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Abstract

We propose and present quantitative analysis of neutral atom microtraps based on optical near-

fields produced by the diffraction of a laser wave on small apertures in a thin screen. We show that

the near-field atom microtraps are capable of storing atoms in micron-sized regions, with estimated

trap lifetimes of about 1 second, when using a moderate laser intensity of about 10 W/cm2. The

depth of the proposed Fresnel atom microtraps is about 0.1 mK. An array of such atom microtraps

could have applications in site-selective manipulation of cold atoms.
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I. INTRODUCTION

In recent years there has been a growing number of experimental and theoretical studies

on the development of, and applications for, neutral atom traps [? ? ? ? ? ? ]. A new

and poorly studied approach to the development of miniature atom traps stems from the

optical near-fields formed by laser diffraction on small apertures in thin screens. Such an

approach could lead to the fabrication of an array of atom microtraps and, accordingly, the

production of a large number of trapped atomic microensembles from a single initial atomic

cloud or beam. Earlier work [? ] has shown that an array of atom dipole traps can be

produced by focusing a laser beam on an array of spherical microlenses. The work presented

here relies on a more recent proposal [? ], whereby microlenses, formed in thin screens, can

be used to focus atomic beams. We show that such a system can be modified to produce a

microtrap array, using a moderate incident laser intensity of about 10 W/cm2.

Similar to other approaches employing laser fields, the operation of neutral atom, near-

field microtraps relies on dipole potentials and their corresponding dipole gradient forces.

However, in other approaches the gradient force arises from the non-uniform field distribution

over the laser beam cross-section or over the wavelength of the laser light, whereas for

near-field microtraps the gradient force stems from the optical field non-uniformity over

the aperture diameter. Consequently, atom microtraps can store atomic microclouds with

characteristic dimensions equivalent to or less than the field wavelength. Such microclouds

could be used for site-selective manipulation of atoms in the field of quantum information

technologies [? ? ? ].

In this paper, we propose and present a quantitative analysis of near-field Fresnel atom

microtraps with a characteristic aperture size about or exceeding the optical wavelength.

Such traps rely on the near-field diffraction pattern, characterized by a Fresnel number,

NF ≥ 1. We analyze the field distribution in the vicinity of a small, circular aperture in a

thin screen, and calculate the dipole potential of the atom in the diffracted near-field. Our

analysis of the Fresnel microtraps shows that, at a moderate intensity of the light field of

about 10 W/cm2, the traps are able to store atoms with a kinetic energy of about 100 µK

during time intervals of around one second.
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FIG. 1: (a) An array of atom microtraps produced by diffracted optical near-fields; (b) Schematic

of a single microtrap formed by a circular aperture of radius a. E1 represents the incoming light

field and E2 the diffracted near-field.

II. TRAPPING POTENTIAL

An array of Fresnel atom microtraps is schematically shown in Fig. 1. The traps can be

analyzed by considering the diffraction of a travelling light wave of arbitrary polarization on

a circular aperture

E1 = eE0 cos(kz − ωt), (1)

where e is a unit polarization vector, E0 is the amplitude and k = ω/c is the wave vector.

When the size of the aperture exceeds or is equivalent to the wavelength of the optical field,

the electric field behind the aperture can be represented in the scalar approximation as

E2 = eE = eRe(Ee−iωt), (2)
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where E = E(r) is the complex field amplitude. The diffracted field can be evaluated by

applying the Rayleigh-Sommerfeld diffraction formula [? ? ]

E(x, y, z) =
E0

2π

∫ ∫
exp(ikr)

r

(z

r

) (
1

r
− ik

)
dx′dy′, (3)

where the distance between the point (x, y, z) in the observation plane and the point (x′, y′, 0)

in the aperture plane is r = [z2 + (x− x′)2 + (y − y′)2]
1/2

, and the integral (??) is considered

to be taken over the aperture region.

The evaluation of the Rayleigh-Sommerfeld integral can be simplified by taking into

account the axial symmetry of the diffracted field. By introducing cylindrical coordinates

ρ′, φ′ in the aperture plane and cylindrical coordinates ρ, φ in the observation plane one can

rewrite the diffracted electric field as

E(ρ, z) =
E0

2π

∫ a

0

∫ 2π

0

exp(ikr)

r

(z

r

) (
1

r
− ik

)
dϕρ′dρ′, (4)

where now r =
[
z2 + ρ2 + ρ′2 − 2ρρ′ cos ϕ

]1/2
, ϕ = φ′ − φ is the relative angular coordinate,

and a is the aperture radius.

For a red-detuned light field, the potential of a single microtrap is defined by the value

of the light shift according to the usual equation [? ],

U = −~Ω2

|δ| , (5)

where Ω = dE/2~ is the Rabi frequency, d is the dipole matrix element, and δ = ω−ω0 is the

detuning of the light field with respect to the atomic transition frequency, ω0. Accordingly,

for the diffracted field represented by Eqs. (??)-(??), the potential of an atom in a single

microtrap can be written as

U = −U0
|E|2
E2

0

, (6)

where

U0 =
3

8

γ

|δ|
E2

0

k3
(7)

is a characteristic value of the potential and γ is half the spontaneous decay rate. In what

follows, we consider the case when the radius of the aperture, a, only slightly exceeds the

optical wavelength, λ. In this case the Fresnel number, NF , is expected to be approximately

equal to one, i.e.

NF =
a2

λzm

≈ 1, (8)
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FIG. 2: Atom potential in a Fresnel atom microtrap as a function of transverse coordinates for

radius a = 1.5λ (ka = 9.4), at distances above the aperture z = 0.5a, 1a, 5a.

where zm is a characteristic vertical distance from the aperture to the maximum of the

electric field intensity. Accordingly, the electric field intensity is expected to have a single

diffraction maximum, and the atom potential will also have a single minimum. An example

of the single-minimum atom potential is shown in Fig. ?? for different values of the vertical

coordinate, z.

Alongside the integral representation of the diffracted field, and the corresponding po-

tential of the atom, one can also find an analytical representation of the atom potential near

the symmetry axis of the microtrap. This can be done by decomposing the integrand in Eq.
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FIG. 3: Atom potential of the Fresnel atom microtrap as a function of the coordinates, z and ρ,

for a = 1.5λ.

(??) into a series in small radial displacements, ρ ¿ a [? ? ]. Considering the second order

in ρ, one can represent the near-axis atom potential as parabolic in the transverse direction,

U(ρ, z) =− U0

{
1 +

z2

R2
a

− 2z

Ra

cos k(Ra − z)

−k2a2zρ2

2R3
a

[(
1− 3

k2R2
a

)(
z

Ra

− cos k(Ra − z)

)
+

3

kRa

sin k(Ra − z)

]}
,

(9)

where Ra =
√

a2 + z2. The potential represented in (??), when considered as a function of

the vertical coordinate, z, has a minimum at z = zm, defined by the transcendental equation

cos [k(Ra − z)− χ] =
a2z

(a2 + z2)3/2

1

(A2 + B2)1/2
, (10)

where tan χ = B/A, with A = a2/(a2 + z2) and B = kz (1− z/Ra).

The dependence of the potential U = U(ρ, z) on the coordinates z and ρ is shown in Fig.

?? for the same aperture size as used in Fig. ??. The near-axis potential represented by Fig.

?? has a minimum at zm = 1.47a = 2.2λ. In accordance with our expectations, the Fresnel

number, NF ' 1 at this value of zm, and the atom potential has a well defined minimum

near the z-axis.
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III. PARAMETERS OF NEAR-FIELD MICROTRAPS

We evaluate parameters of the Fresnel atom microtraps for (i) 85Rb atoms, which interact

with a far-red detuned light field at the dipole transition 52S1/2(F = 3) → 52P3/2(F = 4)

with wavelength λ = 780 nm, and (ii) 133Cs atoms interacting with the light field at dipole

transition 62S1/2(F = 4) → 62P3/2(F = 5) with wavelength λ = 852 nm. For the dipole

transition in 85Rb, the natural linewidth is 2γ = 2π×5.98 MHz and the saturation intensity

is IS = 1.6 mW/cm2. For 133Cs the corresponding values are 2γ = 2π × 5.18 MHz and

IS = 1.1 mW/cm2 [? ].

We choose the radius of the microtraps to be a = 1.5λ, with a = 1.2 µm for 85Rb atoms

and a = 1.3 µm for 133Cs atoms. For these two cases the minimum of the trap potential is

located at distances above the aperture, zm = 1.76 µm and 1.91 µm, respectively. Choosing

a laser intensity, I = 10 W/cm2, and a large negative detuning, δ = −104γ, we can evaluate

the depth of the potential, Ud, as 0.13 mK for Rb and 0.17 mK for Cs, respectively. The

energy levels near the bottom of the trapping potential,

E = hνρ

(
nρ + 1

2

)
+ hνz

(
nz + 1

2

)
, (11)

can be evaluated by representing the potential (9) near the minimum as a harmonic potential,

U(ρ, z) =
1

2
Mω2

ρρ
2 +

1

2
Mω2

z (z − zm)2 , (12)

where M is the atom mass. This procedure shows that at chosen parameters of the mi-

crotraps, typical oscillation frequencies are of the order of 10 kHz. Specific values of the

transverse frequencies, νρ = ωρ/2π, and longitudinal frequencies, νz = ωz/2π, for 85Rb and

133Cs atoms are shown in Table I, together with values of the characteristic oscillation am-

plitudes in the ground state, ρ =
√
~/Mωρ, and z =

√
~/Mωz. Note that the number of

quantized energy levels in the microtrap potential is estimated to be about 50, with a typical

energy separation of about ∆E = 1 µK.

It is worth noting that the optical potential of a Fresnel atom microtrap could generally

be distorted by the Casimir-Polder potential due to the presence of the screen [? ]. Since

the considered optical potential is localized at distances z from the screen, where z > λ/2π,

the contribution of the Casimir-Polder potential for the case of a perfect metal screen and
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in the absence of any opening can be evaluated as [? ? ? ]

UCP(z) = −3~γ
8π

(
λ

2πz

)4

. (13)

We estimate the value of the potential UCP(z) at two important points: (i) at the position of

the potential well minimum, zm = 2.2λ, and (ii) at the position of a local maximum of the

optical potential, zM = 0.7λ. Near the bottom of the optical potential the Casimir-Polder

potential is about 4 · 10−4 µK for both 85Rb and 133Cs atoms. At the position of the local

maximum the Casimir-Polder potential is about 5 · 10−2 µK. Since the depth of the optical

potential well is estimated to be about 100 µK the above estimates show that for the Fresnel

atom microtraps considered here the Casimir-Polder potential can be neglected.

Similar to conventional far-off-resonance dipole traps, atoms can be lost from the Fresnel

atom microtrap due to diffusive heating of the atoms and collisions with the background gas

[? ]. Assuming the rest gas pressure is chosen to be sufficiently low, we can evaluate the

lifetime of the atoms in the Fresnel atom microtrap by considering the diffusion broadening

of atomic velocities due to photon recoil fluctuations. For this process, the velocity diffusion

coefficient has a standard evaluation as D = γv2
r(I/IS)(γ/δ)2, where vr = ~k/M is the recoil

velocity, I is the light field intensity, and IS is the saturation intensity [? ]. Assuming that

the kinetic energy of an atom escaping from the trap is approximately equal to the potential

well depth, Mv2/2 = Ud, and the atomic velocity is defined by the diffusion broadening,

v2 ≈ Dτ , we can evaluate the trap lifetime, τ , as

τ = γ−1 2Ud

Mv2
r

(
IS

I

)(
δ

γ

)2

. (14)

For the above chosen parameters, a trap lifetime of about 1 s can be achieved, as given in

Table I. The lifetime can be increased by increasing the input laser power, which, in turn,

increases the trap depth.

IV. CONCLUSION

We have proposed a system of neutral atom microtraps based on a series of circular

apertures in a thin screen. Laser light incident on the screen produces an array of potential

minima for atoms in the near-field. Our analysis shows that these near-field atom microtraps

can store cold atoms for times up to seconds. The potential well depth of the microtraps is

8



TABLE I: Parameters of a near-field Fresnel diffraction trap for 85Rb and 133Cs atoms with an

input laser power of 10 W/cm2 and detuning δ = −104γ for an aperture radius a = 1.5λ.

Atom Ud [mK] νρ [kHz] νz [kHz] ρ̄ [nm] z̄ [nm] τ [s]

85Rb 0.13 34 19 60 80 0.6

133Cs 0.17 29 14 51 73 1

mainly determined by the intensity of the incident laser field and the detuning. By varying

these two parameters one can achieve robust control over the trap parameters. A numerical

analysis for 85Rb and 133Cs atoms shows that a trap depth of 0.1 mK can be achieved, with

storage times up to a second at an incident laser intensity of 10 W/cm2. With such trap

lifetimes one can perform atom optics experiments by blending micro-fabrication technology

with cold atoms [? ]. An important point to note is that each individual microtrap uses

only about 0.5 µW in the above considered case, where the aperture radius a = 1.5λ.

We also note that, in the present consideration, we have limited our analysis to the

case of apertures that are well separated in the screen. For a periodic array of densely

spaced microtraps, one may expect even further reduction to the required incoming laser

power due to an enhancement of the diffracted field during light transmission through the

micro-aperture array [? ? ].

Finally, we note that the above-considered microtraps possess the same basic properties as

for far-off-resonance dipole traps. Hence, the proposed traps are free of some perturbations

that are significant in other types of atom traps. In particular, such processes as spin-

flips near surfaces [? ], which redistribute trapped atoms over magnetic sublevels, cannot

influence the lifetime of atoms in the proposed Fresnel atom microtraps. Another advantage

of near-field microtraps is that they are capable of storing atoms at relatively large distances

from the material screen which produces the diffracted light field. Accordingly, the internal

and translational states of the atoms stored in the near-field microtraps are primarily defined

by the dipole interaction with a far-detuned light field only. In particular, we have shown by

numerical evaluation, that the influence of the Casimir-Polder potential on the atomic states

in a Fresnel atom microtrap can be neglected. The van der Waals energy shifts [? ] can also

be shown to have a small influence on the atomic states trapped in a Fresnel atom microtrap.
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It can also be noted that the presence of the opening in the screen can be considered as

an advantage for loading the atoms into near-field microtraps, as such microtraps ease the

application of standard loading techniques widely used for other types of dipole traps [? ?

]. An alternative loading scheme using optical tweezers may be feasible [? ], due to the

dimensions being considered within the proposed trap geometry.
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