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Effects of Tuned Mass Damper on Damaged Bridge-

Accelerating Vehicle Interaction 

Vikram Pakrashi, Alan O’ Connor and Biswajit Basu 

Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, 

Ireland 

 

ABSTRACT: This paper considers the effects of tuned mass damper (TMD) on damaged 

bridge- accelerating vehicle interaction. The damage of the bridge is considered to be an open 

crack. The incorporation of a TMD to control the vibration response of the bridge and the 

vehicle has been investigated from different aspects. A simplified form for the tuning ratio of 

the TMD is proposed. The vibration mitigation of the peak displacement, velocity and 

acceleration of the damaged bridge and the accelerating vehicle using such a tuning is 

observed along with the effects of possible detuning of the TMD due to the progressive 

deterioration of the bridge. A detail parametric study is performed on the system with TMD 

considering the effects of vehicle velocity, vehicle acceleration and the severity of the damage 

of the bridge.  

 

KEYWORDS: Tuned Mass Dampers, Open Crack, Vibration Control, Tuning Ratio, Bridge-

Vehicle Interaction 
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1. INTRODUCTION 

The interaction between bridges and the vehicles traversing them can give rise to dynamic 

magnification of static effects. The magnified displacement due to vibration may be 

unacceptable in terms of serviceability or alternatively the consequences of amplified loading 

can lead to excess cracking, thereby violating a possible limit state criterion. Thus, both the 

vehicle and the bridge experience magnified stresses due to dynamic effects. In addition, 

bridge-vehicle interaction generally increases the vertical acceleration of the vehicle. This 

becomes a source of discomfort for the passengers since the human body is sensitive to rate of 

change in velocity.  Installation of a proper vibration control mechanism like Tuned Mass 

Damper (TMD) can lower the dynamic response of the bridge and the vehicle and as a direct 

consequence the structure demonstrates a relative improvement in terms of serviceability. The 

frequency and damping ratio of the TMD is adjusted or tuned with that of the bridge in such a 

way that the TMD absorbs the major part of the excitation and controls the bridge-vehicle 

interaction, thus providing possible solutions related to the excess stress on the vehicles and 

the passenger discomfort due to unwanted and excessive vertical acceleration.  

A huge amount of literature of varying complexity and details (both theoretical and 

experimental) is available on the bridge vehicle interaction technique (Abdel-Rohman and Al-

Duaij (1996), Delgado and Dos-Santos (1997), Pesterev and Bergman (1997), Song et.al 

(2003), Da Silva, (2004)). Genin et al (1975), Hayashikawa and Watanabe (1981), Klasztorny 

and Langer (1990), Cai et al (1994) and Fryba (1999) have discussed the problem of a quarter 

car model of a vehicle moving over a flexible guideway modelled as an Euler Bernoulli beam 

element in details. 

Den Hartog (1985) showed the efficiency of a TMD to suppress vibrations of an SDOF 

system under harmonic loading. With damping included, the tuning frequency and the 

damping become outputs of an optimisation problem. The TMDs perform satisfactorily when 
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the exciting frequency has a narrow window (Inman (2001)), which is often the case for a 

bridge vehicle interaction process. Igusa and Xu (1992) have examined both single and 

multiple TMDs with the natural frequency distributed over a range and have found multiple 

TMDs to be more effective and robust than a single one. Park and Reed (2000) have found 

uniformly distributed TMDs to perform better than linearly distributed ones. Yamaguchi and 

Harnpornchai (1993), Abe and Fujino (1994), Kareem and Kline (1995) and Wang et al 

(2003) have discussed the advantages of multiple TMDs over single TMD. Kwon et al (1998) 

and Jo et al (2001) have considered the interaction of high-speed vehicles with three span 

steel box girder bridges and have advocated the use of critical damping value in TMD 

suggested by Tsai (1993) to avoid the beating phenomenon due to inadequate damper tuning. 

Warburton and Ayorinde (1980) however, have previously showed that for a TMD with small 

mass ratio with respect to the bridge, exact tuning may turn out to be rewarding.  It is 

observed from the literature that the improvement due to the presence of multiple TMD are 

often quite small in terms of the peak response, since in many of the cases the first vibration 

mode of the beam contributes the almost entirely to the dynamic response of a beam (Law and 

Zhu (2004), Yang and Lin (2005)).  

However, the interaction of a damaged beam and a moving load traversing over the 

beam has been considered quite recently mostly for the purposes of structural health 

monitoring process. Majumdar and Manohar (2003) have considered a bridge system with 

partially immobile bearings and have identified the loss of local stiffness by proposing a time 

domain damage descriptor. Lee et.al (2002) have experimentally investigated the possible 

application of bridge-vehicle interaction data for identifying the loss of bending rigidity by 

continuously monitoring the operational modal parameters. Law and Zhu (2004) have 
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considered a simply supported beam with open and breathing cracks and discussed the 

dynamic behaviour of the bridge-vehicle interaction both from theory and experiment.  

It is observed that the effects of TMD on a deteriorating bridge traversed by an 

accelerating vehicle have not been dealt with. Since the natural frequency of a deteriorating 

bridge changes with time, it is important to observe the corresponding effects on the tuning 

criteria, the possibility of detuning and the consequent malfunction of a TMD device due to 

such deterioration in terms of vibration control of both bridge and vehicle. Also, most of the 

existing literature considers a constant velocity for the traversing vehicle and hence the 

investigation of the effects of various vehicle accelerations for a deteriorating bridge – vehicle 

- TMD interaction is deemed important. This paper formulates a damaged beam with an open 

crack fitted with TMDs. A quarter car model of an accelerating vehicle consisting of two 

degrees of freedom is considered to traverse the beam. Optimized tuning parameters for the 

TMD following Ghosh and Basu (2006) have been computed. The modification in the tuning 

parameters due the presence of damage is also investigated. The effectiveness of the TMDs is 

considered in terms of the peak responses of the bridge and the vehicle. The efficiency of the 

TMD for each of such criterion is parametrically investigated for a range of velocities and 

crack depth ratios (CDR). The effects of an accelerating vehicle are investigated for the same 

criteria of vibration control. The study forms a basis to identify and emphasize the importance 

of damage and the acceleration of a vehicle traversing a bridge with respect to the efficiency 

of peak vibration reduction through the implementation of a passive TMD. 

 

2.  DAMAGE MODEL 

A simply supported Euler Bernoulli beam with an open crack is modelled as two uncracked 

sub-beams connected through a rotational spring at the location of crack in the lumped crack 
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formulation. The length of the beam is L with the damage located at a distance „a‟ from the 

left hand support of the beam. The crack depth is taken as c and the overall depth of the beam 

is h. The free vibration equation for both the beams on either side of the crack can be written 

as 

                                     
4 2

4 2

y y
EI ρA 0

x t

 
 

 
                   (1) 

where E, I, A and  are the Young‟s modulus, the moment of inertia, the cross sectional area 

and the density of the material of the beam on either side of the crack. The displacement of 

the beam from its static equilibrium position is y(x,t), at a distance of x from the left hand 

support along the length of the beam at time t. The strains and stresses are concentrated at the 

crack tip and decay inversely proportional to the square root of the radial distance away from 

the crack tip (Carneiro (2000)). It is assumed that the effects of the crack are applicable in the 

immediate neighbourhood of the crack location and is represented by a rotational spring of 

equivalent local stiffness. Through the separation of variables in equation 1 and solving the 

characteristic equation, a general solution of the modeshapes is found as per Narkis (1994) to 

be 

 

           L 1L 2L 3L 4L(x) C Sin( x) C Cos( x) C Sinh( x) C Cosh( x) 0 x a                      (2) 

and 

          R 1R 2R 3R 4R(x) C Sin( x) C Cos( x) C Sinh( x) C Cosh( x) a x L                       (3) 

 

for the sub-beams on the left (L) and the right (R) side of the rotational spring respectively. 

The terms C(.) are integration constants arising from the solution of the separated fourth order 

differential equation in space. The term  is expressed as 
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2
1/ 4A

( )
EI

 
                                            (4) 

 

where the natural frequency of the cracked beam is  The displacement and the moment at 

the two supports of the beam are zero. Hence 

 

                           L (0) 0   , L (0) 0  ,  R (L) 0   and R (L) 0                             (5)  

 

The continuity in displacement, moment and shear are assumed at the location of crack. These 

conditions can be expressed as 

 

                          L R(a) (a)  , L R(a) (a)   and L R(a) (a)                                (6)                    

 

A slope discontinuity is present at the crack location. The slope condition is modelled as 

 

                                                 R L R(a) (a) L (a)                                                          (7) 

 

In equation 7, the term  is the non-dimensional crack section flexibility dependent on the 

crack depth ratio. As per Narkis (1994) the function is considered to be a polynomial of the 

crack depth ratio in a non-dimensional form as 

 

                   2 2 3 46 (h / L)(0.5033 0.9022 3.412 3.181 5.793 )                                  (8)            
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The term (=c/h) is the crack depth ratio (CDR)The boundary conditions are substituted in 

the general modeshape equation and a system of eight linear equations is formed. The natural 

frequency of the cracked beam may be found by setting the determinant of the matrix derived 

from the system of equations to zero, expanding it and solving for the roots ofnumerically. 

In this paper, the roots were found using Brent‟s method in MATLAB (1994). The matrix is 

presented in Appendix A.1. The coefficient C1L is normalized to unity, being consistent with 

the fact that for an undamaged beam the maxima of the first modeshape is equal to unity. The 

other coefficients are then found with respect to C1L.  

 

3.  BRIDGE-VEHICLE-TMD INTERACTION 

3.1 Description of the Problem 

The bridge is modelled as a simply supported Euler Bernoulli beam with an open crack as the 

damage. The vehicle is modelled as a quarter car element consisting of two degrees of 

freedom representing the vertical motions of the wheel and the body. The quarter car is 

assumed to traverse the damaged beam with an acceleration f and an initial velocity u0. The 

masses of the lower and the upper degrees of freedom of the quarter car model are mw and mb 

respectively. An assembly consisting of two sets of springs (kb, kw) and dampers (cb, cw) 

represents the suspension system of vehicle. Angular movements of the vehicle are neglected.  

Tuned mass dampers are modelled to be connected to the beam with a parallel spring and 

damper system. For the case of multiple tuned mass dampers, the i
th

 TMD is assumed to have 

a spring stiffness kzi and a damping of czi. The location of the i
th

 TMD on the beam from the 

left hand support is taken as xi. The vehicle is assumed to be moving on a surface without 

losing contact with it. Bouncing, impact effects and surface roughness of the bridge pavement 

are not considered. The mass of the i
th 

TMD is given as mzi. Figure 1 shows the model of 

bridge vehicle interaction with TMD installed as described in this section. 
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3.2 Equations of Motion 

Considering the dynamic equilibrium conditions for the degrees of freedom along the 

displacement directions yb, yw and zi (for the i
th

  TMD) the following equations are obtained 

 

                          
( ) ( ) 0y y y y ycm kb bbb b w b w                                               (9) 

 

        
( y) ( y) 0y y y ycm m kb w wwb w w w                      (10) 

 

 i i iii
mz (z y) (z y) 0c kzz                                                           (11) 

 

respectively. The overdots in equations 1, 2 and 3 represent derivatives with respect to time.    

The displacement of the beam at an instant of time t at the location x from the extreme left 

hand support is given by y(x,t). Considering the dynamic loading factors and N number of 

TMDs at locations x1…xN, the partial differential equation for the forced vibration of the 

beam is obtained as 

 

                                    P Z

4 2y(x, t) y(x, t) y(x, t)
EI c A F (t) F (t)

4 2tx t

  
   

 
                                   (12) 

where 

                      2

P 0

1
F (t) (m y (t) m y (t) (m m )g) (x (u t ft ))

b b w w b w 2
                         (13) 

and 
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N

Z Zi i Zi i

i 1

N
F (t) (c z k z ) (x x ) (m z ) (x x )

i zi i i
i 1

       


                       (14)                                                                                                                    

 

the acceleration due to gravity being g , and  the Dirac Delta function. Considering n number 

of modeshapes for the damaged beam, the term y(x,t) can be expressed using the technique of 

separation of variables as  

 

                                                
n

y(x, t) (x)q jj(t)
j 1

  


                                                       (15) 

 

where q j(t) is the time domain response and (x)j is the j
th 

modeshape of the beam. Using 

the orthogonality property of the assumed modeshapes n(x), the constant  

 

K= 

L

0

2 (x)dx
n

                      (16)  

 

is obtained. Following the standard technique of separating variables and then multiplying 

both sides of equation 12 by the modeshapes and integrating over length L a system of n 

number of ordinary differential equations is obtained as 

 

               j
2(t) 2 (t) (t) R (t)q q qjjj j jj

                               (17) 

 

where j denotes the natural frequency and j denotes the damping ratio of the beam for j
th

 

mode. The forcing function Rj(t) is found to be 
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      2

j j 0 j i

N1 1
R (t) {( ( )g} (u t ft ) ( ) (x )}y ym m m m m zw b w b zi iw bAK 2 i 1

       
 

    (18) 

It is thus seen that the acceleration of the vehicle and the effects of damage both enter into the 

dynamic loading of the beam. 

 

The system of equations 9, 10, 11 and 17 can be represented in a matrix form as 

 

                                         [M]{y} [C]{y} [K]{y} {Q}                                                    (19)            

 

where M, C and K are the mass, damping and stiffness matrices respectively the vector Q 

represents the dynamic loading. The elements of these matrices and the vector are given in 

Appendix A.2. The matrices for problems involving free vibration of the bridge with TMD 

and the forced and free vibration of the bridge without TMD can be obtained by suppressing 

the rows and columns corresponding to the degrees of freedom that are not present for the 

particular problem. The governing equations 9, 10, 11 and 17 can be normalized to 

 

                                2 2

b b f b w f b wY 2 (Y Y ) (Y Y ) 0                                                  (20) 

 

                         2 2b
b w w w w

w w w

Y Y 2 (Y Y) (Y Y) 0
  

        
  

                             (21) 

 

                                   
i

2 2

i Z Z i Z iZ 2 (Z Y) (Z Y) 0                                                   (22) 
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and 

 

  i

N
zj j 2

j j j j b b w w j j v j j i2 2
i 11 1 m 1 m 1

g1 g
u 2 u ( ) u ((( Y Y ) ) ( ) ( ))

K y y

  
              

   
         (23) 

 

where the non-dimensional terms are given in Appendix A.3. 

 

3.3 Importance of the First Modeshape 

A numerical example is taken up to illustrate the importance of the contribution of the first 

modeshape of a beam for the current problem. The various material and geometric parameters 

are provided in Table 1. Figure 2 presents the normalized displacement, velocity and 

acceleration response of the midpoint of a beam with no TMD. The normalized responses 

reported in this paper have been carried out with respect to the peak responses (displacement, 

velocity and acceleration) of the bridge and the vehicle for the undamaged condition of the 

bridge. It is observed that the effects of the first modeshape are dominant in comparison with 

the higher modeshapes and thus, the control of the first modeshape can bring about a control 

of the peak response of the structure. It is also seen that for a beam-vehicle interaction 

problem, the incorporation of a single TMD at the location of the maximum of the first 

modeshape can ensure the control of peak response (controlling the absolute maximum values 

of displacement, velocity and acceleration) since the input dynamic force is narrow banded 

(Kwon et.al (1998), Jo et.al (2001)).  

 

3.4 Effects of Damage 

The effects of an open crack (CDR=0.35, a=18m) in the beam are seen in Figures 3(a) and 

3(b) for both bridge and vehicle respectively. The introduction of damage brings about a 
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higher dynamic response and also distorts the frequency of the dynamic loading due to the 

change of the modeshape of a damaged beam in comparison with the undamaged modeshape. 

The response of the vehicle is observed to be accentuated more in the presence of damage 

than the beam itself. Also, the vertical accelerations are seen to be affected the most when 

compared with the displacement and velocity responses. The magnified accelerations for the 

different degrees of freedom can be related to passenger comfort and serviceability of the 

bridge is affected adversely. 

 

4 TUNING PARAMETERS OF THE TMD 

Once the location of the TMD and the system dynamics are known, the mass, the damping 

and the stiffness of the tuned mass damper need to be designed. The mass ratio (mass of the 

TMD to that of the beam), from practical considerations, is a small number usually varying 

from 0.5% to 4%. The damping ratio, and most importantly the stiffness of the damper need 

be tuned with that of the response for effective reduction of the peak responses.  

                  Assuming the effects of the vehicle inertia to be comparatively small in 

comparison to the effects of the vehicle‟s self weight and that the effects of the first 

modeshape of the beam dominate, the governing system of equations 9, 10, 11 and 17 can be 

reduced to the form 

  1

1 1 1

2

1 0
z2 2

1 1 1 1 1 1 z z z

1
P (u t ft )m 2q (t) 2 q (t) q (t) (2 u(t) u(t))

AK AK

 

        
 

                  (24) 

and 

 

                                   
1 1 1

2

1 z z 1 z 1 1u (t) 2 u (t) u (t) q (t)                                                     (25)     

where 
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                                                     1 1u (t) z (t) y(t)                                                               (26)                                               

and 

 

                                                           P=
w b(m m )g                                                             (27) 

 

By choosing 

 

                                           1

1 1

z

2 z 2 z 1

m
, , , m AK

AK
         


                                   (28) 

and 

                                                         2

1 0

1
f (t) P (u t ft )

2
                                                     (29) 

 

the system of differential equations become identical to that considered by Ghosh and Basu 

(2006) to obtain a closed form optimal tuning criterion for a TMD.  

                 Ghosh and Basu (2006) have considered the system of equations 24 and 25 to 

provide a closed form solution of the optimal tuning ratio  

 

                                            
2 2

1 1
opt 3

1 4 (2 1)

(1 )

    
 


                                                      (30) 

 

where 

                                                                1z

opt

1


 


                                                               (31) 
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The authors had chosen an optimum damping ratio for the TMD to be  

 

                                                                  
1z

2


                                                                (32) 

 

The optimum tuning ratio can be rearranged as 

 

                                             
2 2

1 1
opt 2 2 3

2 21

(1 ) (1 ) (1 )

 
   

  
                                          (33) 

 

Expanding Binomially and neglecting higher order terms, equation 33 reduces to 

 

                                                     
2 2

opt 1 11 2 4 10                                                    (34) 

 

Neglecting the term 2

110   with respect to the other terms present in equation 34 

 

                                                       
1

2 2
opt 1(1 (2 4 ))                                                         (35) 

 

Expanding Binomially and neglecting the higher order terms again, the modified tuning 

parameter is obtained in much simpler closed form as 

 

                                                            
2

opt 11 2                                                            (36) 
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It is observed that the optimal tuning as proposed by Ghosh and Basu (2006) is essentially 

linear in the mass ratio of the TMD and quadratic in the damping ratio of the structure for 

practical purposes. Figure 4 illustrates this fact by considering a range of mass ratios and 

damping ratios. The term „M‟ within the parentheses of the legend in the figure denotes 

results obtained by the author using the modified tuning parameter in equation 36. 

 

5. NUMERICAL RESULTS 

A number of numerical examples are considered to investigate the effect of TMDs on 

mitigating different peak responses of the bridge and the vehicle. Figure 5 shows the effects 

of a single TMD at the midpoint of an undamaged beam. The geometric and material 

parameters of the beam are kept as in Table 1 and the mass ratio of the TMD is kept at 0.03. 

Figure 6 illustrates the effects on the motion of the vehicle for the same problem. It is 

observed that the incorporation of a TMD might be helpful to mitigate the free vibration of 

the bridge and the vehicle more efficiently than the peak dynamic displacements. This aspect 

helps in improving the passenger comfort and the serviceability requirements of the bridge 

structure. Figure 7 considers the efficiency of a TMD in controlling the peak dynamics 

responses for an undamaged beam over a range of velocities. A comparatively better 

performance in reducing the peak acceleration response is observed. 

                 The efficiency of the TMD in relation to the control of peak responses for 

displacement, velocity and acceleration is provided in Figures 8 and 9 for the bridge and the 

vehicle respectively considering the effects of various crack depth ratios and vehicle 

velocities. The possibility of deteriorated performance of peak vibration response control due 

to mistuning of the TMD in presence of damage is identified for comparatively large crack 

depth ratios within a certain velocity range. The effectiveness of the TMD in terms of 

percentage reduction of peak responses is found to be significant in the case of controlling the 
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vertical accelerations of the vehicle (Figure 9). Consequently, the TMD is seen to be effective 

in terms of passenger comfort and in possibly relieving some amount of stress to the vehicle 

suspension system. 

                Parametric investigations of the effects of acceleration of the vehicle are carried out 

next for various damage conditions. The results of the control of the peak responses are given 

in Table 2. Cases are observed where the incorporation of a TMD cannot control the peak 

responses or where it reduces the peak responses insignificantly when an accelerating vehicle 

is present on the bridge.  

              The optimum tuning ratio of the damaged beam gets modified in the presence of 

damage and the natural frequency ratio of a damaged beam (ratio of the natural frequency of 

the damaged beam to the natural frequency of the undamaged beam) acts as the modification 

factor. The optimum tuning ratios for different CDR and lengths of the beam are provided in 

Table 3.    

 

6. CONCLUSIONS 

The paper considers a damaged bridge - accelerating vehicle interaction problem where the 

damage is modelled as an open crack. The incorporation of a TMD to mitigate the peak 

vibration response of the bridge and the vehicle has been investigated in terms of vertical 

displacement, velocity and acceleration. A simplified form of the Ghosh-Basu (2006) tuning 

criterion for the tuning ratio of the TMD is proposed. A detail parametric study is performed 

on the system with TMD considering the effects of vehicle velocities, the severity of the 

damage and the vehicle accelerations. Conditions and effects of possible detuning with 

respect to the efficiency of peak response reduction for a deteriorating of the bridge are 

identified. The control of the vibration of the two vertical modes of the quarter car vehicle 

traversing the damaged beam is found to be higher even in the presence of damage in 
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comparison with that of the bridge. However, more studies are needed incorporating vehicle 

models of higher degrees of freedom to reach any conclusive statement in this regard. The 

presence of vehicle acceleration is observed to affect the performance of the TMD 

significantly.  
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APPENDIX A.1 

Linear system of equations with unknown coefficients in modeshape matrix for lumped crack model. 
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APPENDIX A.2 

Matrix Elements of Equation 19. 

Mass Matrix. 
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Damping Matrix. 
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Stiffness Matrix. 
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Vector of Dynamic Forces. 
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APPENDIX A.3 

Non-Dimensional Parameters for Equations 20, 21, 22 and 23 
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Vehicle mb=5000 kg 

mw=35000 kg 

cb=6x10
4 

N-s/m 

cw=6x10
4
 N-s/m 

kb=5.1x10
6
 N/m 

kw=9.6x10
6
 N/m 

u0=80 kmph 

f=0 m/s
2
 

Bridge A=9.22 m
2
 

I=1.5 m
4
 

L=45m 

=2x10
3
 kg/m

3
 

E=35x10
9
 N/m

2
 

CDR=0 

a=18 m 

j=0.03% 

 

Table 1. 
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Control of 

Peak Response 

(%) 

Vehicle 

Accleration 

(m/s
2
) 

 q(t)   yb   yw  

   CDR   CDR   CDR  

  0 0.2 0.3 0 0.2 0.3 0 0.2 0.3 

 1 
-0.03495 -0.03337 -0.03868 -0.03487 -0.08005 -0.04505 -0.03488 -0.08006 -0.04507 

Displacement 2 
0.020872 -0.04636 -0.12765 0.048473 -0.01318 -0.11434 0.041586 -0.01979 -0.12078 

 3 
0.083108 -0.07235 -0.19001 0.14439 -0.02612 -0.19487 0.13082 -0.03269 -0.18879 

           

 1 
0.066431 0.91625 -0.22468 -0.43848 1.0212 3.2005 -0.16494 1.1825 2.8297 

Velocity 2 
-0.20849 -2.9628 -3.9382 -0.03361 -1.3731 0.28146 -0.08422 -1.5163 0.048713 

 3 
-0.22374 2.1191 3.835 0.79802 1.3381 1.0004 0.5202 0.53001 1.1838 

           

 1 
2.791 12.121 3.5986 -0.20532 -2.7033 -2.1517 0.10291 0.99154 -2.0144 

Acceleration 2 
5.244 6.9331 7.9307 -0.26767 -2.9771 -1.6226 -0.26836 -4.8739 0.29795 

 3 
4.3636 4.3588 7.246 -0.52783 4.4511 -4.5453 -0.49894 3.8571 6.5294 

 

Table 2. 

 

              

 

Table 3. 

 

    L=45m        L=15M    

CDR 0.05 0.1 0.15 0.2 0.25 0.3 0.35  0.05 0.1 0.15 0.2 0.25 0.3 0.35 

 0.9691 0.9691 0.9691 0.9691 0.9691 0.9691 0.9691  0.9691 0.9691 0.9691 0.9691 0.9691 0.9691 0.9691 

m 0.9632 0.9579 0.9527 0.9471 0.9406 0.9327 0.9226  0.9517 0.9365 0.9221 0.9071 0.8902 0.8703 0.8462 
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Figure 3(a). 
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Figure 3(b). 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 
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