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1.1 1,3-Dipolar cycloadditions 

 

1,3-Dipolar cycloadditions offer a very useful method for the preparation of five-

membered ring heterocycles.
1,2

 This [4s + 2s] cycloaddition, thermally allowed by the 

Woodward-Hoffmann rules,
3
 involves the reaction of a dipolarophile (e.g. alkenes, alkynes, 

carbonyls and nitriles) with a 1,3-dipolar compound (Scheme 1). The concept of 1,3-dipolar 

cycloadditions was initially suggested by Smith in 1938,
4
 but it was only after the generalisation 

of the reaction by Huisgen in the 1960’s that the reaction became widely applicable.
5
 The 

research conducted in the area of 1,3-dipolar cycloadditions has been immense over the past 40 

years,
6-45

 and the reaction is now utilised in almost every area of chemistry, from materials 

chemistry
46

 to drug discovery,
47

 indicating its diversity. 

 

 

Scheme 1 

 

1.1.1 The 1,3-Dipole 

 

The 1,3-dipole is a three-atom -electron system, with four -electrons delocalised over 

the three atoms. It can be represented by two octet-structures, in which the positive charge is 

located on the central atom and the negative charge is distributed over the two terminal atoms, 

and two sextet-structures, wherein two of the four -electrons are localised at the central atom 

(Scheme 2). The sextet formulas contribute little to the electron distribution of the resonance 

hybrid but illustrate the ambivalence of the 1,3-dipole, which is key to understanding the 

mechanism, reactivity and regiochemistry of 1,3-dipolar cycloadditions. 

 

 

 

 

 

 

Scheme 2 



1,3-Dipoles can be classified into two types; the allyl anion type (so-called because it is 

isoelectronic with the allyl anion) and the propargyl/allenyl anion type. The allyl anion type is 

characterised by four electrons in three parallel pZ orbitals perpendicular to the plane of the 

dipole. 1,3-Dipoles of the allyl type are bent, while the presence of a double bond orthogonal to 

the delocalized -system in the propargyl/allenyl anion type confers linearity to the dipole 

(Scheme 3). 

 

 

 

 

 

 

 

Scheme 3 

 

For the allyl type dipoles, the central atom b may be a group V element (e.g. N or P) or a 

group VI element (e.g. O or S). For the propargyl/allenyl types, the role of b is restricted to 

group V elements, as only an atom of this group can bear a positive charge in the quartervalent 

state. By restricting a and c to second-row elements (C, N, O), six dipoles of the 

propargyl/allenyl type can be formed and twelve of the allyl type (Table 1).
5
 The incorporation 

of higher-row elements such as sulfur and phosphorus into the 1,3-dipole is also possible, but 

such dipoles are much less widely used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1-Classification of 1,3-Dipoles Consisting of Carbon, Nitrogen and Oxygen Centres 

 

 

1.1.2 The Dipolarophile 

 

The 2 component of the 1,3-dipolar cycloaddition is commonly known as the 

dipolarophile. The dipolarophile can be almost any double or triple bond, containing 

functionality such as C≡C,
48

 C=C,
49

 C≡N,
50

 C=N,
51

 C=O,
5
 and C=S.

52
 The -bond may be 

isolated, conjugated
53

 or part of a cumulene
54

 system. The structural variety of dipolarophiles 

makes 1,3-dipolar cycloadditions very valuable and versatile reactions in heterocyclic synthesis. 

The presence of electron-withdrawing or electron-donating groups on the dipolarophile 

leads to enhanced reactivity with 1,3-dipoles (see Section 1.1.6), but a combination of both 

types of substituents in one molecule results in a dipolarophile of low reactivity. A second 

electron withdrawing substituent symmetrically added to the dipolarophile produces a 



multiplicative effect on the rate, and the introduction of conjugation into the dipolarophile has a 

similar effect.
55

 

 

1.1.3 Mechanism of 1,3-Dipolar Cycloaddition 

 

The mechanism of the 1,3-dipolar cycloaddition was subject to much debate during the 

1960’s. A synchronous, concerted mechanism was proposed by Huisgen, 
5,56,57

 whereas the 

stepwise, diradical pathway was favoured by Firestone (Scheme 4). 
58-60

 

 

 

 

 

 

Scheme 4 

 

The strongest evidence in support of Huisgen’s concerted mechanism is the strictly cis- 

nature of the additions, in that the geometrical relationships among the substituents on both the 

reactants are preserved in the product. Firestone, however, argued that in the intermediate 

diradical the energy barrier for rotation around the single bond is greater than the activation 

energy for ring closure, which would also explain the cis-stereospecificity. To aid in solving this 

debate, Houk and co-workers collaborated with Firestone in 1985
61

 and studied the specificity of 

the 1,3-dipolar cycloaddition of p-nitrobenzonitrile oxide to cis- and trans-dideuterioethylene 

(Scheme 5). Reaction of the benzonitrile oxide 1 with cis-dideuterioethylene 2 yielded the cis 

adduct 3 exclusively. As rotation about single bonds to deuterated primary radical centres in 

diradicals is very fast relative to cyclisation, formation of both cis- and trans-adducts would be 

expected if a diradical intermediate were involved. Consistent results were obtained for trans-

dideuterioethylene. 

 

      1        3 

Scheme 5 

 

At present, the most widely accepted view is of an asynchronous concerted process in 

which the formation of one of the new -bonds is more advanced than the other. The 

cycloadditions can be represented as going through a transition state in which the 4-electron 

component of the dipole interacts with the 2-electron component of the dipolarophile (Figure 

1). 



 

 

 

 

Figure 1 

 

1.1.4 Regioselectivity of 1,3-Dipolar Cycloaddition 

 

The regioselectivity of 1,3-dipolar cycloadditions can be rationalised by frontier orbital 

theory, since the transition state is controlled by the frontier orbital coefficients.
62

 Sustmann has 

classified 1,3-dipolar cycloadditions into three types, designated Types I-III, depending on the 

nature of the substituents on the dipole and dipolarophile.
55

 In Type I, the LUMO of the 

dipolarophile can interact with the HOMO of the dipole (common for electron-deficient 

dipolarophiles). In Type III, the HOMO of the dipolarophile can interact with the LUMO of the 

dipole (common for electron-rich dipolarophiles), and in Type II the frontier orbital energies of 

the dipole and dipolarophile are very similar and a combination of both modes of interaction can 

occur (Figure 2). 

 

Figure 2-Sustmann’s classification of 1,3-dipolar cycloadditions 

 

Once the dominant frontier molecular orbital interaction has been identified, the most 

favourable direction of combination is then that in which the two terminal atoms with the largest 

orbital coefficients interact. This is depicted in Figure 3 in which transition state A is more 

stable than transition state B. 

 

Figure 3 

 

The frontier orbital coefficients for a large number of dipolarophiles and dipoles have 

been calculated, and these can be used to explain the observed regioselectivities for a range of 



1,3-dipolar cycloadditions.
62,63

 The effects of the substituents on the shapes of the frontier 

orbitals of dipolarophiles has been derived by Houk, and are depicted in Figure 4.
63

 

 

 

Figure 4 

 

For example, in the addition of diazomethane to methyl methacrylate (a Type I 

interaction), the regioisomer 4 is predicted to form, which agrees with experimental data 

(Scheme 6).
64

 

 

 

 

                     4 

Scheme 6 

 

1.1.5 Stereoselectivity  

 

In addition to being regioselective, 1,3-dipolar cycloadditions are also highly 

stereoselective, with the stereochemistry of the original dipolarophile retained in the adduct. 

This is a consequence of the concerted mechanism of the reaction. Provided that the 

cycloaddition reaction is significantly faster than the isomerisation of the dipole by rotation, 

then the addition is also stereoselective with respect to the dipole. This is particularly important 

for azomethine ylides and carbonyl ylides, which are prone to isomerisation.
65

  

When two chiral centres are formed during the cycloaddition, one arising from the dipole 

and one arising from the dipolarophile, diastereomeric products (cis- and trans-) may be 

produced via endo and exo transition states (Figure 5). Secondary orbital interactions have been 

used to explain the stereoselectivity of a large number of 1,3-dipolar cycloadditions. The extent 

to which each diastereomer forms depends on attractive -orbital overlap of unsaturated 

substituents (favouring an endo transition state) and repulsive van der Waals steric interactions 

(favouring an exo transition state), with a mixture of diastereomers obtained in most instances. 

However, the endo/exo selectivity is more likely due to a combination of effects, including 

solvent effects, steric interactions, hydrogen bonds and electrostatic forces.
66

  



 

Figure 5 

 

This was clearly demonstrated by Joucla et al. in his study of the reaction of C-p-

methoxyphenyl-N-phenylnitrone 5 with methyl crotonate 6.
67-69

 A diastereomeric ratio of 70:30 

(7endo: 8exo) was observed, with the endo-isomer favoured due to the stabilising interaction of 

the nitrogen p orbital with the p orbital of the carbonyl carbon (Scheme 7). 
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Scheme 7 

 

Furthermore, if the dipole or dipolarophile bears a chiral auxiliary or if a chiral catalyst 

is used, then non-racemic cycloadducts can be produced (see Section 1.2).
6,70

  

 

1.1.6 Reactivity 

 

The reactivity of 1,3-dipoles towards various dipolarophiles varies immensely. As 

mentioned previously, the cycloaddition is dominated by the HOMO and the LUMO of the two 

reactants, and the smaller the energy difference between the HOMO and LUMO, the stronger 

the interaction. Electron-withdrawing substituents on either the dipole or dipolarophile lower the 

level of both the HOMO and LUMO, electron-donating groups raise the energy of both while 

conjugating groups raise the energy of the HOMO but lower the LUMO energy.
38

 The presence 

of substituents can thus lead to an acceleration or deceleration in the reaction rate depending on 

whether the FMO energy gap increases or decreases. 

Reactions will be favoured if one component is strongly electrophilic and the other is 

strongly nucleophilic. The reactivity of 1,3-dipoles towards electron rich and electron poor 



dipolarophiles differs greatly; for example, ozone is an electrophilic 1,3-dipole, diazoalkanes are 

nucleophilic whereas phenyl azide is not particularly nucleophilic or electrophilic, and the 

reactivity is influenced by the electronic nature of the dipolarophile. 

The presence of Lewis acids in the 1,3-dipolar cycloaddition can have a pronounced 

effect on the reactivity; Lewis acids can alter the orbital coefficients of the reacting atoms and 

the frontier orbitals of the two reactants and overall, the coordination of a Lewis acid leads to a 

decrease in the energy difference between the HOMO and LUMO and thus to an increase in the 

reactivity (Figure 6). 

 

Figure 6 

 

In 2003, Merino and co-workers examined the influence of Lewis acids on the 

cycloaddition between N-benzyl-C-(2-pyridyl)nitrone 9 and allylic alcohol 10.
71

 In the absence 

of catalyst, the reaction required heating at reflux for 7 days and the ratio of cis- and trans-

isoxazolidine products 11a and 11b was 70:30. In the presence of one equivalent of AgOTf, 

[Ag(OClO3)(PPh2Me)] or Zn(OTf)2, the reaction rate approximately doubled and greatly 

improved cis-diastereoselectivity was observed (Scheme 8). 

 

               

     9         10 

     

 

 

11a   11b 

Lewis acid time (days) 11a: 11b yield (%) 

None 7 70:30 90 

AgOTf 3.5 >95:5 100 

[Ag(OClO3)(PPh2Me)] 5 >95:5 92 

Zn(OTf)2 3 >95:5 100 



Scheme 8 

 

The endo and exo transition states shown in Scheme 9 were proposed, and the preference 

for cis-diastereoselectivity was believed to be due to the substitution of one of the ligands of the 

Lewis acid by the alcohol group in the exo transition state. Such substitution is not feasible in 

the endo transition state. 

 

9      11b 

 

 

 

 

 

 

 

              11a 

Scheme 9 

 

Like the mechanistically related Diels Alder cycloaddition, the choice of solvent has 

very little influence on the rate of the 1,3-dipolar cycloaddition. According to quantum 

mechanical calculations, concerted cycloadditions have early transition states, and this is the 

primary reason why such a small solvent effect is usually observed.
7
 

 

1.2 Asymmetric 1,3-Dipolar Cycloadditions 

 

As up to four stereocentres can be introduced in a stereoselective manner in a single step, 

much attention has been devoted in recent years to the use of asymmetric 1,3-dipolar 

cycloadditions for the preparation of enantiomerically pure five-membered ring 

heterocycles.
6,10,14-16,19

 Control of the diastereo- and enantioselectivity in the addition step is the 

major challenge in asymmetric 1,3-dipolar cycloadditions. It is possible to control the 

diastereoselectivity by choosing the appropriate substrates or using a metal complex acting as a 

catalyst, and the enantioselectivity can be controlled by either choosing a chiral 1,3-dipole, a 

chiral dipolarophile or a chiral catalyst. 

An early example of the use of chiral dipoles was described by Belzecki and Panfil in 

1977.
72,73

 The cycloaddition of chiral nitrones to monosubstituted and disubstituted alkenes led 

to four non-racemic isoxazolidines as two pairs of diastereomers arising from endo and exo 

addition to either the re or si face of the alkene, with preference for the formation of the cis-

diastereomers resulting from exo attack (Scheme 10). 



 

dipolarophile cis trans cis:trans 

PhCH=CH2 76:11 8:5 87:13 

CH2=CHCO2Me 40:24 29:7 64:36 

CH2=C(CH3)CO2Me 62:20 18:0 82:18 

Scheme 10 

 

One of the first examples of the employment of chiral catalysts in a 1,3-dipolar 

cycloaddition was reported by Grigg et al. in 1991.
74

 In the cycloaddition of azomethine ylides 

to methyl acrylate, the use of Mn(II) or Co(II) salts in combination with a chiral ligand led to the 

attainment of enantiomeric excesses of up to 96% (Scheme 11). The pre-transition state chelate 

depicted in Scheme 11 provides effective shielding of one face of the dipole. 

 

 

Scheme 11 

 



Most of the reported studies on the control of the stereoselectivity by use of chiral 

dipolarophiles concern the use of ,-unsaturated carbonyl compounds, and in particular 

acrylates.
75-82

 However, in cycloadditions with chiral acrylates, in addition to controlling the 

direction of attack of the 1,3-dipole, the rotameric preference of the acrylate must be controlled 

to achieve high levels of diastereoselectivity – the acrylate can exist in the s-cis or s-trans 

conformation as depicted in Figure 7. This is often controlled by the addition of Lewis acids,
82

 

but is not always feasible [for example in 1,3-dipolar cycloadditions with nitrile oxides (see 

Section 1.2.1.3)]. 

 

Figure 7 

 

The use of chiral tertiary acrylamides provides a solution to the rotamer problem 

encountered with esters, as the planar s-trans conformation is disfavored.
83

 However, rotation 

about the C-N bond is possible leading to two low-energy s-cis conformers (Figure 8). 

 

Figure 8 

 

The development of chiral tertiary acrylamides containing nitrogen heterocycles such as 

12 and 13 overcomes this problem.
83,84
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This review focuses on the asymmetric 1,3-dipolar cycloadditions of acrylamides, with 

particular emphasis on the rationale for the observed stereocontrol. The use of chiral 

acrylamides as dipolarophiles can lead to high levels of stereocontrol, due to conformational 

constraint in the acrylamides. Employment of chiral tertiary acrylamides containing nitrogen 

heterocycles is particularly effective at controlling the stereoselectivity of the process, as 

rotation around the C-N bond is disfavoured. The application of the cycloadducts derived from 

the 1,3-dipolar cycloadditions in natural product synthesis will also be highlighted. Several 

excellent reviews on asymmetric 1,3-dipolar cycloadditions have been published, however they 

have described cycloadditions with a range of dipolarophiles.
6,10,14-16

  

 



1.2.1 Cycloadditions with Nitrile Oxides 

 

Nitrile oxides are highly reactive 1,3-dipoles of the propargyl/allenyl type which 

undergo cycloadditions with a variety of dipolarophiles to form isoxazole or isoxazoline 

cycloadducts (Scheme 12). As nitrile oxides have both nucleophilic and electrophilic character, 

their reactivity towards dipolarophiles is increased by either electron-withdrawing or electron-

donating substituents on the dipolarophile. 

 

Scheme 12 

 

Nitrile oxides are extremely reactive, and readily undergo dimerisation to form the 

corresponding furoxan (Scheme 13). The rate of this dimerisation is exceptionally fast for lower 

aliphatic nitrile oxides, with acetonitrile oxide dimerising in less than one minute, whereas the 

half-life of most aromatic nitrile oxides at room temperature is several hours.
8,85

 

 

 

 

Scheme 13 

 

This dimerisation issue can be dealt with in two ways. The employment of sterically 

hindered nitrile oxides, such as 2,4,6-trimethylbenzonitrile oxide, blocks the dimerisation and 

nitrile oxides of this nature have unlimited stability.
86

 The in situ generation of the nitrile oxide 

in the presence of the dipolarophile also overcomes this problem, provided the cycloaddition 

competes kinetically with the dimerisation. The nitrile oxide is generated very slowly so that a 

low stationary concentration is maintained.
5
 

The 1,3-dipolar cycloaddition of nitrile oxides is a very versatile reaction for the 

construction of stereoselective compounds. The isoxazoline ring can be readily cleaved, 

allowing stereocontrolled access to a variety of acyclic compounds, including -hydroxyketones 

and -amino alcohols (Scheme 14). 

 

Scheme 14 

 

 



1.2.1.1 Synthesis of Nitrile Oxides 

 

The most widely applicable methods for the preparation of nitrile oxides are the 

dehydrohalogenation of hydroximic acid halides and the dehydration of primary 

nitroparaffins.
8,87

 

Hydroximic acid chlorides and bromides are most conveniently prepared from the 

corresponding aldoximes by reaction with halogens.
8
 Use of milder reagents such as N-

bromosuccinimide,
88

 N-chlorosuccinimide
89

 and nitrosyl chloride
90

 have also been reported for 

this transformation, and these are particularly useful for aldoximes containing halogen sensitive 

groups. The use of the conventional halogenation reactions can be avoided by reaction of 

conjugated nitroalkenes with titanium tetrachloride.
91

 Dehydrohalogenation is most commonly 

achieved by addition of one equivalent of a tertiary amine base (usually triethylamine) to a 

solution or suspension of the hydroximic acid halide in an inert organic solvent such as diethyl 

ether (Scheme 15). A range of aliphatic, aromatic and heterocyclic nitrile oxides have been 

prepared by this method.
8
 

 

Scheme 15 

 

The dehydration of primary nitro compounds with phenylisocyanate in the presence of a 

catalytic amount of a tertiary base such as triethylamine, was first reported by Mukaiyama and 

Hoshino in 1960 (Scheme 16).
87

 This method is particularly useful for the preparation of 

aliphatic nitrile oxides.
86

 

 

Scheme 16 

 

1.2.1.2 Regioselectivity 

 

The 1,3-dipolar cycloaddition of a nitrile oxide and a monosubstituted alkene can yield two 

regioisomeric isoxazolines, either the 4-substituted or 5-substituted cycloadduct (Scheme 17), 

with the regioselectivity dependant upon electronic and steric effects. 

 

 

Scheme 17 



The cycloadditions of nitrile oxides with electron-rich and conjugated alkenes are 

dipole-LUMO controlled, with the carbon atom of the nitrile oxide attacking the terminal carbon 

of the alkene, resulting in exclusive formation of the 5-substituted isoxazolines (Figure 9).
37

 

 

Figure 9 

 

For electron-deficient dipolarophiles, both the dipole-HOMO and -LUMO interactions 

are significant and a mixture of regioisomers results (Figure 10). The 4-substituted isoxazoline 

is favoured when strongly electron-withdrawing substituents (such as the sulfono group) are 

present on the dipolarophile. 

 

Figure 10 

 

For 1,1-disubstituted or trisubstituted alkenes, there is a preference for the more 

substituted carbon to be located at the 5-position of the isoxazoline due to dipole-LUMO control 

of the cycloaddition, although the presence of strong electron-withdrawing groups give the 4-

substituted product. Mixtures of regioisomers usually result from cycloaddition with 1,2-

disubstituted alkenes.
9,86

 

1.2.1.3 Asymmetric 1,3-Dipolar Cycloaddition of Nitrile Oxides 

 

The employment of chiral nitrile oxides in the asymmetric 1,3-dipolar cycloaddition has 

not been widely reported; poor diastereoselectivity is achieved in most instances.
92,93

 The 

linearity of the dipole and the distance between inducing and created stereocentres have been 

suggested as possible reasons for the low diastereoselectivity observed.
93

 Asymmetric catalysis 

in the 1,3-dipolar cycloadditions of nitrile oxides by Lewis acids is also not commonly 

employed. The difficulties in controlling the stereoselectivity with metal complexes arise 

because the presence of base (such as triethylamine) used for the in situ generation of nitrile 

oxides may interfere with the metal catalyst. Also, nitrile oxides are strong Lewis bases (due to 

the high donor ability of the oxygen atom of the dipole) and their ready complexation with 



Lewis acids leads to deactivation of the dipole.
94

 As a result, in the asymmetric 1,3-dipolar 

cycloadditions of nitrile oxides, cycloaddition of achiral nitrile oxides to optically active 

dipolarophiles has attracted most interest. The chiral dipolarophiles include alkenes in which the 

centre of chirality is vicinal to the double bond - such as allylic alcohols
95

 and chiral vinyl 

sulfoxides
96

- and alkenes in which the centre of chirality is two or more bonds away from the 

double bond. The latter include acrylates
97

 and acrylamides.
83,84

 

The employment of acrylamides, and in particular tertiary acrylamides with chiral 

auxiliaries incorporated, is a particularly attractive route (see Section 1.2), and the synthesis of 

isoxazolines with high optical purities has been achieved using this approach. The 

cycloadditions are dipole-LUMO controlled due to the conjugated functionality of the 

acrylamide (see Section 1.2.1.2) and thus highly regioselective cycloadducts are obtained. 

However, highly diastereoselective cycloadditions of nitrile oxides are extremely challenging; 

as the oxygen atom of the nitrile oxide attacks the substituted carbon of the alkene, the 

interaction between the incoming nitrile oxide and auxiliary is limited. The two atoms nearest 

the auxiliary (O and N) bear no substituents while the remote C bears a lone substituent that 

points away from the auxiliary (Figure 11). 

 

Figure 11 

 

1.2.1.4 Asymmetric 1,3-Dipolar Cycloadditions of Nitrile Oxides and Acrylamides 

 

The use of chiral acrylamide derivatives in cycloadditions with nitrile oxides was first 

explored by Curran in 1988.
83

 Curran had earlier studied the cycloaddition of a range of chiral 

acrylates with nitrile oxides, with modest degrees of asymmetric induction (up to 56% de) 

achieved.
75

 Using Oppolzer’s chiral sultam derivative 12, diastereoselectivities of up to 95:5 

were obtained (Scheme 18). The preferred conformation of the acrylamide is s-cis in which the 

carbonyl group points away from the sultam oxygen. The major diastereomer then results from 

the preferential attack of the incoming dipole from the top-side of the dipolarophile. Curran 

hypothesised that this was due to the pseudoaxial S-O bond (which projects directly down from 

the plane of the acrylamide) sterically and electronically hindering attack of the dipole from the 

bottom-side of the dipolarophile. 
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R Major:Minor 

t-Bu 95:5 

Ph 95:5 

Me 90:10 

Et 90:10 

 
88:12* 

  *This reaction was conducted in benzene; all others were 

     conducted in hexane. 
Scheme 18 

 

The usefulness of this asymmetric nitrile oxide cycloaddition was illustrated by Curran 

in his total syntheses of (+)-hepialone 14,
98

 (–)-(1R,3R,5S)-1,3-dimethyl-2,9-

dioxabicyclo[3.3.1]nonane 15 and (–)-(1S)-7,7-dimethyl-6,8-dioxabicyclo[3.2.1]octane 16.
99

 

These syntheses demonstrate that enantiomerically pure isoxazolines can be transformed to a 

variety of functional groups including ,-dihydroxy ketones, alcohols, 1,2 and 1,3-diols, 1,3,4-

triols, 1,3-amino alcohols and 1,3,4-amino diols. The synthesis of (–)-pestalotin 17 from nitrile 

oxide cycloaddition with 12 was communicated in a later paper by Curran.
100
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In 1989, Curran reported new bis-lactam chiral auxiliaries 18 and 19 based on Kemp’s 

triacid,
101-103

 with outstanding selectivities (99:1) achieved in the cycloadditions with nitrile 

oxides (Scheme 19).
104,105

 The excellent face-shielding capabilities of 18 and 19 sterically shield 

attack of the dipole from the bottom-face of the alkene. 
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19 

Scheme 19 

 

The diastereomeric acrylamides 18 and 19 were subjected to nitrile oxide cycloaddition 

with ethanenitrile oxide, 2,2-dimethylpropionitrile oxide and benzonitrile oxide and in each 

cycloaddition, the degree of asymmetric induction was sufficiently high that the quantity of the 

minor diastereomer was difficult to determine by spectroscopic methods.
104,105

 

Oppolzer et al. have studied the addition of nitrile oxides to chiral N-acryloyl toluene-

2,-sultams.
106

 The initial dipolarophile studied was the acryloyl derivative 20. The degree of 

asymmetric induction was only moderate, with the isoxazoline cycloadducts isolated in a 79:21 

diastereomeric ratio (Scheme 20). The major isomer resulted from preferential attack of the 

dipole to the top-face of the dipolarophile due to the electrostatic repulsion force between the 

dipole and the pseudoaxial S-O bond (similar to 12). 

 

  

   

 

20 

 

Scheme 20 

 

Replacement of the methyl group with a tertiary butyl group led to a dipolarophile which 

underwent highly selective nitrile oxide cycloadditions (Scheme 21). The resulting isoxazoline 

cycloadducts were easily cleaved with L-Selectride
®

. 

 

 

 

 

 

 



 

 

 

    21        22       23  

N-acryloyl sultam R ratio 22: 23 

(R)-21 t-Bu 98:2 

(R)-21 Ph 95:5 

(R)-21 Et 95:5 

(R)-21 Me 96:4 

(S)-21 t-Bu 2:98 

(S)-21 Ph 3:97 

(S)-21 CH2Ot-Bu 4:96 

Scheme 21 

 

Kanemasa and co-workers have studied the reaction of Evans’s chiral 2-oxazolidinone
107

 

24 (eq. 1, Scheme 22) and the acrylamide derived from Katsuki’s C2-symmetric pyrrolidine
108

 

25 (eq. 2, Scheme 22) with benzonitrile oxide. Moderate diastereoselectivity was achieved as 

the substituents on the auxiliaries are too far removed from the incoming dipole to cause 

significant face shielding.
109
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      25 

Scheme 22 

 

As the asymmetric induction of 24 and 25 in the cycloadditions with nitrile oxides was 

not exceptional, Kanemasa et al. designed a series of oxazolidine and imidazolidine derived 

dipolarophiles based on conformationally controlled N-acryloyl derivatives of chiral 

heterocycles such as C2-symmetric imidazolidine (X = NR, one of R4 = R5) and 4-chiral 

oxazolidines (X = O).
94,109,110

 Considering the two conformations depicted in Figure 12, the syn-

E conformer is much more stabilised than the anti-E conformer, in which there is steric 

congestion between the -carbon of the vinyl substituent and the two alkyl substituents at the 2-

position. The least hindered approach of the dipole will then occur from the side opposite to R5 

and such dipolarophiles were predicted to function as efficient chiral auxiliaries. 



 

Figure 12 

 

The optically pure imidazolidine bisacrylamide 26 was reacted with benzonitrile oxide at 

–78 °C to yield an 83:17 diastereomeric mixture of cycloadducts (Scheme 23). The major 

isomer was formed by benzonitrile attack of the alkene from the side opposite to the nearest 

phenyl substituent. Since the major diastereomer is symmetrical and the minor one is 

unsymmetrical, the total diastereoselectivity in this reaction was 91:9. Cleavage of the auxiliary 

was then accomplished by L-Selectride
®
 reduction.

109
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Scheme 23 

 

A range of 2,2-dialkyloxazolidines were also reacted with benzonitrile oxide, with 

effectively complete diastereoselectivities achieved when the oxazolidines outlined in Scheme 

24 were employed. At the time of publication in 1992, these 2,2-dialkyloxazolidines were used 

as racemates and their optical resolution has not been subsequently reported.
110

 

 

Scheme 24 

 

Kim et al. have studied the nitrile oxide cycloaddition of chiral acrylamides derived from 

L-proline.
84

 Employment of the auxiliary 27 led to disappointing diastereoselectivity (64:36) 



(Scheme 25), presumably due to insufficient face shielding of the alkene by the auxiliary and 

poor conformational control. 

 

 

 

   27 

Scheme 25 

 

Employment of acrylamides such as 13 with improved face-shielding substituents gave 

diastereoselectivities of up to 95:5 (Scheme 26). The major cycloadduct results from bottom-

side (or re-face) attack of the incoming nitrile oxide, and was converted to isoxazoline 28 by 

reductive cleavage with L-Selectride
®
.
84
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             28 

Scheme 26 

 

In 2005, Lassaletta and co-workers reported the use of 2,5-trans-diphenylpyrrolidine as a 

suitable auxiliary in cycloadditions of acrylamides with nitrile oxides.
111

 The cycloaddition of a 

number of diphenylpyrrolidine derivatives with a variety of nitrile oxides yielded cycloadducts 

with effectively complete regio- and diastereoselectivity (Scheme 27). Hydrolysis of the 

cycloadduct was then achieved by reaction with hydrochloric acid and acetic acid to yield the 

corresponding 4,5-dihydroisoxazole-5-carboxylic acids. 

 

Scheme 27 

 

The regioselectivity of the cycloaddition is believed to be due to the repulsive steric 

interactions between the R
3
 group and the bulky 2,5-diphenylpyrrolidine substituent in the 

opposite regioisomer. The diastereoselectivity results from the shielding of the Si face of the 

alkene by the neighbouring phenyl group (Figure 13).
111

 



 

Figure 13 

 

Lassaletta extended the scope of this methodology by investigating the cycloaddition of 

a range of nitrile oxides with the methylacrylamide 29. Limited success was achieved; it was 

found that the cycloaddition is substrate-dependant, with complete regio- and stereoselectivity 

for aliphatic nitrile oxides, whereas complete loss of diastereoselectivity is observed for 

aromatic nitrile oxides. The high asymmetric induction in the cycloadditions of aliphatic nitrile 

oxides is believed to be due to the diastereofacial discrimination similar to that depicted in 

Figure 13.
111

 

 

29 

 

Though the activation of dipolarophiles by Lewis acids is very difficult in the presence 

of nitrile oxides, some catalytic approaches have been reported. The first successful Lewis acid 

mediated nitrile oxide cycloaddition employing acrylamide as dipolarophile was communicated 

by Yamamoto et al. in 2000.
112

 The reaction of (S)-3-acryloyl-4-benzyl-5,5-dimethyl-2-

oxazolidinone 30 with benzonitrile oxide was studied at 0 °C in a range of solvents in the 

absence and presence of Lewis acids. In dichloromethane, a 43:57 (31:32) mixture of 

diastereomeric cycloadducts was obtained without Lewis acid present (presumably due to 

insufficient conformational control), whereas a 96:4 (31:32) diastereomeric ratio was achieved 

when magnesium bromide was added (Scheme 28). The concentration was found to have a large 

effect on the outcome of the reaction, with much improved diastereoselectivities attained when 

the cycloaddition was performed at higher concentration. 

 

 

 

 

 

 

 

 



 

30    31   32 

additive (equiv.) concentration (M) 31: 32 

None 0.17 43:57 

ZnI2 (1.2) 0.17 45:55 

MgBr2 (1.0) 0.083 71:29 

MgBr2 (0.5) 0.083 48:52 

Cu(OTf)2 (1.0) 0.083 51:49 

Ni(ClO)4 (1.0) 0.083 43:57 

Fe(ClO4)2 (1.0) 0.083 45:55 

Ti(i-OPr)4 (1.0) 0.083 30:70 

MgBr2 (1.0) 0.25 96:4 

Scheme 28 

 

A dipolarophile-MgBr2 complex is proposed, and the deactivation of the Lewis acid by 

coordination of the nitrile oxide is not believed to be important here. The acrylamide is thus held 

in the s-cis conformation as illustrated in Figure 14, and the benzyl group then shields the upper 

face from dipole attack. It is unclear why magnesium bromide is specifically favoured and why 

the concentration has such a large effect on the selectivity. 

 

 

Figure 14 

 

Sibi and co-workers have reported the Lewis acid catalysed enantioselective nitrile oxide 

cycloaddition with ,-disubstituted acrylamides.
113,114

 The best results were obtained by 

reacting the acrylamide 33 with 2,4,6-trimethylbenzonitrile oxide in the presence of Mg(ClO4)2 

and the chiral bisoxazoline ligand 34 (Scheme 29). 

 

 

 

 33 

             34 

Scheme 29 

 



Sibi proposed the transition state depicted in Figure 15 to explain the absolute 

stereochemistry observed, with the ligand shielding the bottom face of the alkene from dipole 

attack.
113

 

 

Figure 15 

 

In 2007, Yamamoto et al. communicated the asymmetric 1,3-dipolar cycloaddition of 

benzonitrile oxide mediated by a chiral Lewis acid.
115

 The cycloaddition of a number of 

acrylamide dipolarophiles bearing an oxazolidinone or imidazolidinone auxiliary with 

benzonitrile oxide in the presence of a pybox ligand and Mg
2+

 or Yb
3+

 salts were studied. 

Enantiomeric excesses of up to 87% were achieved when the acrylamide bearing the N-

isopropylimidazolidinone moiety 35 was employed in the presence of the chiral Lewis acid 

derived from magnesium bromide and ip-pybox (Scheme 30). 

 

  

            35 

 

 

Scheme 30 

 

The geometry of the Mg(II)/ip-pybox complex was optimised by density functional 

theory calculations. The si face of the dipolarophile is less crowded than the re face due to the 

position of the isopropyl groups in the ip-pybox, and nitrile oxide attack from the si face is thus 

favoured (Figure 16). 

 

Figure 16-reproduced from reference 
115

 



 

The antibody-catalysed asymmetric 1,3-dipolar cycloaddition of nitrile oxides to simpler 

tertiary and secondary amides was reported by Wentworth and co-workers in 2000.
116

 The 1,3-

dipolar cycloaddition between N,N-dimethylacrylamide 36 and 4-acetamidobenzonitrile N-oxide 

37 was catalysed by the murine monoclonal antibody 29G12 (which was elicited to hapten 38) 

to generate the 5-acylisoxazoline 39 with excellent enantiomeric excess (98% ee) (Scheme 31). 

Hapten 38 was designed upon the entropic trap theory; the translational entropy of the 

reaction is reduced by bringing the two substrates into the correct orientation for reaction within 

the antibody binding site. The planar aromatic core of 38 mimics the aromatic character of the 

transition state (Scheme 31).
116

 

 

 

    36      37      

 

         

 

 

         38           39 

Scheme 31 

 

The scope of the 29G12 antibody catalysed cycloaddition was communicated in 2005 by 

Wentworth et al.
117

 Replacement of the p-acetamido group of the nitrile oxide with either a nitro 

group or hydrogen led to a loss of the catalytic activity, highlighting the specificity of the dipole 

substrate. However, a range of acrylamide derivatives can be tolerated, with enantiomeric 

excesses ranging from 71–98% ee (Table 2). 

 

Table 2-Enantioselectivity of 29G12 in reactions of 4-acetamidobenzonitrile N-oxide 36 with 

various acrylamides 

dipolarophile % ee 

N,N-dimethylacrylamide 98 

N-tert-butylacrylamide 94 

N-isopropylacrylamide 85 

N-sec-butylacrylamide 97 

N-phenylacrylamide 71 

 

 While excellent diastereomeric ratios were achieved with the chiral auxiliaries 18 and 19 

based on Kemp’s triacid (dr 99:1, Scheme 19) and the chiral auxiliaries derived from 2,5-trans-

diphenylpyrrolidine (>99% de, Scheme 27), Oppolzer’s chiral sultam derivative 12 is the most 

expedient dipolarophile; good to excellent diastereomeric ratios were achieved (up to 94:6) with 



a wide range of nitrile oxides. In addition, the synthetic utility of 12 was demonstrated by its 

employment in the synthesis of a number of natural products. 

 

1.2.2 Cycloadditions with Nitrones 

 

Nitrones are an important class of 1,3-dipole which undergo cycloadditions with alkenes 

and alkynes to yield isoxazolidines and isoxazolines respectively (Scheme 32). The presence of 

electron-withdrawing or electron-donating substituents on the dipolarophile or dipole leads to 

significant rate enhancement in the nitrone cycloaddition. 

 

Scheme 32 

 

In general, nitrones are rather stable compounds and thus do not require in situ 

generation, and are easy to handle in air at ambient temperature. Rearrangements can occur, 

however, under prolonged exposure to light. 

The isoxazolidines formed from the reaction of alkenes with nitrones have proven to be 

very useful building blocks.
7,9,118

 Cleavage of the isoxazoline system allows access to a variety 

of attractive compounds such as -amino alcohols, with the configuration at the chiral centres 

retained upon reduction (Scheme 33). 

 

Scheme 33 

 

1.2.2.1 Synthesis of Nitrones 

 

The two most commonly used methods for nitrone generation are oxidation of a 

disubstituted hydroxylamine with yellow mercuric oxide (eq. 1, Scheme 34), and reaction of an 

aldehyde or ketone with a monosubstituted hydroxylamine (eq. 2, Scheme 34).
118

 



 

Scheme 34 

 

A major disadvantage of the first method is the lack of regiochemical control for 

unsymmetrical hydroxylamines; for example, the oxidation of 1-hydroxy-2-pentylpiperidine 

leads to the formation of a regioisomeric mixture of nitrones (Scheme 35).
119

 The generation of 

nitrones from an aldehyde or ketone avoids this difficulty, and a single nitrone is obtained 

regiospecifically. 

 

Scheme 35 

 

1.2.2.2 Regioselectivity 

 

The cycloaddition of nitrones and monosubstituted alkenes can lead to two regioisomeric 

cycloadducts (Scheme 36). 

 

Scheme 36 

 

Nitrone cycloadditions are Type II processes by Sustmann’s classification (see Section 

1.1.4). For monosubstituted alkenes, cycloadditions with electron-rich alkenes are dipole-

LUMO controlled. For the nitrone LUMO, the larger atomic orbital coefficient is at carbon and 

the larger coefficient of the alkene is at the unsubstituted carbon, leading to a transition state in 

which the carbon of the nitrone becomes bonded to the unsubstituted carbon of the alkene to 

yield the 5-substituted isoxazolidine (Figure 17).
9,118

 

 



 

Figure 17 

 

For nitrone cycloadditions with moderately electron-withdrawing groups such as methyl 

acrylate, the dominant interaction is HOMO (dipole)-LUMO (dipolarophile) and 4-substituted 

isoxazolidines should result. In practice, regioisomeric mixtures are obtained. Although the 

reactivity is dipole-HOMO controlled, the regiochemistry is dipole-LUMO controlled. This has 

been attributed to the much smaller difference in the terminal coefficients in the nitrone HOMO 

level compared to the nitrone LUMO (Figure 18).
9,118,120

 

 

Figure 18 

 

With very electron-deficient dipolarophiles such as nitroethene, dipole-HOMO control 

does predominate, and the 4-substituted isoxazolidine is obtained exclusively.
120

 

The majority of 1,1-disubstituted alkenes undergo cycloaddition with nitrones to yield 

the 5,5-disubstituted isoxazolidine due to dipole-LUMO control, although the presence of strong 

electron-withdrawing groups give the 4,4-disubstituted product.
9,118

 Mixtures of regioisomers 

usually result from cycloaddition with 1,2-disubstituted alkenes.
9,118

  

1.2.2.3 Stereochemistry 

 

Nitrone cycloadditions are stereospecific as regards the alkene, with the stereochemistry 

of the original alkene preserved in the resulting isoxazolidine. However, with acyclic nitrones it 

is not always possible to predict the stereochemical outcome as both endo and exo transition 

states are possible, the former arising from favourable secondary orbital interactions (see 

Section 1.1.5). There is also the possibility of the nitrone undergoing E/Z isomerisation under 

the conditions of the reaction before cycloaddition takes place. For example, the cycloaddition 

of N-methyl-C-phenylnitrone with acrylonitrile gives the trans 5-substituted isomer as the major 



product, whereas in the reaction with nitroethene the cis 4-substituted isomer predominates 

(Scheme 37).
121

 

 

Scheme 37 

 

Employment of cyclic nitrones leads to much higher stereoselectivities as the E/Z 

isomerisation is not possible. Also, the exo transition state is usually sterically favoured with 

cyclic nitrones, although when steric factors in the endo and exo transition states are similar, the 

existence of secondary orbital interactions can favour endo transition states.
122

 In the 

cycloaddition of 1-pyrroline N-oxide 40 with 4-phenyl-1-butene 41, the isoxazolidine 42,which 

arises from the exo transition state, is obtained exclusively (Scheme 38).
122
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Scheme 38 

 

1.2.2.4 Asymmetric 1,3-Dipolar Cycloadditions of Nitrones 

 

The preparation of non-racemic isoxazolidines has attracted much attention in the past 

30 years.
6,10,20

 Chiral acyclic nitrones in which the chiral substituent is located at the nitrogen 

atom or the carbon atom are commonly employed.
123

 Chiral cyclic nitrones have also been used 

for asymmetric induction in 1,3-dipolar cycloadditions.
124,125

 The use of optically active alkenes 

in asymmetric nitrone cycloadditions has also been extensively studied. Alkenes in which the 

chiral centre is vicinal to the double bond such as chiral allylic ethers,
126-129

 chiral allylic 

amines
130,131

 and chiral vinyl sulfoxides
132,133

 are most frequently used, and chiral ,-

unsaturated carbonyl compounds such as acrylates
77,134

 and acrylamides
135,136

 have also been 

successfully employed. 

As most nitrones are stable compounds that do not require in situ preparation, a 

considerable amount of research has been conducted on the use of metal catalysts in the 



cycloadditions of nitrones.
6,16,20

 Transition state energy calculations conducted by Gothelf et al. 

revealed that the coordination of a Lewis acid to a nitrone results in an increase in the transition 

state energy of the 1,3-dipolar cycloaddition to the alkene compared with the cycloaddition in 

the absence of a Lewis acid.
137

 Hence, the application of metal catalysts in nitrone 

cycloadditions has focussed primarily on the activation of the dipolarophile, although the Lewis 

acid activation of nitrones containing ,-unsaturated substitutents has been reported.
138

 One of 

the major problems encountered in the Lewis acid activation of dipolarophiles such as ,-

unsaturated carbonyl systems, is competitive coordination of the nitrone and the ,-unsaturated 

carbonyl compound to the Lewis acid. For example, when Tejero was studying the 

cycloaddition of thiazolyl nitrone 43 with Oppolzer’s chiral sultam derivative 12 (Section 

1.2.2.5.1), the presence of various Lewis acids was found to inhibit the reaction completely, and 

this was believed to be due to the preferential coordination of the metal to the nitrone leading to 

an inactive complex.
136

 This problem can be overcome by using an alkene which is capable of 

bidentate coordination to the Lewis acid [for example acrylamides 24 (Scheme 22) and 44 

(Scheme 48)]. Complexes of Ti(IV), Mg(II), Yb(II), Zn(II), Cu(II), Mn(II), Ni(II) and Pd(II) 

have now all been reported in the Lewis acid catalysis of nitrone cycloadditions,
6,139

 and 

substantial increases in rate and levels of regio- and diastereoselectivity have been achieved. 

Furthermore, if a ligand-metal complex is present, non-racemic isoxazolidine cycloadducts can 

be produced.
139

 

The asymmetric 1,3-dipolar cycloadditions of nitrones and acrylamides in the absence of 

Lewis acid metal catalysts will be discussed first. Metal catalysed reactions of nitrones and 

acrylamides will then be reviewed, with this section organised according to the nature of the 

metal catalyst. 

 

1.2.2.5 Asymmetric 1,3-Dipolar Cycloadditions of Nitrones and Acrylamides 

 

1.2.2.5.1 Non-Metal Catalysed Cycloadditions 

 

There have been several reports of the use of chiral acrylamides to control the regio- and 

stereoselectivity in nitrone cycloadditions. In 1996, Koskinen et al. reported the asymmetric 1,3-

dipolar cycloaddition of the Oppolzer chiral sultam derivative 12 with nitrone 45 as the key step 

in their asymmetric synthesis of N-protected (4S)-4-hydroxy L-glutamic acid diester 46.
135

 The 

cycloaddition of 12 with nitrone 45 led to the formation of the isoxazolidine cycloadducts in a 

distereomeric ratio of 96:4. These were separable by column chromatography and the sultam of  

the major cycloadduct 47 was subsequently transformed to the enantiopure diester 46 via a 

number of synthetic transformations (Scheme 39).
135
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Scheme 39 

 

The major trans diastereomer 47 results from the cycloaddition of the E-isomer of 45 via 

an exo transition state and the cycloaddition of the Z isomer of 45 via an endo transition state 

(Figure 19). Coulombic repulsion between the dipolar oxygen and the sultam oxygen accounts 

for the diastereofacial selectivity.
83,135
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Figure 19 

 

In 1997, Tejero et al. began a series of investigations into the cycloaddition of N-benzyl-

C-arylnitrones to Oppolzer’s chiral sultam derivative 12.
136 

The syntheses of enantiopure -

amino-2-alkylthiazoles and 5-formylpyrrolidin-2-ones were studied initially, and it was found 

that the thiazolyl nitrone 43 underwent cycloaddition with 12 in a completely regio- and 

stereoselective manner to yield exclusively the trans-isoxazolidines in a diastereomeric ratio of 

78:22. These were separable by chromatography and the major isomer 48 was subsequently 

converted to 49, which proved to be a very useful intermediate in synthesising functionalised 

chiral pyrrolidines (Scheme 40).
136
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Scheme 40 

 

The proposed most favoured approach is Z-endo attack of the nitrone on the top face of 

the dipolarophile (Figure 20). 

 

Figure 20 

 

In 2000, Tejero and co-workers extended this synthetic strategy by using furfuryl 

nitrones such as 50 to construct the pyrrolidine ring.
78

 In contrast to the cycloaddition with 

thiazolyl nitrones where cycloaddition to both faces of the alkene occurred, the addition of the 

furfuryl nitrone 50 led to complete stereofacial control to yield the cis- and trans-isomers in a 

diastereomeric ratio of 85:15. Subsequent transformation of the isoxazolidine cycloadducts to 

the corresponding pyrrolidin-2-ones 51 and 52 was achieved by reduction with zinc and acetic 

acid. The pyrrolidin-2-ones were easily separated by column chromatography and the 

preparation of protected derivatives of 4-hydroxy pyroglutamic acids demonstrated the synthetic 

utility of the isoxazolidines (Scheme 41). 
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Scheme 41 

 

The four possible modes of addition of the nitrone 50 are depicted in Figure 21. 

Transition states A and B arising from si face attack are disfavoured due to coulombic repulsion 

between the dipolar oxygen and the sultam oxygen. Of the two transition states resulting from re 

face attack, endo approach leading to transition state D and ultimately the trans-diastereomer is 

predominant, presumably due to secondary orbital interactions between the nitrogen of the 

nitrone and the carbonyl group of the dipolarophile. 



 

Figure 21-reproduced from reference 
78

 

 

The operation of double asymmetric induction was described by Tejero et al. in 2002 in 

their five-step asymmetric synthesis of protected 4-hydroxy-D-pyroglutamic acid using D-ribose 

and Oppolzer’s chiral sultam derivative 12.
140

 The optically active nitrone 53 was reacted with 

12 in a sealed tube for 18 hours to yield a 20:1 diastereomeric ratio of isoxazolidine 

cycloadducts 54 and 55.
141

 These were then converted to the 4-hydroxy-D-pyroglutamic acid 

derivatives 56 and 57 in a one pot procedure (Scheme 42). In a subsequent report by the same 

group, the scope of this cycloaddition was extended by studying the reaction of 12 with a range 

of D-glyceraldehyde nitrones.
142
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Scheme 42 

 

The major trans-diastereomer 54 results from attack of the E-isomer of 53 via an exo 

transition state and attack of the Z-isomer of 53 via an endo transition state on the re face of the 

dipolarophile 12 (Figure 22). It is suggested that the Z-endo transition state is the preferred path 

due to secondary orbital interactions in the endo transition state.
140
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Figure 22 

 

Inspired by the results achieved by Tejero et al.,
136

 Tamura and co-workers examined the 

cycloaddition of C-(3-pyridyl)nitrones and Oppolzer’s chiral sultam derivative (2S)-12 as a 

route to (+)-(3R,5R)-3-hydroxycotinine 58, which is one of the main metabolites of nicotine 

(Scheme 43).
143

 

 

 

 

 



 

         (2S)-12        

 

 

`  60          59            58  

 

 

 

Scheme 43 

 

Treatment of the L-gulose derived nitrone 60 with (2S)-12 yielded the trans-

isoxazolidine 59 as the major product by double asymmetric induction (Scheme 43). When the 

nitrone 60 was reacted with the opposite enantiomer of Oppolzer’s chiral sultam derivative 

(2R)-12 a complex mixture of cycloadducts resulted, indicating that this combination of reagents 

is a mismatched pair. The Oppolzer’s chiral sultam derivative (2R)-12 reacts mainly from the Re 

face, whereas both 60 and (2S)-12 react from the Si face, and hence high endo stereoselectivity 

results when 60 and (2S)-12 are combined (Figure 23).
143

 

 

Figure 23 

 

In 2007, Argyropoulos reported the cycloaddition of a pair of chiral pyrroline-N-oxides 

derived from D-ribose with Evans’s chiral 2-oxazolidinone 24.
144

 The cycloadditions proceeded 

with complete regioselectivity to yield a 2:1 mixture of diastereomers (the cycloaddition of one 

of the enantiomeric nitrones is depicted in Scheme 44). 
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Scheme 44 

 

The preferred stereochemical outcome arises from the exo approach of the dipolarophile 

24 to the anti face of the nitrone (Figure 24). 



 

Figure 24 

 

 Similar to the 1,3-dipolar cycloadditions with nitrile oxides, the acrylamide 12 derived 

from Oppolzer’s chiral sultam was again the most advantageous dipolarophile in non-metal 

catalysed cycloadditions with nitrones, in terms of synthetic utility and diastereoselectivity 

achieved (up to 96:4 dr). 

 

1.2.2.5.2 Metal Catalysed Cycloadditions 

 

The majority of studies on the metal-catalysed cycloadditions of nitrones and 

acrylamides have focussed on the reaction of Evan’s 2-oxazolidinone with acyclic nitrones. 

Each reaction outlined in Table 3 will be discussed in the relevant metal catalyst section. 

 

Table 3- Metal-catalysed cycloadditions of acyclic nitrones and 2-oxazolidinones 

 

entry R
§
 R

1
 Catalyst* endo:exo %ee of major 

1
137

 Me Ph TiCl2-TADDOLate 61 9:91 60 

2
145

 Me Ph Ti(OTos)2-TADDOLate 62 95:5 93 

3
145

 Pr Ph Ti(OTos)2-TADDOLate 62 95:5 93 

4
146

 Me Ph 
Dendrimer-bound Ti-

TADDOLate 
14:86 44 

5
146

 Me Ph 
Polymer-bound Ti-

TADDOLate 
10:90 56 

6
147

 Me Ph Mg(II)-phenanthroline 63 95:5 - 

7
147

 Me Bn Mg(II)-phenanthroline 63 95:5 - 

8
147

 Pr Ph Mg(II)-phenanthroline 63 95:5 - 

9
147

 Pr Bn Mg(II)-phenanthroline 63 95:5 - 



10
147

 Pr Ph Mg(II)-bisoxazoline 64 95:5 82 

11
147

 Me Ph Mg(II)-bisoxazoline 64 92:8 79 

12
147

 Me Bn Mg(II)-bisoxazoline 64 89:11 0 

13
148,149

 Me Ph xabox-Bn-Mg(II) 65 99:1 92 

14
148,149

 H Ph xabox-Bn-Mg(II) 65 96:4 96 

15
148,149

 Me Ph xabox-Bn-Mn(II) 66 96:4 95 

16
148,149

 H Ph xabox-Bn-Mn(II) 66 77:23 94 

17
150

 H Ph Zn(II)-bisoxazoline 67 27:73 84 

18
151

 Me Ph Cu(II)-bisoxazoline 68 70:30 99 

19
151

 H Ph Cu(II)-bisoxazoline 68 22:78 96 

20
152

 Me Ph Cu(II)-bisimine 69 91:9 90 

21
152

 H Ph Cu(II)-bisimine 69 56:44 90 

22
153,154

 Me Me Pd(II)-TolBINAP 70 60:40 91 

23
153,154

 Me Bn Pd(II)-TolBINAP 70 93:7 89 

24
153,154

 Me Ph Pd(II)-TolBINAP 70 28:72 48 

25
155

 Me Me Ni(II)-DBFOX/Ph 71 99:1 99 

26
155

 Me Bn Ni(II)-DBFOX/Ph 71 99:1 95 

27
155

 Me Ph Ni(II)-DBFOX/Ph 71 98:2 89 

28
156,157

 H Ph Ni(II)-Pybox-tipsom 72 99:1 99 

29
156,157

 Me Ph Ni(II)-Pybox-tipsom 72 99:1 97 

30
158

 Me Ph Yb(OTf)3 97:3 - 

31
158

 Pr Ph Yb(OTf)3 92:8 - 

32
158

 Me Ph Sc(OTf)3 93:7 - 

33
158

 Pr Ph Sc(OTf)3 82:18 - 

34
158

 Me Ph Yb(III)-Pybox 73 95:5 67 

35
159

 Me Bn 
Yb(III)-[(S)-BINOL]-[(R)-

MNEA] 74 
99:1 96 

§ R = Me, 75; R = H, 76; R = Pr, 77 

 R
1
 = Ph, 78; R

1
 = Me, 79; R

1
 = Bn, 80 

* 

 
X=Cl, 61  64   63  M=Mg, 65 

X=OTos, 62      M=Mn, 66 

 



 
67           68        69 

 

 
70          71    72 

 

 
73   74 

 

1.2.2.5.2.1 Titanium Catalysts 

 

The first asymmetric 1,3-dipolar cycloaddition between an alkene and a nitrone in which 

the asymmetry was catalytically induced by a chiral ligand on the metal complex was reported 

by Gothelf and Jorgensen in 1994.
137

 The presence of chiral dichlorotitanium alkoxides in the 

cycloaddition of acyclic nitrones with Evans’s 2-oxazolidinones was investigated, with a 

diastereomeric ratio of 91:9 (exo:endo) and up to 60% ee achieved on employment of the chiral 

titanium complex 61 (entry 1, Table 3).  

The catalytic effect is due to the bidentate coordination of the alkene to the Lewis acid 

lowering the energy of the HOMO and the LUMO of the alkene, leading to an activation for the 

addition of the nitrone (Figure 25), and exo attack of the nitrone to the Re face of the alkene 

leads to the major cycloadduct. The structure of the alkene-Lewis acid complex was 

subsequently confirmed by X-ray crystallography.
160

 This reaction did not proceed at room 

temperature in the absence of a catalyst and only 39% conversion was observed after 20 hours at 

50 °C. 



 

Figure 25-reproduced from reference 
145

 

 

Substitution of the chloride groups with the bulkier tosylate ligands in 62 led to the 

isolation of the endo cycloadduct as the major isomer in enantioselectivities of >90% ee (entries 

2 and 3, Table 3).
145

 The exo approach of the nitrone is unfavourable here due to the repulsion 

between the axial ligand on the titanium atom and the substituent on the -carbon of the nitrone 

(Figure 26). 

 

Figure 26-reproduced from reference 
145

 

 

Replacement of the oxazolidinone auxiliary of the acrylamide with succinimide resulted 

in greater reactivity, with 94% conversion in the absence of Lewis acid following stirring at 

room temperature for 71 hours and a 95:5 (endo:exo) mixture of diastereomers obtained (the 

corresponding oxazolidinone required elevated temperature to undergo cycloaddition with 

78).
161

 In the presence of 5 mol% of 61, a 6:94 (endo:exo) mixture of diastereomers was isolated 

in up to 73% ee for the exo-isomer (Scheme 45), with the transition state similar to that depicted 

in Figure 25. 
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catalyst endo:exo 

None 95:5 

61 (5 mol%) 6:94 

Scheme 45 

 

Gothelf and co-workers have performed a series of ab initio calculations to account for 

the endo-selectivity observed in the absence of the Lewis acid catalyst and they found that steric 

repulsion between the C-phenyl substituent and one of the carbonyls of the succinimide group 

disfavours exo approach of the nitrone.
161

 

Seebach et al. have developed a number of polymer- and dendrimer-bound chiral 

dichlorotitanium alkoxide catalysts and have studied the application of these catalysts in the 

cycloaddition of Evan’s 2-oxazolidinone 75 and C,N-diphenylnitrone 78 (entries 4 and 5, Table 

3).
146

 Almost identical diastereoselectivities to Gothelf and Jorgensen’s homogeneous catalysts 

were attained. 

 

1.2.2.5.2.2 Magnesium Catalysts 

 

In 1996, Gothelf and Jorgensen investigated the cycloaddition of acyclic nitrones with 

Evans’s 2-oxazolidinones in the presence of achiral and chiral magnesium complexes. 

Application of 10 mol% of the achiral MgI2-phenanthroline complex 63 led to the attainment of 

high endo selectivity (endo:exo 95:5) (entries 6-9, Table 3).
147

 

When the chiral magnesium-bisoxazoline complex 64 was employed in cycloadditions 

with C,N-diphenylnitrone 78, high endo selectivity was observed (ratio of endo:exo >95:5) and 

enantiomeric excesses of up to 82% were achieved for the endo-isomer (entries 10 and 11, Table 

3).
147

  

The diastereofacial discrimination in favour of the endo-diastereomer is due to the 

preferred endo attack of the nitrone 78 on the -Re face of the alkene 75 from below the plane 

of the alkene (Figure 27). 



 

Figure 27 

 

Interestingly, the reaction of the N-benzyl nitrone 80 with the 2-oxazolidinone 75 in the 

presence of 64 led to the attainment of good endo:exo diastereoselectivity (89:11) but the 

reaction was not enantioselective (entry 12, Table 3). 

Later studies showed that in the absence of molecular sieves a reversal of the 

stereochemistry was observed; one enantiomer of the endo-isomer is obtained in the presence of 

molecular sieves and the mirror image enantiomer is isolated in the absence of molecular 

sieves.
162

 It is postulated that the metal centre of the Lewis acid complex is attached to two 

oxygen atoms at the surface of the molecular sieve, resulting in a change in the transition state 

for the cycloaddition. However, due to the complexity of the structure of the molecular sieve, it 

is difficult to predict the exact nature of this binding. 

The effect of the counterion was investigated by Desimoni and co-workers.
163

 When 

perchlorate or triflate were used as the counterions in the presence of molecular sieves, the 

opposite enantiomer to that obtained from the iodide counterion catalyst was isolated. Desimoni 

has also studied the nitrone cycloaddition of a novel, soluble polymer-supported optically active 

oxazolidinone 81. When reacted with the C,N-diphenylnitrone 78 in the presence of Mg(ClO4)2 

catalyst, a diastereomeric ratio of 58:42 (exo:endo) was achieved in up to 90% ee.
164

 Reductive 

cleavage with sodium borohydride yielded the diastereomeric isoxazolidines 82 and 83 (Scheme 

46). 
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Scheme 46 

 



Nishiyama and co-workers have developed a series of tridentate oxazoline-derived chiral 

ligands having a xanthene backbone, and have studied the cycloaddition of nitrones such as 78 

to the oxazolidinone 75 in the presence of these ligands.
148,149

 The xabox-Bn-Mg(II) complex 65 

yielded diastereoselectivities of up to >99:1 with % ee’s of the endo-isomer ranging from 85–

96% (entries 13 and 14, Table 3). A transition state similar to that outlined in Figure 27 can be 

envisioned, with the diastereofacial selectivity due to the endo attack of the nitrone 78 on the Re 

face of the alkene 75. 

 

1.2.2.5.2.3 Manganese Catalysts 

 

In addition to Mg(II) complexes, Nishiyama and co-workers have also studied the 

behaviour of Mn(II)-xabox-Bn complexes in the cycloadditions of nitrones to the oxazolidinone 

75 (entries 15 and 16, Table 3).
148,149

 Diastereoselectivities of 96:4 to 98:2 were achieved with 

enantiomeric excesses of 91–95% ee. 

 

1.2.2.5.2.4 Zinc Catalysts 

 

In 1993, Murahashi reported the cycloaddition of cyclic nitrones to acrylamide 

derivatives in the presence of zinc iodide as a route to the optically active -amino alcohols (+)-

sedridine 84 and (+)-hygroline 85.
165

 When 2,3,4,5-tetrahydropyridine N-oxide 86 (n=2) was 

reacted with Oppolzer’s sultam derivative 87 in the presence of zinc iodide, a diastereomeric 

ratio of 88a:89a of 78:4 was achieved, along with 18% of other diastereomers. In the absence of 

the metal catalyst, the ratio was 54:27:19. Oppolzer’s sultam derivative 87 also underwent 

cycloaddition with 1-pyrroline N-oxide 40 (n=1) in the presence of zinc iodide to yield the 

isoxazolidines 88b:89b in the ratio 77:14, along with 9% of other diastereomers. When the 

Lewis acid was not present, a ratio of 35:52:13 resulted. 

 

         

           

  n=1, 40; n=2, 86      88  89 

 

     

   87 

      

 

              84  85 

n additive 88:89:others 

1 none 35:52:13 



1 1.5 eq ZnI2 77:14:9 

2 none 54:27:19 

2 1.5 eq ZnI2 78:4:18 

Scheme 47 

 

Desimoni has also studied the reaction outlined in Table 3 using Zn(II) as the cationic 

core of the bis-oxazoline catalyst, with some interesting results.
150

 On changing the metal cation 

from Mg to Zn in 67, a change in selectivity from endo to exo is observed (entry 17, Table 3). A 

strong chiral amplification is also seen for the Zn catalysed reaction; with 10% ee of the chiral 

bis-oxazoline ligand, cycloadducts with up to 62% ee were obtained.  

 

1.2.2.5.2.5 Copper Catalysts 

 

In 2004, Saito and co-workers reported the catalytic enantioselective nitrone 

cycloaddition to the oxazolidinone 75 using an amino-indanol-derived bisoxazoline Cu(II) 

complex 68 as a bidentate chiral catalyst.
151

 Employing Cu(OTf)2 led to a diastereomeric ratio 

of 70:30 (endo:exo), with enantiomeric excesses of >99% achieved for each diastereomer (entry 

18, Table 3). Employment of the oxazolidinone 76 led to high exo selectivity (endo:exo 22:78), 

along with high enantiopurity of 96% ee for the exo-diastereomer. 

On changing the chiral ligand to the bis(imine) ligand 69, an increase in the diastereomer 

ratio to 91:9 was observed for the cycloaddition of the oxazolidinone 75 to the C,N-

diphenylnitrone 78, whilst maintaining the high enantioselectivity (entry 20, Table 3).
152

 Using 

the oxazolidinone 76 resulted in a dramatic decrease in the diastereoselectivity (endo:exo 

56:44), but the high enantioselectivity was preserved (90% ee for the endo-isomer and 96% ee 

for the exo-isomer) (entry 21, Table 3). 

In the same year, Sibi et al. communicated the cycloaddition of the pyrazolidinone 44 

with the acyclic nitrone 79 in the presence of the chiral Lewis acid 34 derived from copper 

triflate and the amino-indanol ligand.
166

 An exo:endo diastereoselectivity of 96:4 was observed, 

in 98% ee for the exo isomer (Scheme 48). It is postulated that the exo selectivity is due to the 

square planar complex formed by the Lewis acid ensuring that exo attack is not sterically 

restricted in the complex.
166
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Scheme 48 

 

Sibi extended this work to include ,-disubstituted acrylamide derivatives. On 

employment of the chiral Lewis acid 34 in cycloadditions with acyclic nitrones, diastereomeric 

ratios of up to 99:1 were achieved with enantiomeric excesses of up to 97% (Scheme 49).
114

 

 

R exo:endo % ee exo 

Me 99:1 94 

H 81:19 89 

Scheme 49 

 

1.2.2.5.2.6 Palladium Catalysts 

 

Furukawa has investigated the palladium(II) catalysed asymmetric cycloaddition of 

nitrones to oxazolidinone derivatives, with the palladium co-ordinated to a chiral phosphine 

ligand.
153,154

 Late transition metal complexes such as palladium are advantageous as they do not 

require strictly anhydrous conditions. Employment of the (S)-TolBINAP ligand in the palladium 

complex 70 led to an endo:exo ratio of up to 93:7, with excellent enantioselectivity for both 

isomers (entries 22-24, Table 3). The diastereoselectivity was found to be dependant on the N-

substituent of the nitrone, with poor diastereoselectivity for the N-methyl nitrone 79 (entry 22, 

Table 3), excellent endo diastereoselectivity for the N-benzyl nitrone 80 (entry 23, Table 3) and 

preferential formation of the exo-diastereomer for the N-phenyl nitrone 78 (entry 24, Table 3). 

The selectivity differences are due to the steric effect in the transition state between the 

Lewis acid-alkene complex and the nitrones. Attack of the nitrone occurs from the Si face of the 

alkene, as the Re-face is sterically hindered by the aryl substituent of the Lewis acid. For the N-

benzyl nitrone, endo approach to the Si face of the alkene is favoured (a, Figure 28) as exo 

approach leads to steric repulsion between the aryl substituent on the Lewis acid and the nitrone 



(b, Figure 28). For the N-phenyl nitrone, the N-phenyl group prevents endo attack (c, Figure 28) 

and exo attack is favoured (d, Figure 28). 

 

Figure 28 

 

1.2.2.5.2.7 Nickel Catalysts 

 

Kanemasa and co-workers have reported the asymmetric cycloaddition of a range of 

acyclic nitrones to the oxazolidinone 75 catalysed by the aqua complex 71 derived from (R,R)-

4,6-dibenzo-furandiyl-2,2-bis(4-phenyloxazoline) ligand (R,R-DBFOX/Ph) and 

Ni(ClO4)2.6H2O.
155

 Diastereomeric ratios of up to 99:1 (endo:exo) and enantioselectivities of 

>99% ee were obtained, with the presence of molecular sieves necessary to achieve high 

selectivities (entries 25-27, Table 3). 

The bottom face of the alkene is shielded by one of the phenyl substituents of the 

DBFOX/Ph ligand, and the other phenyl group inhibits exo approach of the nitrone (Figure 29). 



 

Figure 29-reproduced from reference 
155

 

 

Excellent stereocontrol and rate acceleration was observed by Iwasa on studying the 

cycloaddition of oxazolidinones with a range of nitrones in the presence of Ni(II) complexed to 

a sterically tuned bis(oxazolinyl)pyridine ligand, bearing a hydroxymethyl group on the 

oxazoline ring.
156,157

 The introduction of trialkylsilyl groups onto the oxazoline ligand in 

complex 72 led to the attainment of excellent levels of regio-, diastereo- and enantioselectivities. 

The isoxazoline cycloadducts were obtained in ratios of up to >99:1 (endo:exo) and 97 to >99% 

ee (entries 28 and 29, Table 3).  

The bulky trialkylsilyl groups block the approach of the nitrone from one face of the 

alkene (Figure 30) with endo approach of the nitrone to the alkene favoured as shown in Figure 

30. 

 

Figure 30 

 

This was later extended to include pyrrolidinone derivatives and the excellent levels of 

diastereo- and enantioselectivities were maintained (Scheme 50). It was also discovered that 

changing the solvent to alcohols such as t-butanol and s-butanol significantly increased the rate 

of the cycloaddition compared to dichloromethane.
167

 

 

R endo:exo % ee endo 

H 97:3 98 

Me 99:1 95 

Scheme 50 



1.2.2.5.2.8 Lanthanide Catalysts 

 

As part of their development programme of new metal catalysts for the asymmetric 1,3-

dipolar cycloaddition of nitrones with alkenes, Jorgensen et al. communicated the use of 

Yb(OTf)3 and Sc(OTf)3 as catalysts in the cycloaddition of a range of nitrones and 

oxazolidinones in 1997.
158

 In the presence of Yb(OTf)3, diastereoselectivities of 92:8 to 97:3 

(endo:exo) were obtained (entries 30 and 31, Table 3). These were slightly lower when Sc(OTf)3 

was used (82:18 to 93:7) (entries 32 and 33, Table 3), but a significant rate increase was 

observed; in one instance the reaction time decreased from 48 hours to 5 hours. The introduction 

of the chiral ligand 2,6-bis[4-(S)-isopropyl-2-oxazolidin-2-yl]pyridine (PyBOX) 73 led to high 

endo selectivity (93:7) with up to 67% ee for the endo-diastereomer (entry 34, Table 3). 

Much higher enantiomeric excesses (up to 96% ee) were achieved by Kobayashi on 

employment of a chiral Yb(III) catalyst 74 prepared from Yb(OTf)3, (S)-1,1-binaphthol [(S)-

BINOL] and N-methyl-bis[(R)-1-(1-naphthyl)ethyl]amine [(R)-MNEA] (entry 35, Table 3).
159

 

The synthetic utility of the resulting cycloadduct was demonstrated by the synthesis of the -

lactam derivative 90 (Scheme 51). 
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Scheme 51 

 

Kobayashi later discovered that the opposite enantiomer of the endo-diastereomer could 

be isolated in the absence of molecular sieves.
168

 

 Thus, in terms of conversion, isolated yield, diastereomeric ratio and enantiomeric 

excess, the most expedient catalysts for the asymmetric 1,3-dipolar cycloaddition of Evan’s 2-

oxazolidinone with acyclic nitrones are xabox-Bn-Mg(II) 65 and xabox-Bn-Mn(II) 66 (entries 

13-15, Table 3), Ni(II)-DBFOX/Ph 71 and Ni(II)-Pybox-tipsom 72 (entries 25-29, Table 3), and 

Yb(III)-[(S)-BINOL]-[(R)-MNEA] 74 (entry 35, Table 3). 

 

1.2.3 Cycloadditions with Diazoalkanes 

 

Diazoalkanes undergo 1,3-dipolar cycloadditions with alkenes and alkynes to yield 

pyrazolines and pyrazoles respectively (Scheme 52).
169

 



 

Scheme 52 

 

The pyrazoline cycloadducts are frequently too unstable to isolate and readily 

tautomerise to yield 
2
-pyrazolines. Pyrazolines may also be transformed to pyrazoles by a 1,2-

elimination reaction, and they can eliminate nitrogen on thermolysis or photolysis to yield 

cyclopropanes (Scheme 53). This method has been utilised in the synthesis of a number of 

cyclopropane natural products.
170

  

 

Scheme 53 

 

1.2.3.1 Regioselectivity and Reactivity 

 

The addition of diazoalkanes to alkenes can lead to the formation of two regioisomeric 

cycloadducts (Scheme 54). 

 

Scheme 54 

 

The cycloadditions of simple diazoalkanes with electron-deficient and conjugated 

alkenes are dipole-HOMO controlled, with the carbon atom of the diazoalkane attacking the 

terminal carbon of the alkene resulting in exclusive formation of the 3-substituted pyrazolines 

(Figure 31).
37,62

 



 

Figure 31 

 

For electron-rich alkenes, both the dipole HOMO – dipolarophile LUMO and dipole 

LUMO – dipolarophile HOMO interactions are comparable. However, since the coefficients of 

the dipole-LUMO are almost equal, the regioselectivity is controlled by the dipole-HOMO 

leading to 4-substituted pyrazolines (Figure 32).
37

 

 

Figure 32 

 

The presence of electron-rich substituents on the diazoalkane raise both the HOMO and 

LUMO energies and the rate of cycloadditions with electron-deficient alkenes is increased as the 

energy separation between the frontier orbitals decreases. This is confirmed by the greater 

reactivity of alkyl diazomethanes in cycloadditions.
171

 The introduction of electron-withdrawing 

groups on the diazoalkane, such as the keto group in diazoketones, lowers the HOMO and 

LUMO energies, leading to an increase in the rate of reaction with electron-rich alkenes (Figure 

33).
62

 

 

Figure 33 

 

1.2.3.2 Asymmetric 1,3-Dipolar Cycloadditions of Diazoalkanes and Acrylamides 

 

Synthetic applications of the pyrazoline cycloadducts obtained from the 1,3-dipolar 

cycloaddition of diazoalkanes to alkenes have not been extensively studied, and have usually 



been restricted to the preparation of the resulting cyclopropanes or pyrazoles. The difficulties 

associated with employing diazoalkanes in asymmetric dipolar cycloadditions arise because the 

diazoalkanes are generally not readily available, they cannot be stored for long periods and they 

may also be thermally unstable. Studies on the synthetic utility of diazoalkanes with acrylamides 

have therefore been mainly concentrated on the commercially available 

trimethylsilyldiazomethane. 

Carreira has investigated the cycloaddition of trimethylsilyldiazomethane to a range of 

Oppolzer’s chiral sultam derivatives.
172

 3-Trimethylsilyl-substituted pyrazolines were isolated in 

quantitative yield following treatment with a 2 M solution of trimethylsilyldiazomethane in 

hexane. Tautomerisation with loss of the trimethylsilyl group on exposure to trifluoroacetic acid 

in dichloromethane yielded optically active 
2
-pyrazolines as single regioisomers with 90-94% 

diastereoselectivity. These were subsequently transformed to synthetically useful pyrazolidines 

by C=N reduction with sodium cyanoborohydride in acetic acid, chemoselective protection as 

the N-Cbz or N-Boc carbamates and auxiliary removal by treatment with dimethoxymagnesium 

in methanol (Scheme 55). 

 

Scheme 55 

 

Azaproline analogues of the 
2
-pyrazolines and the pyrazolidines were synthesised by 

chemoselective coupling reactions (Scheme 56).
172

 

 

Scheme 56 

 



In the same year, Carreira et al. demonstrated the versatility of this cycloaddition in the 

efficient synthesis of the marine metabolite stellettamide A 92, which possesses anti-fungal 

activity and displays cytotoxicity against K562 epithelium cell lines.
173,174

 

 

92 

 

Cycloaddition of the Oppolzer sultam derivative 93 with a solution of 

trimethylsilyldiazomethane led to the isolation of the pyrazoline cycloadducts in quantitative 

yield as a 93:7 mixture of diastereomers. Desilylation was achieved on exposure to ethyl 

chloroformate and silver triflate to yield the diastereomeric 
2
-pyrazolines 94 and 95 in a 92:8 

ratio (Scheme 57). 
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Scheme 57 

 

The major diastereomer results from the preferential attack of the incoming dipole from 

the top-side of the dipolarophile (Figure 34). 

 

Figure 34 

 



The diastereomeric 
2
-pyrazolines 94 and 95 were separable by column chromatography 

and the major diastereomer 94 was transformed to stellettamide A 92 via a number of synthetic 

steps.
173,174

  

The synthetic utility of this cycloaddition was further demonstrated in a communication 

by Carreira in 2000, in which the Lewis acid facilitated diastereoselective nucleophilic addition 

to N-acyl protected pyrazolines was reported (Scheme 58).
175

 This allows access to a variety of 

useful highly functionalized building blocks for asymmetric synthesis. 

 

Scheme 58 

 

Optically active acyclic products can be easily formed by auxiliary removal and 

reductive N-N bond cleavage (Scheme 59).
175

  

 

Scheme 59 

 

The enantioselective 1,3-dipolar cycloaddition of diazoalkanes in the presence of Lewis 

acid catalysts has also been reported. In Jorgensen’s review on asymmetric 1,3-dipolar 

cycloadditions in 1998,
10

 he described his unpublished findings on the affect of the Ti-

TADDOLate catalyst 96 in the cycloaddition of ethyl diazoacetate 97 to the oxazolidinone 76, 

with enantiomeric excesses of 30-40% achieved (Scheme 60). 
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Scheme 60 

 

The first effective Lewis acid catalysed enantioselective cycloaddition of diazoalkanes 

was reported by Kanemasa in 2000.
176

 The cycloadditions of trimethylsilyldiazomethane and a 

range of oxazolidinones were studied in the presence of metal complexes of (R,R)-DBFOX/Ph 

98, with enantiomeric excesses of up to 99% achieved for the resulting desilylated 
2
-

pyrazolines. 

 

98 

 

On treatment of the oxazolidinone 75 with the (R,R)-DBFOX/Ph 98-Zn(ClO4)2.3H2O 

complex, the corresponding desilylated 
2
-pyrazoline was obtained in 99% ee. The introduction 

of an isopropyl or propyl group at the -position of the oxazolidinone led to a decrease in the 

enantioselectivity of the cycloaddition (Scheme 61).
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R %ee 

Me 99 

n-Pr  47 

i-Pr 71 

Scheme 61 

 

The observed stereochemistry in the cycloaddition of the oxazolidinone 75 is due to 

attack at the top face of the dipolarophile by trimethylsilyldiazomethane as the bottom face is 

shielded by the lower 4-phenyl group of the ligand (Figure 35). As the isopropyl and propyl 

groups are more flexible than the methyl group, steric hindrance between the shielding phenyl 

group and the R substituent exists and the reaction site departs from the shielding zone of the 4-

phenyl group, leading to decreased chiral shielding efficiency and hence lower 

enantioselectivities.
176

 

 



Figure 35 

 

Interestingly, the introduction of an isopropyl or propyl group at the -position of 4,4-

dimethyl-2-oxazolidinone had no detrimental effect on the enantioselectivity of the magnesium 

catalysed cycloaddition with trimethylsilyldiazomethane, and % ee’s ranging from 97–98 were 

achieved in the presence of Mg(ClO4)2 complexed to 98 (Scheme 62).
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Scheme 62 

 

In this instance, the top face of the alkene is shielded by the top 4-phenyl group on the 

ligand and trimethylsilyldiazomethane attack occurs exclusively from the bottom face (Figure 

36). For the cycloadditions described in Scheme 61 and Scheme 62, endo approach of the dipole 

is favoured as the exo transition state is expected to be less stable due to steric repulsion 

between the bulky trimethylsilyl group and the -substituent. 

 

 

Figure 36 

 

 While reports of 1,3-dipolar cycloadditions of acrylamides with diazoalkanes are limited, 

very good diastereomeric ratios of up to 93:7 have been obtained, and in the Lewis acid 

catalysed enantioselective cycloadditions, excellent enantiomeric excesses of up to 99% ee were 

achieved. The resulting cycloadducts have also been transformed to a variety of useful building 

blocks for asymmetric synthesis.  

 

1.2.4 Cycloadditions with Azomethine Ylides 

 

The 1,3-dipolar cycloaddition of azomethine ylides to alkenes and alkynes leads to the 

formation of pyrrolidines and pyrrolines respectively (Scheme 63). 



 

Scheme 63 

 

Azomethine ylides are allyl anion-type 1,3-dipoles that are bent even in the ground state. 

The 1,3-dipolar cycloadditions of azomethine ylides are generally stereospecific, with the 

stereochemistry of the dipole and dipolarophile retained in the cycloadduct. Cycloadditions with 

azomethine ylides have been extensively investigated in recent years and these have been 

applied in asymmetric and natural product synthesis, as well as the syntheses of biologically 

interesting compounds.
1,6

 

 

1.2.4.1 Synthesis of Azomethine Ylides 

 

Azomethine ylides are unstable species that must be generated in situ and are 

subsequently trapped by the added dipolarophile. A number of methods have been developed for 

their generation, including deprotonation of imminium salts,
177

 thermal isomerisation of imines 

of -amino acids
178

 and decarboxylation of imminium ions derived from primary and secondary 

-amino acids.
179

 The most commonly employed methods nowadays involve the thermolysis or 

photolysis of suitably-substituted aziridines
180

 and the desilylation of cyanoaminosilanes.
181

 

The fluorine-mediated desilylation of cyanoaminosilanes was developed by Padwa in 

1985.
181

 Treatment of -cyanoaminosilanes with silver fluoride results in fluoride-assisted 

desilylation to give the intermediate anion, and subsequent loss of cyanide yields the azomethine 

ylide (Scheme 64). 

 

 

Scheme 64 

 

The stereospecific thermal and photolytic conversion of aziridines to acyclic azomethine 

ylides was reported by Huisgen in 1967.
180

 As the aziridine ring system is isoelectronic with the 

cyclopropyl anion, the thermal isomerisation of aziridines to azomethine ylides involves a 

conrotatory ring opening by the Woodward and Hoffmann rules, and the photochemically 

induced process involves a disrotatory ring opening.
182

 Thus, the cis-dicarboxylic acid ester 99 

will undergo conrotatory ring opening under thermal conditions to give the trans-azomethine 



ylide and disrotatory ring opening under photochemical conditions to yield the cis-azomethine 

ylide (Figure 37). The trans-dicarboxylic acid ester 100 behaves in a similar manner. 

 

 

  

                    

                 99     100 

 

Figure 37 

 

The ring-opening of the aziridines and the cycloaddition are stereospecific if the 

cycloaddition occurs before bond rotation in the intermediate azomethine ylide. For example, 

the trans-azomethine ylide thermally derived from the cis-dicarboxylic acid ester 99 combines 

stereospecifically even with weak dipolarophiles whereas for the cis-azomethine ylide thermally 

derived from the trans-dicarboxylic acid ester 100, isomerisation to the trans-isomer competes 

with the cycloaddition except for reactions with highly reactive dipolarophiles such as 

tetracyanoethylene.
183,184

 

 

1.2.4.2 Reactivity and Regioselectivity 

 

The cycloaddition of azomethine ylides to alkenes can lead to the formation of two 

regioisomeric pyrrolidines. In general, the reactions exhibit marked regioselectivity, with almost 

exclusive or predominant formation of one regioisomer. The cycloadditions of azomethine 

ylides occur most readily with electron-deficient dipolarophiles through a HOMO-dipole 

controlled interaction (Figure 38). The presence of electron-rich or conjugating groups on the 

dipole raise the energy of the HOMO and hence the energy gap between the HOMO-dipole and 

LUMO-dipolarophile is reduced leading to a more efficient reaction. 

 

Figure 38 

 

The cycloaddition of electron-rich dipolarophiles to azomethine ylides is also possible 

through a LUMO (dipole) – HOMO (dipolarophile) interaction, but cycloadditions of this type 

are less common.
185

 

 



1.2.4.3 Asymmetric 1,3-Dipolar Cycloadditions of Azomethine Ylides 

 

As chiral pyrrolidines are common building blocks for many natural and unnatural 

compounds which possess important biological activity, the asymmetric 1,3-dipolar 

cycloaddition of azomethine ylides has attracted much attention.
34

 Chiral azomethine ylides 

(both cyclic and acyclic),
186-190

 chiral dipolarophiles
191-193

 and chiral catalysts
74,191

 have all been 

successfully implemented for asymmetric induction in azomethine ylide 1,3-dipolar 

cycloadditions.  

Most of the reported studies on the control of the stereoselectivity by use of chiral 

dipolarophiles concern the use of acrylates.
192,194,195

 However, excellent results have also been 

achieved with chiral acrylamides, and the synthesis of a number of biologically active 

compounds has been accomplished through their use.  

 

1.2.4.4 Asymmetric 1,3-Dipolar Cycloadditions of Azomethine Ylides and Acrylamides 

 

Encouraged by Curran’s work on the 1,3-dipolar cycloaddition of Oppolzer’s chiral 

sultam derivative 12 to nitrile oxides,
83

 Garner investigated the cycloaddition of 12 to 

photochemically generated azomethine ylides as a route to the asymmetric synthesis of 

quinocarcin 101, a potential antitumor antibiotic isolated from Streptomyces broths.
196-200

 

Irradiation of the aziridine 102 yielded the azomethine ylide 103, which subsequently 

underwent selective exo attack at the si face of Oppolzer’s chiral sultam 12 to give the exo-

substituted pyrrolidine 104 (diastereomeric ratio >25:1). As 12 is photochemically unstable, 

portionwise addition to the azomethine ylide 103 was necessary. The cycloaddition of chiral 

acrylates derived from menthol and 10-[dicyclohexyl(sulfonylamido)]isoborneol to a number of 

photochemically generated azomethine ylides was also conducted, however no facial selectivity 

was observed.
197

 With four of the six stereogenic centres present in quinocarcin 101 now in 

place, the pyrrolidine 104 was transformed to 101 via a number of synthetic steps (Scheme 

65).
199
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    101    104 

Scheme 65 

 

In 1997, Ma and co-workers utilised the asymmetric 1,3-dipolar cycloaddition of the 

azomethine ylide derived from N-benzyl-N-(methoxymethyl)-trimethylsilylmethylamine 105 

with a range of chiral oxazolidinones as a route to a series of optically active trans-3-amino-4-

alkylpyrrolidines, which is present at the C-8 position of 2-pyridones, novel DNA gyrase 

inhibitors that exhibit antibacterial activity (Scheme 66).
201
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R R
1
 major:minor 

Me i-Pr 60:40 

Me Bn 58:42 

Me Ph 73:27 

Et Ph 77:33 

c-Pr* Ph 80:20 

Ph Ph 67:33 

*c-Pr = cyclopropyl 

Scheme 66 



 

The pyrrolidines were obtained in high yield and moderate diastereoselectivity, with the 

diastereoselectivity dependant on the structure of the oxazolidinone; diastereomeric ratios of up 

to 80:20 achieved when R = cyclopropyl and R
1
 = phenyl. The major diastereomer resulted from 

the favoured dipole attack on the alkene from the face opposite to the R
1
 substituent. Although 

the selectivity was moderate, the desired major diastereomer was easily separated by 

recrystallisation or chromatography, and this was subsequently transformed to the chiral 

pyrrolidine.
201

 

In 2001, Karlsson reported the doubly diastereoselective cycloaddition of chiral 

azomethine ylides to a range of chiral acrylamides.
202,203

 On employment of oxazolidinone and 

camphorsultam derivatives, the camphorsultam derivatives furnished the greater 

diastereoselectivities, with diastereomeric ratios of up to 88:12 achieved. The 

diastereoselectivity was found to be solvent-dependant, with the employment of more polar 

solvents furnishing higher diastereoselectivities. The optimum diastereoselectivity was achieved 

by reacting the camphorsultam derivative (–)-106 with the (R)-1-phenylethyl-derived 

azomethine ylide (Scheme 67). 
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solvent R major:minor 

toluene (R)-1-phenylethyl 70:30 

toluene (S)-1-phenylethyl 52:48 

acetonitrile (R)-1-phenylethyl 88:12 

acetonitrile (S)-1-phenylethyl 75:25 

Scheme 67 

 

The major diastereomer results from attack of the azomethine ylide to the re-re face of 

the dipolarophile (Figure 39). The enhanced selectivity in more polar solvents is believed to be 

due to dipole-dipole interactions caused by the polar solvent stabilising the transition state. 

 

 



Figure 39 

 

The resulting pyrrolidines can act as chiral building blocks for the synthesis of 

enantiopure bioactive pyrrolidines, and Karlsson demonstrated this in his short synthesis of 

(3R,4R)-4-(hydroxylmethyl)pyrrolidin-3-ol 107, a known glycosidase inhibitor (Scheme 68).
202
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Scheme 68 

 

When Karlsson extended this work to include monocyclic five-membered ,-

unsaturated acrylamides, reduced diastereoselectivity was observed.
204

 Interestingly, changing 

the absolute configuration of the starting ylide reversed the diastereoselectivity of the 

cycloaddition (Scheme 69). 

 

R A:B 

(R)-1-phenylethyl 74:26 

(S)-1-phenylethyl 32:68 

Scheme 69 

 

More recently, the large-scale synthesis of 107 has been reported by Chand et al., in 

which an achiral ylide was employed using an N-benzyl substituent in place of the N-

phenylethyl substituent. Kilogram quantities of 107 have been prepared using this synthesis.
205

 

In 2001, Carey reported an efficient synthesis of (3S,4R)-ethyl 1-

azabicyclo[2.2.1]heptane-3-carboxylate 108 in which the key step was the cycloaddition of an 

azomethine ylide with a camphorsultam derivative (Scheme 70).
206

 Cycloaddition of the 

camphorsultam derivative 109 with the azomethine ylide derived from 105 yielded a 

diastereomeric mixture of pyrrolidines in a 4:1 ratio, which were readily separated by column 

chromatography. The stereochemistry of the major pyrrolidine 110 was consistent with the 



cycloaddition proceeding via the normal transition state structure for reactions of 

camphorsultam derivatives. 

 

                         

        105          109 

 

 

         110 

        108      

Scheme 70 

 

The cycloaddition of an azomethine ylide to an acrylamide derivative was also the key 

step in the Williams report of the asymmetric total synthesis of spirotryprostatin A 111, which is 

a member of a promising class of antimitotic agents.
207,208

 

The unstable acrylamide dipolarophile 112 was prepared in situ by treatment of 113 with 

trifluoroacetic acid in toluene. This was then added to the azomethine ylide generated from 

morpholinone 114 and aldehyde 115 to yield an approximately 2:1 mixture of cycloadducts. The 

major cycloadduct 116 was then subjected to further synthetic transformations to yield 

spirotryprostatin A 111 (Scheme 71). 
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   111    116 

Scheme 71 

 

The use of Lewis acid catalysts has also been reported to promote asymmetric 1,3-

dipolar cycloadditions of azomethine ylides, with silver catalysts the most commonly 

employed.
6
 

Diastereomeric ratios of up to 98:2 (exo:endo) were achieved by Pandey and co-workers 

on employment of cyclic azomethine ylides in silver fluoride catalysed cycloadditions with the 



Oppolzer chiral sultam derivative 117.
209

 This route was then utilised towards a formal synthesis 

of optically active ent-epibatidine 118.  

The chiral dipolarophile 117, which was synthesised by a Heck reaction, reacted with the 

cyclic azomethine ylide derived from 119 to give the pyrrolidine diastereomers in a 9:1 mixture. 

These were separable by chromatography, and the chiral auxiliary was cleaved from the major 

diastereomer 120 by exposure to lithium hydroxide in tetrahydrofuran and water, followed by 

reaction with thionyl chloride in methanol to yield 121 (Scheme 72). The conversion of 121 to 

ent-epibatidine 118 was reported earlier by the same group.
210
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Scheme 72 

 

In 2005, Nyerges et al. reported the silver acetate catalyzed asymmetric cycloaddition of 

azomethine ylides derived from arylidene glycine imides and chiral acrylamides.
211

 A range of 

chiral acrylamides were studied, with single pyrrolidine diastereomers obtained when the cyclic 

pyrrolidine derived and the (1R,2S)-(–)-ephedrine derived acrylamides 122 and 123 were 

employed (Scheme 73). 
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Scheme 73 

 

 The employment of acrylamides derived from Oppolzer’s sultam again led to good 

diastereoselectivites in 1,3-dipolar cycloadditions with azomethine ylides. In the absence of 

metal catalysis diastereomeric ratios of up to 90:10 were obtained, while addition of silver 

fluoride led to an improved ratio of 98:2. 

 

1.2.5 Cycloadditions with other 1,3-Dipoles 

 

1.2.5.1 Allyl Anion Type Dipoles 

 

Azomethine imines are a class of allyl anion type dipoles that undergo 1,3-dipolar 

cycloadditions with alkenes and alkynes to furnish pyrazolidines and pyrazolines respectively 

(Scheme 74).
212

 

 

Scheme 74 

 

The resonance form A in Figure 40 is expected to be more important as a result of the 

higher electronegativity of nitrogen relative to carbon.
212

 

 



Figure 40 

 

These dipoles are too reactive to be isolated and are normally generated in situ, most 

commonly by reaction of N,N-disubstituted hydrazines with an aldehyde (Scheme 75).
212

 

 

Scheme 75 

 

Asymmetric 1,3-dipolar cycloadditions of azomethine imines have not been extensively 

studied.
6
 The first report of an asymmetric reaction between an azomethine imine and an 

acrylamide was communicated in 2007 by Suga, who described the highly enantioselective and 

diastereoselective Lewis acid catalysed 1,3-dipolar cycloaddition between azomethine imines 

(derived from the reaction of pyrazolidin-3-one with an aldehyde)
213

 and the oxazolidinone 

76.
214

 Employing a chiral Ni(II)-binaphthyldiimine complex as the catalyst, diastereomeric 

ratios of 64:36 to >99:1 were achieved in enantiomeric excesses of 74-97% (Scheme 76).
214

 

 

 

 

 

            76 

 

 

 

 

 

 

R major:minor % ee major 

p-MeOC6H4 80:20 90 

p-MeC6H4 91:9 93 

p-CNC6H4 97:3 92 

p-ClC6H4 91:9 95 

o-ClC6H4 >99:1 93 

p-BrC6H4 93:7 94 

2-naphthyl 93:7 96 

2-furyl 64:36 95 

cyclohexyl 82:18 74 

Scheme 76 

 



The re face of the oxazolidinone is shielded from dipole attack by the 4-methyl-

quinoline moiety of the Ni(II) complex, and the trans selectivity is believed to be due to 

favourable secondary orbital interactions between the empty nitrogen orbital of the azomethine 

imine and the oxazolidinone (Figure 41). 

 

     

 

 

 

 

 

 

 

 

Figure 41 

 

1.2.5.2 Allenyl/Propargyl Anion Type 

 

The 1,3-dipolar cycloaddition of nitrilimines to alkenes and alkynes is a very useful 

method for the preparation of 2-pyrazolines and pyrazoles (Scheme 77).
86

 

 

 

Scheme 77 

 

Nitrilimines are prepared in situ, generally from hydrazonoyl halides (Scheme 78).
86

 

 

Scheme 78 

 

Despite the utility of enantiopure pyrazolines and pyrazoles, the asymmetric 1,3-dipolar 

cycloaddition of nitrilimines has only become useful in recent years.
25

 Molteni and co-workers 

communicated the cycloadditions of nitrilimines with a range of enantiopure acrylamides as a 

route to enantiopure 4,5-dihydropyrazoles in 2002.
215

 Diastereoselectivities of up to 83:17 were 

obtained on employment of the Oppolzer chiral sultam derivative 12 (Scheme 79). Cleavage of 



the auxiliaries was easily achieved by sodium hydroxide hydrolysis to yield the dicarboxy 

pyrazoles 124 and 125, potentially interesting new chiral building blocks. 

    

  124  125 

Scheme 79 

 

1.3 Conclusion 

 

As up to four stereocentres can be introduced in a stereoselective manner in a single step, 

the asymmetric 1,3-dipolar cycloaddition is one of the most useful methods for the preparation 

of chiral five-membered ring heterocycles. This review focused on the employment of 

acrylamides as dipolarophiles in asymmetric 1,3-dipolar cycloadditions, with particular 

emphasis on the rationale for the observed stereocontrol; the conformational properties of the 

acrylamides, relative to the more conformationally mobile acrylates for example, are critical to 

their use as chiral auxiliaries in these processes. Thus, the use of chiral acrylamides has led to 

the attainment of high levels of regioselectivity, endo/exo selectivity, diastereofacial selectivity 

and stereocontrol in cycloadditions with a range of 1,3-dipoles. The synthetic utility of the 

resulting cycloadducts was demonstrated in a number of natural product syntheses. For each of 

the dipoles discussed, acrylamides derived from Oppolzer’s sultam proved to be the most 

advantageous; excellent diastereoselectivities could be achieved in each case. The majority of 

studies on metal-catalysed cycloadditions have focussed on nitrones, with excellent 

enantioselectivities and diastereoselectivites obtained. Acrylamides bearing a wide variety of 

chiral auxiliaries have been explored in 1,3-dipolar cycloadditions with nitrile oxides, as these 

reactions are not amenable to Lewis acid catalysis. 

The employment of chiral acrylamides as dipolarophiles, particularly in 1,3-dipolar 

cycloadditions with nitrile oxides in which the use of chiral catalysts and chiral 1,3-dipoles is 

not an attractive option, will continue to be exploited in asymmetric 1,3-dipolar cycloadditions. 
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