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Architectures for Maximum-Sequence-Length Digital
Delta-Sigma Modulators

Kaveh Hosseini, Student Member, IEEE, and Michael Peter Kennedy, Fellow, IEEE

Abstract—In this paper, we extend the idea developed in some of
our earlier works of using output feedback to make the quantiza-
tion step in a digital delta-sigma modulator (DDSM) appear prime.
This maximizes the cycle lengths for constant inputs, spreading the
quantization error over the maximum number of frequency terms,
and consequently, minimizing the power per tone. We show how
this concept can be applied to multibit higher order error-feed-
back modulators (EFMs). In addition, we show that the idea can
be implemented in a class of single-quantizer DDSMs (SQ-DDSM)
where STF � � � and NTF � � � �� �� .

Index Terms—Digital delta-sigma modulator (DDSM),
error-feedback modulator (EFM), maximum sequence length,
multibit quantizer, noise shaping, quantization noise, single-quan-
tizer DDSM (SQ-DDSM).

I. INTRODUCTION

Q UANTIZATION noise shaping is widely used in the
fields of data converter [3], [4] and fractional-N fre-
quency synthesizer design [5]–[9]. Digital delta-sigma

modulators (DDSMs) are a class of noise shaping modulators
that process discrete-amplitude discrete-time signals. The
DDSM is a discrete-time deterministic dynamical system with
a digital input and a digital output. It includes one or more
quantizers, depending on its architecture. It represents an

-bit narrowband digital input signal as a wider band -bit
digital output signal. Generally, is significantly less than ,
resulting in a quantization error that is commonly modeled by
additive white noise. The spectrum of the quantization noise
is filtered (shaped) by the modulator such that its power is
concentrated toward high frequencies, leaving relatively little
quantization noise power in the signal band.

For many important applications, such as unmodulated frac-
tional-N frequency synthesizers, the DDSM input is a constant
digital word. For simplicity, in this paper, we consider DDSMs
only with constant inputs.

A ditherless DDSM is a deterministic finite-state machine
with a unique rule for transitioning from each state to the next.
If the input is constant, the most complex behavior the DDSM
can exhibit is a trajectory that visits each state once before re-
peating. In fact, the solution will always be constant or periodic:
in particular, a DDSM with a constant input produces a periodic
quantization noise signal (a cycle). In some cases, the period of
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Fig. 1. Generic block diagram of a higher order EFM with a multilevel quan-
tizer, shaped additive input LSB dither, and a novel output feedback path ��
that deterministically maximizes the number of spectral tones.

this signal is short, resulting in a small number of large (spu-
rious) tones in the output spectrum.

By maximizing the period (cycle length) of the error signal,
the number of tones in the spectrum can be maximized, causing
the quantization power per tone to be minimized.

There are two classes of techniques to maximize the sequence
length: stochastic and deterministic. Stochastic techniques use a
“random” signal to perturb the system, thereby disturbing short
cycles. Deterministic techniques introduce changes in the un-
derlying architecture of the modulator that inherently prevent
short cycles forming.

The most popular stochastic technique to reduce the spurs
is to break up the patterns in the quantization noise signal by
dithering [3, Ch. 3]. The disadvantage of even the best stochastic
techniques is that they inherently add noise that later shows up
in the output spectrum, albeit small and shaped.

In [1] and [2], we introduced a deterministic modification
to the DDSM architecture (an additional output-feedback path)
that maximizes the sequence length without dither. This tech-
nique allows one to realize the ideal spur-free output spectrum
predicted by assuming a modulator with additive white quanti-
zation noise.

In this paper, we show how the idea described in [1] can
be extended to two classes of multibit modulators: higher
order error-feedback modulators (EFMs) and single-quantizer
DDSMs (SQ-DDSMs) [3], [4]. In Section II, we give the back-
ground on EFMs and review the state of the art. In Section III,
simulation results are presented for maximum-sequence-length
multibit EFMs, and in Section IV, simulation results are pre-
sented for maximum-sequence-length SQ-DDSMs. We discuss
implementation issues briefly in Section V. The main contribu-
tions of this paper are summarized in Section VI.

II. BACKGROUND

The generic block diagram of a digital multibit EFM is shown
in Fig. 1. The modulator contains an optional additive input
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Fig. 2. Input--output characteristic of the multilevel quantizer with � � �
and � � �.

dither signal , an optional filter (denoted ) to shape
the dither, and an output-feedback path (denoted ) that we
will use to maximize the sequence length in a deterministic way.
The quantizer [denoted by ] provides a coarse approxima-
tion of the digital signal .

Fig. 2 shows the input--output characteristic of the multilevel
midtread quantizer that we consider in this paper. Each quanti-
zation step is of length , there are output
levels, and the no-overload range is defined by

.
The difference between the quantized output and the

input is called the quantization error, defined by .
For ease of implementation, we assume that the step size
of the quantizer is a power of two . Choosing

, the signal transfer function
STF and noise transfer function NTF

become

(1)

A. Conventional Architecture

When , we obtain a conventional DDSM, where the
EFM has an all-pass signal transfer function STF and
a high-pass noise transfer function NTF that
rejects the quantization noise at low frequencies.

The quantizer error is usually assumed to be white noise.
With this assumption, its spectrum is smooth, and the noise
is concentrated toward high frequencies, away from the signal
band.

The digital modulator is a finite-state machine (FSM) that
always produces a periodic output signal (a cycle) when the
input is a constant. In this case, the quantization noise sequence
is also periodic. In general, the period depends on the input, the
initial conditions, and the architecture of the DDSM. When the
period is short, the power of the sequence is distributed among a
limited number of undesirable tones (so-called spurious tones)
that appear in the DDSM output spectrum. The powers of the
spurious tones (spurs) can be significantly higher than the noise-

Fig. 3. Effect of short nonwhite sequences in a third-order multibit EFM �� �
� � for two different constant inputs: 1) � ��� � � and 2) � ��� � � . The
solid curve shows shaped white quantization noise.

shaping curve predicted by the simplifying assumption that the
quantizer can be modeled as an additive white noise source.

To illustrate this problem, we refer to Fig. 3 that shows
MATLAB simulation results for the EFM shown in Fig. 1
( and ). The quantizer step size is ,

, , the filter is third order , and
all initial conditions are set to zero. All simulations have been
performed using signed integer arithmetic.

Plot 1 shows the simulation result when the input is 1. Plot 2
shows the spectrum of the output sequence when . Note
that plot 1 can be approximated by a smooth curve, shown solid,
which results from assuming that the quantizer adds uniformly
distributed white noise. By contrast, the spectrum shown in plot
2 contains only two high-power tones because the quantization
noise is far from white. This example shows how the modulator
can fail catastrophically to perform proper noise shaping, de-
pending on the input value.

Using a stochastic approach, one can apply a pseudorandom
binary dither sequence (shown in Fig. 1) to the input [10],
[11]. This breaks up the cycles and increases the effective se-
quence length, resulting in a smoother noise-shaped spectrum.
While it increases the sequence length, as required, dithering in-
herently adds noise to the spectrum, as we will see in Section III;
care must be taken to minimize the contribution of this addi-
tional noise.

An alternative (deterministic) approach is to avoid known
short sequences by setting the initial conditions of the internal
registers of the EFM [12].

Another deterministic way of increasing the sequence length
is to modify the architecture [1] in such a way that the sequence
length inherently attains the maximum possible value. In [1],
a first-order EFM that has the maximum sequence length for
all inputs and for all initial conditions has been developed. In
this paper, we show empirically that the same concept intro-
duced in [1] (adding a specially chosen output-feedback path

1The dc term (corresponding to �) has been removed from the output � before
plotting, yielding � ; all plots show � �� .
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TABLE I
CORRESPONDING VALUES OF � WITH RESPECT TO � IN THE RANGE 5 TO

25 WHERE � � �

, as shown in Fig. 1) maximizes the sequence lengths of
higher order EFMs with a multibit quantizer, thereby achieving
a smooth power spectrum.

B. HK Architecture

Consider again the EFM shown in Fig. 1. Let ,
where is a power of 2 , and . Assume
that the quantizer output produces two levels: 0 and . This
corresponds to a first-order EFM with a two-level quantizer and
our additional output-feedback path.

We proved in [1] that the cycle length (and hence the number
of tones in the spectrum) in this case is defined by

for all constant inputs and for all initial conditions, where is
chosen according to Table I such that is the largest prime
number less than .

Qualitatively, when is a power of two and the input takes
on specific (worst case) values, the quantizer output can over-
flow periodically, leading to very short cycles of lengths 2, 4,
8, etc. (divisors of ) [13]. The idea of the HK output-feed-
back path is effectively to add an offset to the state so that when
the quantizer overflows, it does not reset to zero, but to . This
makes the effective quantization step equal to instead of

. If is chosen to make prime, then every cycle is of
length .

In [1], we also proved that the cycle length is in the
case of an th-order multistage noise shaping (MASH) structure
comprising first-order EFMs with two-level quantizers. In this
paper, we consider higher order EFMs and SQ-DDSMs with
multilevel quantizers. The operating principle is the same as in
[1]: an “overflow” at the quantizer output (in this case, a level
change) causes an offset to be added to the state so that the
quantization interval appears to be prime.

III. MAXIMUM-SEQUENCE-LENGTH ERROR-FEEDBACK

MODULATORS

A. Architecture

In this section, we consider the HK concept applied to a
higher order EFM with a multilevel quantizer. For stability
reasons, multibit quantizers are usually used in higher order
EFMs [4]. We consider the architecture shown in Fig. 1, where

and [4]. With this filter, we
obtain the STF and NTF of (1). Compared to a conventional
modulator , a pole at is added to both the STF
and the NTF. If is sufficiently small, this pole is very close
to the origin in the z plane; equivalently, it is a distant pole

TABLE II
COMPARISON OF MINIMUM CYCLE LENGTHS OF OUR EFM STRUCTURE AND

THE CONVENTIONAL EFM [12]

that does not significantly affect the overall operation of the
modulator [1]. Simulation shows that the effect of this pole is
negligible from the stability standpoint for .

B. Cycle Lengths

In order to determine the cycles lengths, we have performed
exhaustive brute force MATLAB simulations for , 4, 5
for all combinations of constant inputs and initial conditions,
and for modulator orders , 2, 3. Our simulations confirm
that the sequence length is in all cases. Simulating
the modulators for all possible combination of inputs and ini-
tial conditions for orders higher than two with is almost
impractical as the length of the sequences become very large.
In this case, all initial conditions were set to zero and the mod-
ulators with , 7 were simulated for all constant inputs.
Moreover, sample simulations were performed for , 5,
and all confirmed the results in Table II.

Table II compares the results of this study with the
state-of-the-art results in [12]. Note that increasing the order
of the HK-EFM by 1 increases the cycle length by a factor of
approximately compared to a factor of no more than 4 in
the conventional case.

Although we have not yet been able to prove this result
mathematically, exhaustive simulations suggest that the se-
quence length is for an -order no-overload EFM
for all constant inputs and for all initial conditions, where
is determined from Table I. This result is consistent with the
theoretical result for the -order HK-MASH structure with a
constant input incorporating one-bit quantizer first-order EFMs

[1].

C. Spectral Investigation

1) Ditherless: In order to illustrate the effect of the maxi-
mized sequence length, Fig. 4 shows the simulation results for
a third-order modulator with a step size equal to

, a constant input 256, and zero initial conditions.
In this case, the modulator with nonzero normalized input 0.5

yields a cycle of length 4. The effect of its short
length is evident in the spectrum (see “1): No dither, ”),
which consists of just two high-power tones in the frequency
range 0 to (equivalently, 0 to ). The modulator fails to
perform proper quantization noise shaping because the white
noise assumption is not valid.

2) With Dither: A pseudorandom binary sequence is gener-
ated and is added to the LSB of the modulator input. As shown
in the figure, the dither randomizes the sequences effectively.
However, it degrades the low-frequency part of the noise
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Fig. 4. Spectra of a third-order multibit EFM with input decimal 256,� � � .
The solid curves represent the shaped white quantization noise including the
dither contribution in the case of the dithered EFM.

shaping spectrum by bringing up the noise floor. This is shown
in the figure (see 2): “LSB dither, ”).

3) With Noise-Shaped Dither: In order to combat this effect,
one can pass the dither sequence through a high-pass filter such
as , and then add the resulting signal to the input of
the modulator. First-order shaped LSB dither can im-
prove the low-frequency part of the spectrum because it random-
izes the error sequences effectively (see “3): Shaped LSB dither
and ”). Higher order shaped dither does not guarantee a
spike-free spectrum.

4) Ditherless HK-EFM: By turning off the dither and ap-
plying the feedback path to the system with chosen
from Table I, a smooth spike-free noise-shaping spectrum with
the slope of 60 dB/decade is achieved, corresponding to the ide-
alized prediction obtained in the literature by assuming additive
white noise for the quantizer error [3]. In this case, the low-fre-
quency part of the spectrum is not degraded and the HK-EFM
outperforms the shaped LSB dithering technique.

IV. MAXIMUM-SEQUENCE-LENGTH SINGLE-QUANTIZER

DDSMS

A. Architecture

The idea described in Section III and in [1] can be applied to
another class of digital modulators with similar STF and NTF.
The generic block diagram of the single-quantizer DDSM (SQ-
DDSM) with our output-feedback path and with noise-shaped
LSB dither is shown in Fig. 5. In this case, there is already delay
in the forward path so we do not have to introduce delay in the

-feedback path.
In the forward path, the block filters the signal and

delivers to the input of the multibit quantizer. The output of
the multibit quantizer , which is an integer multiple of , is
fed back to the input summing node via filter block . As in
the case of the maximum-sequence-length HK-EFM, the block

has been added to the modulator as a deterministic alternative

Fig. 5. Generic block diagram of SQDDSM with the feedback coefficient �
and with shaped LSB dither.

to dithering in order to randomize the quantizer error sequence
.

For this modulator, STF and NTF can be written in
terms of , and as follows:

(2)

and are chosen such that STF has a low-pass or
all-pass characteristic (passing the low-frequency input signal)
and the NTF has a high-pass characteristic, rejecting the quanti-
zation noise at low frequencies. We consider in this paper a case
[11] where and are of the form

(3)

giving

(4)

In the following, we demonstrate the improvement in the
spectral performance of the modulator resulting from the
feedback block .

B. Simulation Results

Similar to the cases of the HK-EFM and the HK-MASH [1],
extensive simulations suggest that the sequence length is

for an -order no-overload modulator for all constant
inputs and for all initial conditions.

Fig. 6 shows the simulation results for a third-order modulator
with the step size equal to , a constant input 256,

and zero initial conditions on the internal registers.
1) Ditherless: In this case, the modulator with nonzero nor-

malized input 0.5 yields a cycle of length 4. This
effect is clear in the spectrum (see: 1): “No dither, ”).
Once again, there are only two high-power tones in the fre-
quency range 0 to .

2) With White Dither: A one-bit pseudorandom dither is
added to the LSB of the modulator input [11]. The low-fre-
quency part of the spectrum is degraded due to the noise floor
introduced by the dither (see 2): “LSB dither, ”).

3) With Noise-Shaped Dither: In order to improve the situ-
ation, the dither is passed through a filter, such as .
Simulations suggest that first-order shaped LSB dither can im-
prove the low-frequency part of the spectrum (see 3): “Shaped
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Fig. 6. Spectra of a third-order multibit SQ-DDSM with input decimal 256
and � � � . The solid curves represent the shaped white quantization noise
including the dither contribution in the case of the dithered SQ-DDSM with
higher order noise shaping.

LSB dither, ”). However, higher order shaped dither again
does not guarantee a spike-free spectrum.

4) Ditherless HK-SQDDSM: By turning off the dither and
applying the feedback path to the system with , a smooth
spike-free noise-shaping spectrum with a slope of 60 dB/decade
is achieved, as predicted by the additive white noise assumption
for the quantizer error. In this case, the low-frequency part of
the spectrum is not degraded and it outperforms the shaped LSB
dithering technique (see 4): “No dither, ”).

V. IMPLEMENTATION ISSUES

When the modulator is implemented digitally, the step size of
the quantizer is usually chosen, for simplicity, to be a power of
two. The coefficient should be chosen such that is the
largest prime number less than , where is the step size of
the quantizer and is a small integer reported in Table I. With
this selection, only a small fraction of the output signal is fed
back to the input. The effect of the coefficient on the noise
and signal transfer functions is negligible for both HK-EFMs
and HK-SQ-DDSMs for .

In terms of hardware complexity, the output can be scaled
by to significantly reduce the number of output bits; this
corresponds to discarding zeroed LSBs when is a power or 2.
The additional feedback path requires a multiplication by multi-
ples of small integers from Table I; this could be implemented by
a multiplexer. An additional adder is required at the input sum-
ming node, but the number of bits is small; it is similar in com-
plexity to that required for noise-shaped LSB dither. Overall, the

2The range of � given in the table can be extended beyond 25 by choosing
� � � as the closest prime integer to � .

complexity of each modified structure is marginally less than
the corresponding dithered conventional solution because nei-
ther the PRBS generator nor the filter is required.

The stable dynamic range in a higher order multibit modu-
lator is determined primarily by the quantizer. Since the effect
of the additional feedback path is equivalent to a minor pertur-
bation of the quantization step, the effect on the stable dynamic
range is also negligible. In other words, the stable dynamic range
is approximately equivalent to that of the conventional
modulator.

VI. CONCLUSION

In this paper, we have extended the idea of using an addi-
tional output-feedback path to maximize the sequence lengths of
DDSMs. The effect of this path is to make the effective quantiza-
tion step prime. We have shown how the concept can be applied
in multibit higher order EFMs. In addition, we have shown that
the idea can be implemented in a special subclass of SQ-DDSMs
with higher order noise shaping.
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