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ABSTRACT: RNA interference (RNAi) holds great promise as a strategy to further our 

understanding of gene function in the central nervous system (CNS) and as a therapeutic 

approach for neurological and neurodegenerative diseases. However, the potential for its use 

is hampered by the lack of siRNA delivery vectors, which are both safe and highly efficient. 

Cyclodextrins have been shown to be efficient and low toxicity gene delivery vectors in 

various cell types in vitro. However, to date they have not been exploited for delivery of 

oligonucleotides to neurons.  

To this end, a modified β-cyclodextrin (CD) vector was synthesised, which complexed 

siRNA to form cationic nanoparticles of less than 200nm in size. Furthermore, it conferred 

stability in serum to the siRNA cargo. The in vitro performance of the CD in both 

immortalised hypothalamic neurons and primary hippocampal neurons was evaluated. The 

CD facilitated high levels of intracellular delivery of labelled siRNA, whilst maintaining at 

least 80% cell viability. Significant gene knockdown was achieved, with a reduction in 

luciferase expression of up to 68% and a reduction in endogenous glyceraldehyde phosphate 

dehydrogenase (GAPDH) expression of up to 40%. To our knowledge, this is the first time 

that a modified CD has been used as a safe and efficacious vector for siRNA delivery into 

neuronal cells. 

 

KEYWORDS: nanotechnology, cyclodextrins, click chemistry, siRNA delivery, neurons, 

gene knockdown 
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INTRODUCTION 

RNA interference (RNAi) has advanced rapidly since it was first discovered in mammalian 

cells
1
 to clinical application and most recently, the first evidence of systemic administration 

of a targeted non-viral siRNA delivery system to humans was reported
2
. RNAi is a naturally 

occurring biological process which results in specific silencing of a target gene by short 

sequences of RNA known as small interfering RNAs (siRNAs),
3
 with a subsequent reduction 

in the expression of the corresponding protein. Introduction of chemically synthesised siRNA 

into cells to reduce expression of a specific gene can be used to determine gene function or 

for therapeutic purposes.  

However, delivery of siRNA proves a constant challenge and there are specific issues which 

have to be addressed when delivering to neurons and the central nervous system (CNS).
4
 

Neurons are notoriously difficult to transfect for reasons that have yet to be fully understood, 

although it is likely to be partly related to their post-mitotic nature.
5
 There are many barriers 

to siRNA delivery to the CNS including neuronal uptake, vesicular escape and, not least, the 

blood-brain barrier.
6
 Appropriately designed delivery systems are therefore required in order 

to mediate neuronal siRNA delivery and gene silencing. Viral vectors have been extensively 

reported and achieve efficient transfection.
7
 However, non-viral vectors are more recently the 

focus of research to achieve a safer means of transfection. To date, there are limited reports of 

successful neuronal delivery of siRNA with these. The most widely used are cationic lipid 

based vectors, in particular Lipofectamine
TM

 2000 (Invitrogen), which has been shown to 

mediate effective gene knockdown in primary neurons,
8-10

 with up to 70% reduction in gene 

or protein expression achieved.
9
 However, such vectors are also associated with considerable 

toxicity in primary cells, particularly neurons.
11-13

 Therefore, there remains a need for the 

development of alternative less toxic vectors for siRNA and gene delivery to neurons. 
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Cyclodextrins (CDs) are naturally occurring oligosaccharides and are well characterised 

pharmaceutical excipients with a favourable toxicological profile.
14

 The potential of CDs as 

delivery agents for therapeutic oligonucleotides is well established.
15, 16

 Chemical 

modification of CDs has yielded monodisperse non-viral gene delivery vectors.
17-21

 

Modifications of the basic β-CD structure, including introduction of cationic and/or 

amphiphilic moieties have resulted in a group of novel vectors which can complex pDNA and 

efficiently deliver it to various in vitro cell culture models, including liver (Hep G2) cells
22, 23

 

and undifferentiated and differentiated intestinal epithelial (Caco2) cells.
24

 A novel synthetic 

approach, involving the application of cuprous-catalysed click chemistry to modify the 2-

hydroxyl position of β-CD with polar groups was recently reported.
25

 An amphiphilic 

cationic β-CD with hydrocarbon chains (C12) on the primary face and polar (propylamino) 

groups on the secondary face was synthesised in this way. This CD achieved high levels of 

gene silencing in Caco2 cells.
25

  

Given the ease with which they can now be chemically modified and their low toxicity and 

efficiency in non-neuronal cells, it is perhaps surprising that the utility of such CDs for 

neuronal delivery remains to be exploited.  Therefore, in this study we investigate the 

aforementioned cationic amphiphilic CD for siRNA delivery in hippocampal and 

hypothalamic neurons.
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RESULTS AND DISCUSSION 

The vast potential for RNA interference technology in terms of identifying new targets in 

many neurological diseases, as well as offering an alternative therapeutic strategy, warrants 

research into the development of improved and low toxicity vectors for delivering siRNA. 

Developments in the chemistry of such vectors are facilitating major biological advances and 

in this study, we demonstrate that a novel chemically modified CD can be used for neuronal 

siRNA delivery. The CD chemical structure is shown in Figure 1 (a). The synthesis of this 

CD was previously reported.
25

 Briefly, β-CD was substituted on the primary side with 

lipophilic chains (C12) by thioalkylation.
18, 26

 Introduction of amphiphilic moieties improves 

the transfection efficiency of cationic CDs.
18, 22

 Functionalisation at the 2-position was by 

means of a copper-catalysed ‘click’ reaction, which represents an efficient and versatile 

strategy for modifying the secondary side with diverse groups, including cationic groups and 

polyethyleneglycol (PEG) chains. Click chemistry has been previously applied to modify the 

primary face of CD-based gene delivery vectors,
27, 28

 but the selective modification at the 2-

hydroxyl presented a greater challenge.
19

 A schematic representation of the CD is shown in 

Figure 1(b). This CD has shown promise as a non-viral siRNA delivery vector in non-

neuronal cells.
25

 

Other non-viral methods for siRNA delivery have been reported in recent years, including 

cationic lipids, polymers and cell-penetrating peptides (CPPs). Cationic lipids and polymers, 

although highly efficacious, exhibit considerable toxicity
29

. CPPs, on the other hand, exert 

minimal toxicity and have been successfully used for siRNA delivery to primary 

hippocampal neurons
12

, primary cortical neurons
30

 and the hippocampus
31

 in vivo. However, 

additional non-viral delivery systems would be desirable and to this end, modified CDs offer 

great potential. In particular, the chemical synthesis for the CD used herein can be also 

applied for functionalisation of CDs with PEG groups for improved stability
25

. Moreover, 
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there is potential to extend this chemistry to allow for the attachment of neuronal and CNS 

targeting ligands. Therefore, we believe that exciting prospects exist for the application of 

modified CDs to neuronal RNAi.  

To determine the suitability of the modified CD as a siRNA delivery vector, several physical 

properties including the ability to complex siRNA, size and charge of CD.siRNA complexes 

and protection of siRNA from serum degradation were assessed. Following this, in vitro 

experiments in neurons showed that the CD successfully mediated efficient uptake of siRNA 

and knockdown of reporter and housekeeping genes. 

In the first instance, CD.siRNA complex formation was identified using agarose gel 

electrophoresis. Uncomplexed siRNA was used as a control and migrated freely through the 

gel. This was compared with CD.siRNA complexes, which were formed at increasing mass 

ratios (MRs; µg CD: µg siRNA). The positive charges from the primary amine group in the 

CD enable association with the negatively charged phosphate groups of the siRNA 

backbone.
32

 Complete binding of siRNA appeared to occur abruptly at MR5, with no 

migration of siRNA seen at MR 5 or MR10 (Fig.2 (a)), demonstrating that the negatively 

charged siRNA had been effectively complexed by the CD at these MRs. Furthermore, there 

was no fluorescence apparent in the wells of the CD.siRNA lanes, indicating that complexed 

siRNA was not accessible to the intercalating agent ethidium bromide.  

 

Secondly, the physicochemical properties of siRNA delivery vectors, which are well known 

to impact on their transfection efficiency, were examined. Key factors which can affect 

transfection include the size of the complexes formed with siRNA and their surface charge.
33, 

34
 The particle size of CD.siRNA complexes, measured using the Malvern ZetaSizer Nano 

particle size analyser, was dependent on MR (Fig.2 (b)). Although siRNA was shown to be 

fully bound at MR5, these complexes were very polydisperse and size and charge data were 
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therefore excluded. Complexes produced at MR10 were 218 ± 19.9 nm, whereas those 

complexes produced at MR20 and MR30 were 136.9 ± 21.9 nm and 130.4 ± 22.3 nm 

respectively. These sizes fall within the nanometre range required for cellular uptake by 

endocytic processes.
33

  

The polydispersity index (PDI) was also noted for each size measurement, with PDI generally 

in the range 0.2 to 0.4, indicating some variation in the size distribution.
17

 The particle sizes 

were stable when stored for up to six months at 4ºC, with no aggregation or change in 

appearance observed (data not shown).  

The surface charge of CD.siRNA complexes was also measured and was similiarly dependent 

on MR. Complexes were cationic at all MRs, with charge (zeta potential) increasing as the 

MR increased from +42.2 ± 7.9 mV at MR10 to + 60.2 ± 3.3 mV at MR30, that is increasing 

the amount of cationic CD relative to siRNA resulted in more highly positively charged 

complexes. The cationic nature of the complexes formed allows association with the 

negatively charged proteoglycans on the surface of the cell membrane.
24

  

Furthermore, stability of siRNA in serum is an important feature when considering future in 

vivo experiments. Agarose gel electrophoresis was used to characterise the protective effects 

of CDs on siRNA degradation by serum (Fig. 2(c)). Uncomplexed siRNA, shown in Lanes 2-

5, was partially degraded after less than 30 seconds exposure to serum and completely 

degraded after 0.5 to 24 hours exposure. In contrast, siRNA in CD complexes (Lanes 6-11), 

which was released from the complexes by heparin displacement after serum exposure, 

remained intact for up to 4 hours which is comparable to the protection conferred by other 

vectors, including liposomes.
35

 Even after 24 hours, the CD prevented complete degradation 

of siRNA.  



 8 

Having confirmed that the physical properties of the CD vector were suitable for siRNA 

delivery, in vitro testing was carried out in a mouse embryonic hypothalamic neuronal cell 

line, mHypoE N41
36

 and in primary rat embryonic (E18) hippocampal neurons.  

 

Firstly, the cytotoxic effects of CD.siRNA complexes on neuronal cell cultures were 

determined by MTT assays, after cells were treated with CD.siRNA complexes for 24 hours, 

using 50 nM or 100 nM siRNA. Overall, a favourable toxicity profile for this vector was 

observed in both cultures, although the primary neurons were more susceptible to CD.siRNA 

mediated toxicity when compared to the immortalised N41 cells. Mitochondrial 

dehydrogenase activity compared to untreated neurons was used as an indicator of toxicity. 

In N41 cells, CD.siRNA complexes had no effect on dehydrogenase activity at 50 nM siRNA 

(Fig. 3 (a)). After 24 hours treatment at 100 nM siRNA, cell viability was unaffected at 

MR10 and was maintained at 88 ± 1.5 % at MR20 (Fig. 3 (a)). Only at MR30 was there a 

significant reduction, corresponding to minor cytotoxicity (80 ± 0.9 %, *p < 0.05 relative to 

untreated controls).  

Meanwhile, in primary hippocampal neuronal cultures, siRNA alone did not cause any 

cytotoxicity (Fig. 3 (b)) but some reduction in cell viability occurred after treatment but after 

treatment with CD.siRNA complexes at 50 nM siRNA, dehydrogenase activity was reduced 

to 88 ± 1.6 % (*p < 0.05) at MR10 and 83 ± 0.4 % (*p < 0.05) at MR20. At 100 nM siRNA, 

however, there was no further decrease in cell viability.  

Trypan blue exclusion assays were also carried out as an alternative measure of cytotoxicity 

(Fig. 3 (c, d)). These data confirm the favourable cytotoxicity profile of CD vectors in both 

immortalised and primary neurons. 



 9 

Neuronal cells, in particular primary neuronal cells, are quite susceptible to the toxic effects 

of cationic vectors. For example, in primary cortical cultures, layered double hydroxide 

(LDH) nanoparticles caused a 20-30% reduction in viability
37

 and in another study, toxicity 

with Oligofectamine (~80%) and with polyethyleneimine (PEI; ~76%) was reported.
38

 In 

primary hippocampal neurons, stearylated octaarginine and artificial virus-like particles 

reduced cell viability to 73% and 75% respectively.
39

 The data presented here showed that 

the modified CD did not induce significant toxicity in the hypothalamic neuronal cell line at 

MR10 or MR20 (Fig. 3 (a)) and caused limited impairment of viability of the primary 

hippocampal neurons (80%, Fig. 3(b)). Under similar experimental conditions, 

Lipofectamine
TM

 2000 was found to be considerably more toxic to primary hippocampal 

neurons than the CD vector, reducing viability to 61.8 ± 3.5 % (Fig. 3(b)), in the MTT assay. 

This was comparable to previously reported toxicity of Lipofectamine
TM

 2000 in primary 

hippocampal cultures.
12

 

Secondly, cellular uptake of CD.siRNA complexes was assessed by flow cytometry. For 

these experiments, 6-FAM labelled siRNA was used, at a concentration of 50 nM. Fig. 4 (a) 

shows the percentage of 6-FAM positive cells in N41 cultures, after treatment with 

CD.siRNA complexes at increasing mass ratios from MR5 to MR20, for either 4 or 24 hours. 

No uptake was observed when cells were treated with uncomplexed siRNA at either time 

point. After 4 hours treatment, low levels of uptake were seen, ranging from 3.5 ± 1.2 % at 

MR5 to 8.8 ± 3.6 % at MR20.  However, a highly significant increase in uptake was observed 

after 24 hours treatment, with the highest level at MR20 (54.6 ± 6.1 %, *p < 0.05 relative to 

untreated controls). One possible explanation for this delayed uptake is slow settling of the 

CD.siRNA complexes onto the adherent cells. The inclusion of a triazole moiety in a 

polycationic amphiphilic CD was previously reported to improve stability in a high salt 

environment.
21

 Aggregation can enhance transfection in vitro as the aggregates are quick to 
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settle down onto adherent cells for association and uptake.
40, 41

 Therefore, delayed uptake 

may result when aggregation occurs more slowly.  

Although aggregation may aid cellular association in vitro, this is not the case in vivo and 

methods to improve formulations to prevent aggregation are required to enable prolonged 

circulation and prevent opsonisation. 

 Significant levels of uptake were also achieved when primary hippocampal neurons were 

treated with CD.siRNA complexes for 24 hours (Fig. 4 (b)). The percentage of 6-FAM 

positive cells increased from 37.7 ± 1.8 % at MR10 to 53.5 ± 2.3 % at MR20.  

In both neuronal cultures, the level of uptake achieved with MR20 was significantly greater 

than that at MR10 with the same concentration of siRNA. Lipofectamine
TM

 2000 mediated 

similar levels of uptake in both neuronal cell models (Fig. 4). 

After delivery into neurons, it is critical that siRNA is made available for RNAi by 

incorporation into the RISC complex in the cytoplasm, to enable downstream gene silencing. 

To this end, the ability of the CD to deliver luciferase siRNA into neuronal cells and reduce 

luciferase gene expression was investigated. Given that significantly greater uptake was 

achieved after 24 hours, this was chosen as the appropriate length of time for transfection 

experiments.  

Firstly, N41 cells were transfected for two hours with the firefly luciferase reporter plasmid 

by cationic lipid mediated delivery (Lipofectamine
TM

 2000). Subsequently, cells were treated 

for 24 hours with CD.siRNA complexes against the luciferase gene. Non-silencing siRNA 

complexed to CD was used as a negative control. Luciferase expression levels decreased after 

treatment with MR10 and MR20 (Fig. 5), with a significant reduction achieved at MR20 

(68.5 ± 7%, *p < 0.05 relative to untreated control). Transfection with uncomplexed siRNA 

did not have any effect on luciferase expression. Similarly, CD complexes with non-silencing 

(ns) siRNA did not reduce luciferase expression, demonstrating the specificity of knockdown. 
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These data confirm that effective and specific gene silencing was achieved when siRNA was 

delivered to neuronal cells by the CD.siRNA delivery system. 

Having achieved knockdown of an exogenously transfected gene with CD.siRNA complexes, 

the ability of the vector to mediate knockdown of an endogenous housekeeping gene, 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was assessed. Preliminary 

experiments in N41 cells showed that when siRNA was used at a concentration of 50 nM, 

CD.siRNA complexes had no effect on GAPDH expression. Therefore, subsequent 

experiments were carried out using 100 nM siRNA. GAPDH siRNA and a negative 

scrambled control siRNA were used. Neurons were treated for 24 hours and GAPDH mRNA 

levels were quantified by qRT-PCR, after extraction of total RNA from the treated cells. 

These data are shown in Fig. 6 (a) and (b). In N41 cells (Fig. 6 (a)), at MR20 a significant 

reduction in GAPDH expression was achieved (38% ± 9.3 %, *p < 0.05 relative to untreated 

control). Meanwhile, the complexes formed at MR10 did not reduce GAPDH expression 

under these experimental conditions. Fig 6 (b) shows a similiar level of knockdown in the 

primary hippocampal neurons (41% ± 5.7%, *p < 0.05 relative to untreated control). Neither 

non-silencing siRNA formulated with the CD nor uncomplexed siRNA reduced GAPDH 

expression, confirming specificity of gene silencing and the lack of effectiveness of naked 

siRNA.  

The level of GAPDH knockdown reported here was moderate and although there is some 

possibility that this may be due to incomplete dissociation of siRNA from the CD, the 

reduction in GAPDH gene expression achieved with Lipofectamine
TM

 2000 was not 

significantly different (~ 40%, Fig. 6 (b)). Furthermore, similar levels of knockdown have 

been reported for other endogenous gene targets in neuronal cells. For example, a modest 

reduction in HMGB-1 mRNA (<40%) was achieved in primary cortical neurons using 

PAMAM-Arginine vector to deliver shRNA
13

 and a stearylated octaarginine vector mediated 
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~ 50% reduction in reporter gene expression in primary hippocampal neurons
39

. Furthermore, 

Lipofectamine
TM

 2000 has been reported for siRNA mediated knockdown in N-1 

hypothalamic neurons, with varying levels of knockdown depending on the target. 

Reductions in levels of resistin mRNA of 25%
42

 to 55 – 60%
42, 43

 were reported, depending 

on the siRNA sequence. However, other RNAi delivery methods have achieved more 

pronounced gene silencing effects. For example, > 80% reduction in target protein expression 

was reported for Penetratin-1-siRNA conjugates in primary hippocampal neurons
12

 and in the 

hippocampus in vivo
31

. More substantial levels of knockdown (~90%) of another target, 

CCAAT enhancer binding protein α, were achieved using Lipofectamine
TM

 2000 in N-1 

neurons.
44

 In this study, similar experimental conditions to those reported in this paper were 

used, however, ‘stealth’ siRNA sequences, which are chemically modified RNA duplexes, 

with improved stability and transfection efficiency, were used which may explain the greater 

knockdown levels achieved.  

It is also worth noting that a moderate reduction in target gene expression may be sufficient 

for a functional output in an animal model
45-47

. For example, a 30% decrease in striatal 

tyrosine hydroxylase was sufficient to reduce the hyperactive locomotor response to 

amphetamine in mice
46

 and anti-depressant-like behaviours were observed in mice, after i.c.v. 

infusion of siRNA led to a 40% reduction in expression of the serotonin transporter
47

. 

In summary, an amphiphilic cationic modified β-cyclodextrin was shown to deliver siRNA to 

neurons for gene silencing. Efficient uptake into neuronal cells was shown, with a favourable 

cytotoxicity profile. Moreover, significant levels of knockdown were achieved for an 

exogenous gene (luciferase) and an endogenous gene (GAPDH). The physical properties of 

the complexes formed with siRNA and the ability of the CD to protect siRNA from serum 

degradation were key features in its efficiency as a delivery vector. Furthermore, future 

studies focused on optimising the structural modifications applied to CDs can now be carried 
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out having established the potential of this CD as a novel non-viral vector for neuronal 

siRNA delivery. 
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METHODS 

 

 Cell culture. mHypoE N41: A mouse embryonic hypothalamic cell line
36

 was obtained from 

tebu-bio (France), and was maintained in Dulbecco’s modified Eagle’s medium (DMEM, 

Sigma), supplemented with 10% foetal bovine serum (FBS, Sigma) in a humidified 37
o
C 

incubator with 5% CO2. Cells were seeded in 12 well, 24 well and 96 well plates at 6.6 x 10
4
, 

3.5 x 10
4
 and 1.5 x 10

4
 cells per well respectively.  

Primary neuronal culture: Primary rat embryonic hippocampal neurons were obtained from 

Sprague-Dawley rats, at day 18 of gestation as previously described.
11

 Briefly, the animals 

were sacrificed and the embryos removed. Embryonic hippocampal neurons were dissected 

out and plated onto poly-l-lysine coated coverslips (for immunofluoresence), or poly-l-lysine 

treated wells (for all other experiments), in 12 well or 96 well plates and maintained in 

Neurobasal medium (Gibco), supplemented with 2% B-27 (Invitrogen) and 0.5mM L-

glutamine (Sigma). Cells were maintained in a humidified 37
o
C incubator with 5% CO2. 

Seeding densities were 5x 10
5
 and 1.5 x 10

4
 for 12- and 96- well plates respectively. 

Characterisation of the cultures by immunostaining for β III tubulin and GFAP confirmed the 

presence of 90-95% neurons in the culture. 

 

siRNAs. siRNAs were synthesised by Qiagen. siRNA sequences are shown in Table 1. 

 SENSE ANTISENSE 

6FAM negative control 

siRNA 

UUCUCCGAACGUGUCACGUdTdT ACGUGACACGUUCGGAGAAdTdT 

Negative control siRNA UUCUCCGAACGUGUCACGUdTdT ACGUGACACGUUCGGAGAAdTdT 

Luciferase GL3 siRNA CUUACGCUGAGUACUUCGAdTdT UCGAAGUACUCAGCGUAAGdTdT 

Anti-mouse GAPDH 

siRNA 

GGUCGGUGUGAACGGAUUUdTdT AAAUCCGUUCACACCGACCdTdT 

Anti-rat GAPDH siRNA GGUCGGUGUGAACGGAUUUdTdT AAAUCCGUUCACACCGACCdTdT 

Table 1. Sequences of siRNA obtained from Qiagen. 
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Preparation of CD.siRNA complexes. An amphiphilic cationic CD was synthesised as 

previously described
25

 and was dissolved in chloroform to give a 1 mg/ml solution. A stream 

of nitrogen was then applied to remove the solvent, leaving a CD film, which was rehydrated 

with water (CD concentration 1 mg/ml), followed by sonication at room temperature (RT) for 

one hour for vesicle size reduction. A solution of siRNA in water was then mixed with CD 

solution (equal volumes) and complexed for 15-20 minutes at RT (final CD concentration of 

0.5 mg/ml). Different mass ratios (MR) of CD to siRNA were chosen (µg CD:µg siRNA). 

This ‘mixing method’ for CD.siRNA complex preparation was previously optimised for 

CD.DNA complexes.
17, 22, 24

  

 

Preparation of Lf2000.siRNA complexes. Lipofectamine
TM

 2000 (Invitrogen) (Lf2000) is a 

cationic lipid-based transfection reagent. Lf2000.siRNA complexes were prepared as per the 

manufacturer’s protocol. Briefly, the required volume of Lf2000 was diluted in 50 μl 

OptiMEM®, mixed gently and incubated at RT for 5 mins. siRNA was diluted in 50 μl 

OptiMEM® and combined with the diluted Lf2000, then mixed gently and incubated at RT 

for 20 mins. 1 μl of Lf2000 was used per 20 pmol of siRNA. 

 

Size and Charge Measurements. Particle size and charge were measured with Malvern’s 

Zetasizer Nano ZS, using laser-light scattering and electrophoretic mobility measurements 

respectively.
24, 48

 CD.siRNA (3µg siRNA) complexes were prepared by the ‘mixing method’. 

The resulting mixtures were made up to 1 ml with 0.2 µm filtered deionised water (DIW). 

Five readings of Z-average size (nm), polydispersity (25
o
C, measurement angle 170

o
) and 

zeta potential (mV) (25
o
C, measurement angle 12.8

o
) were taken. For data analysis, the 

viscosity (0.8872 mPa.s) and refractive index (1.33) of water were used to determine Z-

average size. The data are presented as Mean ± S.D.  
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Gel Retardation Assay. Agarose gel electrophoresis was used to determine the binding of 

siRNA. CD.siRNA complexes were prepared and mixed with loading buffer and DIW to a 

final volume of 20µl (containing 0.3µg siRNA). Samples were added to wells in a 1% 

agarose gel containing ethidium bromide (0.5µg/ml). Electrophoresis was carried out at 90V 

for 20 minutes, with a Tris-borate-EDTA buffer.
49

 Bands corresponding to the DNA ladder 

(100 b.p.) and unbound siRNA were visualised by UV, using the DNR Bioimaging Systems 

MiniBis Pro and Gel Capture US B2 software. 

 

Serum Stability Studies. To evaluate protection of siRNA from serum nucleases by the CD, 

CD.siRNA complexes were incubated with 50% FBS for 30s, 0.5h, 4h or 24h at 37ºC, 

followed by addition of excess heparin to displace the siRNA.
50

 Uncomplexed siRNA 

samples were also incubated with serum in the same way. Samples were analysed by agarose 

gel electrophoresis (1.5% agarose gel) as described above. 

 

Toxicity Assays. MTT Toxicity Assay: The MTT assay is widely used as an indicator of the 

toxicity caused to neurons by non-viral vectors.
13, 37, 38, 51

 This assay measures the reduction 

of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) by mitochondrial 

dehydrogenase, in viable cells only, to give a dark blue product. However, as it only 

measures one end-point, namely the change in mitochondrial integrity, it is not, therefore, a 

direct measure of cell viability. Cells were seeded in 96-well plates for 1 day before 

transfection then were treated with CD.siRNA complexes for 24 hours. Medium was 

removed, and replaced with 100 µl fresh medium and MTT reagent (20µl of a 5mg/ml 

solution) for two hours, after which the formazon crystals produced were dissolved in 100µl 

dimethylsulfoxide. Absorbance was measured at 590nm using a UV plate reader. Each 

experiment was carried out in triplicate. Results were expressed as % dehydrogenase activity 



 17 

compared to untreated controls. The data are presented as the Mean ± SEM. Trypan Blue 

Exclusion Assay: Cell viability was also assessed using trypan blue exclusion analysis as 

previously reported.
37, 52

 Briefly, cells were seeded in 24-well plates for 1 day before 

transfection then CD.siRNA complexes (100 nM siRNA), diluted in OptiMEM®, were 

applied in serum-containing medium, for 24 hours. Cells were detached with trypsin-EDTA 

(0.25%) and stained with 0.02% trypan blue. Viable cells were counted and results were 

expressed as % viable cells compared to untreated controls. The data are presented as the 

Mean ± SEM. 

 

Cellular uptake experiments. The level of uptake mediated by transfection complexes was 

assessed by flow cytometry.
37, 53, 54

 Fluorescently labelled (6FAM) siRNA (Qiagen) was used 

for these experiments. Cells were seeded in 24-well plates for 1 day before transfection. 

siRNA (50nM) alone or in CD.siRNA complexes was diluted in OptiMEM® and added to 

cells in serum-containing medium, for 4 or 24 hours. Following this, uninternalised 

complexes were removed by washing cells with PBS and by incubation with 250 µl of 

CellScrub buffer for 15 minutes at room temperature.
48

 Cells were removed from the wells 

and prepared for analysis following several washing steps. The fluorescence associated with 

10,000 cells was measured with a FACS Caliber instrument (BD Biosciences) and data was 

analysed using Cell Quest Pro software. Each experiment was carried out in triplicate. The 

data are presented as the Mean ± SEM. 

 

Knockdown of luciferase reporter gene. Silencing of an exogenous gene was assessed by 

measuring knockdown of the firefly luciferase gene
51, 55, 56

 Cells were seeded in 24-well 

plates for 1 day before transfection. Cells were transfected with luciferase reporter plasmid, 

pGL3 luciferase (1 µg/well) complexed to Lipofectamine 2000® (2.5 µl/ µg pDNA), for two 
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hours. Following this, cells were washed twice with PBS prior to siRNA transfection. siRNA 

(50 nM) alone, or complexed to CD, was diluted in OptiMEM® and added to the cells in 

serum-containing medium. Non-silencing siRNA complexed to CD was used as a control. 

After 24 hours, cells were washed with PBS and lysed. Lysate (20 µl) was assayed for 

expression of luciferase by adding to 100 µl of luciferin (Promega) and measuring the 

luminesence in a Junior LB 9059 luminometer (Promega). Total protein levels in each sample 

were determined by the BCA Protein Assay (Thermo Scientific) to allow normalisation of 

luciferase activity. Results were expressed as % gene expression relative to control (no 

RNAi) samples. Data are presented as the Mean ± SEM.  

 

Knockdown of endogenous GAPDH. Silencing of an endogenous gene was assessed by 

measuring knockdown of the housekeeping gene GAPDH. This gene is widely used to assess 

knockdown efficiency in in vitro studies.
57, 58

 Cells were seeded in 12-well plates for 1 day 

before transfection. GAPDH siRNA (100 nM) alone, or complexed to CD, was diluted in 

OptiMEM® and added to the cells in serum-containing medium. Non-silencing siRNA 

complexed to CD was used as a control. After 24 hours, total RNA was extracted from N41 

cells using Stratagene Absolutely RNA® Miniprep Kit, according to the manufacturer’s 

instructions and from primary hippocampal cells using Trizol reagent (Invitrogen) for 

primary hippocampal cultures. The concentration of RNA was measured by UV absorbance 

on the NanoDrop ND-1000 UV-Vis Spectrophotometer and the RNA integrity was confirmed 

by analysis using the Agilent 2100 Bioanalyzer. A high-capacity cDNA reverse transcriptase 

kit (Applied Biosystems) was used for complementary DNA (cDNA) synthesis. Gene 

expression was assessed by real-time qPCR using the Applied Biosystems Real Time PCR 

System (Model 7300). Assays were performed using appropriate primer sets for GAPDH and 

β-actin (TaqMan®, Applied Biosystems). Amplification was carried out by 40 cycles of 
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denaturation at 95ºC (15 sec) and annealing at 60ºC (1 min). β-actin endogenous gene was 

used for relative gene quantification 
58

. The 2–delta Ct method was used to calculate relative 

changes in mRNA 
59

. Each experiment was carried out in triplicate. Results were expressed 

as % GAPDH gene expression relative to untreated (non-transfected) controls. The data are 

presented as the Mean ± SEM. 

 

Statistics. One-way analysis of variance (ANOVA) was used to compare multiple groups 

followed by Bonferroni’s post hoc test. Statistical significance was set at *p < 0.05. 
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Figure 1. (a) Chemical structure of CD used for siRNA delivery and (b) schematic 

representation of CD structure. 
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Figure 2. Properties of CD.siRNA complexes. (a) CD.siRNA binding was shown by gel 

electrophoresis. Fluorescent bands correspond to 100 b.p. DNA ladder (L), free siRNA and 

unbound siRNA. (b) Z-Ave (size, (nm)) and Zeta Potential (charge, (mV)) of CD-siRNA 

complexes at increasing mass ratios (MR; µg CD: µg siRNA), were measured in DIW (final 

siRNA concentration 3 µg/ml), using dynamic light scattering (Malvern ZetaSizer Nano).  (c) 

Serum degradation assay, as shown by gel electrophoresis. Uncomplexed siRNA or 

CD.siRNA was exposed to 50% serum for up to 24hours. CD at least partially protected 

siRNA from degradation. 
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Figure 3. Toxicity was determined by MTT assay (a, b) and Trypan blue exclusion assay (c, 

d) after 24 hours incubation with CD.siRNA complexes (50 or 100 nM siRNA) in mHypoE 

N41 cells and primary rat (E18) hippocampal neurons. Data (n=3) are presented as the mean 

± SEM. *p < 0.05 relative to untreated controls. 
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Figure 4. Internalisation of CD.siRNA complexes by (a) mHypoE N41 cells and (b) Primary 

rat (E18) hippocampal cells. FAM-siRNA uptake, after incubation with CD.siRNA 

complexes (siRNA 50 nM), was measured by flow cytometry. Data (n=3) are expressed as 

the mean ± SEM. *p < 0.05 relative to untreated controls. 
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Figure 5.  Knockdown of luciferase reporter gene in mHypoE N41 cells by CD.siRNA 

complexes. Cells were incubated with luciferase reporter plasmid (1μg/well). Four hours 

later, after washing and changing media, luciferase siRNA (50 nM), either uncomplexed, or 

complexed to CD, was added. After 24 hours, reduction in gene expression was measured by 

luciferase assay. Data (n=3) are expressed as the mean ± SEM. *p < 0.05 relative to untreated 

controls. 
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Figure 6. Knockdown of endogenous GAPDH in (a) mHypoE N41 cells and (b) Primary rat 

(E18) hippocampal cells by CD.siRNA complexes. Cells were incubated GAPDH siRNA 

(100 nM), either uncomplexed, or complexed to CD, for 24 hours. Total RNA was extracted 

and reverse transcribed to cDNA for qRT-PCR, to determine the reduction in GAPDH 

mRNA expression. Data (n=3) are expressed as the mean ± SEM. *p < 0.05 relative to 

untreated controls. 
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