
Title THAWS: automated design and deployment of heterogeneous wireless
sensor networks

Author(s) Harte, Seán; Popovici, Emanuel M.; O'Flynn, Brendan; Ó Mathúna, S.
Cian

Publication date 2008-09

Original citation Harte, S., Popovici, E.M., O'Flynn, B., Ó Mathúna, S.C., 2008.
THAWS: automated design and deployment of heterogeneous wireless
sensor networks. WSEAS Transactions on Circuits and Systems, 7(9),
pp. 829-838.

Type of publication Article (non peer-reviewed)

Link to publisher's
version

http://www.wseas.us/e-library/transactions/circuits/2008/27-1401.pdf
Access to the full text of the published version may require a
subscription.

Rights Copyright © 2008 WSEAS

Item downloaded
from

http://hdl.handle.net/10468/47

Downloaded on 2017-02-12T05:48:50Z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cork Open Research Archive

https://core.ac.uk/display/61571230?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.wseas.us/e-library/transactions/circuits/2008/27-1401.pdf
http://www.wseas.us/e-library/transactions/circuits/2008/27-1401.pdf
http://hdl.handle.net/10468/47

THAWS: Automated Design and Deployment of Heterogeneous
Wireless Sensor Networks

SEÁN HARTE1,2, EMANUEL M. POPOVICI1, BRENDAN O'FLYNN2, CIAN O'MATHUNA2

1 Department of Microelectronic Engineering, University College Cork,
Cork, IRELAND

2 Microelectronics Applications Integration Group, Tyndall National Institute,
Lee Maltings, Cork, IRELAND

sean.harte@tyndall.ie http://www.tyndall.ie/mai/wsn.htm

Abstract: - This research focuses on the design and implementation of a tool to speed-up the development and
deployment of heterogeneous wireless sensor networks. The THAWS (Tyndall Heterogeneous Automated
Wireless Sensors) tool can be used to quickly create and configure application-specific sensor networks, based
on a list of application requirements and constraints. THAWS presents the user with a choice of options, in
order to gain this information on the functionality of the network. With this information, THAWS uses code
generation techniques to create the necessary code from pre-written templates and well-tested, optimized
software modules from a library, which includes an implementation of novel plug-and-play sensor interface.
These library modules can also be modified at the code generation stage. The application code and necessary
library modules are then automatically compiled to form binary instruction files for each node in the network.
The binary instruction files then wirelessly propagate through the network, and reprogram the nodes. This
completes the task of targeting the wireless network towards a specific sensing application. THAWS is an
adaptable tool that works with both homogeneous and heterogeneous networks built from wireless sensor
nodes that have been developed in the Tyndall National Institute. Its advantage over traditional methods of
WSN development is simplification of development.

Key-Words: - Wireless sensor networks, Automated application development, Code generation

1 Introduction
A Wireless Sensor Network (WSN) is made from a
potentially large number of sensor nodes that are
capable of communicating wirelessly. The sensor
nodes must be inexpensive to enable a wide
deployment that can record sensor data with a high
spatial and temporal resolution. The nodes must also
have a small physical size and have a long lifetime
to allow them to be used in a large number of
applications. This paper focuses on networks that
take sensor readings from many nodes and transmit
them back through the network to a gateway node
that can be connected to a PC. The sensor data can
then be analysed. Such a network can perform many
tasks, such as water quality monitoring [1], or
ensuring efficient and safe manufacturing plants [2],
or medical applications [3].
 Each node in a WSN can be viewed as being
made from a number of hardware components, as
shown in Fig. 1. The node is built by combining
these components or a subset of these components.
In selecting the components, the target application
must be considered, to ensure the desired
functionality, and performance of the system.

 To create the optimum network for a particular
application, it may be beneficial to have many
different types of nodes with different functions that
together create a single heterogeneous network. One
reason for this is that nodes can have different
functions depending on what type of sensors they
are connected to. A second reason is that, to save
cost, each node should only have the minimum
hardware required to perform its task. If a node only
has to take a reading every 10 seconds and then
transmit it, a very low-powered processor is
sufficient.

MCU Memory

Sensor/
Actuator

Radio

Power
source

FPGA /
ASIC

Power
Regulator

ADC

Data
bus

Power
bus

Fig. 1. Generic Wireless Sensor Node

 On the other hand, a more powerful processor is
required for more advanced tasks, such as routing in
large networks, encryption, data compression, and
error correction. These tasks are not possible to
implement on a very low-powered processor.

1.1 WSN Application Development
The hardware developments in miniaturising sensors
(e.g. MEMS sensors) and improving the energy
efficiency of electronic components have made
possible a lot of research on software suitable for
WSNs. New communication algorithms have been
designed for large-scale wireless networks, where
energy consumption is an important factor and low-
power radios create unreliable connectivity [4].
Other research is focusing on operating systems that
can run on very limited processors, and still provide
support for applications, such as TinyOS [5].
 There are also difficulties creating applications
for WSNs. Currently, many applications are
developed using low-level programming languages
such as C or nesC [6]. To develop a new application
requires someone with experience in programming
with these languages. It also requires being familiar
with the various libraries available. This makes fast
development and deployment of networks difficult.
 There also can be other difficulties in developing
applications for WSNs. To save energy, code is
often event-driven. For example, the node can be
woken up by a timer, take a reading, and then go
back into a sleep mode. The event-driven approach
is implemented through the use of interrupts which
creates the opportunity for corrupted data due to
race-conditions if the programmer is not careful [7].
Access to variables that are used by an interrupt
must disable interrupts while accessing the variable.
For example, if you want to read a variable called
state , and check if it is equal to 'a'. If it is equal to
'a' then you want to set it to 'b' and do some
processing.

 if (state == 'a') {
 state == 'b';
 doProcessing();
 }

The code above can introduce errors if state is
also part of a read-modify-write cycle within an
interrupt. After the code above has read the value of
state , but before it has changed the value, an
interrupt could also read the value and change it to
'c'. However when the code above continues
executing, state will be set to 'b', so the change to
'c' will have been lost. The code should be written as

follows to ensure correctness:

 disableInterrupts();
 old_state = state
 if (state == 'a') {
 state == 'b';
 }
 enableInterrupts();
 if (old_state == 'a') {
 doProcessing();
 }

Such details are difficult to remember when
accessing a variable and can lead to bugs that are
difficult to find a debug.
 The event-driven approach also makes simple
tasks complicated due to the use of split-phase
function calls. For example, consider a
i2c_send() function. If this is a blocking function
it will wait until all the data is sent before returning.
The disadvantage of this is that it would waste a lot
of computation cycles as it waits for the relatively
slow I2C interface (commonly 100 kHz) to finish
sending the data. This is computation time that could
be spent doing more useful work. If the function
returns immediately and keeps sending data in the
background (using interrupts to send a new byte
when needed) there is a risk that the communication
could be corrupted, for example by going to sleep
mode, or by another part of the application
modifying the data before it is sent. With the use of
the split-phase technique, i2c_send() will return
to the caller quickly, and continue sending data in
the background. However it will signal that the
transmission is finished by calling a callback
function in the application. The application must
make sure that the transmission won’t be interrupted
until this callback function is called.
 Although this method is reliable and allows
energy-aware application, it increases the
complexity of application development. Some
attempts have been made to address this issue such
as a pre-compiler that makes all calls blocking, but
then introduces a syntax that allows a number of
code sections to be run concurrently [8].

1.2 Heterogeneous Networks
A more fundamental difficulty is created by the
distributed nature of WSNs. Some applications can
be simplified by assuming that all nodes are
identical. However, as described above, real
networks may be heterogeneous so as to minimize
cost while retaining functionality where required.
Developing an application for such a network means

Gateway

Fig. 2. Two-tiered heterogeneous network

developing different code to execute on each node.
This is time-consuming and the application logic
becomes separated into many different files, making
debugging and future development difficult. A
simple example of this is that if you change the
format of packets, you will have to redevelop the
code that is running in both the transmitter and the
receiver.
 This paper introduces a system called THAWS
that simplifies application development for WSNs. It
allows a developer to avoid all the above difficulties
while creating applications that can run on
heterogeneous networks, as well as homogeneous.
The user can specify what they want the network to
do, and its associated constraints, without worrying
about how this will be implemented. The THAWS
tool creates the necessary code to meet the user’s
specification. The code is then compiled, and the
compiled binary files can be sent to the network,
which then reprograms itself.
 This paper first briefly discusses the hardware
nodes that were used when developing THAWS.
Then the design, development and use of the tool to
help rapidly develop WSN applications is presented.
The tool is analysed and compared with other
similar systems. Finally, future work and
conclusions are discussed.

2 Implementation details
The tool is implemented to work on a two-tiered
network with two different classes of nodes, as
shown in Fig. 2. The first node is small in size,
inexpensive, and has very low-power energy
consumption. The second node is bigger in size, and
also more expensive. However it has more
processing capability. They are used to build a
heterogeneous network where the larger, more
powerful node can provide the backbone of the
network, and do any heavy information processing
that is required. In the THAWS system, each larger
node supports a cluster of smaller of the smaller,

C
o
n
n
e
c
t
o
r

Sensor(s)

C
o
n
n
e
c
t
o
r

Battery

Charger

Programming

Serial
Comms

Radio

Microcontroller

C
o
n
n
e
c
to
r

Fig. 3. Modular wireless sensor node design

cheaper nodes that can be used for sensor interfacing
and more simple tasks. The smaller nodes do not
have to worry about routing; they always just
transmit their own information to the larger parent
node. The larger node is suited to higher-powered
long-distance communication between clusters as
they can have a large battery. The two nodes are
described in the next section.

2.1 Tyndall Wireless Sensor Nodes
In the Tyndall National Institute a number of
different nodes have been developed. Along with
various application specific nodes, two modular
nodes have been designed with a size of 10 mm by
10 mm [9], and 25 mm by 25 mm [10]. These are
referred to as the 10mm and 25mm nodes. Both
these nodes are made up of a number of different
layers as shown in Fig. 3. Each node has a
processing and transceiver layer. Sensor layers can
then be connected with application specific sensors,
for example temperature sensors, humidity sensors,
accelerometers, gyroscopes, etc. In addition to
sensors, a battery or energy harvesting device can be

Fig. 4. 10mm and 25mm modular Tyndall nodes

connected to provide a power supply. This modular
approach allows the nodes to be used to build sensor
networks for many applications e.g. environmental
monitoring [1], and an inertial measurement system
[11]. A photo of the 10mm and 25mm nodes is
shown in Fig. 4.
 The 25mm node has more powerful processing
capabilities than the 10mm node. This is provided
by a layer with an Atmel ATmega128
microcontroller with 128 kB of program memory.
There is also an FPGA layer that can be used for
intensive processing, such as forward error
correction [12], cryptography, or image processing.
The 25mm has a number of different layers for RF
communications. In the 2.45 GHz frequency band
there is a layer using a Nordic nRF2401 transceiver
and another layer using an Ember EM2420 ZigBee
compatible transceiver. There is also a
433/868/915 MHz layer using a Nordic nRF905
transceiver, which allows a longer range, of up to
3.8 km in line-of-sight conditions, compared to the
2.45 GHz options, which has a maximum range of
about 200 m. The drawback is that bandwidth is
limited to 50 kbps, compared to 1000 kbps for the
Nordic nRF2401 [13]. Data in sensor networks is
often only a few bytes, so the difference in
bandwidth is not necessarily significant. However it
will require that the radio is transmitting for a longer

time and therefore using more energy.
 For the 10mm node, there is currently a single
transceiver layer. This uses a Nordic nRF9E5 chip.
This chip has a radio that is compatible with the
Nordic nRF905 so this allows heterogeneous
networks to be built [14]. This chip also has an
integrated 8051-compatible microcontroller with a
limited 4kB program memory. The small size of the
10mm nodes allows a greater range of applications,
for example it can be more easily embedded into
clothing, or it can be used in medical applications.
The 10mm node is cheaper due to reduced PCB size,
the lower component count, and lower assembly
cost (due to fewer components). The range of the
10mm node is less as the antenna (a quarter-
wavelength monopole) does not perform will with
such a small ground reference, and also less than
optimal design of the balun circuitry (that matches
the differential output of the chip with a single
ended antenna) in order to fit it into such a small
area.
 A summarizing comparison of both nodes is
given in Table 1. Using the 10mm nodes together
with the more powerful 25mm nodes allows a lot of
flexibility in building WSNs suitable for a wide
range of applications.

Table 1. Comparison of 10mm and 25mm Tyndall nodes
 10mm 25mm
Size 10 mm x 10 mm 25 mm x 25 mm
Energy used in sleep mode 8.9 µW 30 µW
Range < 100 m < 3.8 km
Connectivity 30 pins 120 pins
Processing Capability Microcontroller with

4 kB code memory
Microcontroller with
128 kB code memory + FGPA

Fig. 5. Application development tool

2.2 THAWS Overview
The core of the THAWS system is an application
generating tool. This is introduced in Fig. 5.
 The tool has two inputs. The first of these is a
software library containing modules of code that act
as primitives in building up a WSN application.
Some of the modules are in the form of templates
that are customised for varying application
requirements. The second input into the tool is a
description of the desired application. This defines
the functionality of the network, and also constraints
of the network. For example the type of sensors,
number of nodes etc. and network topology are
declared.
 Using these two inputs, the tool then outputs
binary program images for each node in the
network. This is done by first producing C files and
then compiling these using the appropriate compiler.
The use of wireless in-network programming then
allows the network to be programmed or
reprogrammed/reconfigured to have the desired
functionality.

2.3 Software Code Library
The performance and efficiency of the final
developed application will depend greatly on the
performance and efficiency of the software library.
Both energy efficiency and the memory (RAM and
ROM) footprints were considered when creating the
library. The limited ROM of the 10mm node
especially requires efficient code. The code must
also be reliable to minimise maintenance costs of the
network.

2.3.1 Hardware abstraction layers
 Some common modules are required in each
WSN application. Modules are needed to interface
to radios, and interface to sensors. This code for
interfacing to hardware follows HAL (Hardware
Abstraction Layer) principles [15]. A common
interface is defined for hardware that has similar
functionality. For example each of the 4 radios used
by Tyndall nodes share a common low-level
interface as defined here:

rf_init(channel, power, addr, netId);
rf_disable();
rf_send(address, msg, length);
rf_receiveEnable(receiveBuffer);
rf_receiveDisable();
rf_setChannel(channel);
rf_setPower(power);
rf_callback(msg, msgInfo);

Currently there is a very simple MAC layer on top
of this low level layer that supports addressing,
collision avoidance, and star and tree networks with
a predefined topology. This MAC layer is
independent of the radio and microcontroller, due to
the use of a HAL.
 For interfacing with sensors, modules have been
developed that use I2C, SPI, and UART protocols to
interfacing with digital sensors. Using integrated
ADCs, analogue sensors can also be interfaced with.
These sensor interfaces have also been developed,
so that the higher level application logic does not
need to be changed if it is running on a 25mm node
or a 10mm node.

2.3.2 Plug and play sensor interface
The modules mentioned above can be used to
interface with many different commercial sensors.
However, the THAWS library also contains code for
interfacing with plug-and-play sensors that have
been developed in Tyndall. This uses ideas from the
IEEE1451.3 [16] standard, but is modified, as it
must run on low-power hardware.
 In the IEEE1451.3 standard, there a number of
TBIMs (Transducer Bus Interface Modules)
connected to an NCAP (Network Capable
Application Processor). Each TBIM is used as an
interface between one or more transducers and the
NCAP. In our system, the NCAP is implemented by
a Tyndall node. The TBIM is a Cypress PSoC
(Programmable System-on-Chip) [17] that can be
connected to the node and a number of sensors. This
is shown in Fig. 6. Communication between the
NCAP and the TBIM is using the I2C protocol.
 A TEDS (Transducer Electronic Data Sheet)
provides the ability for TBIMS and individual
sensors to identify themselves to the NCAP. The
IEEE1451 family of standards define many different
TEDS for different purposes. However, they have
many fields, which would require a lot of memory to
store and handle. This makes them unsuitable for
implementing in microcontrollers. Our system uses
therefore a minimalist TEDS. There are two types of

Sensors

NCAP
(Tyndall Node)

TBIM
(PSoC)

TBIM
(PSoC)

Fig. 6. Plug and play sensor architecture

TEDS: Meta-TEDS, and Sensor-TEDS. Each TBIM
has one Meta-TEDS. It says how many sensors are
connected and identifies the TBIM board. Each
sensor on a TBIM has its own individual Sensor-
TEDS, which describes the sensor and its
capabilities. Details of the TEDS are shown in Table
2 and Table 3.

Table 2. Meta-TEDS
Field Bytes Description
tedsLength 1 Number of bytes in TEDS
tedsVersion 1 Version of TEDS
uuid 2 Universal Unique

Identifier
numSensors 1 Number of sensors

connected
tedsChk 2 Checksum

Table 3. Sensor-TEDS
Field Bytes Description
tedsLength 1 Number of bytes in TEDS
sensorType 1 Type of sensor.
dataType 1 Type of Data.
dataLength 1 Number of bytes in data
warmUpTime 2 Time before 1st reading

is valid (Unit = 1 ms)
samplingPeriod 2 Min. time between

sampling (Unit = 1 ms)
tedsChk 2 Checksum

 For the node to access the sensors there are a
number of commands that can be sent to the NCAP:

 INIT_TBIM
 WAKEUP_TBIM
 SLEEP_TBIM
 READ_METATEDS
 READ_SENSORTEDS_n
 INIT_SENSOR_n
 START_SAMPLING_n
 READ_SENSORDATA_n
 SLEEP_SENSOR_n

For the READ commands, the NCAP will respond
with the requested data. The timing of the
commands for the sensors should be sent according
to the specification in the Sensor-TEDS.

2.3.3 Additional Libraries
In addition to communications and sensing, code has
also been developed for timers and buffers, which
are common building blocks that make up a WSN
application Timers are used to enable low-power
sleep modes. The timer can run in this mode, and

wakeup the node when required, for example when a
sensor reading needs to be taken. Buffers can be
used for temporarily storing sensor readings either in
RAM for volatile storage or in EEPROM/Flash for
persistent storage, where the data will not be lost if
the node needs to reset (for example because of a
watchdog timeout).
 Higher level software modules tie together the
hardware interfacing code to produce an application.
These are in the form of application templates which
can be automatically modified to produce a specific
application. For example setting the address of each
node in the network, or including the appropriate
files for the attached hardware.
 The software modules which are core to the
THAWS tool have been tested in a real-world
deployment. The SmartCoast project [1] has been
monitoring water quality (pH, conductivity,
turbidity, depth, temperature), using plug-and-play
sensors, in the River Lee in Ireland for almost 12
months. In this time the only maintenance required
was to periodically clean the sensors, and recharge
the battery.

2.4 Application Generation
The part of the THAWS system that is most visible
to the user is a wizard tool. This is currently
implemented as a console application that asks the
user a number of questions about the network, as
shown in Fig. 7. This information is then used in the
task of code generation.
 THAWS has knowledge of which software
modules are needed for each node depending on
what options the user picks. It also knows how to
modify application templates to have the needed
functionality. This is done by substituting marked
text in the application template with code to create
valid C files. THAWS searches through the source
file until it finds a variable marked with the prefix
“THAWS_VAR_”. For example to support tree
routing each node is given the required addressing
information, e.g. THAWS_VAR_PARENT_ADDR.

Application Specification
» How many nodes?
» What type are they?
» What type of radio?
» What sensors?
» Sampling frequency?
» Filter readings?
» Network topology?
» Low latency, or reliability?

Fig. 7. Questions to generate network specification

The variables can have default values, so that the
code can be compiled without using the THAWS
tool for testing and debugging purposes.
 The use of HALs for interfacing with the radio
and sensors simplifies the code generation. Different
modules that present the same interface can be
linked to without changing any other code. For
example the code for any radio can be linked to
without any other modifications because they each
have the same functions.
 The compiling and linking processes, that select
which code will be included for each node in the
network are all controlled by THAWS to output the
required binary files. This is done by generating
makefiles [18] with the necessary rules for including
the correct code modules and using the appropriate
compiler. An example of a generated makefile is
shown below. It can define some global values, the
processor that is being used, and states which
modules should be compiled and linked. A separate
makefile is then included that has rules for the
compiling and linking.

TARGET = thawsRouter
BOARD_HEADER = "nrf905_revB_433.h"

CDEFS += -DUART_BAUDRATE=115200
CDEFS += -DRF_RF_MAX_PAYLOAD_SIZE=10
CDEFS += -DDELAY_USE_CALLBACK_S

MCU = atmega128
F_CPU = 8000000

SRC = $(TARGET).c
SRC += ../../lib/25mm/avr_adc.c
SRC += ../../lib/25mm/avr_delay.c
SRC += ../../lib/25mm/avr_uart0.c
SRC += ../../lib/spi.c
SRC += ../../lib/25mm/avr_i2c_hw.c
SRC += ../../lib/25mm/rf_nrf905.c

Include rules for compiling,
linking and programming.
include ../25mm_makerules

 THAWS also outputs a text file with a formal
description of the network. This can be used as an
input to the tool to regenerate the same network. It
can also be modified to change the functionality.
 In addition to the above method of compiling and
linking C files separately we have also experimented
with outputting all the needed code to one C file.
This requires some renaming of module-level
variables to avoid name conflicts. For an application
that was using 3292 bytes of program memory, this
was reduced to 3002 bytes using this single C file,
with the same functionality. We believe this to be

because the compiler has more opportunity for
performing optimizations when the whole program
is in a single file.

2.5 THAWS Communication Protocol
The scope of the developing the THAWS tool does
not cover researching new communication
protocols. We have implemented a simple but
reliable protocol that supports tree networks where
the topology is known at compile time. Each packet
has a common format. The first two bytes are the
address of the sender. The next byte is a counter that
is incremented once, each time a packet is sent. The
sender keeps track of 1 counter for each node that it
can send to. The purpose of this is that the receiver
can detect if a packet has not been received, if the
counter has incremented more than once since the
last message it received. The fourth byte states the
type of packet (e.g. acknowledgement, sensor data),
and the rest of the bytes depend on the packet type.
The destination address, and a CRC checksum, are
added automatically by the radio hardware. If the
destination address of an incoming packet does not
match with the nodes own address, the packet is
ignored.
 The Ember EM2420 radio also supports
automatic network ID support, where a node will
reject packets not from its own network, and can
receive packets send to a network broadcast address.
The Nordic nRF905 does not provide such support,
so it is implemented manually. Each node can be in
two modes: broadcast-accepting, or broadcast-
rejecting. Nodes in broadcast-accepting mode will
all have the same physical address, so will accept all
packets sent to this address. However they still know
their real address. When using the real address they
will only receive packets sent directly to the real
address. Nodes can be commanded to switch to
using their real address, or the broadcast address.

2.6 Wireless Programming
After the code generation, the binary files can be
programmed onto the network wirelessly. This
avoids the time-consuming task of manually
connecting each node to a PC and programming it.
This can be especially difficult if a network has been
deployed in a harsh environment, such as marine
monitoring.
 To support wireless programming each
application has the ability to receive a new program
binary image and write this to its own program
memory. When a complete program has been

written to the memory, the node can restart itself and
execute the new program. With the 10mm node
there is an external EEPROM which provides
persistent storage of the program. When the node is
powered up, the microcontroller copies from the
EEPROM to an internal RAM that is used solely for
program code. As the EEPROM is only accessed at
power-up, it can be easily rewritten. For the 25mm
node, integrated Flash memory is used for the
program code. A special area of this is reserved for a
bootloader program. This bootloader program can
receive data through the radio and overwrite the rest
of the Flash.

3 Analysis
All programming systems must make a compromise
between the level of control and ease of use. To
have no compromises on possible applications, the
application can be developed in a low-level
language like assembly, C, or using the TinyOS [4]
system. Assemblers and C compilers are available
for most platforms, so they are a possible choice for
almost all platforms. However the availability of
libraries will vary from platform to platform.
TinyOS provides a large set of libraries to support
energy-aware WSN applications and has libraries
for many common tasks. With each these options a
lot of care is required to create a reliable application.
The programmer must be able to create energy-
efficient applications, avoiding, for example, race-
conditions, as discussed in the introduction.
 Much effort has been spent developing systems
that support easier application development for
WSNs. One such system is Maté [19], which defines
a list of byte-code instructions that can be used to
construct wireless sensor network applications. The
byte-codes can be sent to a node and will be run by
an interpreter on the node. This system has the
advantage of fewer lines of code then developing in
C, and thus a faster application development time. It
is also easier to disseminate new programs into the
network, because of the small size of the byte-codes.
Limitations of Maté are that the user must be
familiar with the byte-codes which look like an
assembly language, and also it is assumed that every
node will have the same function and design.
 SNQPs (Sensor Network Query Processors) [20]
are another approach that provide macro-
programming of the full network of nodes, from a
single declaration. With a SNQP the network can be
interfaced with as if it were a database. The user can
then enter SQL queries which are interpreted by the
network and the desired data is returned to the user.

 For example:

 SELECT nodeid, temperature,
 FROM sensor,
 WHERE temperature > 20,
 SAMPLEPERIOD 10s

 This will return – from each node where the
temperature is greater than 20 °C – the nodeid and
temperature reading every 10 seconds. SQL is easier
to use than byte-codes as it focuses on what the user
wants and not how this should be implemented.
However there is still a cost in interpreting the
queries, and currently the system is not designed for
heterogeneous networks.
 Tenet [21] is an architecture for creating two-
tiered heterogeneous networks. More powerful
nodes are called masters, and less-powerful nodes
are motes. With Tenet, the master nodes do most of
the work, and this is where the application is
programmed by the user. The motes are
programmed directly by the master nodes, using
tasks, which are sent by the master to the mote. Each
task is made up of a string of tasklets, which are
simple instructions, for example sampling an ADC
channel. The mote performs each tasklet and then, to
complete the task, sends a response to the master.
Tenet provides some support for some motes having
different functionality. A task can contain predicates
that must be met before the task will be executed.
However this test is done on the mote so the task
still has to be sent to every node, which is
inefficient. A significant difference between Tenet
and our system is the class of the nodes. The mote in
the Tenet system is comparable in functionality to
the 25mm Tyndall node. The master nodes are a PC
or based on the Intel Stargate platform, which has a
32bit, 400MHz processor, and 32MB of program
memory. This node is several orders of magnitude
more expensive than the 25mm node.
 The concept of mobile agents is another approach
to developing wireless sensor networks. One
implementation is discussed in [22]. In this
approach a virtual machine is running on each node.
This virtual machine supports agents which can
move from node to node to carry out their desired
task. For example a tracking agent can follow an
event of interest by sending itself to the node it
believes to be closest to the event. New agents can
be inserted into the network, which is ideal when it
is expected that the function of a network will
require many changes over its lifetime. However,
the agent approach requires sending the agent from
node to node, which will be wasteful of radio
transmission energy when a smaller packet could be

sent, and more complicated logic on each node to
understand the packet.
 An approach for building heterogeneous
networks is introduced in [23]. This approach
involves the use of heterogeneous radios, and has
special gateway hardware node that has multiple
radios for converting between different physical
layer communications, and implements a
programming interface that works for multiple
radios. It does not however provide any ability for
generating heterogeneous code for running on each
node as THAWS does. The code for each node must
still be manually created.
 The THAWS tool that has been presented in this
paper allows fast and easy application configuration
and rapid deployment of two-tiered heterogeneous
and homogeneous sensor networks. THAWS is also
easy to use for non-engineers. No knowledge or
embedded systems development is necessary. Our
system is expressive enough to allow the fast
development of any sensor data gathering
application. The use of code generation, and not an
interpreter, allows for greater efficiency, which is
very important on severely constrained systems that
must have a long life-time, and where it is expected
that the function of the network will not undergo
many major changes throughout it’s lifetime, The
use of C code allows our system to be extended
relatively easily to different platforms. It is currently
working on Atmel ATmega128 and an 8051
compatible processor, which have completely
different tool-chains. The Maté, SNQP, and Tenet ,
and mobile agent systems all use TinyOS as a base
system. Although this gives access to TinyOS’s
libraries, it also limits their system to TinyOS
compatible platforms.

4 Future Work
Our system is presently in an intermediate stage of
development. Although it is possible to develop
applications that are capable of being deployed,
there a number of improvements that can be made.
There is a lot of potential to research optimized
algorithms for our system. The current library
supports a simple communication protocol.
However it can be improved through the use of more
advanced MAC algorithms, that can enable better
energy efficiency as the transceiver can be in a sleep
mode for more time. One possible approach is the
use of framelets [24], where each message is sent
multiple times to ensure that the receiver was awake
for at least one message. Such a system can also
remove the need for time synchronization or carrier

sensing if each node within a cluster repeats its
message with a different frequency. The THAWS
tool can generate this frequency value at compile
time, as it knows the size of each cluster. Otherwise
this has to be determined at run-time using radio
communication.
 Supporting in-network wireless re-programming
of networks provides many difficulties. Much
research has been done into solving these.
Dissemination algorithms for sending the large
program code to all nodes in the network without
causing network congestion have been examined
[25]. Complementary research has been done into
only reprogramming only the parts of the program
memory that have changed [26]. This reduces the
amount of data that has to be sent over the radio.
However, due to its heterogeneous nature, our
network will provide extra difficulties.
 The THAWS system will be validated by using it
to develop and configure some real WSN
deployments. The Tyndall National Institute has
deployments of wearable, environmental
monitoring, and medical sensor networks that can be
used for testing. This will give valuable information
on the ease-of-use and reliability of THAWS.

5 Conclusions
We presented in this paper a new method for fast
development and deployment of wireless sensor
networks. The sensor networks can be
heterogeneous to minimize the cost of the overall
network, and also to facilitate non-uniform
functionality of each node.
 To support this development, the THAWS tool
allows macro-programming of the entire network
from a single application definition. This definition
is obtained from the application developer without
the need for detailed knowledge of software
programming or embedded systems. This, along
with the greater portability is an advantage that has
not been seen in other comparable systems.
 THAWS has been implemented to use the
modular Tyndall nodes, and uses software modules,
including plug-and-play sensor support, that have
been tested in real-world deployments.

6 Acknowledgements
This work was supported by the Irish Research
Council for Science, Engineering, and Technology,
as part of the Embark Initiative

References:

[1] B. O'Flynn et al., “SmartCoast: a wireless
sensor network for water quality monitoring,”
in Proc. 32nd IEEE Conf. Local Computer
Networks, Dublin, 2007, pp. 815-816.

[2] R. Fernández-Martínez, J. Ordieres, and A.
Gonzalez-Marcos, “Low power wireless sensor
networks in industrial environment,” Proc. 12th
WSEAS Int. Conf. on Systems, Heraklion,
Greece, 2008, pp. 643-648.

[3] F. Rahman, and N. Shabana, “Wireless sensor
network based personal health monitoring
system,” WSEAS Transactions on
Communications, vol. 5, no. 5, pp. 966–972,
May 2006.

[4] P. Levis et al., “The emergence of networking
abstractions and techniques in TinyOS,” in
Proc. 1st USENIX/ACM Symp. Networked
Systems Design and Implementation, San
Francisco, CA, 2004, pp. 2-15.

[5] TinyOS. Available: http://www.tinyos.net/
[6] D. Gay et al., “The nesC language: a holistic

approach to networked embedded systems,” in
Proc. ACM SIGPLAN Conf. Programming
Language Design and Implementation, San
Diego, Ca, 2003, pp. 1-11.

[7] J. Regehr, N. Cooprider, and D. Gay,
“Atomicity and visibility in tiny embedded
systems,” in Proc. 3rd Workshop on
Programming Languages and Operating
Systems, San Jose, CA, 2006, pp. 4-7.

[8] M. Karpinski and V. Cahill, “High-level
application development is realistic for wireless
sensor networks,” in Proc. 4th IEEE Conf.
Sensor, Mesh and Ad Hoc Communications and
Networks, San Diego, CA, 2007, pp. 610-619

[9] S. Harte, B. O’Flynn, R. V. Martínez-Català,
and E. M. Popovici, “Design and
implementation of a miniaturised, low power
wireless sensor node,” in Proc. 18th Euro.
Conf. Circuit Theory and Design, Seville, 2007,
pp. 894-897.

[10] S. J. Bellis et al., “Development of field
programmable modular wireless sensor network
nodes for ambient systems,” Computer
Communications, vol. 28, no. 13, pp. 1531-
1544, Aug. 2005.

[11] J. Barton, A. Gonzalez, J. Buckley, B. O’Flynn,
and S. C. O’Mathuna, “Design, fabrication and
testing of miniaturised wireless inertial
measurement units”, in Proc. 58th Electronic
Components and Technology Conf., Reno, NV,
2007, pp1143-1148.

[12] J. Jeong and C. T. Ee, "Forward error correction

in sensor networks," UCB Technical Report,
May 2003.

[13] Nordic Semiconductor, nRF905 Datasheet.
Available: http://www.nordicsemi.com/

[14] S. Harte, B. O'Flynn, R. V. Martínez-Català, J.
Buckley, and E. M. Popovici, “Wireless sensor
node design for heterogeneous networks,” in
Proc. XXXII Int. Microelectronics and
Packaging Conf., Pułtusk, Poland, 2008.

[15] V. Handziski et al., “Flexible hardware
abstraction for wireless sensor networks,” in
Proc. 2nd European Workshop on Wireless
Sensor Networks, Istanbul, 2005, pp. 145-157.

[16] IEEE Std. 1451.3-2003, IEEE Standard for a
Smart Transducer Interface for Sensors and
Actuators, 2003.

[17] http://www.cypress.com/psoc
[18] GNU Make, http://www.gnu.org/software/make
[19] P. Levis and D. Culler, “Maté: a tiny virtual

machine for sensor networks,” in Proc. 10th Int.
Conf. Architectural Support For Programming
Languages and Operating Systems, San Jose,
CA, 2002, pp. 85-95.

[20] J. Gehrke and S. Madden, “Query processing in
sensor networks,” IEEE Pervasive Computing,
vol. 3, no. 1, pp. 46-55, Jan.-Mar. 2004.

[21] O. Gnawali et al., “The Tenet architecture for
tiered sensor networks,” in Proc. 4th Int. Conf.
Embedded Networked Sensor Systems, Boulder,
CO, 2006, pp. 152-166.

[22] D. Georgoulas and K. Blow, “Making motes
intelligent: an agent-based approach to wireless
sensor networks,” WSEAS Transactions on
Communications, pp. 515-522, March 2006.

[23] F. Graziosi, L. Pomante, and D. Pacifico, “A
middleware-based approach for heterogeneous
wireless sensor networks” Proc. 12th WSEAS
Int. Conf. on Communications, Heraklion,
Greece, 2008, pp. 52-57.

[24] U. Roedig, A. Barroso, and C. J. Sreenan, “f-
MAC: a deterministic media access control
protocol without time synchronization” in Proc.
3rd European Workshop on Wireless Sensor
Networks, Zurich, 2006, pp. 276-291.

[25] S. S. Kulkarni and L. Wang, “MNP: Multihop
network reprogramming service for sensor
networks,” in Proc. 25th IEEE Int. Conf.
Distributed Computing Systems, Columbus,
OH, 2005, pp. 7-16.

[26] J. Jeong and D. Culler, “Incremental network
programming for wireless sensors,” in Proc. 1st
IEEE Conf. Sensor and Ad Hoc
Communications and Networks, Berkeley, CA,
2004, pp. 25-33.

