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Non-Detection, False Alarm and Calibration Insensitivity in Kurtosis 

and Pseudofractal Based Singularity Detection 

Vikram Pakrashi, Biswajit Basu
*
 and Alan O‟ Connor 

Department of Civil, Structural and Environmental Engineering Trinity College Dublin, 

Ireland. 

 

Abstract- This work isolates cases of non-detection, false alarm and insensitivity for a 

general class of problems dealing with the detection and characterization of existence, 

location and extent of singularities embedded in signals or in their derivatives when 

employing kurtosis and pseudofractal based methods for the detection and 

characterization process. The non-detection, false alarm and insensitivity for these 

methods are illustrated on an example problem of damage identification and calibration 

in beams where the singularity to be identified lies in the derivative of the measured 

signal. The findings are general, not constrained to linear systems, and are potentially 

applicable to a wide range of fields including engineering system identification, fault 

detection, health monitoring of mechanical and civil structures, sensor failure, aerospace 

engineering and biomedical engineering.  
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I. INTRODUCTION 

The importance of the detection of the presence, location and extent of singularity in a 

measured signal or in any of its derivatives (Robertson et al. 2003) has gained 

considerable interest in various fields of engineering (Dimarogonas 1996)), medicine 

(Addison 2005 ) and economics (Ide and Sornette 2002). Among the various methods 

that detect and characterize this essentially local phenomenon, the kurtosis 

(Hadjileontiadis et al. 2005) and pseudofractal based methods (Hadjileontiadis et al. 

2005) have been successfully applied and experimentally validated in recent times. 

Although this identification process is similar to wavelet based singularity detection 

(Gentile and Messina 2003) in the sense that the computed detectors form an extremum at 

the location of the singularity and the absolute value of the extremum so formed can 

possibly be related to the degree of singularity at its location, no study has been 

performed addressing the issues of possible non-detection, false alarm and 

inconsistencies in the calibration of the extent of singularity which arise directly from the 

detection scheme. These non-detection, false alarm and inconsistencies are not related to 

measurement noise and thus are epistemic in nature. Assessment of the kurtosis and 

pseudofractal based techniques is thus considered topical and important in this regard. In 

this paper, we consider a structural health monitoring system comprised of a damaged 

beam with an open crack as an example problem. The objective is to find the existence, 

location and the severity of the damage through the identification and calibration of the 

damage induced singularity embedded in the first derivative of the measured response 

(modeshape, static or dynamic deflected shape) of the beam.  Boundary condition 



dependent non-detection and consistent false alarm have been successfully isolated and 

identified for a kurtosis based singularity detection scheme, while situations of possible 

loss of relevance in the calibration of the degree of singularity related to pseudofractal 

based detection have been found.  

 

II DETECTION TECHNIQUES – A BRIEF OVERVIEW OF KURTOSIS CRACK 

DETECTOR (KCD) AND PSEUDOFRACTAL CRACK DETECTOR (PFCD) 

Kurtosis and pseudofractal based detections of singularity consider a cumulant based 

scheme incorporating a moving window. Since damage often introduces a singularity in a 

measured static or dynamic response in the spatial domain, kurtosis and pseudofractal   

based detectors can be helpful for damage detection. These detectors can identify damage 

by investigating the local deviation of the damaged response from a Gaussian signal. The 

Gaussian signal serves as a benchmark and a sudden, significant change of this local 

deviation from Gaussianity can be interpreted as damage at that location. The extent of 

such sudden deviation with respect to its neighbouring regions can be then possibly 

connected to the extent of damage at that region.   

The kurtoses of an empirically chosen width of window within the signal are 

computed for the KCD scheme. The window slides along the signal at each point so that 

a local kurtosis value is computed at each location of the moving window. This single 

step sliding of the windows is what has been previously reported in literature as a nearly 

99 percent overlap of the windows (Hadjileontiadis et al. 2005). The global mean of the 

local kurtosis values is computed and the absolute deviation of the local kurtosis values 

for each position of the sliding window from the mean acts as an indicator of damage. At 



the location of damage, the deviation of local kurtosis values (corresponding to the 

central position of each sliding window) from the local mean forms an extremum and 

identifies the location.  The Kurtosis Crack Detector (KCD) is defined as 

KCD i                                                                       (1) 

where i are the local kurtosis values at each position of the sliding window and   is the 

mean of these kurtosis values.  

The pseudofractal dimension based crack detection scheme (Hadjileontiadis et al. 

2005) is similar to the Kurtosis Crack Detector (KCD) and is referred to as Pseudofractal 

Crack Detector (PFCD) in this paper. A sliding window, similar to what has been 

described for the KCD scheme is considered for PFCD. The piecewise linear length of 

the portion of the signal (since only discrete values are obtained in reality) corresponding 

to a certain sampling step size is computed first. The same signal, sampled at a different 

rate employing a different step size is used again to find the new piecewise linear length. 

The location and the extent of the sliding window for both the cases are same. When a 

single signal is available, a different sampling step and the piecewise linear length within 

the windowed part of the signal can be computed by downsampling the signal. In the 

current paper, the step size is doubled by downsampling the signal by two. The PFCD 

crack detector is a measure defined somewhat similar to the way a fractal box counting 

measure is obtained for a signal.  The PFCD based crack detection scheme is defined in 

this paper as the computed measure 

                                                  

L1log( )
L2PFCD abs( )
S2log( )
S1

                                                            (2) 



where L(.) are the respective lengths of the windowed part of the signal for each location 

of the sliding window computed by employing a step size of S(.). The subscripts of L and 

S in equation 2 represent the cases corresponding to two different step sizes used. Similar 

to KCD, the PFCD measure detects the damage by forming an extremum at its location. 

The sudden change in the signal or its derivative at the location of damage is magnified.  

As has been discussed, KCD and PFCD are essentially a measure of the local 

deviation of a measured signal from Gaussianity. The measure of the local regularity in 

the neighbourhood of a point in a function can be related to the local Lipschitz exponent 

around that point (Mallat 2001). A function f(x) in the square integrable space is 

pointwise Lipschitz 0   at a point  if there exists a K>0 and a polynomial p of degree 

m such that 

                                 x , f (x) p (x) K x


                         (3) 

The term  provides the degree of singularity in the neighbourhood of the point x. It is 

important to find how the absolute value of the local extremum formed by KCD or PFCD 

at the location of singularity is related to the strength of the singularity at that location.   

 

III APPLICATION ON STRUCTURAL HEALTH MONITORING 

 A typical problem related to the identification of singularity in a signal or its derivative 

arises in the field of structural health monitoring where the presence, the location and the 

extent of an open crack in a beam is to be detected. The presence of an open crack in the 

beam introduces a singularity at the crack tip and brings about a sharp change in the 

displacement and the stress-strain fields in the neighbourhood of the location of the crack 

(Carneiro and Inman 2002). As a result, the first derivative of the typical spatial 



responses of the beam, like modeshapes or static and dynamic displaced shapes contain a 

damage induced singularity. The first modeshape (noise-free) of a simply supported beam 

of length „L‟ and depth „h‟ with an open crack of depth „c‟ at a distance „a‟ from the left 

hand support is considered as an example. The choice of the first modeshape is also 

important from the point of view that it is comparatively simpler to obtain from a real 

structure. Damage models of various complexities and detail for an open crack in a beam 

can be considered (Carneiro and Inman 2002, Narkis 1998, Bovsunovsky and Matveev 

2000). However, the choice of a damage model essentially serves the purpose of 

simulating a damaged modeshape containing a singularity in its derivative, which in turn 

is the key to the detection process. Reports of laboratory based studies have validated the 

presence of singularity in the derivative of the first modeshape or deflected shape of a 

beam with an open crack (Okafor and Dutta 2000, Rucka and Wilde 2006, Pakrashi et al. 

2007). In this paper, the cracked beam is modelled as an assembly of two sub-beams 

joined by a rotational spring at the location of the damage assuming the effects of damage 

to be localized in its immediate neighbourhood whereby the change of global modal 

properties are not significant. The free vibration equation for the beams on either side of 

the crack is given as 

                                                   
4 2y y

EI ρA 0
4 2x t

 
 

 
                                                     (4) 

where E, I, A and  are the Young‟s modulus, the moment of inertia, the cross sectional 

area and the density of the material of the beam on either side of the crack. The 

displacement of the beam from its static equilibrium position is y(x,t), at a distance of x 

from the left hand support along the length of the beam at an instant of time t. 

Continuities in displacement, moment and shear are present at the location of the crack 



while a discontinuity for slope is present at that location and is given in terms of the non 

dimensional crack section flexibility (Narkis 1998) dependent on crack depth ratio 

(=c/h) as 

                                               (a) (a) L (a)
R L R

                                                 (5) 

where  represents the mode shape and the subscripts R and L represent the right and the 

left hand side of the crack respectively. The term  is expressed as a polynomial of   as 

                    2 2 3 46 (h / L)(0.5033 0.9022 3.412 3.181 5.793 )                       (6) 

The modeshape derived from the damage model contains singularity in its derivative at 

the damage location.  

 

IV ISOLATION OF NON-DETECTION, FALSE ALARM AND CALIBRATION 

INSENSITIVITY 

The damaged first modeshape is simulated for a square beam of length 1 m with the cross 

sectional area (A), depth (h) and the moment of inertia (I) being 0.0001 m
2
, 0.01 m and 

8.33x10
-10

 m
4
 respectively. The Young‟s modulus (E) and the density of the beam () are 

assumed to be 190x10
9
 N/m

2
 and 7900 kg/m

3
 respectively. Figure 1 shows the successful 

detection of the location of an open crack situated at 0.4m from the left hand support 

using KCD and PFCD. No noise is considered. It is clearly observed that the KCD has a 

potential to fail to identify the presence and the location of damage if it is exactly or near 

to the centre of the beam. This aspect of non-detection is dependent on the boundary 

condition of the structural system and will not be observed for a cantilever 

(Hadjileontiadis et al. 2005) due to its monotonically increasing modeshape and thus has 



not been reported before. The modeshape of a simply supported beam contains a 

contraflexure at the midpoint and the local deviation from Gaussianity around that point 

is so significant that it consistently overwhelms the effect of any damage that might be 

present at or near to the point of contraflexure. On the other hand, it is interesting to note 

that even when no damage is present, the local extremum near the mid-point still exists 

and thus generates a false alarm. The number of locations where this non-detection and 

false alarm will be present is equal to the number of locations of significant contraflexure 

in the signal. Oscillations due to measurement noise can mask the location of damage for 

low signal to noise ratios (SNR) but will not generate consistent extremum location due 

to the inherent random nature of noise. Such false alarm is not present for the PFCD 

detection scheme as it targets the sudden jump in the derivatives. The change in 

contraflexure is not important in this case since a unique derivative exists at the location 

of contraflexure.  

The calibration surface of damage extent (related to the degree of singularity at its 

location) employing the KCD detection method with a 10 point sliding window is shown 

in Figure 2a for a wide range of crack depth ratios and damage positions. The variation of 

the calibration is dependent on the number of points within the window. This is shown in 

figures 2b and 2c showing the absolute percentage deviation of the calibration values 

(from the 10 point window calibration values) for a 9 point and a 19 point sliding window 

respectively. The nature of the calibration however has been checked to be independent 

of the number of points in the sliding window.  

The PFCD calibration is exceptionally sensitive on the number of points present 

on the window and especially on whether the number of points in the window is even or 



odd. This is due to the fact that the position of a downsampled signal within a given 

window is not unique. A number of observations are made from the PFCD calibration. 

Figures 3a and 3b show the PFCD calibration values employing a 19 point sliding 

window, but by computing the downsampled length (L2) from the first and the second 

point of the original windowed signal (of length L1) respectively. Although the 

calibration values are close enough, the nature of the calibration changes completely. On 

the other hand, the calibration values are highly dependent on whether the number of 

points in the sliding window is even or odd. Figures 3c and 3d repeat the calibration as 

described for Figures 3a and 3b, but for an 18 point sliding window. The dramatic 

variation of the calibration values is clearly observed. For windows of smaller widths, 

this change is comparatively less in terms of the nature and the magnitude of the 

calibration values. Figures 3e and 3f show graphs similar to Figures 3a and 3b for a 5 

point sliding window. However, in this case, the calibration becomes exceptionally 

sensitive based on whether the last point of downsampled signal matches with the 

original signal or not. This is observed in Figure 3g 

This non-consistency for PFCD method is not present or apparent at the damage 

location detection level. Figure 3 shows the comparison of PFCD based damage extent 

calibration between two cases where the first calibration is based on a moving window 

consisting of an even number of points while the second calibration considers the same 

window with odd number of points. While the calibration with a moving window with 

even number of points is consistent and sensitive, considering a window with odd number 

of points poses a serious problem in terms of sensitivity against increasing damage extent.  

 



 

 

V CONCLUSIONS 

Events of non-detection, false alarm and calibration insensitivity have been isolated for 

kurtosis and pseudofractal based identification of the presence, location and extent of 

singularity in a signal or its derivatives. The kurtosis based singularity detection 

technique is susceptible to non-detection and false alarm at the level of singularity 

location identification and is dependent on the signal geometry. The pseudofractal based 

calibration of the extent of singularity at its location is dependent on whether the number 

of points employed in the moving window for the computation pseudofractal measure is 

odd or even. For a window with odd number of points, the sensitivity of the pseudofractal 

measure against the degree of singularity is insignificant in comparison with a window 

with even number of points, although the successful detection of the location of 

singularity is unaffected. The findings have been illustrated using the problem of damage 

detection of a beam with an open crack. 
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List of Figures 

Figure 1.  KCD and PFCD based detection of an open crack located at 0.4m from the left 

hand support of a simply supported beam is shown. KCD based detection generates 

potential non-detection and false alarm cases at and near the midpoint of the beam. 

 

Figure 2. Damage calibration using KCD for a range of crack depth ratio and damage 

locations.  

 

Figure 3. Damage calibration using PFCD for various computation windows for a range 

of crack depth ratio and damage locations.   
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Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 
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Figure 3. 
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