnew, rused(P)←rused(Pnew)
17: insertion← true
18: end if
19: while insertion

/* Elimination moves */
20: best set←R, best number←rused(P)
21: for all t∈R do
22: Count disjoint paths ∀x∈X from F−t, result in Pnew

23: if rused(Pnew)< best number then
24: best set←R\{t}, best number←rused(Pnew)
25: end if
26: end for
27: if best number <rused(P) then
28: R←R\{t}, F←F−t, P←Pnew, rused(P)←rused(Pnew)
29: elimination← true
30: end if
31: while elimination

/* Best solution update */
32: if rused(P)< best value then
33: R∗←R, P ∗←P , best value←rused(P)
34: end if
35: end for
36: return R∗, P ∗

165

determines the stopping criterion of a GRASP algorithm. The larger the number

of iterations, the larger will be the computation time and the better will be the

solution found. In each iteration, a greedy randomised solution for a minimum

forest F of G′ is constructed in line 4. Let R be the set of relays in the current

forest F , P be the set of paths, and rused(P) be the number of relays used in P .

The local search starts with the initialisation of the best set and the best number

of relays in line 8. The best set of relays is the set of relays in the current best

solution, while the best number of relays is the number of relays used in the set of

disjoint paths. The loop from line 9 to 14 searches for the best insertion move. In

line 10, we count the number of disjoint paths, which we can use either the basic

Counting-Paths algorithm or its dynamic programming variant, from each sensor

x∈X, defined by the insertion of vertex r into the current set of relays. Let Pnew

be its new set of paths. In line 11, we check if this new solution Pnew improves

the number of the relays used in the current best solution. The best set and the

best number of relays are updated in line 12. When all insertion moves have been

evaluated, we check in line 15 if an improving solution has been found. If the

insertion moves produce a better solution, the set of relays, the minimum forest,

the set of paths and the number of relays used are updated in line 16, and the local

search continues.

If no improving solution is found from the insertion moves, the elimination moves

from line 21 to 26 are evaluated. We reinitialise the best set and the best number

of relays in line 20. We count in line 22 the number of disjoint paths from each

sensor x∈X, defined by the elimination of v the current set of relays. In line 23,

we check if this new solution Pnew improves the number of the relays used in the

current best solution. Then, the best set and the best number of relays are updated

in line 24. Once all elimination moves have been evaluated, we check in line 27 if

an improving solution has been found. If the elimination moves produce a better

solution, the set of relays, the minimum forest, the set of paths and the number of

relays used are updated in line 28, and the local search continues.

166

If, at the end of the local search, we found a better solution compared to the best

solution found so far, we update in line 33 the set of relays, the set of paths and

the least number of relays used. The best set R∗ of relays and the best set P ∗ of

paths are returned in line 36.

5.4.4 Acceleration Scheme

We follow the acceleration scheme for the node-based local search as in [77] by

using faster implementation of the insertion moves (line 8–18). The idea is to keep

a candidate list with promising insertion moves, which is periodically updated. The

results in [77] show that this technique can significantly reduce the computational

times. Even though there is a risk that a better solution is missed, Martins et al.

have shown that the losses in terms of solution quality are very small.

The candidate list containing the k best improving insertion moves is generated in

the first iteration. The list is kept in an increasing order of the associated move

values. In each following iteration, instead of reevaluating all insertion moves, we

only evaluate moves from vertices in the candidate list. Each time a vertex is

evaluated, it is removed from the list. When the list becomes empty, a new full

iteration is performed, all insertion moves are evaluated, and the candidate list is

rebuilt.

5.5 Evaluation of GRASP-ARP

In the simulation, we want to show the effectiveness and efficiency of GRASP-ARP

compared to closely related algorithms. We use the following metrics to measure

the performance of the algorithms:

1. Number of additional relay nodes . This metric shows the effectiveness

of the algorithm by the total number of deployed relay nodes in the network.

167

2. Runtime . This metric measures the efficiency of the algorithm. We want to

compare the running time of GRASP-ARP to other algorithms. Even though

this is an offline process, shorter runtime is important especially when a new

topology is evaluated as a result of either moving or adding/removing a node.

The sensor nodes are deployed in randomly perturbed grids, where a sensor node

is placed in a unit grid square of 8 m × 8 m and the coordinates are perturbed.

In this simulation, we want the original topologies as sparse as possible, because

sufficiently dense networks do not need additional relays to guarantee the existence

of disjoint paths. For example, most nodes in the topologies used in the experiments

in Section 5.3 have two disjoint paths (see Figure 68). In order to get sparse networks

(average degree 2-3), we generate more grid points than the number of nodes. For

example, we use 6 × 6, 8 × 8 and 11 × 11 grid squares to randomly deploy 25,

49 and 100 nodes, respectively. This setup generates sparser topologies than those

used in Section 5.3. Candidate relays are also distributed in a grid area, where a

candidate occupies a unit grid square of 6m × 6m. For 25-node, 49-node and 100-

node topologies, we use 49, 100 and 196 candidate relays, respectively. Both sensor

and relay nodes use the same transmission range, i.e. 10 metres. The maximum

path length (lmax) is set to 10 for 25-node, 15 for 49-node and 20 for 100-node

networks.

We compared the performance of GRASP-ARP to Partial k-Connectivity-Repair

proposed by Pu et al. [90]. We choose this algorithm because it has similar fault-

tolerant requirements with ours, i.e. partial fault-tolerance. k-Connectivity-Repair

was originally proposed by Bredin et al. [26] for full fault-tolerant relay placement,

which was reviewed in Section 2.4. It was then modified by Pu et al. [90] for partial

fault-tolerance. We followed the Partial k-Connectivity-Repair algorithm detailed

in [90] and made two necessary modifications to work in constrained deployment

locations, where a relay can only be placed at a specific candidate location. The two

modifications are as follows and the detailed pseudocode is given in Appendix C.

168

1. The original Partial k-Connectivity-Repair algorithm deploys relay nodes along

a straight line between two sensor nodes. Therefore, our first modification is to

place relay nodes in candidate locations along the shortest relay path between

two sensor nodes.

2. When all relay nodes are deployed, we add our second modification by trying

to remove relay nodes one by one by still preserving the node k-connectivity.

The connectivity is checked using a maximum network-flow-based checking

algorithm [86] as is used in [95].

5.5.1 Multiple Sources – Single Sink Problem

We compared GRASP-ARP against the Partial k-Connectivity-Repair algorithm

(K-CONN-REPAIR for short) in the multiple sources – single sink scenario. In

this simulation, we put the sink at the top-left corner or in the centre of the net-

work, while all sensor nodes are the source nodes. In this simulation, we want to

create networks with 2-connectivity and 3-connectivity, so we use k= 2 and k= 3.

We simulate GRASP-ARP using the dynamic programming (DP) variant and the

basic Counting-Paths algorithm to find the k disjoint paths. For the dynamic pro-

gramming variant, we use the best first search with the most processed neighbours

as the heuristic technique to pick which sensor node is examined first, because it

has been shown as one of the best heuristics in the evaluation of Counting-Paths

section. For the basic Counting-Paths algorithm, we use breadth first search with

the smallest node’s ID to select nodes, because the performance of the algorithm is

not influenced by which node is selected first.

Figure 69 shows the number of additional relay nodes needed for k = 2 and k = 3

for the case where the sink location is at the top-left corner of 25-node networks,

while Figure 70 shows the results for the case where the sink is in the centre of the

networks. GRASP-ARP finds nearly the same number of additional relay nodes

compared to K-CONN-REPAIR when the position of the sink is in the corner of the

169

network and k=3. However, it needs fewer relay nodes for k=2 because K-CONN-

REPAIR deploys excessive relays for k-connectivity for each pair of nodes. When

the position of the sink is in the centre of the network, GRASP-ARP outperforms

K-CONN-REPAIR in terms of the number of additional relays for both k= 2 and

k=3 because the sink has higher connectivity in the centre of the network. These

two figures also show that higher number of maximum iteration in the local search

produces better results.

2 3
0

5

10

15

20

Number of disjoint paths

N
um

be
r

of
 a

dd
iti

on
al

 r
el

ay
 n

od
es

K−CONN−REPAIR
GRASP−ARP−DP−MaxIter=1
GRASP−ARP−DP−MaxIter=10
GRASP−ARP−DP−MaxIter=100
GRASP−ARP−MaxIter=1
GRASP−ARP−MaxIter=10
GRASP−ARP−MaxIter=100

Figure 69: Number of additional relay nodes needed versus number of disjoint paths
required for multiple sources – single corner sink in 25-node networks

Table 11 shows the algorithms’ runtime, where for small networks, GRASP-ARP

takes longer compared to K-CONN-REPAIR especially for k = 3. This happens

because GRASP-ARP repeatedly executes the Counting-Paths algorithm during

the local search phase to find disjoint paths. GRASP-ARP with the dynamic pro-

gramming variant of Counting-Paths (GRASP-ARP-DP) is faster than with the

basic Counting-Paths (GRASP-ARP) because the dynamic programming has lower

complexity.

170

2 3
0

2

4

6

8

10

12

14

16

18

Number of disjoint paths

N
um

be
r

of
 a

dd
iti

on
al

 r
el

ay
 n

od
es

K−CONN−REPAIR
GRASP−ARP−DP−MaxIter=1
GRASP−ARP−DP−MaxIter=10
GRASP−ARP−DP−MaxIter=100
GRASP−ARP−MaxIter=1
GRASP−ARP−MaxIter=10
GRASP−ARP−MaxIter=100

Figure 70: Number of additional relay nodes needed versus number of disjoint paths
required for multiple sources – single centre sink in 25-node networks

Table 11: Additional relay placement algorithms’ runtime for multiple sources –
single sink in 25-node networks

Algorithms
Runtime (sec)
k=2 k=3

K-CONN-REPAIR 6.2891 7.4930
Sink at the corner
GRASP-ARP-DP-MaxIter=1 5.6796 11.0656
GRASP-ARP-DP-MaxIter=10 24.3469 36.8148
GRASP-ARP-DP-MaxIter=100 185.0354 291.5102
GRASP-ARP-MaxIter=1 9.7672 19.2712
GRASP-ARP-MaxIter=10 39.4860 59.1335
GRASP-ARP-MaxIter=100 331.5993 459.0313
Sink at the centre
GRASP-ARP-DP-MaxIter=1 3.4163 8.5166
GRASP-ARP-DP-MaxIter=10 9.7031 20.8140
GRASP-ARP-DP-MaxIter=100 73.1475 144.7258
GRASP-ARP-MaxIter=1 5.6696 14.2375
GRASP-ARP-MaxIter=10 16.7616 34.3545
GRASP-ARP-MaxIter=100 129.4321 239.1384

171

25 49 100
0

1

2

3

4

5

6

7

8

9

10

Number of sensor nodes

N
um

be
r

of
 a

dd
iti

on
al

 r
el

ay
 n

od
es

K−CONN−REPAIR
GRASP−ARP−DP
GRASP−ARP

Figure 71: Number of additional relay nodes needed versus number of sensor nodes
for multiple sources – single corner sink

Table 12: Additional relay placement algorithms’ runtime for multiple sources –
single sink

Algorithms
Runtime (sec)

25-node 49-node 100-node
K-CONN-REPAIR 6.2891 254.7343 10,003.8000
GRASP-ARP-DP 24.3469 421.2829 7,897.9650
GRASP-ARP 39.4860 619.3118 13,964.9400

172

We then extend our simulation to larger networks up to 100 nodes. Figure 71 depicts

the number of additional relay nodes needed for 25, 49 and 100-node networks. In

this simulation, we use k = 2 and set the sink position at the top-left corner of

the network. We use max iteration = 10 for GRASP-ARP because this number of

iteration produces similar results to 100 iterations as shown in Figure 69 and 70.

In all sizes of networks, GRASP-ARP outperforms K-CONN-REPAIR with fewer

additional relay nodes. The algorithms’ runtime is presented in Table 12, where we

show that GRASP-ARP-DP is faster for bigger problems, i.e. 100-node networks,

and so it scales better.

5.5.2 Multiple Sources – Multiple Sinks Problem

We compare GRASP-ARP against K-CONN-REPAIR in the multiple sources –

multiple sinks scenario. We use the same simulation settings as in the previous

multiple sources – single sink cases. However, in this simulation, we have four

sinks deployed at the top-left, top-right, bottom-left and bottom-right corners of

the network, while all sensor nodes are the source nodes. We simulate GRASP-ARP

using the dynamic programming variant and the basic Counting-Paths algorithm.

Recall that in the multiple sink problem, there are two cases where the disjoint

paths terminate at: different-sinks and any-sinks. The different-sinks problem is

where the k disjoint paths must terminate at k different sinks, while the any-sinks

problem is the case where the k disjoint paths may terminate at any sinks. We will

consider these two cases in the simulation.

Figure 72 shows the number of relay nodes required for k=2 and k=3 in 25-node

networks, while Table 13 shows the runtime of the algorithms. GRASP-ARP results

shown here are the simulation results with max iteration = 10. The results show

that GRASP-ARP in the multiple sources – multiple sinks scenario outperforms K-

CONN-REPAIR with at least 50% fewer additional relays. This happens because

GRASP-ARP only finds k disjoint paths to the dedicated sinks, either different

sinks or any sinks. On the other hand, K-CONN-REPAIR must run an expensive

173

Table 13: Additional relay placement algorithms’ runtime for multiple sources –
multiple sinks in 25-node networks

Algorithms
Runtime (sec)
k=2 k=3

K-CONN-REPAIR 6.2891 7.4930
GRASP-ARP-AnySinks-DP 1.7844 10.9984
GRASP-ARP-AnySinks 2.5180 16.5088
GRASP-ARP-DiffSinks-DP 1.6351 11.0267
GRASP-ARP-DiffSinks 2.3828 18.8875

connectivity checking algorithm in each of its iterations to provide k-connectivity

for an entire network. The results also show that the different-sinks case requires

more relays than the any-sinks case because disjoint paths must be established to

different sinks.

2 3
0

2

4

6

8

10

12

14

16

18

Number of disjoint paths

N
um

be
r

of
 a

dd
iti

on
al

 r
el

ay
 n

od
es

K−CONN REPAIR
GRASP−ARP−AnySinks−DP
GRASP−ARP−AnySinks
GRASP−ARP−DiffSinks−DP
GRASP−ARP−DiffSinks

Figure 72: Number of additional relay nodes needed versus number of disjoint paths
required for multiple sources – multiple sinks in 25-node networks

Figure 73 and Table 14 show the simulation results when we extend the simula-

tions to larger networks. In this simulation, we use k = 2 and max iteration =

174

Table 14: Additional relay placement algorithms’ runtime for multiple sources –
multiple sinks

Algorithms
Runtime (sec)

25-node 49-node 100-node
K-CONN-REPAIR 6.2891 254.7343 10,003.8000
GRASP-ARP-AnySinks-DP 1.7844 37.7884 517.3695
GRASP-ARP-AnySinks 2.5180 55.3843 735.7915
GRASP-ARP-DiffSinks-DP 1.6351 31.3648 426.6710
GRASP-ARP-DiffSinks 2.3828 51.4437 822.0718

10 for GRASP-ARP. In all network’s sizes, GRASP-ARP outperforms K-CONN-

REPAIR with fewer additional relay nodes and faster runtime. For 100-node net-

works, GRASP-ARP deploys 35% fewer relays with 10–20 times faster than K-

CONN-REPAIR.

25 49 100
0

1

2

3

4

5

6

7

8

9

10

Number of sensor nodes

N
um

be
r

of
 a

dd
iti

on
al

 r
el

ay
 n

od
es

K−CONN−REPAIR
GRASP−ARP−AnySinks−DP
GRASP−ARP−AnySinks
GRASP−ARP−DiffSinks−DP
GRASP−ARP−DiffSinks

Figure 73: Number of additional relay nodes needed versus number of sensor nodes
for multiple sources – multiple sinks

175

5.6 Conclusion

Ensuring that WSNs are robust to failures requires that the physical network topol-

ogy will offer alternative routes to the sink. This requires a sensor network deploy-

ment to be planned with an objective of ensuring some measure of robustness in

the topology, so that when failures do occur that routing protocols can continue to

offer reliable delivery. In this chapter, we propose solutions for fault-tolerant WSN

deployment planning by judicious use of additional relay nodes. We define the

problem for increasing WSN reliability by deploying a number of additional relay

nodes to ensure that each sensor node in the initial design has k disjoint paths with

a length constraint to the sinks. We present two offline algorithms to be run during

the initial topology planning to solve this problem. Counting-Paths uses the Ford-

Fulkerson maximum flow algorithm to count the number of disjoint paths from each

sensor node to the sinks and to find the k shortest disjoint paths. GRASP-ARP

is a local search algorithm that modifies the existing GRASP algorithm to deploy

a minimum number of additional relay nodes at the possible candidate locations.

We also adapt a version of the closest approach from the literature for compari-

son. Our simulation results show that our solution requires fewer relay nodes for

larger problems than the competitor, and that different variants of our algorithm

are significantly faster, allowing us to tackle larger problems.

176

Chapter 6

Fault-Tolerant Relay Deployment

Based on Length-Constrained

Connectivity and Rerouting

Centrality

6.1 Introduction

In this chapter, we propose a novel solution to reduce the deployment cost and the

computation time of relay node placement in Wireless Sensor Networks (WSNs)

with sinks. Our solution places a minimum number of relays as backup nodes to

provide length-bounded alternative paths only around the most important (or crit-

ical) nodes. We present a new centrality metric to measure each node’s importance

in a network and then use a local search to minimise the number of relays that need

to be deployed.

The standard approach to robustness is to provide k-connectivity [26, 51, 19] – that

is, to ensure that the network will remain connected after the failure of any k−1

nodes. However, achieving k-connectivity requires an excessive number of relays,

177

and so some researchers proposed partial k-connectivity [60, 20], where not all nodes

have k disjoint paths. Another approach is to consider the relative importance of

each node for delivering data to the sink from other nodes. If the failure of a

node would disconnect many other nodes, or cause traffic from many other nodes

to be delivered late, then the node is important, and we should ensure alternative

paths around that node. The importance of a node in network analysis is called its

centrality [44, 25], and we introduce definitions of centrality which measure a node’s

impact on connectivity and path length for the rest of the network. We use this

centrality measure as a priority order for providing alternative paths. If we have

limited resources, we address only nodes with high centrality, with the intention of

being robust to the most significant failures; in cases where we have more resources,

we can address nodes with lower centrality, and provide robustness against more

failures.

Specifically, we define Length-constrained Connectivity and Rerouting Centrality (l-

CRC), a new centrality index for WSNs with sinks. This centrality index is a pair of

values. The first value measures the importance with respect to network connectiv-

ity under a path length constraint, while the second value measures the additional

length of shortest paths that would be required after a node fails. We introduce

the single-tiered constrained fault-tolerant additional backup placement problem

(ABP), in which we must find a minimal subset from a limited set of possible can-

didate positions to deploy relays, so that when a sensor node in a WSN dies, each

of its descendants has an alternative length-constrained path to a sink. We use the

centrality index to determine the most critical nodes, and to assess the quality of

positions for the relays to provide alternative paths around the nodes with high

centrality. To decide whether a node is critical or not, we use a threshold. A node

is critical if its centrality index is above the threshold. We can raise the thresh-

old to trade-off deployment cost for robustness. We introduce Greedy Randomised

Adaptive Search Procedure for Additional Backup Placement (GRASP-ABP), a lo-

cal search algorithm based on GRASP [41, 42, 96], which searches for the smallest

178

number of additional relays to ensure all sensor nodes have centrality measures be-

low the threshold. We run GRASP-ABP as a centralised offline algorithm during

the initial topology planning stage.

The rest of this chapter is organised as follows. We present l-CRC in Section 6.2

and GRASP-ABP in Section 6.3. We show our simulation results in Section 6.4.

We compare GRASP-ABP against the closest approaches from the literature, and

we demonstrate empirically that it produces networks with fewer additional relays,

and scales effectively, requiring shorter runtime than the competitors for problems

with hundreds of nodes. As we raise the threshold on the centrality indices, nodes

that are identified as critical decrease, and so both the runtime and the number of

required relay nodes drop significantly.

6.2 Length-constrained Connectivity and Rerout-

ing Centrality (l-CRC)

The usual centrality indices measure the importance of a node based on the existence

of the node in a network. For example by calculating how likely it falls on the

shortest paths of other nodes (betweenness centrality) or how many neighbours it

has (degree centrality). For dealing with failures, we cannot use these centrality

indices, because we need one that defines the importance of a node based on the

effect of removing the node from the network. The ones proposed by Shavitt and

Singer [101, 102] calculate the indices based on the existence of a backup path if a

node fails. However, they are designed for mesh networks, where the backup paths

are sought between every pair of nodes. In WSNs, we only require backup paths

between nodes and sinks. In addition, these centrality indices do not take into

account the path length constraints. Since all existing centrality indices cannot be

used to measure node criticality in the context of WSNs with sinks, where a length

constraint is important, a new centrality index is needed.

179

Given the importance of connectivity and latency requirements in designing a re-

liable WSN topology, we define a new variation of alternative path centrality for

WSNs with sinks, i.e. Length-constrained Connectivity and Rerouting Centrality

(l-CRC). The centrality variant measures the importance of a vertex v based on the

impact of removing v, which affects the connectivity of the network and the path

length of other vertices whose shortest paths to the sinks originally pass v. l-CRC

is a 2-tuple index, which consists of a pair of centrality values: Length-constrained

Connectivity Centrality (l-CC) and Length-constrained Rerouting Centrality (l-

RC). The former is concerned with network connectivity, while the latter is with

the additional length of the shortest paths. Formally, we define l-CRC of a vertex

v as

l-CRC(v)= < l-CC(v), l-RC(v)> (2)

6.2.1 Length-constrained Connectivity Centrality (l-CC)

The length-constrained connectivity centrality of a vertex v is the number of v’s

descendants that would be either disconnected or pushed over the path length limit

lmax when v is removed from the network. We define l -CC(v), the length-constrained

connectivity centrality of a vertex v as

l-CC(v)= |{w∈D(v); d(w, Sink)≤ lmax, dv(w, Sink)>lmax}| (3)

where D(v) is the set of v’s descendants in the routing tree that are sensor nodes,

not relays. d(w, Sink) denotes the shortest path length between w and Sink, while

dv(w, Sink) represents the length of the shortest path from w to Sink which does

not visit v.

To compare the relative l-CC of vertices from different graphs, it is desirable to have

a measure that is independent of network size. A vertex v can at most disconnect

n−1 other vertices in a graph, excluding itself. Therefore, the relative l-CC of any

vertex v in a graph may be expressed as a ratio

l-CC ′(v)=
|{w∈D(v); d(w, Sink)≤ lmax, dv(w, Sink)>lmax}|

n−1
(4)

180

Algorithm 8: Vertex-Rerouting
Input : w,G, d, S
Output: dv(w, Sink)
1: dv(w, Sink)←∞
2: for all u∈N(w) do
3: if u∈S and d(u, Sink)<dv(w, Sink) then
4: dv(w, Sink)←d(u, Sink)+1
5: S←S∪{w}
6: end if
7: end for
8: return dv(w, Sink)

The relative centrality score has been normalised to take value in the interval [0,

1] because it is divided by the maximum possible score in networks of equal size

(number of vertices). A value close to one would mean that the vertex is important

to network’s connectivity and path lengths of other vertices. Likewise, a value close

to zero would mean that it is not important.

We measure the relative length-constrained connectivity centrality of a vertex v by

basically reconstructing the routing tree for all descendants of v starting from the

direct children of v. We firstly give the pseudocode for vertex rerouting in Algorithm

8, then we present the pseudocode to compute the relative l-CC in Algorithm 9.

Algorithm 8 takes as input a vertex w that needs to find a new route, the graph

G= (V,E), the distances d of all vertices to the sinks and a set S of vertices that

w can visit when it finds a new route. In Vertex-Rerouting, w finds a new route by

finding a neighbour that is in S and has the shortest route to the sinks. If such a

neighbour exists, w has a new routing path and is added to S.

The algorithm to compute the relative l-CC is presented in Algorithm 9. The

inputs to the algorithm are the vertex v to be measured, v’s descendants list D(v)

in increasing order of distances to the sinks, the graph G=(V,E), the distances d of

all vertices to the sinks and the maximum path length limit lmax. The descendants

list, the distances and the parents of all vertices can be obtained by one run of

breadth first search for unweighted graphs or Dijkstra’s algorithm for weighted

graphs. In this thesis, we model the WSNs as unweighted graphs. Therefore, we

181

Algorithm 9: l-CC
Input : v,D(v), G, d, lmax

Output: C ′

1: S←V \(D(v)∪{v})
2: C ′←0
3: for all w∈D(v) in increasing order of d(w, Sink) do
4: dv(w, Sink)←Vertex-Rerouting(w,G, d, S)
5: if d(w, Sink)≤ lmax and dv(w, Sink)>lmax then
6: C ′←C ′+1
7: end if
8: end for
9: C ′← C ′

n−1

10: return C ′

use breadth first search to build the routing tree which gives us the shortest routes

from all vertices to the sinks.

In line 1 of Algorithm 9, we try to distinguish the subtree rooted at v by not

including it in S. Then, in line 4, each descendant w of v finds a new route by

utilising Vertex-Rerouting in Algorithm 8. In line 5 to 7, we calculate l-CC using

Equation (3). The relative l-CC is obtained in line 9 using Equation (4).

6.2.2 Length-constrained Rerouting Centrality (l-RC)

The length-constrained rerouting centrality of a vertex v is the total percentage of

additional length of the shortest paths, which are over the path length limit lmax,

from v’s descendants to the sinks upon removal of v. Note that we only take v’s

descendants that are still connected to the routing tree after v is removed, because

the sum of distances is only meaningful for a connected graph. We define l-RC(v),

the length-constrained rerouting centrality of a vertex v as

l-RC(v)=
∑

w∈D(v), dv(w,Sink)6=∞

(
max{dv(w, Sink), lmax}
max{d(w, Sink), lmax}

−1

)
(5)

Given a vertex v, the shortest length of a path a vertex w has to the sink passing

through v is two and the longest length of a path bypassing v is n−1. By assumption

that 2≤ lmax≤n−1, the maximum of l-RC(v) is |D(v)|×
(
n−1
lmax
−1
)

. Then, the relative

182

Algorithm 10: l-RC
Input : v,D(v), G, d, lmax

Output: C ′

1: S←V \(D(v)∪{v})
2: C ′←0
3: for all w∈D(v) in increasing order of d(w, Sink) do
4: dv(w, Sink)←Vertex-Rerouting(w,G, d, S)
5: if dv(w, Sink) 6=∞ then
6: C ′←C ′+(max{dv(w,Sink),lmax}

max{d(w,Sink),lmax} −1)
7: end if
8: end for
9: C ′← lmax×C ′

|D(v)|×(n−1−lmax)

10: return C ′

l-RC of a vertex v is defined as

l-RC ′(v)=
lmax

|D(v)|×(n−1−lmax)

∑
w∈D(v), dv(w,Sink)6=∞

(
max{dv(w, Sink), lmax}
max{d(w, Sink), lmax}

−1

)
(6)

Values of l-RC ′(v) may be compared between graphs. Algorithm 10 calculates the

relative l-RC using Equation (6).

6.2.3 l-CRC Ranking

We rank sensors based on l-CRC to identify the top-rank critical sensors that need

backups. So, if we are given a tight budget that can only protect m critical sensors

out of n total sensors in a network, we can easily select the first m sensors in the

ranking list. Because l-CRC is a 2-tuple index, we have two choices to rank the

centrality scores, i.e. based on l-CC scores or l-RC scores. We called the first

choice the primary order and the second choice the secondary order. Although

the primary order is more important than the secondary order, at a certain point

below a specific value of the primary order, the secondary order may become more

important. Therefore, we define two threshold values for the primary and secondary

orders, namely the primary threshold and the secondary threshold. The ranking

process works as follows:

183

1. The rank is based on the primary order from the highest primary order’s

value down to the primary threshold. If two or more primary order’s values

are the same, the rank is chosen based on the secondary order’s value, where

the highest comes first.

2. After the primary threshold, the rank is based on the secondary order from

the highest one remaining down to the secondary threshold. If two or more

secondary order’s values are the same, the rank is chosen based on the primary

order’s value.

3. After the secondary threshold, the vertex rank is chosen arbitrarily, where the

highest one remaining from either the primary or the secondary order comes

first.

Based on the topology planning objectives, one may choose l-CC as the primary

order and l-RC as the secondary order, or vice versa. In this thesis, we assume

that l-CC is more important than l-RC because it takes into account the number

of disconnected vertices. So, we take l-CC as the primary order and l-RC as the

secondary order. We assign the Connectivity Centrality Threshold (CT) as the

primary threshold and the Rerouting Centrality Threshold (RT) as the secondary

threshold. The Connectivity Centrality Threshold (CT) is the tolerable percentage

of a network that will be effectively disconnected after the failure of one vertex. By

analogy, the Rerouting Centrality Threshold (RT) specifies a tolerance on the extra

length of the shortest paths. If both thresholds are 0%, we are trying to achieve

2-connectivity for vertices which are two or more hops away from the sinks.

6.2.4 l-CRC Example

Figure 74(a) is an example of a small network which consists of 12 sensors and one

sink with lmax =5. Note that in this topology, d(l, Sink)>lmax. The solid lines are

the original routing paths to the sink while the dashed lines show the communication

184

a

j

b

dc

(a)

e

f

g h

i

k

l

Sink

a

j

dc

(b)

e

f

g h

i

k

l

Sink

parent-child communication

one-hop communication

b

Node CD'

d

a

b

c

e

g

k

f

h

i

j

l

0.4167

0.25

0.25

0.25

0.25

0.25

0.25

0.1667

0.1667

0.1667

0.1667

0.0833

(c)

Node CB'

d

g

i

e

k

h

j

b

a

c

f

l

0.3914

0.3081

0.2172

0.2071

0.1667

0.1465

0.1010

0.0884

0.0631

0.0606

0.0303

0

(d)

Node l-CRC'

e

h

g

a

b

c

d

f

i

j

k

l

<0.1818, 0.25>

<0.0909, 0.1667>

<0.0909, 0.0556>

<0, 0>

<0, 0>

<0, 0>

<0, 0>

<0, 0>

<0, 0>

<0, 0>

<0, 0>

<0, 0>

(e)

Figure 74: l-CRC example. (a) is the original paths to the sink, (b) is the alternative
paths if vertex e dies, (c) shows the relative scores for degree centrality (C ′D) for (a),
(d) shows the relative scores for betweenness centrality (C ′B) for (a), and (e) shows

the l-CRC ′ scores for (a) with lmax =5.

185

links. Before describing the relative scores of length-constrained connectivity and

rerouting centrality (l-CRC ′), we will firstly show the relative scores for degree

centrality (CD
′) and betweenness centrality (CB

′).

The formulas to calculate degree centrality and betweenness centrality have been

presented in Section 2.6.1. Recall that the degree centrality of a vertex v is the

number of vertices adjacent to v. To normalise the score, we divide it by the

maximum possible score of degree centrality, i.e. n− 1 [44]. The betweenness

centrality of a vertex v is the sum of the probability that v falls on a randomly

selected shortest path between all pairs of vertices in the graph. We divide the

score by (n−1)(n−2)
2

to normalise it [44]. Note that since the calculations of degree

centrality and betweenness centrality do not differentiate between a sink and a

sensor, we assume that the sink in Figure 74(a) is an ordinary vertex when we

calculate CD
′ and CB

′, so the number of vertices in the graph is 13.

According to the CD
′ and CB

′ scores as shown in Figure 74(c) and (d), respectively,

the most central vertex is d. However, l-CRC ′ for d is < 0, 0> as shown in Fig-

ure 74(e). It means, d is not critical because its descendants have length-bounded

alternative paths, which are not longer than lmax. Hence, both degree centrality

and betweenness centrality would not be useful in this case. Vertices e, h and g

have l-CRC ′ equal to < 0.1818, 0.25>, < 0.0909, 0.1667> and < 0.0909, 0.0556>,

respectively, since at least one of their descendants’ alternative paths are longer

than lmax. Vertex k, on the other hand, has l-CRC ′ equal to <0, 0>, because even

if l is disconnected upon its removal, l’s original path is already longer than lmax.

The routing paths when e fails are illustrated in Figure 74(b). In Figure 74(e),

l-CRC ′ scores are ranked using l-CC ′ as the primary order.

We have presented the concept of l-CRC to measure the importance of each sensor

node in a network. We will use l-CRC to identify critical sensors and to assess the

quality of relay deployment positions to provide alternative paths around the most

critical ones. In the following section, we will describe our local search algorithm

to deploy relays.

186

6.3 Greedy Randomised Adaptive Search Proce-

dure for Additional Backup Placement

(GRASP-ABP)

We consider WSNs where the vertices are partitioned into sensors, backup nodes

(relays) and sinks, and so in the graph representation V =T∪B∪S. We define the

general additional backup placement problem: given a graph G=(T∪A∪S,E), where

A is a set of candidate positions for relays, find a minimal subset B ⊆ A so that

when a sensor v∈T in a graph H=(T∪B∪S,E↓T∪B∪S) dies, each of its descendants

has an alternative path to a sink s∈S of length ≤ lmax.

Specifically, for the additional backup placement with centrality thresholds problem,

given a sensor v ∈ T with l-CRC(v) = < l-CC(v), l-RC(v) >, CT is the primary

threshold for l-CC, and RT is the secondary threshold for l-RC, it is required that

each sensor v ∈ T in the graph H = (T ∪B∪S,E ↓T∪B∪S) has l-CC(v) ≤ CT and

l-RC(v)≤ RT.

We propose the GRASP algorithm for the additional backup placement (GRASP-

ABP) to deploy a minimum number of additional relays for ensuring the existence

of alternative paths in a routing tree. Before the execution of GRASP-ABP, we

need to determine the set of critical vertices X and the set of non-critical vertices

Y , which become inputs to this algorithm. For this matter, we calculate l-CRC(v)

for each v∈T in an graph (T∪S,E↓T∪S). If either l-CC(v)> CT or l-RC(v)> RT,

v is critical and we put it in X. Finally, Y =T \X.

6.3.1 Construction Phase

The first step in any GRASP algorithm is to construct an initial solution. The

initial solution in GRASP-ABP is B, an initial set of backup nodes (relays). Each

relay in B is identified by finding the shortest path from each descendant, that is a

187

sensor, of each critical vertex to a sink in G bypassing each critical vertex. For each

relay found in the shortest path, we put it in B. The randomisation of the initial

solution is obtained by randomly selecting parents in the shortest paths if there are

hop count ties. At the end of the construction phase, a graph H=(T∪B∪S,E↓T∪B∪S)

is generated.

6.3.2 Node-based Local Search

The next stage in a GRASP algorithm is to explore the neighbourhood of the initial

solution, looking for lower cost solutions. Let B be the set of backup nodes (relays)

in the current graph H. We explore the neighbourhood of the current solution by

adding a new relay r∈A\B into B that can eliminate as many existing relays from

B as possible.

6.3.3 Algorithm Description

We describe GRASP-ABP that consists of the construction phase and the node-

based local search phase. The pseudocode for GRASP-ABP is given in Algorithm

11. It takes as input the original graph G=(T∪A∪S,E), the set S of sinks, the set A

of candidate backups, the set X of critical vertices, the set Y of non-critical vertices,

the descendants of the critical vertices D(X), the connectivity centrality threshold

CT , the rerouting centrality threshold RT , the maximum acceptable path length

lmax, and the number of iterations (max iterations). The procedure is repeated

max iterations times. In each iteration, a greedy randomised solution to find an

initial set of relays B is executed from line 3 to 9. The current graph H = (T ∪

B∪S,E↓T∪B∪S) is generated in line 10 and the routing tree of H is built in line 11.

The l-CRC scores for the critical vertices are then recalculated in line 12 using the

routing tree of H to obtain the highest values of l-CC and l-RC, denoted l-CCmax(H)

and l-RCmax(H), respectively. Note that we only calculate the l-CRC score for each

critical vertex v∈X, which is a sensor. v may have both sensors and relays as its

188

Algorithm 11: GRASP-ABP
Input : G,S,A,X, Y,D(X), CT,RT, lmax,max iterations
Output: B∗

1: best value←∞
2: for i←1 to max iterations do

/* Construction phase */
3: B←∅
4: for all v∈X do
5: for all w∈D(v) do
6: Find the shortest path from w to a sink s∈S bypassing v
7: B←B∪{r} for each r∈A found in the shortest path
8: end for
9: end for

10: H←(X∪Y ∪B∪S,E↓X∪Y∪B∪S)
11: Build the routing tree of H
12: Calculate l-CCmax(H) and l-RCmax(H)

/* Local search phase */
13: do
14: solution updated← false
15: best set←B, best number←|B|
16: for all r∈A\B do
17: L←∅
18: for all t∈B do
19: L←L∪{t}
20: Build the routing tree of H+r−L

21: Calculate l-CCmax(H+r−L) and l-RCmax(H+r−L)
22: if (l-CCmax(H+r−L) > l-CCmax(H) or l-RCmax(H+r−L) > l-RCmax(H))

and (l-CCmax(H+r−L) > CT or l-RCmax(H+r−L) > RT) then
23: L←L\{t}
24: end if
25: end for
26: if |B|−|L|+1< best number then
27: best set←(B∪{r})\L, best number←|B|−|L|+1
28: end if
29: end for
30: if best number < |B| then
31: B← best set, H←(X∪Y ∪B∪S,E↓X∪Y∪B∪S)
32: solution updated← true
33: end if
34: while solution updated

/* Best solution update */
35: if |B|< best value then
36: B∗←B, best value←|B|
37: end if
38: end for
39: return B∗

189

descendants in the routing tree. However, for the l-CRC calculation, we only take

into account the descendants of v that are sensors, not relays. We do not provide

alternative paths for relays because they are deployed only as additions to support

connectivity.

The local search starts with the initialisation of the best set and the best number

of backups in line 15. The loop from line 16 to 29 searches for the best move, i.e.

finding a new relay r ∈ A\B that can eliminate as many existing relays from B

as possible. The loop from line 18 to 25 tries to find the maximum set L⊆B of

existing relays that are safe to be removed after the insertion of r. To check if the

relays in L are safe to be removed, firstly we build the routing tree of H+r−L in line

20 and calculate the new highest values of l-CC and l-RC using the routing tree of

H+r−L in line 21, namely l-CCmax(H+r−L) and l-RCmax(H+r−L). Then, in line 22,

we check if the new scores improve the previous ones or stay below the thresholds. If

the new solution improves the number of backups used in the current best solution,

the best set and the best number of relays are updated in line 27. When all moves

have been evaluated, we check in line 30 if an improving solution has been found.

If the moves produce a better solution, the set of relays B is updated in line 31, as

well as the graph H. Then, the local search continues.

If, at the end of the local search, we found a better solution compared to the best

solution found so far, we update in line 36 the set of relays and the least number

of backups used. The best set B∗ of relays is returned in line 39.

6.4 Evaluation of GRASP-ABP

We evaluate the effectiveness and the efficiency of GRASP-ABP, which uses l-CRC,

compared to some existing closely related algorithms that are used in planning a

network. We use these metrics, which have been discussed in Chapter 3, to measure

the performance of the algorithms:

190

1. Number of additional relay nodes (cost). We compare the effectiveness

of the algorithms by using the total number of deployed relay nodes in the

network.

2. Runtime . We measure the efficiency of the algorithms by showing their

computation time.

3. Number of disjoint paths. We want to compare the average number of

disjoint paths per node after we deploy relays in the network.

4. Percentage of nodes with disjoint paths. We want to show the rela-

tionship between deploying fewer relays and the number of nodes that have

disjoint paths.

We compare GRASP-ABP against GRASP-ARP from Chapter 5 and K-CONN-

REPAIR [90] that has been modified for constrained deployment locations, where

relay nodes can only be placed in specific candidate locations. All algorithms are

written in C++. Our simulation results are based on the mean value of 20 randomly

generated network deployments. The network consists of up to 100 nodes deployed

within randomly perturbed grids of a two-dimensional area, where a node is placed

in a unit grid square of 8m × 8m and the coordinates are perturbed. In order to

get sparse networks (average degree 2–3), we generate more grid points than the

number of nodes. For example, we use 6 × 6, 8 × 8 and 11 × 11 grid squares

to randomly deploy 25, 49 and 100 nodes, respectively. Candidate relays are also

distributed in a grid area, where a candidate occupies a unit grid square of 6m ×

6m. Both sensor and relay nodes use the same transmission range, i.e. 10 metres.

In the simulation, we use 25-node, 49-node and 100-node topologies with 49, 100

and 196 candidate relays, respectively. The maximum path length (lmax) is set to 10

for 25-node, 15 for 49-node and 20 for 100-node networks. The maximum number

of iteration of GRASP is 10. We use connectivity as our primary order in centrality

score ranking and rerouting as secondary. The thresholds for connectivity (CT) and

rerouting (RT) are both 0% and 2%. If CT and RT are 0%, we are trying to achieve

191

2-connectivity for nodes which are two or more hops away from the sink. Therefore,

we only simulate 2-connectivity for GRASP-ARP and K-CONN-REPAIR. If CT

and RT are greater than 0%, we trade-off the number of relay nodes (cost) and

runtime against the quality of designed networks.

6.4.1 Multiple Sources – Single Sink Problem

In this simulation, we put the sink at the top-left corner of the network, while all

sensor nodes are the source nodes. We simulate two versions of GRASP-ARP, i.e.

using the basic version of Counting-Paths and its dynamic programming variant

(DP).

Figure 75 shows the number of additional backup nodes (relays) needed. On av-

erage, GRASP-ABP finds the least number of additional relay nodes compared

to K-CONN-REPAIR and GRASP-ARP. GRASP-ABP deploys fewer relays than

GRASP-ARP as it does not need to provide alternative paths for sensor nodes

which are connected directly to the sink and have no descendants. Furthermore, an

alternative path is not sought for a sensor node that only has one neighbour and

has an original path that is already longer than lmax. This node has no influence on

its parent’s l-CRC score. The algorithms’ runtime for the multiple sources – single

sink problem is shown in Table 15, where GRASP-ABP’s runtime is 3.5 times faster

than K-CONN-REPAIR and 2.8 times faster than GRASP-ARP-DP in 100-node

networks. When the thresholds are increased from 0% to 2%, GRASP-ABP deploys

40% fewer relays and reduces the computational times.

We then use the Counting-Paths algorithm from Chapter 5 to find the number of

disjoint paths and the number of nodes that have disjoint paths in the topologies

generated by the backup placement algorithms. All sensor nodes in the topologies

generated by K-CONN-REPAIR, GRASP-ARP-DP and GRASP-ARP have 2 dis-

joint paths. Therefore, the average number of disjoint paths found is two and the

192

25 49 100
0

1

2

3

4

5

6

7

8

9

10

Number of sensor nodes

N
um

be
r

of
 a

dd
iti

on
al

 r
el

ay
 n

od
es

K−CONN−REPAIR
GRASP−ARP−DP
GRASP−ARP
GRASP−ABP (CT=0%, RT=0%)
GRASP−ABP (CT=2%, RT=2%)

Figure 75: Number of backup nodes needed versus number of sensor nodes for
multiple sources – single sink

Table 15: Additional backup placement algorithms’ runtime for multiple sources –
single sink

Algorithms
Runtime (sec)

25-node 49-node 100-node
K-CONN-REPAIR 6.2891 254.7343 10,003.8000
GRASP-ARP-DP 24.3469 421.2820 7,897.9650
GRASP-ARP 39.4860 619.3118 13,964.9400
GRASP-ABP (CT=0%, RT=0%) 5.9163 132.0446 2,830.4940
GRASP-ABP (CT=2%, RT=2%) 5.9095 134.5218 2,207.5260

193

25 49 100
1

1.2

1.4

1.6

1.8

2

Number of sensor nodes

N
um

be
r

of
 d

is
jo

in
t p

at
hs

 (
av

g.
 /n

od
e)

GRASP−ABP (CT=0%, RT=0%)
GRASP−ABP (CT=2%, RT=2%)

Figure 76: Number of disjoint paths found for multiple sources – single sink in
GRASP-ABP topologies

25 49 100
80

85

90

95

100

Number of sensor nodes

P
er

ce
nt

ag
e

of
 n

od
es

 w
ith

 d
is

jo
in

t p
at

hs

GRASP−ABP (CT=0%, RT=0%)
GRASP−ABP (CT=2%, RT=2%)

Figure 77: Percentage of nodes with disjoint paths for multiple sources – single sink
in GRASP-ABP topologies

194

Table 16: Additional backup placement algorithms’ runtime for multiple sources –
multiple sinks

Algorithms
Runtime (sec)

25-node 49-node 100-node
K-CONN-REPAIR 6.2891 254.7343 10,003.8000
GRASP-ARP-AnySinks-DP 1.7844 37.7884 517.3695
GRASP-ARP-AnySinks 2.5180 55.3843 735.7915
GRASP-ARP-DiffSinks-DP 1.6351 31.3648 426.6710
GRASP-ARP-DiffSinks 2.3828 51.4437 822.0718
GRASP-ABP (CT=0%, RT=0%) 1.0540 7.7484 85.4845
GRASP-ABP (CT=2%, RT=2%) 1.0509 6.6265 37.2608

percentage of nodes with disjoint paths is 100%. Figure 76 and 77 show the simu-

lation results for the GRASP-ABP topologies. Firstly, these two figures show that

in the GRASP-ABP topologies, not all sensor nodes have 2 disjoint paths because

the topologies have less number of relay nodes. Secondly, as the thresholds increase

from 0% to 2%, the number of sensor nodes that have 2 disjoint paths decrease be-

cause the networks have fewer relays, and so the average number of disjoint paths

and the percentage of nodes with disjoint paths slightly drop as shown in Figure 76

and 77.

6.4.2 Multiple Sources – Multiple Sinks Problem

We have four sinks deployed at the top-left, top-right, bottom-left and bottom-right

corners of the network. Recall that in the multiple sink problem, there are two

cases for interpreting the disjoint path requirement: different-sinks and any-sinks.

The different-sinks problem is where original and backup paths must terminate at

different sinks. The any-sinks problem is the case where the paths may terminate

at any sinks. GRASP-ABP only provides solutions for the any-sinks problem as

our centrality calculations do not put any restrictions on where a node’s alternative

path must terminate at. When a node finds an alternative path, it selects a new

parent from its neighbourhood that has the shortest path length to a sink, which

may be the same or different to its previously connected sink.

195

25 49 100
0

2

4

6

8

10

12

Number of sensor nodes

N
um

be
r

of
 a

dd
iti

on
al

 r
el

ay
 n

od
es

K−CONN−REPAIR
GRASP−ARP−AnySinks−DP
GRASP−ARP−AnySinks
GRASP−ARP−DiffSinks−DP
GRASP−ARP−DiffSinks
GRASP−ABP (CT=0%, RT=0%)
GRASP−ABP (CT=2%, RT=2%)

Figure 78: Number of backup nodes needed versus number of sensor nodes for
multiple sources – multiple sinks

Figure 78 and Table 16 show our simulation results, where GRASP-ABP outper-

forms GRASP-ARP and K-CONN-REPAIR in both the number of additional relay

nodes needed and the runtime. Compared to the single sink case, the GRASP al-

gorithms have shorter runtime when there are many sinks in the network. This

happens because sinks do not have many descendants in their routing tree and the

paths from sensor nodes to the sinks are shorter, so the shortest path computa-

tion time is faster. GRASP-ABP requires almost 20% fewer relays and runs more

than six times faster than GRASP-ARP with dynamic programming for the case

of 100-node networks. In addition, by using 2% threshold, GRASP-ABP provides

cheaper and faster answers to the same problem. K-CONN-REPAIR has the worst

performance in relay deployment process as it must run an expensive connectivity

checking algorithm in each iteration to provide k-connectivity for an entire network.

After we deploy relays, we run Counting-Paths to find the average number of dis-

joint paths per node and the percentage of nodes that have disjoint paths in each

196

25 49 100
1

1.2

1.4

1.6

1.8

2

Number of sensor nodes

N
um

be
r

of
 d

is
jo

in
t p

at
hs

 (
av

g.
 /n

od
e)

GRASP−ABP (CT=0%, RT=0%)
GRASP−ABP (CT=2%, RT=2%)

Figure 79: Number of disjoint paths found for multiple sources – multiple sinks in
GRASP-ABP topologies

25 49 100
80

85

90

95

100

Number of sensor nodes

P
er

ce
nt

ag
e

of
 n

od
es

 w
ith

 d
is

jo
in

t p
at

hs

GRASP−ABP (CT=0%, RT=0%)
GRASP−ABP (CT=2%, RT=2%)

Figure 80: Percentage of nodes with disjoint paths for multiple sources – multiple
sinks in GRASP-ABP topologies

197

generated topology. Similar to the single sink case, all sensor nodes in the topolo-

gies generated byK-CONN-REPAIR, GRASP-ARP-DP and GRASP-ARP for both

any-sinks and different-sinks problems have 2 disjoint paths. Hence, the average

number of disjoint paths found is two and the percentage of nodes with disjoint

paths is 100%. Figure 79 and 80 show the results for the GRASP-ABP topologies.

These results also indicate similar trends to the single sink scenario, where not all

sensor nodes in the GRASP-ABP topologies have 2 disjoint paths, especially when

the thresholds for connectivity and rerouting are 2%.

6.5 Conclusion

To be robust to failures, network topologies should provide alternative routes to the

sinks so when failures do occur the routing protocol can still offer reliable delivery.

Our contribution is a solution that can achieve such reliability in a more efficient

manner than other published approaches. We ensure that each sensor node in the

initial design has an alternative path to the sinks by deploying a small number of

additional backup nodes (relays). To solve this problem, we define l-CRC, a new

centrality measure that determine a node’s importance to connectivity and efficient

delivery in the network. We use l-CRC scores to identify the most important nodes

and to provide alternative paths around those nodes. We also introduce GRASP-

ABP, a local search algorithm to be run during the initial topology planning to

minimise the number of relays that need to be deployed.

We evaluate the algorithm in terms of the number of additional relays it deploys and

its runtime, where we demonstrate that the centrality-based GRASP-ABP’s deploys

fewer additional relays with faster runtime compared to the other algorithms. This

is achieved by providing 2-connectivity only for sensor nodes which are two or

more hops away from a sink and whose original shortest paths are length-bounded.

GRASP-ABP obviously retreats from the network-wide 2-connectivity and having

higher thresholds retreats even further. So, we would expect it to be faster but

198

poorer on the disjoint path metric. To show that the topologies generated by

GRASP-ABP with 0% and 2% thresholds have comparable performance to the

topologies which have more relays, we will evaluate the network performance for

each topology in Chapter 8. We will take the topologies generated by the topology

planning algorithms, deploy sensor nodes, relay nodes and sinks according to the

deployment plans, and evaluate their performances while some nodes are failing.

By simulating the network operation, we want to show the trade-off between the

efficiency of the network design and the robustness of the network performance.

199

200

Chapter 7

Multiple Sink and Relay

Placement

7.1 Introduction

In this chapter, we define a novel problem for increasing the Wireless Sensor Network

(WSN) topology robustness against a single failure by deploying multiple sinks and

relays with minimal cost. Our solution differs from the ones in the literature, which

were reviewed in Section 2.7, because we consider both sink and relay deployment at

the same time for fault-tolerant multi-hop networks with a path length constraint.

A network is robust against a single failure if after a failure of a sink, a sensor node

or a relay node, each remaining sensor node can deliver its data to a sink through a

multi-hop path with an acceptable length. To be robust to sink failure, we deploy

multiple sinks in the network such that each sensor node is double-covered, i.e. it

has length-bounded paths to two sinks. While we restrict our assumption to k-

covered, where k= 2 in this chapter, our solution is also applicable to any integer

k ≥ 1. If k > 2, the solution is robust to multiple (up to k−1) sink failures. To

protect against sensor node failure, we place some relay nodes so that every sensor

node is non-critical, i.e. when it fails, each remaining sensor node still has at least

201

one length-bounded path to a sink. Since installing multiple sinks and relays incurs

additional costs, our solution tries to minimise the total deployment cost. We solve

the multiple sink and relay placement problem using a greedy algorithm and a local

search algorithm based on GRASP [41, 42, 96].

Firstly, we look at the multiple sink placement (MSP) problem to minimise the

number of uncovered nodes, i.e. nodes that are not double-covered. We present

Greedy-MSP and GRASP-MSP in Section 7.2 and show the simulation results in

Section 7.3. The simulation results show that Greedy-MSP has the shortest runtime

but deploys more sinks than GRASP-MSP. On the other hands, our simulation

demonstrates that GRASP-MSP finds comparable cost to the optimal solution with

shorter runtime than our implementation of the optimal solution. Even though

finding the optimal solution is sufficient for the multiple sink placement problem,

the GRASP-MSP performance gives us confidence to use the same local search

technique for the more complex multiple sink and relay placement problem because

it can achieve almost the same solution as the optimal one and even faster.

After that, we look at the multiple sink and relay placement (MSRP) problem

and present Greedy-MSRP and GRASP-MSRP in Section 7.4. Both algorithms

employ the concept of Length-constrained Connectivity and Rerouting Centrality

(l-CRC) introduced in Chapter 6 to identify every critical node, i.e. a sensor node

which if fails can cause other nodes to lose their length-bounded paths to sinks.

Greedy-MSRP deploys sinks and relays separately. It basically uses Greedy-MSP to

minimise the number of uncovered nodes by deploying multiple sinks. Since in this

thesis we assume that the cost of a sink is more expensive than a relay node because

it is usually powered, has large storage capacity and has WiFi/ethernet backhaul,

Greedy-MSRP tries to trade some sinks for relays to minimise the total deployment

cost but ensures that the network is still double-covered and non-critical. To be used

by Greedy-MSRP for multiple relay placement (MRP), we develop GRASP-MRP.

GRASP-MRP extends GRASP-ABP in Chapter 6 to make a network topology not

only non-critical, but also double-covered. Unlike Greedy-MSRP, GRASP-MSRP

202

minimises the number of uncovered and critical nodes simultaneously in its every

local search move. We demonstrate empirically in Section 7.5 that GRASP-MSRP

runs faster than Greedy-MSRP and the solutions produced by GRASP-MSRP are

over 30% less costly than those of Greedy-MSRP.

7.2 Multiple Sink Placement (MSP)

sensor node
candidate sink
selected sink

(a) (b)

5

5

3

3

5

5

3

3

Figure 81: Illustration of the MSP problem. (a) A WSN with four candidate sinks
and (b) the double-covered WSN where lmax =3.

We partition vertices into a set of sensors T and sinks S. In the graph representation

of a WSN, V = T ∪S. Note that at this stage we do not use relays yet. A sensor

is double-covered if and only if it has at least two paths of length ≤ lmax to two

sinks in S. If a sensor is not double-covered, it is uncovered. We define a WSN as

double-covered if each sensor v∈T is double-covered. In the multiple sink placement

problem, given a graph G=(T∪AS, E), where AS is a set of candidate locations for

sinks with a non-negative cost function c : AS→R, we find a minimum cost subset

S⊆AS such that H=(T∪S,E↓T∪S) is double-covered.

We illustrate this problem in Figure 81. Figure 81(a) illustrates a WSN with four

candidate locations to deploy sinks, where the numbers represent the costs. In order

to make the WSN double-covered with lmax = 3, we need to deploy the two sinks

as shown in Figure 81(b). The total cost of sink deployment in this example is 10

units.

203

To solve the multiple sink placement problem, we present Greedy-MSP, a greedy-

based algorithm, and GRASP-MSP, a local search algorithm that uses the GRASP

technique [41, 42, 96]. To speed-up our algorithms’ processing time, we compute the

shortest path from all sensors to all candidate sinks once in the beginning and store

the length of the shortest path in Distance table, while the parent of each sensor

in the shortest path to a candidate sink is stored in Parent table. For example, for

G=(T∪AS, E), DistanceG(v, w) shows the length of the shortest path from a sensor

v∈T to a candidate sink w∈AS, while ParentG(v, w) shows the parent of a sensor

v on the shortest path to a candidate sink w∈AS.

7.2.1 Greedy Algorithm for Multiple Sink Placement

(Greedy-MSP)

Greedy-MSP is similar to the Heuristic Opt Multisink Place (HOMP) algorithm

by Xu and Liang [122], but instead of deploying a minimum number of sinks to

make a network single-covered, it considers double-covered networks. Greedy-MSP

deploys sinks one by one until a network is double-covered. In each iteration, the

greedy move picks the best sink from the set of candidate sinks that can minimise

the number of uncovered sensors as possible. In Greedy-MSP, if two or more sinks

offer the same number of uncovered sensors, the lowest cost sink is selected. If there

are ties, we select one arbitrarily.

The Greedy-MSP pseudocode is given in Algorithm 12. It takes as input the original

graph G=(T∪AS, E), the set T of sensors, the set AS of candidate sinks, the cost

function c, the pre-computed DistanceG table, and the maximum acceptable path

length lmax. Initially, when there are no sinks selected, all sensors are uncovered.

We initialise the set S of sink and the number of uncovered sensors in line 1. The

loop from line 2 to 19 greedily selects the best sinks one by one until all sensors

are double-covered. The best sink is the one that together with the previously

chosen sinks can minimise the number of uncovered sensors. The loop from line 4

204

Algorithm 12: Greedy-MSP
Input : G,T,AS, c,DistanceG, lmax

Output: S
1: num uncovered←|T |, S←∅
2: while num uncovered >0 and |S|< |AS| do
3: max num covered←0
4: for all v∈AS\S do
5: H←(T∪S∪{v}, E↓T∪S∪{v})
6: if |S| = 0 then
7: num coveredv←Find num single covered in H using DistanceG and lmax

8: else
9: num coveredv←Find num double covered in H using DistanceG and lmax

10: end if
11: if num coveredv>max num covered then
12: max num covered←num coveredv
13: end if
14: end for
15: best sink←{v∈AS\S, num coveredv= max num covered, ∀w∈AS\S : cv≤cw}
16: S←S ∪{Select a sink randomly from best sink}
17: H←(T∪S,E↓T∪S)
18: Find num uncovered in H using DistanceG and lmax

19: end while
20: return S

to 14 finds the maximum number of sensors that can be covered by addition of each

candidate sink into the set of selected sink. If there are no sinks selected before, for

each candidate sink v ∈AS we find the number of single-covered sensors, i.e. how

many sensors in DistanceG table that have path length ≤ lmax to v. If there are

some sinks selected before, we calculate the number of double-covered sensors. We

then group together the candidate sinks that have the maximum number of covered

sensors and the minimum cost in line 15. In line 16, we select one candidate sink

arbitrarily to be inserted into the set of sink S. We then calculate the number of

uncovered sensors in line 18. The iteration stops if all sensors are double-covered

or all candidate sinks have been selected. The set of sinks S is finally returned in

line 20.

205

7.2.2 Greedy Randomised Adaptive Search Procedure for

Multiple Sink Placement (GRASP-MSP)

A greedy heuristic can easily get caught in a local minimum, where it thinks that it

finds the lowest cost solution but it actually does not. GRASP is likely to be better

than the greedy heuristic because the randomisation aspect in its local search en-

ables it to escape the local minimum. We present GRASP-MSP to solve the multiple

sink placement problem. As with other GRASP-based algorithms, GRASP-MSP

consists of two steps: construction phase to construct an initial feasible solution

and local search phase to explore the neighbourhood of the initial solution, looking

for lower cost solutions.

Construction Phase

In the construction phase, we find S, an initial set of sinks. Instead of selecting

the best candidate sink from AS to be put in S, which can minimise the number

of uncovered sensors, we add randomisation to the initial solution by choosing a

sink from AS randomly. This random selection is repeated until the network is

double-covered or all candidate sinks have been chosen.

Node-based Local Search

Let S be the set of sinks. We explore the neighbourhood of the current solution by

adding a new sink s∈AS\S into S that can eliminate some existing sinks from S

to reduce the total sink cost as low as possible. This move must always ensure that

the network is double-covered.

Algorithm Description

The GRASP-MSP pseudocode is given in Algorithm 13. It takes as input the

original graph G= (T ∪AS, E), the set T of sensors, the set AS of candidate sinks,

206

Algorithm 13: GRASP-MSP
Input : G,T,AS, c,DistanceG, lmax,max iterations
Output: S∗

1: best value←∞
2: for i←1 to max iterations do

/* Construction phase */
3: Find S by choosing sinks from AS randomly
4: do
5: solution updated← false

/* Local search phase */
6: best set0←S, best cost←

∑
v∈S cv, best num set←1

7: for all r∈AS\S do
8: Z←∅
9: for all t∈S do

10: Z←Z∪{t}, H←(T∪S∪{r}\Z,E↓T∪S∪{r}\Z)
11: Calculate num uncovered in H using DistanceG and lmax

12: if num uncovered >0 then
13: Z←Z\{t}
14: end if
15: end for
16: if

∑
v∈S∪{r}\Z cv< best cost then

17: best num set←0
18: end if
19: if

∑
v∈S∪{r}\Z cv≤ best cost and S∪{r}\Z /∈ best set then

20: best setbest num set←S∪{r}\Z,
best cost←

∑
v∈S∪{r}\Z cv,

best num set← best num set +1
21: end if
22: end for
23: if best cost <

∑
v∈S cv then

24: S← select a set randomly from best set
25: solution updated← true
26: end if
27: while solution updated

/* Best solution update */
28: if

∑
v∈S cv< best value then

29: S∗←S, best value←
∑

v∈S cv
30: end if
31: end for
32: return S∗

207

the cost function c, the pre-computed DistanceG table, the maximum acceptable

path length lmax, and the number of iterations (max iterations). In each iteration,

the construction phase to find the initial set of sinks S is executed in line 3. The

local search starts with the initialisation of the best set and the best cost in line

6. The loop from line 7 to 22 searches for the best move, i.e. finding a new sink

r ∈AS\S that can eliminate as many existing sinks from S as possible. The loop

from line 9 to 15 tries to find the set Z ⊆ S of existing sinks that are safe to be

removed after the insertion of r. The sinks in Z are safe to be removed if all sensors

in H = (T ∪S∪{r}\Z,E↓T∪S∪{r}\Z) are double-covered. In line 16, we check if the

new solution reduces the total cost of the current best solution. If the total cost

can be reduced, we reset the set of the best set in line 17. If the total cost is the

same, we keep this new solution in the set of the best set as shown from line 19

to 21. When all moves have been evaluated, we check in line 23 if an improving

solution has been found. If the moves produce a better solution, the set of sinks S

is updated in line 24 by selecting one best set randomly from the set of the best set.

Then, the local search continues. If, at the end of the local search, we find a better

solution compared to the best solution found so far, we update in line 29 the set of

sinks and the lowest total cost found. The best sink set S∗ is returned in line 32.

7.3 Evaluation of Greedy-MSP and GRASP-MSP

We evaluate Greedy-MSP and GRASP-MSP, and we show that while Greedy-MSP

has the shortest runtime, GRASP-MSP finds the lowest cost sink deployment com-

pared to other closely-related algorithms. GRASP-MSP finds comparable solution

to the optimal with faster runtime than the optimal. We measure the performance

of the algorithms using the following metrics:

1. Number of sinks needed and total sink cost . We compare the effec-

tiveness of the algorithms in finding the minimum cost solution to the same

problem. We expect that GRASP-MSP deploys the fewest sinks and has the

208

lowest cost solution compared to other algorithms. We also expect Greedy-

MSP’s solution to have slightly more sinks than GRASP-MSP’s, but it should

be comparable to other multiple sink placement algorithms.

2. Runtime . We expect that Greedy-MSP and GRASP-MSP are efficient as

the computation time is faster compared to other algorithms.

The results presented here are based on the mean value of 20 randomly generated

network deployments. The network consists of 100 sensor nodes deployed within

randomly perturbed grids, where a sensor node is placed in a unit grid square of 8m

× 8m and the coordinates are perturbed. To get sparse networks (average degree

2-3), we generate more grid points than the number of nodes. We use 11 × 11

grid squares to randomly deploy 100 sensor nodes. 25 candidate sinks are also

distributed in a grid area, where a candidate occupies a unit grid square of 18m×

18m. Both sensor nodes and sinks use 10-metre transmission range.

We compare Greedy-MSP and GRASP-MSP to Minimise the Number of Sinks

for Fault-Tolerance (MSFT), Cluster-Based Sampling for Multiple Sink Placement

(CBS-MSP) and the optimal solution. Since there are no existing algorithms in the

literature that share the same objectives as ours, we take the closest approaches

and modify them to be comparable. MSFT and CBS-MSP are algorithms based

on the well-known k-means clustering algorithm. MSFT is similar to Minimise the

Number of Sinks for a Predefined Minimum Operation Period (MSPOP) [85]. In

MSPOP, sinks can be deployed anywhere and they are placed one by one until a

required lifetime is met. Unlike MSPOP, MSFT has candidate locations and keeps

adding sinks until the network is double-covered. CBS-MSP is similar to Cluster-

Based Sampling (CBS) proposed in [28], but with some modifications. In CBS, the

number of sinks is given and the objective is to minimise the total road distance

from all nodes to the sinks where each node is required to be double-covered. Unlike

CBS, CBS-MSP tries to reduce the number of sinks and thus the deployment cost.

We implement CBS-MSP using path length to represent distance between two nodes

209

and also we have path length restrictions. In each iteration, both CBS and CBS-

MSP try to find the best sink locations to ensure the network is double-covered.

The k-means clustering algorithm is used in these algorithms to divide the network

into clusters and to find the position of each sink, which is in the centre of a cluster.

The pseudocode for MSFT and CBS-MSP are given in Appendix D.1.

The performances of MSFT and CBS-MSP depend on the randomly selected sink

locations. Therefore, we use the maximum iteration (MaxIter) to limit the number

of iterations. We vary the number of iterations for MSFT and CBS-MSP, while

we use MaxIter = 1 and 10 for GRASP-MSP as has been shown in the previous

chapters that GRASP-based algorithms with MaxIter = 10 produce similar results

to higher number of iterations. In our Greedy-MSP and GRASP-MSP, if two or

more moves offer the same solution, we select one arbitrarily. We also consider

Greedy-MSP-All and GRASP-MSP-All, where if there exists more than one best

move, we evaluate them all.

The optimal solution is modeled using binary linear programming with the objective

is to minimise the total sink cost, i.e.

min
∑
j∈S

cjxj (7)

subject to the following constraints

∑
j∈S

lijxj≥2; ∀i∈T (8)

dij≤ lmax⇒ lij =1, dij>lmax⇒ lij =0; i∈T, j∈S (9)

xj∈{0, 1}; j∈S (10)

c is the cost of a candidate sink x. The first constraint guarantees each sensor node

has at least two paths to two sinks. The paths are length-bounded, which are shown

in the second constraint using a binary function lij. It has value equal to one if the

shortest path length from a sensor node i to a sink j ≤ lmax, otherwise its value

is zero. In the third constraint, a candidate sink is either selected to be deployed

210

or not. The binary linear programming for the optimal solution is implemented in

Matlab, while the other algorithms are written in C++.

In the simulation, we find the best locations to deploy the least number of sinks to

make the networks double-covered. We assume all candidate sinks have the same

cost and consider the cases where the maximum acceptable path length from each

sensor node to a sink is 6 and 10. The number of sinks deployed by each algorithm

is shown in Figure 82 and the runtime is in Table 17. The simulation results show

that GRASP-MSP with MaxIter = 1 requires almost the same number of sinks

with shorter runtime compared to the optimal solution. It also outperforms MSFT,

CBS-MSP and Greedy-MSP. Greedy-MSP has the shortest runtime, but it places

more sinks compared to GRASP-MSP. We also observe that the number of deployed

sinks decreases when the maximum path length increases because each sink in the

network can cover more sensor nodes.

6 10
0

2

4

6

8

10

12

14

16

18

20

22

Maximum path length

N
um

be
r

of
 s

in
ks

 n
ee

de
d

MSFT−MaxIter=1

MSFT−MaxIter=10

MSFT−MaxIter=100

CBS−MSP−MaxIter=1

CBS−MSP−MaxIter=10

CBS−MSP−MaxIter=100

Greedy−MSP

Greedy−MSP−All

GRASP−MSP−MaxIter=1

GRASP−MSP−All−MaxIter=1

GRASP−MSP−MaxIter=10

GRASP−MSP−All−MaxIter=10

Optimal Solution

Figure 82: Number of sinks needed for multiple sink placement algorithms versus
maximum path length

211

Table 17: Multiple sink placement algorithms’ runtime with different maximum path
length

Algorithms
Runtime (sec)
lmax =6 lmax =10

MSFT-MaxIter=1 0.4188 0.0288
MSFT-MaxIter=10 4.0429 0.3102
MSFT-MaxIter=100 40.8313 3.1647
CBS-MSP-MaxIter=1 1.0297 0.0235
CBS-MSP-MaxIter=10 10.1797 0.2069
CBS-MSP-MaxIter=100 97.0899 2.0844
Greedy-MSP 0.0024 0.0040
Greedy-MSP-All 7.9664 0.0071
GRASP-MSP-MaxIter=1 0.0085 0.0117
GRASP-MSP-All-MaxIter=1 0.0179 0.0116
GRASP-MSP-MaxIter=10 0.0688 0.0452
GRASP-MSP-All-MaxIter=10 0.1305 0.0750
Optimal Solution 0.0727 0.0867

We also consider a more realistic scenario where the deployment costs for all candi-

date sinks are different from one another, for example due to cabling and installation

costs. We do not specify the locations where the costs are higher or lower, but we

assume a set of candidate locations with their associated costs. We compare the

performance of the algorithms using the same sink cost (cS), i.e. 3 units and dif-

ferent sink costs, which are randomly selected between 3 and 6 units. The results

for the total sink cost and the runtime with lmax =6 are presented in Figure 83 and

Table 18, respectively. These results show similar trends to the previous ones when

we vary the maximum path lengths. That is, GRASP-MSP achieves the lowest

total cost comparable to the optimal solution, while Greedy-MSP has the shortest

runtime in all scenarios.

We evaluate the performance of GRASP-MSP against the optimal solution when the

density of the network increases. In the simulation, we double the number of sensor

nodes from 100 to 200 while keeping the area fixed. As a result, the average degree

of a sensor node increases from 3 to 7. We present the number of deployed sinks

out of 25 candidate sinks in Figure 84 and the runtime in Table 19. GRASP-MSP

with MaxIter = 1 has the shortest runtime, but it places slightly more sinks than

212

3 3 to 6
0

20

40

60

80

100

120

140

Sink cost

T
ot

al
 s

in
k

co
st

MSFT−MaxIter=1

MSFT−MaxIter=10

MSFT−MaxIter=100

CBS−MSP−MaxIter=1

CBS−MSP−MaxIter=10

CBS−MSP−MaxIter=100

Greedy−MSP

Greedy−MSP−All

GRASP−MSP−MaxIter=1

GRASP−MSP−All−MaxIter=1

GRASP−MSP−MaxIter=10

GRASP−MSP−All−MaxIter=10

Optimal Solution

Figure 83: Total sink cost for multiple sink placement algorithms versus sink cost

Table 18: Multiple sink placement algorithms’ runtime with different sink cost

Algorithms
Runtime (sec)
cS =3 cS =3 to 6

MSFT-MaxIter=1 0.4188 0.4086
MSFT-MaxIter=10 4.0429 4.1327
MSFT-MaxIter=100 40.8313 42.3492
CBS-MSP-MaxIter=1 1.0297 0.9258
CBS-MSP-MaxIter=10 10.1797 9.9290
CBS-MSP-MaxIter=100 97.0899 96.5509
Greedy-MSP 0.0024 0.0008
Greedy-MSP-All 7.9664 8.1971
GRASP-MSP-MaxIter=1 0.0085 0.0118
GRASP-MSP-All-MaxIter=1 0.0179 0.0126
GRASP-MSP-MaxIter=10 0.0688 0.1187
GRASP-MSP-All-MaxIter=10 0.1305 0.1335
Optimal Solution 0.0727 0.1086

213

Table 19: Multiple sink placement algorithms’ runtime with different average degree

Algorithms
Runtime (sec)

average degree =3 average degree =7
GRASP-MSP-MaxIter=1 0.0085 0.0093
GRASP-MSP-All-MaxIter=1 0.0179 0.0337
GRASP-MSP-MaxIter=10 0.0688 0.1102
GRASP-MSP-All-MaxIter=10 0.1305 0.2821
Optimal Solution 0.0727 0.0735

the optimal solution. Increasing the number of GRASP-MSP’s iterations results in

longer runtime but it has the same solution as the optimal.

3 7
0

1

2

3

4

5

6

7

8

9

10

Average degree

N
um

be
r

of
 s

in
ks

 n
ee

de
d

GRASP−MSP−MaxIter=1
GRASP−MSP−All−MaxIter=1
GRASP−MSP−MaxIter=10
GRASP−MSP−All−MaxIter=10
Optimal Solution

Figure 84: Number of sinks needed for GRASP-MSP and the optimal solution versus
average degree

At this stage, finding the optimal solution is sufficient for the multiple sink place-

ment problem. Nevertheless, the GRASP-MSP performance gives us confidence to

use the same local search technique for the more complex multiple sink and relay

placement problem, where a linear optimal solution is not available.

214

7.4 Multiple Sink and Relay Placement (MSRP)

5

5

3

3

5

5

3

3

1

1

11

1

1

11

sensor node
candidate sink
candidate relay
selected sink
selected relay

(a) (b)

Figure 85: Illustration of the MSRP problem. (a) A WSN with four candidate sinks
and four candidate relays, and (b) the double-covered and noncritical WSN where

lmax =3.

For the sink and relay placement, vertices are partitioned into a set of sensors T ,

relays R and sinks S. In the graph representation, V = T ∪R∪S. We identify a

sensor as critical if and only if upon its removal, more sensors will have no path

of length ≤ lmax to a sink. Otherwise, it is non-critical. We define a WSN as

non-critical if each sensor v ∈ T is non-critical. In the multiple sink and relay

placement problem, given a graph G=(T∪AR∪AS, E), where AR and AS are sets of

candidate locations for relays and sinks, respectively, we find minimum cost subsets

R⊆AR and S⊆AS such that H = (T ∪R∪S,E↓T∪R∪S) is double-covered and non-

critical. The relay and sink candidate locations are associated with a non-negative

cost function c : AR∪AS → R. We assume that a relay is cheaper than a sink

because sinks usually are assumed to be powered, have more memory, processing

and WiFi/ethernet backhaul.

The multiple sink and relay placement problem is illustrated in Figure 85. Fig-

ure 85(a) shows a WSN with four candidate sinks and four candidate relays. The

numbers in the figure represent the costs. In this example, if we choose the two

5-unit sinks, we only need to deploy the relay at the bottom-left corner to make

the network double-covered and non-critical. The total cost is 11 units. However, if

we choose the two 3-unit sinks as shown in Figure 85(b), we need three additional

215

relays. The total cost of this deployment is the lowest, i.e. 9 units.

In this section, we present Greedy-MSRP and GRASP-MSRP to solve the multiple

sink and relay placement problem. Both algorithms use the concept of Length-

constrained Connectivity and Rerouting Centrality (l-CRC) from Chapter 6 to

identify critical sensors. A sensor is critical if its centrality index is above a given

threshold. We can raise the threshold to trade-off the deployment cost against the

robustness of the network. However, in this chapter, we only assume zero threshold

for full reliability. After the identification of critical sensors, some candidate relays

are selected to be deployed. We identify relays that need to be deployed by finding

the shortest path from each descendant of each critical sensor to a sink bypassing

each critical sensor.

We will firstly present Greedy-MSRP. Greedy-MSRP uses Greedy-MSP to deploy

a minimum number of sinks and GRASP-MRP to deploy a minimum number of

relays. Before presenting Greedy-MSRP, we will look at GRASP-MRP, which is

a modification of GRASP-ABP from Chapter 6 to tackle both double-covered and

non-critical requirements.

7.4.1 Greedy Randomised Adaptive Search Procedure for

Multiple Relay Placement (GRASP-MRP)

GRASP-ABP in Chapter 6 only deploys relays to create non-critical networks. As

we consider both double-covered and non-critical requirements in this chapter, we

present GRASP-MRP for multiple relay placement.

Construction Phase

In the construction phase, we find R⊆AR, an initial set of relays from the candidate

relays, to minimise the number of uncovered and critical sensors. Initially R is an

empty set. Given sets of sensors T and sinks S, we firstly find and store the

216

length of the shortest path of each sensor to the sinks in DistanceH table, where

H=(T∪R∪S,E↓T∪R∪S). If a sensor v∈T is uncovered, we try to place some relays

to construct a path to a sink w∈S if DistanceH(v, w)>lmax but the pre-computed

DistanceG(v, w)≤ lmax. We choose the relays that appear on the shortest path from

v to w by tracing the path in ParentG(v, w). If a sensor needs two paths to make

it double-covered, this step is repeated twice. After some relays are selected from

the candidate relays, we have the set of relays R that minimises the number of

uncovered sensors. We then rebuild H = (T ∪R∪S,E↓T∪R∪S) and check if critical

sensors exist using centrality calculation. If a sensor v ∈ T is critical, we deploy

relays that appear on the shortest path from each descendant of v to a sink w∈S

bypassing v, as long as the shortest path length is ≤ lmax. The randomisation of

the initial solution is obtained by randomly selecting parents in the shortest paths

if there are hop count ties.

Node-based Local Search

Let R be the set of relays. The local search’s move tries to add a new relay r∈AR\R

into R that can eliminate as many existing relays from R as possible. This move

must always ensure that the network is double-covered and non-critical.

Algorithm Description

Algorithm 14 shows the pseudocode for GRASP-MRP. It takes as input the original

graph G= (T ∪AR∪AS, E), the set T of sensors, the set S of sinks, the set AR of

candidate relays, the maximum acceptable path length lmax, and the number of

iterations (max iterations). In each iteration, the construction phase to find the

initial set of relays R to minimise the number of uncovered and critical sensors is

executed in line 3. The local search starts with the initialisation of the best set

and the best number of relays in line 6. The loop from line 7 to 20 searches for the

best move to find a new relay r∈AR\R that can eliminate as many existing relays

217

Algorithm 14: GRASP-MRP
Input : G,T, S,AR, lmax,max iterations
Output: R∗

1: best value←∞
2: for i←1 to max iterations do

/* Construction phase */
3: Find initial R
4: do
5: solution updated← false

/* Local search phase */
6: best set←R, best number←|R|
7: for all r∈AR\R do
8: Z←∅
9: for all t∈R do

10: Z←Z∪{t}, H←(T∪R∪{r}\Z∪S,E↓T∪R∪{r}\Z∪S)
11: Calculate DistanceH
12: Calculate num uncovered and num critical in H using DistanceH and lmax

13: if num uncovered >0 or num critical >0 then
14: Z←Z\{t}
15: end if
16: end for
17: if |R|−|Z|+1< best number then
18: best set←R∪{r}\Z, best number←|R|−|Z|+1
19: end if
20: end for
21: if best number < |R| then
22: R← best set
23: solution updated← true
24: end if
25: while solution updated

/* Best solution update */
26: if |R|< best value then
27: R∗←R, best value←|R|
28: end if
29: end for
30: return R∗

218

from R as possible. The loop from line 9 to 16 finds the set Z⊆R of existing relays

that are safe to be removed after the insertion of r. The relays in Z are safe to be

removed if all sensor in H = (T ∪R∪{r}\Z∪S,E↓T∪R∪{r}\Z∪S) are double-covered

and non-critical. We check in line 17 if the new solution has fewer relays than the

current best solution. If the number of relays can be reduced, the best set and the

best number of relays are updated in line 18. When all local search moves have

been evaluated, we check if an improving solution has been found in line 21. If the

moves produce a better solution, the set of relays R is updated in line 22. Then, the

local search continues. If, at the end of the local search, we find a better solution

compared to the best solution found so far, we update in line 27 the set of relays

and the least number of relays used. Finally, the best relay set R∗ is returned in

line 30.

7.4.2 Greedy Algorithm for Multiple Sink and Relay Place-

ment (Greedy-MSRP)

After describing GRASP-MRP, we are now ready to present Greedy-MSRP for the

multiple sink and relay placement problem. Greedy-MSRP uses Greedy-MSP to

select a minimum number of sinks to make a network double-covered and GRASP-

MRP to deploy a minimum number of relays to make the network non-critical.

Since the cost of a sink is assumed to be more expensive than the cost of a relay,

Greedy-MSRP tries to reduce the total deployment cost by trading some sinks with

relays. The deployed sinks are removed one by one and more relays are added in the

network. However, this swap must ensure that the network is always double-covered

and non-critical.

The Greedy-MSRP pseudocode is given in Algorithm 15. It takes as input the

original graphG=(T∪AR∪AS, E), the set T of sensors, the set AR of candidate relays,

the set AS of candidate sinks, the cost function c, the pre-computed DistanceG

table, the maximum acceptable path length lmax, and the number of iterations

219

Algorithm 15: Greedy-MSRP
Input : G,T,AR, AS, c,DistanceG, lmax,max iterations
Output: R∗, S∗

1: best cost←∞
2: S←Greedy-MSP(G,T,AS, c, DistanceG, lmax)
3: num sink←|S|
4: for n←num sink downto 2 do
5: H←(T∪AR∪S,E↓T∪AR∪S)
6: Calculate num uncovered and num critical in H using DistanceG and lmax

7: if num uncovered =0 and num critical =0 then
8: R←GRASP-MRP(G,T, S,AR, lmax, max iterations)
9: if

∑
v∈R∪S cv< best cost then

10: R∗←R, S∗←S, best cost←
∑

v∈R∪S cv
11: end if
12: end if
13: S←S\ {Sinkn}
14: end for
15: return R∗, S∗

(max iterations) for GRASP-MRP. The best cost is initialised in line 1 and Greedy-

MSP is called in line 2 to find the set of sinks S. Greedy-MSRP iterates from line

4 to 14 to deploy relays. In the first iteration, all sinks in S are placed. Then,

the sinks are gradually removed, starting from the last one inserted into S. We

check the solution in line 7 if all sensors are double-covered and non-critical in

H = (T ∪AR∪S,E↓T∪AR∪S). If this is the case, GRASP-MRP is called in line 8 to

find the set of relays R. If the new total cost of sinks and relays is less than the

best cost found so far, the best set of relays R∗, the best set of sinks S∗ and the

best cost are updated in line 10. R∗ and S∗ are returned in line 15.

7.4.3 Greedy Randomised Adaptive Search Procedure for

Multiple Sink and Relay Placement (GRASP-MSRP)

We now present GRASP-MSRP to solve the multiple sink and relay placement

problem. Unlike Greedy-MSRP that deploys relays after finding the minimal set of

sinks, GRASP-MSRP finds the least deployment cost by placing sinks and relays

at the same time. We give the detailed algorithm below.

220

Construction Phase

In the construction phase, we find R⊆AR and S⊆AS as our initial sets of relays

and sinks, respectively. Initially R and S are empty sets. We then alternate the

sink and relay addition during this process. We deploy some sinks to minimise the

number of uncovered sensors and then some relays to minimise the number of both

uncovered and critical sensors. Note that we do not add more sinks if at some

points the network is already double-covered. After the addition of either sinks or

relays, H=(T∪R∪S,E↓T∪R∪S) is rebuilt. The process of sink and relay addition is

repeated until the network is double-covered and non-critical.

We need at least two sinks for a double-covered WSN, so we firstly choose two

sinks randomly from AS. We then deploy a bunch of relays from AR to minimise

the number of uncovered and critical sensors. If a sensor v ∈ T is uncovered, we

place some relays to construct a path to a sink w ∈ S if DistanceH(v, w) > lmax

but DistanceG(v, w)≤ lmax. We choose the relays that appear on the shortest path

from v to w by tracing the path in ParentG(v, w). If the sensor needs two paths to

make it double-covered, we repeat this step twice. If a sensor v ∈T is critical, we

deploy relays that appear on the shortest path from each descendant of v to a sink

w ∈ S bypassing v, as long as the shortest path length is ≤ lmax. After the relay

deployment, we place sinks again. In order to add the randomisation to the initial

solution, we randomly select parents in the shortest paths if there are hop count

ties.

Node-based Local Search

Let R be the set of relays and S be the set of sinks. We look for a lower cost solution

by adding either a new relay r∈AR\R into R or a new sink s∈AS\S into S that

can eliminate some existing relays from R and sinks from S to minimise the total

cost as possible. Given that the cost of a sink is higher than the cost of a relay, we

also try to minimise the total cost by adding some relays into R when we eliminate

221

an existing sink from S. The local search moves are performed to reduce the total

cost, but must ensure that the network is always double-covered and non-critical in

each iteration.

Algorithm Description

The GRASP-MSRP pseudocode is given in Algorithm 16. Generally, its concept

is similar to GRASP-MSP in Algorithm 13 with some key differences. The key

differences are the inclusion of candidate relays as one of its input, the identification

of critical sensors, the deployment of relays to minimise the number of uncovered

and critical sensors, and the repetitive computation of the shortest path from all

sensors to all sinks due to the addition and elimination of relays. The detailed

description of the pseudocode is given below.

GRASP-MSRP takes as input the original graph G = (T ∪AR∪AS, E), the set

T of sensors, the set AR of candidate relays, the set AS of candidate sinks, the

cost function c, the maximum acceptable path length lmax, and the number of

iterations (max iterations). In each iteration, the construction phase to find initial

sets of relays R and sinks S is executed in line 3. The local search starts with

the initialisation of the best set and the best cost in line 6. The loop from line

7 to 39 searches for the best move, i.e. finding either a new relay or a new sink

r ∈ AR∪AS\W that can eliminate as many existing relays and sinks from W as

possible, where W =R∪S. The loop from line 9 to 32 tries to find the set Z⊆W∪X

of existing relays and sinks that are safe to be removed after the insertion of Y . Y

is the set of new relays and sinks that are added during the iteration. X is the set

of new relays that are added to the network to reduce the total cost when a sink is

removed from the network.

The algorithm checks for uncovered sensors in line 13. If some exist, it tries to

deploy some relays in line 15. The identification of critical sensors is performed in

line 19. If some exist, relays are added in line 21. Note that we try to minimise

the total cost by adding some relays when we eliminate a sink. These relays are

222

Algorithm 16: GRASP-MSRP
Input : G,T,AR, AS, c, lmax,max iterations
Output: R∗, S∗

1: best value←∞
2: for i←1 to max iterations do

/* Construction phase */
3: Find initial R and S, W←R∪S
4: do
5: solution updated← false

/* Local search phase */
6: best set0←W , best cost←

∑
v∈W cv , best num set←1

7: for all r∈AR∪AS\W do
8: Y ←{r}, Z←∅, X←∅
9: for all t∈W∪X do

10: Z←Z∪{t}, X←∅
11: H←(T∪W∪Y \Z,E↓T∪W∪Y\Z)
12: Calculate DistanceH

13: Find uncovered set in H using DistanceH and lmax

14: if |uncovered set|>0 then
15: X←X∪{Find relays to minimise |uncovered set|}
16: end if
17: H←(T∪W∪X∪Y \Z,E↓T∪W∪X∪Y\Z)
18: Calculate DistanceH

19: Find critical set in H using DistanceH and lmax

20: if |critical set|>0 then
21: X←X∪{Find relays to minimise |critical set|}
22: end if
23: H←(T∪W∪X∪Y \Z,E↓T∪W∪X∪Y\Z)
24: Calculate DistanceH

25: Calculate num uncovered and num critical in H using DistanceH and lmax

26: if num uncovered =0 and num critical =0 then
27: Y ←Y ∪X, Z←Z\X
28: end if
29: if num uncovered >0 or num critical >0 then
30: Z←Z\{t}
31: end if
32: end for
33: if

∑
v∈W∪Y\Z cv< best cost then

34: best num set←0
35: end if
36: if

∑
v∈W∪Y\Z cv≤ best cost and W∪Y \Z /∈ best set then

37: best setbest num set←W∪Y \Z, best cost←
∑

v∈W∪Y\Z cv
best num set← best num set +1

38: end if
39: end for
40: if best cost <

∑
v∈W cv then

41: W← select a set randomly from best set
42: solution updated← true
43: end if
44: while solution updated

/* Best solution update */
45: if

∑
v∈W cv< best value then

46: R∗←∅, S∗←∅
47: for all v∈W do
48: if v∈AR then
49: R∗←R∗∪{v}
50: else
51: S∗←S∗∪{v}
52: end if
53: end for
54: best value←

∑
v∈W cv

55: end if
56: end for
57: return R∗, S∗

223

saved in X as shown in line 15 and 21, which later will be included in Y , the set of

new relays and sinks to be inserted, if X helps the network become double-covered

and non-critical. The network is checked if it is double-covered and non-critical in

line 25. Note that there are repetitive computation of the shortest path from all

sensors to all sinks in line 12, 18 and 24 due to the addition and elimination of

relays. The relays and sinks in Z are safe to be removed if without Z all sensors are

double-covered and non-critical. In line 33, we check if the new solution improves

the total cost of the current best solution. If the total cost is reduced, we reset the

set of the best set in line 34. If the total cost is the same, we keep this new solution

in the set of the best set as shown from line 36 to 38. When all moves have been

evaluated, we check in line 40 if an improving solution has been found. If the moves

produce a better solution, the set of relays and sinks W is updated in line 41 by

selecting one best set randomly from the set of the best set. After that, the local

search continues.

If, at the end of the local search, we find a better solution compared to the best

solution found so far, we update from line 46 to 54 the set of relays, the set of

sinks, and the lowest total cost found. The best sets R∗ of relays and S∗ of sinks

are returned in line 57.

7.5 Evaluation of Greedy-MSRP and GRASP-

MSRP

We evaluate the performance of Greedy-MSRP and GRASP-MSRP using the fol-

lowing metrics:

1. Total sink and relay cost . We want to compare the total deployment

cost that resulted from each algorithm, which includes the cost of sinks and

the cost of relays. We expect that GRASP-MSRP has the lowest total cost

compared to other algorithms.

224

2. Number of devices, which is divided into number of sinks and number of

relays. We present this metric as we cannot infer how many sinks and relays

are deployed from the total cost metric. We expect to see that when the sink

cost increases, the number of sinks decreases. This happens because some

sinks are traded for relays to reduce the deployment cost.

3. Runtime . We also evaluate the efficiency of the algorithms by comparing

the algorithms’ runtime.

We follow the same simulation setting as for the evaluation of the multiple sink

placement problem in Section 7.3, where each network consists of 100 sensor nodes

in grid squares of 8m× 8m and 25 candidate sinks in grid squares of 18m× 18m.

In addition, we also have 81 candidate relays distributed evenly in grid squares of

10m× 10m.

We compare Greedy-MSRP and GRASP-MSRP against Minimise the Number of

Sinks and Relays for Fault-Tolerance (MSRFT) and Cluster-Based Sampling for

Multiple Sink and Relay Placement (CBS-MSRP). The pseudocode for these two

algorithms are given in Appendix D.2. MSRFT and CBS-MSRP extend MSFT

and CBS-MSP, respectively, to find the best locations to deploy sinks and GRASP-

MRP to deploy relays. These two algorithms start by finding the best locations for

two sinks before utilising GRASP-MRP to deploy relays. The number of sinks is

gradually increased and GRASP-MRP is used to deploy relays until the network

becomes double-covered and non-critical. In the simulation, we only use 100 as the

maximum iteration (MaxIter) for MSRFT and CBS-MSRP.

We evaluate the total deployment cost of the algorithms by varying the sink costs

(cS), i.e. 3, 6, randomly between 3 and 6, and 10 units, while the relay cost is fixed

at 1 unit. The total sink and relay cost suggested by each algorithm with lmax = 6

is presented in Figure 86 and the runtime is in Table 20. We also show the total

numbers of sinks and relays for each algorithm from Figure 87 to Figure 91.

225

3 6 3 to 6 10
0

20

40

60

80

100

120

Sink cost

T
ot

al
 s

in
k

an
d

re
la

y
co

st

MSRFT−MaxIter=100
CBS−MSRP−MaxIter=100
Greedy−MSRP
GRASP−MSRP−MaxIter=1
GRASP−MSRP−MaxIter=10

Figure 86: Total sink and relay cost for multiple sink and relay placement algorithms
versus sink cost

Table 20: Multiple sink and relay placement algorithms’ runtime with different sink
cost

Algorithms
Runtime (sec)

cS =3 cS =6 cS =3 to 6 cS =10
MSRFT-MaxIter=100 61.9235 60.3157 60.1228 59.2399
CBS-MSRP-MaxIter=100 61.2929 64.0727 62.0789 61.9352
Greedy-MSRP 153.7541 146.8796 130.1220 141.8679
GRASP-MSRP-MaxIter=1 20.4173 22.693 23.2985 21.0586
GRASP-MSRP-MaxIter=10 196.5039 216.4508 251.2635 228.3422

226

The results in Figure 86 show that GRASP-MSRP has the lowest total deployment

cost compared to other algorithms. This is because GRASP-MSRP has the fewest

sinks if we compare the number of deployed sinks from Figure 87 to Figure 91. The

simulation also shows that we are able to trade-off GRASP-MSRP’s runtime for a

reduced cost when we increase the number of iterations from 1 to 10.

Greedy-MSRP is outperformed by the two k-means clustering-based algorithms,

MSRFT and CBS-MSRP. Firstly in terms of the total deployment cost, Greedy-

MSRP deploys more sinks than MSRFT and CBS-MSRP as shown from Figure 89

to Figure 91. Secondly for the runtime, Greedy-MSRP is slower because it tries

to find the lowest cost solution by solving the multiple sink and relay placement

problem from the number of sink = 2 to n, where n is the number of sinks found by

Greedy-MSP. On the other hand, MSRFT and CBS-MSRP start from the number

of sink = 2 and stop when the network is double-covered and non-critical.

3 6 3 to 6 10
0

2

4

6

8

10

12

14

16

Sink cost

N
um

be
r

of
 d

ev
ic

es

Sink
Relay

Figure 87: Total numbers of sinks and relays for GRASP-MSRP with MaxIter = 1
versus sink cost

227

3 6 3 to 6 10
0

2

4

6

8

10

12

14

16

Sink cost

N
um

be
r

of
 d

ev
ic

es

Sink
Relay

Figure 88: Total numbers of sinks and relays for GRASP-MSRP with MaxIter =10
versus sink cost

3 6 3 to 6 10
0

2

4

6

8

10

12

14

16

Sink cost

N
um

be
r

of
 d

ev
ic

es

Sink
Relay

Figure 89: Total numbers of sinks and relays for Greedy-MSRP versus sink cost

228

3 6 3 to 6 10
0

2

4

6

8

10

12

14

16

Sink cost

N
um

be
r

of
 d

ev
ic

es

Sink
Relay

Figure 90: Total numbers of sinks and relays for MSRFT versus sink cost

3 6 3 to 6 10
0

2

4

6

8

10

12

14

16

Sink cost

N
um

be
r

of
 d

ev
ic

es

Sink
Relay

Figure 91: Total numbers of sinks and relays for CBS-MSRP versus sink cost

229

GRASP-MSRP can swap sinks with relays to reduce the total deployment cost.

Therefore, when the sink cost increases, the number of sinks decreases because

more sinks are exchanged with relays as shown in Figure 87 and Figure 88. This

phenomenon can also be observed in Greedy-MSRP, MSRFT and CBS-MSRP as

depicted in Figure 89, Figure 90 and Figure 91, respectively. While the reduction

in the number of sinks for Greedy-MSRP is very small when the sinks become more

expensive, it is hardly noticeable for MSRFT and CBS-MSRP.

Since GRASP-MSRP gives the best solution for the multiple sink and relay place-

ment problem, we further investigate its performance under various simulation set-

tings by using MaxIter = 10. Firstly, we increase lmax from 6 to 10, while keeping

the sink cost fixed at 3 units. The results are depicted in Figure 92. When lmax

is increased from 6 to 10, the number of required sinks drops significantly from

6.65 to 2.55, while the number of relays does not increase much. The runtime of

GRASP-MSRP also increases from 196.5039 seconds to 348.6041 seconds.

6 10
0

1

2

3

4

5

6

7

8

Maximum path length (hop)

N
um

be
r

of
 d

ev
ic

es

Sink
Relay

Figure 92: Total numbers of sinks and relays for GRASP-MSRP versus maximum
path length

230

We then try to increase the number of candidate relays from 81, which are evenly

distributed in grid squares of 10m× 10m, to 196 candidate relays in grid squares

of 6m × 6m. We use a fixed sink cost of 3 units and lmax = 6. As shown in

Figure 93, when we have more candidate relays, the numbers of deployed sinks and

relays slightly decrease because the local search is more likely to find common relays

that appear on the shortest paths. The runtime of GRASP-MSRP increases from

196.5039 seconds for 81 candidate relays to 1001.1524 seconds for 196 candidates.

81 196
0

1

2

3

4

5

6

7

8

Number of candidate relays

N
um

be
r

of
 d

ev
ic

es

Sink
Relay

Figure 93: Total numbers of sinks and relays for GRASP-MSRP versus number of
candidate relays

We also increase the number of candidate sinks from 25 in grid squares of 18m×

18m to 81 candidates in grid squares of 10m × 10m. The simulation results are

presented in Figure 94. When the number of candidate sinks increases, the local

search can find better sink positions to cover a network. Therefore, the network

requires fewer sinks. Since the sinks are better positioned, it also needs fewer relays.

The runtime of GRASP-MSRP increases from 196.5039 seconds for 25 candidate

sinks to 826.5791 seconds for 81 candidates.

231

25 81
0

1

2

3

4

5

6

7

8

Number of candidate sinks

N
um

be
r

of
 d

ev
ic

es

Sink
Relay

Figure 94: Total numbers of sinks and relays for GRASP-MSRP versus number of
candidate sinks

3 7
0

1

2

3

4

5

6

7

8

Average degree

N
um

be
r

of
 d

ev
ic

es

Sink
Relay

Figure 95: Total numbers of sinks and relays for GRASP-MSRP versus average
degree

232

Finally, we evaluate the performance of GRASP-MSRP when the number of sensor

nodes increases. In the first case, we increase the number of sensor nodes from 100

to 200 while keeping the area fixed. This affects the density of the network, where

the average degree of a sensor node increases from 3 to 7. For this simulation,

we use 25 candidate sinks and 81 candidate relays. When the network becomes

denser, the numbers of required sinks and relays decrease as depicted in Figure 95.

This happens because when the network density increases, path lengths from a

sensor node to sinks become shorter and a sensor node has more neighbours that

help finding alternate routes to sinks when it fails. However, GRASP-MSRP takes

longer time to compute the solution, i.e. from 196.5039 seconds to 319.2039 seconds

when the average degree increases.

100 300
0

2

4

6

8

10

12

14

16

18

20

Number of nodes

N
um

be
r

of
 d

ev
ic

es

Sink
Relay

Figure 96: Total numbers of sinks and relays for GRASP-MSRP versus number of
nodes

In the second case, we increase the number of sensor nodes from 100 to 300 while

keeping the average degree fixed, so we enlarge the area. As a result, we need more

candidate sinks and relays. In this simulation, we use 81 candidate sinks and 225

candidate relays for 300 sensor nodes. When the network area becomes bigger, more

233

sinks and relays are required to be deployed as shown in Figure 96. The runtime

of GRASP-MSRP increases from 196.5039 seconds to 19,648.8984 seconds in this

simulation.

7.6 Conclusion

We define the problem of increasing network robustness by protecting it against one

single failure, of either a sink or a sensor node. We design a network to be double-

covered and non-critical. Double-covered means each sensor node must have at least

two length-bounded paths to two sinks. Non-critical means all sensor nodes must

have length-bounded paths to sinks when an arbitrary sensor node fails. Our novel

contributions are solutions to minimise the deployment cost of sinks and relays.

We firstly look at the multiple sink placement problem and propose Greedy-MSP

and GRASP-MSP to minimise the total sink cost. Both algorithms solve the

multiple sink placement problem by ensuring that each sensor node in the net-

work is double-covered. Empirically, Greedy-MSP has the shortest runtime, but

GRASP-MSP achieves comparable cost to the optimal solution with shorter run-

time. GRASP-MSP’s simulation results justify the use of local search to solve the

multiple sink and relay placement problem, where a linear optimal solution is not

available.

We then propose Greedy-MSRP and GRASP-MSRP to solve the multiple sink and

relay placement problem, where we want the designed topologies to be double-

covered and non-critical. Our simulation results show that the k-means clustering-

based algorithms outperform Greedy-MSRP in terms of lower cost solution and

shorter runtime because they have better sink positions. On the other hand,

GRASP-MSRP outperforms the other algorithms with the lowest cost solutions

and the shortest runtime. The GRASP-MSRP results also show that more sinks

are exchanged with relays when the sink cost increases to reduce the total deploy-

ment cost.

234

In this chapter, if both the number of uncovered nodes and the number of critical

nodes in a network are zero, we guarantee robustness against single failure. However,

we expect to have benefit for multiple failures, which will be discussed in Chapter 8.

235

236

Chapter 8

Evaluation of Network

Performance

8.1 Introduction

In this chapter, we evaluate the network performance for each designed Wireless

Sensor Network (WSN) topology. Firstly, we want to show that networks with

additional relays are more robust to failures than the original topologies. We also

want to compare the performance of topologies that have more relays to topologies

that have fewer relays. Secondly, we want to evaluate the robustness and scalability

of topologies that have multiple sinks, which are expected to tolerate more node

failures.

We have presented algorithms to deploy additional relays, namely GRASP-ARP in

Chapter 5 and GRASP-ABP in Chapter 6, as well as to deploy sinks and relays, that

is GRASP-MSRP in Chapter 7. The objective of these algorithms is to minimise

the deployment cost of a WSN with faster runtime. However, having minimal

cost with faster runtime does not necessarily mean we have a robust solution. In

this chapter, we simulate the resulting networks from those algorithms in ns-2 [2],

killing some nodes, and measuring the performance of the designed topologies under

237

network operations. Ns-2 is a discrete-event network simulator widely used for WSN

and other network simulations. We simulate multi-hop data gathering using our

proposed ER-MAC from Chapter 4 with its forward-to-parent routing mechanism.

8.2 Preliminary Discussions and Details of Sim-

ulation

In this chapter, we use the following metrics to evaluate the network performance

in ns-2 simulations:

1. Packet delivery ratio measures the number of packets successfully received

by the sink over the number of packets generated by source nodes. Since

the networks with relays are expected to have higher connectivity than the

original topologies when some nodes fail, the sink is also expected to receive

more packets from the source nodes.

2. Average per packet latency measures the average per packet transmission

time through a multi-hop network. The latency for networks with relays

should be shorter than the original topologies because relays help sensor nodes

forward traffic and may shorten the routing paths for some sensor nodes.

When some nodes fails, relays provide alternate routes to the sink. However,

due to the time needed to find new routes, packets are buffered and the latency

is expected to increase.

3. Connectivity measures the percentage of alive sensor nodes that are still

connected to the sink through multi-hop communication. As sensor nodes

or relay nodes fail, we expect that the networks with relays will have higher

connectivity when compared with the original networks.

238

8.2.1 Preliminary Discussions

We evaluate networks with one sink in Section 8.3. For the single sink scenario, we

compare the performance of the original topologies to the topologies with additional

relay nodes, where we use the resulting topologies from GRASP-ARP and GRASP-

ABP. When several nodes fail, either sensor nodes or relay nodes, the GRASP-

ARP and GRASP-ABP topologies with additional relays show improvements over

the original topologies. Specifically, the GRASP-ARP topologies achieve the best

results as they have more relays that guarantee 2-connectivity to the sink compared

to GRASP-ABP. With the GRASP-ARP topologies, the number of sensor nodes

that are still connected to the networks after some failures increases by more than

30%, while the number of packets delivered increases by up to 35% compared to

the original topologies. With the GRASP-ABP topologies, the improvements are

around 25% for connectivity and 30% for delivery ratio. Furthermore, to show that

the improvements of the network performance is not specific to ER-MAC, we also

evaluate the network performance using Z-MAC [97]. For Z-MAC, we use Shortest

Path Tree Routing as the routing protocol. In the simulation, Z-MAC also shows

improvements for topologies with relays compared to the original topologies. It

achieves up to 20% higher connectivity and 10% higher delivery ratio.

The performance evaluation of networks with multiple sinks is discussed in Sec-

tion 8.4. In the first set of simulations, we evaluate networks with four sinks de-

ployed at the four corners of the networks. We compare the original topologies to

the topologies with additional relays that resulted from GRASP-ARP and GRASP-

ABP. When the networks have multiple sinks, the topologies of GRASP-ARP and

GRASP-ABP show comparable performance and outperform the original topolo-

gies by around 20% for both connectivity and delivery ratio. In the second simu-

lation set, we compare the GRASP-ABP topologies, given that they have similar

results to GRASP-ARP in the four corner sink scenario, to the topologies that re-

sulted from GRASP-MSRP with variable numbers of sinks. The topologies of both

GRASP-ABP and GRASP-MSRP have additional relays. While the GRASP-ABP

239

topologies have four sinks fixed at the four corners of the networks, GRASP-MSRP

deploys sinks at the best locations. In the simulation, the GRASP-MSRP topolo-

gies with three sinks achieve around 5% improvement in connectivity and delivery

ratio compared to the GRASP-ABP topologies with four sinks after several failures.

This confirms the importance of not only having multiple sinks in the networks, but

also placing them at the best positions.

8.2.2 Details of Simulation

We take the resulting topologies generated in the previous chapters and deploy,

in simulation, sensor nodes, relay nodes and sinks according to the deployment

plans. The topologies are evaluated in ns-2 using the proposed ER-MAC from

Chapter 4 with its forward-to-parent routing mechanism. Because our purpose

in this simulation is to evaluate the designed topologies, not the communication

protocol, we assume the no-fire situation only. The simulation results that compared

the no-fire and in-fire situations were presented in Chapter 4. Recall that in the

no-fire situation, nodes can only send packets in their own transmit slots.

The simulation results presented are based on the average of five topologies that

are simulated five times each. Note that we do not show error bars in line graphs to

improve their readability. In each experiment, we simulate a data gathering, where

all sensor nodes are the source nodes that generate packets with a fixed interval.

They also forward other nodes’ packets toward the sink. As ER-MAC supports

packet prioritisation, we force source nodes to generate one high priority packet

and one low priority packet at the same time every 20 seconds. Therefore, the

traffic load is 0.1 packets/node/sec. Relay nodes do not generate packets, but only

forward them, and are used from the start of the simulation. Our works assume

point-based failures, where the failed devices are scattered in the network. We do

not assume that relay nodes are more robust than sensor nodes, so they too may

fail during the simulation period. In the simulation, we increase the number of dead

nodes gradually by killing one node, either a sensor or a relay, in each time step.

240

Since a common node problem is node death due to energy depletion, which is

either caused by normal battery discharge, short circuits or leakage due to broken

packaging [18], we consider the probability of node death in our simulation to be

proportional to the work done. That is, instead of selecting dead nodes randomly,

we bias the node death towards the nodes that have done most work. Firstly, we

list all alive nodes (sensors and relays) in increasing order of energy consumption,

count the total energy used, and calculate a weight for each node by using the ratio

of own-energy to the total-energy. We then use these weights to generate an array

of numbers between 0 and 1 representing bins of different size. The weight of a

bin that associates with node a is the total weight of all nodes whose weight ≤ a’s

weight, including a. To select a node to be killed, we generate a random number

between 0 and 1, and select the first bin whose weight is larger than the generated

number. Doing it this way means, for example, if node a has 3 times the energy

consumption of node b, the bin size for node a is always 3 times the bin size for

node b, and so is always 3 times as likely to be killed. That allows us to justify our

approach by saying the probability of node death is proportional to the work done.

With this model, it is likely that nodes closer to the sink are the first to die because

they have much higher relay loads and drain the batteries quickly. In a low density

WSN, the network may get disconnected from the sink if the number of dead nodes

increases. However, it is expected that a network partition is a lot less likely to

occur in a topology with relays compared to the original one.

8.3 Evaluation of Network Topologies with Mul-

tiple Sources and One Sink

In this section, we compare the original topologies, i.e. topologies with no relays,

to the topologies with relays generated by GRASP-ARP and GRASP-ABP. Firstly,

we want to show that networks with relays are more robust to failures than the

241

networks without relays. Secondly, we want to show that the topologies generated

by GRASP-ABP have comparable performance to the topologies that resulted from

GRASP-ARP, which have more relay nodes. We use the original topologies, which

are 100-node networks (average degree 3.2) and their resulting topologies gener-

ated by GRASP-ARP with the dynamic programming variant of Counting-Paths

for 2-connectivity, GRASP-ABP with Connectivity Threshold (CT) and Rerouting

Threshold (RT) equal to 0%, and GRASP-ABP with both thresholds equal to 2%.

Therefore, the topologies with relays can only guarantee robustness against one

failure and are expected to lose performance when the number of failures increases.

In all topologies, the sink is located at the top-left corner of the networks. In each

experiment, we simulate a data gathering for 6,000 seconds and kill one node every

1,000 seconds, either a sensor node or a relay node, start from the 1, 000th second.

We gather statistical data every 1,000 seconds and plot the results. Therefore, the

statistics after one node dies are plotted at the 2, 000th second.

8.3.1 Experiments Using ER-MAC

Figure 97 shows the linear drop of high priority packets’ delivery ratio in all topolo-

gies when the number of failed nodes increases. Even if the schedules have been

readapted between node killings, a network with ER-MAC continues to lose pack-

ets because of three reasons: the dead node is not recognised instantly, packets

are dropped when nodes wait to readapt new schedules, and no alternate routes

found. In ER-MAC, data packets are transmitted in contention-free slots, so they

are not acknowledged. When a node dies, its direct children keep sending packets

to it in their transmit slots. They are not aware that the parent node is dead un-

til several data gathering cycles because they do not receive any synchronisation

messages from it. The dead node’s direct children also have to buffer packets from

their descendants while waiting to readapt new schedules. They drop packets when

their queues are overload. Packets are also counted as lost if sensor nodes keep

generating packets but no alternate routes are found after their parent dies.

242

Figure 97 also shows the delivery ratio improvement for networks with relays over

the original networks. Bear in mind that the topologies are designed to tolerate one

failure only. The GRASP-ARP topologies achieve the highest performance because

the networks not only have more relays but also guarantee 2-connectivity to the

sink. The results shown at the 2, 000th second are the statistics after one node

dies and GRASP-ARP already achieves around 15% improvement over the original

topologies. The largest gap is achieved when four nodes die at the 5, 000th second,

which is up to 35%. GRASP-ABP with 0% threshold deploys fewer relays than

GRASP-ARP, so its delivery ratio is slightly lower than GRASP-ARP’s, but the

gap is not more than 10%. Even though GRASP-ABP with 2% threshold deploys

the fewest relays and offers the lowest delivery ratio compared to GRASP-ARP

and GRASP-ABP with 0% threshold, it still outperforms the original networks by

around 7% to 17%. If no additional nodes die, the delivery ratios are not expected

to improve much because if a network is partitioned, the disconnected part still

generates packets that will never be delivered to the sink. If nodes continue to fail,

the observed trends continue, where the networks with relays have better delivery

ratio compared to the original topologies. However, when the sink is disconnected,

the delivery ratios saturate.

The simulation results for the low priority packets’ delivery ratio are presented in

Figure 98. ER-MAC is designed to prioritise high priority packets. Therefore, the

overall delivery ratio of low priority packets is not as high as the high priority ones

as expected, but it still shows an improvement for networks with relays. The figure

shows comparable results for the topologies of GRASP-ARP and GRASP-ABP

with 0% threshold, followed by GRASP-ABP with 2% threshold and the original

topologies.

The average per packet latency for high and low priority packets are depicted in

Figure 99 and Figure 100, respectively. Firstly, we will explain why the initial

latency of high priority packets in Figure 99 is around 20 seconds when there are no

failed nodes. Recall that we simulate the normal mode of ER-MAC for the no-fire

243

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation time (sec)

D
el

iv
er

y
ra

tio
 o

f h
ig

h
pr

io
rit

y
pa

ck
et

s

Original Topo.
GRASP−ARP Topo.
GRASP−ABP (CT=0%, RT=0%) Topo.
GRASP−ABP (CT=2%, RT=2%) Topo.

Figure 97: Delivery ratio of high priority packets for multiple sources – single sink
with ER-MAC where a node dies every 1,000 seconds

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation time (sec)

D
el

iv
er

y
ra

tio
 o

f l
ow

 p
rio

rit
y

pa
ck

et
s

Original Topo.
GRASP−ARP Topo.
GRASP−ABP (CT=0%, RT=0%) Topo.
GRASP−ABP (CT=2%, RT=2%) Topo.

Figure 98: Delivery ratio of low priority packets for multiple sources – single sink
with ER-MAC where a node dies every 1,000 seconds

244

situation, where the communication is delay-tolerant. In the normal mode, nodes

sleep most of the time and each node can only send one of its packets in one data

gathering cycle. Since the network has one sink, there is only one routing tree and

the duration of one data gathering cycle in a 100-node network in this simulation

is more than 15 seconds. This duration dominates the latency and is equivalent to

the number of collision-free slots in one TDMA frame times the slot size.

The simulation results also show that the latency of low priority packets in Fig-

ure 100 is higher than the latency of high priority packets in Figure 99. This

happens due to the queuing delay of the low priority packets when ER-MAC priori-

tises the high priority ones. The latency increases when nodes die because ER-MAC

buffers packets when the routing tree is reconfigured and the TDMA schedules are

rebuilt. The latency drop in the original topologies corresponds to the low deliv-

ery ratio, because only nodes closer to the sink can deliver their packets when the

networks become disconnected.

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

Simulation time (sec)

A
vg

. p
er

 p
ac

ke
t l

at
en

cy
 o

f h
ig

h
pr

io
rit

y
pa

ck
et

s
(s

ec
)

Original Topo.
GRASP−ARP Topo.
GRASP−ABP (CT=0%, RT=0%) Topo.
GRASP−ABP (CT=2%, RT=2%) Topo.

Figure 99: Latency of high priority packets for multiple sources – single sink with
ER-MAC where a node dies every 1,000 seconds

245

0 1000 2000 3000 4000 5000 6000
0

200

400

600

800

1000

1200

Simulation time (sec)

A
vg

. p
er

 p
ac

ke
t l

at
en

cy
 o

f l
ow

 p
rio

rit
y

pa
ck

et
s

(s
ec

) Original Topo.
GRASP−ARP Topo.
GRASP−ABP (CT=0%, RT=0%) Topo.
GRASP−ABP (CT=2%, RT=2%) Topo.

Figure 100: Latency of low priority packets for multiple sources – single sink with
ER-MAC where a node dies every 1,000 seconds

Connectivity calculates the percentage of alive sensor nodes that are still connected

to the sink. A sensor node is counted as connected if at least one of its generated

packets is received by the sink. As depicted in Figure 101, the connectivity perfor-

mance follows similar trends as the delivery ratio in Figure 97, because a sensor node

is counted as connected if one of its packets is received by the sink. The GRASP-

ARP topologies achieve around 32% improvement in connectivity over the original

topologies after five nodes fail, followed by GRASP-ABP with 27% improvement

for the 0% threshold and 10% improvement for the 2% threshold. At this stage, we

have shown the trade-off between the number of additional relay nodes and the net-

work performance for the single sink scenario using our proposed ER-MAC protocol.

We show that the networks with relays have better performance than the original

networks. When a network has more relays, it is more robust to failures. The

GRASP-ARP topologies have the best performance because they have more relays

that guarantee 2-connectivity to the sink compared to the GRASP-ABP topologies,

246

but GRASP-ABP generates topologies faster than GRASP-ARP and requires fewer

relays.

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

100

Simulation time (sec)

C
on

ne
ct

iv
ity

 (
%

)

Original Topo.
GRASP−ARP Topo.
GRASP−ABP (CT=0%, RT=0%) Topo.
GRASP−ABP (CT=2%, RT=2%) Topo.

Figure 101: Connectivity for multiple sources – single sink with ER-MAC where a
node dies every 1,000 seconds

8.3.2 Experiments Using Z-MAC

To show that the network performance is not specific to ER-MAC, we also simulate

the data gathering application using Z-MAC [97]. In this simulation, Z-MAC can

adaptively switch between Low Contention Level (LCL) and High Contention Level

(HCL) based on packet loses due to hidden terminals. In LCL mode, nodes can

contend in any time slots. However, in HCL mode, only the owner of the slot and

one-hop neighbours of the owner of the slot can contend for the slot. Since there is

no packet prioritisation in the Z-MAC design, we do not distinguish between high

and low priority packets. For each sensor node, we generate two packets every 20

seconds to keep the same traffic load as the simulation with ER-MAC, which is 0.1

packets/node/sec.

247

For simulations with Z-MAC, we use Shortest Path Tree Routing (STR) as the

routing protocol. STR is similar to the routing protocol from Collection Tree Pro-

tocol (CTP) [47], which has two routing mechanisms, i.e. data path validation and

adaptive beaconing, with neighbour discovery ability after a node’s parent in the

routing tree dies. The two mechanisms enable the routing protocol to be robust to

stale route information and agile to link dynamics. However, CTP uses expected

transmissions as the cost metric, while our implementation of STR uses hop counts.

STR forwards packets using the shortest route toward the sink. The routing deci-

sions are made based on local information, where a node selects a parent from its

one-hop neighbours that has the smallest hop count to the sink.

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation time (sec)

D
el

iv
er

y
ra

tio

Original Topo.
GRASP−ARP Topo.
GRASP−ABP (CT=0%, RT=0%) Topo.
GRASP−ABP (CT=2%, RT=2%) Topo.

Figure 102: Delivery ratio for multiple sources – single sink with Z-MAC where a
node dies every 1,000 seconds

Figure 102 presents the delivery ratio of Z-MAC in various topologies. As has been

shown in Chapter 4, Z-MAC’s delivery ratio is lower than ER-MAC’s. However, Z-

MAC also shows improvements in the topologies with relays, i.e. around 10% higher

delivery ratio than the original topologies. Network connectivity with Z-MAC is

248

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

100

Simulation time (sec)

C
on

ne
ct

iv
ity

 (
%

)

Original Topo.
GRASP−ARP Topo.
GRASP−ABP (CT=0%, RT=0%) Topo.
GRASP−ABP (CT=2%, RT=2%) Topo.

Figure 103: Connectivity for multiple sources – single sink with Z-MAC where a
node dies every 1,000 seconds

shown in Figure 103. With the topologies of GRASP-ARP and GRASP-ABP with

0% threshold, Z-MAC improves the connectivity of the networks by 20% after five

nodes fail. At this stage, we have shown that the improvements in the network

performance for topologies with relays is not specific only to ER-MAC. Because the

performance of the networks with Z-MAC follows similar trends as with ER-MAC,

where topologies with more relays that guarantee 2-connectivity to the sink have

better results, we will only use ER-MAC in our further simulations.

8.4 Evaluation of Network Topologies with Mul-

tiple Sources and Multiple Sinks

In this section, we evaluate the performance of the networks with multiple sinks.

We firstly look at the scenario where four sinks are placed at the four corners of the

networks. We choose to put the sinks at the corners, which have lower connectivity,

249

so the topologies are easier to partition. Then in the second scenario, we compare

the performance of the networks with variable numbers of sinks. We use ER-MAC

in this experiment and follow the same simulation setup as in the previous section.

However, in this experiment, we simulate data gathering for 3,000 seconds only,

because the period of one data gathering cycle in networks with many sinks is

shorter than in the single sink problem. We increase the number of dead nodes by

killing one node every 250 seconds, either a sensor node or a relay node.

8.4.1 Evaluation of Network Topologies with Four Sinks

In the simulations with four sinks, we compare the original topologies, which are

100-node networks (average degree 3.2) and their resulting topologies generated by

GRASP-ARP with the dynamic programming variant of Counting-Paths for the

any-sinks cases, GRASP-ABP with Connectivity Threshold (CT) and Rerouting

Threshold (RT) equal to 0%, and GRASP-ABP with both thresholds equal to 2%.

In all simulated topologies, we fix the locations to place the four sinks at the top-left,

top-right, bottom-left, and bottom-right corners of the networks.

Figure 104 shows the delivery ratio of high priority packets and Figure 105 shows

the delivery ratio of low priority ones. Firstly, we see improvements over the delivery

ratios of both high and low priority packets in the single sink scenario, which are

presented in Figure 97 and Figure 98, respectively. This proves the advantages of

having multiple sinks, i.e. the networks become more scalable and more robust

compared to the traditional one sink networks. With multiple sinks, the delivery

ratios of both high and low priority packet in all topologies after five nodes die are

above 0.7. Secondly, while the topologies of GRASP-ARP always achieve the best

results in the single sink scenario, having more than one sink deployed makes the

topologies of GRASP-ABP with 0% threshold perform similarly to GRASP-ARP’s

with more relays. They outperform the delivery ratio of the original topologies by

around 20% for both high and low priority packets after 11 nodes die.

250

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation time (sec)

D
el

iv
er

y
ra

tio
 o

f h
ig

h
pr

io
rit

y
pa

ck
et

s

Original Topo.
GRASP−ARP Topo.
GRASP−ABP (CT=0%, RT=0%) Topo.
GRASP−ABP (CT=2%, RT=2%) Topo.

Figure 104: Delivery ratio of high priority packets for multiple sources – four sinks
with ER-MAC where a node dies every 250 seconds

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation time (sec)

D
el

iv
er

y
ra

tio
 o

f l
ow

 p
rio

rit
y

pa
ck

et
s

Original Topo.
GRASP−ARP Topo.
GRASP−ABP (CT=0%, RT=0%) Topo.
GRASP−ABP (CT=2%, RT=2%) Topo.

Figure 105: Delivery ratio of low priority packets for multiple sources – four sinks
with ER-MAC where a node dies every 250 seconds

251

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Simulation time (sec)

A
vg

. p
er

 p
ac

ke
t l

at
en

cy
 o

f h
ig

h
pr

io
rit

y
pa

ck
et

s
(s

ec
)

Original Topo.
GRASP−ARP Topo.
GRASP−ABP (CT=0%, RT=0%) Topo.
GRASP−ABP (CT=2%, RT=2%) Topo.

Figure 106: Latency of high priority packets for multiple sources – four sinks with
ER-MAC where a node dies every 250 seconds

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

Simulation time (sec)

A
vg

. p
er

 p
ac

ke
t l

at
en

cy
 o

f l
ow

 p
rio

rit
y

pa
ck

et
s

(s
ec

)

Original Topo.
GRASP−ARP Topo.
GRASP−ABP (CT=0%, RT=0%) Topo.
GRASP−ABP (CT=2%, RT=2%) Topo.

Figure 107: Latency of low priority packets for multiple sources – four sinks with
ER-MAC where a node dies every 250 seconds

252

The latency of high and low priority packets are presented in Figure 106 and Fig-

ure 107, respectively. Having multiple sinks makes the networks more scalable,

because of shorter hop counts to reach the nearest sinks and the availability of

more alternate routes when nodes die. This results in a significant drop in latency

for the two kinds of packets. The latency of high priority packets in all topologies is

in a range between 2.8 and 4 seconds, while it is between 3.8 and 7 seconds for the

low priority ones. Moreover, the latencies do not increase significantly when nodes

fail, because the routing trees in the multiple sink scenario are smaller, so the tree

reconfiguration when a node dies is faster than in the single sink scenario.

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

100

Simulation time (sec)

C
on

ne
ct

iv
ity

 (
%

)

Original Topo.
GRASP−ARP Topo.
GRASP−ABP (CT=0%, RT=0%) Topo.
GRASP−ABP (CT=2%, RT=2%) Topo.

Figure 108: Connectivity for multiple sources – four sinks with ER-MAC where a
node dies every 250 seconds

When the networks have multiple sinks, the topologies of GRASP-ARP and GRASP-

ABP with 0% threshold have similar connectivity as shown in Figure 108, that is

20% higher than the original topology’s connectivity. This result corresponds to the

delivery ratios as shown in Figure 104 and 105. With the fewest deployed relays, the

topologies of GRASP-ABP with 2% threshold also improve on the connectivity of

253

the original topologies by almost 10% after the failure of 11 nodes. From this sim-

ulation set, we can infer that having many deployed sinks increases the robustness

and scalability of the networks. We show this in the experiment by higher delivery

ratios, latency and connectivity compared to the single sink scenario. Moreover, we

also show that the topologies of GRASP-ARP and GRASP-ABP with 0% threshold

have similar network performance in the simulation.

8.4.2 Evaluation of Network Topologies with Variable Num-

bers of Sinks

Given that the GRASP-ABP with 0% threshold topologies have similar results to

the GRASP-ARP’s, in the second simulation set, we only compare the GRASP-

ABP topologies to the topologies that resulted from GRASP-MSRP with variable

numbers of sinks. All topologies of GRASP-ABP and GRASP-MSRP have relays,

but GRASP-ABP has four fixed sinks at the four corners of the networks, while

GRASP-MSRP places sinks at the best candidate locations. In the experiment, we

use topologies of GRASP-MSRP with three and six sinks. With three sinks, the

maximum path length to the nearest sink for every sensor node (lmax) is 10 hops.

For six sinks, it is six hops.

We will present the results for the high priority packets only because the low priority

packets’ results generally follow similar trends as have been shown in the previous

simulation set. The delivery ratio of high priority packets while nodes are failing is

depicted in Figure 109, where the GRASP-MSRP topologies with six sinks achieve

the highest ratio. The second highest delivery ratio is not achieved by the topologies

of GRASP-ABP with four sinks, but by GRASP-MSRP with three sinks. The

delivery ratio gap between these two simulation results is around 5% after several

failures. From this experiment, we not only show that having more sinks gives

us better performance, but also that placing them at the best locations is more

important.

254

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation time (sec)

D
el

iv
er

y
ra

tio
 o

f h
ig

h
pr

io
rit

y
pa

ck
et

s

GRASP−ABP (CT=0%, RT=0%) Topo. − 4 sinks
GRASP−MSRP (l

max
=10) Topo. − 3 sinks

GRASP−MSRP (l
max

=6) Topo. − 6 sinks

Figure 109: Delivery ratio of high priority packets for multiple sources – variable
numbers of sinks with ER-MAC where a node dies every 250 seconds

The latency of high priority packets is shown in Figure 110. As expected, the

topologies of GRASP-MSRP with six sinks have the lowest latency, i.e. around

0.6 second, followed by the topologies with three sinks, i.e. 2 seconds in average.

The latency of the GRASP-ABP topologies with four sinks is slightly higher than

3 seconds because most of the nodes have longer paths when the sinks are deployed

at the corners of the networks.

The network connectivity for this simulation set is presented in Figure 111. This

results correspond with the delivery ratio as shown in Figure 109, where the topolo-

gies of GRASP-MSRP with six sinks offer the best performance, followed by the

topologies with three sinks. The GRASP-ABP topologies with four sinks have 5%

lower connectivity than the topologies of GRASP-MSRP with three sinks after sev-

eral failures due to the sinks’ positions. In this experiment, we show that if we

have higher budget to deploy more sinks, we can get better network performance,

especially if we place them at the best locations.

255

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Simulation time (sec)

A
vg

. p
er

 p
ac

ke
t l

at
en

cy
 o

f h
ig

h
pr

io
rit

y
pa

ck
et

s
(s

ec
) GRASP−ABP (CT=0%, RT=0%) Topo. − 4 sinks

GRASP−MSRP (l
max

=10) Topo. − 3 sinks

GRASP−MSRP (l
max

=6) Topo. − 6 sinks

Figure 110: Latency of high priority packets for multiple sources – variable numbers
of sinks with ER-MAC where a node dies every 250 seconds

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

100

Simulation time (sec)

C
on

ne
ct

iv
ity

 (
%

)

GRASP−ABP (CT=0%, RT=0%) Topo. − 4 sinks
GRASP−MSRP (l

max
=10) Topo. − 3 sinks

GRASP−MSRP (l
max

=6) Topo. − 6 sinks

Figure 111: Connectivity for multiple sources – variable numbers of sinks with
ER-MAC where a node dies every 250 seconds

256

8.5 Conclusion

In this chapter, we take the original topologies and their resulting topologies gener-

ated by GRASP-ARP, GRASP-ABP and GRASP-MSRP, and simulate data gath-

ering applications using ER-MAC and Z-MAC in ns-2 to measure the network

performance. By this experiment, we want to show the trade-off between having

low cost networks, in terms of the numbers of relays and sinks, and having robust

solutions when some nodes fail. We simulate several scenarios: one sink, four corner

sinks and variable numbers of sinks. From the simulations with one sink and four

corner sinks, the results show that networks with more relays, i.e. the GRASP-ARP

topologies that guarantee 2-connectivity, achieve better performance. Even though

the topologies of GRASP-ABP with 0% threshold retreat from the network-wide

2-connectivity and have fewer relays than GRASP-ARP, their performance are com-

parable. Moreover, the topologies generated by GRASP-ABP with 2% threshold

also have better performance than the original topologies.

Having multiple sinks makes the networks more robust to failures and scalable, i.e.

have higher delivery ratio, lower latency and higher connectivity, compared to the

single sink networks. In the multiple sink scenario, the performance of a network

is not only influenced by the number of deployed sinks, but more importantly the

positions to deploy the sinks. As we can see from the simulations with variable

numbers of sinks, the best performance is achieved by topologies with six sinks

where the placements were optimised (GRASP-MSRP). Note that topologies with

only three sinks but where the placements were optimised (GRASP-MSRP) are

better than topologies with four sinks in fixed positions (GRASP-ABP).

257

258

Chapter 9

Conclusion and Future Work

9.1 Summary of Contributions

In this thesis, we demonstrate that Medium Access Control (MAC) protocols and

topology planning algorithms can be designed together to create fault-tolerant Wire-

less Sensor Networks (WSNs) that trade-off robustness and deployment cost. Fault-

tolerance is important for many WSN applications, where messages from all sensor

nodes must be delivered to base stations or sinks in a reliable and timely manner.

To ensure reliable delivery, a WSN must be able to cope gracefully with failures

that are caused by dropped packets due to overload, node/link failures, and dis-

connected networks, for example during emergency response. In WSNs, successful

packet transmission is determined by a MAC protocol. To be robust to failures,

firstly the MAC protocol must be able to adapt to traffic and topology changes.

Secondly, the physical network topology must ensure that alternate routes to the

sinks are in fact available. This requires topology planning that guarantees the exis-

tence of alternative routes from all sensor nodes to the sinks, which can achieved by

finding the best locations to deploy sinks and some additional relays. We summarise

the main contributions of our solutions and achievements below.

259

9.1.1 A Hybrid MAC Protocol for Emergency Response

In Chapter 4, we focus on the MAC protocol design for emergency response WSNs.

As an emergency situation rarely occurs, a WSN spends most of its lifetime in

normal monitoring. During normal monitoring, the traffic load is light and the

communication is delay-tolerant, so the main objective of the protocol is energy

efficiency. However, the protocol must be able to switch from normal to emergency

monitoring when a hazard event is detected. During emergencies, rapid reliable

receipt of critical data is most important, and so energy efficiency should be traded

for high delivery ratios and low latency. We present ER-MAC, a MAC protocol for

emergency response WSNs. ER-MAC is novel as it tackles all of the following design

criteria: operates efficiently during normal monitoring, achieves high delivery ratio

and low latency for emergency response, adapts to traffic and topology changes,

prioritises high priority packets and supports fairness over the packets’ sources.

ER-MAC is designed as a hybrid of the TDMA and CSMA approaches, giving

it flexibility to adapt to traffic and topology changes. ER-MAC’s TDMA char-

acteristic enables it to establish collision-free slots, which are used during normal

monitoring to schedule packet transmissions. Furthermore, its CSMA characteris-

tic allows nodes that participate in emergency monitoring to contend in each slot

to achieve high delivery ratio and low latency. ER-MAC is also designed with two

queues to buffer high and low priority packets separately. In its operation, ER-MAC

prioritises the high priority packets and sacrifices the delivery ratio and latency of

the low priority ones. In addition, its synchronised and loose slot structure enables

nodes to modify their schedule and perform local repair. This ability helps nodes

join or leave the network.

We implement and simulate ER-MAC in ns-2. The results show that ER-MAC

outperforms Z-MAC, another hybrid MAC protocol that also allows contention in

TDMA slots, by higher delivery ratio and lower latency at low energy consump-

tion. Moreover, the performance of ER-MAC is influenced by network topologies,

260

especially when some nodes fail during the network operation. As other protocols,

ER-MAC gives a better performance on topologies that are not easy to partition

and have shorter path lengths to the sink.

9.1.2 Fault-Tolerant Relay Deployment for k Vertex-Disjoint

Paths

We study fault-tolerant topology planning which only involves additional placement

of relays in Chapter 5. To be able to tolerate k−1 node failures, each sensor node

in the initial design must have k disjoint paths to one or more sinks. In addition,

it is also necessary that the lengths of the paths are bounded to minimise packet

delay to reach sinks. A WSN is (k, l)-sink-connected if and only if each sensor node

has k disjoint paths of length ≤ l. If a WSN is not (k, l)-sink-connected, additional

relays are required.

In this chapter, we propose two offline algorithms to be run during the initial topol-

ogy planning to solve this problem. Firstly, we propose Counting-Paths, an algo-

rithm that uses the Ford-Fulkerson maximum flow algorithm to count the number of

disjoint paths from a sensor node to a sink. To speed up the counting process for an

entire network, we implement a dynamic programming variant of Counting-Paths,

where we start counting the number of disjoint paths from sensor nodes closer to

the sink. The empirical simulation in C++ show that Counting-Paths is more ef-

ficient and accurate compared to algorithms from the literature, namely Modified

Dijkstra, Fast Pathfinding and Maximum Paths, and the dynamic programming

variant scales even better. Although we have not proven that the dynamic pro-

gramming variant of Counting-Paths ensures the length-bound, all problems in the

simulations show that it does obey the length-bound.

Our second algorithm is Greedy Randomised Adaptive Search Procedure for Addi-

tional Relay Placement (GRASP-ARP). It is a local search algorithm that uses

Counting-Paths and modifies the existing GRASP algorithm to deploy the fewest

261

relays at the possible candidate locations. Our simulations in C++ show that

for larger networks GRASP-ARP is significantly faster and requires fewer relays

compared to K-CONN-REPAIR, a relay deployment algorithm from the literature.

However, requiring (k, l)-sink-connected networks is expensive, because many ad-

ditional relays are required and simulation runtime increases as we increase the

network size. We then try to reduce deployment cost and computation time by

focusing only on the important nodes – those whose failure has the worst effect for

the network.

9.1.3 Fault-Tolerant Relay Deployment Based on Length-

Constrained Connectivity and Rerouting Centrality

In Chapter 6, we continue looking at relay deployment for fault-tolerant WSNs.

In order to further reduce deployment cost and computation time, we only deploy

relays as backup nodes around important sensor nodes. A sensor node is important

to the network if upon its failure, many other sensor nodes will lose their length-

bounded paths to the sink.

In this chapter, firstly we propose a solution to identify the important nodes. We

define Length-constrained Connectivity and Rerouting Centrality (l-CRC) as a new

centrality index for WSNs with sinks. l-CRC has a pair of values. The first value

measures the importance of a sensor node with respect to network connectivity

under a path length constraint, while the second value measures the additional

length of shortest paths that would be required after the node fails. Using this

centrality index allows us to trade-off deployment cost for robustness. For lower cost

deployment, we only address sensor nodes with high centrality to protect the most

significant failures. However, by increasing the deployment cost, we can address

more sensor nodes with lower centrality and become more robust against more

failures.

262

After identifying sensor nodes which are important, we deploy relay nodes as back-

ups. Instead of deploying relays at the locations nearby the important nodes, we

introduce Greedy Randomised Adaptive Search Procedure for Additional Backup

Placement (GRASP-ABP), a local search algorithm to minimise the number of

required relays. We demonstrate empirically in C++ that GRASP-ABP deploys

the fewest relays with the shortest runtime compared to GRASP-ARP and K-

CONN-REPAIR. In addition, when we raise the centrality threshold, we trade-off

the cost of a network against its robustness, and thus decrease the runtime.

9.1.4 Multiple Sink and Relay Placement

While we assume the positions of sinks are given in the previous two chapters, in

Chapter 7 we investigate the deployment of both sinks and relays. Still under a

path length constraint, we try to protect the network against one single failure, of

either a sink or a sensor node, by deploying multiple sinks and relays with minimal

cost. For fault-tolerance, we require a WSN to be double-covered and non-critical.

Double-covered means each sensor node must have at least two length-bounded

paths to two sinks. Non-critical means all sensor nodes must have length-bounded

alternative paths to sinks when an arbitrary sensor node fails.

Before investigating multiple sink and relay placement, we first look at the mul-

tiple sink placement problem to ensure that each sensor node in the network is

double-covered. We propose two algorithms to minimise the total sink cost, namely

Greedy Algorithm for Multiple Sink Placement (Greedy-MSP) and Greedy Ran-

domised Adaptive Search Procedure for Multiple Sink Placement (GRASP-MSP).

By using C++, we demonstrate empirically that both algorithms outperform the

k-means clustering-based algorithms, namely Minimise the Number of Sinks for

Fault-Tolerance (MSFT) and Cluster-Based Sampling for Multiple Sink Placement

(CBS-MSP), and the optimal solution. In simulation, Greedy-MSP has the shortest

runtime, but GRASP-MSP achieves the lowest deployment cost. GRASP-MSP’s

deployment cost is comparable to the optimal solution, but its computation time

263

is faster. This result justifies the use of local search to solve the multiple sink and

relay placement problem, where a linear optimal solution is not available.

We then study the multiple sink and relay placement problem, where we want the

network to be double-covered and non-critical. We propose Greedy Algorithm for

Multiple Sink and Relay Placement (Greedy-MSRP) and Greedy Randomised Adap-

tive Search Procedure for Multiple Sink and Relay Placement (GRASP-MSRP) to

minimise the total deployment cost. We also add some modifications to the two

k-means clustering-based algorithms and we name them Minimise the Number of

Sinks and Relays for Fault-Tolerance (MSRFT) and Cluster-Based Sampling for

Multiple Sink and Relay Placement (CBS-MSRP). These algorithms utilise the con-

cept of Length-constrained Connectivity and Rerouting Centrality (l-CRC) intro-

duced in earlier chapter to identify critical nodes. While Greedy-MSRP, MSRFT

and CBS-MSRP deploy sinks using Greedy-MSP, MSFT and CBS-MSP, respec-

tively before placing relays, GRASP-MSRP minimises the number of uncovered

and critical nodes simultaneously in its every local search move. The simulation

results show that the GRASP-MSRP algorithm has the lowest cost solutions and

the shortest runtime. On the other hand, MSRFT and CBS-MSRP outperform

Greedy-MSRP by lower cost solution and shorter runtime because they have better

sink positions.

9.1.5 Evaluation of Network Performance

After investigating network deployment planning in the previous three chapters, we

evaluate the network performance in Chapter 8 to compare the robustness of dif-

ferent topology designs. We take the original topologies and their resulting topolo-

gies generated by GRASP-ARP, GRASP-ABP and GRASP-MSRP, and simulate

multi-hop data gathering application using ER-MAC and Z-MAC in ns-2. During

the simulation, we kill some nodes and measure the performance of the designed

topologies. We simulate three scenarios: one sink, four corner sinks and variable

numbers of sinks.

264

For the single sink and four corner sink scenarios, we compare the original topolo-

gies, i.e. topologies without relays, to the resulting topologies from GRASP-ARP

and GRASP-ABP. When several nodes fail in the single sink scenario, the GRASP-

ARP topologies achieve the best performance as they have more deployed relays

compared to GRASP-ABP. However, in the four corner sink scenario, the topolo-

gies of both GRASP-ABP and GRASP-ARP show comparable results. In addition,

having four deployed sinks makes the networks more robust and scalable, i.e. they

achieve higher delivery ratio, lower latency and higher connectivity, compared to

the single sink networks.

In the variable numbers of sink scenario, we compare the GRASP-ABP topologies,

given that they have similar results to GRASP-ARP in the multiple sink scenario,

to the topologies that resulted from GRASP-MSRP with variable numbers of sinks.

The topologies of both GRASP-ABP and GRASP-MSRP have additional relays.

While the GRASP-ABP topologies have four sinks fixed at the four corners of the

networks, GRASP-MSRP deploys sinks at the best locations. From the simulations

with variable numbers of sinks, the results show that we can have better network

performance by not only deploying more sinks in the networks, but also placing

them at the best locations.

To sum up, the contributions of this thesis are:

1. ER-MAC, a novel hybrid MAC protocol for emergency response WSNs, that

is very energy-efficient in normal monitoring, has high delivery ratio and low

latency in emergency monitoring, is traffic and topology adaptive, supports

packet prioritisation and gurantees fairness.

2. Counting-Paths, an algorithm to count the number of disjoint paths from a

sensor node to a sink, and GRASP-ARP, a GRASP-based local search algo-

rithm that uses Counting-Paths to deploy the fewest relays to guarantee that

each sensor node has length-constrained k≥2 disjoint paths to either one sink

265

or many sinks. With the dynamic programming variant of Counting-Paths,

GRASP-ARP runs faster, but it does not guarantee the length-bound.

3. l-CRC, a new centrality index to identify nodes that need backups, and

GRASP-ABP, a local search algorithm that uses l-CRC to minimise the num-

ber of required backups (relays) in providing length-bounded alternative paths

for the remaining sensor nodes when a sensor fails.

4. Greedy-MSP and GRASP-MSP to deploy multiple sinks with minimal cost

to ensure that each sensor node in the network is double-covered, i.e. has at

least two length-bounded paths to two sinks.

5. Greedy-MSRP and GRASP-MSRP to deploy multiple sinks and relays with

minimal cost to make the network double-covered and non-critical. Non-

critical means all sensor nodes must have length-bounded alternative paths

to sinks when an arbitrary sensor node fails.

6. Ns-2 simulations using ER-MAC to evaluate the effectiveness of each deploy-

ment result, where GRASP-ARP and GRASP-ABP topologies have compa-

rable performance, and the GRASP-MSRP topologies achieve the best results

for the multiple sink case because of better sink positions.

9.2 Future Work

In our work on ER-MAC, the design of the protocol is influenced by our assumptions

that the WSN has no mobility, all nodes are homogeneous and operate using a fixed

transmission range in a single communication channel. We will improve the ER-

MAC design by firstly taking into account the ability of sensor nodes to perform

multi-channel communications. This will involve new strategies to establish data

gathering trees and to build TDMA schedules. We will also consider heterogeneous

WSNs, where nodes have different hardware specifications and capabilities. This

means sensor nodes may have different transmission ranges and unequal initial

266

amounts of battery energy. Moreover, we will make improvements on the design to

work with both static and mobile nodes, as well as to exploit the ability of nodes

to adapt the transmission powers. These two improvements are very important

for emergency monitoring as mobile nodes and mobile sinks are expected to join

the network. Also, power adaptation enables nodes to increase their transmission

ranges to deliver important messages by bypassing routing holes caused by failed

nodes or congested areas. In addition, we will include load balancing criteria in our

protocol design to reduce congestion and packet latency from some heavy branches

of the routing tree. If the WSN has a balanced tree, the energy consumption of

nodes at a certain level of the tree may be distributed evenly and the lifetime of

the network may be prolonged. In this thesis, the performance evaluation of our

solutions is verified through extensive simulations. Our future plan is to have a real

test-bed implementation, where we are going to implement ER-MAC in real sensor

nodes using either the Contiki operating system [1] or TinyOS [3].

Our works on topology planning algorithms currently emphasise the fault-tolerant

aspects of WSN topologies, including the availability of alternate paths and path

length constraints. While these are the most important factors for WSN surviv-

ability, we will also include network capacity requirements and lifetime expectation

in our algorithm designs. In this thesis, the GRASP-ARP topologies can guar-

antee robustness against multiple failures because Counting-Paths can find k ≥ 2

disjoint paths. Our immediate future work will be a complete analysis of the dy-

namic programming variant of Counting-Paths. We also consider GRASP-ABP

and GRASP-MSRP topologies that can only guarantee robustness against one sin-

gle failure, because our current l-CRC index only checks the availability of one

length-bounded alternate path. In our future work, we will try to extend the l-

CRC index by taking into account the availability of more than one alternate path.

Consequently, the GRASP-ABP and GRASP-MSRP topologies will be designed

to guarantee robustness against multiple failures. Moreover, we currently assume

point-based failures, where the failed devices are scattered in the network. In our

267

future work, we will consider area-based failures, where failed devices are in close

proximity to each other. In addition, this thesis assumes predetermined positions

of sensor nodes in the topologies. Our future work will also include sensor node

deployment, where we will not only preserve connectivity and survivability of the

network, but also maintain the coverage requirements. For the coverage, a particu-

lar WSN application may require that every point in the monitoring area is sensed

by at least k≥1 sensor nodes.

268

Appendix A

Graph Model for WSN

A.1 Notations and Definitions

A WSN which consists of n sensor nodes can be modeled as a graph G= (V,E),

where V represents the set of vertices, and E is the set of edges (v, w) for v, w ∈

V and vertex v can communicate by radio directly with vertex w. Some WSN

protocols require bi-directional links between each pair of nodes to facilitate link

level acknowledgement, which is critical for packet transmissions over unreliable

wireless links. Therefore, for simplicity, we assume bi-directional links, where v

and w are adjacent if they are within transmission range of each other. However,

this assumption could be easily relaxed by specifying a more complex connectivity

graph.

Let v∈V be a vertex in G, we define neighbourhood N(v) as the set of all vertices

that are adjacent to v. Formally, N(v) = {w : w∈V, (v, w)∈E}. H = (W,E↓W) is

an induced subgraph of G= (V,E) if W ⊂V and E↓W has exactly the edges that

appear in G over the same vertex set (where E↓X means a set of edges restricted

to those that connect nodes in X). A path of length t between two vertices v and

w is a sequence of vertices v=v0, v1, . . . , vt=w, such that vi and vi+1 are adjacent

for each i. A path from a vertex v to a set of vertices W is simply a path from v

269

to any vertex w∈W . Two vertices are connected if there is a path between them.

A graph is connected if every pair of vertices is connected. A cutset is a set C⊂V

such that (V−C,E↓V−C) is disconnected. A graph is k-connected if it has no cutset

of size less than k. Two paths P and Q from v to w are vertex-disjoint if they have

no vertices in common except for v and w.

Below is the theorem for graph k-connectivity by Menger (1927) as cited from [36].

Before we present the theorem, we give the following definitions. Given sets A,B⊆

V , we call P = v0, . . . , vt an A−B path if V (P)∩A = {v0} and V (P)∩B = {vt}.

An A−B cutset is a cutset that separates the sets A and B in G. Let k be the

minimum size of an A−B cutset. Clearly, G cannot contain more than k disjoint

A−B paths.

Theorem A.1. (Menger, 1927) Let G=(V,E) be a graph and A,B⊆V . Then the

minimum number of vertices separating A from B is equal to the maximum number

of disjoint A−B paths in G.

The WSN topology is an undirected graph and for simplicity, we assume that the

graph is connected. ω is a weight function of an edge. For an edge (v, w) ∈ E,

we define ω(v, w) = 1 for unweighted graphs and ω(v, w)> 0 for weighted graphs.

For u,w ∈ V , d(u,w) denotes the shortest path distance between u and w. By

convention, d(u,w) =∞ if w is unreachable from u and d(u, u) = 0. We denote

dv(u,w) to represent the distance of the shortest path from u to w which does not

visit v. Let σst denotes the number of shortest paths between s and t and let σst(v)

be the number of shortest paths between s and t that passing through some vertex

v other than s and t. By convention, if s= t, σst = 1 and if v ∈ {s, t}, σst(v) = 0.

Let lmax denote the maximum acceptable path length, we say that a vertex v is

k-covered by a set of k vertices W if d(v, w)≤ lmax;∀w∈W . If k=1, we simply say

v is single-covered. If k=2, v is double-covered.

In a WSN with a data sink, the routing paths from all sensor nodes to the sink

form a rooted tree, where the sink is the root of the tree. Any vertex w on a path

270

Algorithm 17: Ford-Fulkerson
Input : G, s, t
Output: flow
1: for each (v, w)∈E(G) do
2: flow(v, w)←0
3: flow(w, v)←0
4: end for
5: while there exist a path P from s to t in the residual network Gres do
6: capacityres(P)←min{capacityres(v, w) : (v, w) is in P}
7: for each (v, w) in P do
8: flow(v, w)←flow(v, w) + capacityres(P)
9: flow(w, v)←−flow(v, w)

10: end for
11: end while
12: return flow

from a vertex v to the root is an ancestor of v. If w is an ancestor of v, then v is

a descendant of w. The subtree rooted at v is the tree induced by descendants of v

rooted at v. In a tree, v is the parent of w and w is the child of v if an edge (v, w)

exists with d(v, Sink)< d(w, Sink). For WSNs with multiple sinks, a well-known

approach is by adding a supersink as an imaginary vertex that has connection to

the original sinks [20]. By doing this, we reduce the problem of multiple sinks to

the problem of single sink. Two vertices with the same parent are siblings. A vertex

with no children is a leaf and a vertex with children is a non-leaf.

A.2 The Ford-Fulkerson Algorithm

We present the Ford-Fulkerson method in Algorithm 17 as cited from [34]. This

method is iterative. From line 1 to 4, we initialise flow to 0. The loop from line 5 to

11 repeatedly finds an augmenting path P in the residual networkGres and augments

flow along P by the residual capacity capacity res(P). The residual network Gres is

the network with residual capacity capacityres(v, w) = capacity(v, w)−flow(v, w).

When no more augmenting paths exist, the flow f is a maximum flow.

271

272

Appendix B

The Disjoint Path Algorithms

B.1 Shortest Vertex-Disjoint Paths with Modi-

fied Dijkstra by Bhandari

In [19], Bhandari gives a variant of the original Dijkstra algorithm. It takes as

input a graph G=(V,E), a weight function ω : E→R associated with its edges, a

source s, and a destination t. Let d(v) denotes the distance of vertex v from s, π(v)

denotes v’s parent on the shortest path, and N(v) is the set of v’s neighbours. The

pseudocode is given in Algorithm 18. In each iteration, it searches for a vertex in

the set S with the least path length. It terminates when the selected vertex is the

destination.

The original Dijkstra algorithm only works for the case in which all edge weights

are non-negative. In this algorithm, when a vertex with the least path length is

selected, the shortest path to that vertex has been found and no further scanning

from any other vertices in the graph can update its distance to the source. On the

other hand, Modified Dijkstra can handle negative directed edges. The modification

allows that a previously selected vertex can be rescanned and so its distance to the

source vertex can be updated.

273

Algorithm 18: Modified Dijkstra
Input : G,ω, s, t
Output: d, π
1: d(s)←0, π(s)←NIL
2: for all v∈V \{s} do
3: if v∈N(s) then
4: d(v)←ω(s, v), π(v)←s
5: else
6: d(v)←∞, π(v)←NIL
7: end if
8: end for
9: S←N(s)

10: while S 6=∅ do
11: Find v∈S such that d(v) = min{d(u)}, ∀u∈S
12: S←S\{v}
13: if v 6= t then
14: for all u∈N(v) do
15: if d(u)>d(v)+ω(v, u) then
16: d(u)←d(v)+ω(v, u), π(u)←v
17: S←S∪{u}
18: end if
19: end for
20: else
21: return d, π
22: end if
23: end while

Algorithm 19 is proposed by Bhandari to solve the problem of finding single source

– single sink shortest vertex-disjoint paths. It takes as input the original graph

G = (V,E), a weight function ω : E→ R associated with its edges, a source s, a

destination t, and the number of disjoint paths sought k. In each iteration, it finds

the shortest path using the Modified Dijkstra algorithm.

B.2 Fast Pathfinding by Torrieri

The original Fast Pathfinding algorithm [113] finds all possible disjoint paths from

length = 1 to the maximum acceptable path length lmax between two vertices. In-

stead of finding all possible disjoint paths, we slightly modify this algorithm to only

find the shortest k disjoint paths.

274

Algorithm 19: Modified Dijkstra for Single Source – Single Sink Disjoint Paths
Input : G,ω, s, t, k
Output: Pi, ∀i=1,. . ., k
1: for i←1 to k do
2: if i>1 then
3: Replace each edge on the shortest paths with a negative edge directed

towards s
4: Split each vertex on the shortest paths except s and t into original vertex

and primed vertex, which are joined by a directed edge of length zero
from the primed vertex to the original vertex towards s

5: Replace each external edge connected to the vertex on the shortest paths
by two oppositely directed edges of the same length: one edge terminates
on the original vertex, while another edge originates from the primed
vertex

6: end if
7: Find the shortest path Pi using the Modified Dijkstra algorithm
8: if i>1 then
9: Remove the zero length edges, merge the primed and original vertices

10: Replace the directed edges with their original edges
11: Remove overlapping edges of the paths to get the shortest disjoint paths
12: end if
13: end for
14: return Pi, ∀i=1,. . ., k

The pseudocode for the Fast Pathfinding algorithm is presented in Algorithm 20.

It takes as input an n×n adjacency matrix G of a graph of n vertices, a source s,

a destination t, the number of disjoint paths sought k, and lmax. In the adjacency

matrix, G(a, b) = 1 if there is an edge from vertex a to vertex b and G(a, b) = 0

if there is not. Fast Pathfinding starts by finding the shortest path of length = 1,

i.e. there is no intermediate vertices in the path. Then, it gradually increases

the number of intermediate vertices. Let G ′ be the reduced adjacency matrix

of G. In each iteration, the algorithm selects one shortest path P , removes the

intermediate vertices in P from further use by zeroing the rows and the columns of

the intermediate vertices in G ′, and then selects the next shortest path using only

the remaining vertices. If two or more remaining paths of length l are the shortest,

one of them is chosen arbitrarily.

275

Algorithm 20: Fast Pathfinding
Input : G, s, t, k, lmax

Output: Pi, ∀i=1,. . ., k
1: G ′←G, numDisjointPath←1, numIntermediateVertices←0
2: while numDisjointPath <k and numIntermediateVertices <lmax do
3: if numIntermediateVertices =0 then

/* Path of length =1 */
4: if G(s, t)=1 then
5: G ′(s, t)←0
6: Zeroing column s and row t in G ′

7: PnumDisjointPath←{s, t}
8: numDisjointPath←numDisjointPath +1
9: end if

10: else
/* Path of length>1 */

11: idxT← (numIntermediateVertices +2)/2
12: idxS← (numIntermediateVertices +1)/2
13: T0←{s}, S0←{t}
14: for i←1 to idxT do
15: Ti←non-zero vertices of row v in G ′, ∀v∈Ti−1

16: end for
17: for i←1 to idxS do
18: Si← non-zero vertices of column v in G ′, ∀v∈Si−1

19: end for
20: TS←TidxT

∩SidxS

21: for i←1 to |TS| do
/* Backward search to s */

22: idx← idxT

23: PnumDisjointPath(idx)←TS(i), idx← idx −1
24: for j← idxT−1 to 0 do
25: Select v∈Tj where G(v, PnumDisjointPath(idx+1))=1
26: PnumDisjointPath(idx)←v, idx← idx −1
27: end for

/* Forward search to t */
28: idx← idxT+1
29: for j← idxS−1 to 0 do
30: Select v∈Sj where G(PnumDisjointPath(idx−1), v)=1
31: PnumDisjointPath(idx)←v, idx← idx +1
32: end for
33: Zeroing column v and row v in G ′, ∀ intermediate v in PnumDisjointPath
34: numDisjointPath←numDisjointPath +1
35: end for
36: end if
37: numIntermediateVertices←numIntermediateVertices +1
38: end while
39: return Pi, ∀i=1,. . ., k

276

B.3 Maximum Paths by Torrieri

Similar to Fast Pathfinding, the original Maximum Paths algorithm [113] finds all

possible disjoint paths from length = 1 to the maximum acceptable path length

lmax between two vertices. The slight modification of this algorithm to only find

the shortest k disjoint paths is presented in Algorithm 21. It takes as input an

adjacency matrix G, a source s, a destination t, the number of disjoint paths sought

k, and lmax. Maximum Paths differs from Fast Pathfinding in that the number of

excluded paths must be determined. If two or more remaining paths of length l are

the shortest and they exclude the fewest other paths of length l, then one of the

remaining paths is chosen arbitrarily.

277

Algorithm 21: Maximum Paths
Input : G, s, t, k, lmax

Output: Pi,∀i=1,. . ., k
1: G ′←G, numDisjointPath←1, numIntermediateVertices←0
2: while numDisjointPath <k and numIntermediateVertices <lmax do
3: if numIntermediateVertices =0 then

/* Path of length =1 */
4: if G(s, t)=1 then
5: G ′(s, t)←0
6: Zeroing column s and row t in G ′

7: PnumDisjointPath←{s, t}
8: numDisjointPath←numDisjointPath +1
9: end if

10: else
/* Path of length>1 */

11: idxT← (numIntermediateVertices +2)/2
12: idxS← (numIntermediateVertices +1)/2
13: T 1

0←{s}, S1
0←{t}

14: for i←1 to idxT do
15: n←1
16: for j←1 to |Ti−1| do
17: for each non-zero vertex v of row w in G ′, w is the last vertex of T j

i−1 do
18: Tn

i ←T j
i−1∪{v}, n←n+1

19: end for
20: end for
21: end for
22: for i←1 to idxS do
23: n←1
24: for j←1 to |Si−1| do
25: for each non-zero vertex v of column w in G ′, w is the first vertex of Sj

i−1 do
26: Sn

i ←{v}∪S
j
i−1, n←n+1

27: end for
28: end for
29: end for
30: n←1
31: for i←1 to |TidxT | do
32: for j←1 to |SidxS | do
33: if last vertex of T i

idxT
= first vertex of Sj

idxS
then

34: TSn←T i
idxT
∪Sj

idxS
, n←n+1

35: end if
36: end for
37: end for
38: do
39: Find TSi that excludes the fewest other paths
40: PnumDisjointPath←TSi

41: Remove TSi from TS
42: Zeroing column v and row v in G ′, ∀ intermediate v in PnumDisjointPath

43: numDisjointPath←numDisjointPath +1
44: while |TS|>0
45: end if
46: numIntermediateVertices←numIntermediateVertices +1
47: end while
48: return Pi,∀i=1,. . ., k

278

Appendix C

The Partial k-Connectivity-Repair

Algorithm for Relay Placement

The k-Connectivity-Repair algorithm was originally proposed by Bredin et al. [26]

for full fault-tolerant relay placement. It was modified by Pu et al. [90] for par-

tial fault-tolerance. The pseudocode presented in Algorithm 22 is the Partial k-

Connectivity-Repair algorithm (K-CONN-REPAIR) from [90] with some modifica-

tions to work in constrained deployment locations.

K-CONN-REPAIR takes as input the original graph G=(T,E) where T is the set

of sensors, the set of candidate relays A, the number of disjoint paths sought k, and

the transmission range of a sensor r. It starts by computing a weighted complete

graph. The weight of an edge is one less than the Euclidean distance between

two sensors. It is roughly equivalent to the number of relays needed to connect

the two sensors. After that, K-CONN-REPAIR finds an approximate minimum-

weight vertex k-connected subgraph by repeatedly adding edges in increasing order

of weight until the subgraph is k-connected. If the subgraph is k-connected, it

repeatedly attempts to remove edges in decreasing order of weight, but putting

the edge back if it is important for k-connectivity. The k-connectivity is checked

using a maximum network-flow-based checking algorithm [86, 95]. Finally, for each

279

Algorithm 22: K-CONN-REPAIR
Input : G,A, k, r
Output: R

/* Compute a weighted complete graph */
1: G ′←(T,E ′), E ′←{(v, w) | v, w∈T, v 6=w}
2: ω(v, w)←d distance(v, w) / r e−1, ∀v, w∈T

/* Compute an approximate minimum-weight */
/* k-connected spanning subgraph */

3: G ′′←(T, ∅), E ′′←{(v, w) | v, w∈T, v 6=w}
4: for each (v, w)∈E ′′ in increasing order of ω(v, w) do
5: E(G ′′)←E(G ′′)∪{(v, w)}
6: if G ′′ is k-connected then
7: break
8: end if
9: end for

10: for each (v, w)∈E(G ′′) in decreasing order of ω(v, w) do
11: G ′′′←(T,E(G ′′)\{(v, w)})
12: if G ′′′ is k-connected then
13: G ′′←G ′′′

14: end if
15: end for

/* Deploy relays */
16: H←(T∪A,E↓T∪A)
17: for each (v, w)∈E(G ′′) do
18: Find the shortest relay path from v to w in H
19: R←R∪ relays that appear on the shortest relay path
20: If we need to find more shortest relay paths originating from v, we need to

temporarily remove the relays (from H) on the previously found shortest relay
paths originating from v, so the paths are disjoint

21: end for
22: H ′←(T∪R,E↓T∪R)
23: Try to remove relays in H ′ one by one but still preserving k-connectivity
24: return R

280

edge that appears in the subgraph, the algorithm places relays along the shortest

relay path between the two endpoints of the edge. In a shortest relay path, the

intermediate vertices are candidate relays. In order to obtain disjoint paths, we

need to temporarily remove the relays on the previously found shortest relay paths

originating from a sensor v before finding more shortest relay paths originating

from v. When all relays are deployed, we try to remove relays one by one by still

preserving k-connectivity.

In the maximum network-flow-based checking algorithm, an undirected graph G

must be firstly converted into a directed graph by replacing each undirected edge in

G with a pair of opposite directed edges. Then a directed graph G ′ is constructed

from G as follows:

1. each vertex v in G is split into two vertices: the original vertex v and the

primed vertex v′,

2. for each vertex v in G, adds a directed edge (v′, v) in G ′,

3. for each directed edge (v, w) in G, adds a directed edge (v, w′) into G ′,

4. for each directed edge (w, v) in G, adds a directed edge (w, v′) into G ′,

5. assigns each edge in G ′ a capacity of one.

The connectivity between two vertices v and w in G is equal to the maximum net-

work flow between v and w′ in G ′. The graph connectivity is checked by calculating

the connectivity between every pair of vertices.

281

282

Appendix D

The Multiple Sink and Relay

Placement Algorithms

D.1 The Multiple Sink Placement Algorithms

In this section, we will give the pseudocode for Minimise the Number of Sinks for

Fault-Tolerance (MSFT) and Cluster-Based Sampling for Multiple Sink Placement

(CBS-MSP). These two algorithms based on the well-known k-means clustering

algorithm. It divides a network into clusters and finds the position of each sink,

which is in the centre of a cluster.

D.1.1 Minimise the Number of Sinks for Fault-Tolerance

(MSFT)

MSFT is similar to Minimise the Number of Sinks for a Predefined Minimum Op-

eration Period (MSPOP) [85]. In MSPOP, the deployment locations of sinks are

unconstrained and the objective is to place sinks one by one until a required life-

time is met. Unlike MSPOP, MSFT deploys sinks at candidate locations until the

network is double-covered.

283

Algorithm 23: MSFT
Input : G,T,AS, c,DistanceG, lmax,max iterations
Output: S∗

1: best cost←∞
2: for i←1 to max iterations do
3: n←2
4: do
5: S← select n sinks from AS randomly
6: do
7: S ′←∅
8: for all v∈S do
9: Cluster(v)← all vertices⊂T that have v as the nearest sink

10: Find w∈AS such that the mean distance from all vertices in Cluster(v)
to w is the smallest

11: S ′←S ′∪{w}
12: end for
13: S←S ′

14: while sinks can be moved
15: H←(T∪S,E↓T∪S)
16: Calculate num uncovered in H using DistanceG and lmax

17: n←n+1
18: while num uncovered >0 and n≤|AS|
19: if

∑
v∈S cv< best cost then

20: S∗←S, best cost←
∑

v∈S cv
21: end if
22: end for
23: return S∗

284

The performance of MSFT depends on the initial randomly selected sink loca-

tions, so more iterations give better results. We limit the number of iterations by

max iterations. The MSFT pseudocode is given in Algorithm 23. It takes as input

the original graph G = (T ∪AS, E), the set T of sensors, the set AS of candidate

sinks, the cost function c, the pre-computed DistanceG table, the maximum accept-

able path length lmax, and max iterations. In each iteration, it starts by trying to

minimise the number of uncovered sensors using two sinks. The sinks are selected

randomly from the candidate locations, then clusters are constructed, where each

sensor joins its nearest sink’s cluster. After the cluster formation, we find the best

new position for a sink such that the mean distance from all sensors in the cluster

to the sink is minimum. This process is repeated until all sinks cannot be moved.

If there are some uncovered sensors, MSFT increases the number of required sinks.

The end result of this algorithm is a set of sinks with the minimum total cost.

D.1.2 Cluster-Based Sampling for Multiple Sink Placement

(CBS-MSP)

CBS-MSP modifies Cluster-Based Sampling (CBS) proposed in [28]. In CBS, the

number of sinks is given as an input to the algorithm with an objective to minimise

the total road distance from all nodes to the sinks, where each node is required to

be double-covered. Unlike CBS, CBS-MSP minimises the number of deployed sinks

and the deployment cost. We implement CBS-MSP using path length to represent

distance between two nodes and also we have a path length limit.

The pseudocode for CBS-MSP is given in Algorithm 24. Its implementation is very

similar to MSFT. The key differences between these two algorithms are in line 9 and

10, where MSFT constructs two clusters. The primary clusters of a sink v consists

of sensors that have v as their nearest sink. The secondary cluster of v are sensors

that have v as their second nearest sink. The best new position for a sink is sought

where the mean distance from all sensors in both clusters to the sink is minimum.

285

Algorithm 24: CBS-MSP
Input : G,T,AS, c,DistanceG, lmax,max iterations
Output: S∗

1: best cost←∞
2: for i←1 to max iterations do
3: n←2
4: do
5: S← select n sinks from AS randomly
6: do
7: S ′←∅
8: for all v∈S do
9: Primary Cluster(v)← all vertices⊂T that have v as the nearest sink,

Secondary Cluster(v)← all vertices⊂T\Primary Cluster(v) that have
v as the second nearest sink

10: Find w∈AS such that the mean distance from all vertices in
Primary Cluster(v)∪Secondary Cluster(v) to w is the smallest

11: S ′←S ′∪{w}
12: end for
13: S←S ′

14: while sinks can be moved
15: H←(T∪S,E↓T∪S)
16: Calculate num uncovered in H using DistanceG and lmax

17: n←n+1
18: while num uncovered >0 and n≤|AS|
19: if

∑
v∈S cv< best cost then

20: S∗←S, best cost←
∑

v∈S cv
21: end if
22: end for
23: return S∗

286

D.2 The Multiple Sink and Relay Placement Al-

gorithms

In this section, we will give the pseudocode for Minimise the Number of Sinks

and Relays for Fault-Tolerance (MSRFT) and Cluster-Based Sampling for Multiple

Sink and Relay Placement (CBS-MSRP). Both algorithms iteratively find the best

locations to deploy a given number of sinks, which is obtained by giving the number

of required sinks as an input parameter to MSFT and CBS-MSP. Then, they utilise

GRASP-MRP from Chapter 7 to deploy relays.

D.2.1 Minimise the Number of Sinks and Relays for Fault-

Tolerance (MSRFT)

MSRFT extends MSFT to find the best locations to deploy sinks and uses GRASP-

MRP to deploy relays until the network becomes double-covered and non-critical.

Firstly, we modify MSFT to find the best locations for a given number of sinks. We

call this modification Find the Best Sink Locations for Fault-Tolerance (BSLFT).

The pseudocode for BSLFT is given in Algorithm 25. BSLFT differs from MSFT

in that it takes the number of required sinks n as one of its input and the objective

is to find the best locations for n sinks such that the number of uncovered sensors

is minimised.

MSRFT is presented in Algorithm 26. It takes as input the original graph G =

(T∪AR∪AS, E), the set T of sensors, the set AR of candidate relays, the set AS of can-

didate sinks, the cost function c, the pre-computed DistanceG table, the maximum

acceptable path length lmax, the number of iterations max iterations for BSLFT, and

the number of iterations max iterations grasp for GRASP-MRP. MSRFT starts by

deploying two sinks using BSLFT and calls GRASP-MRP to deploy relays. It then

gradually increases the number of sinks until the network becomes double-covered

and non-critical.

287

Algorithm 25: BSLFT
Input : G,T,AS, c,DistanceG, lmax,max iterations, n
Output: S∗

1: best value←∞
2: for i←1 to max iterations do
3: S← select n sinks from AS randomly
4: do
5: S ′←∅
6: for all v∈S do
7: Cluster(v)← all vertices⊂T that have v as the nearest sink
8: Find w∈AS such that the mean distance from all vertices in Cluster(v)

to w is the smallest
9: S ′←S ′∪{w}

10: end for
11: S←S ′

12: while sinks can be moved
13: H←(T∪S,E↓T∪S)
14: Calculate num uncovered in H using DistanceG and lmax

15: if num uncovered < best value then
16: S∗←S, best value←num uncovered
17: end if
18: end for
19: return S∗

Algorithm 26: MSRFT
Input : G,T,AR, AS, c,DistanceG, lmax,max iterations,max iterations grasp
Output: R∗, S∗

1: best cost←∞
2: n←2
3: do
4: S←BSLFT(G,T,AS, c, DistanceG, lmax, max iterations, n)
5: H←(T∪AR∪S,E↓T∪AR∪S)
6: Calculate num uncovered and num critical in H using DistanceG and lmax

7: if num uncovered =0 and num critical =0 then
8: R←GRASP-MRP(G,T, S,AR, lmax, max iterations grasp)
9: if

∑
v∈R∪S cv< best cost then

10: R∗←R, S∗←S, best cost←
∑

v∈R∪S cv
11: end if
12: end if
13: n←n+1
14: while num uncovered >0 and n≤|AS|
15: return R∗, S∗

288

Algorithm 27: CBS-BSL
Input : G,T,AS, c,DistanceG, lmax,max iterations, n
Output: S∗

1: best value←∞
2: for i←1 to max iterations do
3: S← select n sinks from AS randomly
4: do
5: S ′←∅
6: for all v∈S do
7: Primary Cluster(v)← all vertices⊂T that have v as the nearest sink,

Secondary Cluster(v)← all vertices⊂T\Primary Cluster(v) that have
v as the second nearest sink

8: Find w∈AS such that the mean distance from all vertices in
Primary Cluster(v)∪Secondary Cluster(v) to w is the smallest

9: S ′←S ′∪{w}
10: end for
11: S←S ′

12: while sinks can be moved
13: H←(T∪S,E↓T∪S)
14: Calculate num uncovered in H using DistanceG and lmax

15: if num uncovered < best value then
16: S∗←S, best value←num uncovered
17: end if
18: end for
19: return S∗

D.2.2 Cluster-Based Sampling for Multiple Sink and Relay

Placement (CBS-MSRP)

CBS-MSRP is similar to MSRFT, but it extends CBS-MSP. The modification of

CBS-MSP to find the best locations for a given number of sinks is given in Algorithm

27, which we call Cluster-Based Sampling for Finding the Best Sink Locations (CBS-

BSL). CBS-BSL is different from CBS-MSP because it takes the number of required

sinks n as one of its input and the objective is to find the best locations for n sinks to

minimise the number of uncovered sensors. CBS-MSRP is presented in Algorithm

28. Its difference to MSRFT is in line 4, i.e. instead of calling BSLFT, it calls

CBS-BSL.

289

Algorithm 28: CBS-MSRP
Input : G,T,AR, AS, c,DistanceG, lmax,max iterations,max iterations grasp
Output: R∗, S∗

1: best cost←∞
2: n←2
3: do
4: S←CBS-BSL(G,T,AS, c, DistanceG, lmax, max iterations, n)
5: H←(T∪AR∪S,E↓T∪AR∪S)
6: Calculate num uncovered and num critical in H using DistanceG and lmax

7: if num uncovered =0 and num critical =0 then
8: R←GRASP-MRP(G,T, S,AR, lmax, max iterations grasp)
9: if

∑
v∈R∪S cv< best cost then

10: R∗←R, S∗←S, best cost←
∑

v∈R∪S cv
11: end if
12: end if
13: n←n+1
14: while num uncovered >0 and n≤|AS|
15: return R∗, S∗

290

Bibliography

[1] The Contiki Operating System. Available at http://www.contiki-os.org

[2 August 2012].

[2] The Network Simulator - ns-2. Available at http://www.isi.edu/nsnam/ns/

[30 April 2010].

[3] TinyOS. Available at http://www.tinyos.net [2 August 2012].

[4] Tmote Sky Datasheet. Available at http://www.eecs.harvard.edu/

~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf [30

April 2010].

[5] Z-MAC: Hybrid MAC for Wireless Sensor Networks. Available at http:

//www4.ncsu.edu/~rhee/export/zmac/software/zmac/zmac.htm [30 April

2010].

[6] M. Ahlberg, V. Vlassov and T. Yasui. Router Placement in Wireless Sensor

Network. Technical Report KTH/ICT/ECS, Royal Institute of Technology

(KTH), Stockholm, Sweden, 2006.

[7] G. Ahn, E. Miluzzo, A. T. Campbell, S. G. Hong and F. Cuomo. Funneling-

MAC: A Localized, Sink-Oriented MAC for Boosting Fidelity in Sensor Net-

works. In Proc. 4th Int’l Conf. Embedded Networked Sensor Systems (Sen-

Sys’06), pages 293–306, Nov. 2006.

291

[8] K. Akkaya and M. Younis. COLA: A Coverage and Latency aware Actor

Placement for Wireless Sensor and Actor Networks. In Proc. IEEE Vehicular

Technology Conference (VTC’06), Sept. 2006.

[9] K. Akkaya and M. F. Younis. An Energy-Aware QoS Routing Protocol for

Wireless Sensor Networks. In Proc. 23rd IEEE Intl Conf. Distributed Com-

puting Systems (ICDCS’03), pages 710–715, May 2003.

[10] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci. Wireless

Sensor Networks: A Survey. Computer Networks, Volume 38, Number 4,

pages 393–422, Mar. 2002.

[11] I. F. Akyildiz and M. C. Vuran (editors). Wireless Sensor Networks. John

Wiley & Sons, Inc., 2010.

[12] J. N. Al-Karaki and A. E. Kamal. Routing Techniques in Wireless Sensor

Networks: A Survey. IEEE Wireless Communications, Volume 11, Number 6,

pages 6–28, Dec. 2004.

[13] T. Andersen and S. Tirthapura. Wireless Sensor Deployment for 3D Cov-

erage with Constraints. In Proc. 6th Int’l Conf. Networked Sensing Systems

(INSS’09), Jun. 2009.

[14] B. Aoun, R. Boutaba, Y. Iraqi and G. Kenward. Gateway Placement Opti-

misation in Wireless Mesh Networks with QoS Constraints. IEEE Journal on

Selected Areas in Communications, Volume 24, Number 11, pages 2127–2136,

Nov. 2006.

[15] E. A. Basha, S. Ravela and D. Rus. Model-Based Monitoring for Early Warn-

ing Flood Detection. In Proc. 6th ACM Conf. Embedded Networked Sensor

Systems (SenSys’08), pages 295–308, Nov. 2008.

[16] A. Bavelas. A Mathematical Model for Group Structure. Human Organiza-

tions, Volume 7, pages 16–30, 1948.

292

[17] Y. Bejerano. Efficient Integration of Multihop Wireless and Wired Networks

with QoS Constraints. IEEE/ACM Transactions on Networking, Volume 12,

Number 6, pages 1064–1078, Dec. 2004.

[18] J. Beutel, K. Römer, M. Ringwald and M. Woehrle. Deployment Techniques

for Wireless Sensor Networks. In G. Ferrari (editor), Sensor Networks: Where

Theory Meets Practice, pages 219–248. Springer, 2009.

[19] R. Bhandari. Optimal Physical Diversity Algorithms and Survivable Net-

works. In Proc. 2nd IEEE Symp. Computers and Communications (ISCC’97),

pages 433–441, Jul. 1997.

[20] R. Bhandari. Survivable Networks: Algorithm for Diverse Routing. Kluwer

Academic Publishers, 1999.

[21] S. Binato and G. C. Oliveira. A Reactive GRASP for Transmission Network

Expansion Planning. In C. C. Ribeiro and P. Hansen (editors), Essays and

Surveys in Metaheuristics, pages 81–100. Kluwer Academic Publishers, 2002.

[22] A. Bogdanov, E. Maneva and S. Riesenfeld. Power-aware Base Station Posi-

tioning for Sensor Networks. In Proc. 23rd Int’l Ann. Joint Conf. IEEE Com-

puter and Communications Societies (INFOCOM’04), pages 575–585, Mar.

2004.

[23] A. Boukerche, X. Cheng and J. Linus. A Performance Evaluation of a Novel

Energy-Aware Data-Centric Routing Algorithm in Wireless Sensor Networks.

Wireless Networks, Volume 11, Number 5, pages 619–635, Sept. 2005.

[24] A. Boukerche, R. W. N Pazzi and R. B. Araujo. Fault-Tolerant Wireless Sen-

sor Network Routing Protocols for the Supervision of Contex-Aware Physical

Environments. Journal of Parallel and Distributed Computing, Volume 66,

Number 4, pages 586–599, Apr. 2006.

293

[25] U. Brandes. On Variants of Shortest-Path Betweenness Centrality and Their

Generic Computation. Social Networks, Volume 30, Number 2, pages 136–145,

May 2008.

[26] J. L. Bredin, E. D. Demaine, M. Hajiaghayi and D. Rus. Deploying Sensor

Networks with Guaranteed Capacity and Fault Tolerance. In Proc. 6th ACM

Int’l Symp. Mobile Ad Hoc Networking and Computing (MobiHoc’05), pages

309–319, May 2005.

[27] M. Buettner, G. V. Yee, E. Anderson and R. Han. X-MAC: A Short Preamble

MAC Protocol for Duty-Cycled Wireless Sensor Networks. In Proc. 4th Int’l

Conf. Embedded Networked Sensor Systems (SenSys’06), pages 307–320, Nov.

2006.

[28] H. Cambazard, D. Mehta, B. O’Sullivan, L. Quesada, M. Ruffini, D. Payne

and L. Doyle. A Combinatorial Optimisation Approach to the Design of

Dual-Parented Long-Reach Passive Optical Networks. In Proc. 23rd IEEE

Int’l Conf. Tools with Artificial Intelligence (ICTAI’11), pages 785–792, Nov.

2011.

[29] M. Ceriotti, M. Corra, L. D’Orazio, R. Doriguzzi, D. Facchin, S. Guna, G. P.

Jesi, R. Lo Cigno, L. Mottola, A. L. Murphy, M. Pescalli, G. P. Picco,

D. Pregnolato and C. Torghele. Is There Light at the Ends of the Tun-

nel? Wireless Sensor Networks for Adaptive Lighting in Road Tunnels. In

Proc. 10th ACM/IEEE Int’l Conf. Information Processing in Sensor Networks

(IPSN’11), pages 187–198, Apr. 2011.

[30] M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, S. Guna, M. Corra,

M. Pozzi, D. Zonta and P. Zanon. Monitoring Heritage Buildings with

Wireless Sensor Networks: The Torre Aquila Deployment. In Proc.

8th ACM/IEEE Int’l Conf. Information Processing in Sensor Networks

(IPSN’09), pages 277–288, Apr. 2009.

294

[31] S. Chen, H. Bao, X. Zeng and Y. Yang. A Fire Detecting Method based

on Multi-Sensor Data Fusion. In Proc. IEEE Int’l Conf. Systems, Man and

Cybernetics (SMC’03), pages 3775–3780, Oct. 2003.

[32] K. K. Chintalapudi. i-MAC - A MAC that Learns. In Proc. 9th ACM/IEEE

Int’l Conf. Information Processing in Sensor Networks (IPSN’10), pages 315–

326, Apr. 2010.

[33] O. Chipara, Z. He, G. Xing, Q. Chen, X. Wang, C. Lu, J. Stankovic and

T. Abdelzaher. Real-time Power-Aware Routing in Wireless Sensor Networks.

In Proc. 14th IEEE Workshop Quality of Service (IWQoS’06), pages 83–92,

Jun. 2006.

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction to

Algorithms, 2nd edition. The MIT Press, 2001.

[35] H. Delmaire, J. A. Dı́az, E. Fernández and M. Ortega. Reactive GRASP

and Tabu Search Based Heuristics for the Single Source Capacitated Plant

Location Problem. INFOR, Volume 47, pages 194–225, 1999.

[36] R. Diestel. Graduate Texts in Mathematics: Graph Theory, 3rd edition.

Springer, 2005.

[37] R. S. Dubey, R. Choubey and A. Dubey. Mitigating Congestion Aware Rout-

ing Protocol in Wireless Sensor Networks. Int’l Journal Engineering Science

and Technology, Volume 2, Number 12, pages 7395–7400, 2010.

[38] E. Egea-Lopez, J. Vales-Alonso, A. S. Martinez-Sala, J. Garcia-Haro,

P. Pavon-Marino and M. V. Bueno-Delgado. A Real-Time MAC Protocol for

Wireless Sensor Networks: Virtual TDMA for Sensors (VTS). In W. Grass,

B. Sick and K. Waldschmidt (editors), Proc. 19th Int’l Conf. Architecture of

Computing Systems (ARCS’006), Volume 3894 LNCS, pages 382–396, Mar.

2006.

295

[39] A. El-Hoiydi and J. D. Decotignie. WiseMAC: An Ultra Low Power MAC

Protocol for Multi-hop Wireless Sensor Networks. In S. E. Nikoletseas and

J. D. P. Rolim (editors), Proc. 1st Int’l Workshop Algorithmic Aspects of

Wireless Sensor Networks (ALGOSENSORS’04), Volume 3121 LNCS, pages

18–31, Jul. 2004.

[40] J. Elson and D. Estrin. Time Synchronization for Wireless Sensor Net-

works. In Proc. 15th IEEE Int’l Parallel and Distributed Processing Sym-

posium (IPDPS’01), Apr. 2001.

[41] T. A. Feo and M. G. C. Resende. A Probabilistic Heuristic for a Computation-

ally Difficult Set Covering Problem. Operations Research Letters, Volume 8,

pages 67–71, 1989.

[42] T. A. Feo and M. G. C. Resende. Greedy Randomized Adaptive Search

Procedures. Journal of Global Optimization, Volume 6, pages 109–133, 1995.

[43] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton, University

Press, 1962.

[44] L.C. Freeman. Centrality in Social Networks Conceptual Clarification. Social

Networks, Volume 1, Number 3, pages 215–239, 1979.

[45] S. Ganeriwal and R. Kumar M. B. Srivastava. Timing-sync Protocol for

Sensor Networks. In Proc. 1st Int’l Conf. Embedded Networked Sensor Systems

(SenSys’03), pages 138–149, Nov. 2003.

[46] C. F. Garćıa-Hernández, P. H. Ibargüengoytia-González, J. Garca-Hernández

and J. A. Pérez-Daz. Wireless Sensor Networks and Applications: A Survey.

International Journal of Computer Science and Network Security (IJCSNS),

Volume 7, Number 3, pages 264–273, Mar. 2007.

[47] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss and P. Levis. Collection

Tree Protocol. In Proc. 7th ACM Conf. Embedded Networked Sensor Systems

(SenSys’09), Nov. 2009.

296

[48] H. Gong, M. Liu, Y. Mao, L. Chen and L. Xie. Traffic Adaptive MAC Protocol

for Wireless Sensor Network. In X. Lu and W. Zhao (editors), Proc. 3rd Int’l

Conf. Computer Network and Mobile Computing (ICCNMC’05), Volume 3619

LNCS, pages 1134–1143, Aug. 2005.

[49] D. T. Gottuk, M. J. Peatross, R. J. Roby and C. L. Beyler. Advanced Fire

Detection Using Multi-Signature Alarm Algorithms. Fire Safety Journal, Vol-

ume 37, pages 381–394, 2002.

[50] G. P. Halkes and K. G. Langendoen. Crankshaft: An Energy-Efficient MAC-

Protocol for Dense Wireless Sensor Networks. In K. Langendoen and T. Voigt

(editors), Proc. 4th European Conf. Wireless Sensor Networks (EWSN’07),

Volume 4373 LNCS, pages 228–244, Jan. 2007.

[51] X. Han, X. Cao, E. L. Lloyd and C. C. Shen. Fault-tolerant Relay Node

Placement in Heterogeneous Wireless Sensor Networks. IEEE Transactions

on Mobile Computing, Volume 9, Number 5, pages 643–656, May 2010.

[52] B. Hao, J. Tang and G. Xue. Fault-Tolerant Relay Node Placement in Wire-

less Sensor Networks: Formulation and Approximation. In Proc. Workshop

High Performance Switching and Routing (HPSR’04), pages 246–250, Apr.

2004.

[53] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru,

T. Yan, L. Gu abd G. Zhou, J. Hui and B. Krogh. VigilNet: An Integrated

Sensor Network System for Energy-Efficient Surveillance. ACM Transactions

on Sensor Networks, Volume 2, Number 1, pages 1–38, Feb. 2006.

[54] W. R. Heinzelman, A. P. Chandrakasan and H. Balakrishnan. Energy-

Efficient Communication Protocol for Wireless Microsensor Networks. In

Proc. 33rd Hawaii Int’l Conf. System Sciences (HICSS’00), Jan. 2000.

297

[55] R. Hou and H. Shi. A Localized Algorithm for Finding Disjoint Paths in Wire-

less Sensor Networks. IEEE Communications Letters, Volume 10, Number 12,

pages 807–809, Dec. 2006.

[56] P. Hurni and T. Braun. MaxMAC: A Maximally Traffic-Adaptive MAC

Protocol for Wireless Sensor Networks. In J. S Silva, B. Krishnamachari and

F. Boavida (editors), Proc. 7th European Conf. Wireless Sensor Networks

(EWSN’10), Volume 5970 LNCS, pages 289–305, Feb. 2010.

[57] T. Issariyakul and E. Hossain (editors). Introduction to Network Simulator

NS2. Springer, 2009.

[58] S. Ivanov, E. Nett and R. Schumann. Fault-tolerant Base Station Planning

of Wireless Mesh Networks in Dynamic Industrial Envoronments. In Proc.

IEEE Conf. Emerging Technologies and Factory Automation (ETFA’10),

Sept. 2010.

[59] R. K. Jain, D. M. Chiu and W. R. Hawe. A Quantitative Measure of Fair-

ness and Discrimination for Resource Allocation in Shared Computer System.

Technical report, Digital Equipment Corporation, 1984.

[60] K. Karenos, D. Pendarakis, V. Kalogeraki, H. Yang and Z. Liu. Overlay Rout-

ing under Geographically Correlated Failures in Distributed Event-Based Sys-

tems. In Proc. 2010 Int’l Conf. On the Move to Meaningful Internet Systems

(OTM’10), pages 764–784, Oct. 2010.

[61] A. Kashyap, S. Khuller and M. Shayman. Relay Placement for Fault Toler-

ance in Wireless Networks in Higher Dimensions. Computational Geometry:

Theory and Applications, Volume 44, Number 4, pages 206–215, May 2011.

[62] A. Kchiche and F. Kamoun. Access-Points Deployment for Vehicular Net-

works Based on Group Centrality. In Proc. 3rd Int’l Conf. New Technologies,

Mobility and Security (NTMS’09), pages 1–6, Dec. 2009.

298

[63] A. Kchiche and F. Kamoun. Centrality-based Access-Points Deployment for

Vehicular Networks. In Proc. 17th Int’l Conf. Telecommunications (ICT’10),

pages 700–706, Apr. 2010.

[64] Y. Kim, T. Schmid, Z. M. Charbiwala, J. Friedman and M. B. Srivastava.

NAWMS: Nonintrusive Autonomous Water Monitoring System. In Proc. 6th

ACM Conf. Embedded Networked Sensor Systems (SenSys’08), pages 309–

322, Nov. 2008.

[65] J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley, 2011.

[66] J. Ko, C. Lu, M. Srivastava, J. Stankovic, A. Terzis and M. Welsh. Wireless

Sensor Networks for Healthcare. Proc. of the IEEE, Volume 98, Number 11,

pages 1947–1960, Nov. 2010.

[67] R. Kumar, R. Crepaldi, H. Rowaihy, A. F. Harris III, G. Cao, M. Zorzi and

T. F. La Porta. Mitigating Performance Degradation in Congested Sensor

Networks. IEEE Transactions on Mobile Computing, Volume 7, Number 6,

pages 682–697, Jun. 2008.

[68] K. Langendoen and G. Halkes. Energy-Efficient Medium Access Control. In

R. Zurawski (editor), Embedded Systems Handbook, pages 34.1–34.29. CRC

Press, 2005.

[69] S. Lindsey and C. S. Raghavendra. PEGASIS: Power-Efficient Gathering in

Sensor Information Systems. In Proc. 3rd IEEE Int’l Conf. Communications

(ICC’01), Jun. 2001.

[70] H. Liu, P. Wan and X. Jia. On Optimal Placement of Relay Nodes for Reli-

able Connectivity in Wireless Sensor Networks. Combinatorial Optimization,

Volume 11, Number 2, pages 249–260, Mar. 2006.

[71] E. L. Lloyd and G. Xue. Relay Node Placement in Wireless Sensor Networks.

IEEE Transactions on Computers, Volume 56, Number 1, pages 134–138, Jan.

2007.

299

[72] D. Luo, H. Zhao, Y. Bi, K. Lin, X. Zhang, Z. Yin and P. Sun. Multiple Sink

Nodes’ Deployment Based on PMP in WSNs. In Proc. 2nd Int’l Conf. Per-

vasive Computing and Applications (ICPCA’07), pages 675–678, Jul. 2007.

[73] S. Mahmud, H. Wu and J. Xue. Efficient Energy Balancing Aware Multiple

Base Station Deployment for WSNs. In P. J. Marrn and K. Whitehouse

(editors), Proc. 8th European Conf. Wireless Sensor Networks (EWSN’11),

Volume 6567 LNCS, pages 179–194, Feb. 2011.

[74] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler and J. Anderson. Wireless

Sensor Networks for Habitat Monitoring. In Proc. 1st ACM Int’l Workshop

Wireless Sensor Networks and Applications (WSNA’02), pages 88–97, Sept.

2002.

[75] D. Malan, T. Fulford-Jones, M. Welsh and S. Moulton. CodeBlue: An Ad

Hoc Sensor Network Infrastructure for Emergency Medical Care. In Proc.

Workshop on Applications of Mobile Embedded Systems (WAMES’04), Jun.

2004.

[76] M. Maróti, B. Kusy, G. Simon and Á. Lédeczi. Robust Multi-Hop Time

Synchronization in Sensor Networks. In Proc. Int’l Conf. Wireless Networks

(ICWN’04), pages 454–460, Jun. 2004.

[77] S. L. Martins, P. M. Pardalos, M. G. C. Resende and C. C. Ribeiro. Greedy

Randomized Adaptive Search Procedures for the Steiner Problem in Graphs.

In P. M. Pardalos, S. Rajasekaran and J. Rolim (editors), Randomization

Methods in Algorithmic Design, Volume 43 of DIMACS Series on Discrete

Mathematics and Theoretical Computer Science, pages 133–145. American

Mathematical Society, 1999.

[78] S. L. Martins, M. G. C. Resende and C. C. Ribeiro P. M. Pardalos. A Parallel

GRASP for the Steiner Tree Problem in Graphs Using a Hybrid Local Search

300

Strategy. Journal of Global Optimization, Volume 17, Number 1-4, pages

267–283, Sept. 2000.

[79] T. Melodia, M. C. Vuran and D. Pompili. The State of the Art in Cross-Layer

Design for Wireless Sensor Networks. In Proc. EuroNGI Workshops Wireless

and Mobility, pages 78–92, Jul. 2005.

[80] Z. Merhi, M. Elgamel and M. Bayoumi. EB-MAC: An Event Based Medium

Access Control for Wireless Sensor Networks. In Proc. 2009 IEEE Int’l Conf.

Pervasive Computing and Communications (PerCom’09), pages 1–6, Mar.

2009.

[81] S. Misra, S. D. Hong, G. Xue and J. Tang. Constrained Relay Node Place-

ment in Wireless Sensor Networks to Meet Connectivity and Survivability

Requirements. In Proc. 27th Ann. IEEE Conf. Computer Communications

(INFOCOM’08), pages 281–285, Apr. 2008.

[82] X. Ning and C. G. Cassandras. Optimal Cluster-Head Deployment in Wireless

Sensor Networks with Redundant Link Requirements. In Proc. 2nd Int’l Conf.

Performance Evaluation Methodologies and Tools (ValueTools’07), Oct. 2007.

[83] S. H. Oh, C. O. Hong and Y. H. Choi. A Malicious and Malfunctioning Node

Detection Scheme for Wireless Sensor Networks. Wireless Sensor Network,

Volume 4, Number 3, pages 84–90, 2012.

[84] E. M. R. Oliveira, H. S. Ramos and A. A. F. Loureiro. Centrality-based

Routing for Wireless Sensor Networks. In Proc. 3th Int’l Conf. IFIP Wireless

Days (WD’10), pages 1–5, Oct. 2010.

[85] E. I. Oyman and C. Ersoy. Multiple Sink Network Design Problem in Large

Scale Wireless Sensor Networks. In Proc. IEEE Int’l Conf. Communications

(ICC’04), pages 3663–3667, Jun. 2004.

[86] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algo-

rithms and Complexity. Prentice Hall, 1982.

301

[87] P. H. Pathak and R. Dutta. Impact of Power Control on Relay Load Balancing

in Wireless Sensor Networks. In Proc. IEEE Wireless Communications and

Networking Conference (WCNC’10), pages 1–6, Apr. 2010.

[88] J. Polastre, J. Hill and D. Culler. Versatile Low Power Media Access for

Wireless Sensor Networks. In Proc. 2nd Int’l Conf. Embedded Networked

Sensor Systems (SenSys’04), pages 95–107, Nov. 2004.

[89] R. Prasad and H. Wu. Gateway Deployment Optimization in Cellular Wi-Fi

Mesh Networks. Journal of Networks, Volume 1, Number 3, pages 31–39, Jul.

2006.

[90] J. Pu, Z. Xiong and X. Lu. Fault-Tolerant Deployment with k -connectivity

and Partial k -connectivity in Sensor Networks. Wireless Communications and

Mobile Computing, Volume 9, Number 7, pages 909–919, May 2008.

[91] L. Qiu, R. Chandra, K. Jain and M. Mahdian. Optimizing the Placement of

Integration Points in Multi-hop Wireless Networks. In Proc. 12th IEEE Int’l

Conf. Network Protocols (ICNP’04), pages 271–282, Oct. 2004.

[92] S. Rajasegarar, C. Leckie and M. Palaniswami. Anomaly Detection in Wire-

less Sensor Networks. IEEE Wireless Communications, Volume 15, Number 4,

pages 34–40, 2008.

[93] V. Rajendran, J. J. Garcia-Luna-Aceves and K. Obraczka. Energy-Efficient,

Application-Aware Medium Access for Sensor Networks. In Proc. 2nd IEEE

Int’l Conf. Mobile Adhoc and Sensor Systems (MASS’05), Nov. 2005.

[94] V. Rajendran, K. Obraczka and J. J. Garcia-Luna-Aceves. Energy-Efficient

Collision-Free Medium Access Control for Wireless Sensor Networks. In Proc.

1st Int’l Conf. Embedded Networked Sensor Systems (SenSys’03), pages 181–

192, Nov. 2003.

302

[95] R. Ravi and D. P. Williamson. An Approximation Algorithm for Minimum-

Cost Vertex-Connectivity Problems. Algorithmica, Volume 18, Number 1,

pages 21–43, 1997.

[96] M. G. C. Resende and C. C. Ribeiro. Greedy Randomized Adaptive Search

Procedures. In F. Glover and G. Kochenberger (editors), State of the Art

Handbook in Metaheuristics, pages 219–249. Kluwer Academic Publishers,

2002.

[97] I. Rhee, A. Warrier, M. Aia and J. Min. Z-MAC: A Hybrid MAC for Wire-

less Sensor Networks. In Proc. 3rd Int’l Conf. Embedded Networked Sensor

Systems (SenSys’05), pages 90–101, Nov. 2005.

[98] M. Ringwald and K. Römer. BurstMAC - An Efficient MAC Protocol for

Correlated Traffic Bursts. In Proc. 6th Int’l Conf. Networked Sensing Systems

(INSS’09), pages 1–9, Jun. 2009.

[99] J. Segovia, E. Calle and P. Vila. An Improved Method for Discovering Link

Criticality in Transport Networks. In Proc. 6th Int’l Conf. Broadband Com-

munications, Networks, and Systems (BROADNETS’09), pages 1–8, Sept.

2009.

[100] S. Severi and D. Dardari. Performance Limits of Time Synchronization

in Wireless Sensor Networks. In Proc. IEEE Int’l Conf. Communications

(ICC’08), pages 2124–2128, May 2008.

[101] Y. Shavitt and Y. Singer. Beyond Centrality - Classifying Topological Sig-

nificance using Backup Efficiency and Alternative Paths. In Proc. 6th Int’l

IFIP-TC6 Conf. Ad Hoc and Sensor Networks, Wireless Networks, Next Gen-

eration Internet (NETWORKING’07), pages 774–785, May 2007.

[102] Y. Shavitt and Y. Singer. Beyond Centrality - Classifying Topological Sig-

nificance using Backup Efficiency and Alternative Paths. New Journal of

Physics, Volume 9, Number 266, Aug. 2007.

303

[103] I. Slama, B. Jouaber and D. Zeghlache. Energy Efficient Scheme for Large

Scale Wireless Sensor Networks with Multiple Sinks. In Proc. IEEE Wireless

Communications and Networking Conf. (WCNC’08), pages 2367–2372, Mar.

2008.

[104] IEEE Computer Society. 802.11 IEEE Standard for Information Technology -

Telecommunications and Information Exchange Between Systems - Local and

Metropolitan Area Networks - Specific Requirements. Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) Specifications,

Jun. 2007. Available at http://standards.ieee.org/about/get/802/802.

11.html [2 August 2012].

[105] B. Son, Y. S. Her and J. G. Kim. A Design and Implementation of Forest-

Fires Surveillance System based on Wireless Sensor Networks for South Ko-

rea Mountains. Int’l Journal of Computer Science and Network Security,

Volume 6, Number 9B, pages 124–130, Sept. 2006.

[106] A. Srinivas and E. Modiano. Minimum Energy Disjoint Path Routing in

Wireless Ad-hoc Networks. In Proc. 9th Ann. Int’l Conf. Mobile Computing

and Networking (MobiCom’03), pages 122–133, Sept. 2003.

[107] K. Srinivasan and P. Levis. RSSI is Under Appreciated. In Proc. 3rd Workshop

Embedded Networked Sensors (EmNets’06), May 2006.

[108] I. Stojmenovic (editor). Handbook of Sensor Networks - Algorithms and Ar-

chitectures. John Wiley & Sons, Inc., 2005.

[109] T. Tabirca, K. N. Brown and C. J. Sreenan. A Dynamic Model for Fire

Emergency Evacuation Based on Wireless Sensor Networks. In Proc. 8th Int’l

Symp. Parallel and Distributed Computing (ISPDC’09), Jul. 2009.

[110] J. Tang, B. Hao and A. Sen. Relay Node Placement in Large Scale Wireless

Sensor Networks. Computer Communications, Volume 29, Number 4, pages

490–501, Feb. 2006.

304

[111] M. Tang. Gateways Placement in Backbone Wireless Mesh Networks. Int’l

Journal Communications, Networks and System Sciences, Volume 2, Num-

ber 1, pages 44–50, Feb. 2009.

[112] J. Tarng, B. Chuang and P. Liu. A Relay Node Deployment Method for

Disconnected Wireless Sensor Networks: Applied in Indoor Environments.

Journal of Network and Computer Applications, Volume 32, Number 3, pages

652–659, May 2009.

[113] D. Torrieri. Algorithms for Finding an Optimal Set of Short Disjoint Paths

in a Communication Network. IEEE Transactions on Communications, Vol-

ume 40, Number 11, pages 1698–1702, Nov. 1992.

[114] T. van Dam and K. Langendoen. An Adaptive Energy-Efficient MAC Protocol

for Wireless Sensor Networks. In Proc. 1st Int’l Conf. Embedded Networked

Sensor Systems (SenSys’03), pages 171–180, Nov. 2003.

[115] Z. Vincze, R. Vida and A. Vidacs. Deploying Multiple Sinks in Multi-hop

Wireless Sensor Networks. In Proc. IEEE Int’l Conf Pervasive Services

(ICPS’07), pages 55–63, Jul. 2007.

[116] VINT. The ns Manual (formerly ns Notes and Documentation), Jan.

2009. Available at http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf [30

April 2010].

[117] Q. Wang. Packet Traffic: A Good Data Source for Wireless Sensor Network

Modeling and Anomaly Detection. IEEE Network, Volume 25, Number 3,

pages 15–21, 2011.

[118] Y. Wang, C. Hu and Y. Tseng. Efficient Deployment Algorithms for Ensuring

Coverage and Connectivity of Wireless Sensor Networks. In Proc. 1st Int’l

Conf. Wireless Internet (WICON’05), pages 114–121, Jul. 2005.

[119] S. Wenming, H. Chuanhe, S. Mingkai, C. Yong and C. Zhe. Indoor Local-

ization Scheme in Wireless Sensor Networks Using Spatial Information. In

305

Proc. Int’l Conf. Wireless Communications, Networking and Mobile Comput-

ing (WiCOM’06), pages 1–5, Sept. 2006.

[120] J. L. Wong, R. Jafari and M. Potkonjak. Gateway Placement for Latency

and Energy Efficient Data Aggregation. In Proc. 29th Ann. IEEE Int’l Conf.

Local Computer Networks (LCN’04), pages 490–497, Nov. 2004.

[121] C. H. Wu, K. C. Lee and Y. C. Chung. A Delaunay Triangulation Based

Method for Wireless Sensor Network Deployment. Computer Communica-

tions, Volume 30, Number 14–15, pages 2744–2752, Oct. 2007.

[122] X. Xu and W. Liang. Placing Optimal Number of Sinks in Sensor Networks for

Network Lifetime Maximization. In Proc. IEEE Int’l Conf. Communications

(ICC’11), Jun. 2011.

[123] W. Ye, J. Heidemann and D. Estrin. An Energy-Efficient MAC Protocol for

Wireless Sensor Networks. In Proc. 21st Ann. Joint Conf. IEEE Computer

and Communications Societies (INFOCOM’02), pages 1567–1576, Jun. 2002.

[124] W. Youssef and M. Younis. Intelligent Gateway Placement for Reduced Data

Latency in Wireless Sensor Networks. In Proc. IEEE Int’l Conf. Communi-

cations (ICC’07), pages 3805–3810, Jun. 2007.

[125] Y. Zeng, C. J. Sreenan, L. Sitanayah, N. Xiong, J. H. Park and G. Zheng.

An Emergency-Adaptive Routing Scheme for Wireless Sensor Networks for

Building Fire Hazard Monitoring. Sensors, Volume 11, Number 3, pages

2899–2919, Mar. 2011.

[126] W. Zhang, G. Xue and S. Misra. Fault-Tolerant Relay Node Placement in

Wireless Sensor Networks: Problems and Algorithms. In Proc. 26th Ann.

IEEE Conf. Computer Communications (INFOCOM’07), pages 1649–1657,

May 2007.

[127] T. Zheng, S. Radhakrishnan and V. Sarangan. PMAC: An Adaptive Energy-

Efficient MAC Protocol for Wireless Sensor Networks. In Proc. 19th IEEE

306

Int’l Symp. Parallel and Distributed Processing (IPDPS’05), pages 65–72,

Apr. 2005.

[128] P. Zhou, B. S. Manoj and R. Rao. A Gateway Placement Algorithm in Wire-

less Mesh Networks. In Proc. 3rd Int’l Conf. Wireless Internet (WICON’07),

Oct. 2007.

307

