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Abstract
Resveratrol (RES), chemically known as trans-3,5,4′-trihydroxystilbene, is a polyphenolic molecule that occurs naturally and is pro-
duced by a variety of plants in response to being stimulated by diverse stimuli. It possesses a wide range of biological activities and 
provides a multitude of health benefits, including anti-tumor, cardioprotective, anti-inflammatory, and antioxidant characteristics. 
According to the findings of research on the bioavailability of RES, oral administration results in a high level of absorption. However, 
research has demonstrated that the administration of RES through gavage or intravenous administration produces more favorable 
results than the administration of RES through oral administration. As a result, more research has been carried out to address the 
rapid metabolism of RES. This has been accomplished through the utilization of novel formulation methodologies, metabolic reg-
ulation, and the analysis of potential interactions with other dietary variables. Through the process of triggering apoptosis, RES has 
been proposed as a possible agent for reversing drug resistance and improving the therapeutic potential of chemotherapy. Addition-
ally, RES exhibits promising antiproliferative properties when paired with chemotherapeutic medicines, which enhances the overall 
function of these treatments. It is vital to do additional research to shed light on the beneficial role that RES plays in the context of 
cancer therapy, even though there have been few clinical trials that combine RES with anticancer medications.
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Introduction

Resveratrol’s capacity to suppress cancer-promoting sig-
naling pathways adds to its anticancer properties (Gup-
ta et al. 2021). It is particularly prevalent in the skin of 
red grapes, red wine, peanuts, and berries. The potential 

health benefits that it possesses, such as its anti-inflam-
matory and antioxidant characteristics, have brought it 
to the forefront of public attention (Meng et al. 2020). 
Further investigation has been conducted to investigate 
its possible function in the prevention and treatment of 
cancer, including its influence on the chemosensitivity of 
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tumor cells. Previous research has indicated that resver-
atrol may possess anticancer effects through a variety of 
pathways (Rahman et al. 2012; Amini et al. 2023). Resver-
atrol possesses antioxidant characteristics, which refer to 
the fact that it could assist in the neutralization of poten-
tially damaging free radicals within the body. It is possible 
that resveratrol can help prevent cancer by lowering the 
levels of oxidative stress in the body (Ding et al. 2023). 
The genesis and progression of cancer are both linked to 
chronic inflammation, which has been shown to induce 
anti-inflammatory effects (Santos et al. 2023). It has been 
demonstrated that resveratrol possesses anti-inflammato-
ry properties, which may be a factor in its potential an-
ticancer efficacy (Shahcheraghi et al. 2023). Resveratrol 
has been shown to promote apoptosis, which is a form 
of programmed cell death, in a few different cancer cell 
lines (Chimento et al. 2023). The process of limiting the 
uncontrolled proliferation of cancer cells is an essential 
step in the prevention of cancer (Wu et al. 2023). It has 
been proposed by several studies that resveratrol may be 
able to limit the proliferation of tumor cells, which would 
result in a reduction in the rate at which cancer is grow-
ing and spreading. Resveratrol has the potential to affect 
the degree to which tumor cells can respond to chemo-
therapy (Mirzaei et al. 2023). According to the findings of 
some studies, it has the potential to improve the efficacy 
of chemotherapeutic drugs, hence rendering cancer cells 
more amenable to therapy. There is data that supports the 
possible anticancer characteristics of resveratrol in labora-
tory research and animal models (Angellotti et al. 2023); 
however, the outcomes in human clinical trials have been 
mixed. There is still a lot of research and discussion going 
on over whether resveratrol is beneficial as a treatment for 
cancer on its own or as a supplement to more convention-
al treatments.

It is also possible that different people will react differ-
ently to resveratrol, and additional research is required 
to properly comprehend the role that it plays in the treat-
ment of cancer. Beyond its direct effects on tumor cells, 
resveratrol modulates the tumor microenvironment 
(TME) (Li et al. 2023). The TME’s complex interaction 
of stromal, immunological, and extracellular matrix 
cells affects cancer growth. Resveratrol’s anti-inflamma-
tory and immune-boosting effects reshape the TME to 
reduce cancer growth (Dariya et al. 2023). Resveratrol’s 
dynamic interaction with the TME shows its potential 
to boost chemotherapy efficacy by generating a hostile 
environment for cancer cells (Xie et al. 2023). This re-
view summarizes the present research in this sector, 
providing insights that may lead to future research and 
more effective and customized anticancer treatments. By 
understanding the molecular mechanisms behind res-
veratrol’s chemosensitizing effects, we can maximize its 
cancer-fighting potential. In this review, the anti-apop-
totic and antiproliferative effects of combining RES with 
chemotherapeutics and targeted therapies are highlight-
ed, underscoring the significance of RES as an adjuvant 
in the treatment of cancer.

Resveratrol’s chemical structure 
and properties

Resveratrol (RES), chemically known as 3,5,4’-trihydroxys-
tilbene, is a natural polyphenolic compound produced by 
different plants (Gambini et al. 2015). It has been classified 
as a natural phytoalexin synthesized by plants in response 
to different injuries, including fungal attacks, UV irradia-
tion, or ozone exposure (Hasan and Bae 2017). RES is bio-
logically active and has beneficial pleiotropic health effects, 
including antioxidant, anti-inflammatory, cardioprotec-
tive, and anti-tumor properties (Kursvietiene et al. 2016). 
RES could be present as a cis- or trans-isomer, the latter 
being the most frequent and biologically active form (Fig. 
1). However, RES is a highly photosensitive compound 
susceptible to UV-induced isomerization, since more than 
80% of trans-RES in solution are converted into cis-RES 
upon exposure to light for one hour (Neves et al. 2012).

Resveratrol sources

RES sources include dried roots and the tea of Japanese 
knotweed (Polygonum cuspidatum), also called Ko-jokon 
in Japan, with numerous effects in traditional Chinese 
and Japanese medicine (inflammation, suppurative der-
matitis, gonorrhea, favus, athlete’s foot, allergy, heart dis-
eases, and hyperlipidemia). RES has been identified in 
a variety of 70 plant species and fruits, including purple 
grapes, blueberries, mulberries, cranberries, rhubarb, pea-
nuts, groundnuts, and pines, as well as coconut and cocoa 
(Neves et al. 2012).

Resveratrol’s pharmacokinetics 
and pharmacodynamics

As RES pharmacology has been subjected to extensive 
studies during the past decade, its pharmacokinetics 
have also been investigated in preclinical models as well 
as in humans. Studies on RES bioavailability suggest its 
high-level absorption following oral administration. It is 
also rapidly metabolized at short-term doses without ad-
verse effects, depending on the hepatic function and the 

Figure 1. Chemical structures of resveratrol isomers. A. 
trans-3,5,4’-trihydroxystilbene, and B. cis-3,5,4’-trihydroxystil-
bene (Neves et al. 2012).
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metabolic activity of the local intestinal microflora (Neves 
et al. 2012; Salehi et al. 2018). Oral RES administration 
results in a high-level metabolism, leading to low levels 
of circulating RES. RES administration by gavage yielded 
better results than oral consumption (Crowell et al. 2004). 
RES entry into the hepatic portal system leads to its me-
tabolism, and while escaping, it might increase free plas-
matic RES levels. Therefore, several studies have demon-
strated that intravenous RES administration generates an 
increase in free RES levels in the plasma and helps main-
tain high RES levels. Moreover, to address rapid RES me-
tabolism, nanoformulations could increase RES solubility 
and tissue absorption (Table 1).

RES is absorbed by the intestine with 77%–80% effica-
cy. Its metabolism occurs in the liver, generating gluco-
ronide and sulfate derivates. In addition, RES is mainly 
(75%) excreted (Pannu and Bhatnagar 2019). It displays 
poor water solubility; it thus binds to plasma proteins, 
ensuring its body distribution and bioavailability. Sever-
al plasma proteins, such as lipoproteins, hemoglobin, and 
albumin, contribute to the cellular uptake and diffusion of 
RES through the plasma membrane. Interestingly, neither 
cytotoxicity nor cytolysis could be observed in hepato-
cytes after high-dose RES treatments (Neves et al. 2012). 
Interesting anticancer properties have been attributed to 
RES, mainly against various solid tumor types (Espinoza 
et al. 2012; Lucas et al. 2018; Mukherjee et al. 2018; Kim 
et al. 2019). The underlying molecular mechanisms of 
RES anticancer potential include cell viability reduction, 
cell cycle arrest, and apoptosis (Heo et al. 2018; Kim et 
al. 2019). Moreover, RES has shown promising results in 
immune cell stimulation (Mukherjee et al. 2018).

Despite these interesting properties, the clinical appli-
cations of RES remain limited due to its poor bioavail-
ability. New strategies for formulations and metabolic 

regulation, as well as identifying its possible interactions 
with other dietary factors, would still be required to im-
prove RES properties. Howels and collaborators evaluat-
ed the potential pharmacodynamic effects of micronized 
RES (SRT501) by comparing the expression and activa-
tion of candidate protein biomarkers intrinsically asso-
ciated with cell survival and apoptosis in the circulation 
and tissue of patients receiving the agent versus placebo 
(Howells et al. 2011). The authors observed high-level 
(39%) apoptosis in patients taking SRT501 compared to 
the participants taking placebo.

However, RES exhibits several disadvantageous prop-
erties, such as poor water solubility, a short biological half-
life, chemical instability (the tendency to suffer oxidation 
and extreme photosensitivity), and its extensive and rapid 
metabolism and elimination, justifying its encapsulation 
in carriers (Neves et al. 2012). Therefore, several carriers 
were used for RES encapsulation and delivery alone or 
with other drugs (Table 2). Lipid core nanocapsules pro-
vide better stability and increased concentration for RES. 
Another solution is preventing RES from metabolism by 
inhibiting glucoronidation and sulfation. Therefore, RES 
was supplemented with phenolic compounds that inhibit 
sulfotransferase 1A1 (SULT1A1) activity. Other synthetic 
polymers were used to improve RES solubility by increas-
ing its absorption.

Resveratrol in combination with 
chemical drugs

Cancer therapeutic procedures generally include surgery, 
radiation therapy, chemotherapy, immunotherapy, and 
combined therapy. In most cancers, chemotherapy remains 
a promising treatment strategy because chemotherapeutic 

Table 1. Bioavailability of resveratrol in different studied in vivo models.

Resveratrol derivate Administration route Resveratrol 
concentration

Plasma concentra-
tion

References

Rats Trans-resveratrol oral 20mg/kg 1,2µM (Asensi et al. 2002)
Male rats Trans-resveratrol by gavage 300-1000-

3000mg/kg
576-991-2728 ng/ml (Crowell et al. 2004)

Female rats Trans-resveratrol by gavage 300-1000-3000 333-704-1137 ng/ml (Crowell et al. 2004)
Rats resveratrol oral 2 mg/kg 1,2 µM (Meng et al. 2004)

intravenous oral 15 mg/kg 15,2 µg/ml (Penalva et al. 2018)
oral suspension 15 mg/kg 0,20 µg/ml (Penalva et al. 2018)
loaded in casein 15 mg/kg – (Penalva et al. 2018)

nanoparticles 15 mg/kg 0,29 µg/ml (Penalva et al. 2018)
Human Trans-resveratrol oral 25, 50, 100 and 

150 mg,
3.89,  7.39,  23.1 and 

63.8 ng/mL
(Almeida et al. 2009)

oral 25mg 2µM (Neves et al. 2012)
 Oral (Powder (original) 40 mg 470 nM (Amiot et al. 2013

Oral (Soluble innovative form) 40 mg 5707 nM (Amiot et al. 2013)
Oral 500 mg 71,181 ng/ml (Sergides et al. 2016)

resveratrol Oral 180 mg 2 μM (Iannitti et al. 2020)
 Resv@MDH (Solid Dispersion of 

Resveratrol Supported by Magnesium 
Di Hydroxide formulation)

Oral 180 mg 6 μM (Iannitti et al. 2020)
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drugs can eradicate cancer by inducing tumor cell apop-
tosis (Luqmani 2005). Drug resistance is a common con-
cern, deeply hampering the treatment of numerous tu-
mors. Frequently, resistance to a single chemotherapeutic 
agent could induce cross-resistance to various structurally 
and functionally different drugs, representing multidrug 
resistance (MDR) (Young et al. 2001). RES has been pro-
posed as an agent potentially reversing drug resistance 
and improving chemotherapeutic potential. Interestingly, 
combined with chemotherapeutic drugs, RES could pro-
vide a beneficial novel strategy. Here we describe studies 
with strong circumstantial evidence of RES being a new 
beneficial molecule to disrupt tumor progression and me-
tastasis upon resolving its hydrophobicity- and low solu-
bility-related drawbacks.

Combining RES induces tumor 
cell death

Several previous studies investigated the role of RES in 
sensitizing tumor cells to conventional chemotherapy (Jie 
et al. 2019; Mahmoud et al. 2019). Most studies indicated 
that RES induced apoptosis commonly through the intrin-
sic apoptotic pathway, involving a diverse array of non-re-
ceptor-mediated stimuli producing intracellular signals 
that were mitochondrial-initiated events (Elmore 2007).

Several studies applied a combination of RES with an-
titumor antibiotics and microorganism-derived antineo-
plastic drugs. Here, we describe examples of RES com-
bined with chemotherapeutic drugs.

Table 2. Carriers used for the encapsulation and delivery of resveratrol and other drugs.

Carrier type Drug Targeted cancer Major effects References
pluronic® f127 micelles (mrq) Doxoru bicin 

hydroc hloride 
(ADR)

human ovarian can-
cer cells (SKOV-3)

-maintaining or increasing the efficacy of 
ADR against cancer cell lines in vitro.

  (Cote et al. 
2015)

-being cardioprotective in vitro and in vivo
combinations of micellar resveratrol (r) with 
quercetin (q) (mrq) or r: curcumin (c) (mrc)

Adriam ycin Ovarian cancer 
cells (ES2-Luc, 
A2780ADR)

- reducing Adriamycin dosing through 
chemosensitization while being cardiopro-

tective.

(Fatease et al. 
2019)

holo-transferrin conjugated liposomes for sir-
na delivery, and electrospun polycaprolactone 
(pcl)- gelatin (gt) microfibers for resveratrol

Targete d 
siRNA

K562 cells -Targeted siRNA release in combination 
with resveratrol release was more potent 
and has long-term effects compared to 

bolus doses.

(Al-Attar and 
Madihally 2019)

-increasing K562 cells non- viability level.
silver nanoparticles (agnps) using resveratrol 
as a reducing and stabilizing agent

Gemcit abine 
(GEM)

human ovarian can-
cer cell line A2780

-exhibiting potent apoptotic activity in 
human ovarian cancer cells.

(Yuan et al. 
2017)

-inhibiting viability and proliferation in 
A2780 cells.

hot melt extruded solid dispersion of tamoxi-
fen citrate and resveratrol

Tamoxi fen MCF-7 breast 
cancer cells

-showing significantly lower IC50 compared 
to Tamoxifen with increasing ratio of RES 

which is a result of apoptosis.

(Chowdhury et 
al. 2018)

planetary ball milled (pbm) nanoparticles 
(nps) encapsulated with resveratrol (res)

docetax el 
(DTX)

Prostate cancer 
(PCa)

-increasing in the number of apoptotic cells. (Singh et al. 
2018)-exhibiting additional cytotoxic effects with 

the down-regulation of survivin and an 
increased expression of Cleaved Caspase-3 

in PCa cells.
lyotropic liquid crystalline nanoparticles 
(lcnps) : carriers for co-delivery of peme-
trexed and resveratrol (pmx-rsv-lcnps)

pemetr exed  A549 lung cancer 
cells

-inhibiting tumor growth, angiogenesis and 
induction of apoptosis.

(Abdelaziz  et  
al. 2019)

temozolomide and resveratrol were loaded 
simultaneously into nanoparticles with 
methoxy poly(ethylene glycol)-poly epsilon 
caprolactone (mpeg-pcl)

U87 glioma cells -inducing higher apoptosis in U87 glioma. 
inhibiting phosphor-Akt, leading to upregu-
lation of the downstream apoptotic proteins.

(Xu et al. 2017)

 -superior tumor delaying effect that of free 
drug combination.

ursodeoxycholic acid (udca) as a hepatopro-
tective agent was grafted to maltodextrin 
(md) via carbodiimide coupling  to  develop 
amphiphilic maltodextrin- ursodeoxycholic 
acid (mdca)-based micelles. sulfasalazine 
(ssz), as a novel anticancer agent, was conju-
gated  via a  tumor-cleavable

Sulfasa lazine 
temozo lo-

mide

Hepatocellular 
Carcinoma

-enhancing cytotoxicity and internal-
izating into HepG-2 liver cancer cells 

via binding to overexpressed folate and 
asialoglycoprotein receptors.

(Anwar et al. 
2018)

- reducing the liver/body weight ra-
tio, inhibiting  the angiogenesis, 

and enhancing apoptosis.
ester bond to md backbone to obtain 
tumor-specific release, whereas resveratrol 
(rsv) was physically entrapped within the 
hydrophobic micellar core. both folic acid 
(fa) and lactobionic acid (la) were coupled 
to the surface of micelles to obtain dual-tar-
geted micelles.
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*Doxorubicin: Combination studies of doxorubicin 
(DOX), also called Adriamycin, a hydroxy derivative 
of daunorubicin obtained from Streptomyces peucetius, 
yielded interesting results.

Doxorubicin, an antineoplastic agent, affects cancer cells 
through DNA intercalation, resulting in the disruption of To-
poisomerase II (Top2) and the generation of reactive oxygen 
species (ROS), leading to cell membrane and mitochondrial 
membrane damage (Fatease et al. 2019). This drug has limit-
ed efficacy in colorectal cancer due to multidrug resistance. 
Therefore, it was combined with RES polyphenols (RES) and 
didox (DID) (Khaleel et al. 2016). The results revealed an in-
crease in p53 and Bax gene expression. The combination of 
DOX with RES significantly increased the expression of the 
Bax gene in HCT 116 cells. Similarly, the synergistic effect 
of the combined DOX and RES tested on breast cancer cell 
lines MCF-7 and MDA-MB-231 chemosensitized doxoru-
bicin through apoptosis increased (BAX: BCL-2 ratio and 
Caspase-9) (Kim et al. 2014; Rai et al. 2016).

These polyphenol agents reinforced the chemother-
apeutic function of DOX. Indeed, the mechanism is 
thought to involve an apoptosis marker increase.

Other combination studies investigated the association 
of RES with rapamycin in papillary thyroid cancer cell 
lines (KTC-1 and TPC-1 cell lines) (Bian et al. 2020), sta-
tistically significantly increasing the proportion of G0/G1 
cells and the number of apoptotic cells and also inducing 
the expression of apoptotic proteins caspase-3,-8,9, and 
Bax compared to cells treated with a single compound.

*Cisplatin: The combination treatment of cisplatin 
and RES (CDDP/RSV) synergistically induces apoptosis 
by increasing the percentage of apoptotic cells following 
Annexin V-PE binding and the cleavage of caspase-3 and 
PARP (Lee et al. 2016). Moreover, CDDP/RSV

increased ROS production and mitochondrial mem-
brane potential depolarization with an increased BAX/
BCL-2 ratio (Lee et al. 2016). These changes suggest 
CDDP/RSV-induced apoptosis. Furthermore, Hernan-
dez-Valencia et al. (2018) reported that RES-induced sen-
sitivity to CDDP in MCF-7 and MCF-7R cells regulates 
p53 protein expression (Hernandez-Valencia et al. 2018).

Li and collaborators demonstrated that RES promoted 
pulmonary H446 cell line inhibition by cisplatin, support-
ed by mitochondrial depolarization through cytochrome 
c release from the mitochondrial compartment to the cy-
toplasm, apoptosis-inducing factor translocation from the 
mitochondrial compartment to the nucleus, and altered 
Bcl-2, Bcl-xL, and Bax protein levels (Li et al. 2018).

*Etoposide (VP-16): A topoisomerase II inhibitor and 
effective anticancer drug demonstrating powerful apop-
totic effects when combined with RES on Merkel cell car-
cinoma (Heiduschka et al. 2014).

*Melphalan: Combined RES with Melphalan (MEL) 
application on the MCF-7 and MDA-MB-231 breast can-
cer cell lines indicated that RES could sensitize MCF-7 
cells to MEL-induced apoptosis by involving p53 level en-
hancement, procaspase 8 reduction, and caspase 7 and 9 
activation (Casanova et al. 2012).

*Paclitaxel: Acyclodecane (PAX) isolated from the bark 
of the Pacific yew tree, Taxus brevifolia, a group of plant 
alkaloids, and natural products modify regulatory protein 
expression when combined with RES and synergistically 
increase apoptotic activity (Jazirehi and Bonavida 2004). 
Interestingly, markers for apoptosis, mitochondrial mem-
brane depolarization and mitochondrial function, intra-
cellular steady-state ROS levels, caspase 3 activity, TRPM2 
current density, and Ca2+ fluorescence intensity signifi-
cantly increased in DBTRG glioblastoma cells following 
the treatment with PAX and RES (Öztürk et al. 2019).

*5-Fluorouracil (5-FU): A common chemotherapeutic 
agent that belongs to the group of anti-metabolites inter-
fering with DNA synthesis by blocking the thymidylate 
synthetase conversion of deoxyuridylic acid into thymi-
dylic acid. This agent is used for CRC treatment, indicat-
ing high and inadequate response rates. RES reportedly 
induces a significant apoptosis increase (caspase-3) and 
potentiates the effects of 5-FU through the suppression 
of TNF-β expression in malignant human CRC cell lines 
(HCT116) and their corresponding isogenic 5-FU-che-
moresistant-derived clones (HCT116R) in a 3D-alginate 
tumor microenvironment (Buhrmann et al. 2015; Buhr-
mann et al. 2018). Interestingly, treating cholangiocar-
cinoma cell lines with RES before 5-FU, gemcitabine, or 
mitomycin C supplementation increased apoptosis with 
higher efficiency compared to treatment with single che-
motherapeutic agents (Frampton et al. 2010).

*Clofarabine: RES combined with clofarabine, an ad-
enine arabinonucleoside derivative acting as an anti-
neoplastic antimetabolite, induced Mcl-1 protein level 
down-regulation in MSTO-211H malignant mesothelio-
ma cell lines, potentially exhibiting apoptotic activity (Lee 
et al. 2014; Lee et al. 2015). Elsewhere, RES cooperates 
with other chemical drugs, like intracellular protein in-
hibitors, to overcome chemotherapeutic resistance. RES 
combined with BRAFinhibitor, targeting BRAF-V600E/K 
mutated kinase (a driver mutation in 50% of cutaneous 
melanoma), dramatically reduced BRAF-resistant cutane-
ous melanoma cell numbers (Corre et al. 2018).

Combining RES improves tumor 
cell antiproliferation

RES causes improved growth inhibition of several tu-
mor types, such as colon, breast, pancreas, prostate, 
ovarian, and endometrial cancers, as well as lympho-
mas (Neves et al. 2012). Several studies have revealed 
the antiproliferative potential of RES combined with 
chemotherapeutic drugs. Its synergistic effect with 
DOX on MCF-7 and MDA-MB-231 breast cancer cell 
lines inhibited breast cancer cell proliferation and inva-
sion by reducing breast cancer cell wound healing and 
clonogenic potentials (Kim et al. 2014; Rai et al. 2016). 
RES was recently proven to inhibit renal cell carcinoma 
growth by inhibiting the PI3K/AKT pathway in pacli-
taxel-resistant cells (Jie et al. 2019).
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In addition, Buhrmann and collaborators reported the 
antiproliferative effect of RES against colorectal CRC by 
promoting the invasion inhibitory effects of 5-FU (Buhr-
mann et al. 2015). Cholangiocarcinoma cell lines treated 
with the combination of RES with 5-FU, gemcitabine, or 
mitomycin C showed massively reduced cell proliferation 
compared with those treated with single chemotherapeu-
tic agents (Frampton et al. 2010). Furthermore, Zhou and 
collaborators demonstrated that RES combined with gem-
citabine tested on pancreatic cancer cell lines suppressed 
SREBP1 (sterol regulatory element-binding protein 1) 
proliferation, reversed the gemcitabine-induced stem-
ness, and interestingly suppressed cancer cell prolifera-
tion, invasion, and migration (Zhou et al. 2019). Similarly, 
RES inhibited XRCC1 (X-ray Repair Cross-Complement 
Group 1 Protein) expression and enhanced the etopo-
side-induced cell death and antiproliferation effect in hu-
man non-small-cell lung carcinoma cells.

Clinical trials using RES with 
anticancer drugs

Most cancer drugs are derived from natural sources such 
as plants and bacteria, whereas others come from synthetic 
or semisynthetic processes (Gielecińska et al. 2023). These 
agents have been used due to their efficacy in fighting can-
cer. However, their clinical limitations include multidrug 
resistance and several side effects such as nausea, vomit-
ing, loss of appetite, diarrhea, skin rash, hair loss, tiredness, 

dizziness, blurred vision, insomnia, and headache. There-
fore, improving their efficacy and reducing their toxicity is 
becoming a trend, accomplished and investigated through 
cancer drug and RES combination. Several clinical trials 
have aimed to evaluate the impact of RES on signaling 
pathways involved in cancer development. Others assessed 
multiple signaling protein expressions that are important in 
cancer cell metabolism or quantified hormones in response 
to RES treatment. Further outcomes evaluated how RES 
influenced decreasing cancer cell growth and proliferation 
by investigating cancer cell growth- and survival-regulat-
ing gene and protein expression and by studying cross-sec-
tional imaging and tumor markers. Heterogeneity between 
clinical trials investigated in this study might be due to 
differences in methodological factors (Table 3). Certain 
clinical trials quantified dietary polyphenols and methylx-
anthines in healthy and malignant mammary tissues from 
patients with breast cancer using chromatographic meth-
ods. Other preliminary studies determined RES pharmaco-
dynamics, micronized RES (SRT501) safety, and tolerability 
in the analysis of the pharmacokinetic profiles in the blood, 
as well as healthy and malignant metastatic tissues.

Conclusion

Resveratrol, which is a natural phytoalexin, contains a 
wide range of biological properties, including antioxi-
dant, anti-inflammatory, cardioprotective, and anti-tu-
mor actions (Kursvietiene et al. 2016). Both the ability to 

Table 3. Clinical trials using RES with anticancer drugs.

NCT Identifier 
(Reference)

Status Year Targeted cancer Phase Intervention/ treatment Country

NCT00256334 Completed 2005 Colon Cancer 1 Resveratrol United States 
of America

NCT00433576 Completed 2007 colorectal cancer 1 Drug: resveratrol Other: pharma-
cological study Other: laboratory 

biomarker analysis

United States 
of America

NCT00098969 Completed 2004 Unspecified Adult Solid 
cancer

1 resveratrol United States 
of America

NCT00920803 Completed 2009 Colorectal Cancer and 
Hepatic Metastases

1 SRT501* United King-
dom

NCT00455416 Recruiting 2007 Follicular Lymphoma 2 Omega 3 fatty acids (EPA 
(eicosapentaenoic acid) and DHA 
(docosahexaenoic acid)) Seleni-

um (L-Selenomethionine), Garlic 
extract (Allicin) Pomegranate 
juice (ellagic acid) Grape juice 

(resveratrol, quercetin) Green Tea 
(Epigallocathechin gallate)

Norway

NCT01107665 Completed Melanoma 2 Pazopanib and Paclitaxel United States 
of America

NCT00920556 Terminated (Study 
terminated.24 subjects 

enrolled;provided adequate 
data for decision making.)

2019 Multiple Myeloma 2 SRT501 Bortezomib Denmark 
United King-

dom

NCT01476592 Completed 2011 Neuroendocrine cancer Not Applicable Resveratrol United States 
of America

NCT04266353 Suspended (Due to 
COVID-19)

2020 Breast cancer Not Applicable Resveratrol (RSV) United States 
of America

NCT03482401 Completed 2018 Breast Cancer Not Applicable Polyphenol Spain

*a micronized oral formulation.
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overcome multidrug resistance (MDR) and the ability to 
sensitize cancer cells to chemotherapeutic medicines have 
been proved successfully by it. To improve the antican-
cer activity, bioavailability, and pharmacokinetic profile 
of chemotherapeutics when coupled with RES, several 
different carriers have been created. In vivo and in vitro 
investigations, as well as clinical trials, have been conduct-
ed to investigate the impact that RES has on carcinogenic 
phases. Increasing the solubility of RES, altering adminis-
tration methods, avoiding metabolism, and inventing new 
nanoformulations are some of the many studies that have 
been conducted with the intention of increasing RES lev-
els. Despite this, there are still not many studies conduct-
ed on humans in this setting, which calls for additional 
research. In addition, there is a requirement for additional 
study that is more in-depth to discover efficient methods 
of employing RES for the prevention of cancer.

Considering this, it is necessary to conduct additional 
clinical trials to study the consequences of RES in con-
junction with pharmacological medications.
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