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Influence of Noise Intensity on the Spectrum
of an Oscillator

Rabi Sankar Swain, Student Member, IEEE, James P. Gleeson, and Michael Peter Kennedy, Fellow, IEEE

Abstract—This paper investigates the influence of high-intensity
noise on the correlation spectrum of a two-dimensional (2-D) non-
linear oscillator. An exact analytical solution for the correlation
spectrum of this 2-D oscillator is provided. The analytical deriva-
tions are well suited for oscillators with white noise of any inten-
sity, but computational constraints on the solution of the partial
differential equation may make it impractical for cases where the
number of state variables exceeds three. The spectral results pre-
dicted by our analytical method are verified by numerical simula-
tions of the noisy oscillator in the time domain. We find that the
peak of the oscillator spectrum shifts toward higher frequencies as
the noise intensity is increased, as opposed to the fixed oscillation
frequency predicted in the existing literature. This phenomenon
does not appear to have been reported previously in the context of
phase noise in oscillators.

Index Terms—Fokker–Planck equation, nonlinear perturbation
technique, oscillator, phase noise.

I. INTRODUCTION

PAPERS by Kaertner [1], [2] and a recent paper by Demir et
al. [3] use nonlinear perturbation techniques to determine

an exact equation for the phase error of any oscillator. Coram [4]
presented a simple analytically solvable example of a two-di-
mensional (2-D) oscillator in order to explain the claims made
in [2] and [3] that the noise perturbation in an oscillator must be
decomposed into its components along the Floquet vectors of
the system and that these Floquet vectors need not be orthog-
onal. However, the analysis in [2]–[4] assumes low-intensity
noise and treats the phase noise problem as a diffusion problem.
Our aim is to find an exact analytical spectrum of this 2-D oscil-
lator in the presence of excess white noise. Since perturbation
techniques are not applicable in the high-noise regime, we resort
back to the Fokker–Planck equation (FPE) corresponding to the
stochastic differential equations (SDEs) [5], [6] describing the
oscillator by Coram [4], due to the following reasons.

1) The FPE does not depend on the assumption of low-inten-
sity noise, whereas perturbation techniques (linear/non-
linear) need to make this assumption.
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2) The phase noise problem is often treated as a diffusion
problem [2], [3], [7] as opposed to a more general con-
vection-diffusion problem.

Thus, we consider the FPE resulting from the noisy oscillator
equations instead of defining an SDE describing the phase error
based on the assumption of pure diffusion. Hence, our approach
allows us to determine the exact correlation spectrum for this
specific 2-D oscillator case in a more general way than that in
the existing literature [2], [3]. We also verify our exact result by
solving the nonlinear SDEs in the time domain by using various
numerical techniques. In the course of investigating the power
spectrum of this 2-D oscillator, we detect a shift in the spectral
peak toward higher frequencies, away from the noise-free value,
and note that the size of this shift depends on the input noise in-
tensity. This phenomenon of shift in the spectral peak is small
at low-noise intensities (which is the case for any practical os-
cillator described by perturbation technique); however, the shift
becomes significant at very high noise intensities, as is shown
in this paper.

A. Main Results

Our main results are as follows.

1) We provide an analytical method for determining the
exact spectrum of a simple 2-D nonlinear oscillator in the
presence of excess white noise.

2) We find that the peak of the oscillator spectrum shifts to-
ward higher frequencies as the intensity of the noise is in-
creased and that the size of the shift depends on the noise
intensity.

3) We demonstrate by example that the phase noise problem
in oscillators is a convection-diffusion problem.

II. PHASE NOISE SPECTRUM OF A 2-D OSCILLATOR BY

APPLYING NONLINEAR PERTURBATION TECHNIQUE

Consider the simple case of a nonlinear 2-D oscillator by
Coram [4] in coordinates

(1)

(2)

where is a constant denoting the intensity of noise and
and are white Gaussian noise processes. Transforming (1)
and (2) to Cartesian coordinates, we get

(3)

(4)

1057-7130/$20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 26,2010 at 11:12:57 EDT from IEEE Xplore.  Restrictions apply. 



790 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 52, NO. 11, NOVEMBER 2005

Fig. 1. Phase noise spectrum of Coram’s oscillator by applying Demir’s
method for different values of noise power, � = [0:1; 0:2; 0:7; 1:4] or SNR
SNR = [6:99 dB; 3:98 dB;�1:46 dB;�4:47 dB]. Note that the position of
the spectral peak does not depend on �.

where and are Gaussian noise processes in the new
coordinates. In compact form, we can rewrite (3) and (4) as

(5)

As described by Kaertner [2] and Demir et al. [3], we can de-
compose the process of (5) into the limit cycle component

and a component perpendicular to the limit cycle .
Thus, we can write the correlation matrix as follows:

(6)

The above equation describes the phase noise, the correlations
between phase and amplitude noise, and the amplitude noise of
the stationary stochastic process . The phase-noise power
spectrum is the Fourier transform of the first term of (6). Thus,
the spectrum resulting from [3, eq. (35)] when applied to the
oscillator described by (1) and (2) is given by

(7)

where is the steady-state oscillator frequency and
, as given by [3, eq. (44)].

Fig. 1 shows the phase noise spectra for various noise
powers or signal-to-noise ratios (SNRs)

by applying the methods of Kaertner
[2] and Demir et al. [3] to the 2-D oscillator. Note that the
position of the spectral peak does not depend on .

III. EXACT SPECTRUM FOR THE SIMPLE 2-D OSCILLATOR

The FPE [6], [8] corresponding to (5) can be written in polar
coordinates as

(8)

where , , and is
the transition probability.

We next calculate the stationary distribution . The fact
that and are independent of the angle simplifies the anal-
ysis. Setting derivatives with respect to and to zero in (8)
gives us an ordinary differential equation for

(9)

Equation (9) has a normalizable solution

(10)

with constant given by the requirement that the 2-D phase-
space integral over gives unity, i.e.,

(11)

This implies that is given by

(12)

The normalized is plotted against the time-domain his-
togram of the steady-state radius for two values of noise power

and shown in Figs. 2 and 3.
The steady-state histogram of the radius is obtained by nu-

merically integrating (3) and (4) simultaneously (using the ini-
tial conditions of and ) in Matlab [12] for a period
of seconds involving 300 realizations of points
each and then concatenating the last 500 points from each of
those realizations to generate 150 000 points.

In order to determine the correlation function , we apply
Theorem 1 (given in the Appendix) in polar coordinates, which
gives us the following partial differential equation by Gleeson
et al. [9]:

(13)

where 1, 2, and the vector is a solution
to the above PDE given the initial conditions. The correlation
function is then derived from the correlation tensor as

(14)

where depends on (as shown in the Appendix). Equa-
tion (14) is Fourier-transformed to yield the oscillator spectrum
[8], [10]

(15)

In Figs. 4 and 5, we overlay our exact analytical spectra and our
estimated correlation spectra derived from finite time-domain
simulations for two different values of noise power .
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Fig. 2. Exact normalized pdf P (r), versus histogram of the radius when
� = 0:1 or SNR = 6:99 dB.

Fig. 3. Exact normalized pdf P (r), versus histogram of the radius when
� = 1:4 or SNR = �4:47 dB.

We estimate the power spectral density (psd) of our data using
Welsh’s averaged modified periodogram method [10], [11] by
integrating the SDEs (3) and (4) starting with the steady-state
initial conditions of for a total integration time
of s ( being the oscillator’s period) to generate

points.
Figs. 4 and 5 show that, as we increase the noise intensity,

the spectral peak of the oscillator tends to shift toward higher
frequencies.

These spectra are qualitatively different from those predicted
by Kaertner [2] and Demir et al. [3] in Fig. 1 for the case of
low-noise intensities. In particular, our approach predicts that
the spectral peak moves to higher frequencies as the noise level
increases and that this shift increases with the intensity of white
noise and is independent of the regime of operation i.e., low-
noise or high-noise. The reason for such a difference may be
traced to the fact that the amplitude contribution of the noise has

Fig. 4. Exact analytical spectrum (dotted curve) versus estimated spectrum
(solid curve) by averaging the modified periodogram method. Noise power:
� = 0:1 or SNR = 6:99 dB. A Welsh window of 2 points is used with
an overlap of 2 points.

Fig. 5. Exact analytical spectrum (dotted curve) versus estimated spectrum
(solid curve) by averaging modified periodogram method. Noise power: � =
1:4 or SNR = �4:47 dB. A Welsh window of 2 points is used with an
overlap of 2 points.

been neglected in Kaertner [2] and Demir et al. [3], whereas our
analytical technique does not neglect the amplitude contribution
of the noise and hence gives the correct spectrum for this simple
2-D oscillator.

IV. CONCLUSION

We have described a method for calculating the exact analyt-
ical spectra of a 2-D oscillator in the presence of white noise of
arbitrary intensity and have verified our result by successfully
simulating in Matlab a set of nonlinear SDEs that describe this
noisy 2-D oscillator.

The nonlinear perturbation technique is shown to yield a good
approximation to the exact spectrum when the noise intensity is
low, as expected, but fails to capture the shift of the spectral peak
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toward higher frequencies, away from the noise-free value. This
shift is shown to depend on the intensity of noise in the system.
For higher noise intensities, where the perturbation technique
is not applicable, our analytical scheme is able to predict the
correct spectrum for this simple 2-D oscillator. We note that,
although the technique described here is useful for the simple
2-D example described by Coram, the problem of solving the
FP equation for systems of order greater than three is nontrivial.

APPENDIX

Theorem 1: Let the vector be the solution of the
partial differential equation (repeated indices imply summation
over the spatial dimensions)

(16)

with initial conditions

(17)

Then, the correlation tensor

(18)

may be calculated as

(19)

where the integral is over the -dimensional phase space. The
oscillator spectrum can be determined by first finding the corre-
lation function which is given as

(20)

and then taking the Fourier transform of the correlation function

(21)

Proof: The proof is based on the fact that the stochastic
process is a Markov process, and so its correlation function
may be represented as

(22)

where is the transition probability, i.e., the proba-
bility that the process has value at time , given that it had
value at time . The transition probability is governed by
the (scalar) FPE

(23)

with initial condition

(24)

Now define the vector by

for

(25)

The theorem follows from multiplying (23) and (24) by
and integrating over . Applying the above theorem

for the vector in polar coordinates, we get the
following partial differential equation:

(26)

for 1, 2. The initial conditions, from (17), are

(27)

For the 2-D oscillator of Coram [4], where the radial velocity
and the azimuthal velocity are independent of , the solutions
may be found in the form

(28)

Inserting the term of (28) into (26) leads to a pair of
coupled PDEs for and

(29)

with initial conditions

(30)

The appropriate boundary conditions are

(31)

A similar pair of PDEs may be found by inserting the term
of (28) into (26), but with initial conditions

(32)

Noting the symmetry of equations and initial conditions, we can
immediately conclude that and . As-
suming that the and functions have been found, the cor-
relation tensor is calculated from (19) and then the correlation
function given by (20) to yield

(33)
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