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On the Robustness di-2F Ladder DAC'’s

Michael Peter Kennedyrellow, IEEE

Abstract—A model of the linear R-2 R ladder digital-to-analog
converter (DAC) is developed in terms of the ratios of the effec-
tive resistances at the nodes of the ladder. This formulation demon-
strates clearly why an infinite number of different sets of resistors
can produce the same linearity error and shows how this error can
be reduced by trimming. The relationship between the weights of

2

1
the bits and the resistor ratios suggests appropriate trimming, de- i T i T ! T oUT
sign, and test strategies. | -1 i 1
+ - 1 4 our
Index Terms—Data converters, digital-to-analog conversion, | I | 1 0
mixed-signal circuits, resistive ladders. o b o b, ob =

Fig. 1. R-2R ladder consisting of linear resistors and open/short switches
I. INTRODUCTION controlled by bits,, k = 1,2, .-+, N.

UCH theoretical work in recent years has been devotr
to the problem of testing analog and mixed-signal ir
tegrated circuits [1]-[8]. In particular, the element-value sol
ability problem[8] is concerned with determining whether or nc
it it possible to find the values of (possibly faulty) parametet
of a circuit from a set of measurements. This is related to tl
problem of selecting a limited number of testpoints to perforlvm
a test efficiently using a minimum number of measurements [¢
The majority of the circuit theoretic studies of fault locatior
and element solvability assume that a test engineer has ac«
to a sufficiently large number of nodes in the circuit under tes.. =
While this may be a valid assumption for board-level worl1z.
it does not hold for many integrated circuits, where a Iimited

number of variables may be gccessmle. An _extrer_ne €aS€ IBfos are important in determining the transfer characteristic of
data conyerter whgre alsmgle Input or outputis avaﬂablg. Hefﬁe DAC, and these ratios can be determined in principle from a
a nonunique relationship between element values and I'ne""ﬂnﬂted set of measurements. This observation can be exploited

error can prodlfce robustnessl of the functionality against Varfﬁ'defining model-based trim, design, and test strategies [10] for
tions in internal parameter values. R-2R ladder DAC’s.

It is well known that the linearity error of aR-2R ladder
DAC may be reduced by trimming the resistors appropriately.
What may appear surprising is that a given trimming procedure
can improve the linearity of the device by moving the resistors Throughout this work, we consider theé-bit £-2R ladder

away from their nominal values. This property results from thghown in Fig. 1. We extend our analysis in Section V to include
structural robustness of the ladder. also a segmented resistive ladder architecture.

In this work, we derive a S|mp||f|ed model, in terms of re- Associated with each nodeof the ladder is a pair of linear

sistance ratios, of a digital-to-analog converter (DAC) basé@Sistorsfy., 1 andRy, », which connect it to nodes— 1 and#’,
on a resistive ladder [9] which consists of linear resistors afigspectively. An ideal open/short switch connects ndde the
ideal open/short switches. We study the connection between i Lo or OUT; node, depending on whether the corresponding
weights of the bits and the resistance ratios in order to gain iUt bitb, is 0 or 1.
sight into the robustness of the resistive ladder architecture. ~ For notational convenience, we denotey ; the effective
In particular, we show that given access to all digital inpuf§sistance at nodeseen looking into the left-hand end &, .
of the DAC, and to only one output node, it is impossible t# addition, we define the ratios
determine the values of the resistors in the ladder. Only resistor

R k1 R 2,1 R 11

*—0

|||—

o—+—-+-—--
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o—+—+--
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o—+—-+-—-=-
"

g. 2. \Voltage-mode?-2 R ladder.

Il. THE MODEL

By 3
i 1)
Manuscript received November 5, 1996; revised July 28, 1997. This paper The R-2R ladder is typically used in one of two ways to con-
was recommended by Assoicate Editor J. E. Franca. struct a DAC. Current mode exploits current division along the
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sity College Cork, Lee Maltings, Cork, Ireland (e-mail: Peter.Kennedy@ucc.i E
Publisher Item Identifier S 1057-7122(00)00718-2. t

dder while voltage mode is based on voltage division [11]. In
is work, we treat only voltage-mode operation.

1057-7122/00$10.00 © 2000 IEEE
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R R
EN,N—I N NI N N-13

(b)

Fig. 3. (a) Equivalent circuit for calculating the contributiéih; »_1 of Vy_s to Vour. (b) Its simplified Thévenin equivalent.

TABLE | TABLE 1
VOLTAGE-MODE R-2R LADDER DAC. VOLTAGE-MODE R-2RR LADDER DAC. Ry, 1 AND Ry 2 DENOTE THE
Ry, 1 AND R, 2 DENOTE THERESISTORS INFIG. 2AND 7, k =1, ---, 8 RESISTORS INFIG. 2AND 7, k = 1, -- -, 8 ARE THE CORRESPONDING
ARE THE CORRESPONDINGRATIOS DEFINED BY (1) wy, 1S THE WEIGHT RESISTANCERATIOS DEFINED BY (1) wy 1S THE WEIGHT ASSOCIATED
ASSOCIATED WITHBIT k& AS DETERMINED FROMMEASUREMENTS OFVo1rT; WITH BIT k& AND 7, IS THE ESTIMATE OF 74,

71 |S THE CORRESPONDINGESTIMATE OF 7,

ko Rea(Q)  Rea(Q) e W e
k Rea(Q) Rea() e we e

1 40040.000 40000 1.0010000000 0.0039085941 1.0010000000
120020 20000 1.0010000000 0.0039085941 1.0010000000 2 19980.000 40000 0.9997498751 0.0078113293 0.9997498751
2 9990 20000 0.9997498751 0.0078113293 0.9997498751 3 20020.000 40000 1.0004374609 0.0156314480 1.0004374609
3 10010 20000 1.0004374609 0.0156314480 1.0004374609 4 19980.000 40000 0.9996093413 0.0312438503 0.9996093413
4 9990 20000 0.9996093413 0.0312438503 0.9996093413 5 20020.000 40000 1.0004023162 0.0625250558 1.0004023162
5 10010 20000 1.0004023162 0.0625250558 1.0004023162 6 19980.000 40000 0.9996005588 0.1249750268 0.9996005588
6 9990 20000 0.9996005588 0.1249750268 0.9996005588 7 20060.016 40040 1.0004001198 0.2501000237 1.0004001198
7 10010 20000 1.0004001198 0.2501000237 1.0004001198 8 19050.996 40000 0.9996000099 0.4998999825 0.9996000099
8 9990 20000 0.9996000009 0.4998999825 0.9996000099

8-bit voltage-mode R-2R ladder DAC

= 0.04 T T T
lll. V OLTAGE-MODE OPERATION g;

A DAC exploiting anR-2R ladder in voltage mode is shown &
in Fig. 2. In this case, bii;, of the input word causes no@éto i
be connected to ground or 1§y if bz = 0 or 1, respectively. g

Since theR-2R ladder we consider is linear, the superposition 2
theorem [12] applies, and the voltage at the output m¥deay 004 :,)4 1128 1'92 256
be determined by summing the contributions from each of the
inputsV;, with all other sources zeroed. Thus Fig. 4. Linearity error associated with the ladders detailed in Tables | and II.

v _ N Ev k _RN_L 3 denotes the total resistance seen by n¥del looking
ouT Z N into Ry_1, 1.
=1 The contribution due t&5 - acting alone is
whereFE k is the contribution to the voltage at nodédue to R
. , . N, 2

voltageV;, applied at nodé’. Ennvai=5—""5—VN_i,4

Consider first the contribution due 6y with all other Ry,2+ By,s
sources zeroed. In this case, nalleis connected td/y- via - < v =1 ) 1 Va1
Ry » and to ground via the equivalent resistangg 3. By Il+ry—=1/1+7rn

voltage division Repeating this process along the ladder, it can be shown in

Ry general thaF v, k = wi Vi fork =1, 2, ---, N, where
ELI /-

" Rn,2+Ry3 1+7n TN

. i . 1+7rn’
wherery is as defined in (1). wy, = 7)]\ N 1 )
AtnodeN — 1, the equivalent circuit for calculating the con- < "k ) H < ) , ifk<N.
tribution to Vour of Viy_1- acting alone is shown in Fig. 3(a). 147 J=k+1 L4y

Enx.N
if k=N
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R
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Fig. 5. Segmented voltage-mode resistive ladder DAC. In the nominal laBdey,= 2R forall k, R;,; = 2R, Ry,; = Rfork=2,3,.--, N +1,and
Ry, =0fork=N+2,---, N42M 1,
The voltage applied at node is 0 or Vin, depending on 02 (3+11)-bit segmented voltage-mode DAC
whetherb;, =0 or 1. ThusVi, = b, Vix. The total outputvoltage & ' oo L '
is given by < 0.1
=}
g 0
2
N § 0.1
Vour = Z Ey, k = 0.2 1 1 1 1 1 1 1
1 0 2048 4096 6144 8192 10240 12288 14336 16384
N input
= Z brwi Vin Fig. 6. Endpoint-corrected linearity error associated with thet(BL)-bit
k=1 segmented voltage-mode DAC in Table Ill. The linearity error is given by
T owy (16383/Vour(16383))Vour(U) = U, U =0, 1, 2, - -+, 16383.
w2
: sufficient to determine the weights;. In particular, we have
' that
=[by b2 -+ b -+ v ON]| wk | Vin
: Vour(1) 10 0 --- 0 0 wy
' Vour(2) 010 --- 00 wo
WN-1 VOUT (4) o 01 --- 00 w3
- N : i I e
Vour(2V=2) 000 1 0| |wy_1
. N—
A. Operation of the Ideak-2R Ladder Vour(2¥ 1) L0 0 0 0 1 wWN
r w
InanidealR-2R ladder,Ry 3 = Ry ofork=1,2, --- N. w;
Hence,r, = 1fork = 1,2, ---, N andwy, = 1/2N-k+1, B i v 3
Therefore - : IN ®)
WN-1
L wn
Vo — al b v whereVoyur is measured &V =1, 2, 4, 8, ---, 27V,
ouT — z_: oN—k+1 "IN Thus, the weightay;, of a voltage-mode DAC can in principle
J[}l be determined with jusN measurements, provided tHat is
=< Vin known. From these weights;, the ratios;, may be estimated
2 by setting
wherebnby_1 --- boby is the binary expansion of the input . wn
word U. N TN

o . i and evaluating
B. Determination of Resistance Ratios

- Pk
We ask the question: can one determine the ratios: = L.
1,2, .-, NinanR-2R ladder DAC simply by measuring the )
output voltageVour? for k = (N — 1) to 1 in turn, where
Let Vour(I/) be the measured output corresponding to input N
word U, as before. In the voltage-mode case, a judiciously Pk = Wi H (14 #).
chosen subset oV measurements (out of a possid&) is =kt

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 25,2010 at 07:57:24 EDT from IEEE Xplore. Restrictions apply.
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Now 7, provides an estimate af,. In a process monitoring TABLE I

role, these estimates could potentially be used to quantify th@ * 11)-BT SEGMENTED VOLTAGE-MODE DAC. Ri.  AND R, » DENOTE
THE RESISTORS INFIG. 2AND 1, k = 1, - -+, 8 ARE THE CORRESPONDING

deviation of production parts from their nominal design valuegesistanceRarios DEFINED BY (1). wy, IS THEWEIGHT ASSOCIATED WITH
From a test engineering perspective, the extracted We’lgbts BIT & As DETERMINED FROM MEASUREMENTS OFVour; 7y IS THE

can be exploited in linear error mechanism modeling [8], [10]. CORRESPONDINGESTIMATE OF 14

C. Example

ko Rea(S2)  Ria() T wy i
Consider the two voltage-mod&-2R ladder DAC’s whose
resistor values are given in Tables | and Il, respectively. Here,
the ladders are mismatched in a similar way but the normal- 1 20000 20012 0.99940036 0.00006108 0.99940036
ized resistances of the ladders are different (10 and(20ré«- 2 10000 20011 0.99960017 0.00012216 0.99960017
spectively). Output measurements are simulatedfor= 5V 3 10000 20010 0.99967513 0.00024428 0.99967513
in both cases. While the values of the resistors in the 20 k 4 10000 20009 0.99971886 0.00048851 0.99971886
ladder are not quite double those in the IDladder, they have 5 10000 20008 0.99975477 0.00097692 0.99975477
been chosen so that the ratigsand weightsy,, are identicak 6 10000 20007 0.99978873 0.00195366 0.99978873
Therefore, the normalized error plots for these devices, shown 7 10000 20006 0.99982221 0.00390704 0.99982221
in Fig. 4, are also identical; equivalently, both devices belong to 8 10000 20005 0.99985557 0.00781364 0.99985557
the same ambiguity group [7], [8]. 9 10000 20004 0.99988890 0.01562667 0.99988890
In both of these examples, the estimatgsk =1, 2, ---, 8 10 10000 20005 0.99982226 0.03124951 0.99982226
of the resistance ratios determined from simulations of the two 11 10000 20004 0.99988057 0.06249712 0.99988057
ladders are identical to ten decimal places. 12 10000 20001 1.00002013 0.12500422 1.00002013
13 0 20002 0.49998004 0.12499797 0.49998004
IV. RELATIONSHIP BETWEEN WEIGHTS wj, AND RATIOS 7, 14 0 20003 0.33330780 0.12499172 0.33330780
L. . . . 3 . 15 1] 20002 0.24999813 0.12499797 0.24999813
Itis interesting to note the form of the weights in the eight-bit 16 0 20001 02000088 012500422 0.20000880
case 17 0 20002 0.16666445 0.12499797 0.16666445
71 1 1 18 0 20001 0.14286266 0.12500422 0.14286266
o <1 +7’1> <1 +7’2> <1 +7’3>
1 1 1
' <1 + 7’4) <1 + 71,)) <1 + 7,6> A. Implications for Trimming
1 1 In an ideal binary-weighted DAC, we require thai,; =
' <1 + 7;7> <1 + 7’s> 2uy, for all k. This can be achieved by ensuring that
> 1 1 1 2
T <1+7’2> <1+7’3> <1+7’4> <1+7’5> et )
. < 1 ) < 1 ) < 1 ) InanominalRk-2R ladder,, = 1forall k. If, due to production
Lt+re) \1+7r7) \1+7s variations,r;, # 1 for somek, the constraint (4) can still be
s = < 73 ) < 1 ) < 1 ) met, and the linearity error minimized, by adjustingfor j =
1473 1474 1475 k+1,k+2,---, N. Eachr; can be set by trimmingz; ;
1 1 1 and/orRk; ». Note that, during the trimming process, it may be
' <1 ¥ 7’6> <1 ¥ 7’7> <1 ¥ 7’s> necessary to move resistors away from their nominal values.
- 1 1 I_f the ladder is trir_nmed f_ro_m the right end by adjusting the
wy = <1 n 7)4) <1 iy ) <1 n 7’6> ratiosry, 72,73, etp., in turn, itis clear that. the absolute value of
° each weightu;, will be affected by an adjustment of for all
. <;> < 1 ) j > k. However, the ratio of any pair of weighta{ /w; ¢ < k)
L+r7 L+7s is unaffected by trimming further up the ladder. Therefore, the
e — < T ) < 1 ) < 1 ) < 1 ) trimming algorithm should try to fix the ratios of weights with
° 1+4+7rs 1+7e 1477 1+4+7g thecurrentvalue of the LSB rather than ifsal value.
T6 1 1 ) . )
we = <1 n 7’6) <1 n 77) <1 n 7’8) B. Implications for Design
. 1 From the designer’s perspective, the goal is to ensure that
wy = <1 +T7) <1 +7,8> wry1 = 2wy in order to produce a binary-weighted DAC.
, Clearly, this objective can be achieved with any number of dif-
wg = < 8 ) . ferent sets of ratios,.. In particular, it is not necessary to choose
1+7s 7, = 1, nor is it necessary to define the absolute valueqf

1R, , andRs., in Table Il have been “trimmed" to compensate for the ~CONSider the case of an 'deBIQE ladder where we want
error inR; . . = 1 for all k. When switch resistances are taken into ac-
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(3+11)-bit segmented voltage-mode DAC TABLE IV
™ 03 I ! ! 1 T T (3 + 11)-BT SEGMENTED VOLTAGE-MODE DAC. Ry, 1 AND R -
3 0.2 DENOTE THE RESISTORS INFIG. 2AND 7, k = 1, -+, 8 ARE THE
= 0.1 CORRESPONDINGRATIOS DEFINED BY (1) wy, |S THEWEIGHT ASSOCIATED
g 0 WITH BIT k& AS DETERMINED FROM MEASUREMENTS OFVouT; T
; 0.1 IS THE CORRESPONDINGESTIMATE OF 14,
é -0.2
a 0.3 I : I : . : k Rei(Q) Rea() T W &
0 2048 4096 6144 8192 10240 12288 14336 16384
input
Fig. 7. Endpoint-corrected Iine_arity error associa_lted With the{—_(Bl)Tbit 1 20000 24096 0.83001328 0.00005733 0.83001328
ffg;;?}tﬁgf('iae%%3'?)'}9;2?5) n g;e?\bllf;Vd72he27llh§ﬁrl%;g;?r 's given by 2 10000 22048 094924177 0.00011998 0.94924177
3 10000 21024 0.98634585 0.00024302 0.98634585
4 10000 20512 0.99647721 0.00048768 0.99647721
count, a dummy switch can be inserted in series \iAth; to 5 10000 20256 099910660 0.00097621 0.99910660
compensate for the switch in series wil) » and guarantee 6 10000 20128 0.99977513 0.00195284 0.99977513
r1 = 1. Alternatively, an appropriate choice of “mismatch” at 7 10000 20064 0.99994360 0.00390591 0.99994360
the right end of the ladder when sizing the switches in series with 8 10000 20032 0.99998588 0.00781193 0.99998558
R, i andR; , canyield ratiog # 1 but still guarantee binary O 10000 20016 0.99999647 0.01562391 0.09999647
weighting. The total switch area resulting from this strategy may 10 10000 20008 0.99999912 0.03124784 0.99999912
be less than by choosing = 1 for all £. 11 10000 20004 009999978 0.06240570 0.99999978
12 10000 20001 1.00004994 0.12499766 1.00004994
C. Implications for Production Monitoring 13 0 20000 050003749 0.12500391 0.50003749
Finally, from the production monitoring viewpoint, we note 14 0 19999 0.33336666 0.12501016 0.33336666
that althoughw;, £ = 1, 2, ---, N, can in principle be deter- 15 0 20001 0.24999375 0.12499766 0.24999375
mined with just/N measurements using (3), a better estimate 16 0 20002 0.19998600 0.12499141 0.19998600
of the wy's may be obtained in the case of limited measure- 17 0 20001 0.16666528 0.12499766 0.16666528
ment resolution by solving a larger subset of the overdetermined 18 0 19999 0.14287041 0.12501016 0.14287041
system of equations
r VYour(0) 7 70 0 0 07 — , L ,
Vour(1) 1 0 0 0 wy . The least S|gn|f|cant bits are applied directly tq the switches
Vour(2) 0 1 0 0 w2 in the R-2R ladder. Bith,, k=1, 2, ---, N of the mput word
Vour(3) _ |1 1 0 0 w3 Vix causes nodé’ fto be connected _to _g_round or fan if b, =
) - .o : " 0 or1, respectively. The most significaid bits are decoded
. : WN_1 to producea;, as, - - -, asu_; Which select the segments. Bit
Vour(2" —2) 0 1 11 W ar, k=1, 2, ---, 2M _1 causes nod& + %’ to be connected
L Vour(2Y — 1) 11 -1 1 N to ground or toVyy if a; = 0 or 1, respectively.

Since this network is linear, the superposition theorem [12]
applies, and the voltage at the output nader 2* — 1 may
be determined by summing the contributions from each of the

In an R-2R ladder, it is necessary to have tight matchingputsV;. with all other sources zeroed. Thus
between each bit and the sum of all lesser bits in order to en-
sure monotonic operation [13]. Segmented architectures allow
this requirement to be relaxed and permit the construction of Vour = Z Engav—1,n
high-resolution converters. k=1

An (M 4 N)-bit segmented design provides a coarse/finghere Ey 2 1 4 is the contribution to the voltage at node
structure. The most significant? bits define2™ segments N + 2 — 1 due to voltagd/;» applied at nodé’.
which are further subdivided by aN-bit R-2R ladder. Pro-  Consider first the contribution due t8y ./ with all
vided that theV-bit ladder is monotonic and that its full-scaleother sources zeroed. In this case, ndde+ 2* — 1 is
output is less than that of the next segment, monotonicity éennected td/y a7 Via Ry 01—y » and to ground via the
guaranteed. This is called the next-segment approach. equivalent resistancBy_you 1 3.

By voltage division

V. VOLTAGE-MODE OPERATION. SEGMENTED ARCHITECTURE

N42M_q

A. Operation of the Voltage-Mode Segmented
(M + N)-Bit DAC Engo 1 Nyav_1 =

A commonly-used next-segment DAC architecture is shown
in Fig. 5. The coarse DAC consists 2} — 1 identical resis-
tors (Ryy1,2, - -+, Ryyam_y1 2) Which are selected by a ther-
mometer code. The fine DAC is aW-bit R-2R ladder. wherery v 4 is as defined in (1).

Ryyom_13

V M 4
N42M —1
Ryyorm 12+ Ryyom 13
TN42M -1
= 1+7 Vg1t

+ T Nyom g

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 25,2010 at 07:57:24 EDT from IEEE Xplore. Restrictions apply.



114 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—PART |: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 2, FEBRUARY 2000

The contributions td/our due to the other inputs may be Substituting for eaclh;, yields
calculated by determining the Thévenin equivalent to the right

- 1 -
of each node in turn, as in the case of the voltage-mode ladder CYYES
without segmentation. The contribution due to the ingutat 1
nodek’ is given by T owy ] oM+N—1

wo .
: 1
EN+2M,1 k= wi Vir WN_1 oM+2
’ 1
wn — -
wherew, is defined by Llﬂ
WN+1 il
Wy 42 oM
. 1
LG L ifh=N+2M 1 oM
1+ 7rnyom_y | WM _1 | :
wy = , N+2M—1 1 1
k f M R
if k< N+2M —1.
<1+7’k> j_l;g_l <1+7’j>7 < + L oM .
(5) Therefore
The total output voltage is given by (5a) at the bottom of this N ; oM _q -
age. _ k IN
bad Vour = | X srmmgr + D o | g
k=1 k=1

B. Operation of the Ideal Segmented DAC

Inthe N-bitDAC, Ry 5 = Ry o =2Rfork=1,2,---, N,
givingrp, =1fork=1,2,---, N.
The output resistance of the ladder is increasetfidy set-

whereby by 1 --- boby are the LSB’s of the input wordy and
the upperM bits are decoded to give thes.

C. Diagnosability of the Segmented Voltage-Mode DAC

ting Kny1,2 = R. The segment resistors have nominal value |s it possible to determine the raties, k = 1, 2, ---, N +

2R and are interconnected by short-circuits. Hetd¢ég, = 2R
fork=N+1, N+2,.--, N+2M —landR; ; =0fork =
]\74—27 N+3, RN N+2l\4 —1.ThisgivesRN+k73 = 2R//€
fork=1,2,---,2M — 1. Hence

2M _1in a segmented voltage-mode DAC simply by measuring
the output voltagd/oyr?

Let Vour(U) be the measured output corresponding to input
word U, as before. In this case, the weightg may be deter-
mined by making justV 4+ M (out of a possible¥+*) mea-
surements ofVgur. In particular, N + M measurements of
Vourwith U = 1,2, 4,8, ..., 2N ... 2N+M yield (6) at
the bottom of the next page.

N42M_1 N

Vour = Z Enk = Z brw, +
=1

k=1

b, byv-1 by

[b1

oM _1

E arwntk | VIN
k=1

WN-1
wWN

a  ao oM _1 ] ViIN. (53.)

WN41
WN42

_rLU]\r_i_QM_l 1
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KENNEDY: ON THE ROBUSTNESS ORR-2R LADDER DAC’'S 115

Assuming thatfy is known, (6) may be rewritten to give thefor £ = N 4+ 2% — 1 to 1 in turn, where
weightswy, explicitly in terms of theV 4+ A measured outputs

. N42M_1
shown at the bottom of this page. —w H (1+7)
From these weightsy, the ratiosr;, may be estimated by Pk g el e
setting j=
As before,. provides an estimate of,.
N wl\r+2ﬂl_1 D Example
71\r+2ﬂ/1_1 :—1_ . .
WN42M —1 Consider the 14-bit segmented voltage-mode DAC whose re-

sistor values are given in Table Ill. The DAC consists of an
11-bit R-2R ladder and three decoded bits driving seven seg-
ment resistors. This linear network was simulated using a refer-

and evaluating

P ence inpufiy = 5 V. The endpoint-corrected linearity error is
" = 1— oo shown in Fig. 6. Note that the estimatgsof the resistor ratios
Pk
Vour() 7 100 --- 00 ] 00 --- 07 w ]
Vour(2) 01 0 00| 00 0 wy
Vour(4) 00 1 00| 00 0 w3
Vour(2V¥2) 0 00 1 0 00 0 WN_1
Vour(2V=1) =10 0 0 0 1 0 0 0 w Vin
Vour(2V) 000 0 0 10 0 WN 41
VOUT(2N+1) 0 0 0 0 0 1 1 0 WN42
| Vourp(2¥+M-1) | 10 0O 0 --- 0 0 1 1 -+ 1] LWy 1 |
_ 0 -
w2
w3
WN -1
= WN Vin. (6)
WN+1
WN41 + WN 42
| WN+1 + WNy2 + -+ Whgom_q |
[ wr ] i Vour(1) T
wy Vour(2)
w3 Vour(4)
WN-1 1 VOUT(2N72)
wN ~ Vin Vour(2V1)
WN 41 Vour(2V)
WN 42 Vour(2V ) — Vour(2V)
L W2 1 [ Vour (VM=) — - — Vour(2V¥H) — Vour(2V) |
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