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The increasing prevalence of depression is a major societal burden. The etiology
of depression involvesmultiple mechanisms. Thus, the outcomes of the currently
used treatment for depression are suboptimal. The anti-depression effects of
traditional Chinese medicine (TCM) formulations have piqued the interest of the
scientific community owing to their multi-ingredient, multi-target, and multi-link
characteristics. According to the TCM theory, the functioning of the kidney is
intricately linked to that of the brain. Clinical observations have indicated the
therapeutic potential of the kidney-tonifying formula Erxian Decoction (EXD) in
depression. This review aimed to comprehensively search various databases to
summarize the anti-depression effects of EXD, explore the underlying material
basis and mechanisms, and offer new suggestions and methods for the clinical
treatment of depression. The clinical and preclinical studies published before
31 August 2023, were searched in PubMed, Google Scholar, China National
Knowledge Infrastructure, and Wanfang Database. This review followed the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses
guidelines. Clinical studies have demonstrated that EXD exhibits therapeutic
properties in patients with menopausal depression, postpartum depression,
and maintenance hemodialysis-associated depression. Meanwhile, preclinical
studies have reported that EXD and its special chemical markers exert anti-
depression effects by modulating monoamine neurotransmitter levels, inhibiting
neuroinflammation, augmenting synaptic plasticity, exerting neuroprotective
effects, regulating the hypothalamic-pituitary-adrenal axis, promoting
neurogenesis, and altering cerebrospinal fluid composition. Thus, the anti-
depression effects of EXD are mediated through multiple ingredients, targets,
and links. However, further clinical and animal studies are needed to investigate
the anti-depression effects of EXD and the underlying mechanisms and offer
additional evidence and recommendations for its clinical application. Moreover,
strategies must be developed to improve the quality control of EXD. This review
provides an overview of EXD and guidance for future research direction.
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1 Introduction

The World Health Organization has raised concerns about
the increasing incidence of depression, a psychiatric condition
characterized by enduring feelings of sadness, diminished drive,
despair, and the inability to experience pleasure. Depression is
the third most onerous ailment worldwide and is expected to
majorly contribute to the disease burden by 2030 (Malhi and
Mann, 2018). The global incidence of depression was further
exacerbated by the COVID-19 pandemic. Approximately 40% of
Chinese adults were reported to exhibit manifestations of
depressive symptoms during the COVID-19 pandemic (Qin
et al., 2018; Collaborators, 2021).

The etiology of depression has not been elucidated. Early
studies suggested that the downregulation of monoamine
neurotransmitters contributes to the onset of depression.
Thus, patients with depression are currently treated with
antidepressants to augment these neurotransmitter levels
(Haase and Brown, 2015). However, recent studies suggest
that the etiology of depression cannot be attributed to a single
mechanism. Various hypotheses have been proposed to explain
the pathogenesis of depression (Blier and El Mansari, 2013;
Huang et al., 2020; Tartt et al., 2022), including the
neuroplasticity hypothesis, the neuroinflammation hypothesis,
and the hippocampal damage hypothesis. Currently, the
consensus for the treatment of depression is psychotherapy in
combination with antidepressants. However, the currently used
antidepressants are associated with unsatisfactory outcomes,
adverse reactions, limited clinical efficacy, and poor
tolerability. Hence, there is an urgent need to elucidate the
pathogenesis of depression and develop efficacious
antidepressant drugs.

Traditional Chinese medicine (TCM) has considerable expertise
in the treatment of depression. The attributes of TCM formulations
include multi-target and multi-link regulation, as well as a high
safety profile (Xu et al., 2020; Zhang et al., 2022). TCM offers several
advantages for the treatment of depression, such as comprehensive
therapeutic approaches that address both symptomatic
manifestations and underlying causes, yielding stable curative
effects and preventing recurrence. According to TCM theory, the
functions of the kidney and brain are correlated. Thus, the
administration of kidney-tonifying formulations is beneficial for
maintaining brain health, repairing brain damage, and alleviating
depression.

Erxian Decoction (EXD), which was initially introduced by
Zhang Bo-Ne in the early 1950s, is a kidney-tonifying
formulation. The composition of EXD is as follows: Epimedium
brevicornu Maxim (Berberidaceae; Epimedii folium; Yin Yang Huo
in Chinese; 10–15 g), Curculigo orchioides Gaertn (Hypoxidaceae;
Curculiginis rhizoma; Xian Mao in Chinese; 3–15 g), Morinda
officinalis F.C.How (Rubiaceae; Morindae officinalis radix; Ba Ji
Tian in Chinese; 10–15 g), Angelica sinensis (Oliv.) Diels (Apiaceae;
Angelicae sinensis radix; Dang Gui in Chinese; 4.5–9 g),
Phellodendron chinense C.K.Schneid. (Rutaceae; Phellodendri
chinensis cortex; Huang Bo in Chinese; 5–15 g), and
Anemarrhena asphodeloides Bunge (Asparagaceae; Anemarrhenae
rhizome; Zhi Mu in Chinese; 6–15 g). EXD was developed to treat
the syndromes of kidney-yang and kidney-yin deficiency, as well as

to harmonize the yin-yang balance (Li et al., 2007; Zhang et al.,
2020). Epimedii folium and Curculiginis rhizoma, which are the
monarch drugs in EXD, can invigorate the kidney-yang and
replenish the kidney-essence (Li et al., 2007; Wang Y. et al.,
2019). Morindae officinalis radix, a minister drug in EXD, exerts
therapeutic effects by warming and tonifying the kidney-yang,
complementing the warming and nourishing properties of the
monarch drugs (Wang Y. et al., 2019). Anemarrhenae rhizome
and Phellodendri chinensis cortex, which are the assistant drugs
in EXD, can nourish the kidney-yin and mitigate the strong and
intense properties of Curculiginis rhizoma and Epimedii folium
(Wang Y. et al., 2019). Angelicae sinensis radix, which is the
envoy drug of EXD, nourishes the blood and softens the liver,
facilitating blood circulation and supporting the regulatory and
nourishing activities of the monarch drugs on the Chong and
Ren meridians (Wang Y. et al., 2019). These six herbal medicines
interact synergistically and are interconnected in their actions
(Zhang et al., 2021a).

Previous phytochemical studies have demonstrated that EXD
water extract contains several active ingredients, such as icariin,
curculigoside, ferulic acid, berberine, timosaponin B-Ⅱ, mangiferin,
quercetin, kaempferol, and luteolin (Wang N. et al., 2019; Zhang
et al., 2020). According to the Chinese Pharmacopoeia
(2020 edition), the threshold concentration of different bioactive
components is as follows: icariin (Epimedii folium marker), should
not be <5.0% in Epimedii folium decoction pieces. curculigoside
(Curculiginis rhizomemarker), should not be <0.10% in Curculiginis
rhizoma decoction pieces; ferulic acid (A. sinensis radix marker),
should not be <0.050% in A. sinensis radix decoction pieces;
berberine (Phellodendri chinensis cortex marker), should not
be <3.0% in Phellodendri chinensis cortex decoction pieces;
timosaponin B-Ⅱ and mangiferin (Anemarrhenae rhizome
markers), should not be <3.0% and 0.5%, respectively. Icariin,
curculigoside, ferulic acid, berberine, timosaponin B-Ⅱ, and
mangiferin are the special chemical markers of EXD. The
concentrations of these compounds in EXD water extract serve
as major parameters for assessing the quality of EXD.

The effects of EXD, which was initially developed to treat
perimenopausal syndrome in women, have been examined in
clinical practice and experimental studies, which have
demonstrated its anti-depression potential with favorable
outcomes in diverse forms of depression (Zhang et al., 2020).
Moreover, preclinical studies have demonstrated that EXD
exhibits distinctive advantages, such as multi-link, multi-
target, and multi-pathway characteristics, as well as minimal
adverse reactions. Consequently, the elucidation of the anti-
depression mechanisms of EXD has clinical significance. This
review provides a comprehensive summary of the clinical and
preclinical studies on the anti-depression effects of EXD and its
special chemical markers. Additionally, this review provides a
theoretical foundation for future studies on the anti-depression
effects of EXD.

2 Methodology

This review comprehensively searched the electronic databases
based on the Preferred Reporting Items for Systematic Reviews and
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Meta-Analyses (PRISMA) guidelines. The flow diagram of the
search strategy is shown in Figure 1.

The terms “Erxian Decoction,” “Erxian Tang,” “Erxian,”
“depressive disorder,” “depression,” “depressive symptom,” and
“anti-depressant” and the special chemical markers of EXD were
searched in the PubMed, Google Scholar, Chinese National
Knowledge Infrastructure (CNKI), and Wanfang Database to
retrieve studies examining the effects of EXD and its special
chemical markers on depression.

The inclusion criteria employed in this study were as follows: 1)
clinical and animal (in vivo) studies assessing the effectiveness of
EXD (or its modified formula) in treating depression; 2) clinical

studies that employed the Classification And Diagnostic Criteria Of
Mental Disorders In China-Third-Edition (CCMD-3) or
International Classification of diseases 10th Revision criteria for
diagnosing patients with depression; 3) clinical studies that included
a treatment group using EXD (or its modified formula) either as a
standalone therapy or in conjunction with TCM formulations or
antidepressants; (4) animal (in vivo) studies assessing the
effectiveness of EXD markers in treating depression; 5) studies
performed before 31 August 2023.

Meanwhile, the exclusion criteria employed in this study were
as follows: 1) clinical studies that did not provide diagnostic
criteria; 2) non-randomized controlled trials; 3) studies on

FIGURE 1
PRISMA flowchart outlining the article screening process.
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modified formula that excluded the monarch drugs Epimedii
folium and (or) Curculiginis rhizoma; 4) animal studies that
lack behavioral experiments or biochemical tests; 5) studies

written in languages other than Chinese and English; 6) clinical
experience, reviews, meeting reports, dissertations, or
meta-analysis.

TABLE 1 Summary of clinical studies on the anti-depression effects of EXD.

Treatment
group

Control
group

Treatment
time

Sample size
treatment/
control

Diagnostic
criteria

Depression
type

Results Reference

EXD (69 g, 1 dose/d)
plus acupuncture (34 ±
3 years old, 3.1 ±
2.6 months of disease
duration)

Maprotiline
hydrochloride
(75 mg/d) (35 ±
2 years old, 3.7 ±
2.3 months of
disease duration)

6 weeks 37/35 CCMD-3 Postpartum
depression

After treatment
EPDS ↓ Serum
estradiol ↑ and
Treatment compared
to control: treatment
efficiency ↑ EPDS ↓
Serum estradiol and
progesterone ↑

Li et al. (2023)

EXD plus Xiaoyaosan
(114 g, 1 dose/d) (50.5 ±
10.2 years old, 31.52 ±
12.75 months of disease
duration)

Paroxetine
(20 mg/d) (51.3 ±
11.8 years old,
30.93 ±
11.46 months of
disease duration)

8 weeks 64/63 CCMD-3 Maintenance
hemodialysis
depression

After treatmen
HAMD ↓ (treatment
and control) Serum
hs-CRP ↓, TNF-α↓,
and IL-6 ↓
(treatment)
Treatment compared
to control: treatment
efficiency ↑HAMD ↓

Huang et al.
(2021)

modified EXD (122 g,
1 dose/d) plus
fluoxertine (20 mg/d
(48.5 ± 6.2 years old,
3.8 ± 1.2 years of disease
duration)

Fluoxertine
(20 mg/d) (47.8 ±
6.5 years old, 3.5 ±
1.7 years of disease
duration)

8 weeks 45/45 CCMD-3 Perimenopausal
depression

After treatment
HAMD ↓ (treatment
and control) Serum
estrogen ↑ Serum LH
↓and FSH ↓
(treatment)
Treatment compared
to control: treatment
efficiency ↑HAMD ↓

Long (2018)

Treatment1: modified
EXD (100 g, 1 dose/d)
plus sertraline (50 mg/
d) and psychotherapy
(56.29 ± 4.61 years old,
3.22 ± 1.36 years of
disease duration)
Treatment2: modified
EXD (100 g, 1 dose/d)
plus sertraline
(50 mg/d)

Sertraline (50 mg/
d)
(56.25 ±
11.30 years old,
3.52 ± 1.83 years of
disease duration)

8 weeks 41/42/39 CCMD-3 Perimenopausal
depression

After treatment
SDS↓ (treatment1, 2,
& control) Serum LH
↓ (treatment1), FSH
↓ (treatment1 & 2)
Treatment compared
to control: treatment
efficiency ↑ SDS ↓

Xu et al.
(2017a)

Treatment1: modified
EXD (100 g, 1 dose/d)
plus sertraline (50 mg/
d) and psychotherapy
(56.29 ± 4.61 years old,
3.22 ± 1.36 years of
disease duration)
Treatment2: modified
EXD (100 g, 1 dose/d)
plus sertraline
(50 mg/d)

Sertraline (50 mg/
d)
(56.25 ±
11.30 years old,
3.52 ± 1.83 years of
disease duration)

8weeks 41/42/39 CCMD-3 Perimenopausal
depression

After treatment
HAMD ↓
(treatment1, 2, &
control) left
occipital: 5-HT ↑
(treatment1), DA
↑(treatment1), NE
(treatment2) ↑ left
temporal: 5-HT ↑
(treatment1), DA ↑
(treatment1), NE ↑
(treatment1, 2, and
control) Treatment
compared to control:
treatment efficiency
↑ (treatment1 & 2)
left temporal:NE ↑
(treatment2)

Xu et al.
(2017b)

Abbreviations: 5-HT, 5-hydroxytryptamine; CCMD-3, Classification And Diagnostic Criteria Of Mental Disorders In China-Third-Edition; DA, dopamine; EPDS, edinburgh postnatal

depression scale; EXD, erxian decoction; FSH, follicle-stimulating hormone; HAMD, hamilton depression scale; hs-CRP, hypersensitive c-reactive protein; IL-6, interleukin-6; LH, luteinizing

hormone; NE, norepinephrine; SDS, Self-rating depression scale; TNF-α, tumor necrosis factor α.
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3 Results

3.1 Clinical studies on the anti-depression
effects of EXD

The etiology of depression has not been elucidated. Previous
studies have demonstrated that the pathological process of
depression is associated with various factors, including
neurotransmitter dysregulation, inflammation, and neuronal
impairment. EXD has been used in clinical practice for the
treatment of depression in its native or modified forms in
combination with other TCM formulations and conventional
antidepressants. This treatment approach is effective in
ameliorating depressive symptoms, yielding a favorable
therapeutic effect. In this section, the studies examining the
clinical anti-depression effects of EXD have been reviewed (Table 1).

3.1.1 Therapeutic effects of EXD on
perimenopausal depression

Perimenopausal depression, also known as menopausal
depression, is a depressive disorder that emerges during the
menopausal period. In a clinical study by Xu et al. (2017b),
female patients with perimenopausal depression were randomly
assigned to the western medicine, integrative medicine, and
integrative physical and mental treatment groups. Patients in the
western medicine group were orally administered with sertraline
hydrochloride (50 mg/d), while those in the integrative medicine
group were orally administered with sertraline hydrochloride and
modified EXD (100 g, 1 dose/d). Meanwhile, patients in the
integrative physical and mental treatment group were provided
psychological counseling and orally administered modified EXD
and sertraline hydrochloride. After 8 weeks of treatment, the
Hamilton Depression Scale (HAMD) scores in the integrative
medicine group and integrative physical and mental treatment
groups were lower than those in the western medicine
group. Based on the HAMD score, the total effective rates were
48.89% (22/45), 78.78% (35/45), and 80.00% (36/45) in the western
medicine, integrative medicine, and integrative physical and mental
treatment groups, respectively. Monoamine neurotransmitter
deficiency in the brain is a major etiological factor of
perimenopausal depression. The administration of sertraline
hydrochloride alone did not upregulate the brain levels of 5-
hydroxytryptamine (5-HT), norepinephrine (NE), and dopamine
(DA) in patients with perimenopausal depression. In contrast, the
combination of modified EXD and sertraline hydrochloride
significantly upregulated the NE levels in the left occipital region,
while the combination of modified EXD, sertraline hydrochloride,
and psychological counseling upregulated the levels of 5-HT and DA
in both the left occipital and left anterior temporal regions.
Additionally, analysis of the blood pressure, heart rate, liver and
kidney functions, and electrocardiogram findings did not reveal any
marked alterations (Xu et al., 2017b).

Another clinical study by Xu et al. (2017a) revealed that based on
the Self-rating Depression Scale (SDS) scores, the total effective rates
in the western medicine, integrative medicine, and integrative
physical and mental treatment groups were 51.28%, 69.05%, and
80.49%, respectively. The ovarian function declines in
perimenopausal women, leading to the dysregulation of the

secretion of hormones, such as estrogen, follicle-stimulating
hormone (FSH), and luteinizing hormone (LH). This interferes
with the negative feedback regulation of the hypothalamic-
pituitary-gonadal axis, resulting in decreased secretion of
neurotransmitters by the hypothalamus. The administration of
sertraline hydrochloride alone did not significantly affect the
serum levels of estrogen, FSH, and LH in patients with
perimenopausal depression. However, the combination of
modified EXD and sertraline hydrochloride, as well as the
combination of modified EXD, sertraline hydrochloride, and
psychological counseling, downregulated the FSH levels.
Furthermore, the combination of modified EXD, sertraline
hydrochloride, and psychological counseling downregulated the
LH levels.

In a study by Long, (2018), female patients with perimenopausal
depression were randomly divided into the observation and control
groups (45 cases/group). Patients in the control group were orally
administered with fluoxetine (20 mg/d, 8 weeks), while those in the
observation group were orally administered with modified EXD
(122 g, 1 dose/d, 8 weeks) and fluoxetine. The HAMD scores in the
observation group were lower than those in the control group. Based
on the HAMD score, the total effective rates in the control and
observation groups were 53.33% and 91.11%, respectively. The
serum estrogen, FSH, and LH levels were not affected in the
control group. In contrast, the serum levels of estrogen were
upregulated and the serum levels of FSH and LH were
downregulated in the observation group.

3.1.2 Therapeutic effects of EXD on postpartum
depression

Postpartum depression, which is characterized by the enduring
presentation of depressive symptoms in women after childbirth,
usually manifests within 6 weeks of childbirth. The incidence rate of
postpartum depression is in the range of 2.1%–31.6% (Gressier et al.,
2015). Furthermore, 20%–30% of patients with postpartum
depression experience a relapse during subsequent pregnancies
(Fisher et al., 2016). In a study by Li et al. (2023), 72 female
patients with postpartum depression were randomly divided into
the observation (37 cases) and western medicine groups (35 cases).
Patients in the observation group were subjected to acupuncture and
orally administered with EXD (69 g, 1 dose/d), while those in the
western medicine group were orally administered with maprotiline
hydrochloride (75 mg/d). After 6 weeks of treatment, compared
with those in the western medicine group, the Edinburgh
Postnatal Depression Scale scores were lower, the estrogen levels
were higher, and the progesterone levels were downregulated in the
observation group. The total effective rates in the observation and
western medicine groups were 94.6% (35/37) and 62.9% (22/35),
respectively. Furthermore, analysis of bodyweight, blood pressure,
heart rate, or liver and kidney functions did not reveal marked
alterations throughout the treatment period.

3.1.3 Therapeutic effects of EXD on maintenance
hemodialysis-associated depression

Patients undergoing maintenance hemodialysis exhibit
psychological distress owing to the protracted nature of their
illness, exorbitant treatment costs, and the prevalence of various
severe complications. These patients are susceptible to develop
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TABLE 2 Summary of animal studies on the anti-depression effects of EXD and the underlying molecular mechanisms.

Content (%) Dosage Animal Model Behavioral test
after treatment

Molecular
mechanism after
treatment

Pharmacological
effects

Reference

Yin Yang Huo
20 Xian Mao 20 Ba
Ji Tian 20 Dang Gui
20 Huang Bo 10 Zhi
Mu 10

5.85 g/kg C57BL/6J
mice

MS + RS The central distance ↑
and central crossing ↑
in OFT

5-HT ↑, 5-HIAA ↑, DA ↑,
DOPAC ↑, BDNF ↑, TrkB
↑, CREB ↑, PSD95 ↑, and
SYN ↑ in hippocampus

Neurotransmitters
increasement Synaptic
plasticity improvement

Liang et al.
(2023)

Yin Yang Huo
15 Xian Mao 10 Ba
Ji Tian 16 Dang Gui
24 Huang Bo 19 Zhi
Mu 16

8 g/kg Male
Wistar rats

CUMS The sucrose preference
↑ in SPT. The distance ↑
in OFT. The immobility
time ↓ in FST. The
accuracy ↑ in T-maze

BrdU/DCX double-
positive cells ↑ and NeuN-
positive cells ↑ in
hippocampus
35 differential expression
proteins ↓ and
5 differential expression
proteins ↑ in
cerebrospinal fluid
proteomics

Neuroprotection
Neurogenesis promotion

Lu et al. (2022)

Yin Yang Huo
20 Xian Mao 20 Ba
Ji Tian 20 Dang Gui
20 Huang Bo 10 Zhi
Mu 10

1.47 g/kg C57BL/6N
mice

MS + RS The sucrose preference
↑ in SPT. The central
time ↑ and distance ↑ in
OFT. The immobility
time ↓ in TST. The
open-arm time ↑ and
crossing ↑ in EPM.

Iba-1 ↓, p-Akt1/Akt1 ↑,
BDNF ↑, PSD95 ↑, and
SYN ↑ in hippocampus

Anti-neuroinflammation
Synaptic plasticity
improvement

She et al.
(2022)

Yin Yang Huo
20 Xian Mao 20 Ba
Ji Tian 20 Dang Gui
20 Huang Bo 10 Zhi
Mu 10

5.84 g/kg C57BL/6J
mice

MS chronic
neuropathic
pain

The distance ↑ and
central time ↑ in OFT.

Nr3c1 ↓, GRM5 ↓, and
GR ↑ in amygdala

HPA axis regulation Zuo et al.
(2022)

Yin Yang Huo
15 Xian Mao 10 Ba
Ji Tian 16 Dang Gui
24 Huang Bo 19 Zhi
Mu 16

8 g/kg Male
Wistar rats

Aging +
CUMS

The sucrose preference
↑ in SPT. The distance ↑
and crossing ↑ in OFT.
The immobility time ↓
in FST. The crossing
platform times ↑, target
quadrant time ↑, and
distance ↑ in Morris
water maze

DCX ↑, Nestin ↑, Ki-67/
Nestin positive cells ↑ and
BrdU/DCX positive cells
↑ in hippocampus
5 differential expression
proteins ↓ and
34 differential expression
proteins proteins ↑ in
cerebrospinal fluid
proteomics

Neuroprotection
Neurogenesis promotion

Li et al. (2021)

Yin Yang Huo
20 Xian Mao 20 Ba
Ji Tian 20 Dang Gui
20 Huang Bo 10 Zhi
Mu 10

5.85 g/kg C57BL/6J
mice

MS + RS The distance ↑ and
central time ↑ in OFT.
The open-arm time ↑ in
O-maze The
investigation time ↓
in SIT.

IL-6 ↓, TNF- α↓, Iba-1 ↓,
and GR ↑ in hippocampus

Anti-neuroinflammation She et al.
(2021)

Yin Yang Huo
19 Xian Mao 19 Ba
Ji Tian 16 Dang Gui
16 Huang Bo 15 Zhi
Mu 15

0.5, 1.5, and
4.5 g/kg

Female
ICR mice

OVX +
CUMS

Body weight↑ The
sucrose preference ↑ in
SPT. The rearing ↑,
grooming ↓ and
defecation ↓ in OFT.
The immobility time ↓
in FST and TST. The
latency ↓ and target
quadrant time ↑ in
Morris water maze

FSH ↓, LH ↓, and IL-6 ↓ in
serum BDNF ↑ and Bcl-2
↑ in hippocampus

Neuroprotection Anti-
inflammation

Zhang et al.
(2021a)

(Continued on following page)
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negative affective states, such as anxiety and depression. In
particular, depression is a prevailing mental disorder among
patients undergoing maintenance hemodialysis with incidence
rates in the range of 22.8%–62.0% (Griva et al., 2018; Zamanian
et al., 2018). Prolonged depressive episodes adversely affect the
quality of life of these patients and may increase the risk of
sudden mortality. In a study by Huang et al., 2021, 130 patients
with maintenance hemodialysis-associated depression were
administered conventional treatment for the underlying disease
and were randomly divided into control (32 male cases and
33 female cases) and observation groups (34 male cases and
31 female cases). Patients in the control group were orally
administered with paroxetine (20 mg/d), while those in the
observation group were orally administered with EXD and
XiaoYaoSan (114 g, 1 dose/d) for 8 weeks. The total effective
rates in the observation and control groups were 79.69% (51/64)
and 69.84% (44/63), respectively. The HAMD scores in the
observation group were lower than those in the control
group. The serum levels of hypersensitive C-reactive protein (hs-
CRP), interleukin (IL)-6, and tumor necrosis factor-alpha (TNF-α)
were not affected in the control group but were significantly
upregulated in the observation group.

3.2 Animal studies on the anti-depression
effects of EXD

Previous studies have examined the effectiveness of EXD in
ameliorating depressive symptoms and cognitive impairment in
different depression models, including the maternal separation +
chronic restraint stress (MS-RS)-induced, chronic unpredictable
mild stress (CUMS)-induced, and reserpine-induced depression
models, using a series of behavioral experiments. The findings of
these experiments indicate that EXD exerts anti-depression effects
by inhibiting neuroinflammation, enhancing synaptic plasticity,
upregulating monoamine neurotransmitter levels, and alleviating
neuronal damage. This section reviews the mechanisms through
which EXD exerts anti-depression effects in the animal depression
models (Table 2).

3.2.1 Modulation of monoamine
neurotransmitter levels

The pathogenesis of depression involves multiple mechanisms,
including the downregulation of monoamine neurotransmitters in
the brain. NE, 5-HT, and DA are critical for the regulation of human
emotions and cognitive processes. The downregulation of these
neurotransmitters in the brain tissue can induce neuronal
hypoactivity, leading to depression and cognitive dysfunction
(Malhi and Mann, 2018). Various antidepressant medications
aim to modulate the levels of these neurotransmitters. For
example, selective serotonin reuptake inhibitors can augment
serotonin release and concentrations in patients with depression,
eliciting an antidepressant response.

Liang et al. (2023) reported that EXD upregulated the 5-HT, DA,
5-hydroxyindoleacetic acid (5-HTAA), and dihydroxyphenylacetic
acid (DOPAC) levels in the hippocampus of the MS-RS-induced
depression mouse model. Zhang et al. (2020) focused on the
hypothalamus and established a depression mouse model by
intraperitoneally injecting reserpine. The authors demonstrated
that EXD upregulates the levels of 5-HT, DA, and NA in the
hypothalamus of the depression mouse model. These findings
suggest a correlation between the anti-depression effects of EXD
and the upregulation of monoamine neurotransmitters in the brain.

3.2.2 Alleviation of neuroinflammation
Recent studies have reported the upregulation of inflammatory

markers in patients diagnosed with depression, suggesting a
correlation between depression and neuroinflammation (Xie
et al., 2023). Microglia, which are immune cells residing in the
brain, maintain cerebral homeostasis and facilitate nerve restoration.
Activated microglia differentiate into M1 and M2 subtypes.
M1 microglia promote neuroinflammation, whereas M2 microglia
exhibit anti-inflammatory properties (Wang H. et al., 2022). Ionized
calcium-binding adapter molecule 1 (Iba-1) serves as a surface
marker for M1 microglia. After activation, M1 microglia promote
the secretion of inflammatory cytokines, including IL-1β, IL-6, and
TNF-α, eliciting protective responses in the nervous system against
detrimental stressors (Wang Y. L. et al., 2018). Prolonged and
excessive microglial activation promotes the generation of various

TABLE 2 (Continued) Summary of animal studies on the anti-depression effects of EXD and the underlying molecular mechanisms.

Content (%) Dosage Animal Model Behavioral test
after treatment

Molecular
mechanism after
treatment

Pharmacological
effects

Reference

Yin Yang Huo
19 Xian Mao 19 Ba
Ji Tian 16 Dang Gui
16 Huang Bo 15 Zhi
Mu 15

0.5, 1.5 and
4.5 g/kg

Male ICR
mice

Despair
model and
Resepine

Despair model The
immobility time ↓ in
FST and TST. Reserpine
The immobility time ↓
in FST and TST.

Despair model Bax ↓,
Cleaved caspase-3 ↓,
Caspase-8 ↓, and Bcl-2 ↑
in hippocampus
Reserpine Bax ↓, Cleaved
caspase-3 ↓, Caspase-8 ↓,
and Bcl-2 ↑ in
hippocampus 5-HT ↑, DA
↑, and NE ↑ in
hypothalamic

Neuroprotection
Neurotransmitters
increasement

Zhang et al.
(2020)

Abbreviations: 5-HIAA, 5-hydroxyindole acetic acid; 5-HT, 5-hydroxytryptamine; Akt, protein kinase B; Bcl-2, B-cell lymphoma-2; BDNF, brain-derived neurotrophic factor; BrdU, 5-

Bromodeoxyuridinc; CREB, cAMP-response element binding protein; CSF, cerebrospinal fluid; CUMS, chronic unpredictable mild stress; DA, dopamine; DCX, doublecortin; DOPAC,

dihydroxyphenylacetic acid; EPM, elevated plus maze; FSH, follicle-stimulating hormone; FST, forced swimming tests; GR, glucocorticoid receptor; GRM5, metabolic glutamate receptor 5 gene;

HPA, hypothalamic-pituitary-adrenal; Iba-1, ionized calcium bindingadaptor molecule-1; IL-6, interleukin-6; LH, luteinizing hormone; MS, maternal separation; MS-RS, maternal separation

combining chronic restraint stress; NeuN, neuronal nuclei; Nr3c1, nuclear receptor subfamily 3 group C member 1; OFT, open field test; PSD95, post-synaptic density protein 95; SIT, social

interaction test; SPT, sucrose preference test; SYN, synaptophysin; TNF-α, tumor necrosis factor-α; TrkB, tropomyosin related kinase B; TST, tail suspension test.
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inflammatory mediators, resulting in neuroinflammation,
exacerbation of neurotoxicity, and neuronal damage (Beurel
et al., 2020; Guo et al., 2020).

She et al., 2021 demonstrated that EXD significantly decreased
the mRNA and protein expression levels of Iba-1, as well as the levels
of IL-6 and TNF-α in the hippocampus, in the MS-RS-induced
depression mouse model. Additionally, Zhang et al. (2021b)
reported that EXD downregulated the serum IL-6 contents in a
perimenopausal depression mouse model.

The mitogen-activated protein kinase (MAPK) signaling
pathway facilitates the proinflammatory process of microglia and
is strongly correlated with impaired synaptic plasticity and
neuroinflammation during the pathogenesis of depression. She
et al., 2022 performed a network pharmacology analysis and
reported that the MAPK signaling pathway is the principal
pathway mediating the anti-depression effects of EXD. However,
this finding was not experimentally verified.

3.2.3 Augmentation of synaptic plasticity
Impaired synaptic plasticity has been a focus area of studies on

the pathogenesis of depression. Synaptic plasticity, which
encompasses alterations in the structure and function of
synapses, serves as the foundation of neural plasticity. The
release of mature brain-derived neurotrophic factor (BDNF) from
dendrites is critical for the diverse manifestations of synaptic
plasticity. BDNF binds and stimulates tyrosine receptor kinase B
(TrkB) receptors, initiating the phosphatidylinositol-3-kinase
(PI3K)/protein kinase B (Akt) pathway, facilitating cAMP-
response element binding protein (CREB) activation, and
subsequently exerting regulatory effects on synaptic plasticity
(Zhang and Liao, 2020; Rana et al., 2021; Wang et al., 2021).
Chronic stress is reported to downregulate the expression of
BDNF and impair signal transduction. This leads to neuronal
atrophy and synaptic dysfunction, diminishing stress resilience,
enhancing stress susceptibility, and promoting the development
of depression (Castrén and Rantamäki, 2010).

The PI3K/Akt signaling pathway enhances the viability and
proliferation of neuronal cells. Additionally, the PI3K/Akt
signaling pathway mediates the mechanism of action of
various antidepressant medications (Zeng et al., 2022).
Activated PI3K promotes the phosphorylation of Akt, which
subsequently upregulates BDNF and downregulates apoptotic
genes. These molecular events further contribute to the
enhancement of synaptic plasticity and the maintenance of
neuronal homeostasis by supporting essential processes, such
as neuronutrition, neuronal survival, and the inhibition of
apoptosis. Synaptophysin (SYN), a calcium-binding protein
predominantly found in presynaptic terminals, serves as an
indirect indicator of synaptic count, distribution, and density.
Postsynaptic density protein 95 (PSD95) plays a crucial role in
postsynaptic remodeling and signal transmission on the
postsynaptic membrane (Li et al., 2022). Network
pharmacology studies by Luo et al., 2020 and She et al., 2022
have predicted that the PI3K/Akt pathway is the major pathway
mediating the anti-depression effect of EXD with Akt1 serving as
the central target. In a subsequent validation experiment, She
et al., 2022 demonstrated that EXD significantly upregulates the
phosphorylation of Akt1 and the protein and mRNA expression

levels of BDNF, PSD95, and SYN in the hippocampus of the MS-
RS-induced depression mouse model.

CREB regulates various neuronal processes, including growth,
development, synaptic plasticity, and the formation of long-term
memory. The phosphorylation of CREB exerts beneficial effects,
such as the upregulation of BDNF, the inhibition of cell apoptosis,
and the facilitation of cell differentiation and repair after injury.
Liang et al., 2023 demonstrated that EXD significantly enhanced the
protein and mRNA levels of BDNF, TrkB, and CREB in the
hippocampus of the MS-RS-induced depression mouse model.
Additionally, Zhang et al. (2021a) utilized ovariectomy combined
with CUMS to establish a mouse model of menopausal depression
and demonstrated that EXD upregulated the BDNF levels in the
hippocampus of the perimenopausal depression mouse model.

3.2.4 Protection of neurons and induction of
neurogenesis

Hippocampal damage is reported to be involved in the etiology
of depression. Dysfunctional neurogenesis and neural loss in the
hippocampus are therapeutic targets for depression (Huang et al.,
2020). Cognitive impairments, including deficits in memory and
learning, frequently manifest in patients with depression, indicating
a strong correlation between hippocampal dysfunction and the
initiation and progression of depressive symptoms. Clinical
autopsies have consistently demonstrated decreased hippocampal
volume along with neuronal atrophy and loss in patients diagnosed
with depression. Preclinical studies have yielded empirical evidence
for the reduction in the quantity and length of dendritic branches in
the hippocampal neurons along with dysfunctional neurogenesis in
depression animal models. Thus, the disruption of the structure and
function of the hippocampus is associated with the onset and
progression of depressive disorders.

Bax and B-cell lymphoma-2 (Bcl-2) proteins, which are
members of the Bcl-2 family, exert pro-apoptotic and anti-
apoptotic effects, respectively. Additionally, caspase-3 and
caspase-8 serve as crucial initiators of apoptosis. Zhang et al.,
2020 demonstrated that EXD dose-dependently upregulated Bcl-2
expression and downregulated Bax, caspase-8, and cleaved caspase-3
expression in the hippocampus of the despair mouse models and
reserpine-treated mice. Additionally, another study by Zhang et al.
(2021a) demonstrated that EXD dose-dependently upregulated Bcl-
2 expression in the hippocampus of a menopausal depression
mouse model.

Hippocampal neurogenesis encompasses the intricate
mechanisms of neural stem cell proliferation and differentiation
and the survival of newly formed neural cells. Previous studies have
revealed a strong correlation between the dysregulation of
hippocampal neurogenesis and the initiation and progression of
depressive disorders. Prolonged stress impedes the proliferation of
hippocampal neural stem cells, resulting in the downregulation of
cell proliferation in the dentate gyrus (DG) region, which disrupts
the process of neuronal differentiation and generation. Lu et al., 2022
demonstrated that EXD augmented the number of newborn
precursor neurons and mature neurons in the hippocampal DG
region of the CUMS-induced depression rat model. Li et al., 2021
used a combination of natural aging and CUMS to establish a rat
model of late-onset depression (LOD) and demonstrated that EXD
effectively increased the population of newborn neural stem cells,
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precursor neurons, and mature neurons in the hippocampal DG
region of rats with LOD.

3.2.5 Alteration of the composition of
cerebrospinal fluid (CSF)

The CSF can be used for investigating central nervous system
diseases as it is in direct contact with the central nervous system.
Thus, CSF offers valuable insights into the physiological and
pathological conditions of the brain, encompassing metabolic and
biochemical reactions. The dysregulation of CSF composition
promotes both physiological and pathological alterations in the
brain. Positioning close to the lateral ventricle, the hippocampus
is associated with the CSF. The components of the CSF can directly
affect the structure and function of the hippocampus. The CSF
proteome is markedly altered in patients diagnosed with depression.
These differentially expressed proteins are closely linked to central
nervous system damage and dysfunction in patients with depression.

Lu et al., 2022 performed proteomics analysis to identify
changes in the CSF proteome of the CUMS-induced depression
rat model treated with EXD. EXD mitigated the CUMS-induced
dysregulation of 40 proteins in the rat CSF. These differentially
expressed proteins were primarily associated with the ribosome and
ubiquitin-mediated proteolysis pathway. In particular, ribosomal
protein S19, ribosomal protein S12, ribosomal protein S14,
vimentin, and ubiquitin-like modifier activating enzyme
1 mediated the therapeutic effects of EXD on depression and
hippocampal damage. Another proteomics study by Li et al.,
2021 demonstrated that EXD mitigated the CUMS-induced
dysregulation of 39 proteins in the CSF of naturally aging rats.
Additionally, some proteins involved in promoting neurogenesis,
such as growth differentiation factor 11, neuronal cell adhesion
molecule, and Ghrelin were downregulated in the CSF after CUMS
modeling but were upregulated after EXD treatment.

3.2.6 Regulation of the hypothalamic-pituitary-
adrenal (HPA) axis

The hyperactivity of the HPA axis, a prevalent neurobiological
manifestation of depression, can impair neuronal function and
activity, resulting in the development of clinical symptoms of
depression. Zuo et al., 2022 demonstrated that EXD upregulated
glucocorticoid receptor (GR) and downregulated GR (Nr3c1) and
glutamate metabotropic receptor 5 (GRM5) in the amygdala of the
depression mouse model. She et al., 2021 demonstrated that EXD
upregulated the expression of GR in the hippocampus of theMS-RS-
induced depression mouse model.

3.3 Studies on the anti-depression effects of
EXD special chemical markers

Icariin, curculigoside, ferulic acid, berberine, timosaponin
B-Ⅱ, and mangiferin are the special chemical markers of EXD.
The quantification of these components in EXD serves as a
criterion for assessing EXD quality. This section primarily
focuses on icariin, curculigoside, ferulic acid, berberine,
timosaponin B-Ⅱ, and mangiferin as they are considered the
special chemical markers that mediate the anti-depression effects
of EXD (Supplementary Table S1).

3.3.1 Anti-depression effects of icariin
Icariin is the most important and principal bioactive constituent

in Epimedii folium. Previous studies have examined the effects of
icariin, especially the anti-depression effects. The findings of these
studies indicate that icariin is a potential candidate for the
development of antidepressant medications.

Icariin is reported to exhibit anti-inflammatory properties.
Previous studies have demonstrated that icariin can ameliorate
depressive-like behavior in the CUMS-induced depression rat
model by inhibiting the nuclear factor kappa-B (NF-κB) signaling
pathway and the NOD-like receptor thermal protein domain
associated protein 3 (NLRP3) inflammasome/Caspase-1/IL-1β
axis, suppressing the release of TNF-α (Liu et al., 2015).
Furthermore, icariin alleviates neuroinflammation in the
hippocampus of mice with depression by inhibiting the high
mobility group box-1 (HMGB1)/receptor for advanced glycation
end-products (RAGE) signaling pathway and activating the X-box
binding protein 1 spliced (XBP1s)/NF-κB signaling pathway (Liu
et al., 2019). Additionally, icariin downregulates the serum levels of
IL-6 and TNF-α in rats with depression (Pan et al., 2006).

The hyperactivity of the HPA axis, which is a prevalent
neurobiological manifestation of depression, can impair
hippocampal function and neuronal activity, resulting in the
development of depression-related clinical symptoms. Icariin
exerts anti-depression effects by regulating the HPA axis (Wu
et al., 2011; Wei et al., 2016). Icariin can effectively downregulate
the expression of corticotropin-releasing factor (CRF) in the
hypothalamus and adrenocorticotropic hormone (ACTH) and
corticosterone (CORT) in the pituitary gland, as well as
upregulate the expression of GR in the liver, contributing to the
amelioration of depressive behavior in mice (Liu et al., 2022).
Furthermore, icariin downregulates the expression of GR in the
hippocampus and prefrontal cortex and CRF in the serum, cortex,
hippocampus, corpus striatum, and medulla oblongata in rats with
depression (Pan et al., 2010; Pan et al., 2007).

Icariin exerts anti-depression effects by augmenting the
monoamine neurotransmitter levels. Previous studies have
demonstrated that icariin upregulates the concentrations of 5-
HT, DA, and NA in the cortex, hippocampus, and striatum of the
CUMS-induced depression rat model (Zhang et al., 2018).
Furthermore, icariin upregulates the serum levels of 5-HT,
DA, and NA in rats with perimenopausal depression (Cao
et al., 2019). Additionally, the anti-depression effects of icariin
include the regulation of glutamate reuptake (Zhang et al., 2017).

Icariin exerts inhibitory effects on hippocampal apoptosis in the
CUMS-induced depression rat model by downregulating the
expression levels of Bax, caspase-3, cleaved caspase-3, and
cytochrome C and upregulating the expression of Bcl-2 (Wu
et al., 2023). Moreover, icariin promotes hippocampal
neurogenesis in the CUMS-induced depression rat model as
evidenced by the upregulation of the number of precursor
neurons and mature neurons. The icariin-mediated neurogenesis
in the CUMS-induced depression rat model is closely related to
alterations in CSF proteomics, especially differentially expressed
proteins associated with the ribosome, PI3K/Akt, and IL-17
signaling pathways (Zeng et al., 2022). Furthermore, the icariin-
mediated upregulation of BNDF and synapse activity in rats with
depression involved the modulation of various proteins, including

Frontiers in Pharmacology frontiersin.org09

Zeng et al. 10.3389/fphar.2024.1377079

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1377079


Akt, CREB, TrkB, and MAPK (Gong et al., 2016; Di et al., 2024).
Additionally, the neuroprotective properties of icariin are associated
with the inhibition of oxidative stress (Xue et al., 2021).

3.3.2 Anti-depression effects of curculigoside
Curculiginis rhizoma comprises various compounds, including

polysaccharides, saponins, phenols, glycosides, and terpenes. Of
these, curculigoside is the sole constituent included in the
Chinese Pharmacopoeia as a quality control marker for
Curculiginis rhizoma decoction pieces.

Recent studies have provided evidence for the anti-depression
properties of curculigoside. In particular, curculigoside effectively
mitigates depression-like behavior in mice subjected to the learned
helplessness paradigm through the upregulation of protein kinase A
(PKA) pathway, the downregulation of granule cell apoptosis in the
hippocampal DG region, and the inhibition of astrocyte activation
(Shen et al., 2019). Alternatively, curculigoside may exert
antidepressant effects by promoting the expression of
hippocampal BDNF and activating the hippocampal Akt/
mammalian target of rapamycin (mTOR) signaling pathway
(Yang et al., 2019). Furthermore, curculigoside alleviates
depression-like behaviors in the perimenopausal depression
mouse model by upregulating the 5-HT and DA levels (Miao
et al., 2017).

3.3.3 Anti-depression effects of ferulic acid
Ferulic acid is a reliable marker for A. sinensis radix. Previous

studies have reported that ferulic acid mitigates atypical depressive
behavior in different animal models of depression, indicating that it
is a potential anti-depression agent.

Studies examining the anti-depression properties of ferulic acid
revealed that it exerts anti-neuroinflammatory effects (Singh et al.,
2017). Ferulic acid inhibited the activation of microglia and
significantly decreased the contents of IL-1β, IL-6, and TNF-α in
the prefrontal cortex of the CUMS-induced depression mouse
model by inhibiting the NLRP3/caspase-1/NF-κB pathway (Liu
et al., 2017c). Furthermore, ferulic acid downregulates the levels
of proinflammatory cytokines (such as TNF-α, IL-1β, and IL-6) and
upregulates the levels of anti-inflammatory cytokines (such as IL-10)
in the hippocampus of the rat depression model by inhibiting the
phosphorylation of the NF-κB pathway-related proteins (Zheng
et al., 2019).

Ferulic acid exerts regulatory effects on monoamine
neurotransmitters. In particular, ferulic acid inhibits the reuptake
of 5-HT, NE, and DA, enhancing their concentrations in different
brain regions, including the hippocampus and frontal cortex (Zhang
et al., 2011; Xu et al., 2013; Zhang et al., 2013; Chen et al., 2015;
Sasaki et al., 2019). Ferulic acid is also reported to facilitate synaptic
plasticity. Ferulic acid can upregulate the expression of BDNF and
PSD95 in the prefrontal cortex and hippocampus of the depressed
mouse (Yabe et al., 2010; Liu et al., 2017a), and active the CREB/
BDNE/TrkB signaling pathway in the hippocampus of depressive
Goto-Kakizaki rats induced by CUMS (Wang et al., 2020). Ferulic
acid exerts anti-depression effects through the regulation of the HPA
axis. Previous studies have reported that ferulic acid downregulates
the serum ACTH and CORT levels and upregulates hippocampal
GR expression in the rat depression model (Zheng et al., 2019).
Additionally, the neuroprotective properties of ferulic acid are

associated with the inhibition of oxidative stress, mitochondrial
dysfunction, and apoptosis (Zeni et al., 2012; Lenzi et al., 2015; Zeni
et al., 2017; Sasaki et al., 2019; Li et al., 2020). Furthermore, some
studies have suggested a correlation between the anti-depression
effect of ferulic acid and the modulation of gut microbiota (Deng
et al., 2022).

3.3.4 Anti-depression effects of berberine
Berberine, a prominent constituent of Phellodendri chinensis

cortex, is a potential therapeutic for depression. Recently, berberine
was reported to exert anti-depression effects in diverse animal
models of depression.

Berberine effectively mitigates depression-like symptoms by
exerting anti-neuroinflammation (Liu et al., 2017b and Xu et al.,
2018) effects. Additionally, berberine significantly downregulated
the contents of IL-1β, IL-18, pro-IL-1β, pro-IL-18, and TNF-α in the
hippocampus of the CUMS-induced depression mouse model by
inhibiting the activity of microglia and downregulating the
expression of tripartite motif 65 (Trim65), NLRP3, caspase-1,
apoptosis-associated speckle-like protein (ASC), and gasdermin D
(GSDMD) (Yang et al., 2023).

Berberine significantly enhances synaptic plasticity. Previous
studies have demonstrated that berberine effectively upregulates
the expression of hippocampal PSD95 and SYN in mice with
depression, reversing the decreased density of dendritic spines,
mushroom spines, and thin spines, as well as promoting the
length and depth of postsynaptic dendrites (Qin et al., 2023).

Additionally, berberine promotes the expression of monoamine
neurotransmitters, upregulating the levels of 5-HT, DA, NE, and
gamma-aminobutyric acid in various brain regions, including the
hippocampus, cortex, striatum, and amygdala (Wang Q. et al., 2022;
Ge et al., 2023).

Previous studies have reported that berberine upregulates BDNF
levels, promotes neuronal survival, and stimulates neurogenesis in
animals exhibiting depressive symptoms (Lee et al., 2012; Shen et al.,
2016; Fan et al., 2017; Gong et al., 2019; Lu et al., 2021; Yi et al., 2021;
Zhan et al., 2021; Ge et al., 2023; Qin et al., 2023). The alteration of
gut microbiota has also been implicated in the anti-depression
effects of berberine (Huang et al., 2023). Berberine can reverse
the physical damage of gastrointestinal tract in CUMS rats (Zhu
et al., 2017).

3.3.5 Anti-depression effects of timosaponin B-Ⅱ
and mangiferin

Saponins serve as the primary bioactive constituents in
Anemarrhenae rhizome. Among these saponins, timosaponin B-Ⅱ
constitutes 50% of the total saponin content in Anemarrhenae
rhizome. Thus, the timosaponin B-II content is a crucial
parameter for ensuring the quality control of Anemarrhenae
rhizome decoction pieces. Timosaponin B-Ⅱ is a major bioactive
compound in Anemarrhenae rhizome. Previous studies have
demonstrated that timosaponin B-Ⅱ inhibits the reuptake of
brain neurotransmitters (5-HT, NE, and DA), exerting an anti-
depression effect (Lu et al., 2010).

Mangiferin can also be used to ensure the quality control of
Anemarrhenae rhizome decoction pieces. The anti-depression
properties of mangiferin are primarily attributed to its anti-
inflammatory activity (Tao et al., 2023). Mangiferin treatment
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suppresses microglial activity and downregulates the levels of TNF-
α, IL-6, and IL-1β in the hippocampus of mice with postpartum
depression (Yan et al., 2022). Furthermore, mangiferin
downregulates the contents of IL-18, IL-1β, IL-6, and TNF-α in
the hippocampus of the CUMS-induced depression mouse model by
inhibiting the NLRP3/ASC/caspase-1 pathway (Cao et al., 2017).
Additionally, mangiferin exerts neuroprotective effects by alleviating
oxidative stress levels and upregulating BDNF in the hippocampus
and prefrontal cortex of mice with depression (Fu et al., 2013; Jangra
et al., 2014; Luo et al., 2021).

4 Discussion

The prevalence of depression has recently increased. However, the
currently used treatments are associated with limited efficacy and side
effects and are ineffective in preventing recurrence. The pathogenesis of
depression is characterized by multifactorial and intricate mechanisms.
Consequently, an effective approach to treat depression should be based
on multiple targets, pathways, and mechanisms. The efficacy and safety
profiles of TCM formulations are higher than those of conventional
prescription antidepressants owing to their multiple components and
mechanisms and the ability to modulate multiple targets and pathways.

According to the basic theory of TCM, “the brain is the place where
the primordial spirit resides” and “the kidney stores willpower.”
“Huangdi Neijing,” which is the most influential classic of TCM,
emphasizes that “the brain is the sea of marrow” and that “the
kidney stores essence and mainly induces bones to produce
marrow.” Additionally, “Huangdi Neijing” revealed that “if the
kidney does not grow, the marrow cannot be full.” The kidney-

essence has a critical role in maintaining diverse mental processes
and emotional fluctuations. Thus, a deficiency in kidney-essence
results in a depletion of the marrow sea, while a lack of kidney-yang
leads to inadequate warmth nourishment and transpiration, rendering
the brain susceptible to emotional and cognitive dysfunctions, including
depression, anxiety, and dementia. Conversely, when the kidney is
abundant in essence and qi, the marrow is adequately replenished,
enhancing the resistance of the brain to illnesses. The “kidney-brain
axis” theory suggests that a deficiency of kidney function plays a major
role in the pathogenesis of depression and that kidney-tonifying therapy
is a potential therapeutic strategy for depression.

EXD, a popular kidney-toning prescription, was originally
developed for the treatment of menopausal syndrome in women.
Most of the previous review articles on EXD have focused on its anti-
menopausal effect. This review summarized the clinical and
preclinical studies on the anti-depression effect of EXD, as well
as the therapeutic effects of its special chemical markers on
depression, based on current research on the pathogenesis of
depression (Figure 2). To the best of our knowledge, this is the
first study to review the effect of EXD on depression.

Various clinical investigations have reported the efficacy of EXD in
mitigating depressive symptoms among patients with depression
stemming from diverse etiologies, encompassing general depression,
menopausal depression, postpartum depression, LOD, and other
depressive disorders secondary to diseases. Moreover, EXD alone or
in combination with antidepressants, TCM formulations, or therapeutic
modalities was efficacious in the management of depressive symptoms.

This review screened clinical studies examining the anti-
depression effects of EXD. Studies lacking clear diagnostic
criteria, control groups, or sufficient sample sizes were excluded

FIGURE 2
Anti-depression effects of EXD. EXD significantly decreased depression-related scores, improved the quality of life of patients, and exerted
therapeutic effects on depressive disorder with limited side effects. EXD and its special chemical markers exert anti-depression effects by modulating
monoamine neurotransmitter levels, inhibiting neuroinflammation, augmenting synaptic plasticity, protecting neurons, promoting neurogenesis,
regulating the HPA axis, and altering the composition of CSF.
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from this review. These exclusion criteria were set as they indicate a
lack of rigorous experimental design and limited support for the
translational medicine applications of EXD to treat depression.
Additionally, in clinical practice, TCM practitioners may modify
the prescription based on the condition of the patient. As Epimedii
folium and Curculiginis rhizoma serve as the monarch drugs in EXD,
studies on modified EXD without Epimedii folium and Curculiginis
rhizoma as its constituents were excluded from this review.

The results of studies that satisfied the inclusion criteria
demonstrated that EXD decreases the HAMD and SDS scores,
upregulates the monoamine neurotransmitter levels in the brain, and
alleviates sex hormone imbalance in patients with menopausal
depression. Additionally, EXD ameliorates depressive symptoms in
patients with postpartum depression and maintenance hemodialysis-
associated depression. However, these findings do not indicate that EXD
is solely effective formenopausal depression, postpartum depression, and
maintenance hemodialysis-associated depression. Several studies have
reported the therapeutic effects of EXD on general depression and LOD.
These studies were excluded from this review due to unclear diagnostic
criteria, absence of control groups, and small sample sizes. Additionally,
the optimal therapeutic regimen involving EXD must include
psychotherapy. Limited numbers of clinical trials have investigated
the efficacy of the combination of EXD and psychotherapy in
treating depression. Thus, the existing clinical studies have provided
some evidence for the therapeutic potential of EXD in depression.
However, the quality of these clinical studies is not satisfactory.
Hence, a large number of standardized and rigorous clinical trials
must be performed to enable the application of EXD as an
alternative therapy or a complementary therapy in the future.

This review also screened the preclinical studies evaluating the
anti-depression mechanisms of EXD. Studies lacking behavioral

experiments or performing only cellular experiments were
excluded as the effect of EXD on depressive symptoms cannot be
determined based on these experiments. Preclinical studies have
demonstrated that EXD and its special chemical markers ameliorate
depressive symptoms, such as anhedonia and suppress autonomic
activity and hopelessness in diverse depression models. The anti-
depression effect of EXD and its special chemical markers may be
attributed to the following mechanisms: 1) the modulation of
monoamine neurotransmitter levels (Figure 3): EXD and its
special chemical markers can promote the synthesis of 5-HT, NE,
and DA, inhibit the reuptake of 5-HT, NE, and DA, and regulate the
expression of postsynaptic neurotransmitter receptors; 2) the
inhibition of neuroinflammation (Figure 4): EXD and its special
chemical markers can inhibit the NLRP3/caspase-1/IL-1β, HMGB1/
RAGE, and XBP1/NF-κB pathways to suppress the release of
cytokines, such as TNF-α, IL-1β, IL-6, and IL-18; 3) the
augmentation of synaptic plasticity (Figure 5): EXD and its
special chemical markers can activate the PI3K/Akt, HMGB1/
RAGE, CREB/BDNF, and BDNF/TrkB pathways, promote the
release of BDNF, and upregulate the expression of PSD95 and
SYN; 4) the regulation of the HPA axis (Figure 6): EXD and its
special chemical markers can inhibit the secretion of CRF, ACTH,
and CORT, downregulate the contents of CRF, ACTH, and CORT
in the blood, and regulate the expression of HPA-related hormone
receptors in the brain and liver; 5) exerting neuroprotective effects
(Figure 7): EXD and its special chemical markers exert
neuroprotective effects by inhibiting apoptosis, suppressing
autophagy, alleviating oxidative stress, upregulating energy
metabolism, promoting neurogenesis, regulating gut microbiota,
and altering CSF composition. Several high-quality preclinical
studies have revealed that EXD exerts anti-depression effects

FIGURE 3
EXDmodulates themonoamine neurotransmitter levels. EXD and its special chemicalmarkers promote the synthesis of 5-HT, NE, andDA, inhibit the
reuptake of 5-HT, NE, and DA, and regulate the expression of postsynaptic neurotransmitter receptors.
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FIGURE 4
EXD inhibits neuroinflammation. EXD and its special chemical markers inhibit the NLRP3/caspase-1/IL-1β, HMGB1/RAGE, and XBP1/NF-κB
pathways, suppressing the release of cytokines, such as TNF-α, IL-1β, IL-6, and IL-18.

FIGURE 5
EXD augments synaptic plasticity. EXD and its special chemical markers activate the PI3K/Akt, HMGB1/RAGE, CREB/BDNF, and BDNF/TrkB
pathways, promote the release of BDNF, and upregulate the expression of PSD95 and SYN.
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through multi-ingredient, multi-target, and multi-mechanism
properties, providing strong evidence for the therapeutic
application of EXD in depression.

However, further preclinical studies are needed to address some
limitations. The current preclinical studies of EXD have not utilized
a standardized herbal preparation, resulting in heterogeneous
concentrations of active components in the water extract. The
yields of icariin, curculigoside, berberine, and ferulic acid in the
water extract of EXD prepared with Epimedii folium, Curculiginis
rhizoma, Morindae officinalis radix, A. sinensis radix, Phellodendri
chinensis cortex, and Anemarrhenae rhizome at a ratio of 9:9:9:9:6:

6 were 1.605, 0.002, 1.814, and 0.007 mg/g, respectively (Wong et al.,
2021). Meanwhile, the yields of icariin, curculigoside, berberine,
ferulic acid, and mangiferin in the EXD water extract prepared with
Epimedii folium, Curculiginis rhizoma,Morindae officinalis radix, A.
sinensis radix, Phellodendri chinensis cortex, and Anemarrhenae
rhizome at a ratio of 12:12:10:9:10:9 were 1.490, 0.002, 1.001,
0.1999, and 0.6591 mg/g, respectively (Cheung et al., 2017).
Although all the herbs in EXD exert anti-depression effects,
further studies are needed to develop a standardized herbal
preparation that can enhance the effectiveness of
depression treatment.

FIGURE 6
EXD regulates the HPA axis. EXD and its special chemical markers can inhibit the secretion of CRF, ACTH, and CORT, downregulate the contents of
CRF, ACTH, and CORT in the blood, and regulate the expression of HPA-related hormone receptors in the brain and liver.

FIGURE 7
EXD exerts neuroprotective effects. EXD and its special chemical markers exert neuroprotective effects by inhibiting apoptosis, suppressing
autophagy, alleviating oxidative stress, enhancing energy metabolism, promoting neurogenesis, regulating gut microbiota, and altering cerebrospinal
fluid composition.
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Some of the constituents of EXD are reported to exert toxic
effects. The maximum oral dose of Epimedii folium water and
alcohol extracts for mice is 80 g/kg bodyweight, which is
560 times the maximum clinical dose for humans. In long-term
toxicity experiments, continuous gavage of Epimedii folium water
and alcohol extracts at a dose of 80 g/kg bodyweight for 8 weeks
significantly decreased the bodyweight of mice and dysregulated the
liver and kidney function indicators in the serum. The effect of
Epimedii folium water and alcohol extracts on the liver and kidney
function indicators was mitigated at a dose of 20 g/kg bodyweight,
which was 140 times the maximum dose for humans (Wang Q. et al.,
2018). The maximum oral dose of Curculiginis rhizoma water
extract for mice is 206 g/kg bodyweight, which is 1384 times the
maximum clinical daily dose for humans. The half-maximal lethal
dose (LD50) of Curculiginis rhizoma alcohol extract is 215.9 g/kg
bodyweight, which is 1439 times the maximum clinical daily dose
for humans. In acute toxicity experiments, treatment with
Curculiginis rhizoma water extract at a dose of 206 g/kg
bodyweight did not cause death in mice, while treatment with
Curculiginis rhizoma water extract at a dose of 90 g/kg
bodyweight did not exert toxic effects (Chen et al., 2021).
Additionally, treatment with Phellodendri chinensis cortex water
extract at a dose of 80 g/kg bodyweight results in acute toxicity
and can cause gastrointestinal reactions (Qiu et al., 2004). The
toxicity of A. sinensis radix, Anemarrhenae rhizome, and
Morindae officinalis radix is not substantial. The conventional
equivalent dose of A. sinensis radix is 2 g/kg bodyweight, and no
acute toxic effects were observed upon treatment with A. sinensis
radix water extract at a dose of 80 g/kg bodyweight (Min et al.,
2012). The maximum oral tolerance of Anemarrhenae rhizome
water extract for mice is 35.0 g/kg bodyweight (equivalent to
145–291 times the human dose), while that of Anemarrhenae
rhizome alcohol extract for mice is 37.5 g/kg bodyweight
(equivalent to 156–312 times the human dose) (Liu et al.,
2014). Currently, the dose of EXD used in clinics is lower
than that used in toxicity experiments. Epimedii folium can
mitigate the toxicity of Curculiginis rhizoma (Zhu et al., 2015),
while Morindae officinalis radix can alleviate the toxicity of
Epimedii folium (Ling et al., 2018). Most current publications
do not indicate the toxic effects of EXD. Previous studies have
suggested that EXD is safe and reliable. However, long-term and
high-dose oral administration of these herbal extracts may result
in potential toxicity. Future studies must focus on decreasing the
toxic effects of EXD. Additionally, the liver and kidney functions
must be regularly monitored after the oral administration of high
doses of EXD for a prolonged period.

In summary, clinical and experimental studies have reported the
therapeutic potential of EXD in alleviating depression. However,
several issues must be addressed. The availability of contemporary
studies on the clinical utilization of EXD for depression treatment is
limited with small sample sizes and diminished quality of evidence.
Additionally, the optimal treatment regimen involving EXD must
include psychotherapy. However, the concurrent application of EXD
and psychological therapy is uncommon. Furthermore, the
inadequate standardization of EXD, encompassing factors such as
herbal proportion, ingredient concentration, and dose control, is a
major limitation for a comprehensive analysis of the dose-response
relationship. Although EXD has several targets for the treatment of

depression, limited studies have identified these targets and their
interconnections. All constituent herbs of EXD exhibit anti-
depression properties. However, the specific component primarily
mediating the anti-depression effect and the interactions among
these constituents have not been elucidated. Finally, depression is a
central nervous system disease. The impact of EXD on blood-brain
barrier permeability has not been established.

Future studies should focus on the application of EXD, especially
the combination of EXD and psychotherapy, as a therapeutic for
depression by implementing multi-center, large-scale, and rigorous
randomized controlled trials. Additionally, the technical barriers
associated with developing standardized quality control of EXD and
minimizing toxicity must be addressed to ensure the safety, efficacy,
and stability of the treatment. Furthermore, contemporary
methodologies, such as metabolomics, genomics, proteomics,
high-performance liquid chromatography, and network
pharmacology must be integrated to establish a “herbal medicine-
ingredient-target-pathway” network of EXD, facilitate the
elucidation of the anti-depression mechanism, and the
identification of the active ingredients of EXD. These approaches
will provide a theoretical foundation for the translational medicine
application of EXD to treat depression.

5 Limitations

This study has several limitations. 1) The strict exclusion criteria of
this study resulted in the non-inclusion of several studies with
unsatisfactory quality. This may affect the elucidation of the
therapeutic potential of EXD in depression. 2) Although nystose
serves as a chemical marker of Morindae officinalis radix, limited
studies have examined its anti-depression properties. 3) Various
active ingredients of EXD, such as quercetin, luteolin, and kaempferol
exhibit anti-depression properties attributed to EXD. However, these
compounds are also prevalent in other herbs and are not special chemical
markers of EXD. This review did not focus on these compounds.

6 Conclusion

Depression is a psychiatric disorder with adverse effects on the
physical and mental health of patients. The etiology of depression
cannot be attributed to a single mechanism. Clinical studies have
demonstrated that EXD exhibits therapeutic properties in patients
with menopausal depression, postpartum depression, and
maintenance hemodialysis-associated depression, suggesting the
therapeutic potential of EXD in depression. Meanwhile,
experimental studies have confirmed the therapeutic effects of EXD
on depression-like behavior and demonstrated its multi-ingredient,
multi-target, and multi-mechanism characteristics. These studies
have provided evidence for the anti-depression effects of EXD. The
development of EXD as an alternative or complementary therapy for
depression has a promising future. However, large-scale studies on the
efficacy and side effects of EXD are lacking. Additionally, strategies to
ensure the quality control of EXD are inadequate. Moreover, the anti-
depression mechanisms of EXD must be further elucidated. Thus,
extensive clinical and animal studies must be performed to thoroughly
investigate the anti-depression effects andmechanisms, ingredients, and
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quality control of EXD. These studies will provide high-quality evidence
and recommendations for the clinical application of EXD.
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Glossary

5-HIAA 5-hydroxyindole acetic acid

5-HT 5-hydroxytryptamine

5-HTR1A 5-hydroxytryptamine receptor 1A

Ach acetylcholine

ACTH adrenocorticotropic-hormone

Akt protein kinase B

AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

ASC apoptosis-associated speckle-like protein

ATP adenosine triphosphate

Bcl-2 B-cell lymphoma-2

BDNF brain-derived neurotrophic factor

BIP immunoglobulin heavy chain binding protein in pre-B cells

BrdU 5-Bromodeoxyuridinc

CaMKII calcium-dependent protein kinase II

CAT catalase

CCL2 C-C motif chemokine ligand 2

CCMD-3 Classification And Diagnostic Criteria Of Mental Disorders In China-Third-Edition

CFA complete freund’s adjuvant

CMS chronic mild stress

CORT corticosterone

CREB cAMP-response element binding protein

CRF corticotropin releasing hormone

CRFBP CRF binding protein

CRMP2 collapsin response mediator protein 2

CSDS chronic social defeat srtress

CSF cerebrospinal fluid

CUMS chronic unpredictable mild stress

DA dopamine

DCX doublecortin

DDC dopamine decarboxylase

DG dentate gyrus

DOPAC dihydroxyphenylacetic acid

EAAT2 excitatory amino acid transporter

EGFR epidermal growth factor receptor

EPDS Edinburgh postnatal depression scale

EPM elevated plus maze

ERK extracellular signal-regulated protein kinase

EXD Erxian Decoction

FKBP5 FK506 binding protein 5

FSH follicle-stimulating hormone

FST forced swimming tests
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GABA gamma-aminobutyric acid

GFAP glial fibrillary acidic protein

Glu glutamate

GR glucocorticoid receptor

GRM5 metabolic glutamate receptor 5 gene

GSDMD-N gasdermin D

GSH-Px glutathione peroxidase

HAMD Hamilton Depression Scale

HMGB1 high-mobility group box 1

HPA hypothalamic-pituitary-adrenal

hs-CRP hypersensitive c-reactive protein

Iba-1 ionized calcium bindingadaptor molecule-1

IDO indoleamine-2,3-dioxygenase

IL-10 interleukin-10

IL-18 interleukin-18

IL-1β interleukin-1β

IL-4 interleukin-4

IL-6 interleukin-6

iNOS inducible nitric oxide synthase

LPS lipopolysaccharides

IκB inhibitor of NF-κB

KYN kynurenine

LH luteinizing hormone

LHS learned helplessness stress

LOD late-onset depression

MAOA monoamine oxidase A

MAP-2 microtubule associated protein-2

MAPK mitogen-activated protein kinase

MDA malondialdehyde

mGluR1 metabotropic glutamate receptor 1

mGluR5 metabotropic glutamate receptor 1

MS-RS maternal separation combining chronic restraint stress

mTOR mechanistic target of rapamycin

NE norepinephrine

NeuN neuronal nuclei

NF-κB nuclear factor kappa-B

NLRP3 NOD-like receptor thermal protein domain associated protein 3

NMDAR N-methyl-D-aspartate receptor

nNOS neuronal nitric oxide synthase

NO nitric oxide

Nr3c1 nuclear receptor subfamily 3 group C member 1

NSFT novelty suppressed feeding test
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OFT open field test

OVX ovariectomized

PI3K phosphatidylinositide 3-kinases

PKA protein kinase A

PKC protein kinase C

PPD perimenopausal depression

PRS prenatal restraint stress

PSD95 post-synaptic density protein 95

RAGE receptor for advanced glycation end-products

SDS Self-rating depression scale

SGK glucocorticoid-inducible kinase

SIRT6 sirtuin 6

SOD superoxide dismutase

SIT social interaction test

SPT sucrose preference test

SYN synaptophysin

TCM Traditional Chinese Medicine

TLR4 toll-like receptor 4

TNF-α tumor necrosis factor-α

TPH1 tryptophan 5-hydroxylase 1

Trim65 tripartite motif-containing protein 65

TrkB tropomyosin related kinase B

TRP tryptophan

TST tail suspension test

XBP1 X-box binding protein 1
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