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Abstract  

The sphingosine-1-phosphate (S1P) analogue, FTY720, is therapeutically efficacious 

in multiple sclerosis and in the prevention of transplant rejection. It prevents 

migration of lymphocytes to sites of pathology by trapping them within the peripheral  

lymph nodes, the mesenteric lymph nodes (MLNs) and Peyer's patches. However, 

evidence suggests that its clinical use may increase the risk of mucosal infections. We 

investigated the impact of FTY720 treatment on susceptibility to gastrointestinal  

infection with the mouse enteric pathogen, Citrobacter rodentium (C. rodentium). 

This attaching and effacing bacterium induces a transient bacterial colitis in  

immunocompetent mice, which resembles human infection with pathogenic 

Escherichia coli. FTY720 treatment induced peripheral blood lymphopenia, trapped 

lymphocytes in the MLNs and prevented clearance of bacteria when mice were 

infected with luciferase-tagged C. rodentium. FTY720-treated C. rodentium-infected  

mice had enhanced colonic inflammation, with significantly higher colon mass, colon 

histopathology and neutrophil infiltration, when compared with vehicle-infected 

animals. In addition, FTY720-treated infected mice had significantly lower numbers 

of colonic dendritic cells, macrophages and T cells. Gene expression analysis  

demonstrated that FTY720-treated infected mice had an impaired innate immune  

response and a blunted mucosal adaptive immune response including Th1 cytokines. .  

The data demonstrate that the S1P analogue, FTY720, adversely affects the immune 

response and clearance of C. rodentium.  
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INTRODUCTION 

Therapeutic use of the Sphingosine 1–Phosphate (S1P) analogue FTY720 [Gilenya 

(fingolimod)] has proven efficacy in patients with multiple sclerosis (MS), and was  

recently approved by the US Food and Drug Administration as a first line treatment for 

relapsing forms of the disease (1, 27). FTY720 modulates S1P signalling, preventing  

lymphocyte egress from the thymus and spleen into the blood and from the lymph nodes  

(LNs) into the lymph, thus blocking lymphocyte trafficking to target tissues (5, 6, 16). It 

also affects dendritic cell (DC) migration (31), modulates DC pro-inflammatory  

signalling, and is a potent inhibitor of regulatory T cell (Treg) proliferation (56).  

Controversy surrounds the complex mechanism of action of FTY720 in vivo and it is  

unclear whether it acts as an agonist or functional antagonist or both during regulation 

of lymphocyte recirculation (21, 47, 52, 58). FTY720 ameliorated disease in numerous  

pre-clinical models of colitis including those induced by oxazolone (12), TNBS (11),  

DSS (14), adoptive transfer (14, 18) and in IL-10 deficient mice (36). In addition, it was 

therapeutically efficacious in graft versus host disease (24) and in clinical studies of 

transplantation and MS (2, 4, 23). However, treatment with FTY720 may increase the 

risk of mucosal infections and its effect on host immune responses upon exposure to 

such threats has yet to be completely elucidated. Two fatal herpes virus infections were  

reported in a clinical phase 3 study comparing FTY720 with IFN-β, (7, 19), and an  

increased incidence of respiratory tract infections, such as bronchitis, have been  

reported in MS patients with FTY720 treatment (8, 28). Nonetheless, studies to date  

assessing the effect of FTY720 on innate and adaptive immune responses have  

specifically focused on exposure to viral antigens and vaccines (30, 35). There are no  

studies examining the effect of FTY720 treatment following exposure to gastrointestinal  

infections.  
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In the current study, we assess the effect of continuous dosing of FTY720 on  

susceptibility of mice to Citrobacter rodentium (C. rodentium), a commonly used non- 

invasive enteropathogen, which is a model for human enteropathogenic Escherichia coli  

(EPEC) and enterohaemorrhagic E. coli (EHEC) infection. C. rodentium intimately  

attaches to the apical surface of the gut epithelium, inducing epithelial cell actin re- 

arrangements and localized destruction of brush border microvilli and leading to the  

formation of underlying pedestal-like attaching/effacing (A/E) lesions in the host cell  

(29). Oral infection of immunocompetent mice with C. rodentium leads to a transient  

colonisation and inflammation that peaks after one week and is cleared in the ensuing  

two to three weeks (37). Bacterial colonization is limited to the intestinal mucosa with 

low bacterial burden in systemic organs. The mice exhibit mild signs of clinical disease  

and microscopically the mucosa presents crypt hyperplasia, goblet cell loss and mucosal  

infiltration of immune cells including T cells, macrophages and neutrophils. For 

efficient bacterial clearance a robust Th1 host immune response is required, mediated  

by infiltrating CD4+ T cells and macrophages. Thus, C. rodentium infection is an  

excellent model to investigate host-bacterial immune interactions in the intestine. In  

addition, the availability of a bioluminescent strain that allows pathogen burden and 

clearance dynamics to be followed in vivo using bioluminescence imaging makes this 

model a versatile tool (9, 17, 40). Our data clearly show that continuous treatment with 

FTY720 delays clearance of C. rodentium infection in mice, by blocking the migration  

of T cells and other immune cells to the inflamed colon. Host protective mucosal  

immunity is altered with impairment of innate and adaptive immune responses. This is  

the first report, to our knowledge, that FTY720 can compromise critical host defence 

against commonly encountered enteric pathogens. 
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MATERIALS AND METHODS 

Mice  

Specific pathogen-free female C57BL/6OlaHsD mice, 7–12 wk old, weighing 17–20 

g, were obtained from Harlan, UK. All mice were housed in individually ventilated  

cages (IVCs, OptiMICE, Animal Care Systems, UK) in groups of 3-4 mice per cage,  

with sterile bedding, temperature 21°C, 12h light: 12h darkness, humidity 50% in a 

dedicated animal holding facility. They were fed a sterilized pellet diet and tap water 

ad libitum. Mice were allowed ≥2 wk to acclimatize before entering the study. All  

animal procedures were performed according to national ethical guidelines following  

approval by University College Cork Animal Experimentation Ethics Committee 

(AEEC). 

 

Citrobacter rodentium- induced colitis  

The bioluminescent C. rodentium strain ICC180, was a gift from Prof. Gordon 

Dougan (Wellcome Trust Sanger Institute, UK). This nalidixic acid (NA)-resistant 

strain harbors a constitutively expressed luminescent tag that enables the colonization  

pattern to be followed by bioluminescence imaging. Previous studies have shown 

strong correlation between cell numbers and bioluminescent signals (15, 43).  

Similarly, light levels emitted by bioluminescent C. rodentium strains have been 

shown to accurately reflect the bacterial numbers in vivo (55). C. rodentium strain 

ICC180 was cultured overnight in Luria-Bertani (LB) broth supplemented with NA 

(50µg/ml) (Sigma-Aldrich Ltd, Dublin, Ireland) @ 37°C, centrifuged @ 3000 g for 10 

min and re-suspended in 10ml of sterile phosphate buffered saline (PBS) for oral 

gavage. Each mouse received 200μl (approximately 5 x 109 bacteria) of the bacterial 

suspension. Post-gavage, the remainder of the suspension was plated in serial 
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dilutions for retrospective enumeration. For bacterial enumeration in the stool 

collected at different time-points, serial dilutions of a fecal/PBS suspension (neat to 

10-7) were plated onto supplemented LB agar using a spot-plate technique and 

incubated overnight @ 37°C. To determine bacterial number in the spleen, the organ 

was weighed, manually crushed in 2ml of PBS in a stomacher bag, plated using serial 

dilutions onto supplemented LB agar and incubated overnight @ 37°C. 

  

FTY720 administration  

To assess the effect of continuous dosing of FTY720 on C. rodentium-induced colitis, 

mice were orally gavaged with vehicle (1% methylcellulose, Sigma-Aldrich Ltd, 

Dorset, England) or 3mg/kg FTY720 for 6 days pre-infection (day -6 to day -1 

inclusive). Mice were orally gavaged with C. rodentium on day 0 and vehicle/ 

FTY720 dosing was continued every 2nd day from day 1 up until day 12 post-infection 

(p.i.). Mice were sacrificed at two time-points on day 8 (peak infection) and on day 14 

(late infection/ clearance). The number of mice per group per time-point was 7. Non-

infected controls were dosed with vehicle and FTY720 according to the same regime, 

n=4 per group. The FTY720 compound was kindly provided by Dr. A. Haynes 

(GlaxoSmithKline, Stevenage, UK). 

 

In a separate study, we investigated the effect of stopping FTY720 dosing during 

early C. rodentium infection. In this instance, as with the continuous dosing study, the  

mice were orally gavaged daily with vehicle (1% methylcellulose) or 3mg/kg FTY720 

for 6 days pre-infection (day -6 to day-1 inclusive). Following infection on day 0, 

dosing was continued for only 2 days. Mice were sacrificed on day 14. Number of 

mice per group was 7.    
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Clinical assessment of inflammation 

Body weight was monitored regularly. Clinical assessment of inflammation was 

adapted from other colitis models (38, 39). Briefly, stool consistency (0=normal, well- 

formed pellets, 1=changed formed pellets, 2=loose stool, 3=diarrhea) and fur 

texture/posture (0=smooth coat/ not hunched, 1=mildly scruffy/mildly hunched, 

2=very scruffy/very hunched) were recorded every 2nd day for the duration of the 

study to generate a disease activity index. 

  

In vivo bioluminescence imaging 

On day 8 and 14 p.i., in vivo bioluminescence imaging was performed as previously  

described (10, 51), using an IVIS 100 charge-coupled device imaging system 

(Xenogen, Alameda, CA). Briefly, following gaseous anesthesia with 3% isoflurane, 

the animals were transferred to the imaging chamber where emission images were 

collected with 5 min integration times. Following the whole-body imaging, the mice 

were euthanized via cardiac puncture. The colons were removed, detached from the 

caecums, cut longitudinally, washed in PBS and imaged for 5 min. The caecums were 

also washed in PBS prior to imaging. The mesenteric lymph nodes (MLNs) and  

spleens were removed and imaged. Bioluminescent signal was quantified by creation 

of regions of interest (ROIs). To standardize the data, light emission was quantified 

from the same surface area (ROI) for each organ type. In addition, background light 

emission, taken from ROIs created on organs of non-infected control animals, was 

subtracted from test organs. Imaging data was analyzed and quantified with Living 

Image Software (Xenogen) and expressed as photons/second/cm2.    
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Histology  

The colons were removed, opened longitudinally, washed in PBS and separated into 

proximal and distal sections. The length of each colon was measured and 3cm was  

taken as the distal. The proximal and distal colons were weighed, cut longitudinally 

and one section of the distal was processed as a ''Swiss roll'' and snap frozen in OCT 

compound (Tissue-Tek, Sakura Finetek, USA) using liquid nitrogen. Frozen colons  

were cryo-sectioned (6μm), fixed for 5 min in ice-cold acetone/ethanol (3:1 ratio) and 

stained with haematoxylin and eosin according to standard histological procedures.  

Colon sections were evaluated and assigned scores in a blinded fashion for evidence  

of inflammatory damage such as goblet cell loss, crypt elongation, mucosal thickening 

and epithelial injury including hyperplasia and enterocyte shedding into the gut 

lumen. Scores were determined for four fields of view per mouse at 20x magnification 

(Olympus BX51, Germany) based on a scale of 0-3 (0=none, 1=mild, 2=moderate, 

3=severe). A mean inflammatory score was then assigned per mouse distal colon, n= 

3-4 mice per group.    

 

Immunofluorescent staining 

Frozen colon and MLN sections (6μm) were fixed in ice-cold acetone/alcohol mix 

(3:1 ratio), blocked with blocking serum for 45 min at room temperature in a 

humidified chamber and stained with combinations of the mAbs listed in Table 1. 

Purified mAbs were counter-stained using the appropriate AlexaFluor488-conjugated 

anti-Ig antibody (Invitrogen, BioSciences Ltd, Ireland). Hoechst (Invitrogen) was 

used as a nuclear counter-stain. Stained sections were mounted in ProLong Gold 

antifade reagent (Invitrogen) and were coded and visualized using a fluorescent  
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microscope (Olympus BX51, Germany) in a blinded fashion. For cell number 

quantitation, 7-10 fields of view were counted @ 40X for 3-4 mice per group.  

 

Flow Cytometry 

Blood was harvested from the mice via cardiac puncture on day 8 and day 14 into 

0.01M EDTA (Sigma-Aldrich) and lysed in 2ml ACK (buffered ammonium chloride) 

lysis buffer (0.15M NH4Cl / 1mM KHCO3 / 0.1mM EDTA, pH 7.2). Following 

centrifugation, the red layer was removed leaving the clear pellet containing the white 

blood cells. A final concentration of 2 x 105 cells/well was re-suspended in blocking  

buffer. To this cell suspension; 50μL of each mAb dye mix was added with incubation 

in the dark at 4oC for 30 min. Combinations of the mAbs listed in Table 1 were used 

in this study. Following staining, the cells were washed twice with blocking buffer 

and fixed in 1% paraformaldehyde. Relative fluorescence intensities were measured 

using a LSRII cytometer and BD Diva software (Becton Dickinson, UK). For each 

sample, 10-20,000 events were recorded. The percentage of cells labeled with each 

mAb was calculated in comparison with cells stained with isotype control antibody. 

Analysis gates for each antibody were set by using FMO (fluorescence minus one) 

controls with a threshold below 1%. The results represent the percentage of positively 

stained cells in the total cell population exceeding the background staining signal. 

  

RNA extraction and quantitative RT-PCR (qRT-PCR)  

Colonic mucosal mRNA expression was evaluated using qRT-PCR. The distal colons  

were weighed, cut longitudinally and one section was snap frozen in 1ml RNA later.  

Frozen colonic tissue samples were thawed on ice and transferred to magnalyser tubes 

with green beads (Roche Ireland Limited, Clare, Ireland) containing 1ml of lysis 
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buffer (provided by mirVana kit, Ambion, Applied Biosystems). Samples were 

homogenized (x3) @ 6,500 g for 15 seconds using a Magnalyser Instrument (Roche). 

Homogenized samples were centrifuged @ 200 g for 5 min @ 4°C and the 

supernatants were stored @ -80°C. Total RNA was isolated from colonic tissue 

homogenates using mirVana Kit, according to the manufacturers' protocol. RNA 

purity was measured by spectrophotometric analysis using a nanodrop.  

Complementary DNA (cDNA) was synthesized using 1μg total RNA. PCR primers  

and probes were designed using the Universal ProbeLibrary Assay Design Centre 

(https://www.roche-applied-science.com/sis/rtpcr/upl/adcs.jsp). Assays were designed 

for murine Il-1β, Il-12p40, Il-6, Il-4, Il-10, Il-17a, Il-22, Il-23a, NOS2 (iNOS), Ifn-γ, 

Rorc (retinoic acid-related orphan receptor gamma t, RORγt), Tbx21 (Tbet), Tnf-α,  

Foxp3 and RegIIIγ. Primer sequences and corresponding probe numbers are available 

upon request. β-actin was used as housekeeping gene to correct for variability in the 

initial amount of total RNA. All PCR reactions were performed in triplicate using  

384-well plates on the LightCycler 480 System (Roche). Positive and negative 

controls were also included. The 2-ΔΔCt method (33) was used to calculate relative 

changes in gene expression determined from qRTPCR experiments.   

 

Statistical Analysis 

Data are represented by Mean ± SEM unless otherwise stated. The specific tests used 

are as indicated in the figure legends. All statistical tests were performed using  

commercially available statistic software (GraphPad Software Inc, CA). A P value of 

< 0.05 was considered significant.   
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RESULTS  

FTY720 induces peripheral blood lymphopenia by trapping lymphocytes within  

the LNs 

The effect of FTY720 on blood immune cell populations in C. rodentium infected  

mice was assessed at various time-points during the treatment period using flow 

cytometry. A significant reduction of T cells in the blood (lymphopenia) was observed  

in the FTY720-treated animals, compared to those that received vehicle on day 8 and  

day 14 p.i. (Fig. 1A), in accordance with previous reports (35). A similar reduction  

was observed with levels of B cells on day 8, but not on day 14 p.i. (Fig. 1A). 

Additionally, a significant increase in DCs was observed in the blood of the FTY720-

treated mice on day 14 p.i., but not on day 8 p.i. (Fig. 1A). FTY720 treatment 

appeared to have no effect on levels of blood granulocytes (Fig. 1A), monocytes, NK 

or NKT cells (data not shown) on either of the time-points analyzed. Non-infected 

controls treated with the same dosing regime of vehicle or FTY720 showed similar  

results on day 14 (Supplemental Fig. 1A).  

 Immunofluorescent staining of frozen tissue sections demonstrated a marked 

accumulation of CD3+ T cells in the MLNs of FTY720-treated mice on day 14 p.i., 

confirming the inhibitory effect of the S1P analogue on their egress from secondary 

lymphoid organs (Fig. 1B).  

 

FTY720 treatment increases pathogen burden and impairs bacterial clearance   

To determine the effects of FTY720 on C. rodentium infection in mice, we visualized 

and quantitated levels and tissue distribution of the pathogen on day 8 and day 14 p.i. 

using bioluminescence imaging. Whole-body imaging revealed a high pathogen 

burden in the lower abdominal/ gastrointestinal region of both the vehicle-treated and 
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FTY720-treated mice on day 8 p.i. (Fig. 2A). However, the bioluminescent signal 

from the FTY720-treated animals was significantly higher (p<0.001, Fig. 2A and C).  

On day 14 p.i., while whole-body imaging revealed clearance of the bacteria by the 

infected vehicle-treated mice, as evidenced by a significantly diminished  

bioluminescent signal, no such clearance was evident in the infected FTY720-treated  

mice (Fig. 2B and C). Ex vivo bioluminescence imaging of the organs on day 8 p.i. 

revealed significantly higher colonization of caecums (p<0.05), colons (p<0.05),  

spleens (p<0.01) and MLNs (p<0.001) of the FTY720-treated mice compared to the 

vehicle-treated (Fig. 2D). C. rodentium initially infects the caecum and then moves 

onto the distal colon. We and others have confirmed this colonisation pattern using 

bioluminescence (55). In the present study, 100% of the FTY720-treated mice had  

evidence of bacteria in the caecum on day 8 p.i., compared to 28% of those that 

received vehicle. By day 14 p.i., in contrast to the vehicle-treated mice, the signal  

from the colons and caecums remained high in the FTY720-treated animals and there  

was evidence of MLN infection in just under half of the mice (Fig. 2D). The  

bioluminescence data were supported by fecal cfu counts, which were performed at 

various time-points p.i.. These confirmed that day 8 was close to peak infection (Fig. 

2E). In addition, FTY720-treated mice shed significantly higher numbers of C. 

rodentium in their stool from day 9 p.i. on, compared with vehicle-treated controls,  

and showed no signs of clearing the infection. Bacterial numbers in the feces of the 

drug-treated animals continued to increase over-time (Fig. 2E), while those of the 

vehicle-treated animals began to drop after day 7 p.i.. Splenic bacterial counts were 

similar between vehicle-treated and FTY720-treated animals on day 8 p.i.. However, 

on day 14 p.i. the vehicle-treated animals no longer had any evidence of bacterial  

growth in this organ, while bacterial burden in the spleen of mice receiving the S1P 
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analogue remained high (Fig. 2F). In contrast to vehicle-treated mice, FTY720-treated 

animals did not resolve the infection by day 14 p.i. and still had high concentrations of 

bacteria in all organs analyzed. 

 

FTY720 treatment exacerbates clinical and colonic pathology during C. 

rodentium infection   

To determine the effect of FTY720 administration on disease during C. rodentium  

infection, we monitored clinical and macroscopic signs of inflammation post- 

infection. In all mice infected with C. rodentium, weight loss was absent or minimal 

(Supplemental Fig. 2A) and the disease activity scores were well below the maximum 

possible, i.e. 5 on the scale used (mean 0.4 at day 8 p.i. and 0.9 on day 14 p.i. in 

vehicle treated mice, respectively, Supplemental Fig. 2B). Nevertheless, there was a 

significant increase in the disease activity score of infected FTY720-treated mice on 

days 7 (p<0.01), 8 (p<0.01) and 10 (p<0.05) p.i., respectively compared to infected 

vehicle-treated (Supplementary Fig. 2B). These time-points are considered to 

represent peak infection with the bacteria. No differences in colon length were evident  

between the vehicle-treated (5.8cm ± 0.2cm) and FTY720-treated groups (5.9cm ± 

0.1cm) on day 14 p.i.. At necropsy, changes in distal colonic weight were assessed as 

an indirect measurement of epithelial hyperplasia, mucosal inflammation and 

hyperaemia, all of which are common features of C. rodentium infection. Animals 

infected with C. rodentium had significantly heavier distal colons, than their non-

infected counterparts, on both time-points analyzed, i.e. day 8 (p<0.05) and day 14 p.i. 

(p<0.001) (Fig. 3A). Moreover, no differences in distal colonic weights were 

observed between vehicle-treated and FTY720-treated non-infected controls 

(Supplementary Figure 1B). In contrast, C. rodentium-infected mice that received 
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FTY720 had heavier distal colons, than those treated with vehicle on day 14 p.i., 

suggesting increased inflammation. This observation was supported by histological  

analysis of the distal colons, which revealed significantly increased inflammatory 

score, i.e. higher mucosal thickening, epithelial cell hyperplasia and goblet cell 

depletion, in the infected FTY720-treated mice compared to infected vehicle-treated 

controls (Fig. 3B and C). Although signs of inflammation and tissue damage were  

evident in the vehicle-treated colons compared to the non-infected colons at day 14 

p.i., it was much less severe and resolution and epithelial healing appeared to be 

taking place.   

  

FTY720 alters the composition of immune cell populations infiltrating the colon  

during C. rodentium infection 

To determine the effect of FTY720 on the composition and distribution of immune 

cell populations in the colon during C. rodentium infection, frozen colonic sections 

were fluorescently stained and analysed for the number of CD3+ T cells, CD19+ B  

cells, CD11c+ DCs, F4/80+ macrophages and Ly6G+ neutrophils. A marked increase 

in T cells (p<0.001), B cells (p<0.05), DCs (p<0.001), macrophages (p<0.001) and  

neutrophils (p<0.01) was observed within the distal colons of vehicle-treated animals 

compared to non-infected controls on day 14 p.i. (Fig. 4A and B). In comparison to  

the vehicle-treated animals, T and B lymphocytes (p<0.01, p<0.001), DCs (p<0.01) 

and macrophages (p<0.001) were significantly decreased in the distal colons of 

FTY720-treated animals at this time-point (Fig. 4A and B). However, the numbers of  

neutrophils were significantly increased (p<0.05) in these mice (Fig. 4A and B). 
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FTY720 treatment down-regulates genes associated with the mucosal immune  

response to C. rodentium 

To assess the effect of FTY720 treatment on the expression of innate and adaptive 

immune-modulatory genes during C. rodentium infection, distal colonic RNA was 

isolated and mRNA expression was evaluated using qRT-PCR. In the distal colons of  

C. rodentium-infected animals that received vehicle, expression levels of innate 

immune genes, such as the pro-inflammatory mediators IL-1β, iNOS and TNF-α,  

were significantly up-regulated compared to non-infected controls at day 8 p.i.. This 

up-regulation was significantly decreased in FTY720-treated animals compared to 

vehicle-treated (Fig. 5A). In contrast, on day 14 p.i. the expression of these mediators, 

together with IL-17a and IL-6, was significantly up-regulated in the drug-treated 

animals compared to vehicle-treated controls at this time point (Fig. 5A). Similarly,  

TNF-α was also increased in these mice at this time point (p=0.053).Genes associated  

with an adaptive T cell response such as IL-23, IL-22, IL-4 and IL-10 were  

significantly decreased in infected vehicle-treated mice compared to non-infected  

controls at day 8 p.i.. This down-regulation was not significantly affected by FTY720-

treatment at this time point (Fig. 5B). In contrast, gene expression of the Th1 cytokine  

IL-12p40 was significantly up-regulated in infected vehicle-treated mice compared to 

non-infected controls at day 14 p.i. However, a significant up-regulation of the other 

T-cell associated cytokine genes was not detected in infected vehicle-treated mice 

compared to non-infected mice at this time point. Nevertheless, colonic expression of 

IL-12p40, IFN-γ, IL-22, IL-10, IL-4, the Treg transcription factor Foxp3 and the Th17 

inducers RORγt and IL-23 were significantly decreased in infected FTY720-treated  

compared to infected vehicle-treated mice at day 14 p.i. (Fig. 5B). No significant  

changes were observed on the expression of Tbet or REGIIIγ in infected FTY720-
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treated compared to vehicle-treated animals. qRT-PCR on colonic gene expression 

was also carried out on vehicle-treated and FTY720-treated non-infected controls, but 

no significant changes were observed (data not shown).  

 

Termination of FTY720 treatment at early time-points p.i. had minimal effects 

on peripheral blood lymphopenia or pathogen clearance.   

To determine what effect termination of FTY720 dosing has during early C. 

rodentium infection, mice were administered vehicle or the S1P analogue daily for 6  

days prior to C. rodentium infection and 2 days after infection. On day 14 p.i., blood 

leukocyte populations, colonization and clinical and macroscopic markers of infection 

were determined. In the infected mice that had been treated with FTY720, peripheral 

blood lymphopenia was maintained, as were the enhanced numbers of DCs (Fig. 6A).  

Unlike with continuous dosing p.i., blood levels of peripheral granulocytes and NK 

cells were increased compared to the infected vehicle-treated mice (Fig. 6A). Whole-

body bioluminescence imaging revealed that the FTY720-treated mice were still 

heavily colonized by day 14 p.i. and had higher signals from their colon (p<0.001,  

Fig. 6C and D), caecum (p<0.001, Fig. 6C and Supplemental Fig. 3), MLNs and 

spleen (p<0.001, Supplemental Fig. 3). These data were supported by faecal cfu  

counts (Fig. 6E). However, no differences in disease activity or distal colon weight  

were evident between the infected vehicle-treated group and those that had received  

FTY20.   
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Discussion 

The results of this study show that FTY720 delayed clearance of the murine enteric 

pathogen C. rodentium. This was most likely a result of FTY720-mediated peripheral 

lymphopenia and T cell entrapment within the lymph nodes resulting in impairment of 

the adaptive immune response within the colon. Additionally, the colonic innate  

immune response was impaired and there was increased colon pathology and bacterial 

dissemination.  

 

Our data show that FTY720 induced peripheral blood lymphopenia pre- and post- 

infection and T cell entrapment within the MLNs, which is consistent with previous 

reports (1, 3). Data from bioluminescence imaging of whole-body and organs 

combined with viable bacterial counts of the stool and spleen revealed that FTY720-

treated mice were highly susceptible to colonic and systemic infection with C. 

rodentium. In addition to increased bacterial burden, more extensive pathogen 

distribution and impaired bacterial clearance, these mice exhibited higher disease 

activity at peak infection and greater colonic pathology at day 14 p.i.. These findings 

are in contrast to what has been previously demonstrated in experimental models of  

colitis reflecting IBD (11, 12, 14, 18, 36). In these instances, FTY720 had a 

therapeutic effect on disease by blunting immunity. In the present study, FTY720 

blocked lymphocyte migration to the C. rodentium-infected intestine. Notably,  

FTY720-treated mice had reduced numbers of colonic T cells, DCs, B cells and 

macrophages, but increased numbers of neutrophils at day 14 p.i. when compared to 

vehicle-treated infected controls. These results are reminiscent of those observed in T 

and B cell deficient RAG1 knockout (KO) mice (45). In fact, C. rodentium infection  
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in these mice also leads to a predominantly granulocytic colonic infiltrate and 

enhanced bacterial presence in peripheral organs as well as colons (34, 45, 54).  

  

Neutrophils are important in the early innate immune response to infection such as C. 

rodentium, preventing dissemination and controlling bacterial load (32, 50). However,  

during chronic inflammatory disease they can contribute to host tissue pathology (26, 

41, 49). In the present study, increased neutrophil presence in the infected colons of 

FTY720-treated mice at day 14 p.i. was accompanied by enhanced severity of colonic 

inflammation. Interestingly, this increased neutrophil influx was also associated with 

up-regulated expression of the innate immune-related genes IL-1β, iNOS, IL-17a, IL-

6 and TNF-α at day 14 p.i.. In agreement with previous reports, we found that gene 

expression of these innate immune cytokines was elevated in infected vehicle-treated  

mice compared to non-infected controls at peak infection (22, 48). These cytokines 

play a significant role in host defense and clearance of C. rodentium during early 

infection (13, 20, 25, 53). In the present study, it is possible that the innate immune  

response may be attempting to compensate for the blunted adaptive response in the  

infected FTY720-treated colons at day 14 p.i (32). Another possibility is that FTY720 

is impairing the innate immune response at peak infection; a notion supported by the  

down-regulation of these cytokines in the FTY720-treated colons compared to  

vehicle-treated at day 8. The fact that the delayed innate response is unsuccessful at 

day 14 p.i. does not preclude the possibility that at later time-points, the heightened 

neutrophilic response may eventually promote clearance of C. rodentium. However, it  

should be noted that long-term infected RAG1KO mice (up to day 60 p.i.) also fail to  

clear C. rodentium infection(54).   
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The reduction in T cells, DCs and macrophages in the colons of the infected FTY720-

treated mice at day 14 was in accordance with the decreased colonic mRNA 

expression of IL-12p40, IFN-γ, IL-23, IL-22, IL-4, IL-10, Foxp3 and RORγt in these 

mice at this time point. C. rodentium infection is associated with a highly polarized 

Th1 host immune response (22) and IL-12p40 is essential for adequate clearance of  

the pathogen from the gut (46). The cytokines IFN-γ (44), IL-22 and IL-23 (57) also 

play important roles in host defense against C. rodentium and their down-regulation in 

FTY720-treated animals may have contributed to the increased bacterial burden and 

dissemination. However, with the exception of IL-12p40, we did not see infection- 

specific induction of the other T cell-associated cytokines analyzed at day 8 or day 14 

p.i.. This may be due to the kinetics of the immune response in the model and the 

time-points analyzed in this study.  

 

Importantly, we also demonstrated that termination of FTY720 treatment early after  

infection had little or no effect on pathogen clearance or immune profiles. This data 

highlights that within a clinical setting; even with early diagnosis of infection, patients  

might still be highly susceptible to disease for at least two weeks or longer after 

termination of drug treatment.   

 

To our knowledge, this is the first study investigating the effect of FTY720 treatment  

on a model of gastrointestinal infection. Previous studies using virus or antigen-

specific virus inducers have suggested a risk of FTY720 in impairing immune 

responses (23, 42). Apart from the two fatalities reported, clinical studies in MS 

patients have found no other major complications regarding risk of infections, except  

for a higher incidence of lower respiratory tract and lung infection in patients treated 
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with FTY720 compared to placebo-treated (8, 28). However, based on the current  

study, vigilance should be maintained for bacterial infections, especially in patients  

with other autoimmune or intestinal inflammatory conditions where FTY720 may be  

considered a future therapeutic treatment. Further studies examining the effects of 

FTY720 treatment on antigen-specific immune responses upon exposure to a range of 

viral and bacterial infections are therefore required.  
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FIGURE LEGENDS 

Figure 1. FTY720 induces peripheral blood lymphopenia by trapping T cells in 

MLNs. (A) Leukocytes were isolated from the blood of non-infected and C. 

rodentium-infected animals on day 8 (peak infection) and day 14 (clearance) p.i. and 

stained with flurochrome-labelled mAb. They were analysed by flow cytometry in 

which 10,000-20,000 events were recorded. Data represents the mean percentage of 

CD3+ (T cells), B220+ (B cells), CD11c+ (DCs), and Ly6G+ (neutrophils). Significance

determined by one-way ANOVA followed by Bonferroni’s multiple comparison test  

compared to vehicle controls ***P < 0.001; **P < 0.01; *P < 0.05; n= 4–7 individual 

mice. (B) FTY720 traps T cells and DCs within the MLNs. In situ visualization of  

leukocytes within the MLNs of non-infected and C. rodentium-infected vehicle- 

treated and FTY720-treated animals on day 14 p.i.. Tissue sections from 4 individual  

mice per group were analyzed by fluorescent microscopy. Frozen MLN sections  

(6µm) were fixed in acetone/ethanol and stained for CD11c (green), and co-stained  

with CD3 (red) and nuclei (blue). A representative picture for each group is shown.  

(Original magnification, x20). Scale bar is 200µm.  

  

Figure 2: FTY720 treatment impairs clearance of C. rodentium infection. Whole-

body bioluminescence imaging of vehicle-treated and FTY720-treated mice on (A) 

day 8 and (B) day 14 p.i. with C. rodentium. (C) Bioluminescent signal from the 

gastrointestinal region (in vivo whole-body imaging) and from (D) ex vivo organs; 

colon, caecum, MLN and spleen. Data is expressed as mean ± SEM for 7 individual 

animals per group. Significance determined by Mann Whitney U T test; ***P <  

0.001; **P < 0.01; *P < 0.05. Colonization and clearance of C. rodentium in vehicle-

treated and FTY720-treated mice as indicated by viable bacterial counts (colony  
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forming units/cfus) from (E) stool and (F) spleen. Samples were taken at different 

time-points for 14 days p.i. Data is expressed as the mean of 7–14 individual mice ±  

SEM. Significance was determined by the Kruskal-Wallis test followed by Dunn’s 

multiple comparison test; **P < 0.01; *P < 0.05. 

 

Figure 3. FTY720 treatment exacerbates colonic pathology during C. rodentium  

infection. (A) Differences in distal colon weight at day 8 and day 14 p.i. Data 

represents the mean of 4–7 individual mice ± SEM. Significance between groups was  

determined by one-way ANOVA followed by Bonferroni’s multiple comparison test;  

# P<0.05 non-infected versus vehicle day 8, # # # P<0.001 non-infected versus 

vehicle day 14, * P<0.05 vehicle versus FTY720. (B) Representative histology tissue 

sections of distal colons on day 14 p.i. showing epithelial shedding (1), crypt 

elongation and goblet cell depletion (2) and mucosal thickening (3). Images are 

representative of 3-4 individual animals per group. Original magnification x40. Scale 

bar is 100µm. (C) Mean inflammatory scores of vehicle- or FTY720-treated mice on 

day 14 p.i. as determined by histological analysis of distal colonic sections. #P<0.05 

non-infected versus vehicle infected, **P<0.01 vehicle versus FTY720 infected, n=3-

4 mice per group.  

  

Figure 4. FTY720 alters the composition of immune cell populations in the colon  

during infection. Tissue sections from 4 individual mice were analyzed on day 14 p.i.  

by fluorescent microscopy. (A) Serial frozen sections (6µm) were fixed in  

acetone/ethanol and stained for CD11c, F4/80 and CD19 (green), and co-stained with  

CD3, LY6G (red) and nuclei (blue). A representative picture for each group is shown. 

Original magnification, x40. Scale bar is 100µm. E indicates epithelium and S shows 
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submucosa. (B) Quantitation of cells/mm2 of tissue. Bars represent means ± SEM of 

the total number of positive cells per mm2. Values are based on 3-4 individual mice, 

measuring 7–10 fields at 40x magnification of distal colons. Significance between  

groups was determined by one-way ANOVA followed by Bonferroni’s multiple 

comparison test; #P <0.05; # #P<0.01; # # #P<0.001 non-infected versus vehicle 

infected. *P<0.05; **P<0.01; and ***P<0.001 vehicle infected versus FTY720 

infected.   

 

 Figure 5. FTY720 impairs the mucosal immune response to C. rodentium 

infection. Distal colon mRNA extracts were analyzed for innate immune gene 

expression (A) and adaptive immune gene expression (B) on day 8 and day 14 p.i..  

The 2-ΔΔCT method was used to calculate relative changes in gene expression 

compared with the non-infected (control) group. Expression was determined as fold  

induction compared with β-actin housekeeper. Bars represent mean of 4-6 individual 

mice ± SEM. Significance determined by Mann-Whitney U T test. # #P < 0.01; #P < 

0.05 non-infected control versus vehicle infected, ***P < 0.001; **P < 0.01; *P < 

0.05 vehicle infected versus FTY720 infected.  

  

Figure 6. Termination of FTY720 treatment post-infection had minimal effects 

on peripheral blood lymphopenia or pathogen colonisation. (A) Percentage of 

leukocyte populations in the blood. Mice were treated with FTY720 or vehicle for 6 

days prior to C. rodentium infection and 2 days p.i.. Leukocytes were isolated from  

the blood of vehicle-treated and FTY720-treated C. rodentium-infected animals on 

day 14 p.i. and stained with fluorochrome-labelled mAb. They were analyzed by flow  

cytometry in which 10,000-20,000 events were recorded. Data represents the mean 
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percentage of CD3 (T cells), CD11c (DCs), B220 (B cells), and Ly6G (neutrophils) 

positive cells at two time-points during C. rodentium-infection. Significance was 

determined using the Mann Whitney U T test to compare vehicle-treated (control)  

animals with FTY720-treated animals, ***P < 0.001; **P < 0.01;*P < 0.05; n=6-8  

individual mice. Effect of FTY720 on pathogen burden and clearance of C. rodentium  

infection. Representative bioluminescence images of (B) whole-body and (C) ex vivo 

colons (co) and caecums (cae) of vehicle-treated and FTY720-treated mice day 14 

p.i.. (D) Bioluminescent signal from colon. Data is expressed as mean ± SEM for 6-8  

individual mice per group. Significance determined by Mann Whitney U T test; ***P 

< 0.001; **P < 0.01; P < 0.05. (E) Colonization and clearance of C. rodentium in 

vehicle-treated and FTY720-treated mice as indicated by viable bacterial counts  

(colony forming units/cfus) from stool. Samples were taken at different time-points  

for 14 days p.i.. Data is expressed as the mean of 6-8 individual mice ± SEM.  

Significance was determined by the Kruskal-Wallis test followed by Dunn’s multiple 

comparison test; **P < 0.01; *P < 0.05. 

  















Table I. Antibodies used in this study 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Target molecule Host Clone 
 

Isotype
 

Conjugate Source 

CD3 Hamster 145-2C11 IgG1 APC BD Biosciences 

CD3 Hamster 145-2C11 IgG PE Biolegend 

CD11c Hamster HL3 IgG1 PE BD Biosciences 

Ly6G Rat 1A8 IgG2a PE BioLegend 

CD19 Rat 6D5 IgG2a None BioLegend 

B220 Rat RA3-6B2 IgG2a Alexafluor700 AbDSerotec 

F4/80 Rat CI:A3-1 IgG2b None Abcam 

F4/80 Rat BM8 IgG2b TRI-COLOR Caltag 

NK1.1 Mouse PK136 IgG2a PerCp-CY5.5l Biolegend 

Rat IgG Goat  IgG Alexafluor488 Invitrogen 

Rabbit IgG Goat  IgG Alexafluor488 Invitrogen 
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