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Statistical Properties of First-Order Bang-Bang PLL
With Nonzero Loop Delay

Byungjin Chun, Member, IEEE, and Michael P. Kennedy, Fellow, IEEE

Abstract—A method to solve the stationary state probability
is presented for the first-order bang-bang phase-locked loop
(BBPLL) with nonzero loop delay. This is based on a delayed
Markov chain model and a state flow diagram for tracing the
state history due to the loop delay. As a result, an eigenequation is
obtained, and its closed form solutions are derived for some cases.
After obtaining the state probability, statistical characteristics
such as mean gain of the binary phase detector and timing error
variance are calculated and demonstrated.

Index Terms—Bang-bang phase-locked loop (BBPLL), delayed
Markov chain, nonzero loop delay.

1. INTRODUCTION

HE BANG-BANG phase-locked loop (BBPLL) is often
T used in communication systems, such as clock and data
recovery (CDR) [1], mainly motivated by its high-speed oper-
ation capability. In general, the BBPLL does not allow for a
linear system approach to characterize its performance due to
its nonlinear element, the binary phase detector (BPD). Instead,
the Markov chain theory [2] can be a tool to analyze the per-
formance. In fact, [3] exploited it to derive the state probability
of the first-order loop with zero loop delay and then solved the
mean gain of the BPD. However, if components delay in the loop
amounts to the order of clock cycles and/or some clock cycles of
delay are intentionally introduced to the loop for pipelining, its
effect on the system performance should be taken into account
for fair characterization. Although [4] considered the delay, it
was limited to the deterministic system setup.

The objective of this paper is to extend the work of [3] to the
case of nonzero loop delay. However, the stability issue associ-
ated with loop delay is beyond in the scope of this paper.

For notational clearness, vectors and matrices are denoted as
boldface lower case letters and boldface upper case letters, re-
spectively. The [-]7 means the transpose operator. The Z means
the set of integers. P{FE} and P{E1|E>} mean the probability
of event I and the conditional probability of event E; given
event F5, respectively. The probabilities are assumed to be sta-
tionary without any comment.

In Sections II and III, the system model and the proposed
method are described, respectively. Then, in Sections IV and
V, simulation results and concluding remarks are given.
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Fig. 1. Block diagram of the considered digital BBPLL with loop delay D.

II. SYSTEM MODEL

Consider a first-order BBPLL shown in Fig. 1. The BBPLL
is composed of a BPD, a loop filter with gain  and delay D, a
digitally controlled oscillator (DCO) with gain K¢, anda 1/M
frequency divider. The BPD and loop filter are clocked by the
output of the frequency divider (feedback clock). This diagram
is basically the same digital BBPLL discussed in [3] and [4].
However, it was modified by just ignoring the integral path in
the loop filter but keeping nonzero delay (or latency) due to the
pipelining.

Referring to [3]' and Fig. 1, the dynamics of the BBPLL can
be expressed by the following set of equations:

Atz-i—l = Atz — Kek_D (l)
Aty = At + g 2
er =sgn(Atg). 3)

Here, k is the feedback clock time index, Aty = ¢, — ty is
the difference between the rising edges of the jittered reference
(tr1) and feedback clocks (¢, ), At is the value of Aty in the
case of unjittered reference, 7y, is the temporally uncorrelated
reference clock jitter with the probability distribution function
(pdf) f,(n), e is the binary timing error signal, which is 1 if
Aty > 0 and —1, otherwise, and K = SM Kp. The At} can
take only discrete values Kn + t§ with n € Z, but ¢ is put to
zero assuming the BBPLL is precisely centered when locked.

n is called the state number (shortly, state), and the event
that the state at time k is n is denoted as s, = n. The state
probability ¢, = P{s; = n} plays a central role in determining
various statistical properties of the BBPLL. g,, can be found by
modelling the BBPLL as a delayed Markov chain with the state
transition probability p,,, = P{sxt1 = m|sy = n}. The
delayed Markov chain in this paper is defined as a state-space
model whose state transition probability is determined not by
the present state but by the state D times before.2

IEquation (5) in this reference is misleading, although it does not affect on the
overall context of the paper. It may suggest that the jitter accumulates in At
as the time elapses, which is not the case due to the binary decision of the BPD.

2p,n|n is actually an expected value over all possible states D times before
conditioned on the current state 7.

1549-7747/$25.00 © 2008 IEEE
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Fig.2. State flow diagram around the current event s, = n (the center node) in
the case of nonzero loop delay D. The two thick arrow lines represent examples
of the past state flow (left) and the future state flow (right), respectively. In this
example, the error signals e,_p = —1,ex,_py1 = 1,...,andex_; = —
along the past state flow drive the future states to advance, retard, ..., advance,
in the order.

When D = 0, it is straightforward to calculate p,,, given
fn(n), and the work in [3] derived ¢, based on the corre-
sponding Markov chain model. For nonzero D, however, py, |,
is not so obvious. Therefore, a new method, rather than directly
relying on DPmin> is needed to solve ¢,, as will be discussed in
Section III.

III. DERIVATION OF STATE PROBABILITY

A. General Formulation

A state flow diagram around the current event s = n is
shown in Fig. 2. This shows how each state (marked as a node)
flows with a state transition (marked as an arrow) as the time
elapses. With nonzero loop delay D (D = 1,2,3,...), all pos-
sible past state flows from the time k — D reaching the cur-
rent event are limited to 2 exclusive ones inside the fan-shaped
area, and vice versa for all possible future state flows from the
current event to the time k + D.

Consider a future state flow taking the path (s, = n) —
(Sk41 = m1) — — (sk+p = mnp). Due to the sta-
tionary condition, its probability can be expressed (defined)
simply as P{n,ni,...,np} = Tpnn,, . ..np With arguments
arranged in order. Assume a past state flow taking the path
($k—.p = mp) — -+ = ($g—1 = m1) — (s = n).In
the same way as before, its probability can be expressed as
P{mD, - ,ml,n} = Tmp,...mi,n-

Using the total probability theorem [2], the above two prob-
abilities can be related through

Tnniy,...,np = g

(mp,....,m1)€S
x P{n,ny,...,np|mp, ..

Tmp,...,mi,n
- 7m17n}' (4)

Here, P{n,n1,...,np|mp, ..., m1,n} means the conditional

probability of the future state flow given the past state flow,
and S means the set of all the legitimate past state sequence

(mDa v 7m1)'
Note that, according to (1), it is the past error signal sequence
(€k—Dy€k—D+1; - - -, x—1) that drives the future state flow n —
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n1 — --- — np. Therefore, the conditional probability can be
expressed as

= P{ek_D = h(n,’l’bl)|8k_D = mD}
x P{ex—p41 = h(n1,n2)|sk—py1 = mp_1}
X X Pleg—1 = h(np—1,np)|sk—1 = m1} (5)

where h(n;,n;y1) is defined as —1 if n; < n;y1 (e,
state advance) and 1 if n; > n;41 (i.e., state retard) with
1=0,1,...,D —1and ng = n.

Meanwhile, the conditional pdf of At;, = 7 given s = n
can be expressed as f,, (7 — Kn) from (2). Therefore, denoting
A, = P{er, = —1|sx = n} (i.e., probability of state advance
from n) and R,, = P{e; = 1|s; = n} (i.e., probability of state
retard from n), and using (3), they can be written as

Ay = [0 fo(r — Kn)dr

Ry =[5 fo(m — Kn)dr. ©

Using (6), (5) can be calculated as

H,, xH XX Hpy (= Homp,..omy) @)

mp_1
with
g =y Am, ifnpi <npoip, (1=D,..., 1),
m1 = .
Ry, ifnp_i>np i1

Consequently, from (4)—(7), we have

Tnny,.onp = E

(mp,....,m1)ES

HmD,...,mlrmD,...,ml,n~ (8)

Assuming the number of states is N (/N may be infinite), the

above equation forms a system of 2” N equations with respect

to 2P N unknowns {7y, , ._n,, }3 asn takes N different values.
The system of equations can be put in a matrix equation

r = Hr 9

where r is a 2P N-by-1 vector composed of {7, 5, . n,, }»and
His a 2P N-by-2P N matrix relating elements of r according to
(8). Recognizing that each element of H is nonnegative (there-
fore, H is a nonnegative matrix), the eigenequation (9) has a
nonnegative eigenvector (i.e., the desired solution) associated
with the largest eigenvalue (here, 1) by Perron—Frobenius the-
orem [5].
Once r is obtained, the state probability is calculated as

>

(np,-..,n1)ES

In = (10)

Tnunly---yn[)'

In general, the eigenvector solution of (9) may require a nu-
merical method (e.g., Matlab) due to its high complexity.* How-
ever, we can find a closed-form solution when D is small, as will
be described in Section III-B.

3These unknowns coincide with {r, Dsomi,m )} A 0 varies.

4The complexity may be reduced through an approximation of A4,, and R,,
under small jitter variance conditions as described in Section III-D.
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B. Caseof D =1

With D = 1, 70, np (= Tnn,) in (8) can take only
two variables 7y, 41, and Hy, . m, (= Hyy, ) takes only four
values A, 11 and R, 1 according to m; (= n £ 1) and its re-
lation to n [see (7)]. Defining

’I"+ =Tnn+l = ann+1|n (11)
Th =Tnn—1= AnPn—1|n
for notational convenience, (8) can be expressed as
{7‘+ =A,_ 17’n 1+ An+1T77+1 (12)
=R,_ 17" 1+ Rn+1’l”n+1
Also, from (10) and (11), we obtain
Gn=T}+1,. (13)

To calculate ;" and r;; recursively, we need to change (12) to a
causal form with respect to n. Noting that the variables in (12)
can be partitioned to two groups {r;_;,r7} and {r;\, 7, .},
and the latter is the one state-advanced version of the former,
we can set up a recursive equation in a causal form as follows:

Xn+1 :Snxn (14)
with
1-R, 1 — A4, A,
S =(1/ Ry |17 At A

ri a1

Xn Th—1 Tn

Here, we used A,, + R,, = 1 from (6).

If f,(n) is symmetrical around 0, it is obvious that A_,, =
1-A4,,R_,=1—R,, ri‘n =, ,and q_,, = ¢, for any n.
Then, by putting n = 0 into (12) and (13), and using the above
relations, we can show that vy = 5 = rt, =] = qo/2. As
aresult, by putting xo = [7F, 75 ] = (g0o/2)[1 1]" and
calculating (14) recursively from n = 0 [then (13)], we obtain

_< )%
=0 z+1 2

:1

15)

1-R,_1+R, (11—
o (St e (150
n+1 i—0 1+1
(16)
for n > 1. Here, q¢ can be determined as
1-R,_ 1+Rn+1> (1_Ri—1)
1+ S it 17
Z ( Ry H) Rit1
from the normalization condition
Z qn—qo+2an—1 (18)

Futhermore, from (11), (15), and (16), p,,+1, are calculated as

rt 1-Rn_1

— T _ _
Prtijn = qn ~ 1—Rp_14+Rni
T Rn+1

Pn—1jn = & 1-Rn_1+Rny1”

19)
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C. Caseof D =2

With D = 2, 7 ny,...np (= Tnonine) i (8) can take four
variables Tnn+1,n4+2> Tn,n+1,m> Tn,n—1,n> and Tnn—1,n—2- Fol-
lowing the same way as in D = 1 and defining

7‘74;+ = Tnn+ln+2 = qnpn+1\npn+2\n+1|n
7‘7—1—_ =Tnn+ln = ann+1|npn|n+1|n (20)
’I";+ =Tnn—1,n = nPn—1|nPn|n—1|n
Tn = Tpn—1n—2= AnPn—1inPn—2|n—1|n
(8) can be written as
( ’I”;l_+ =A, 2A,_1- T:jQ + AnAn+1 . ’I“;i__
+A An 1- + An—l—?An—l—l T;_:Q
“=A, 2 R,_1- 7‘ 2—|—A Rn+1 ’I“+
+A, Ry - Tn + An+2Rn+l Tn+2 1)

ot = Ry Ay ri Ry Ay -
Ry A1 -1, T+ Ry Anys - T2
“=R,_oR,_1- T:jz + Ran+1 . ’I”,t_
L +R, R, 1 - T‘g+ + RpyoRny1 - Tpao-

Here, p, 3| means p,|;, conditioned again on the previous state
c. Also, from (10) and (20), we obtain

Q=1 T+ (22)
Equation (21) can be put as follows:
u,=U,w, +V,v, (23)
v, =W,w, +X,v, (24)
where T -
w, =[rft 7], ve=[rt ot
w, = [, T;sz]T
U — -An72An71 An+2An+1
" _Rn72Rn71 Rn+2Rn+1
V — -AnAn+1 AnAn—l
" _Ran+1 Ran,1
W — _An—ZRn—l An+2Rn+l:|
" _Rn72An71 Rn+2An+1
X — _Aan+1 Aan—l
" _RnAn+1 RnAn—l '
From (24), we have

where Y,, = (Loyx2) — X,,)7'W,, and I,y are the 2x2
identity matrix, and, by putting (25) into (23), we obtain

u, =7Z,w, (26)

. _ | #11, Z12
with Z,, = i i
221,m  222n

that (12) was changed to (14), we can convert (26) to

= U, + V., Y,. Inthe similar way

Xn+2 = Snxn (27)
. 211,n222,n — Z12,n% z
with Sn = (1/222,n) |: 11,n<22,n 12,n<21,n li,n and
—Z21,n
x, = [rF, r77]". Note that we need to iterate (27) from

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 26,2010 at 12:07:31 EDT from IEEE Xplore. Restrictions apply.
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TABLE 1
APPROXIMATE SOLUTION OF ¢,, FOR D = 2
T = e
-] - el e E ] B[ -
s AA 1 1 1 2A;
0 _1Zr 2A1ﬁ_1 cl[ 1 ] cl[ 1 ] c1|: oA ] c1(4A1+42)
A+l A F1 1
1 r 1
0 1 1
N - e R B e Rl A el P
2(AAl+1) L A}{+1
2 1 A =t 2Ry +1
2 A 2_2 c1 [ ] c1 I: 2 :I c1 ‘f c1 Sk —
L= 1 | 1 1 | 35 | 2Ry
[ A
5 _01 (1) ] | ZAFD e 9 s 2(A(1)+1) 2%
L 2(A,+1 L 2(A1+1) | J
41 0
T LS AR |
2
> 0 0 0
s A[o] | -[c] = o] :
n = 0 and 1 independently to obtain x,, for even n and odd n, 05 —oq
respectively. This happens because D is an even number. 045} —o1 N
If f,(n) is symmetrical around 0, it is obvious Ti—:{ =r, ", 0l 6 =04|]
r*, = r T and ¢, = ¢, for any n. Therefore, the =1
initial conditions for even n and odd m can be set as 0-35¢ =1
—_ 3T T . -
xg = [T r; = ¢ [l 1] (putn = 0in (21) 0.3t =1
T T =
to check), and x; = [T 7] = ¢o[1 1] for some ¢ o025 10
. o 0.25F =10 [1
constants c; and ca, respectively. From x( and x;, x,, (there- 1o
fore, w,,, u,) and v,, can be calculated recursively using (27) 0.2r 1
and (25), respectively. Then, ¢, is obtained using (22). 015} 1
Finally, we need to fix the constants ¢; and co using some o |
conditions to get the complete solution. One constant can be '
eliminated using a relationship from the total probability the- 0.05r 1
orem [2] 0 ®

n = an\mqm = DPn|n+19n+1 + Pnjn—1qn—1 (28)

m

for any n. Here, the state transition probabilities are obtained by
Prn+iln = (T;LL+ + sz»i) /(In and Pn—1jn = (Trji + r;+) /qn
from (20). Another constant can be fixed by applying (18).

Due to the complexity in expressing each element of S,, in
(27), simple closed-form expression for ¢,, seems to be hard to
find. Instead, an approximate closed-form solution is possible,
as will be explained next.

D. Approximate Solution Example (D = 2)

If f,(n) is symmetrical around O and has a small variance
compared with K2, A,, and R,, in (6) can be approximated as
Ag=Ro=1/2,A,=0,and R,, = 1forn > 2,and 4,, = 1
and R, = 0 for n < —2. Then, it is enough to evaluate U,,
V.. W,.,X,.,Y,.,Z,,and S,, in (23)-(27) for 0 < n < 4
only. The final S,, is listed in the second column of Table I. The
remaining steps are similar to those explained in the previous
subsection. At first, x,, is calculated recursively from x and x;
using (27). Then, the elements in x,, are rearranged to form w,,
and u,, and v,, is calculated using (25).

As a result, an approximate solution of ¢,, can be obtained
by summing all of the elements in u,, and v,,. The result of
the above calculations is summarized in Table I. Here, the re-
maining constants can be fixed as co = ¢1(A; + 1) and ¢; =
R;/(10R1 A1 4+ 8Ry + 2) using (28) and (18), respectively.

Fig. 3. Theoretically calculated stationary state probability (., ).

IV. SIMULATION RESULTS

The proposed method to solve g, is demonstrated by simula-
tion for various loop delay and reference clock jitter conditions.
The f,(n) was assumed to be Gaussian with zero mean and vari-
ance o (i.e., f,(n) = 1/(V2may,)exp (—n*/ (207)) ,—o0 <
1 < 00). Throughout the simulations, K = 1 was assumed and
the Markov chain was limited to 21 states.

In Figs. 3 and 4, the theoretical and estimated ¢,, are plotted
for given conditions, respectively. To obtain the estimates,
Monte Carlo (MC) method was applied with 10° iterations
per each condition. The two results show a good agreement,
verifying the validity of the proposed method. The distributions
tend to spread as D and o, increase. Also, the distributions
become nearly insensitive to D for larger o,.

In Fig. 5(a)—(c), the theoretical g,, for D = 2 according to the
precise solution (Section III-C) and the approximate solution
(Section III-D) are compared with each other. They match al-
most perfectly for o, = 0.1 and 1, as shown in Fig. 5(a) and (b),
respectively. However, their mismatch increases considerably as
oy, reaches 10 [Fig. 5(c)].

Once ¢, is obtained, characteristics of the BBPLL such
as the mean gain of the BPD (Ky,q) and the stationary
timing error variance (0%,) can be evaluated through
Kipa = 2far(0) = 2307 qnfy(—Kn) according to
(6) in [3], and UZAt = K 202 + cr% from (2), respectively.

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 26,2010 at 12:07:31 EDT from IEEE Xplore. Restrictions apply.
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Fig. 5. Precise (solid line) and approximate (dashed line) ¢,, for D = 2.

Here, fa+(7) is the pdf of At, and 03 is the variance of q,.
According to [3], the upper asymptotic Kypq for o, > K
can be expressed as K é‘;ﬂper) = 2/(V2ra,). Also, the
lower asymptotic Ky,q for 0, < K can be written as
Kl()f:lver) = 2qof,(0) = 2go/(V27a,) using the above ex-
pression of Kjy,q. Here, qo for very small o, can be well
approximated as 1/2, 1/3, 1/5 for D = 0, 1, 2, respectively (see
[4, Table 1]).

In Figs. 6 and 7, the theoretical K3,,q and o a; are plotted as
a function of o, respectively. In general, Ky,,q gets smaller,
and o+ gets larger as D increases. As mentioned before, how-
ever, they get insensitive to D for larger o). The difference be-
tween precise and approximate solutions for D = 2 are negli-
gibly small throughout the whole o, range. The Kj,,q follows
K, S;::iver) and K é‘;ﬂper) (thin lines) asymptotically for lower and
upper o, values. It is interesting to observe that K3,,q shows a
flat curve in the middle for a wider range of o, as D increases.
As aresult, the loop bandwidth of the BBPLL [1] may be stabi-

lized against the wider range of o, as D increases.
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N : : m— Precise, D = 0

N = = = Precise, D =1

. . v Precise, D=2

> == Approx., D =2

. : Lower Asym., D =0

~ — — — Lower Asym.,D =1
Lower Asym., D =2

—— Upper Asym.,D=1,2,3

Fig. 6. Mean gain of the binary phase detector (Kp,pq).

— Precise, D = 0
= = = Precise, D = 1
..... ' Precise, D =2
10 L 1= =1 Approx., D =2
b<1
; _H_‘_,_._m-u._‘_n_m:\w
- - - - s .
T =Rt ]
e o 10’

Fig. 7. Standard deviation of the timing error (o a;).

V. CONCLUSION

A method to calculate the stationary state probability of the
first-order BBPLL with nonzero loop delay was presented. Var-
ious statistical properties were evaluated using the state proba-
bility, and the effect of the delay on the properties was investi-
gated through simulations.
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