
Title Interleaving solving and elicitation of constraint satisfaction problems
based on expected cost

Author(s) Wilson, Nic; Grimes, Diarmuid; Freuder, Eugene C.

Publication date 2010-01

Original citation WILSON, N., GRIMES, D. & FREUDER, E. 2010. Interleaving solving
and elicitation of constraint satisfaction problems based on expected
cost. Constraints, 15 (4), 540-573. doi: 10.1007/s10601-010-9099-7

Type of publication Article (peer-reviewed)

Link to publisher's
version

http://link.springer.com/article/10.1007%2Fs10601-010-9099-7
http://dx.doi.org/10.1007/s10601-010-9099-7
Access to the full text of the published version may require a
subscription.

Rights © Springer Science+Business Media, LLC 2010. The final
publication is available at link.springer.com.

Item downloaded
from

http://hdl.handle.net/10468/1083

Downloaded on 2017-02-12T09:29:30Z

http://link.springer.com/article/10.1007%2Fs10601-010-9099-7
http://dx.doi.org/10.1007/s10601-010-9099-7
http://hdl.handle.net/10468/1083

Interleaving Solving and Elicitation of
Constraint Satisfaction Problems Based on

Expected Cost

Nic Wilson, Diarmuid Grimes and Eugene C. Freuder

Cork Constraint Computation Centre
Department of Computer Science
University College Cork, Ireland

n.wilson@4c.ucc.ie, d.grimes@4c.ucc.ie, e.freuder@4c.ucc.ie

Abstract. We consider Constraint Satisfaction Problems in which con-
straints can be initially incomplete, where it is unknown whether certain
tuples satisfy the constraint or not. We assume that we can determine
such an unknown tuple, i.e., find out whether this tuple is in the con-
straint or not, but doing so incurs a known cost, which may vary between
tuples. We also assume that we know the probability of an unknown tu-
ple satisfying a constraint. We define algorithms for this problem, based
on backtracking search. Specifically, we consider a simple iterative al-
gorithm based on a cost limit on which unknowns may be determined,
and a more complex algorithm that delays determining an unknown in
order to estimate better whether doing so is worthwhile. We show exper-
imentally that the more sophisticated algorithms can greatly reduce the
average cost.

1 Introduction

In Constraint Satisfaction Problems it is usually assumed that the CSP is avail-
able before the solving process begins, that is, the elicitation of the problem is
completed before we attempt to solve the problem. As discussed in the work on
Open Constraints and Interactive CSPs [1–5], there are situations where it can
be advantageous and natural to interleave the elicitation and the solving. We
may not need all the complete constraints to be available in order for us to find
a solution. Furthermore, it may be expensive, in terms of time or other costs, to
elicit some constraints or parts of the constraints, for example, in a distributed
setting. Performing a constraint check in certain situations can be computation-
ally very expensive. We may need to pay for an option to be available, or for the
possibility that it may be available. Some constraints may be related to choices
of other agents, which they may be reluctant to divulge because of privacy is-
sues or convenience, and so it could cost us something to find these out. Or they
may involve an uncertain parameter, such as the capacity of a resource, and
it could be expensive, computationally or otherwise, to determine more certain
information about this.

nwilson
Typewritten Text
Article published in Constraints Volume 15, Number 4, 540-573, DOI: 10.1007/s10601-010-9099-7 http://www.springerlink.com/content/b145m83381800x8v/The final publication is available at www.springerlink.com

nwilson
Typewritten Text

nwilson
Typewritten Text

nwilson
Typewritten Text

nwilson
Typewritten Text

nwilson
Typewritten Text

nwilson
Typewritten Text

nwilson
Typewritten Text

nwilson
Typewritten Text

nwilson
Typewritten Text

nwilson
Typewritten Text

In this paper we consider approaches for solving such partially-specified CSPs
which take these costs into account. Constraints may be initially incomplete:
it may be unknown whether certain tuples satisfy the constraint or not. It is
assumed in our model that we can determine such an unknown tuple, i.e., find out
whether this tuple is in the constraint or not, but doing so incurs a known cost,
which may vary between tuples. We also assume that we know the probability of
an unknown tuple satisfying a constraint. An optimal algorithm for this situation
is defined to be one which incurs minimal expected cost in finding a solution.

Example

To illustrate this situation, consider a problem with two variables X and Y ,
where X takes values 1, 2, 3 and 4, so D(X) = {1, 2, 3, 4}, and the domain,
D(Y), of Y is {5, 6}. Consider, for example, that we are trying to arrange a
football match, choosing one of four potential locations (the values of X), and
one of two potential time-slots (the values of Y). In order for a pair (x, y) to be
a feasible solution, we need to find out if (1) we have permission to use football
pitch x, and (2) if x is available at time y. There are two incomplete constraints
(see Table 1), the first, c1, is a unary constraint on X, representing which football
pitches we have permission to use, and the second, c2, is a binary constraint on
the two variables, representing which pitches are available at which time-slot.

It is (currently) unknown if we have permission to use the first pitch, i.e., if
X = 1 satisfies constraint c1. The probability p1 that it does so is 0.9. We can
determine (i.e., find out) if X = 1 satisfies constraint c1, but this test incurs a
cost of K1 = 50 (which in this example is a measure of the effort needed to find
out the information). We write c1(X = 1) = u1, where u1 represents an unknown
Boolean value. If it turns out that u1 = 1 then X = 1 satisfies constraint c1;
otherwise, u1 = 0, and X = 1 does not satisfy c1. It is also unknown if values 2, 3
and 4 satisfy c1. We have c1(X = 2) = u2, c1(X = 3) = u3 and c1(X = 4) = u4.
The cost of determining unknowns u2, u3 and u4 is each 70, and the probability
of success of each is 0.8.

Tuples (2, 6), (3, 5) and (4, 6) all satisfy the binary constraint, whereas tuples
(2, 5), (3, 6) and (4, 5) do not. It is unknown whether tuples (1, 5) and (1, 6)
satisfy the constraint, i.e., whether the first pitch is available at the two time-
slots (because, although matches were provisionally booked for these times, there
is a possibility that these matches have been cancelled). We have c2(X = 1, Y =
5) = u5, and c2(X = 1, Y = 6) = u6, and c2(X = 2, Y = 6) = c2(X = 3, Y =
5) = c2(X = 4, Y = 6) = 1. The other tuples have value 0. Unknowns u5 and u6

each have cost 200 and probability of success 0.1. Hence there is a 10% chance
that X = 1, Y = 5 satisfies c2, and it costs 200 units to determine this. For
i = 1, . . . , 6, we write Ki as the cost of determining unknown ui, and pi for the
probability of success, i.e., that ui = 1.

Consider a standard backtracking search algorithm with variable ordering
X,Y and value ordering 1, 2, 3, 4 for X and 5, 6 for Y . The algorithm will first
incur a cost of 50 in determining u1. This unknown will be determined success-
fully with 90% chance, and if so, then X = 1 satisfies c1. After that, u5 will

be determined, costing 200, but with only 0.1 chance of success. If both u1 and
u5 are successfully determined then (X = 1, Y = 5) is a solution of the CSP.
However, this has only chance p1× p5 = 0.9× 0.1 = 0.09 of happening, and cost
K1 +K5 = 50 + 200 = 250 is incurred (see Figure 1).

Table 1: The unary constraint c1 and the binary constraint c2, along with costs
(Ki) and probabilities (pi) of their associated unknowns.

X = 1 X = 2 X = 3 X = 4

c1(X) u1 u2 u3 u4

(Ki, pi) (50, 0.9) (70, 0.8) (70, 0.8) (70, 0.8)

c2(X,Y) X = 1 X = 2 X = 3 X = 4

Y = 5 u5 0 1 0
(Ki, pi) (200, 0.1)

Y = 6 u6 1 0 1
(Ki, pi) (200, 0.1)

It can be shown that the expected cost incurred by this algorithm is approx-
imately 464 and can be written as E1 + qE2, where q = 0.1 + 0.93 = 0.829,
and E1 and E2 are defined as follows: E1 = K1 + p1(K5 + (1 − p5)K6) =
50 + 0.9(200 + 0.9 × 200) = 392; and E2 = K2 + (1 − p2)(K3 + (1 − p3)K4) =
70 + 0.2(70 + 0.2 × 70) = 86.8. E1 is the expected cost in the X = 1 branch,
E2 is the expected cost conditional on having reached the X = 2 constraint
check, and q is the chance that the algorithm fails to find a solution with X = 1.
This is far from optimal, mainly because determining unknowns u5 and u6 is
very expensive, and they also have only small chance of success. An optimal
algorithm for this problem (i.e., one with minimal expected cost) can be shown
to have expected cost E2 + (0.23 × 389.5) ≈ 90, which can be achieved with a
backtracking search algorithm which determines unknowns in the X = 2, 3, 4
branches before determining unknowns in the X = 1 branch.

In more detail: we can first determine u2, with cost 70 and chance of success
0.8. If u2 = 1 then (X = 2, Y = 6) is a solution and we stop. If u2 = 0 we
next determine u3; if u3 = 1 we have a solution (X = 3, Y = 5). If u3 = 0
we next determine u4. The expected cost so far is equal to E2. If we have not
found a solution so far, i.e., if u2 = u3 = u4 = 0 (which happens with chance
(1 − p2)(1 − p3)(1 − p4) = 0.23 = 0.008) we next determine u5 with cost 200.
If u5 = 1 we determine u1; if u1 = 1 then we have a solution (1, 5); if u1 = 0
then there exists no solution. If u5 = 0 then we determine u6, and then u1 if
u6 = 1. The expected cost can then be written as E2 + (0.23 ×E′1) where E′1 =
K5 +p5K1 +(1−p5)(K6 +p6K1) = 200+0.1×50+0.9×(200+0.1×50) = 389.5.
The expected cost is therefore equal to 86.8 + (0.008× 389.5) = 89.916. �

X=1

Y=5

u5
200, 0.1

(X=1, Y=5):
{u1, u5}

Y=6

X=2 X=3

X=4

Y=5Y=6 Y=6

(X=1, Y=6):
{u1, u6}

(X=2, Y=6):
{u2}

(X=3, Y=5):
{u3}

(X=4, Y=6):
{u4}

u6
200, 0.1

u1
(K1 , p1)= (50, 0.9) u2

70, 0.8
u3

70, 0.8

u4
70, 0.8

Fig. 1: Search tree for example, including the unknowns and their costs and prob-
abilities. Leaf nodes correspond to potential solutions, which have an associated
set of unknowns. For example, (X = 1, Y = 5) is a solution if both unknowns
u1 and u5 turn out to be 1, which has probability 0.9× 0.1 = 0.09.

Algorithms with low expected cost will clearly need to consider the costs
and the probabilities. A backtracking algorithm should ideally not always deter-
mine any unknown it meets, but allow the possibility to delay determining an
unknown, to check whether it seems worthwhile doing so.

We define algorithms for this problem, based on backtracking search. Such
algorithms can be crudely divided into three classes:

– Type 0: determining all unknowns to begin with;
– Type 1: determining unknowns as we meet them in the search;
– Type 2: making decisions about whether it’s worth determining an unknown,

making use of cost and/or probabilistic information.

The normal solving approaches for CSPs fall into Type 0, where the full
CSP is elicited first and we then solve it, based on backtracking search with
propagation at each node of the search tree. Algorithms for open constraints,
which don’t assume any cost or probability information, can be considered as
being Type 1. In this paper we construct Type 2 algorithms, which make use of
the cost and probabilistic information.

We first consider a simple iterative algorithm based on a limit on the costs
of unknowns that may be determined; for each cost limit value, we perform a
backtracking search; if this fails to find a solution we increment the cost limit,
and search again. With this algorithm it can easily happen that we pay a cost
of determining an unknown tuple, only to find that that particular branch fails

to lead to a solution for other reasons, as in the example, with unknown u1.
A natural idea is to delay determining an unknown, in order to find out if
it is worth doing so. Our main algorithm, described in Section 4, usually will
not immediately determine an unknown, but explore more deeply first. The
experimental results in Section 5 strongly suggest that this can be worthwhile.

Related Work

The motivation for this work is related to part of that for Open Constraints [1–3,
6], and Interactive CSPs [4, 5], with a major difference being our assumption of
there being cost and probabilistic information available ([2] considers costs in
optimisation problems, but in a rather different way). Although these kinds of
methods could be used for our problem, not taking costs and probabilities into
account will, unsurprisingly, tend to generate solutions with poor expected cost,
as illustrated by the example and our experimental results. Algorithms which
interleave elicitation and solving for incomplete problems are also considered in
[7–9], though in a soft constraints context. However, they do not assume the
existence and use of probabilistic information regarding whether an unknown
tuple satisfies a constraint; also they do not consider varying costs of eliciting a
tuple. (There is also a less strongly related body of work on interactive solving
e.g., [10], where a user sequentially assigns values to variables.)

Another approach is to ignore the probabilistic information, and look for
complete assignments that will incur minimal cost to check if they are solutions.
Weighted constraints methods e.g., [11] can be used to search for such assign-
ments. If all the probabilities were equal to 1 then this would solve the problem.
However, it may well turn out that all the lowest cost assignments also have rel-
atively low probability. Consider the example with K5 (the cost of determining
u5) changed to be 10 instead of 200. The assignment which then needs mini-
mum cost to discover if it’s a solution is (X1 = 1, X2 = 5); this again leads to a
suboptimal algorithm.1 Alternatively, one could search for complete assignments
which have highest probability of being a solution, as in Probabilistic CSPs [12].
Although this may perform satisfactorily if all the costs are equal, with varying
costs it seems that the costs should be taken into account. Consider the example,
but where p5, the probability that u5 = 1, is changed from 0.1 to 0.9. The as-
signment with greatest chance of being a solution is (X1 = 1, X2 = 5); however
the cost of finding this solution is 250, so checking out this potential solution
first is far from optimal.

Structure of the paper

The next section describes the model and problem more formally, along with a
dynamic programming algorithm which is optimal but very expensive. Section
3 derives a more practical solution approach, leading to our main algorithm,
1 The expected cost of such an algorithm is greater than K5 + p5K1 + (1 − p5)E2 +
p5(1− p1)E2 = 10 + 0.1× 50 + 86.8(0.9 + 0.1× 0.1) = 93.988.

which is described in Section 4. Section 5 describes the experimental testing and
results. Section 6 shows how the framework and algorithms can be extended for
non-Boolean-valued unknowns, and Section 7 discusses other extensions.

This paper extends work in [13].

2 A Formal Model for Interleaving Solving and
Elicitation

Section 2.1 defines a formal framework (ECI-CSPs), for modelling situations
where the elicitation and solving of a CSP can be interleaved. Section 2.2 defines
what it means to solve an ECI-CSP, and Section 2.3 gives a dynamic program-
ming algorithm which solves ECI-CSPs optimally.

2.1 Expected Cost-based Interactive CSPs (ECI-CSPs)

Standard CSPs: Let V be a set of variables, which are interpreted as decision
variables, so that we have the ability to choose values for them. Each variable
X ∈ V has an associated domain D(X). For any subset W of V , let D(W) be
the set of assignments to W , which can be written as

∏
X∈W D(X). Associated

with each (standard) constraint c over V , is a subset Vc of V , which is called its
scope. Define a (standard) constraint c over V to be a function from D(Vc) to
{0, 1}. We will sometimes refer to a set of constraints C over V as a Constraint
Satisfaction Problem (CSP) over V . Let S be an assignment to all the variables
V . S is said to satisfy constraint c if c(S′) = 1, where S′ is S restricted to Vc. S
is a solution of CSP C (or, S satisfies C) if it satisfies each constraint in C.

The Unknowns: As well as decision variables V , we consider a disjoint set of vari-
ables U , which we call the set of unknowns. These are uncertain variables, and
we have no control over them, so that we cannot choose their values. They are all
Boolean variables (though see Section 6 for a generalisation to multi-valued vari-
ables), so for any unknown u, we have D(u) = {0, 1}. For a setW of unknowns we
define D(W) to be the set of assignments to W (which can be considered as the
set of functions fromW to {0, 1}). It is assumed that the unknowns U are proba-
bilistically independent variables. Hence if α is an assignment to U , then Pr(α),
the probability that α occurs, is equal to

∏
u :α(u)=1 pu ×

∏
u :α(u)=0(1 − pu),

where, for u ∈ U , pu is the probability that u = 1.
We assume that, for any unknown u ∈ U , we can determine (i.e., discover)

the value of u, that is, whether u = 1 or u = 0. So we assume we have some
procedure Det(·) that takes an unknown u as input and returns 1 or 0. We also
assume that there is a certain cost Ku ∈ [0,∞) for executing this procedure on u,
and that we have probabilistic information about the success of this procedure.
In particular we assume that we know the probability pu of success, i.e., the
probability that Det(u) = 1.

Incomplete Constraints: An incomplete constraint c over (V,U) has an associated
subset Vc of V called its scope. c is a function from D(Vc) to {0, 1} ∪ U . (Note
that we allow the same unknown to be associated with more than one tuple.)
Hence, to any tuple t ∈ D(Vc), c assigns 1, 0 or some unknown. c is intended
as a partial representation of some standard constraint c∗ over Vc. c(t) = 1 is
interpreted as: it is known that t satisfies the constraint c∗. Also, c(t) = 0 is
interpreted as: it is known that t doesn’t satisfies the constraint c∗; otherwise,
if c(t) ∈ U , then it is unknown if t satisfies the constraint. We will sometimes
refer to a set C of incomplete constraints over (V,U) as an incomplete CSP. It
is interpreted as the partial information we have of a CSP C∗ = {c∗ : c ∈ C};
C∗ is also sometimes referred to as the unknown CSP.

ECI-CSPs: An Expected Cost-based Interactive CSP (ECI-CSP) is formally
defined to be a tuple 〈V,D,U ,K, p, C〉, with the components being defined as
follows: V is a set of variables, and D is a function specifying the domain D(X)
of each variable X ∈ V ; U is a probabilistically independent set of unknowns, p
is a function from U to [0, 1], where p(u) (usually written pu) is the probability
that u = 1; K is a function from U to [0,∞), and C is a set of incomplete
constraints over (V,U).

Associated with an incomplete constraint c are two standard constraints with
the same scope. The known constraint c is given by c(t) = 1 if and only if c(t) = 1
(otherwise, c(t) = 0). A tuple satisfies c if and only if it is known to satisfy c∗.
The potential constraint c is given by c(t) = 0 if and only if c(t) = 0 (otherwise,
c(t) = 1). A tuple satisfies c if it could potentially satisfy c∗. For a given set
of incomplete constraints C, the Known CSP is the set of associated known
constraints: C = {c : c ∈ C}, and the Potential CSP C is the set of associated
potential constraints: {c : c ∈ C}.

Suppose that c(t) = u, and we determine u and find out that u = 1. Then
we now know that t does satisfy the constraint, so we can instantiate u to 1,
i.e., replace c(t) = u by c(t) = 1. Define c[u = 1] to be the incomplete constraint
generated from c by replacing every occurrence of u by 1. We define c[u = 0]
analogously. More generally, let ω be an assignment to a setW ⊆ U of unknowns,
and let c be an incomplete constraint. c[ω] is the incomplete constraint obtained
by replacing each u inW by its value ω(u). We define C[ω] to be {c[ω] : c ∈ C}.
C[ω] is thus the incomplete CSP updated by the extra knowledge ω we have
about unknowns.

We do not usually need to determine all unknowns to know that an in-
complete CSP is solvable or not. We say that incomplete CSP C is solved by
assignment S (to variables V) in the context ω if S is a solution of the associated
known CSP C[ω]. In other words, if S is known to be a solution of C given ω.
An incomplete CSP C is insoluble in the context ω if the associated potential
CSP C[ω] has no solution. In this case, even if all the other unknowns are found
to be equal to 1, the CSP is still insoluble.

2.2 Policies for Solving ECI-CSPs

An algorithm for solving an incomplete CSP involves sequentially determining
unknowns until we can find a solution. Of course, the choice of which unknown
to determine next may well depend on whether previous unknowns have been
determined successfully or not. In the example in Section 1, if we determine u1

and discover that u1 = 0, which implies that no solution includes the assignment
X = 1, then there is no point in determining unknown u5, since it only tells us
whether (X = 1, Y = 5) satisfies constraint c2, which is now irrelevant, as we
now know that (X = 1, Y = 5) is not a solution.

What we call a policy for an ECI-CSP is a decision making procedure that se-
quentially chooses unknowns to determine. The choice of unknown to determine
at any stage can depend on information received from determining unknowns
previously. The sequence of decisions ends either with a solution to the known
part of the CSP, or with a situation in which there is no solution, even if all the
undecided unknown tuples are in their respective constraints. In more abstract
terms a policy can be considered as follows:-

Given an assignment ω to some (possibly empty) setW of unknowns, a policy
does one of the following:

(a) returns a solution of the Known CSP (given ω);
(b) returns “Insoluble” (it can only do this if the Potential CSP (given ω) is

insoluble);
(c) choose another undetermined unknown.

In cases (a) and (b) the policy terminates at this point. In case (c), the chosen
unknown u is determined, with value b = 1 or 0. ω is then extended with u = b,
and another choice is made by the policy, given ω ∪ [u = b]. The sequence
continues until the problem is solved or proved unsatisfiable.

We will define policies more formally as follows:
Let 〈V,D,U ,K, p, C〉 be an ECI-CSP. Let G be the set of all partial as-

signments to sets of unknowns, i.e., G =
⋃
W⊆U D(W). Let H = D(V) ∪ U ∪

{Insoluble}. A policy π for this ECI-CSP is defined to be a function from G
to H satisfying the following conditions:

(a) If π(ω) ∈ D(V) then π(ω) is a solution of the known CSP C[ω].
(b) If π(ω) = Insoluble then the potential CSP C[ω] is unsatisfiable.
(c) If π(ω) ∈ U then π(ω) /∈ W (the next unknown chosen must not be one of

the unknowns already chosen).

Policy π has an associated algorithm:

Procedure Algoπ
W := ∅ and ω := ♦ (the empty assignment);
repeat

if π(ω) ∈ D(V)
then return “π(ω) is a solution of the CSP.” and stop;
else if π(ω) = Insoluble then return “CSP is insoluble.” and stop;

else if π(ω) ∈ U
then determine unknown π(ω) to give Boolean value b;
W :=W ∪ {π(ω)}
ω := ω ∪ {[π(ω) := b]}

until W = U

We say that this algorithm implements policy π.
Define a scenario to be a complete assignment to all the unknowns, i.e., an

element of D(U). Let Pr(α) be the probability of scenario α occurring. Since the
variables U are probabilistically independent, we have Pr(α) =

∏
u :α(u)=1 pu ×∏

u :α(u)=0(1− pu). A policy iteratively chooses unknowns to determine until it
terminates. 2

The Expected Cost of a policy, and optimal policies: The behaviour of
the algorithm implementing policy π depends (only) on the true values of the
unknowns, i.e., on the scenario. In other words, the cost incurred by a policy is
a function only of the scenario. Let us write Costπ(α) for the cost incurred by
policy π in scenario α. Since the scenario is a random variable, we can consider
the expected cost EC(π) of policy π, which equals

∑
α∈D(U) Pr(α)Costπ(α),

where the summation is over all scenarios α.
LetWα be the set of unknowns determined by the algorithm implementing π,

given scenario α (i.e., given that α represents the actual values of the unknowns).
Thus Wα is the value of W at the end of the algorithm. The cost Costπ(α) that
the algorithm incurs in scenario α equals

∑
u∈Wα

Ku, the sum of costs of the
determined unknowns.

Evaluating Policies. We evaluate policies in terms of their expected cost. So,
we aim to define algorithms that implement policies which have relatively low
expected cost. A policy π is optimal if it has minimum expected cost, i.e., if
EC(π) ≤ EC(π′) for all policies π′.

2.3 Using Dynamic Programming to Generate an Optimal Policy

Although the problem involves minimising expected cost over all policies, the
structure of the decisions—dynamically choosing a sequence from a (large) set
of objects—does not fit very naturally into such formalisms as Influence Dia-
grams [15], Markov Decision Processes [16] and Stochastic Constraint Program-
ming [17]. We describe below a simple dynamic programming [18] algorithm for
generating an optimal policy.

Consider ECI-CSP E = 〈V,D,U ,K, p, C〉. Let ω be an assignment to some
set of unknowns W ⊆ U . Define ECI-CSP Eω to be the E updated with ω, i.e.,
〈V,D,U −W,K, p, C[ω]〉, where functions K and p are restricted to U −W.

2 The effect of a policy in a particular scenario can be viewed in terms of Dynamic
CSPs [14], since the sequence of Known CSPs generated involves constraints being
incrementally relaxed (tuples being added) until there is a solution.

Define AE(ω) to be the minimal expected cost over all policies for solving
Eω. Then AE(ω) = 0 if either the associated Known CSP C[ω] is soluble or the
associated Potential CSP C[ω] is insoluble. Otherwise, any policy (in particular,
an optimal policy) chooses some unknown u ∈ U − W to determine, incurring
cost Ku and with chance pu of finding that u = 1. If u = 1 then we have
the incomplete CSP C(ω ∪ {u = 1}) to solve, which has minimal expected cost
AE(ω ∪ {u = 1}). This leads to the following equation for AE :

Proposition 1. Let E = 〈V,D,U ,K, p, C〉 be an ECI-CSP, let W be a subset
of U , and let ω ∈ D(W) be an assignment to W. If C[ω] is soluble or C[ω] is
insoluble then AE(ω) = 0. Otherwise,

AE(ω) = min
u∈U−W

(
Ku + puAE(ω ∪ {u = 1}) + (1− pu)AE(ω ∪ {u = 0})

)
.

Proof: Throughout this proof we abbreviate AE to just A.
If C[ω] is soluble or C[ω] is insoluble then there exists a policy which either

produces a solution of C[ω] or returns “Insoluble” if C[ω] is insoluble, without
determining any unknowns in U −W, and hence incurring no cost. Thus in these
cases, A(ω) = 0.

Now suppose otherwise that C[ω] is not soluble and C[ω] is soluble. Let
B = minu∈U−W(Ku+puA(ω∪{u = 1})+(1−pu)A(ω∪{u = 0})). We will show
that A(ω) ≤ B and A(ω) ≥ B, proving the result.

Proving A(ω) ≤ B: Let u′ be an element of U −W that minimises Ku+puA(ω∪
{u = 1})+(1−pu)A(ω∪{u = 0}), so that B = Ku′ +pu′A(ω1)+(1−pu′)A(ω0),
where ω1 equals ω∪{u′ = 1}, i.e., ω extended by the assignment {u′ = 1}, and ω0

equals ω∪{u′ = 0}. Let π1 be an optimal policy for Eω1 , so that EC(π1) = A(ω1),
and let π0 be an optimal policy for Eω0 , so that EC(π0) = A(ω0).

Consider the policy π for Eω given by determining unknown u′ first (i.e.,
π(♦) = u′) and then following π1 if u′ = 1, and following π0 if u′ = 0. Thus
we define π(♦) = u′, and π(ω′) = π1(ω′) for ω′ ∈ D(U −W) which include the
assignment u′ = 1, and π(ω′) = π0(ω′) for ω′ ∈ D(U − W) which include the
assignment u′ = 0, and define π(ω′) arbitrarily for other ω′ ∈ D(U−W) (they’re
irrelevant).

EC(π) = Ku′ + pu′EC(π1) + (1 − pu′)EC(π0) = Ku′ + pu′A(ω1) + (1 −
pu′)A(ω0) = B. The minimality of A(ω) then implies that A(ω) ≤ B.

Proving A(ω) ≥ B: Consider an optimal policy π′′ for Eω, so that EC(π′′) =
A(ω). Let u′′ be the first unknown that π′′ determines, i.e., π′′(♦) = u′′. Let
ω1 be ω extended with the assignment u′′ = 1, i.e., ω1 = ω ∪ {u = 1}, and let
ω0 = ω ∪ {u = 0}.

Given u′′ = 1, π′′ defines a policy for Eω1 . Thus the expected cost of π′′ given
u′′ = 1 is at least Ku′′ +A(ω1).

Similarly, the expected cost of π′′ given u′′ = 0 is at least Ku′′ + A(ω0).
Thus EC(π′′) ≥ pu′′(Ku′′ + A(ω1)) + (1 − pu′′)(Ku′′ + A(ω0)), which equals
Ku′′ + pu′′A(ω1) + (1− pu′′)A(ω0).

Therefore, A(ω) = EC(π′′) ≥ Ku′′ + pu′′A(ω ∪ {u′′ = 1}) + (1 − pu′′)A(ω ∪
{u′′ := 0}), which proves that A(ω) ≥ B.

�

Algorithm for finding optimal solution of an ECI-CSP. The minimal expected
cost over all policies for solving the original ECI-CSP is equal to A[♦], where ♦
is the assignment to the empty set of variables. We can thus find the minimal
expected cost by using a simple dynamic programming algorithm, iteratively
applying the above equation, starting with all scenarios (or from minimal as-
signments ω such that C[ω] is insoluble); we can also find an optimal policy in
this way, by recording, for each ω, a choice u ∈ U − W which minimises the
expression for A(ω). The correctness of the following algorithm for computing
the minimum expected cost A[♦] follows immediately from Proposition 1.

Procedure Optimal-Expected-Cost
for i = 0, . . . , |V|

for all W ⊆ V with |W| = |V| − i
for all ω ∈ D(W)

if C[ω] is soluble or C[ω] is insoluble then A(ω) := 0;
else let uω be an element of U −W with minimum value of

Ku + puA(ω ∪ {u = 1}) + (1− pu)A(ω ∪ {u = 0});
A(ω) := Kuω +puωA(ω∪{uω} = 1)+(1−puω)A(ω∪{uω} = 0);

end for ;
end for ;

end for ;
Return A(♦).

A corresponding optimal policy π∗ can be defined as follows:

— If the CSP C[ω] is soluble then let π∗(ω) be any solution of it;
— if C[ω] is insoluble then π∗(ω) = Insoluble;
— otherwise, define π∗(ω) = uω (as generated in the above algorithm).

However, there are 3|U| different possible assignments ω (because ω is an
assignment to some subset W of U , so to fix ω we have three choices for each
u ∈ U , either u /∈ W or u = 1 or u = 0). Therefore this algorithm uses space
proportional to 3|U| and hence will only be feasible for problems with very small
|U|, i.e., very few unknowns (whereas problem instances in some of our experi-
ments in Section 5 involve more than 2,000 unknowns). More generally, it seems
that we will need to use heuristic algorithms.

3 Minimising Scaled Expected Cost

The hardness of the problem of generating an optimal policy means that it is
natural to look for approximation algorithms. We will consider policies of the
following form.

– We choose a potential solution, i.e., a solution of the potential CSP, and
check whether this is a solution. This will involve determining unknowns
(and instantiating them); if all the unknowns are determined successfully,
we have a solution, and we stop. Otherwise, one of the unknowns fails, i.e.,
is found to be 0; we choose and check another potential solution, continuing
until either we have found a solution, or there are no remaining potential
solutions (in which case the unknown CSP is unsatisfiable).

There are two procedures that need to be defined for an algorithm imple-
menting such a policy.

(1) Choosing the next potential solution to evaluate.
(2) Choosing the order of unknowns to be determined in checking if a potential

solution is a solution (of the unknown, actual, CSP). We then determine
unknowns in that order until either one is determined unsuccessfully, or
they are all determined successfully, and we have a solution of the Known
CSP, and hence of the (unknown) CSP, and can therefore stop.

Regarding (2), our approach is to minimise the expected cost incurred in
checking if a potential solution is a solution. We describe this in more detail in
Section 3.1.

For (1), we define the scaled expected cost of a potential solution to be the
ratio R/P where R is the expected cost in checking if it’s a solution, and P is
the probability that the potential solution actually is a solution. We then choose
potential solutions which have minimal scaled expected cost. This is described in
Section 3.2. In fact, as we discuss in Section 3.3, it is convenient for computational
purposes to simplify the algorithm slightly so that the solutions are chosen only
approximately in increasing order of minimal scaled expected cost; this is the
basis of the algorithm described in Section 4. Unsurprisingly, the algorithm is
not optimal; we give examples to illustrate this in Section 3.4.

3.1 Evaluating a Complete Assignment

In this section we consider the problem of testing if a given complete assignment
is a solution of an ECI-CSP 〈V,D,U ,K, p, C〉; the key issue is the order in which
we determine the associated unknowns. This analysis is relevant for our main
algorithm described in Section 4.

Associated with each potential solution S (i.e., solution of the associated
potential CSP C) is a set of unknowns, which can be written as: {c(S) : c ∈ C}∩
U (where c(S) is an abbreviation for c(S′), and S′ is the projection of S to the
scope Vc of c). An unknown u is in this set if and only if there exists some
constraint c such that c(S) = u. Label these unknowns as U = {u1, . . . , um}; we
abbreviate pui to pi, and Kui to Ki. We also define ri = Ki/(1− pi), where we
set ri = ∞ if pi = 1 (so that if pi = pj = 1 then ri = rj). Assignment S is a
solution of the unknown CSP if and only if each of the unknown values in U is
actually a 1. Since the unknowns are independent variables, the probability that
S is a solution of the CSP is p1p2 · · · pm, which we write as P (U).

For example, suppose that a potential solution S has associated set of un-
knowns {u1, u2}. If we determine unknown u1 first, then the expected cost of
determining if the potential solution is a solution is K1+p1K2, since we incur cost
K1, and only determineK2 if it turns out that Det(u1) = 1, which has probability
p1 of occurring. If we determine u2 first the expected cost incurred is K2 +p2K1,
since if Det(u1) = 0, then we know that S is not a solution. The difference be-
tween these two is K1−p2K1−K2 +p1K2 which equals (1−p2)K1− (1−p1)K2.
So it is less expensive to determine u2 first if (1− p2)K1 > (1− p1)K2, that is,
if K1/(1 − p1) > K2/(1 − p2), i.e., r1 > r2. The difference can be very signifi-
cant; for example, if K1 = 100 and K2 = 50, and p1 = 0.5 and p2 = 0.1, then
determining u1 first leads to an expected cost of 125, whereas determining u2

first leads to expected cost 60.
More generally, to evaluate the set of unknowns {u1, . . . , um}, we determine

them in some order until either we find one which fails, i.e., until Det(ui) = 0,
or until we have determined them all. Associated with an unknown ui is the
cost Ki and success probability pi. Suppose we evaluate the unknowns in the
sequence u1, . . . , um. We start by determining u1, incurring cost K1. If u1 is
successfully determined (this event has chance p1), we go on to determine u2,
incurring additional cost K2, and so on. The expected cost in evaluating these
unknowns in this order is therefore K1 +p1K2 +p1p2K3 + · · ·+p1p2 · · · pm−1Km.
Let Rπ be the expected cost incurred in evaluating unknowns {u1, . . . , um} in
the order π(1), π(2), . . . , π(m), i.e., with uπ(1) first, and then uπ(2), etc. Ex-
pected cost Rπ is therefore equal to Kπ(1) + pπ(1)Kπ(2) + pπ(1)pπ(2)Kπ(3) + · · ·+
pπ(1)pπ(2) · · · pπ(m−1)Kπ(m).

The following result shows which is the order of determining unknowns that
minimises the expected cost of evaluating the potential solution.

Proposition 2. For a given set of unknowns {u1, . . . , um}, Rπ is minimised by
choosing π to order unknowns with smallest ri (= Ki/(1− pi)) first, i.e., setting
ordering π(1), π(2), . . . , π(m) in any way such that rπ(1) ≤ rπ(2) ≤ · · · ≤ rπ(m).

Proof: 3 Consider any permutation σ representing ordering σ(1), σ(2), . . . , σ(m).
To simplify notation we will write pσ(i) as qi, and Kσ(i) as Li so that Rσ equals
L1+q1L2+q1q2L3+· · ·+q1q2 · · · qm−1Lm. We also write, rσ(i) as r′i which equals
Li/(1− qi).

Let k be some number in {1, . . . ,m− 1}. Let σ′ be the permutation σ but
with the kth and (k + 1)th elements in the sequence swapped. The expressions
for Rσ and Rσ′ only differ on two terms. Rσ −Rσ′ can be seen to be equal to

(q1 · · · qk−1)(Lk + qkLk+1)− (q1 · · · qk−1)(Lk+1 + qk+1Lk),

which equals (q1 · · · qk−1)((1− qk+1)Lk − (1− qk)Lk+1).
We will show that r′k ≥ r′k+1 implies Rσ ≥ Rσ′ , i.e., (q1 · · · qk−1)((1 −

qk+1)Lk − (1 − qk)Lk+1) ≥ 0. If qk = 1 then the latter inequality clearly holds

3 This optimisation problem can be seen to be a version of the Spanish Treasure
problem (see e.g. [19]); however we include the proof for the sake of completeness.

so we have Rσ ≥ Rσ′ . So, we can assume that qk 6= 1. Suppose that r′k ≥ r′k+1,
i.e., Lk/(1− qk) ≥ Lk+1/(1− qk+1). Since qk 6= 1 we also have qk+1 6= 1 (or else
r′k+1 =∞ > r′k). Hence, (1− qk+1)Lk − (1− qk)Lk+1) ≥ 0 and so Rσ ≥ Rσ′ , as
required.

The value of expected cost, Rπ, is therefore not increased if we iteratively
swap a ui with smallest value of ri with its preceding element in the sequence,
until it’s the first element in the sequence. Similarly, the expected cost is not
increased if we iteratively swap the uj with next smallest value of rj to be the
second element in the sequence, and so on, until we generate a permutation π
which orders elements in increasing order of ri, showing that Rπ ≤ Rσ, which
proves the result. �

For a set of unknowns U = {u1, . . . , um} we define R(U) to be Rπ, where π
is chosen so as the minimise the cost, by ordering the unknowns to have smallest
ri first, as shown by Proposition 2. (Proposition 2 also implies that it doesn’t
matter which way we order consecutive elements with equal value of ri.)

3.2 Scaled expected cost for evaluating potential solutions

We need to define a procedure which chooses the potential solution that will be
evaluated next. A natural way is to define a real-valued measure on potential
solutions which scores them; we then choose a potential solution which optimises
this measure.

One simple measure is the probability that the potential solution is a solution,
which corresponds, because of independence of the unknowns, to the product
of the probabilities of the unknowns. Specifically, if potential solution S has
associated set of unknowns US , we choose S with maximal P (US). An obvious
weakness of this is that it doesn’t take into account the costs, so can lead to
very large costs being incurred unnecessarily.

Another simple measure is the sum of the costs of the unknowns, so that
we choose a potential solution which has minimum associated sum of costs, i.e.,
minimal

∑
u∈U Ku. However, a clear weakness is that the probability of the

potential solution being a solution is not taken into account.
The measure we focus on is what we call the scaled expected cost, which

equals the expected cost divided by the probability that the potential solution
is actually a solution:

Definition 1 (Scaled expected cost). Let S be a solution of the potential
CSP of an ECI-CSP 〈V,D,U ,K, p, C〉, and let U = {c(S) : c ∈ C} ∩ U be the
associated set of unknowns, which we again label as {u1, . . . , um}. Recall that
P (U) = p1p2 · · · pm, and R(U) is the minimum expected cost of determining if
S is a solution, i.e., of determining if all the unknowns in U have true value 1.
The scaled expected cost of S is defined to be R(U)/P (U).

Expected utility interpretation of scaled expected cost: Imagine a situation where
we are given an ECI-CSP, and a complete assignment S which is a possible

solution. We will consider an expected-utility-based analysis of whether it is
worth determining these unknowns, to test if S is a solution, where cost is
negative utility. Suppose the utility of finding that S is a solution is Q. The
chance of finding that S is a solution is P (U), so the expected reward is P (U)×Q.
(Note that the ordering of evaluating unknowns does not affect the expected
reward.) If we determine all the unknowns U (based on the minimal cost order)
then the expected cost is R(U). Therefore the overall expected gain is (P (U)×
Q)−R(U), so there is a positive expected gain if and only if P (U)×Q > R(U),
i.e., if and only if Q > R(U)/P (U). This is if and only if the utility of finding a
solution is greater than the scaled expected cost. On this basis it seems natural
to choose solutions that minimise scaled expected cost.

3.3 Approximating the scaled expected cost algorithm

Finding potential solutions in order of the solution measure is awkward compu-
tationally. To simplify the structure of the algorithms we make a slight approxi-
mation. We perform repeated complete searches over the space of solutions; with
each search, we maintain an upper bound Q on the scaled expected cost, and
we only consider potential solutions which have scaled expected at most equal
to Q. For the next search we increment Q slightly, and so potential solutions are
evaluated approximately in increasing order of scaled expected cost. This is the
basis of our main algorithm, described in Section 4.

The monotonicity property, shown by the following proposition, is important
since it allows the possibility of subtrees being pruned: if a partial assignment S
has associated set of unknowns U , and we find that R(U)/P (U) is more than our
cost bound Q, then we can backtrack, since the set of unknowns U ′ associated
with any complete assignment extending S will also have R(U ′)/P (U ′) > Q.

Proposition 3. Let U and U ′ be any sets of unknowns with U ⊆ U ′ ⊆ U . Then
R(U)/P (U) ≤ R(U ′)/P (U ′).

Proof: Since U is finite, it is sufficient to show the result for when U ′ contains a
single extra unknown, say u, so that U ′ = U ∪{u}, since we can then repeatedly
add extra unknowns one-by-one to prove the proposition. Let ru = Ku/(1−pu).
Write U as {u1, . . . , uk}, where ri ≤ rj if i ≤ j. By Proposition 2 we have R(U) =
K1 +p1K2 +p1p2K3 + · · ·+p1p2 · · · pm−1Km. Therefore, R(U)/P (U) =

∑k
i=1 zi,

where zi = Ki/(pi · · · pk) for i = 1, . . . , k. Let j ∈ {0, 1, . . . , k} be maximal such
that rj ≤ ru, where r0 is defined to be 0. R(U ′)/P (U ′) can be written as

j∑
i=1

zi
pu

+
Ku

pu(pj+1 · · · pk)
+

k∑
i=j+1

zi.

Hence R(U ′)/P (U ′)−R(U)/P (U) equals the sum of non-negative terms

Ku

pu(pj+1 · · · pk)
+

j∑
i=1

zi(
1
pu
− 1),

showing thatR(U ′)/P (U ′)−R(U)/P (U) ≥ 0, and henceR(U)/P (U) ≤ R(U ′)/P (U ′).
�

3.4 Examples that illustrate non-optimality

Based on the analysis and discussion in Section 2.3, the problem of finding
the optimal policy appears to be extremely hard, probably exponential in the
number of unknowns. It is therefore not at all surprising that our relatively
simple approach does not always find an optimal policy. We give two examples
to illustrate this; these relate to the two required procedures described at the
beginning of Section 3. The first shows that it is not always best to determine
unknowns associated with a potential solution in the order described in Section
3.1. The second shows that it is not always best to choose potential solutions
with minimal scaled expected cost.

Consider a problem with two variables, X and Y , both with domain {1, 2}
(see Table 2). The first constraint c1 is a unary constraint on X, with c1(X =
1) = u1, and c1(X = 2) = u2, the second constraint c2 is a unary constraint on Y
with c2(Y = 1) = u3, and c2(Y = 2) = 0. We have probabilities p1 = p2 = p3 =
0.5, and costs K1 = 100 and K2 = K3 = 101. There are two potential solutions,
(X = 1, Y = 1), with associated set of unknowns {u1, u3}, and (X = 2, Y = 1),
with associated set of unknowns {u2, u3}.

Table 2: Unary constraints c1 and c2, along with the costs (Ki) and probabilities
(pi) of their associated unknowns.

X = 1 X = 2 Y = 1 Y = 2

c1(X) u1 u2 c2(X) u3 0
(Ki, pi) (100, 0.5) (101, 0.5) (K3, p3) (101, 0.5)

The optimal policy involves determining u3 first, and then, if this is successful,
determining u1, and then u2, if Det(u1) = 0. The expected cost of this policy is
K3 + 0.5× (K1 + 0.5K2), which equals 176.25.

Compare this with the minimal scaled expected cost described above in Sec-
tion 3.2. This also involves determining first whether (X = 1, Y = 1) is a solu-
tion, but u1 would be determined first, since this choice minimises the expected
cost of determining whether (X = 1, Y = 1) is a solution. However, this doesn’t
take into account that determining u3 is valuable also for the other potential
solution. This algorithm has expected cost K1 + 0.5K3 + 0.5 × (K3 + 0.5K2),
which equals 226.25.

Now consider an example where there is an additional potential solution,
(X = 1, Y = 2), with associated set of unknowns {u4, u5}, with p4 = p5 = 0.5

and K4 = K5 = 100. (For example, replace c1 by a binary constraint with
c1(X = 1, Y = 1) = u1, c1(X = 1, Y = 2) = u4, c1(X = 2, Y = 1) = u2 and
c1(X = 2, Y = 2) = 0, and change c2 to the unary constraint with c2(Y = 1) =
u3 and c2(Y = 2) = u5.)

The optimal policy will again determine u3 first, and then, if this is successful,
determine u1; it thus checks first if (X = 1, Y = 1) is a solution. However, our
algorithm in Section 3.2 is sub-optimal since it will check first if (X = 1, Y = 2)
is a solution, because this solution has minimal scaled expected cost.

4 Iterative Expected Cost-bound Algorithm

In this section we define our main algorithm for solving a given Expected Cost-
based CSP 〈V,D,U ,K, p, C〉. The key idea behind this algorithm is to allow
the possibility of delaying determining an unknown associated with a constraint
check, until it has explored further down the search tree; this is in order to see
if it is worth paying the cost of determining that unknown. The algorithm per-
forms a series of depth-first searches; each search is generated by the procedure
TreeSearch. The structure of each search is very similar to that of a standard
backtracking CSP algorithm.

The behaviour in each search (i.e., in each call of TreeSearch) depends on the
value of a global variable Q, which is involved in a backtracking condition, and
is increased with each tree search. For example, in the experiments described in
Section 5, we set Qinitial = 20 and define Next(Q) to be Q × 1.5, so that the
first search has Q set to 20, the second search has Q = 30, and then Q = 45, and
so on. The value of Q can be roughly interpreted as the cost that the algorithm
is currently prepared to incur to solve the problem (see the analysis in Section
3.2).4

The only differences between one tree search and the next are (i) the value
of Q has changed to allow the search to go deeper at particular points; (ii) the
previous tree search will (usually) have determined some unknowns (which, of
course, won’t need to be determined again); this may also allow the search to go
deeper (i.e. backtrack less easily).

The procedure TopLevel first initialises the cost incurred (GlobalCost) to
zero. It then performs repeated tree searches until a solution is found (see proce-
dure ProcessNode(·) below) or until all relevant unknowns have been determined;
more precisely: until the condition R(UnknownsN)/P (UnknownsN) > Q, which
appears in procedures ProcessNode(N) and ProcessLeafNode(N), is not satisfied
throughout the whole tree search. The algorithm will then determine all un-
knowns associated with leaf nodes, i.e., those that could be associated with a
solution. An alternative would be to exit the loop when Q reaches a certain size

4 Our experimental results for the main algorithm (without the size limit modification)
tally very well with this interpretation, with the average Q for the last iteration being
close to the average overall cost incurred (within 25% of the average cost for each of
the four distributions used).

(or after a given number of values of Q have been tried), and then have a final
tree search with Q set to ∞.

Procedure TopLevel
GlobalCost := 0; Q := Qinitial
repeat

TreeSearch
Q := Next(Q)
until all relevant unknowns have been determined

TreeSearch

Procedure TreeSearch
Unknownsroot := ∅;
Construct child N of root node
ProcessNode(N)

The core part of the algorithm is the procedure ProcessNode(N). Let N be
the current node, and let Pa(N) be its parent, i.e., the node above it in the search
tree. Associated with node N is the set UnknownsN of current unknowns, which
are unknowns which need to be successfully determined for the current partial
assignment to form part of a solution (see below). At a node, if any of the current
unknowns evaluates to 0 then there is no solution below this node. Conversely,
if all of the current unknowns at a node evaluate to 1 then the current partial
assignment is consistent with all constraints that have been checked so far. If all
the current unknowns at a leaf node evaluate to 1 then the current assignment
is a solution.

At a search node, we perform, as usual, a constraint check for each constraint
c whose scope Vc has just been fully instantiated (i.e., such that (i) the last
variable instantiated is in the scope, and (ii) the set of variables instantiated
contains the scope). A constraint check returns either 1, 0 or some unknown.
The algorithm first determines if any constraint check fails, i.e., if it returns 0.
If so, we backtrack to the parent node, in the usual way, assigning an untried
value of the associated variable, when possible, and otherwise backtracking to
its parent node. Propagation (based on the constraints in the Potential CSP)
can be used in the usual way to eliminate elements of a domain which cannot
be part of any solution extending the current assignment.

The set DirectUnknownsN , of unknowns directly associated with the node
N , is defined to be the set of unknowns which are generated by the constraint
checks at the node. The set of current unknowns at the node, UnknownsN , is
then initialised to be the union of DirectUnknownsN and the current unknowns
of the parent node.

The algorithm then tests to see if it is worth continuing, or if it is expected to
be too expensive to be worth determining the current set of unknowns. The back-
tracking condition is based on the analysis in Section 3.2. We viewQ as represent-
ing (our current estimate of) the value of finding a solution. Then the expected
gain, if we determine all the unknowns in UnknownsN , is P (UnknownsN) × Q
where P (UnknownsN) is the chance that all the current unknowns evaluate to 1.

The expected cost of determining these unknowns sequentially is R(UnknownsN),
as defined in Section 3.1, since we evaluate unknowns with smallest ri first. So,
determining unknowns UnknownsN is not worthwhile if the expected gain is less
than the expected cost: P (UnknownsN) × Q < R(UnknownsN). Therefore we
backtrack if R(UnknownsN)/P (UnknownsN) > Q.

We then construct a child node in the usual way, by choosing the next variable
Y to instantiate, choosing a value y of the variable, and extending the current
assignment with Y = y. If Y is the last variable to be instantiated then we
use the ProcessLeafNode(·) procedure on the new node; otherwise we use the
ProcessNode(·) procedure on the new node.

The ProcessLeafNode(·) procedure is similar to ProcessNode(·), except that
we can no longer delay determining unknowns, so we determine each current
unknown until we fail, or until all have been determined successfully. We de-
termine an unknown with smallest ri = Ki/(1− pi) first (based on Proposition
2). If an unknown ui is determined unsuccessfully, then there is no solution be-
neath this node. In fact, if N ′ is the furthest ancestor node of N which ui is
directly associated with (i.e. such that DirectUnknownsN ′ 3 ui), then there is
no solution beneath N ′. Therefore, we jump back (in the tree search) to N ′ and
backtrack to its parent node Pa(N ′). If all the unknowns UnknownsN have been
successfully determined then the current assignment, which assigns a value to
all the variables V , has been shown to be a solution of the CSP, so the algorithm
has succeeded, and we terminate the algorithm.

Procedure ProcessNode(N)

if any constraint check returns 0 then backtrack
UnknownsN := UnknownsPa(N) ∪ DirectUnknownsN
if R(UnknownsN)/P (UnknownsN) > Q

then backtrack to parent node
Construct (new) child node N ′ of N
if N ′ is a leaf node (all variables are instantiated)

then ProcessLeafNode(N ′) else ProcessNode(N ′)

Procedure ProcessLeafNode(N)

if any constraint check returns 0 then backtrack
UnknownsN := UnknownsPa(N) ∪ DirectUnknownsN
if R(UnknownsN)/P (UnknownsN) > Q then backtrack to parent node
while Unknowns non-empty do:

Let ui be unknown in UnknownsN with minimal ri
Determine ui;
GlobalCost := GlobalCost +Ki

if ui determined unsuccessfully
then exit procedure, jumping back to furthest

ancestor node associated with ui
and backtrack to its parent node

UnknownsN := UnknownsN − {ui}
end (while)

Return current (complete) assignment as a solution and stop

If we apply this algorithm to the example in Section 1 (again using variable
ordering X,Y , and numerical value ordering), no unknown will be determined
until we reach an iteration where Q is set to at least 87.5. Then the first leaf node
N that the algorithm will reach is that associated with the assignment (X =
1, Y = 5). UnknownsN is equal to {u1, u5}. r1 = K1/(1− p1) = 50/0.1 = 500 >
r5 = 200/0.9, so R({u1, u5}) = K5+p5K1 = 205, and R({u1, u5})/P ({u1, u5}) =
205/(0.9 × 0.1) ≈ 2278, so the algorithm will backtrack; similarly for the leaf
node associated with assignment (X = 1, Y = 6). The leaf node corresponding
to (X = 2, Y = 6) has current set of unknowns {u2}. Since R({u2})/P ({u2}) =
70/0.8 = 87.5 ≤ Q, unknown u2 will be determined. If it evaluates to 1 then
(X = 2, Y = 6) is a solution, and the algorithm terminates. Otherwise, u3

and u4 will be next to be determined. In fact, for this example, the algorithm
generates an optimal policy, with expected cost of around 90.

One approach to improving the search efficiency of the algorithm is to set a
limit SizeLimit on the size of the current unknown set UnknownsN associated
with a node. If |UnknownsN | becomes larger than SizeLimit then we repeatedly
determine unknowns, in increasing order of ri, and remove the unknown from
the current set until |UnknownsN | = SizeLimit. It is natural then to change the
backtracking condition to take this into account. In particular, we can change
the test to be (CostDetSuccN + R(UnknownsN))/P (UnknownsN) > Q, where
CostDetSuccN is the cost incurred in (successfully) determining unknowns in
ancestors of the current node, which can be considered as the cost that has
already been spent in consistency checking of the current assignment.5

In the algorithm whenever we determine an unknown in UnknownsN we
choose an unknown ui with minimum ri. This is in order to minimise the ex-
pected cost of determining the set of current unknowns, because of Proposition
2. Alternatively, one could bias the ordering towards determining more informa-
tive unknowns (cf. Section 3.4). For example, suppose UnknownsN includes two
unknowns ui and uj , where ui is associated with a unary constraint, and uj is
associated with a constraint of larger arity. Even if ri is slightly more than rj , it
may sometimes be better to determine ui before uj since ui may well be directly
associated with many other nodes in the search tree.

5 Experimental Testing

In this section we provide an empirical evaluation of a number of algorithms
for handling ECI-CSPs, including cost-based algorithms, probability-based al-
gorithms, and variations of our algorithm which considers both the cost and
probability of unknowns. We test these algorithms on two types of ECI-CSP
based on random binary CSPs and k-colouring CSPs respectively. We show that
5 An alternative choice would be to not include this amount, since this cost has already

been incurred, so can’t be undone. However, this will tend to cause the algorithm to
determine more unknowns when SizeLimit is small.

ignoring either of the attributes of the unknowns proves detrimental to the ob-
jective of minimising the cost occurred in finding a solution to an ECI-CSP.

5.1 Problem Types

We generated two types of ECI-CSP by altering the following basic problems:

1. Random binary CSPs
2. Incomplete k-colouring CSPs

For the first type, we generate a random binary CSP in accordance with
model B generation [20] with parameters 〈n, d,m, t〉, where:

– n is the number of variables
– d is the uniform domain size
– m is the graph density, i.e. the number of constraints per problem as a

fraction of the total possible number of binary constraints over the n variables
– t is the constraint tightness, i.e. the number of tuples not allowed by each

constraint as a fraction of the total possible number of tuples

For each constraint in the CSP we randomly select s allowed tuples and s
disallowed tuples to be assigned unknown, where the value s is set to the floor of
(i.e., the greatest integer less than) two thirds of the minimum of (#allowed tu-
ples, #disallowed tuples). Each of these 2s tuples is assigned a different unknown
ui, with an associated probability pui chosen independently from a uniform dis-
tribution taking values between 0 and 1, and an associated cost Kui generated
from a distribution as described below. Each ui is allocated its true value (which
the algorithms only have access to when they determine ui): this is assigned 1
with probability pi, otherwise it is assigned 0 (where ui = 1 means that the
associated tuple satisfies the constraint).

We tested our algorithms on problems with varying cost distribution, and
on problems with varying density (described later). We use four different distri-
butions for cost, where costs are integers in our experiments. Each distribution
has minimum value 1 and has median around 50. For k = 1, 2, 3, 4 using the kth

distribution, each cost Kui is an independent sample of the random variable:
50× (2× rand)k rounded up to be an integer, where rand is a random number
taking values between 0 and 1 with a uniform distribution. Therefore k = 1 has
a linear distribution, k = 2 is a scaled (and truncated) square root distribution,
and so on.

The second type of ECI-CSP is generated similarly. A k-colouring CSP is
generated with parameters 〈n, d,m〉, where the number of colours is equal to d,
the domain size. The number, s, of allowed and disallowed tuples to be assigned
unknown, is set to the floor of two thirds of the domain size (which equals the
number of disallowed tuples in the inequality constraint). For these problems,
however, we restricted the set of allowed tuples for possible conversion to un-
knowns, to be of the form (i, j) where |i − j| = 1, so that s of these (initially
allowed) 2d− 2 tuples are chosen as unknowns, as are s of the d (initially disal-
lowed) tuples of the form (i, i). (This means that the constraints generated are,

in a sense, still close to being inequality constraints.) Each of these 2s tuples is
assigned an unknown ui in an identical manner to that described for the random
binary CSPs.

The parameters for problem sets with varying cost distributions were mainly
chosen so that each instance was likely to have many solutions. Each problem
set contained 100 problems. All problems were generated so as to be insoluble
without determining at least one unknown. Furthermore, for both types of prob-
lem we began with an initial spanning tree so that there were no unconnected
components.

5.2 Algorithms

The following algorithms were tested (where, according to the terminology in
Section 1, the first is Type 1, and the others are Type 2):

Basic Algorithm: The basic algorithm works like a normal CSP depth-first
search algorithm (maintaining arc consistency on the potential CSP) except that
it determines each unknown as soon as it is encountered. As usual, a constraint
check is performed as soon as all the variables in the constraint’s scope are
instantiated. When a constraint check returns an unknown ui, we immediately
determine ui, incurring cost Ki. If ui is determined successfully, i.e., ui is found
to be 1, then the constraint check is successful.

Basic Iterative (Cost-Bound Algorithm): This algorithm performs iterative
searches, parameterised by increasing cost bound q; each search is similar to the
basic algorithm, except that all unknowns with cost greater than q are removed
from search for the current iteration (that is, they are set to 0, which allows for
improved pruning through propagation). If a solution is found, search terminates;
otherwise, the search is complete, after which search restarts with q incremented
by a constant, qinc. The process continues until either a solution has been found
or all unknowns have been determined and the algorithm has proven insolubility.
For the experiments reported below, q starts off with value 0, and qinc is 5.

Iterative Expected Cost-Bound Algorithm (ECB): This is the main algorithm
described in Section 4. For this and the next two algorithms, Qinitial is set to
20, with a multiplicative increment of 1.5.

ECB with Size Limit Algorithm (ECB-SL): This is the adapted version of
the last algorithm discussed at the end of Section 4, which incorporates a limit
SizeLimit on the cardinality of the set Unknowns of current unknowns, so that if
|Unknowns| > SizeLimit then elements of Unknowns are determined until either
one is found to be 0 or |Unknowns| = SizeLimit. In the experiments reported
below, we set SizeLimit to 5.

ECB with Individual Cost Limit Algorithm (ECB-CL): This algorithm mod-
ifies the main Expected Cost-Bound algorithm by having, for each iteration, a
cost limit q on the unknowns to be considered, in order to improve the search
efficiency (because of additional propagation), whilst maintaining cost effective-
ness. It therefore is a kind of hybrid of the ECB algorithm and the basic iterative
cost-bound algorithm described above. Let maxK be the maximum cost of any
unknown in the current problem instance. On the first search all unknowns

with cost greater than 30%(maxK) are removed from search, so that q starts at
30%(maxK); on each iteration this bound q is incremented by qinc = 5%(maxK).

Cost Only Algorithm: This algorithm is based on the first simple measure
given in Section 3.2. It works similarly to the ECB algorithm, but only uses
information regarding the cost of the unknowns. Unknowns are determined at
leaf nodes in order of increasing cost. The condition which causes backtracking
for the set Unknowns of current unknowns is∑

u∈Unknowns
Ku ≥ L,

where L is a limit with initial value 0 which is incremented by 5 with each
iteration.

Probability Only Algorithm: This complement of the previous algorithm is
based on the second simple measure given in Section 3.2. It only uses information
regarding the probability of the unknowns. Unknowns are determined at leaf
nodes in order of increasing probability, (this minimises the expected number
of unknowns determined before encountering an unknown with value 0). The
condition which causes backtracking for the set Unknowns of current unknowns
is ∏

u∈Unknowns
pu ≤ L,

where L is a limit with initial value 1 which is multiplied by 0.95 with each
iteration.

The algorithms which delay determining an unknown, i.e. the non-“basic”
algorithms, all incorporate backjumping. When an unknown is added to the list
of current unknowns, the current level of search is stored with the unknown. If
an unknown is determined and found to be 0, search backjumps to the level of
search at which the unknown was added.

All algorithms used the same variable ordering heuristic: for the random bi-
nary problems the heuristic used was min domain; for the colouring problems we
used the Brelaz heuristic [21], which chooses the variable with smallest domain
and breaks ties by choosing the variable with the most uninstantiated neighbors.

We also implemented a cost-based value ordering heuristic. The heuristic
chooses the value that has minimum total cost over the constraints between the
variable and its instantiated neighbours, i.e. it minimizes the maximum cost that
would immediately be spent determining unknowns if that value were chosen.
The improvements for the iterative algorithms were minimal (indeed it can only
provide an improvement for the final iteration) so we only present the results for
the basic algorithm with the value ordering (Basic Val).

5.3 Results

We compare the performance of the different approaches in terms of cost incurred
in solving a problem. In order to provide further insight into the behaviour of
the algorithms, we also present results on the number of unknowns determined

in finding a solution by the algorithms, and, in some cases, number of search
nodes explored. All results are averaged over 100 problems.

Random binary ECI-CSPs:

Varying Cost Distribution: The parameters for theproblems were 〈20, 10, 0.163, 0.4〉
for which we generated four problem sets using four different cost distributions
(k = 1 . . . 4). Each problem had over 2,400 unknowns. The results are given in
Table 3.

ECB performs best in terms of average cost: Basic Iter incurs between 7 and
11 times more cost for these instances, and Basic has average cost one or two
orders of magnitude worse than ECB. (Naturally, all the algorithms do much
better than determining all the unknowns prior to search, at a cost of more than
100,000.)

Table 3: Results For Different Cost Distributions - Random Binary

Basic Basic Basic ECB ECB- ECB- Cost Prob
Val Iter CL SL Only Only

Linear
(k = 1) 3272 2625 1711 152 178 495 273 350

Square
(k = 2) 4574 3414 900 105 113 346 229 464

Cube
(k = 3) 6823 4997 566 79 77 231 187 692

Fourth
(k = 4) 11123 8401 344 50 52 180 130 1251

(k = 1)
Search Nodes 57 55 652 2.1×106 1.2×105 1.2×106 4.5×106 6.0×104

(k = 4)
Search Nodes 59 61 537 1.8×106 4.8×105 5.5×105 3.4×104 4.8×104

Notes: Problem parameters 〈20, 10, 0.163, 0.4〉.
First 4 rows are average costs over 100 problems

Bottom two rows gives mean search nodes for k = 1 and k = 4

Unsurprisingly, ECB is vastly slower than the basic algorithms, generating
on average around two million total search tree nodes for each problem instance,
whereas Basic Iter generates only a few hundred. The two variants of the ECB
algorithm both aim to improve the efficiency somewhat. ECB-SL cuts search
tree nodes by more than 50% compared to ECB, but incurs roughly three or
more times as much average cost. ECB-CL trades off cost and search efficiency
much more effectively for these instances, with only slightly worse average costs,
but generating only a fraction of the search tree nodes, less than 6% for the
linear distribution, and less than 30% for the other distributions.

The poor performance of the basic algorithms and ECB-SL illustrates the
benefits of only determining unknowns at leaf nodes. A similar result was found
by Gelain et al. for incomplete soft CSPs [7–9], although in their work unknowns
do not have associated costs and probabilities. Furthermore, their method of
determining an unknown involved querying a user to specify the value of the
worst/best unknown over the set of current unknowns, which does not fit with
our framework.

The average number of unknowns determined by the different algorithms is
given in Figure 2, along with a graphical representation of the results of Table
1. Trends in the average cost can be more clearly seen here, the average cost
decreases as the cost distribution becomes more skewed for the algorithms that
iteratively increase a cost limit on search. The opposite occurs for the three
algorithms without a cost limit (i.e. Basic, Basic Val and Probability Only),
where the average cost has a positive correlation with the cost distribution.

1 2 3 4
Cost Distribution (k)

10

100

1000

10000

Av
er

ag
e

Co
st

Basic
Basic Val
Basic Iter
ECB
ECB-CL
ECB-SL
Cost Only
Prob Only

(a) Average Cost

1 2 3 4
Cost Distribution (k)

10

20

30

40

50

60

70

80

90

100

110

120

Av
er

ag
e

#U
nk

no
wn

s
De

te
rm

in
ed

Basic
Basic Val
Basic Iter
ECB
ECB-CL
ECB-SL
Cost Only
Prob Only

(b) Unknowns Determined

Fig. 2: Random binary problems 〈20, 10, 0.163, 0.4〉, different cost distributions.

The average number of unknowns determined by the different algorithms
shows much less variance with regard to the cost distribution. The algorithms
ECB-SL and Cost Only have the most obvious correlation between average un-
knowns determined and cost distribution. As expected, Probability Only deter-
mines fewest unknowns, however both ECB and ECB-CL determine only slightly
more unknowns on average. Interestingly both ECB-SL and Basic Iter determine
nearly twice as many unknowns as Basic for the non-linear cost distributions,
despite incurring significantly less cost (order of magnitude less for k = 3 and
4).

The results in Table 3 showed that ECB incurred on average 50% less cost
than Cost Only, we see in Figure 2b that ECB determined at most half as many
unknowns on average per problem set. Clearly, the lack of probability information
resulted in Cost Only determining many unknowns which had true value 0. On
the other hand, Probability Only determined slightly fewer unknowns than ECB

but the lack of cost information resulted in it incurring a cost 2 to 25 times worse
than ECB, depending on the cost distribution.

Varying Density: The previous results concerned problems where the complete
problem had many solutions. We now look at the the performance of the different
algorithms as problems approach the phase transition. This was achieved by
fixing n, d and t for random binary problems and varying the density. Problems
were, again, generated so as to be insoluble without determining at least one
unknown, and all problems were soluble when all unknowns were determined.

For simplicity, the method of generation was slightly altered. The CSPs,
prior to conversion to ECI-CSPs, were generated so as to have solutions as
before. However as one approaches the phase transition, the likelihood of there
remaining a solution after altering the set of allowed and disallowed tuples is
greatly reduced. Thus we generated unknowns in the same manner as previously,
except we randomly selected an allowed tuple when an unknown was assigned
a true value of 1, and a disallowed tuple when an unknown was assigned a true
value of 0. It can be shown that this does not bias the probabilities.

We generated several sets of random binary ECI-CSPs with 15 variables, do-
main size 5, tightness 0.4, while the density ranged from 0.15 to 0.5 in increments
of 0.05. Each set contained 100 problems, the linear cost distribution was used
for all problem sets. The number of unknowns per problem ranged from 336 to
720. We present the results in Table 4.

ECB once again performs best, with ECB-CL performing as well for the
denser problems. Somewhat surprisingly, Probability Only performed better than
all algorithms except ECB for the sparser problem sets; indeed the two algo-
rithms, ECB-CL and Cost Only, had been consistently better than Probability
Only in our previous experiments.

A possible explaination is that both algorithms remove unknowns with cost
greater than a given limit from the search, since these smaller problems have
fewer unknowns, there may be an unknown with a relatively large cost that is
necessary to find a solution, which these two algorithms ignore until they have
determined a number of unknowns with small cost. However, when we skewed
the cost distribution for the set with density 0.15, the average cost incurred by
Probability Only was significantly worse than ECB-CL, ECB-SL and Cost Only.

Figure 3 presents graphs for average cost and average number of unknowns
determined. As the density increases, the average number of unknowns deter-
mined by the algorithms that don’t take probabilities into account, or determine
unknowns at internal nodes, shows a sharp rise. On the other hand, the in-
crease in the average number of unknowns determined by ECB, ECB-CL and
Probability Only is much more gradual.

k-colouring ECI-CSPs with varying cost distributions: The parameters
for the incomplete colouring problems were 〈30, 5, 0.227〉, for which we generated
four problem sets using the same cost distributions as previously. Each problem
had over 700 unknowns. The results are given in Table 5.

Table 4: Results For Different Density - Random Binary

Basic Basic Basic ECB ECB- ECB- Cost Prob
Val Iter CL SL Only Only

0.15 1815 1685 1163 299 400 389 445 387

0.2 2880 2771 2504 640 807 1184 1081 745

0.25 4303 4007 4806 1242 1581 2300 2198 1429

0.3 5752 5599 6588 1784 1943 3448 3122 1952

0.35 6073 5908 7002 1939 1942 3767 3288 2376

0.4 5756 5513 6558 1971 1971 3972 3049 2221

0.45 5277 5044 6437 1579 1579 3505 2778 1847

0.5 5546 5241 6495 1709 1709 3672 2568 1887

Notes: Problem parameters 〈15, 5,m, 0.4〉.
Linear Cost Distribution

Costs are Averaged Over 100 Problems

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Density

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e

Co
st

Basic
Basic Val
Basic Iter
ECB
ECB-CL
ECB-SL
Cost Only
Prob Only

(a) Average Cost

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Density

20

40

60

80

100

120

140

Av
er

ag
e

#U
nk

no
wn

s
De

te
rm

in
ed

Basic
Basic Val
Basic Iter
ECB
ECB-CL
ECB-SL
Cost Only
Prob Only

(b) Unknowns Determined

Fig. 3: 〈15, 5,m, 0.4〉 problems, varying density.

Table 5: Results For Different Cost Distributions - Coloring

Basic Basic Basic ECB ECB- ECB- Cost Prob
Val Iter CL SL Only Only

Linear
(k = 1) 3520 3179 827 129 127 223 214 231

Square
(k = 2) 4455 3876 315 62 68 122 104 315

Cube
(k = 3) 6959 6017 167 38 38 80 67 464

Fourth
(k = 4) 10619 8955 167 32 33 79 70 723

(k = 1)
Search Nodes 88 87 726 5.3×106 6.7×104 3.9×106 2.9×106 7.4×104

(k = 4)
Search Nodes 85 84 460 2.7×106 3.6×105 1.0×106 7.6×103 3.4×104

Notes: Colouring problem parameters 〈30, 5, 0.227〉.
First 4 rows are average costs over 100 problems

Bottom two rows gives mean search nodes for k = 1 and k = 4

The relative performance of the algorithms is quite similar to those of Table 3
with ECB incurring least cost overall. Basic Iter incurs roughly a factor of 5
more cost on average, while Basic again has average cost one or two orders
of magnitude worse than ECB. Interestingly, there is very little difference in
the average cost between ECB and the ECB-CL algorithm. Furthermore, the
magnitude of improvement over the ECB-SL and Cost Only algorithms is less
for these problems, although it is still significant (at least 40% improvement).

As expected, the search efficiency of ECB is worse for these problems as
propagation for colouring problems is generally weak. Here, the ECB-CL algo-
rithm is roughly one to two orders of magnitude better than ECB in terms of
search nodes explored depending on the cost distribution.

Figure 4 illustrates the average costs (4a) and average number of unknowns
determined (4b) for the colouring problems. Again we can see that Although
Figure 4a is nearly identical to Figure 2a, there are some interesting differences
between the number of unknowns determined by the algorithms on the different
problem types. The most noticeable difference is in the number of unknowns
determined by ECB-SL and Basic Iter in comparison with Basic, for the 20
variable random problems these two algorithms had determined nearly twice as
many unknowns as Basic, here the opposite is the case.

Summary We have shown, across a range of problems of different sizes, that the
ECB algorithm consistently performs best, i.e., finds solutions with least cost,
when compared to a number of algorithms. Furthermore, we have shown that
using cost information about unknowns, but ignoring their probabilities, resulted

in determining many more unknowns which had true value 0, thereby incurring a
larger cost than ECB. Similarly, using probability information about unknowns
but ignoring their cost information can result in a huge cost, even though it
required few unknowns to be determined to find a solution. This clearly shows
the importance of using both cost and probability information for minimising
cost when solving ECI-CSPs.

Although ECB can be quite expensive to run in terms of search effort, we
have shown, with the results for the ECB-CL algorithm, that this aspect of the
algorithm can be greatly improved with little fall off in terms of cost incurred.
Finally, the relatively poor performance of the ECB-SL algorithm illustrates the
benefits of delaying determining unknowns until leaf nodes.

1 2 3 4
Cost Distribution (k)

10

100

1000

10000

Av
er

ag
e

Co
st

Basic
Basic Val
Basic Iter
ECB
ECB-CL
ECB-SL
Cost Only
Prob Only

(a) Average Cost

1 2 3 4
Cost Distribution (k)

10

20

30

40

50

60

70

Av
er

ag
e

#U
nk

no
wn

s
De

te
rm

in
ed

Basic
Basic Val
Basic Iter
ECB
ECB-CL
ECB-SL
Cost Only
Prob Only

(b) Unknowns Determined

Fig. 4: Colouring problems 〈30, 5, 0.227〉, different cost distributions.

6 Extending the Framework and Algorithms for
Multi-valued Unknowns

The assumption that unknowns be Boolean can be restrictive. It can be useful
to allow more general forms of unknowns, for instance, to model a constraint
X−Y ≥ λ where λ is an unknown constant which can take values in a numerical
domain. In Section 6.1, we give an example of a Constraint Satisfaction Problem
involving such multi-valued unknowns. We define the extended framework in
Section 6.2, and show, in Section 6.3, how the minimum expected scaled cost
algorithm can be extended.

6.1 Example involving multi-valued unknowns

Suppose that we have two tasks, A and B, to schedule, each starting in time
period 1, 2, 3, or 4. Both tasks have the same unknown duration, λ1, where
λ1 ∈ {1, 2, 3}, and the two tasks cannot overlap. Both tasks have pre-conditions

that affect their possible start times: Task A can be started at time λ2 or later,
and Task B can be started at time λ3 or later, where λ2 and λ3 are unknown
values in {1, 2, 3, 4}.

Letting the start times of tasks A and B be X and Y , respectively, we have
the following constraints: X ≥ λ2, Y ≥ λ3 and |X − Y | ≥ λ1. We need to
generate a solution, i.e., an assignment to variables X and Y , which we are sure
satisfies the constraints.

Parameters λ1, λ2 and λ3, although determinate, are unknown; we can deter-
mine (i.e., find out) the values of each, but there is a cost of doing so. Specifically,
the costs of determining unknown parameters λ1, λ2 and λ3 are 50, 100 and 70,
respectively. For λ2 we estimate that the probability distribution of each ele-
ment in its domain is equal, i.e., 0.25 for each of 1, 2, 3, 4; similarly for λ3. Our
probability distribution over the possible values of λ1 is 0.25, 0.5, 0.25 for values
1, 2 and 3, respectively (see Table 6).

To generate a solution we will need to determine at least one unknown pa-
rameter. The problem is to decide how to determine unknown parameters in
such a way as to minimise the expected cost of generating a solution.

Table 6: The unknown parameters.

Unknown parameter λ1 λ2 λ3

Cost Ki 50 100 70

Domain {1, 2, 3} {1, 2, 3, 4} {1, 2, 3, 4}
Probability distribution (0.25, 0.5, 0.25) (0.25, 0.25, 0.25, 0.25) (0.25, 0.25, 0.25, 0.25)

6.2 The framework for multi-valued unknowns

These kind of problem is very similar to that discussed in earlier sections, and
one could attempt to model it using an ECI-CSP. For example, to represent
the constraint X ≥ λ2, we might try to use an incomplete constraint c with
c(X = 1) = u1, c(X = 2) = u2, c(X = 3) = u3, and c(X = 4) = 1, where
p1 = 0.25, p2 = 0.5 and p3 = 0.75. However, one would also need to represent
dependencies between the unknowns, with, u1 = 1 implying u2 = 1, which in
turns implies u3 = 1. In addition, the formalism would have to be extended to
allow there to be a single cost for determining a group of unknowns.

Instead of this, we take a different approach; the Boolean unknowns of ECI-
CSPs are generalised to unknown parameters which can take more than two
values. Furthermore, an incomplete constraint now associates with a tuple both
an unknown parameter and a subset of the domain of the unknown parameter.
For example, we represent X ≥ λ2 with the incomplete constraint c2 defined by
c2(X = 1) = (λ2, {1}), c2(X = 2) = (λ2, {1, 2}), c2(X = 3) = (λ2, {1, 2, 3}) and

c2(X = 4) = 1. Thus, for example, the assignment X = 2 satisfies this constraint
if and only if λ2 ∈ {1, 2}. The constraints for the example are summarised in
Table 7.

Table 7: The constraints.

Incomplete constraint c1 representing |X − Y | ≥ λ1.

c1(X,Y) X = 1 X = 2 X = 3 X = 4

Y = 1 0 (λ1, {1}) (λ1, {1, 2}) 1

Y = 2 (λ1, {1}) 0 (λ1, {1}) (λ1, {1, 2})
Y = 3 (λ1, {1, 2}) (λ1, {1}) 0 (λ1, {1})
Y = 4 1 (λ1, {1, 2}) (λ1, {1}) 0

Incomplete constraint c2 representing X ≥ λ2.

X = 1 X = 2 X = 3 X = 4

c2(X) (λ2, {1}) (λ2, {1, 2}) (λ2, {1, 2, 3}) 1

Incomplete constraint c3 representing Y ≥ λ3.

Y = 1 Y = 2 Y = 3 Y = 4

c3(Y) (λ3, {1}) (λ3, {1, 2}) (λ3, {1, 2, 3}) 1

The Unknowns: As well as decision variables V , we consider a disjoint set of
variables Λ, which we call the set of unknown parameters. The domain of λ ∈ Λ,
written as δλ, is finite and has at least two values. We assume that, for any
unknown λ ∈ Λ, we can determine the value of λ, that is, the element of δλ
that λ is equal to. So we assume we have some procedure Det(·) that takes an
unknown λ as input and returns an element of δλ.

As before, we also assume that there is a certain cost Kλ ∈ [0,∞) for execut-
ing this procedure on λ, and that we have a probability distribution Pλ over the
domain δλ, indicating the probabilities over the true value of λ. We assume that
the unknown parameters are probabilistically independent. A scenario is again
defined to be a complete assignment to all the unknowns, i.e., a function α which
assigns a value α(λ) in δλ to each unknown parameter λ ∈ Λ. Let Pr(α) be the
probability of scenario α occurring. Since the variables Λ are probabilistically
independent, we have Pr(α) =

∏
λ∈Λ Pλ(α(λ)).

Incomplete Constraints for multi-valued unknowns: An incomplete constraint c
over (V,Λ) has an associated subset Vc of V called its scope. c is a function on
D(Vc), where, for tuples t ∈ D(Vc), c(t) is either, 1, 0 or a pair (λ, ct), where ct
is a non-empty proper subset of δλ.

c is intended as a partial representation of some standard constraint c∗ over
Vc. c(t) = 1 is interpreted as: it is known that t satisfies the constraint c∗. Also,

c(t) = 0 is interpreted as: it is known that t doesn’t satisfies the constraint
c∗; otherwise, if c(t) equals a pair (λ, ct), then it is unknown if t satisfies the
constraint. If it turns out that λ = a, i.e., if Det(λ) = a, and a ∈ ct, then tuple t
satisfies the incomplete constraint, i.e., t satisfies c∗. If there exists tuple t with
c(t) equalling a pair of the form (λ, ct), then we say that unknown parameter λ
is associated with c.

A Multi-valued Expected Cost-based Interactive CSP (MECI-CSP) is de-
fined to be a tuple 〈V,D,Λ, δ,K, P,C〉, for set of variables V with the domains
specified by function D, so that variable X has domain D(X), probabilistically
independent set of unknowns Λ, and function K : Λ → [0,∞); C is a set of
incomplete constraints over (V,Λ), δ is the function that associates the domain
(state space) δλ with each unknown parameter λ, and P is the function that
associates with unknown parameter λ a probability distribution Pλ over δλ. It
is also assumed that each unknown parameter λ ∈ Λ is associated with at most
one incomplete constraint in C.

As before we associate, with an incomplete constraint c, two standard con-
straints with the same scope: the known constraint and the potential constraint.
The known constraint c is given by c(t) = 1 if and only if c(t) = 1 (otherwise,
c(t) = 0). A tuple satisfies c if and only if it is known to satisfy c∗. The potential
constraint c is given by c(t) = 0 if and only if c(t) = 0 (otherwise, c(t) = 1).
A tuple satisfies c if it could potentially satisfy c∗. For a given set of incom-
plete constraints C, the Known CSP is the set of associated known constraints:
C = {c : c ∈ C}, and the Potential CSP C is the set of associated potential
constraints: {c : c ∈ C}.

Let λ be an unknown parameter. Suppose we determine λ and find out that
λ = a, for some value a ∈ δλ. Consider any constraint c and tuple t involving λ,
so that c(t) = (λ, ct). If we have a ∈ ct, then we now know that t does satisfy the
constraint, so we can replace c(t) = (λ, ct) by c(t) = 1. Similarly, if a /∈ ct then
we can replace c(t) = (λ, ct) by c(t) = 0. Define c[λ = a] to be the incomplete
constraint generated from c in this way, i.e., c with λ instantiated to a.

More generally, let ω be an assignment to a set W ⊆ Λ of unknown param-
eters, and let c be an incomplete constraint. c[ω] is the incomplete constraint
obtained by replacing each λ in W with the value ω(λ) ∈ δλ, i.e., c is the in-
complete constraint produced by iteratively instantiating each λ to ω(λ). We
define C[ω] to be {c[ω] : c ∈ C}. C[ω] is thus the incomplete CSP updated by
the extra knowledge ω we have about the unknown parameters.

We say that incomplete CSP C is solved by assignment S (to variables V)
in the context ω if S is a solution of the associated known CSP C[ω]. In other
words, if S is known to be a solution of C given ω. An incomplete CSP C is
insoluble in the context ω if the associated potential CSP C[ω] has no solution.

We can define policies in just the same way as in Section 2.2. Given an
assignment ω to some (possibly empty) set W of unknowns, a policy does one
of the following:

(a) returns a solution of the Known CSP (given ω);

(b) returns “Insoluble” (it can only do this if the Potential CSP (given ω) is
insoluble);

(c) choose another undetermined unknown.

A policy iteratively chooses unknowns to determine until it terminates. The
expected cost, EC(π), of a policy π can be defined in just the same way as in
Section 2.2, i.e., the sum over all scenarios α of Pr(α)Kα, where Kα is the sum
of costs of all the unknown parameters determined by the policy in scenario α.
A policy is optimal if it has minimal expected cost over all policies.

Consider MECI-CSP 〈V,D,Λ, δ,K, P,C〉. Let ω be an assignment to some
set of unknowns W ⊆ Λ. Define MECI-CSP Eω to be the E updated with ω, i.e.,
〈V,D,Λ−W, δ,K, P,C[ω]〉 where functions δ, K and P are restricted to Λ−W.
Define AE(ω) to be the minimal expected cost over all policies for solving Eω.

The following proposition can be proved in almost exactly the same way as
Proposition 1.

Proposition 4. Let E = 〈V,D,Λ, δ,K, P,C〉, be an MECI-CSP, let W be a
subset of Λ, and let ω ∈ D(W) be an assignment to W. If C[ω] is soluble or
C[ω] is insoluble then AE(ω) = 0. Otherwise,

AE(ω) = min
λ∈Λ−W

(
Kλ +

∑
a∈δλ

Pλ(a)AE(ω ∪ {λ = a})
)
.

This leads, in the same way as in Section 2.3, to a dynamic programming
algorithm for finding the value of an optimal policy.

6.3 Extending the minimum expected scaled cost algorithm

It turns out that the minimum expected scaled cost algorithm can be easily
extended to MECI-CSPs; as before we choose potential solutions based on their
scaled expected cost, and then determine if they are actual solutions in the order
that minimises expected cost.

Consider a potential solution S (i.e., solution of the associated Potential
CSP C), so that for all c ∈ C, c(S) 6= 0. Let C ′(S) be the set of incomplete
constraints in C with c(S) 6= 1. Then for all incomplete constraints c ∈ C ′(S) we
have c(S) = (λ, cS) for some unknown parameter λ, where cS is defined to be ct,
with t being the projection of S to the scope of c. We write uc(S) for the event
that Det(λ) ∈ cS , and let U = {uc(S) : c ∈ C ′(S)}. Complete assignment S is a
solution if and only if uc(S) holds for all c ∈ C ′(S). Let pc(S) be the probability
that uc(S) holds, i.e., Pλ(cS).

To emphasise the connection with the situation and approach described in
Section 3, let us relabel U as {u1, . . . , um}, let pi be the probability that ui holds,
and let Ki be the cost associated with the unknown parameter corresponding
to ui. By independence, the probability that S is a solution of the (unknown)
CSP is p1p2 · · · pm, which we again write as P (U). We can define R(U) in just
the same way as in Section 3.1, as the minimal expected cost of determining if
all ui hold, i.e., of checking if S is a solution.

We again use algorithmic approaches based on focusing on minimising the
scaled expected cost, i.e., R(U)/P (U). In particular we can choose a potential
solution with minimal value of scaled expected cost, and then check if this is
an actual solution. One can slightly improve the expected cost of this algorithm
with the following amendment: after determining an unknown parameter and
instantiating it with its true value, we check to see if the Known CSP is now
satisfiable (in which case we needn’t determine any further unknowns). Similarly
the iterative expected cost-bound algorithm can be adapted for MECI-CSPs.

Example continued: Consider the complete assignment S = (X = 4, Y = 2).
Recall that c1 is the incomplete constraint representing |X−Y | ≥ λ1, incomplete
constraint c2 represents X ≥ λ2, and c3 represents Y ≥ λ3. Then c1(S) =
(λ1, {1, 2}), since S satisfies c1 if and only if the true value of parameter λ1

is either 1 or 2. c2(S) = 1, and c3(S) = (λ3, {1, 2}). Thus C ′(S) = {c1, c3}.
uc1 is the event λ1 ∈ {1, 2}, and uc3 is the event λ3 ∈ {1, 2}. S is a solution
of the unknown CSP if and only if λ1 ∈ {1, 2} and λ3 ∈ {1, 2}, i.e., if and
only if both uc1 and uc3 hold. The probability that S is a solution is therefore
Pλ1({1, 2})×Pλ3({1, 2}) = 0.75× 0.5 = 0.375. If we determine λ1 first and then
λ3 then the expected cost of determining if S is a solution isK1+Pλ1({1, 2})K3 =
50 + 0.75× 70 = 102.5; if we determine λ3 first then the expected cost is K3 +
Pλ3({1, 2})K1 = 70+0.5×50 = 95, so the minimum expected cost of determining
if S is a solution is 95. Hence the scaled expected cost is 95/0.375 = 253 1

3 . In
fact, (X = 4, Y = 2) has minimal scaled expected cost among all potential
solutions.

The scaled expected cost algorithm will therefore determine first if (X =
4, Y = 2) is a solution, and will determine unknown parameter λ3 first.

If Det(λ3) = 1 then the incomplete constraint c3 becomes Y ≥ 1, which is
trivially satisfied. The Known CSP has a solution, specifically, (X = 4, Y = 1),
and so the algorithm can stop here. If Det(λ3) = 2, Boolean unknown uc3 holds,
so we go on to determine λ1.

If Det(λ3) = 3 or 4 then (X = 4, Y = 2) is not a solution, so we choose an-
other potential solution to evaluate. If Det(λ3) = 3, the best solution (according
to minimising scaled expected cost) to check next is (4, 3). If λ3 = 4, and so
Y = 4, the best solution to check next is (2, 4). This algorithm turns out to be
optimal for this particular problem instance, or close to it (depending on how
ties are broken when checking solution (2, 4) for the λ3 = 4 case).

7 Further Extensions and Summary

Extending the algorithms: Our main algorithm can be considered as searching
for complete assignments with small values of R(U)/P (U), where U is the set of
unknowns associated with the assignment, P (U) is the probability that all of U
are successfully determined (and hence that the assignment is a solution), and
R(U) is the expected cost of checking this. There are other ways of searching
for assignments with small values of R(U)/P (U), in particular, one could use

local search algorithms or branch-and-bound algorithms. Such algorithms can be
used to generate promising assignments, which we can sequentially test to see if
they are solutions or not. If not, then we move on to the next potential solution
(possibly updating the problem to take into account determined unknowns).

The efficiency of our main algorithm and a branch-and-bound algorithm
would probably be greatly increased if one could design an efficient propaga-
tion mechanism of an upper bound constraint on R(U)/P (U). Failing that, one
might use a propagation method for weighted constraints [11] to prune subtrees
of assignments with total associated cost above a threshold, or with probabilities
below a threshold (the latter using a separate propagation, making use of the
log/exponential transformation between weighted constraints and probabilistic
constraints).

Further extensions of the model: Our model of interleaving solving and elicitation
is a fairly simple one. There are a number of natural ways of extending it to cover
a wider range of situations. In particular, the framework and algorithms can be
easily adapted to situations where there is a cost incurred for determining a set
of unknowns (rather than a single unknown); for example, there may be a single
cost incurred for determining all the unknowns in a particular constraint. The
paper has focused on the case of the probabilities being independent; however,
the model and algorithms can be applied in non-independent cases as well. Our
model and algorithms also apply to the case where determining an unknown
may leave it still unknown; unsuccessfully determining an unknown then needs
to be reinterpreted as meaning that we are unable to find out if the associated
tuple satisfies the constraint or not. Our current model allows a single unknown
to be assigned to several tuples (which may be in the same constraint); although
this can allow some representation of intensional constraints, we may also wish
to allow non-Boolean unknowns, for example, for a constraint X −Y ≥ λ where
λ is an unknown constant.

The framework and algorithms can also be extended to the case of optimi-
sation for soft constraints problems [22], with much of the framework similar to
those in Sections 2 and 6. This relates also to the framework in [9], but with a
probabilistic basis. An incomplete soft constraint then assigns to tuples either
an element of I, where I is the set of preference degrees, or an unknown, where
an unknown is associated with a subset of I, and a probability distribution over
this subset. The problem is to generate an optimal solution for a collection of
incomplete soft constraints, whilst determining unknowns with as little cost as
possible. The definition of a policy is a little different from that in Sections 2.2
and 6.2: given an assignment to a set of unknowns, a policy either (a) returns
a necessarily optimal complete assignment, i.e. a complete assignment which is
optimal in all scenarios; or, (b) chooses another undetermined unknown to deter-
mine. One might also consider other elicitation models, such as those described
in [9], where, for example, the worst missing preference degree associated with
a potential solution is returned.

In many situations, it could be hard to reliably estimate the success proba-
bilities and costs, in particular, if a cost represents the time needed to find the

associated information. However, since the experimental results indicate that
taking costs and probabilities into account can make a very big difference to
the expected cost, it could be very worthwhile making use of even very crude
estimates of costs and probabilities.

Summary

The paper defines a particular model for when solving and elicitation are in-
terleaved, which takes costs and success probabilities into account. A formal
representation of such a problem is defined. A dynamic programming algorithm
can be used to solve the problem optimally, i.e., with minimum expected cost;
however this is only computationally feasible for situations in which there are
few unknowns, i.e., very little unknown information. We define and experimen-
tally test a number of algorithms based on backtracking search, with the most
successful (though computationally expensive) ones being based on delaying de-
termining an unknown until more information has been received.

Acknowledgements

This material is based upon works supported by the Science Foundation Ireland
under Grant No. 05/IN/I886 and Grant No. 08/PI/I1912.

References

1. Faltings, B., Macho-Gonzalez, S.: Open constraint satisfaction. In: Proceedings
of the 8th International Conference on Principles and Practice of Constraint Pro-
gramming (CP-2002). (2002) 356–370

2. Faltings, B., Macho-Gonzalez, S.: Open constraint optimization. In: Proceedings
of the 9th International Conference on Principles and Practice of Constraint Pro-
gramming (CP-2003). (2003) 303–317

3. Faltings, B., Macho-Gonzalez, S.: Open constraint programming. Artificial Intel-
ligence 161(1–2) (2005) 181–208

4. Cucchiara, R., Lamma, E., Mello, P., Milano, M.: An interactive constraint-based
system for selective attention in visual search. In: International Syposium on
Methodologies for Intelligent Systems. (1997) 431–440

5. Lamma, E., Mello, P., Milano, M., Cucchiara, R., Gavanelli, M., Piccardi, M.:
Constraint propagation and value acquisition: why we should do it interactively.
In: Proceedings of the Sixteenth International Joint Conference on Artificial Intel-
ligence (IJCAI-99). (1999) 468–477

6. Lallouet, A., Legtchenko, A.: Consistencies for partially defined constraints. In:
Proc. International Conference on Tools with Artificial Intelligence (ICTAI’05).
(2005)

7. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B.: Dealing with incomplete prefer-
ences in soft constraint problems. In: Proc. CP’07. Volume 4741 of LNCS., Springer
(2007) 286–300

8. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Elicitation strategies for
fuzzy constraint problems with missing preferences: Algorithms and experimental
studies. In: Proc. CP’08. Volume 5202 of LNCS., Springer (2008) 402–417

9. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Elicitation strategies
for soft constraint problems with missing preferences: Properties, algorithms and
experimental studies. Artificial Intelligence 174(3-4) (2010) 270 – 294

10. Amilhastre, J., Fargier, H., Marquis, P.: Consistency restoration and explanations
in dynamic CSPs—Application to configuration. Artificial Intelligence 135 (2002)
199–234

11. Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency.
Artificial Intelligence 159(1–2) (2004) 1–26

12. Fargier, H., Lang, J.: Uncertainty in Constraint Satisfaction Problems: a proba-
bilistic approach. In: Proc. ECSQARU-93. (1993) 97–104

13. Wilson, N., Grimes, D., Freuder, E.: A cost-based model and algorithms for in-
terleaving solving and elicitation of csps. In: Proceedings of the 13th Interna-
tional Conference on Principles and Practice of Constraint Programming (CP-
2007). (2007) 666–680

14. Dechter, R., Dechter, A.: Belief maintenance in dynamic constraint networks. In:
Proc. AAAI-88. (1988) 37–42

15. Howard, R., Matheson, J.: Influence diagrams. In: Readings on the Principles and
Applications of Decision Analysis. (1984) 721–762

16. Puterman, M.: Markov Decision Processes, Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons (1994)

17. Tarim, S.A., Manadhar, A., Walsh, T.: Stochastic constraint programming: A
scenario-based approach. Constraints 11(1) (2006) 53–80

18. Bellman, R.: Dynamic Programming. Princeton University Press (1957)
19. Dechter, A., Dechter, R.: On the greedy solution of ordering problems. ORSA

Journal on Computing 1(3) (1989) 181–189
20. Gent, I.P., MacIntyre, E., Prosser, P., Smith, B.M., Walsh, T.: Random constraint

satisfaction: Flaws and structure. Constraints 6(4) (2001) 345–372
21. Brélaz, D.: New methods to color the vertices of a graph. Communications of the

ACM 22(4) (1979) 251–256
22. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.:

Semiring-based CSPs and Valued CSPs: Frameworks, properties and comparison.
Constraints 4(3) (1999) 199–240

