
Title A logic of soft constraints based on partially ordered preferences

Author(s) Wilson, Nic

Publication date 2006-06

Original citation Wilson, N; (2006) 'A logic of soft constraints based on partially ordered
preferences'. Journal of Heuristics, 12 (4/5): 241-262. doi:
10.1007/s10732-006-6347-5

Type of publication Article (peer-reviewed)

Link to publisher's
version

http://link.springer.com/article/10.1007%2Fs10732-006-6347-5
http://dx.doi.org/10.1007/s10732-006-6347-5
Access to the full text of the published version may require a
subscription.

Rights © Springer Science + Business Media, LLC 2006. The final
publication is available at
http://link.springer.com/article/10.1007%2Fs10732-006-6347-5

Item downloaded
from

http://hdl.handle.net/10468/1120

Downloaded on 2017-02-12T09:27:00Z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cork Open Research Archive

https://core.ac.uk/display/61573996?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://link.springer.com/article/10.1007%2Fs10732-006-6347-5
http://dx.doi.org/10.1007/s10732-006-6347-5
http://hdl.handle.net/10468/1120

A Logic of Soft Constraints based on Partially
Ordered Preferences

Nic Wilson

Cork Constraint Computation Centre,
Department of Computer Science,

University College Cork, Cork, Ireland,
n.wilson@4c.ucc.ie

Abstract. Representing and reasoning with an agent’s preferences is
important in many applications of constraints formalisms. Such pref-
erences are often only partially ordered. One class of soft constraints
formalisms, semiring-based CSPs, allows a partially ordered set of pref-
erence degrees, but this set must form a distributive lattice; whilst this
is convenient computationally, it considerably restricts the representa-
tional power. This paper constructs a logic of soft constraints where it is
only assumed that the set of preference degrees is a partially ordered set,
with a maximum element 1 and a minimum element 0. When the par-
tially ordered set is a distributive lattice, this reduces to the idempotent
semiring-based CSP approach, and the lattice operations can be used
to define a sound and complete proof theory. A generalised possibilistic
logic, based on partially ordered values of possibility, is also constructed,
and shown to be formally very strongly related to the logic of soft con-
straints. It is shown how the machinery that exists for the distributive
lattice case can be used to perform sound and complete deduction, us-
ing a compact embedding of the partially ordered set in a distributive
lattice.

1 Introduction

Representing and reasoning with an agent’s preferences is important in many
applications of constraints formalisms, so that more appropriate solutions can be
generated. Preferences are often most naturally only partially ordered, reflecting
an agent being unable or unwilling to order certain choices, or wishing to delay
making such an ordering decision. This is reflected in many mathematical models
of preferences; for example, in CP-nets [10, 9], where the associated ordering on
complete assignments is almost never a total order (see, in particular, Proposition
4 of [23]). Most soft constraints formalisms assume a total order on the degrees
of preference. On the other hand, the semiring-based CSP framework [5] does
allow a partially ordered set of preference degrees, but this partially ordered set
must form a distributive lattice (when combination is idempotent); whilst this is
convenient computationally, it considerably restricts the representational power
(see Section 4), since a distributive lattice is a very special type of partial order.

In Section 2 a logic of soft constraints is constructed where it is only assumed
that the set of preference degrees is a partially ordered set, with a maximum
element 1 and a minimum element 0. A soft constraint assigns a preference degree
to a tuple, which is interpreted as an upper bound for the overall preference
degree of the tuple. Semantic consequence is defined in Section 2.2, where models
assign degrees of preferences to complete assignments. In this interpretation, the
variables are assumed to be controllable, so that the agent can choose their
values. A different interpretation of such models is given if the variables are
not controllable, but describe the possible states of an unknown situation. They
can then be considered as generalised possibility distributions, where possibility
values are only partially ordered, so the models describe partially ordered degrees
of ‘possibility’ of states of a system. In Section 2.3, a generalised possibilistic logic
is constructed, which can be embedded in the logic of soft constraints.

When the partially ordered set is a distributive lattice, consequence in this
logic of soft constraints is the same as consequence in an idempotent semiring-
based CSP approach, and the lattice operations can be used to define a sound
and complete proof theory, as shown in Section 3. Therefore computational tech-
niques for idempotent semiring-based CSPs can be used for consequence in the
logic of soft constraints for the distributive lattice case.

In Section 4 the general partially ordered case is considered. The idea behind
computation of consequence in the general case is to embed the partially ordered
set in a distributive lattice, and then use the embedded soft constraints to per-
form the deduction. Section 4.1 shows what properties allow this to work, and
Section 4.2 and Section 4.3 show how to construct such an embedding, which
is minimal in a certain sense for the case of a lattice. Section 4.4 discusses the
problems of answering queries and generating simple derived soft constraints.

The semantics for the soft constraints given in Section 2.2 is natural, but is
not the only choice. Section 5 describes an alternative semantics, and its semantic
consequence relation for partially satisfied constraints. The issue of finding good
and optimal complete assignments is briefly discussed in Section 6.

This paper includes and extends work in [22, 24].

2 A Logic Of Soft Constraints

In this section a logical formalism for reasoning with soft constraints is developed.
Section 2.1 defines a soft constraint to be a function which maps an assignment
(of a set of variables) to an element of a partially ordered set. A very simple
semantics is defined in Section 2.2, which leads to the consequence operator |=
which expresses which soft constraints are implied by a set of soft constraints.
The logical approach to soft constraints developed here contrasts with the al-
gebraic approach taken, for example, in the semiring-based CSP framework [5,
8], and in the valued CSP framework [19, 8]. In the AI literature, reasoning for-
malisms are very often defined as logics, and this has a number of advantages.
A benefit of our logical approach is that the notion of consequence follows from
the simple semantics, defined in Section 2.2; this demonstrates that the defini-

tion of consequence is not arbitrary. Taking the logical approach also makes the
comparison easier with other AI reasoning formalisms. In particular, we show
in Section 2.3 how the formalism can also be considered in terms of a partially
ordered possibilistic logic.

2.1 Partially Ordered Degrees of Preference

Let V be a finite set of variables, where each variable Vi ∈ V has finite domain
D(Vi). Unless otherwise stated, the variables in V should all be thought of as
decision variables, that is, the value of a variable can be chosen; this is in contrast
to a situation (as discussed in Section 2.3) where the value of the variable reflects
the state of a system which we are observing but have no control over. For U ⊆ V ,
define D(U) to be the set

∏
Vi∈U D(Vi) of possible assignments to variables U

(i.e., the set of functions on U which, for each Vi ∈ U , assign a value in D(Vi)
to variable Vi). A complete tuple x is an element of D(V). For W ⊆ U ⊆ V and
u ∈ D(U) let u↓W be the projection of u to variables W , given by: for Vi ∈ W ,
u↓W (Vi) = u(Vi).

The intention is to produce a formalism that allows degrees of preference (or,
alternatively, satisfaction, or adequacy) for tuples. So we choose a finite partially
ordered set A = (A,�, 0, 1) to represent these degrees, where A contains1 a
maximum element 1 and a minimum element 0 (with 0 6= 1). � is a partial
order, so is reflexive, transitive and such that if α � β and β � α then α = β.
Associated relation ≺ is defined to be the strict part of �, i.e., α ≺ β if and only
if α � β and α 6= β. Symbols � and � are also used sometimes in the obvious
way, e.g., α � β holds if and only if β � α.

For finite A, the partially ordered set A = (A, 0, 1,�) is a lattice if and only
if any α, β ∈ A have a greatest lower bound α∧β in A (so that γ � α, β implies
γ � α ∧ β � α, β), and a least upper bound α ∨ β in A (so that α, β � γ
implies α, β � α ∨ β � γ); it is said to be a distributive lattice if the following
distributivity property is satisfied: for all α, β, γ ∈ A, γ∧(α∨β) = (γ∧α)∨(γ∧β).
An important example of a distributive lattice is a subset lattice: let A be a set
of subsets of a set Θ which is closed under intersection and union: i.e., if α, β ∈ A
then α, β ⊆ Θ and α ∩ β, α ∪ β ∈ A. In fact, any finite distributive lattice is
isomorphic to such a subset lattice (using e.g., the construction given in Section
4).

Define an A-constraint c to be a function from D(Vc) to A, for some set
of variables Vc ⊆ V . For complete assignment x ∈ D(V), A-constraint c can
be applied to x by first projecting x to Vc; we use c(x) as an abbreviation for
c(x↓Vc). A value of 1 is intended to mean that the tuple is maximally preferred
(or completely satisfies the constraint), and a value of 0 means that the tuple is
least preferred (doesn’t satisfy the constraint at all). Ordinary (hard) constraints
can be represented by a special kind of A-constraint: those c which assign only

1 Assuming that there is a maximum element and a minimum element in the partially
ordered set is not really restrictive, as we can add such elements to any partially
ordered set (without necessarily involving them in any A-constraint).

values in {0, 1}. There is a natural ordering between constraints c and d with
Vc = Vd, extending � pointwise: we say c � d if for all y ∈ D(Vc), c(y) � d(y).

Example 1. We are trying to organise a meeting between Emily, Gerard and
Pat, who each have their preferences about location, type of hotel, date, and so
on. We want to ensure that the decision made satisfies at least two of the three
people. Define A to be the set {0, e, g, p, 1}, with 1 meaning all three are happy
with the choice, 0 meaning that at least two are not happy, and so the choice is
inadequate, and e.g., e meaning that Emily is not happy but the other two are.
The order ≺ is defined by 0 ≺ e, g, p ≺ 1, so that e, g and p are incomparable.

Gerard wants the meeting not to be in March. This is represented by an
A-constraint c on the date variable(s) with c(D) = g if D is any date in March.
From this we can deduce that, if x is a complete assignment where the date is
in March, then the preference degree for x is at best g; it may be worse (i.e,
0) since we may have another A-constraint implying a worse value. Therefore
A-constraints can be seen to be giving upper bounds on the preference degrees of
complete assignments to the variables. (This is the basis of the semantics defined
in the next section.)

As illustrated by this example, it is natural sometimes to allow incomparable
degrees of preference, and hence allow sets of degrees of preferences which are
not totally ordered; a user may not be comfortable in having to say that either
(i) x is preferred to y, or (ii) y is preferred to x, or (iii) x and y are equally
preferred.

In the formalism developed in this paper, arbitrary partially ordered sets of
preferences are allowed; on the other hand, in the semiring-based CSPs frame-
work [5], the partially ordered set of preferences is assumed to form a distributive
lattice. This assumption is apparently very restrictive since many natural par-
tially ordered sets are not distributive lattices, and a distributive lattice is a very
special kind of partial order. In particular, one simple kind of partial order � on
A which is, in some sense, close to being a total order, is when ≺ is a strict weak
order, corresponding to a total order over a partition of A. This is where A can
be partitioned into non-empty sets Ei : i = 0, . . . , k, with E0 = {0}, Ek = {1},
and if α ∈ Ei and β ∈ Ej then α ≺ β if and only if i < j. Such an order is a
[distributive] lattice only under special conditions. It forms a lattice only if for
i = 1, . . . , k−1, |Ei| > 1 implies |Ei−1| = |Ei+1| = 1. It only forms a distributive
lattice if in addition, for all i, |Ei| ≤ 2. To illustrate further, consider all partially
ordered sets A = (A,�, 0, 1) where A has just seven elements (including 0 and
1). There are more than sixty such (essentially different) partially ordered sets,
with only eight of them being distributive lattices, and with ten of them not
being lattices.

Sets of preferences forming a distributive lattice are natural in many situa-
tions. For example, in a multi-criteria decision making context, we may use the
‘pareto’ or ‘product’ order given by: x is preferred to y if it is at least as good
on each criterion.

In Example 1, A = (A,�, 0, 1), is a lattice, but not a distributive lattice,
since e.g., (e ∨ g) ∧ p = 1 ∧ p = p, whereas (e ∧ p) ∨ (g ∧ p) = 0 ∨ 0 = 0. One

might add elements e, g and p to A to give A′ = {0, e, g, p, e, g, p, 1}, with e.g.,
e meaning that only Emily is happy with the choice. The order is extended by
e ≺ g, p; and g ≺ e, p; and p ≺ e, g. We now have a distributive lattice (but at
the cost of increasing the size of the set) with the order being essentially the
subset order (with e.g., e being associated with set {g, p}), which is a special
case of a ‘product’ order.

The product order is somewhat weak (especially when there are several cri-
teria), and it is often natural to add to the order, in particular, to represent
tradeoffs. For example, we may decide that ‘only Pat being unhappy with the
choice’ is worse than ‘only Gerard being unhappy’, and hence add the condition
p ≺ g (and form the transitive closure). A′ is no longer a lattice under this new
order since g and e now have no greatest lower bound.

More generally, partially ordered sets of preferences which are not distributive
lattices arise naturally from either adding extra orderings to a distributive lattice,
or from merging elements of the set (as in Example 1).

2.2 Semantics

We would like to say what A-constraints d can be deduced from a set of A-
constraints C. We imagine that there exists some (unknown) function M :
D(V) → A which gives the degree of preference of each complete tuple x ∈ D(V).
AnA-constraint c is interpreted as telling us that for all x ∈ D(V), the preference
degree M(x) of x is bounded above by c(x), i.e.,

M(x) � c(x). (1)

(As usual in constraints formalisms, a constraint c can be considered as a com-
pact representation of a constraint on the whole set V of variables.) An alterna-
tive intuition which leads to the same formal system is where we imagine that
the constraints are for a particular purpose, and M(x) gives the true degree of
adequacy of tuple x for that purpose. A-constraints then give upper bounds on
the degrees of adequacy. Each constraint c in our set C is taken to restrict the
possible models M , via equation (1). For function M : D(V) → A we say M |= c
(M satisfies c, or M is a model of c) if for all x ∈ D(V), M(x) is bounded above
by c(x).

For set of A-constraints C and A-constraint d we define C |= d if and only
if every model M of (every constraint in) C is also model of d. Soft constraints
C express information about the preferences (of e.g., an agent), and so such a
d expresses derived preference information, which may be thought of as a prop-
erty of the agent’s preferences. An alternative notion of semantic consequence is
explored in Section 5, based on a similar intuition, but allowing a model M to
take values in a partially ordered set that extends A. The consequence relation
|= on A-constraints is, by the form of its construction, reflexive, monotonic and
transitive. If C is a singleton set {c}, we may write c |= d instead of {c} |= d.

The semantic definition is not very helpful for computing the consequences
d of C; we need a more computationally useful characterisation. To do this we

consider a special case first, in Section 3, when A is a lattice, and use that special
case in computing the general case, in Section 4.

First, we express consequence in a slightly different way. A lower bound (with
respect to �) of an element γ ∈ A is an element α ∈ A with α � γ. A lower
bound of a subset B of A is an element α ∈ A which is a lower bound for each
element of B; we then write α � B. (Every element is a lower bound of the
empty set.) For B ⊆ A and γ ∈ A we write B � γ if every lower bound of (every
element of) B is a lower bound of γ, i.e., for all α ∈ A, [α � B implies α � γ].

For x ∈ D(V) define C(x) to be the set {c(x) : c ∈ C}. The following propo-
sition expresses deduction in terms of the relation �. (Recall d(x) is defined to
be d(x↓Vd).)

Proposition 1. With the above notation, C |= d if and only if for all x ∈ D(V),
C(x) � d(x).

Proof. To prove the ‘if’ part: if C(x) � d(x) and M |= C then for all x ∈ D(V),
M(x) � C(x) so by the definition of �, M(x) � d(x); this shows M |= d, proving
C |= d. For the converse, suppose that it is not the case that for all x ∈ D(V),
C(x) � d(x). Then there exists x0 ∈ D(V) and α ∈ A such that α � C(x0) but
α 6� d(x0). Define model M by M(x0) = α and for all x 6= x0, M(x) = 0. Then
M |= C but M 6|= d, proving that C 6|= d. 2

Complexity of Deduction. Let A = (A,�, 0, 1) be a partially ordered set.
The Deduction Problem for A-constraints is the following problem: Given set of
A-constraints C ∪ {d} over some set of variables V , determine if C |= d.

It is shown below that the complexity of deduction is in the same complexity
class as deduction in propositional logic, and deduction for finite CSPs; adding
the preference values does not put the problem into a harder complexity class.
We assume that for any instance, for any x ∈ D(V), and any α ∈ A, the
condition α � c(x) can be tested in polynomial time. (The size of an instance
depends on the number of variables and the size of the representation of the
input A-constraints, but does not depend on the size of A.) The result is quite
general: the constraints can be represented extensionally or intensionally, as can
the elements of A.

Proposition 2. Let A = (A,�, 0, 1) be a partially ordered set. The Deduction
Problem for A-constraints is coNP-complete.

Proof. To prove this result we show that the complement of the problem (de-
termining if C 6|= d) is NP-complete. First we show that the complement of the
problem is in NP. Let C ∪ {d} be a set of A-constraints. Let x ∈ D(V) be a
complete assignment, and let α be an element of A. Say that pair (x, α) succeeds
if d(x) 6� α and for all c ∈ C, c(x) � α. Testing if (x, α) succeeds or not can
be done in polynomial time. By Proposition 1, C 6|= d if and only if there exists
some pair (x, α) that succeeds. So a nondeterministic algorithm [16] determining

if C 6|= d is given by guessing x ∈ D(V) and α ∈ A, and verifying whether (x, α)
succeeds. This shows that the complement of the problem is in NP.

To show that the complement of the problem is NP-hard, we use a reduction
from 3SAT. Consider an instance of 3SAT over set of propositional variables V .
Each clause, involving variables U , can be mapped to an A-constraint c with
scope U , and with c(y) = 0 if y does not satisfy the clause, and c(y) = 1 other-
wise. Let C be this set of A-constraints. Define d to be the nullary A-constraint
equal to constant 0. Define model M ′ by M ′(x) = 1 for any x satisfying the set of
clauses, and M ′(x) = 0 otherwise. It can be shown that a model M : D(V) → A
satisfies C if and only if for all x ∈ D(V), M(x) ≤ M ′(x). Therefore the set of
clauses is satisfiable if and only if there exists a model of C which is not uniformly
0, which is if and only if C 6|= d (since the only model of d is uniformly 0). The
fact that 3SAT is NP-hard then implies that the complement of the deduction
problem for A-constraints is NP-hard. 2

2.3 Possibilistic Logic based on a Partially Ordered Set

This section defines a possibilistic logic [14] based on partially ordered sets, and
shows how this can be embedded in the logic defined in Section 2.2. (A weaker
possibilistic logic can also be produced in a similar fashion, but instead based on
the semantics described in Section 5; this also reduces to Standard Possibilistic
Logic in the total order case.)

Let A = (A,�, 0, 1) be a partially ordered set. Define a bijection α 7→ α̂ from
A to some set Â which is disjoint from A. We order elements Â in the opposite
way compared to A: α̂ � β̂ if and only if α � β. Elements of Â are used as
degrees of certainty, or ‘Necessity’. Let V be a set of variables. In contrast to the
situation described in Section 2.2, these are not decision variables that we have
control over, but variables representing the unknown state of a system which we
are observing: (this generalised) possibilistic logic is therefore used for deducing
further information in an uncertain environment.

The language L of this logic consists of statements of the form Nec(ϕ, α̂), for
some ϕ and α ∈ A. ϕ is a formula involving variables Vϕ which corresponds to
a set Ωϕ of partial assignments to variables Vϕ: the assignments that satisfy ϕ.
(In the case of propositional variables, ϕ is a propositional formula.) Nec(ϕ, α̂)
is to be considered as saying that the ‘Necessity’ (a ‘degree of certainty’) of ϕ
is at least α̂. Possibility distributions, which are the models of this logic, are
functions π from D(V) to A. Possibility distribution π satisfies Nec(ϕ, α̂) if and
only if π(x) � α for all x ∈ D(V) such that x doesn’t satisfy ϕ, i.e., such that
x↓Vϕ /∈ Ωϕ. Let ∆ ⊆ L be a set of such statements. Then ∆ |= Nec(ϕ, α̂) if
and only if π satisfies Nec(ϕ, α̂) for all π satisfying every element of ∆. When
� is a total order on A (and the variables are all propositional variables) this
is precisely Standard Possibilistic Logic [14]. Thus the above logic generalises
Standard Possibilistic Logic to being over a partially ordered set. (A distributive-
lattice-valued possibilistic logic is described in [13, 14]. In contrast, [1] generalises

possibility-based inference relations (on ordinary propositions) to allow partially
ordered possibility.)

This logic can be embedded in the logic defined in Section 2.2 (and in fact can
be considered as equivalent to it), using the fact that possibility distributions, as
just defined, are exactly the same as models of A-constraints defined in Section
2.2. For ϕ and α defineA-constraint c(ϕ,α) as follows: Vc(ϕ,α) = Vϕ; for y ∈ D(Vϕ),
c(ϕ,α)(y) = α, if y /∈ Ωϕ, and c(ϕ,α)(y) = 1 if y ∈ Ωϕ. For ∆ ⊆ L, let C∆ be the
set of A-constraints c(ϕ,α) for Nec(ϕ, α̂) in ∆.

Proposition 3. With the above definitions, ∆ |= Nec(ϕ, α̂) if and only if C∆ |=
c(ϕ,α).

Proof. We have: π |= c(ϕ,α) if and only if for all x ∈ D(V), π(x) � c(ϕ,α)(x),
which is if and only if π(x) � α for all x ∈ D(V) with x↓Vϕ /∈ Ωϕ, which is if
and only if π satisfies Nec(ϕ, α̂). Therefore π satisfies every element in ∆ if and
only if π |= C∆. So ∆ |= Nec(ϕ, α̂) if and only if π satisfies Nec(ϕ, α̂) for all π
satisfying ∆ which is if and only if π |= c(ϕ,α) for all π |= C∆ which is if and
only if C∆ |= c(ϕ,α). 2

Therefore the computational techniques for deduction of A-constraints de-
veloped in this paper can be used for deduction in this possibilistic logic over a
partially ordered set.

3 Consequence when A is a Lattice

We first look at determining deductions of the form C |= d when A is a lattice.
The lattice properties enable us to define combination and projection of A-
constraints. Let c : Vc → A and d : Vd → A be two A-constraints. Their
combination c∧d is the A-constraint on variables Vc∪Vd given by, for y ∈ D(Vc∪
Vd), (c∧d)(y) = c(y↓Vc)∧d(y↓Vd). Combination of A-constraints is commutative
and associative, so we can define

∧
C to be the combination of all A-constraints

in finite set C. Then V∧
C =

⋃
c∈C Vc, and (

∧
C)(y) =

∧
c∈C c(y↓Vc) for y ∈

D(V∧
C). For U ⊆ Vc, c↓U , the projection of c to U , is given by: for u ∈ D(U),

c↓U (u) =
∨
{c(y) : y ∈ D(Vc), y↓U = u}. Define the A-constraint 1U on variables

U to be everywhere equal to 1: for all u ∈ D(U), 1U (u) = 1.

3.1 Properties of Semantic Consequence

The following lemma gives some basic properties. Part (i) follows from the defi-
nition. Part (ii) follows from the definition of greatest lower bound. (iii) follows
e.g., using Proposition 1. (iv) follows from (iii), as does (v). One half of (vi)
follows from (v) and transitivity of |=. For the other half, suppose c |= d and let
z ∈ D(Vd). Then, using (iii), for all y ∈ D(Vc) such that y↓Vd = z, c(y) � d(z),
so c↓Vd(z) =

∨
{c(y) : y↓Vd = z} � d(z), proving c↓Vd |= d using (iv).

Lemma 1. Let A = (A,�, 0, 1) be a lattice, let M be a model for A-constraints,
let c and d be A-constraints, let C be a set of A-constraints, and let U ⊆ V be a
set of variables. Then: (i) M |= 1U . (ii) M |= C if and only if M |=

∧
C. (iii)

c |= d if and only if for all x ∈ D(V), c(x) � d(x). (iv) Given Vc = Vd, then
c |= d ⇐⇒ c � d. (v) If U ⊆ Vc then c |= c↓U . (vi) Given Vc ⊇ Vd then c |= d
⇐⇒ c↓Vd |= d.

The following result gives a useful characterisation of semantic consequence.

Theorem 1. Let A = (A,�, 0, 1) be a lattice, and let C ∪ {d} be a set of A-
constraints. Then C |= d if and only if

∧
C |= d if and only if (

∧
C∧1Vd

)↓Vd � d.
Now suppose

⋃
c∈C Vc ⊇ Vd. Then C |= d if and only if (

∧
C)↓Vd � d.

Proof. Let M be a model. By (ii) and (i) of Lemma 1, M |= C if and only if
M |=

∧
C if and only if M |=

∧
C ∧ 1Vd

. This implies that C |= d if and only if∧
C |= d if and only if

∧
C ∧ 1Vd

|= d. Part (vi) and (iv) then imply that this
is if and only if (

∧
C ∧ 1Vd

)↓Vd � d. If
⋃

c∈C Vc ⊇ Vd then (vi) and (iv) implies
that

∧
C |= d holds if and only if (

∧
C)↓Vd � d holds. 2

3.2 Proof Theory for the Lattice Case

A simple sound and complete proof theory can be defined using the combination
and projection operations. Define the proof theory by the following axioms and
inference rules:
Axioms: For all U ⊆ V , 1U .
Inference Rules:

From c and d deduce c ∧ d.
For each constraint c and U ⊆ Vc the following inference rule:

From c deduce c↓U .
When Vc = Vd and c � d:

From c deduce d.
A proof of d from C is a finite sequence of A-constraints d1, . . . , dk = d

such that each di is either (i) an element of C; (ii) an axiom; (iii) the result
of applying one of the inference rules to earlier elements in the sequence. The
following lemma gives the properties needed for Soundness. It follows easily from
parts (i), (ii), (v) and (iv) of Lemma 1.

Lemma 2. Let A = (A,�, 0, 1) be a lattice and let C ∪ {d} be a set of A-
constraints. Then: (i) If c ∈ C then C |= c; (ii) For all U ⊆ V , C |= 1U ; (iii) If
C |= c and C |= d then C |= c ∧ d; (iv) If C |= c and U ⊆ Vc then C |= c↓U ; (v)
If Vc = Vd and c � d and C |= c then C |= d.

This proof theory is sound and complete:

Theorem 2 (Soundness and Completeness). Let A = (A,�, 0, 1) be a lat-
tice and let C ∪ {d} be a set of A-constraints on some set of variables V . Then
C |= d if and only if d can be proved from C using the axiom and inference rules.

Proof. Soundness follows from Lemma 2 in the usual way, by induction on the
length of the proof of d from C. To prove Completeness: suppose C |= d. 1Vd

can be proved from C since it’s an axiom. By repeated use of the combination
inference rule we can prove

∧
C from C, and so also

∧
C ∧ 1Vd

. The projection
inference rule can be used to then prove (

∧
C ∧ 1Vd

)↓Vd . By Theorem 1 we have
(
∧

C∧1Vd
)↓Vd � d, so the last inference rule allows us to deduce d as required. 2

3.3 Relationship with Idempotent Semiring-based CSPs

It is clear that there is a strong relationship with idempotent semiring-based
CSPs (Bistarelli et al, 97) [5], as the combination and projection operations de-
fined above are the same as those used in semiring-based CSPs. In an idempotent
semiring-based CSP the primary objects are A-constraints, with the degrees A
forming a distributive lattice (see [5] theorem 10). Without loss of generality, we
can consider A to be finite (if it is not we can consider instead the (finite) sub-
lattice generated by the degrees in A that appear in a finite set of constraints).
A constraint problem, for an idempotent semiring-based CSP, is defined to be a
pair 〈C,U〉 where C is a set of A-constraints and U ⊆ V . The solution of this
pair is defined to be the A-constraint Sol(〈C,U〉) = (

∧
C)↓U . There is a natural

definition for deduction of constraints in this system (cf. [7]). Let C ∪ {d} be a
set of A-constraints such that

⋃
c∈C Vc ⊇ Vd. We can say that d is a consequence

of C if Sol(〈C, Vd〉) � d. Theorem 1 implies that this is if and only if C |= d.
Therefore consequence for idempotent semiring-based CSPs can be considered
as the special case of consequence for A-constraints when A is a distributive
lattice.

The semantics defined in Section 2 differs in a fundamental way from the
model-theoretic semantics for semiring-based Constraint Logic Programming
given in (Bistarelli et al, 2001) [6]. In the semantics described above, a con-
straint gives an upper bound on the model (and can be viewed as conveying
negative information). Consequently, there exists a unique maximal model of
a set of constraints C, i.e., 1V ∧

∧
C. In contrast, in the logic programming-

based semantics of [6], constraints are expressed using a set of facts representing
known instances of the constraints, which is not assumed to be an exhaustive
set of instances; these therefore express positive information, and there exists
a unique minimal interpretation of such a set of facts, and more generally a
program; we then query to see if there exists a known common instance of the
set of constraints. Which of the two semantics is more appropriate will depend
on the application.

Non-idempotent semiring-based CSPs. A natural question is whether our logical
approach can be extended to also cover the case of semiring-based CSPs where
combination is not idempotent. It is clear that major changes to the set up
would be needed. To begin with we would need to consider multisets C (rather
than sets) of A-constraints. Also equation (1) can no longer be the basis of the

semantics, since whether a model satisfies multiset C cannot just depend on it
satisfying each element of C.

3.4 Computational Techniques for the Distributive Lattice Case

The connection shown above means that, for the case whenA is a distributive lat-
tice, we can use computational approaches for idempotent semiring-based CSPs
to determine consequences of sets ofA-constraints. For example, approaches such
as in [5, 6, 4, 3], or a decision diagram approach [25]. Also, a general method for
this kind of problem is based on variable elimination.

Variable Elimination An important derived inference rule is elimination of
a variable. Variable Vi ∈ V is eliminated as follows: we combine the set Ci

of A-constraints involving that variable and project away from that variable.
Formally, Ci is {c ∈ C : Vc 3 Vi}, and let U =

⋃
c∈Ci

Vc, be the set of variables
involved in the combination of Ci. Lemma 2 implies that the following inference
rule is sound: From C infer the A-constraint Ci = (

∧
Ci)

↓U−{Vi}. This can also
be used to build a complete deduction mechanism (for certain important types
of queries). When A is a distributive lattice, the combination and projection
operations onA-valuations obey the Shenoy-Shafer axioms [21, 18]: see Theorems
18 and 19 of (Bistarelli et al, 97) [5]. This implies that variable elimination
algorithms can be used to compute projections of combinations. To illustrate,
define C↓−Vi , the result of eliminating variable Vi, to be C when Ci is replaced
by Ci, i.e., C↓−Vi = C − Ci ∪ {Ci}. It can be shown, using the Shenoy-Shafer
axioms, that if T ⊆ V is such that T 63 Vi then (

∧
C)↓T =

(∧
C↓−Vi

)↓T .
So, if Vd 63 Vi then by Theorem 1, C |= d if and only if C↓−Vi |= d. We can
sequentially eliminate all the variables in V −Vd to obtain a set of A-constraints
C ′ involving only variables Vd and such that C |= d if and only if C ′ |= d; hence
we can determine if C |= d by testing if

∧
C ′ � d. This variable elimination

algorithm is an instance of the fusion algorithm [20, 21, 17] (cf. also Dechter’s
Bucket Elimination [11], non-serial dynamic programming [2], and Section 5 of
[5]).

This approach is efficient if one can find a hypertree cover [21] which doesn’t
involve too large sets, since then none of the combinations need involve too
many variables. (These are the same conditions that ensure efficient computation
in Bayesian networks.) If such a hypertree cover cannot be found, then one
might instead use a mini-buckets approximation approach to the computations
(Dechter and Rish, 2003) [12].

4 Deduction in the General Partially Ordered Set Case

Here we consider the general case, where A = (A, 0, 1,�) is an arbitrary partially
ordered set (that has a minimum element 0 and a maximum element 1). This
is important because we cannot in general expect a partially ordered set of
preference degrees to necessarily form a distributive lattice.

Our approach is to embed the partially ordered set in a lattice of subsets in
such a way that the ordering information is maintained, but without adding any
extra ordering information. Then we can use the computational techniques for
the subset lattice case to make deductions for this general case.

Let A = (A,�, 0, 1) be a finite partially ordered set, let Θ be another finite
set, let Q be a function from A to 2Θ, and let B be the partially ordered set
(2Θ,⊆, ∅, Θ). The function Q can be used to map A-constraints to B-constraints.
We extend Q to subsets of A by: for B ⊆ A, Q(B) = {Q(β) : β ∈ B}. For each
soft constraint c : D(Vc) → A define cQ : D(Vc) → 2Θ to be c followed by Q, so
that cQ(y) = Q(c(y)). For set C of A-constraints, define CQ to be {cQ : c ∈ C}.
So, for x ∈ D(V), CQ(x) = {cQ(x↓Vc) : c ∈ C}, which equals Q(C(x)) (recall
C(x) = {c(x) : c ∈ C}). Constraints cQ are B-constraints (as defined in Section
2).

Say that Q : A → 2Θ is deduction-adequate if for any set C ∪ {d} of A-
constraints (over some set of variables) the following equivalence holds:

C |= d if and only if CQ |= dQ.

(Note that the latter |= is the semantic relation for B-models.) Therefore if we
can find a deduction-adequate Q, then we can determine deductions from sets
C of A-constraints by mapping them using Q to sets CQ of B-constraints, and
using the computational techniques available for the distributive lattice case,
discussed above in Section 3.4. The main result of Section 4 is a method (in
Section 4.3) for constructing deduction-adequate mapping Q : A → 2Θ, where
Θ is kept relatively compact, and is of minimum size when A is a lattice.

Section 4.1 gives some necessary and sufficient conditions for Q to be deduction-
adequate. Section 4.2 firstly shows how to generate a deduction-adequate map-
ping with Θ = A; this Θ is often unnecessarily large, however. For the case of a
lattice, it is shown how to generate a deduction-adequate Q with Θ of minimum
size. Section 4.3 describes a construction of a deduction-adequate mapping for
the general partially ordered case, which generalises the construction for the lat-
tice case. Section 4.4 considers applying these results to answering queries and
finding simple derived constraints.

4.1 Properties for Deduction-Adequate Mappings

We say that Q is order-preserving if for all α, β ∈ A, α � β ⇐⇒ Q(α) ⊆ Q(β).
Being order-preserving is a necessary condition (see Proposition 4(2) below) but
not a sufficient one for Q to be deduction-adequate. The following result gives
some necessary and sufficient conditions.

Proposition 4. Let A = (A,�, 0, 1) be a finite partially ordered set, let Θ be a
finite set and let Q be a function from A to 2Θ

(1) Q is deduction-adequate if and only if the following holds:
for any B ⊆ A and γ ∈ A, B � γ ⇐⇒

⋂
β∈B Q(β) ⊆ Q(γ).

(2) If Q is deduction-adequate then (a) Q is order-preserving; and (b) for any
α, β ∈ A, if α and β have a greatest lower bound γ then Q(α)∩Q(β) = Q(γ).

(3) The following pair of conditions are sufficient for Q to be deduction-adequate:
(i) Q is order-preserving; and (ii) for any B ⊆ A and θ ∈

⋂
β∈B Q(β), there

exists α ∈ A with θ ∈ Q(α) ⊆
⋂

β∈B Q(β).

Proof. (1) First we show that for any B ⊆ A and γ ∈ A, Q(B) � Q(γ) if and
only if

⋂
β∈B Q(β) ⊆ Q(γ).

W ⊆ Θ is a lower bound for Q(B) = {Q(β) : β ∈ B} if and only if for all β ∈
B, W ⊆ Q(β), which is if and only if W ⊆

⋂
β∈B Q(β). So {Q(β) : β ∈ B}�Q(γ)

if and only if W ⊆ Q(γ) for all W such that W ⊆
⋂

β∈B Q(β), which is if and
only if

⋂
β∈B Q(β) ⊆ Q(γ), since we can set W =

⋂
β∈B Q(β).

By Proposition 1, C |= d if and only if for all x ∈ D(V), C(x) � d(x).
Similarly, CQ |= dQ if and only if if for all x ∈ D(V), CQ(x) � dQ(x↓Vd), i.e.,
Q(C(x)) � Q(d(x)).

Suppose, for any B ⊆ A and γ ∈ A, B � γ ⇐⇒
⋂

β∈B Q(β) ⊆ Q(γ),
so by the argument above we have B � γ ⇐⇒ Q(B) � Q(γ). Let C ∪ {d}
be a set of A-constraints. Then, for any x ∈ D(V), we can set B = C(x) and
γ = d(x), which leads to [for all x ∈ D(V), C(x)�d(x)] ⇐⇒ [for all x ∈ D(V),
Q(C(x))�Q(d(x))]. So we have C |= d if and only if CQ |= dQ. This proves that
Q is deduction-adequate.

Conversely, suppose that there exists B ⊆ A and γ ∈ A, such that it is not
the case that B � γ ⇐⇒ Q(B) � Q(γ). Define all the elements of C and d to
have empty scope (i.e., for all e ∈ C ∪ {d}, Ve = ∅), so are constants, and define
d to be the constant γ and C to be the set of constants B. Then C |= d if and
only if B � γ and CQ |= dQ if and only if Q(B) � Q(γ), so for this choice of
C and d it is not the case that C |= d ⇐⇒ CQ |= dQ, showing that Q is not
deduction-adequate.
(2)(a) Assume that Q is deduction-adequate. Then, by part (1), {α}� β if and
only if Q(α) ⊆ Q(β), which implies (2)(a) that Q is order-preserving, since
{α}� β holds if and only if α � β, by reflexivity and transitivity of �.
(2)(b) γ � α and γ � β, so by part (a), Q(γ) ⊆ Q(α), Q(β), so Q(γ) ⊆ Q(α) ∩
Q(β). Since γ is the greatest lower bound of α and β, we have {α, β}� γ. This
implies by part (1), Q(α) ∩Q(β) ⊆ Q(γ), completing the proof.
(3) We assume conditions (i) and (ii) hold. By definition, B �γ holds if and only
if α � γ holds for all α such that α � B. Also, condition α � B holds if and
only if α � β holds for all β ∈ B, which using (i) is if and only if for all β ∈ B,
Q(α) ⊆ Q(β), which is if and only if Q(α) ⊆

⋂
β∈B Q(β). Thus B � γ holds if

and only if the following condition (∗) holds:
Q(α) ⊆ Q(γ) for all α ∈ A such that Q(α) ⊆

⋂
β∈B Q(β).

Suppose (∗) holds, and consider any θ ∈
⋂

β∈B Q(β). By (ii), there exists α ∈
A with θ ∈ Q(α) ⊆

⋂
β∈B Q(β), so θ ∈ Q(γ) by (∗), showing that

⋂
β∈B Q(β) ⊆

Q(γ). Conversely, suppose that
⋂

β∈B Q(β) ⊆ Q(γ). Then obviously if Q(α) ⊆⋂
β∈B Q(β) then Q(α) ⊆ Q(γ), so condition (∗) holds.

We have shown that, given (i) and (ii), condition (∗) is equivalent to
⋂

β∈B Q(β) ⊆
Q(γ), and hence, B � γ if and only if

⋂
β∈B Q(β) ⊆ Q(γ), which implies, using

part (1), that Q is deduction-adequate. 2

4.2 Deduction-Adequate Q : A → 2Θ with Θ ⊆ A

In this section and the next it is shown how a deduction-adequate mapping
Q : A → 2Θ can be constructed. As shown below in Proposition 5(iii), we can
define Θ to be A and, for each α, Q(α) to be {β ∈ A : β � α}. However, if A
is large, working with subsets of A can be computationally expensive. We go on
to give a way of constructing an embedding which can lead to much smaller Θ
than A, in this section for the special case of a lattice, and then more generally
in Section 4.3

We will consider mappings Q of a particular form. Let A′ be a subset of A.
For α ∈ A let QA′(α) be the set {α′ ∈ A′ : α′ � α}. The following result shows
that for any A′, the mapping QA′ : A → 2A′

satisfies condition (ii) of Proposition
4(3), and half of (i).

Proposition 5. Let A′ be any subset of A. Then QA′ satisfies:

(i)′ if α � β then QA′(α) ⊆ QA′(β), and
(ii) for any B ⊆ A and θ ∈

⋂
β∈B QA′(β), there exists α ∈ A with θ ∈ QA′(α) ⊆⋂

β∈B QA′(β).
(iii) Furthermore if A′ = A or A′ = A−{0} then QA′ is order-preserving and so

deduction-adequate.

Proof. (i)′: Suppose α � β. If γ ∈ QA′(α) then γ ∈ A′ and γ � α, so, by
transitivity of �, γ � β and γ ∈ QA′(β).

(ii): We’ll use α = θ. Firstly, QA′(θ) 3 θ, since θ ∈ A′ and θ � θ. Secondly,
for any β ∈ B, we have θ ∈ QA′(β) so θ � β. If δ ∈ QA′(θ) then δ ∈ A′ and
δ � θ so δ � β and δ ∈ QA′(β). Hence δ ∈

⋂
β∈B QA′(β). This shows that

QA′(θ) ⊆
⋂

β∈B QA′(β).

(iii): Suppose A′ = A or A′ = A − {0}, and QA′(α) ⊆ QA′(β). If α 6= 0 then
α ∈ A′ so α ∈ QA′(α) and α ∈ QA′(β), implying α � β. If α = 0 then also
α � β. This shows, together with (i)′, that Q is order-preserving, and hence by
(ii) and Proposition 4(3), Q is deduction-adequate. 2

Singles and the Lattice Case Let A = (A,�, 0, 1) be a partially ordered set.
For α, β ∈ A, α is said to cover β if α � β and there does not exist γ ∈ A with
α � γ � β. We say that α ∈ A is a single in A if there exists a unique β ∈ A
such that α covers β. If α is a single, we write α∗ for the unique element that α
covers. Since A is finite, it follows that, for γ ∈ A, if γ ≺ α then γ � α∗.

Let S be the set of singles of A. If A is a lattice, for α ∈ A define α =∨
{β ∈ S : β � α}, where

∨
∅ is defined to be 0. The following lemma shows

that α is always equal to α.

Lemma 3. Let A = (A,�, 0, 1) be a finite partially ordered set which is a lattice.
Then, for all α ∈ A, α = α.

Proof. Let S be the set of singles in A. We prove this result using induction.
0 /∈ S and 0 =

∨
∅ = 0, so the statement holds for α = 0.

Suppose now the statement is true for all β ≺ α, i.e., β = β for all β ≺ α.
We will show that α = α. Since A is finite, this proves that α = α for all α ∈ A.

Firstly, note that α � α. This is because α is an upper bound of all lower
bounds of α. If α ∈ S, then

∨
{β ∈ S : β � α} � α, so α = α. Therefore we

can assume α /∈ S. Let α′ =
∨
{β : β ≺ α}. Clearly α′ � α, since α is an upper

bound of any lower bound of α. Also if β ≺ α then β � α′. So if it were the
case that α′ ≺ α then α′ would be the unique element that α covers, which is a
contradiction since α is not a single. Therefore α′ = α. Now, using the inductive
hypothesis, we get α = α′ =

∨
{β : β ≺ α}, which (because of commutativity,

associativity and idempotence of ∨) is equal to
∨
{γ ∈ S : γ ≺ α}, which equals

α since α /∈ S, completing the induction and proving the result. 2

Proposition 6. Let A = (A,�, 0, 1) be a (finite) partially ordered set, and let
S be the set of singles in A. Then

(1) If Q is any deduction-adequate function from A to 2Θ (for some set Θ), then
|Θ| ≥ |S|.

(2) If B ⊆ A is such that QB is deduction-adequate then B ⊇ S. If A is a lattice
then the converse also holds: QB is deduction-adequate if and only if B ⊇ S.

In particular, if A is a lattice then QS : A → 2S is deduction-adequate,
and QS is minimal in the following strong sense: there is no deduction-adequate
mapping Q : A → 2Θ with Θ of smaller cardinality than S.

Proof. (1) Suppose Q : A → 2Θ is deduction-adequate. Let α ∈ S. Since Q is
deduction-adequate, it is order-preserving by Proposition 4(2), so Q(α) ⊇ Q(α∗).
Also Q(α) 6= Q(α∗) since Q(α) ⊆ Q(α∗) would imply α � α∗, which is a
contradiction. So Q(α) − Q(α∗) is non-empty, and we choose some arbitrary
element θα of it. We will show that if α 6= β then θα 6= θβ , which proves the
result that |Θ| ≥ |S|.

Let α and β be two different elements of S. There are two possibilities: (a)
if α ≺ β; then α � β∗, and so θβ /∈ Q(β∗) ⊇ Q(α), since Q is order-preserving,
so θβ /∈ Q(α). This implies that θα 6= θβ . (b) Suppose that α 6� β. For γ ∈ A,
if γ � α, β, then γ 6= α (since α 6� β) so γ ≺ α and therefore γ � α∗. This
shows that {α, β}�α∗. Hence, by Proposition 4(1), Q(α)∩Q(β) ⊆ Q(α∗). Now,
θα ∈ Q(α) and θβ ∈ Q(β) so if θα were equal to θβ then θα would be a member
of Q(α) ∩ Q(β) and hence of Q(α∗), which contradicts the definition of θα. So
θα 6= θβ , as required.
(2) Suppose now that B ⊆ A is such that QB is deduction-adequate. Then, in
particular (by Proposition 4(2)(a)) it is order-preserving. This implies that if α
is a single then QB(α∗) 6⊇ QB(α), so there exists β ∈ B with β � α and β 6� α∗.

But then β must be equal to α, showing that α ∈ B. Since α was an arbitrary
single, this shows that B ⊇ S.

Suppose that A is a lattice. Let B be a subset of A containing S. We will show
first that QB is order-preserving. Suppose QB(α) ⊆ QB(β). So, for γ ∈ B, if γ �
α then γ � β. In particular this holds for γ ∈ S. Therefore

∨
{γ ∈ S : γ � α} �∨

{γ ∈ S : γ � β}, i.e., α � β. Hence, by Lemma 3, α � β. This combines with
Proposition 5(i)′ to show that QB is order-preserving. Therefore, by Proposition
5(ii) and Proposition 4(3), QB is deduction-adequate. 2

The above result shows us how to construct a deduction-adequate mapping
Q : A → 2Θ which is minimal (with respect to |Θ|) for the case of a lattice, by
letting Θ be the set of singles.

It can also be shown, using Proposition 6 and Lemma 3, that if we con-
sider only distributive lattices A, then Q is an isomorphism between distributive
lattices in which infimum and supremum in Q(A) are intersection and union,
respectively.

4.3 Construction of a deduction-adequate mapping Q = QA† for
the general case.

For B ⊆ A define relations �B by α �B β if and only if γ � β for all γ ∈ B
such that γ � α, i.e., if and only if QB(α) ⊆ QB(β). So QB is order-preserving
if and only if �B = �. Hence, by Proposition 5(iii), �A = �. These relations
contain �, and are monotonic (decreasing) with respect to B: if B′ ⊆ B then
�B′ ⊇ �B ⊇ �A = �, so that α � β implies α �B β, which implies α �B′ β.

We will construct a subset A† of A with �A† = � so that QA† is order-
preserving and hence deduction-adequate (by Proposition 5, and Proposition
4(3)). Let m = |A| − 1. We list the elements of A in an order compatible with
�, starting with 0, so that α0 = 0, and if αi � αj then i ≤ j. We build up A†

incrementally with A† being the final set Am.
Define A0 = ∅, and for i = 1, . . . ,m, define Yi, Zi and Ai inductively as

follows:

— set Yi = {αi} if there exists k < i with αi �Ai−1 αk; otherwise set Yi = ∅;
— set Zi to be the set of all αj such that (a) j < i, (b) αj 6� αi, and (c)

αj �Ai−1 αi;
— let Ai = Ai−1 ∪ Yi ∪ Zi

Finally, we let A† = Am, and define Q = QA† , i.e., for each α ∈ A, Q(α) =
{β ∈ A† : β � α}.

We have to add sufficient elements to ensure that � = �A† . Adding Yi ensures
that αi 6�Ai

αk and hence αi 6�A† αk for k < i (which we need since for k < i,
αi 6� αk); adding Zi ensures that αj 6�Ai αi, and hence αj 6�A† αi, if j < i and
αj 6� αi.

Example 2. We use the extension of Example 1 described in Section 2.1 with
A = {0, e, g, p, e, g, p, 1}, and the additional ordering p ≺ g. We order A as
0, e, g, p, p, g, e, 1, so that α0 = 0, α1 = e, . . ., α4 = p, α5 = g, etc. Then
α1, α2 ≺ α4, and α1, α2, α3 ≺ α5, and α2, α3 ≺ α6, and α4 ≺ α5. Applying
the algorithm gives Y1 = {α1}, Y2 = {α2}, Y3 = {α3}, Y4 = Y5 = Y7 = ∅ and
Y6 = {α6}, with for all i, Zi = ∅. Thus A† = {α1, α2, α3, α6}. Elements α1, α2

and α3 needed to be added because they are all singles. Element α6 was added
because if B = {α1, α2, α3} then α6 �B α5 (since α5 is an upper bound of α1

α2 and α3) but α6 6� α5. It can be confirmed that for all i, j, we have αi � αj if
and only if QA†(αi) ⊆ QA†(αj). For example, α4 ≺ α5, and QA†(α4) = {α1, α2},
which is a subset of QA†(α5) = {α1, α2, α2}.

Theorem 3. With the above definition of A† and Q = QA† , the relations � and
�A† are the same, and Q is order-preserving, i.e., for all α, β ∈ A, α � β if
and only if Q(α) ⊆ Q(β). Furthermore, Q is deduction-adequate, so for any A-
constraint d and set of A-constraints C, we have C |= d if and only if CQ |= dQ.

Proof. The monotonicity property implies that if α � β then α �A† β. We need
to show that for all j, k, if αj 6� αk then αj 6�A† αk. So suppose αj 6� αk. By
reflexivity of �, j 6= k, so there are two cases: (a) j < k and (b) k < j.
(a) If j < k and αj 6�Ak−1 αk, then by monotonicity, αj 6�A† αk. On the other
hand, if j < k and αj �Ak−1 αk then, by definition, Zk contains αj , so A† 3 αj .
This implies αj 6�A† αk since αj ∈ A†, αj � αj but αj 6� αk.
(b) If k < j and αj 6�Aj−1 αk, then by monotonicity, αj 6�A† αk. On the other
hand, if k < j and αj �Aj−1 αk then Yj = {αj}, so A† 3 αj , and again αj 6�A† αk

since αj ∈ A†, αj � αj but αj 6� αk.
We have just shown that α � β if and only if α �A† β, and this is if and

only if Q(α) ⊆ Q(β). This implies, along with Proposition 5 (ii), that Q satisfies
conditions (i) and (ii) of Proposition 4(3), and so that result implies that Q is
deduction-adequate. 2

This theorem gives us a sound and complete method for determining if in-
ferences of the form C |= d hold (for general A-constraints): we construct A†

and QA† as defined above, convert the A-constraints into 2A†
-constraints, and

use the computational techniques available for the distributive lattice case (see
Section 3.4) to determine if CQ |= dQ.

Minimality for the lattice case The complexity of basic operations (∩ and
∪) needed for computation in 2Θ is linear in |Θ|. One might wonder whether it’s
possible to embed A into 2Θ for some Θ much smaller than A†. The following
result shows that, at least if A is a lattice, A† is of minimum possible size, by
showing that A† is the set of singles, and using Proposition 6(1).

Proposition 7. Let A = (A,�, 0, 1) be a (finite) partially ordered set which is a
lattice, and define A† as in the construction above. Then A† is the set of singles

in A. Also, if Q′ is any deduction-adequate function from A to 2Θ (for some set
Θ), then |Θ| ≥ |A†|.

Proof. Let S be the set of singles in A. We will show that S =
⋃

i Yi and each Zi

is empty. Suppose αi is a single, and let αk be the unique element that αi covers.
k < i since αk ≺ αi. If αj ≺ αi then αj � αk. Since Ai−1 63 αi, αi �Ai−1 αk.
This implies that Yi = {αi} and αi ∈ Ai and hence αi ∈ A†. Therefore A† ⊇ S.

Suppose j < i and αj �Ai−1 αi; we will show that αj � αi, proving that, for
each i, Zi = ∅. Consider any αl ∈ S such that αl � αj . Then we must have l ≤
j < i, and hence αl ∈ Ai−1, since αl ∈ Yl as shown above. Since αj �Ai−1 αi and
αl � αj we have αl � αi. This argument implies that

∨
{αl ∈ S : αl � αj} � αi,

so αj � αi. By Lemma 3, αj = αj , implying αj � αi, as required.
We’ll next show that Yi = ∅ if αi /∈ S. We proceed using Proof by Con-

tradiction: suppose Yi 6= ∅, so there exists k < i with αi �Ai−1 αk. Consider
any αl ∈ S such that αl � αi. So l ≤ i, and in fact l < i since αi /∈ S. Hence
αl ∈ Ai−1 since l ≤ i − 1 and Yl = {αl}, as shown above. Then αi �Ai−1 αk

implies αl � αk. Therefore we have
∨
{αl ∈ S : αl � αi} � αk, so αi � αk. By

Lemma 3, αi = αi, giving αi � αk which contradicts k < i.
Therefore, α ∈ A† if and only if for some i, α ∈ Yi ∪ Zi, which is if and only

if α ∈ S, showing that A† = S.
The last part follows from Proposition 6(1). 2

The purpose of the construction is to produce an embedding into not too
large a set. One extreme is when � is a total order, the set A† is just A−{0}, so
|A†| = |A| − 1. Propositions 6 and 7 show that when A has a strong structure,
A† can be very compact in comparison to A. For example, if A is the lattice of
all subsets of a set Ω; then A† is the set of singleton subsets of Ω so |A†| = |Ω| =
log2 |A|.

4.4 Answering Queries and Finding Simple Derived Constraints

Deduced A-constraints d with small Vd are often of particular interest as they
represent more general statements about the preferences. For example, in the
problem of arranging a meeting discussed earlier, if we can derive a constraint,
on just the date variable(s), saying that the meeting will either have to be next
week or not before next year, it may prompt immediate action, or e.g., it may
help in persuading Gerard to rethink his preferences.

Let B be a distributive lattice, and let C be a set of B-constraints. For U ⊆ V ,
define B-constraint CU to be (

∧
C ∧ 1U)↓U . A hypergraph G on V is a set of

sets of variables. A hypertree is a hypergraph that has a particular acyclicity
property. Hypertree H is said to be a hypertree cover of hypergraph G if for all
U ∈ G, there exists U ′ ∈ H with U ′ ⊇ U . We can use a standard method to
generate a hypertree cover H of G = {Vc : c ∈ C} [21]. As shown in [21, 18], the
variable elimination approach (see Section 3.4) can be extended to generate CU

for each U ∈ H, using a message passing algorithm on a join tree; this can then

be used to generate (if we wish) CU for any U ∈ G, and CU for any smaller
sets U . (This might be thought of as enforcing global consistency.) Once we
have performed this computation, we can quickly answer any query of the form
C |= d, where d is any B-constraint such that Vd is a subset of some set U in
the hypertree. We project CU to set of variables Vd to give c′ = (CU)↓Vd . Then
C |= d if and only if for all y ∈ D(Vd), c′(y) � d(y), which can be checked easily
if D(Vd) is small.

Generating derived B-constraints CU involves a sequence of combinations and
projections. For the complexity, the critical part is (usually) using combination
to generate B-constraints c with Vc = U for some U ∈ H. This involves (at least
with the most obvious implementation) proportional to |D(U)| lattice operations
∧.

Suppose we are using the embedding QA′ to answer queries given a set of A-
constraints, using this approach. Then performing the lattice operations ∧ takes
time proportional to |A′|. So the computation time is typically proportional to
|A′|maxU∈H |D(U)|. This indicates that generating a set A′, such as A†, with
|A′| much smaller than |A| will often make a considerable difference. Producing
A† and the sets QA†(α) by crudely implementing the above definitions takes
time proportional to |A|2|A†|, which is an issue if |A| is large. But it can be done
off-line: it only ever needs to be done once for a given partially ordered set A. (If
A is so large that the time to produce A† would dominate the computation time,
then an alternative is to use A′ = A, in which case producing QA′ is O(|A|2).)

An alternative approach, based on decision diagrams (which implement a
certain form of dynamic programming) can also be used for answering queries,
by computing CU for certain small sets U [25].

5 A Different Semantics

The semantics described earlier assumed that we knew the identity of the par-
tially ordered set of degrees. In this section we consider a situation where the
set of preference degrees is unknown except that it contains a known set A.

Example 3. Consider partially ordered set A = (A, 0, 1,�) with A = {0, 1, α, β},
and 0 ≺ α, β ≺ 1, but no order between α and β. Define A-constraints c1 and c2

on a single variable (with two possible assignments a and b) by: c1(a) = c2(a) =
1, c1(b) = α, c2(b) = β. With the semantics given in Section 2, {c1, c2} entails
the A-constraint d given by d(a) = 1, d(b) = 0, which states that value b has the
lowest preference degree. This is because, for model M , M |= c1 if and only if
M(b) � α, and M |= c2 if and only if M(b) � β. So M |= {c1, c2} if and only if
M(b) � α, β, hence M(b) = 0, since 0 is the only element of A which is a lower
bound for both α and β.

Now, this is completely reasonable (and correct) given that the A-constraints
were considered as restricting possible A-valued assignments. However, some-
times the intention will not be precisely that: our input information may consist
of A-constraints which assign elements to partial tuples, and where we are given

some ordering information between some of these elements. We can then gen-
erate the partially ordered set (A, 0, 1,�), where A is the set of elements men-
tioned in the A-constraints. However, these partially ordered elements may have
come from an unknown larger partially ordered set (A∗, 0, 1,�∗) which extends2

(A, 0, 1,�), i.e., A∗ ⊇ A, and for α, β ∈ A, α � β implies α �∗ β.
This suggests the following semantics for A-constraints. In this semantics,

a model is a pair (M,A∗) where A∗ = (A∗, 0, 1,�∗) is a partially ordered set
extending (A, 0, 1,�), and M is a function from D(V) to A∗. For A-constraint
c, we then define (M,A∗) |= c (that is, (M,A∗) is a model of c, or (M,A∗)
satisfies c) if for all x ∈ D(V), M(x) �∗ c(x). For set of A-constraints C and
A-constraint d we then say C |=∗ d if (M,A∗) |= d for any (M,A∗) satisfying
every A-constraint in C.

We can proceed in a similar fashion as for |= defined in Section 2. Suppose
B ∪ {γ} ⊆ A and A∗ = (A∗, 0, 1,�∗) extends (A, 0, 1,�). A lower bound in A∗

of γ is an element α′ ∈ A∗ with α′ �∗ γ. Similarly a lower bound α′ in A∗ of B
is a lower bound of every element of B; we then write α′ �∗ B. We define B �∗ γ
if for every (A∗, 0, 1,�∗) extending (A, 0, 1,�), every lower bound in A∗ of B is
a lower bound of γ. Model (M,A∗) satisfies (every element of) C if and only if
for all x ∈ D(V), M(x) is a lower bound for C(x) = {c(x) : c ∈ C}. The reason
for introducing relation �∗ is the following characterisation of consequence.

Proposition 8. Let C ∪ {d} be a set of A-constraints with C non-empty. Then
C |=∗ d if and only if for all x ∈ D(V), C(x) �∗ d(x).

Proof. Suppose, for some x0 ∈ D(V), it is not the case that C(x0) �∗ d(x0),
so that there exists A∗ = (A∗, 0, 1,�∗) extending (A, 0, 1,�) and α ∈ A∗ such
that α is a lower bound of C(x0) (with respect to �∗) but it is not the case
that α �∗ d(x0). Define model (M,A∗) by M(x0) = α and, for x 6= x0, define
M(x) = 0. Clearly, for each x ∈ D(V), M(x) is a lower bound for C(x), so
(M,A∗) satisfies C. But (M,A∗) does not satisfy d, because M(x0) 6�∗ d(x0).
This shows that C 6|=∗ d.

Conversely, suppose that for all x ∈ D(V), C(x)�∗d(x). Suppose A∗ extends
A and let (M,A∗) be a model of C. Then for all x ∈ D(V), M(x) is a lower
bound for C(x) so, by the hypothesis, M(x) is a lower bound for d(x). This
shows that C |=∗ d. 2

The relation �∗ can be expressed more simply as follows:

Lemma 4. Suppose B ∪ {γ} ⊆ A with B non-empty. Then B �∗ γ if and only
if there exists β ∈ B with β � γ.

Proof. One of the implications is easy: suppose there exists β ∈ B with β � γ.
Then for any (A∗, 0, 1,�∗) extending (A, 0, 1,�) and any α′ which is a lower
2 We could change this definition as follows: (A∗, 0, 1,�∗) extends (A, 0, 1,�) if and

only if A∗ ⊇ A, and for α, β ∈ A, α � β ⇐⇒ α �∗ β. All the results of this section
would then still hold (using the same proofs).

bound in A∗ of B, we have α′ �∗ β. Since �∗ extends � we have β �∗ γ, so by
transitivity of �∗ we have α′ �∗ γ, proving that B �∗ γ.

For the converse, for any B ⊆ A not containing 0 we generate the extension
A∗ = (A∗, 0, 1,�∗) of (A, 0, 1,�) defined as follows. We add extra symbol B∗

to A to give A∗ = A ∪ {B∗}. Define �∗ by: α1 �∗ α2 if and only if either (a)
α1, α2 ∈ A and α1 � α2 or (b) α1 ∈ {0, B∗} and α2 = B∗; or (c) α1 = B∗ and
there exists β ∈ B such that β � α2. Since B is non-empty, B∗ �∗ 1 so for all
δ ∈ A∗, 0 �∗ δ �∗ 1. Clearly, A∗ extends (A, 0, 1,�). We need to show that
�∗ is a partial order: (i) �∗ is reflexive because � is reflexive. (ii) Transitivity:
suppose δ1 �∗ δ2 �∗ δ3, but it is not the case that δ1 �∗ δ3. Then all three must
be different (since �∗ is reflexive). Also, none can be 0. Because � is transitive,
all three cannot be in A, so one of them must be B∗. But δ1 is the only one
that could possibly be B∗ (as e.g., δ2 = B∗ would imply δ1 = B∗, contradicting
δ1 6= δ2). So δ1 = B∗ and there exists β ∈ B with β � δ2. But δ2 � δ3, so
β � δ3, by transitivity of �. This implies B∗ �∗ δ3, i.e., δ1 �∗ δ3, which is a
contradiction. (iii) Antisymmetry: assume δ1 �∗ δ2 and δ2 �∗ δ1. Suppose it
were the case that δ1 6= δ2. Then by antisymmetry of �, one of the two must
be B∗, which would imply the other was also B∗ (since B 63 0 and so B∗ 6�∗ 0),
contradicting them being different. This proves antisymmetry. So (A∗, 0, 1,�∗)
is a partially ordered set extending (A, 0, 1,�).

For γ ∈ A, if there does not exist β ∈ B with β � γ then B 63 0 and it is
not the case that B∗ �∗ γ, even though B∗ is a lower bound in A∗ for B. This
shows that it is not the case that B �∗ γ, as required. 2

Bringing the proposition and lemma together we have the following theo-
rem, which characterises this new semantic entailment relation |=∗. This result
indicates that the consequence relation |=∗ will often be much weaker than the
consequence |= defined in Section 2.2, since �∗ will often be a much weaker
relation than � (the antecedents B for �∗ don’t interact).

Theorem 4. Let C ∪ {d} be a set of A-constraints. Then C |=∗ d if and only if
for all x ∈ D(V), there exists c ∈ C with c(x) � d(x).

Another consequence of Lemma 4 and Proposition 8 is that if all the A-
constraints in C∪{d} only take values in {0, 1} then C |= d if and only if C |=∗ d.
This is because the lemma then implies for such C and d that C(x) �∗ d(x) if
and only if C(x) � d(x), which is if and only if either d(x) = 1 or C(x) 3 0.
Proposition 8 and Proposition 1 then imply the result. Consequently, |= and |=∗

both extend deduction for (standard) constraints.
We can also use these results to show that for any given A, the deduction

problem with respect to |=∗ for A-constraints is coNP-complete, similarly to the
corresponding result for |=, Proposition 2. Theorem 4 can be used to show that
the complement of the problem is in NP, and the same reduction from 3SAT
can be used to show the complement is NP-hard, since the constraints in the
constructed C ∪ {d} only take values in {0, 1}.

For each z ∈ D(Vd) and c ∈ C define the (standard) constraint c6�d(z) consist-
ing of all tuples y ∈ D(Vc) such that c(y) 6� d(z), i.e., ¬(c(y) � d(z)). Complete
tuple x satisfies c6�d(z) if and only if c(x) 6� d(z). We also use Vd = z to mean
the constraint with scope Vd which is satisfied if and only if Vd = z.

Theorem 4 can be written in a different way, leading to a computational
procedure to determine the entailment C |=∗ d: for each assignment z to Vd we
check whether a set of constraints is satisfied. This can be done using any of the
usual CSP methods.

Proposition 9. C |=∗ d if and only if for all z ∈ D(Vd), the set of (standard)
constraints {c6�d(z) : c ∈ C} ∪ {Vd = z} is unsatisfiable.

Proof. Let z be any assignment to Vd. The set of constraints {c6�d(z) : c ∈ C} ∪
{Vd = z} is unsatisfiable if and only if there does not exist complete tuple x
satisfying all the constraints, i.e., if for all x ∈ D(V) with x↓Vd = z, there exists
c ∈ C with c(x) � d(z). Therefore [for all z ∈ D(Vd), the set of constraints
{c6�d(z) : c ∈ C}∪{Vd = z} is unsatisfiable] if and only if for all x ∈ D(V), there
exists c ∈ C with c(x) � d(x). Theorem 4 then proves the result. 2

The naturalness of this consequence relation depends on what we know and
don’t know about the partially ordered set. If (A, 0, 1,�) is a lattice, then this
consequence relation will often not be appropriate as it can be unnecessarily
weak: this is because we are only requiring the extension to extend the ordering
relation�, whereas it is often natural to only consider extensions that also extend
∨ and ∧; for example, one might expect that a statement that (for a constraint
c) c(y1) is the greatest lower bound of c(y2) and c(y3) should not just hold in A,
but in any extension we consider. This will lead to consequence being the same
as that defined in Section 2, since the properties of Lemma 1 (in particular, part
(ii)) still hold, and hence so does the counterpart of Theorem 1.

However, this suggests that sometimes a richer representation of a partially
ordered set may be appropriate, for example, as A = (A, 0, 1,�,∧,∨) where ∧
and ∨ are partial operations on A: they are only defined for some pairs of ele-
ments. When α∧β is defined, the result should be the greatest lowest bound not
only in A but in any extension of A; extensions A∗ should extend these partial
functions as well as the ordering relation. We can then apply the same approach
as used above, but based on only these extensions A. This extra structure can
be used, for example, to define ‘mutual exclusivity’ between elements α, β ∈ A:
α∧β = 0, so that a constraint c with c(y) = α and a constraint d with d(y) = β
will jointly imply that y is least preferred: M(y) = 0.

6 Finding Good and Optimal Complete tuples

LetA = (A,�, 0, 1) be a partially ordered set, and let C be a set ofA-constraints.
We will consider the problem of finding complete assignments x ∈ D(V), which
may be considered as being among the better or best assignments.

For α ∈ A, we say that x is α-satisfactory if x satisfies each A-constraint at
least to degree α. This happens if and only if x is a solution of the set of (stan-
dard) constraints C�α = {c�α : c ∈ C}, where c�α = {y ∈ D(Vc) : c(y) � α}.
So standard CSP solving techniques can be used to find tuples which satisfy
each constraint to a (relatively) high degree.

This can also be used to generate an ordering �1 on D(V) by x �1 x′

if and only if x is α-satisfactory for every α such that x′ is α-satisfactory.
�1 is then a pre-order on D(V) (a reflexive and transitive relation). x is α-
satisfactory if and only if α is a member of LB(C(x)), the set of lower bounds
of C(x). This implies that x �1 x′ if and only if LB(C(x)) ⊇ LB(C(x′)). When
A is a lattice then x �1 x′ if and only if (

∧
C)(x) � (

∧
C)(x′); if A is to-

tally ordered, �1 is just the ordering �min given by x �min x′ if and only if
min {c(x) : c ∈ C} � min {c(x′) : c ∈ C}. We can define optimal assignments
x to be maximal elements with respect to �1, i.e. x such that there exists no
x′ ∈ D(V) with x′ �1 x and x 6�1 x′.

A simple alternative definition of optimality is that x satisfies C�α for some
maximal α such that C�α is satisfiable. Such maximal α can be found using
an iterative algorithm, which, given an appropriate representation of A, can
involve checking the satisfiability of of order log |A| CSPs. For the case when A
is a lattice, both these definitions of x being optimal reduce to (

∧
C)(x) being

maximal.

Ordering relation �1 might be criticised for the same reasons as �min is
criticised in e.g., [15]: it suffers from the ‘drowning problem’. However, a natural
condition that one may wish to impose on the ordering on D(V), and which has
perhaps surprisingly strong consequences, is the following: (I) If we replace C by
semantically equivalent C ′ then it doesn’t change the ordering. This implies that
adding implied constraints doesn’t change the ordering. We can define “seman-
tically equivalent” according to the semantics of either Section 2.2 or of Section
5. If we use the first semantics, (I) means that the ordering just depends on the
set of models {M : M |= C}. We have: M |= C if and only for all x ∈ D(V),
M(x) ∈ LB(C(x)). Another (less precise) natural condition is the following: (II)
The comparison between x and x′ depends only on the parts of the problem
related to x and x′, and not on the values of the A-valuations on any other com-
plete assignments. This condition then suggests that the comparison between x
and x′ should depend only on the relationship between the two sets LB(C(x))
and LB(C(x′)). In the case of a lattice, the set LB(C(x)) is characterised by
a single semiring value, (

∧
C)(x) =

∧
c∈C c(x), with LB(C(x)) being all lower

bounds of this value, so the ordering between x and x′ is determined by com-
paring values (

∧
C)(x) and (

∧
C)(x′). For the general case, the obvious way of

comparing LB(C(x)) and LB(C(x′)) is by determining if one is a subset of the
other, leading to �1 as defined above.

If instead we were to interpret condition (I) on the basis of the semantics
of Section 5 then we can use a similar argument to suggest that the ordering
between x and x′ just depends on the set of minimal elements in C(x), and the

set of minimal elements in C(x′). This also leads in the totally ordered case to
relation �min.

One may also consider syntactic definitions of the ordering on D(V), allowing
semantically equivalent sets of A-valuations to lead to different orderings. In
particular, one might generalise approaches for the totally ordered case such as in
[15]. One approach of this kind is to associate a multiset C∗(x) = {c(x) : c ∈ C}
to each x ∈ D(V), and use a method for comparing sub-multisets of A; for
example, we can say that x is at least as good as x′ if for all α ∈ C∗(x)−C∗(x′)
there exists element β ∈ C∗(x′)− C∗(x) with β � α.

7 Summary And Discussion

The paper defines a logic of soft constraints, based on a very simple semantics.
This formalism allows one to reason with soft constraints that assign arbitrary
partially ordered degrees to tuples. A possibilistic logic based on a partially
ordered set is also constructed, which is formally a very closely related system.
In the case where the partially ordered set is a distributive lattice, the logic has
the same consequence relation as that generated by idempotent semiring-based
CSPs, so the system can be considered as an extension of idempotent semiring-
based CSPs. However, this logic is far more expressive since distributive lattices
are a very special kind of partial order. The properties of a distributive lattice
allow a range of computational techniques for computing consequences. One
of the main contributions of this paper is to show how to make use of these
computational techniques for the general case, by compactly embedding the
partially ordered set within a distributive lattice.

Another logic of soft constraints is also defined based on a weaker semantics,
and it is shown how to compute consequences in this logic also. The compu-
tational properties of the logics seem reasonable. For example, testing if a soft
constraint can be derived from a set of soft constraints, will be feasible even for
very large problems, if the topological structure is appropriately sparse, and the
partially ordered set is fairly small.

A by-product of this work is a new and, in a certain sense, deeper semantics
for idempotent semiring-based CSPs. The previous semantics treats the opera-
tions of multiplication ∧ and addition ∨ as primitives, and defines the semantics
in terms of them. The strength of this new semantics is that it assumes so little:
essentially the whole system follows from equation (1), saying that the con-
straints express upper bounds on preference degrees for complete assignments.

Both logics, but especially the second, are somewhat conservative. It would
be interesting to look at more adventurous (non-monotonic) extensions where
tentative inferences about preferences are suggested. Another valuable extension
could be a formalism that represented both absolute preferences (as these do)
and relative preferences of the kind that CP-nets express.

Acknowledgements.

I’m grateful for the thought-provoking comments of the referees, and for feedback
from Gene Freuder, Barry O’Sullivan, Steve Prestwich and Rick Wallace. Part of
this work was done while I was at the Department of Computer Science, Keele
University, UK. It was supported by the REVIGIS project, IST-1999-14189, and
by Science Foundation Ireland under Grant 00/PI.1/C075.

References

1. S. Benferhat, S. Lagrue, and O. Papini. Reasoning with partially ordered infor-
mation in a possibilistic logic framework. In Proceedings of IPMU 2002, pages
1047–1052, 2002.

2. U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press,
1972.

3. S. Bistarelli. Semirings for Soft Constraint Solving and Programming. Springer,
2004.

4. S. Bistarelli, T. Fruewirth, M. Marte, and F. Rossi. Soft constraint propagation
and solving in constraint handling rules. Computational Intelligence, Special Issue
on Preferences in AI and CP, 2004.

5. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Solving and
Optimization. Journal of the ACM (JACM), 44(2):201–236, 1997.

6. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint logic program-
ming: Syntax and semantics. ACM Transactions on Programming Languages and
Systems, 2001.

7. S. Bistarelli, U. Montanari, and F. Rossi. Soft concurrent constraint programming.
In Proc. 11th European Symposium on Programming (ESOP), Lecture Notes in
Computer Science (LNCS), pages 53–67. Springer, 2002.

8. S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and H. Fargier.
Semiring-based CSPs and Valued CSPs: Frameworks, properties and comparison.
Constraints, 4(3):199–240, 1999.

9. C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D. Poole. CP-nets: a tool
for representing and reasoning with conditional ceteris paribus statements. JAIR,
21:135–191, 2004.

10. C. Boutilier, R. I. Brafman, H. H. Hoos, and D. Poole. Reasoning with conditional
ceteris paribus preference statements. In Proceedings of the Fifteenth Conference
on Uncertainty in Artificial Intelligence (UAI99), pages 71–80, 1999.

11. R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113, 1999.

12. R. Dechter and I. Rish. Mini-buckets: A general scheme for bounded inference.
Journal of the ACM, 50(2):107–153, 2003.

13. D. Dubois, J. Lang, and H. Prade. Timed possibilistic logic. Fundamenta Infor-
maticae, XV, 1991.

14. D. Dubois, J. Lang, and H. Prade. Possibilistic Logic, pages 439–513. In: Handbook
of Logic in Artificial Intelligence and Logic Programming Vol. 3, D. Gabbay and
C. Hogger and J. Robinson (eds.). Oxford University Press, 1994.

15. H. Fargier, J. Lang, and T. Schiex. Selecting preferred solutions in fuzzy con-
straint satisfaction problems. In Proc. of the first European Congress on Fuzzy and
Intelligent Technologies, 1993.

16. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

17. J. Kohlas. Information Algebras. Springer, London, 2003.
18. J. Kohlas and P. Shenoy. Computation in Valuation Algebras. In: Kohlas, J.,

Moral, S., (eds.) Algorithms for Uncertainty and Defeasible Reasoning, Volume 5,
Handbook of Defeasible Reasoning. Kluwer Academic Publishers, 2000.

19. T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction problems:
hard and easy problems. In Proc. IJCAI-95, pages 631–637, 1995.

20. P. P. Shenoy. Valuation-based systems: A framework for managing uncertainty in
expert systems. Fuzzy Logic for the Management of Uncertainty, 1992.

21. P. P. Shenoy and G. Shafer. Axioms for probability and belief function propagation.
In Uncertainty in Artificial Intelligence 4, pages 575–610, 1990.

22. N. Wilson. A logic of partially satisfied constraints. In Soft’03: Fifth International
Workshop on Soft Constraints, 2003.

23. N. Wilson. Extending CP-nets with stronger conditional preference statements. In
Proceedings of AAAI-04, pages 735–741, 2004.

24. N. Wilson. Soft constraints with partially ordered preferences (short paper). In
Proc. European Conference on Artificial Intelligence, pages 1111–1112, 2004.

25. N. Wilson. Decision diagrams for the computation of semiring valuations. In Pro-
ceedings of the Nineteenth International Joint Conference on Artificial Intelligence
(IJCAI-05), pages 331– 336, 2005.

