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Abstract

Understanding and accurate estimation of electrochemical parameters play
a pivotal role in enhancing the performance and efficiency of electrochemi-
cal systems like batteries and fuel cells. The exchange current density and
charge transfer coefficient are particularly critical factors as they are directly
related to the shape and structure of the battery electrodes and influence
the electrochemical processes occurring within electrodes of the battery.
Considering a fixed value for these parameters for a type of battery is not
accurate due to the varying shapes and structures of electrodes in differ-
ent batteries. This paper presents a comprehensive mechanistic approach
to determine these electrochemical coefficients based on a combination of
experimental testing, one dimensional computational fluid dynamics sim-
ulation, and optimization. This study focuses on the investigation of a 4
ampere-hour lead-acid battery (IBIZA) with the determination of anodic
and cathodic exchange current densities and charge transfer coefficients for
both the lead and lead oxide electrodes, respectively. Mentioned parameters
are derived for two scenarios (one-step constant current discharge and two-
step constant current discharge). The values of αa, αc and i0 for Pb and
PbO2 for scenario one with 0.2Crate are found to be 1.95, 0.05, 9.99× 10−3,
0.05, 1.95 and 3.05 × 10−4 and with 0.2Crate are 9.98 × 10−3, 0.75, 1.25,
9.69 × 10−3, 0.97 and 1.03, respectively. Mentioned parameters for sce-
nario two are found to be 0.6, 1.4, 2.70 × 10−3, 0.6, 1.4 and 2.40 × 10−4,
respectively.
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1 Introduction

The increasing share of the renewable energy sources in
the grid, with the challenges posed by their intermit-
tent nature, as well as the demand for the sustainable
power solutions have necessitated the development of
energy storage systems [1]. Batteries particularly play
an important role in safeguarding the transition to-
wards a low-carbon future by providing a reliable and
efficient mean of energy storage [2, 3]. Consequently,
the study of the battery behaviors and characteristics
is essential for advancing the knowledge and developing
more efficient batteries as the demand for efficient and
sustainable energy solutions is increasing.

Simulation models such as the electrochemical mod-
els like general micro - macro modeling of battery dy-
namics, single particle (SP) models, system-level mod-
els like equivalent circuit models (ECM) and the data-
driven models like black box modelling [4–8] as well
as the methods like electrochemical impedance spec-
troscopy (EIS) [9] are valuable tools for studying the
dynamic behavior of batteries under different working
conditions and provide insight into several aspects of
battery systems such as performance characteristics,
thermal management, and capacity degradation. Some
of these methods specially micro - macro modeling of
battery dynamics used along with computational fluid
dynamic techniques provide powerful solutions to in-
vestigate battery behavior, optimize battery designs,
thermal management of the battery systems and study
the effect of different operating conditions where exper-
imental methods fall short or require costly financial
and time resources.

Investigating battery behavior through modeling
and simulation not only accelerates the research and
development process but also contributes significantly
to the enhancement of battery safety, reliability and
performance. In order to utilize the electrochemical
models, it is essential to understand the kinetics of elec-
trochemical reactions which often involves the estima-
tion of key parameters such as exchange current density
(i0) and charge transfer coefficient (α). The common
methods used for estimation of these parameters in-
clude Tafel analysis, EIS, potentiostatic intermittent
titration technique (PITT), galvanostatic intermittent
titration technique (GITT), and combined techniques.

Tafel analysis is one of the fundamental methods
for estimating α and i0 which involves measuring the
current-potential curves and fitting the data to math-
ematical equations. The other widely-used electrode
kinetics model is the Butler-Volmer equation relating
the current density to overpotential. Fitting the ex-
perimental data into this equation can give the estima-

tion for charge transfer coefficients and exchange cur-
rent density [10]. Tafel analysis provides a straightfor-
ward and quick estimation of i0 from the polarization
curves. However, it has limited applicability to systems
with complex reaction mechanisms [11,12]. Khadke et
al. [13] showed that using differential Tafel plots, the
first order differential of the Tafel plots with respect to
overpotential, can reduce the inaccuracy in estimation
of i0 and α. Becker et al. [14] carried out a mathe-
matical modeling and experimental kinetics character-
ization of electrodes in Vanadium redox-flow batteries.
They showed that using the Butler-Volmer equation
can be used to describe the polarization curves within
the states of charge between 25 and 75 percents. Liu et
al. [15] investigated the role of exchange current den-
sity on the electrodeposition in Lithium metal batter-
ies. They used the Tafel analysis to derive the exchange
current density.

The other established method used for battery char-
acterization is the EIS. In this method, a current or
potential perturbation is applied and the potential or
current response is measured. Barsuokov and Macdon-
ald [16] have provided a comprehensive overview of EIS
including its applications in battery modeling. There
are also numerous studies using EIS to estimate the
battery electrochemical parameters especially α and
i0 [17–19]. The direct measurement of the current and
potential transients allows for simplified data interpre-
tation, yet it may not be suitable for more complex
systems and also the accuracy of the results is sensitive
to the experimental conditions [20].

PITT and GITT are also used for determining the
electrochemical parameters of the battery electrodes
such as the exchange current density and diffusion
coefficient by applying constant-potential steps and
constant-current pulses and measuring the current and
potential responses. These methods can provide de-
tailed information about the reaction mechanisms and
also can be used for more complex electrochemical sys-
tems. However, they are sensitive to electrode param-
eters such as porosity, particle size distribution, and
specific surface area and the data interpretations could
become challenging for complex systems [17,21].

Each method presents its unique advantages and
challenges, contributing to specific areas in electro-
chemical systems studies. Tafel analysis offers simplic-
ity and direct measurements but may fall short in intri-
cate scenarios. EIS, PITT, and GITT are suitable for
more complex systems, providing abundant informa-
tion but demanding sophisticated data analysis. Data-
driven methods such as the black-box model based on
methods like neural network, genetic algorithm, and
deep learning provide fast estimation of the battery
parameters without the need to physically model the
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system. However, the accuracy of these methods de-
pends on the number of data samples and they do not
provide any insight into the internal mechanisms gov-
erning the battery behavior. These models are espe-
cially useful for the estimation of the battery parame-
ters such as state of charge and state of health [7]. On
the other hand, the physics-informed data driven mod-
els [22–27] add the insight into the microscopic phe-
nomena inside the battery at the expense of accuracy
and certainty [28].

In this study, simulation with the advanced nu-
merical methods, based on the micro-macro model of
the battery dynamics, is used as a powerful tool for
overcoming the experimental constraints. Unlike the
above-mentioned methods, the proposed approach in
this paper can provide a deep understanding of the
phenomena occurring inside the batteries and offer de-
tailed spatial and temporal analyses. It is well-suited
for systems with complex kinetics, where experimental
approaches may be challenging. The methods based
on simulation of micro-macro governing equations of
battery are capable to capture the transient behavior
of batteries. There are several methods for the simu-
lation of lead-acid batteries such as the finite volume
method [29], the Keller-Box method [30], engineering
models [31], and reduced-order methods [32–35]. Here,
the Butler-Volmer equation is the critical tool in ex-
plaining the kinetics of electrochemical reactions within
batteries. Two crucial parameters, the exchange cur-
rent density and charge transfer coefficient, are essen-
tial to the Butler-Volmer equation. Accurately esti-
mating them is vital for a complete understanding of
battery performance.

The exchange current density represents the equi-
librium rate of electrochemical reactions at the inter-
face of battery electrodes and electrolyte, providing
insights into the inherent kinetics of charge transfer
processes. Simultaneously, the charge transfer coef-
ficient characterizes the efficiency of charge transfer
through the electrode-electrolyte interface. The men-
tioned parameters are influenced by electrode material,
electrolyte composition, temperature, surface area, and
morphology.

In conclusion, the literature showcases a diverse ar-
ray of methods for estimating i0 and α, each with its
strengths and applications. Researchers often choose
methods based on the specific characteristics of the
electrochemical system under investigation, emphasiz-
ing the need for a restricted approach in parameter
estimation. In this research, the mechanistic approach
is employed to integrate experimental techniques, the-
oretical models (micro-macro modeling of battery dy-
namics whose parameters are correlated by the Butler-
Volmer equation), advanced numerical methods like

Computational Fluid Dynamics (CFD), and optimiza-
tion techniques. This integration contributes to a com-
prehensive understanding of electrochemical kinetics,
enabling the extraction of the relevant parameters. The
mechanistic method presented in this study has the
capability to be systematically utilized across a wide
range of batteries for estimating exchange current den-
sity and charge transfer coefficient. The originalities of
this study are as following:

• Combination of CFD, optimization and experi-
mental tests is the basis of the new mechanistic
approach presented in this study.

• Using mathematical governing equation leads to
more accurate results.

• The introduced method can be developed for a
wide range of batteries.

• In this method, the procedure of determining ex-
change current density and charge transfer coef-
ficient is more clear.

2 Method

In this study, the electrochemical parameters are ex-
tracted by coupling constant-current discharge experi-
mental data, one-dimensional numerical modeling and
simulation with Particle Swarm Optimization (PSO).
The simulation of governing equations and optimiza-
tion processes are developed in C++ and Python, re-
spectively.

Mathematical model The governing equations for
a battery consist of the solid potential, the electrolyte
potential, and the electrolyte concentration equations
which are coupled together using the Butler-Volmer
equation. In this study, the conservation equations for
electrochemical systems are solved in a one-dimensional
manner through four regions: the positive electrode,
electrolyte, separator, and negative electrode. It is im-
portant to note that all four regions, representing the
positive electrode, separator, and negative electrode,
are porous media. The schematic model of the battery
is shown in Figure 1. The positive electrode is PbO2,
and the negative electrode is Pb.

The lead-acid battery electrochemical reactions oc-
curing separately in the positive and negative elec-
trodes are shown in equation (1) reaction and (2), re-
spectively [32–34,37].

PbO2(s) + HSO −
4 + 3 H+ + 2 e−

Discharge−−−−−−⇀↽−−−−−−
charge

PbSO4(s) + 2H2O , (1)

Pb(s) + HSO −
4

Discharge−−−−−−⇀↽−−−−−−
charge

PbSO4(s) + H+ + 2 e− . (2)



Hydrogen, Fuel Cell & Energy Storage 11(2024) 68–77 71

Fig. 1. Schematic representation of an electrochemical battery cell [36].

During the discharge process, oxidation reactions
occur at the negative electrode, while reduction reac-
tions take place at the positive electrode. In the bat-
tery discharge process modeling and simulation, the
side reactions can be neglected because their rates are
extremely low.

Governing equation As the electrochemical reac-
tions occur at the interface of the electrode and elec-
trolyte, the maximum gradient of all unknown parame-
ters is in the direction of the electrode thickness. Mod-
eling a one-dimensional battery simulation aligns with
this scenario. Additionally, in a tightly sealed bat-
tery pack, the mass and momentum conservation equa-
tions can be omitted in order to focus on solving the
electrode and electrolyte charge conservation equations
and electrolyte concentration. All of the governing
equations are listed in Table 1 [29]. The values of input
parameters for one dimentional simulation are shown in
Table 2.

In electrochemical reactions, chemical species are
produced or consumed at the interface of the electrode
and electrolyte. The transfer current density for the
actual main reactions in a lead-acid battery, derived
from the Butler-Volmer equation, can be determined
from equation (3):

j = i0

(
C

Cref

)γ (
exp

[
αaF

RT
η

]
− exp

[
−αcF
RT

η

])
(3)

The equations related to the solid potential, elec-
trolyte potential, and acid concentration are coupled
through the Butler-Volmer equation. By simultane-
ously solving these coupled equations through numer-
ical simulation, assuming boundary and initial condi-
tions as per Table 3 [29], the unknown parameters, solid
potential, electrolyte potential, and electrolyte concen-
tration, can be determined. A one-dimensional numer-
ical solution of these equations provides high accuracy
and efficient solving time.

The most accurate method for determining the bat-
tery voltage under specific operational conditions is
through experimental testing with which the accuracy
of other methods is evaluated.

Experimental method In this research, an ex-
perimental discharge test was carried out using the
NEWARE battery tester BTS4000. The tester has fea-
tures such as a response time of less than or equal to
20 milliseconds to meet rapidly changing power require-
ments, 0.1% full-scale accuracy for current and voltage,
a data acquisition frequency of 10Hz (optional 100Hz),
a minimum pulse width of 500 milliseconds, and the
capability to process more than 1 million records. The
experimental setup is shown in Figure 2.

The tests were carried out under Constant-Current
(CC) discharge mode in the battery tester. This mode
is particularly useful for analyzing the discharge behav-
ior of various types of batteries.
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Table 1. Governing equations [29].

Solid charge conservation ∇ · (σeff∇φs)−Aj = 0

Electrolyte charge conservation ∇ · (keff∇φe) +∇ · (keff
D ∇ lnC) +Aj = 0

Electrolyte concentration ∂(εC)
∂t = ∇ · (Deff ∂C

∂x ) + a2
Aj
2F

Specific active surface area A = Amax SOCζ

State of charge Positive electrode:

∂ SOC
∂t = + ∇·ie

Qmax

Negative electrode:

∂ SOC
∂t = − ∇·ieQmax

∇.ie = Aj

Effective properties σeff = σεsζ

keff = k(1− εs)ζ

keff
D = kD(1− εs)ζ

Porosity εs + εe = 1

∂εe
∂t = −∂εs∂t = a1

Aj
2F

Positive electrode:

a1 = (
MWPbSO4

ρPbSO4

− MWPbO2

ρPbO2

)

Negative electrode:

a1 = −(
MWPbSO4

ρPbSO4

− MWPb

ρPb
)

Butler-Volmer j = i0( C
Cref

)γ{exp(αaF
RT η)− exp(−αcF

RT η)}
η = φs − φe − Uref

αa + αc = n

Table 2. Input parameters value.

Density, g cm−3

PbO2 electrode 9.7
Pb electrode 6.3
PbSO4 11.34
Conductivity, S cm−1

PbO2 electrode 500
Pb electrode 4800
Maximum electroactive area, cm2/cm3

PbO2 electrode 148
Pbelectrode 200
Maximum capacity, C/cm3

PbO2 electrode 1400
Pb electrode 1800
Operating temperature, ◦C 25

Table 3. Boundary conditions.

Boundary condition
∂φe
∂x

∣∣∣
x=0

= 0

∂φe
∂x

∣∣∣
x=l

= 0

−σeff ∂φs
∂x

∣∣∣
x=0

= I(t)

−σeff ∂φs
∂x

∣∣∣
x=l

= I(t)

∂ce
∂x

∣∣∣
x=0

= 0

∂ce
∂x

∣∣∣
x=l

= 0
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Fig. 2. Test setup.

In the CC discharge mode, the tester applies a
constant-current load to the battery being tested. This
load is maintained at a steady level throughout the
entire discharge process. By doing so, the tester can
simulate the real-world scenarios where a device draws
a constant current from the battery until its voltage
drops to a predetermined cutoff point.

As mentioned in introduction and literature review,
there is no sufficiently accurate method to obtain the
exchange current density, as well as the anodic and ca-
thodic charge transfer coefficients. If these parameters
are properly selected, the simulation should be able to
closely follow and estimate the experimental voltage-
time curve. Therefore, accurate values for these param-
eters are crucial for the simulation to predict the exper-
imental test with high precision and lead to obtaining
an accurate distribution of concentration and poten-
tial across the electrode and electrolyte. The proposed
method provides valuable information to researchers
about the phenomena occurring inside the battery by
combining the experimental constant-current discharge
data and the one-dimensional simulation of the funda-
mental mathematical governing equations of the bat-
tery.

Optimization Optimization is a mathematical and
computational approach used to find the best possible
solution to a problem among a set of feasible alterna-
tives. In this study, the goal is to minimize the objec-
tive function based on root-mean-square deviation (Eq.
(4)).

OF =

√∑
time

(φsim − VExp)2 (4)

In Python, a library called pymoo is developed
which extends the Particle Swarm Optimization (PSO)
method. Particle Swarm Optimization is a population-
based optimization algorithm inspired by the social be-
havior of birds and fish. The PSO method is effective
for continuous optimization problems and its simplic-
ity and efficiency make it widely used in various fields
such as engineering, finance, and machine learning.

The PSO method incorporates the following param-
eters: w, the inertia weight that controls the impact
of the previous velocity, c1 and c2, acceleration con-
stants, and r1 and r2 random values between 0 and 1.
A higher w gives more influence to the current velocity,
promoting exploration, while a lower w favors exploita-
tion. Common values for w range between 0.4 and 0.9.
Commonly, it starts with a higher value and gradu-
ally reduces over iterations. The acceleration constants
control the influence of personal best (pbest) and global
best (gbest) on the particle’s movement, respectively.
Common values for c1 and c2 are typically between 1.5
and 2.0. Higher values increase the influence of pbest

and gbest, promoting exploitation. In this study we use
default values which are 0.5 and 1.5 for w and c1 and
c2, respectively. The number of generation was used
for termination condition.

The physical and electrochemical parameters such
as exchange current density and charge transfer coef-
ficient are extracted using constant-current discharge
process experimental data, simulation, and optimiza-
tion. Using the correct values for α and i0, a precise
understanding of the physical and electrochemical con-
cepts of a battery can be achieved through CFD sim-
ulation based on the fundamental equations governing
the battery. The introduced method is shown in the
the flow chart of Figure 3.

3 Result and discussion

The Butler-Volmer equation plays a central role in the
realm of electrochemical kinetics, offering essential in-
sights into the mechanisms governing charge transfer
at electrode-electrolyte interfaces. This equation is a
cornerstone for understanding the complex kinetics of
electrochemical reactions in diverse applications such
as batteries, fuel cells, etc..

As previously mentioned, two key parameters
within the Butler-Volmer equation are critical in de-
scribing the rate of electrochemical reactions: exchange
current density and charge transfer coefficient. Ex-
change current density represents the hypothetical cur-
rent at equilibrium when oxidation and reduction rates
are equal, revealing the inherent activity of the electro-
chemical system in the absence of applied potential.
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Fig. 3. Flow chart of the method used to extract i0, αa and αc.

Charge transfer coefficient, on the other hand, is a
vital parameter reflecting the movement of charge car-
riers across the electrode-electrolyte interface during
electrochemical reactions. This parameter is crucial
for understanding the efficiency and speed of charge
transfer, directly influencing the overall performance
of electrochemical devices.

Therefore, the precise extraction and understanding
of these two crucial parameters are vital for enhancing
and optimizing the designs of electrochemical systems.

In this study, a commercial lead acid battery, manu-
factured by IBIZA, with the voltage of 4V and capacity
of 4Ah is investigated. The details and specifications
of the battery are listed in Table 4.

Table 4. IBIZA battery (4 V, 4 Ah) specification

Battery configuration 2S3P
PbO2 thickness (mm) 2.06
Pb thickness (mm) 1.52
separator thickness (mm) 1.30
Electrode surface dimension
(mm × mm)

58.80 × 39.12

The sample battery discharge tests were carried
out with two scenarios at the room temperature.
The first scenario was a one-step constant-current dis-
charge from full-charge voltage to the cut-off voltage at
0.1Crate and 0.2Crate. The second scenario was a one-
step constant-current discharge from full-charge volt-
age to the cut-off voltage at 0.2Crate.

The first scenario optimization results for i0, αa
and αc of the Pb and PbO2 electrode for 0.1Crate were
9.99× 10−3, 1.95, 0.05, 3.05× 10−4, 0.05 and 1.95, re-

spectively. The above mentioed parameters for 0.2Crate

were 9.98×10−3, 0.75, 1.25, 9.69×10−3, 0.97 and 1.03,
respectively. The experimental test and the result of
the simulation which are conducted with the mentioned
parameter values for 0.1ans0.2Crate are shown in Fig-
ures 4 and 5. The error value, which is calculated based
on equation (4), for 0.1Crate and 0.2Crate is 0.35 and
0.10, respectively.

In order to check the accuracy of the obtained re-
sults for i0, αa and αc of the Pb and PbO2 electrode,
similar values with the first scenario (0.1Crate) were
used for the second scenario. The experimental and
simulation results of the cell voltage versus time are
presented in Figure 6.

Fig. 4. Voltage of the cell during discharge(0.1 C-
rate).
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Fig. 5. Voltage of the cell during discharge(0.2 C-
rate).

Fig. 6. Voltage of the cell during discharge (sce-
nario 2 simulation with the input data of scenario 1
optimization).

The optimization was carried out again by using
the second scenario simulation. The results for i0, αa
and αc of Pb and PbO2 were 2.70 × 10−3, 0.6, 1.4,
2.40× 10−4, 0.6 and 1.4. The error value is 0.31 (Fig-
ure 7).

4 Conclusion

The different discharge profiles in each scenario created
different electrochemical kinetic reactions. Hence, dif-
ferent values were obtained for the investigated param-
eters of the first and second scenarios. The exchange
constant current and charge transfer were affected by
concentration, temperature, and the electrode surface
reactions which led to change in the kinetics of the lead-
acid battery reactions with different discharge profiles.

Based on our research, the proposed method stands
out as a robust and reliable approach for predicting the
battery behavior and kinetic parameters across vari-
ous operational conditions. As the results show, this
study has demonstrated the effectiveness and versatil-
ity of the proposed method in providing accurate in-
sights into intricate electrochemical processes govern-
ing battery performance.

Fig. 7. Voltage of the cell during discharge (scenario
2).
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Nomenclature

A Specific active surface area
Amax Maximum active surface area available at

SOC = 1
C Electrolyte concentration
Cref The reference concentration at which

battery parameters are provided
Deff Diffusion conductivity
F Faraday constant
i0 Exchange current density
j Current density transferred from electrode

to electrolyte
keff Effective electrolyte conductivity
keff
D Electrolyte effective diffusion conductivity
Uref Open-circuit equilibrium voltage (In the

negative electrode, its value is zero, while
in the positive electrode, it is a function of
the electrolyte concentration)
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Greek symbols

φs Solid potential
φe Electrolyte potential
αa Anodic charge transfer coefficients
αc Cathodic charge transfer coefficients
σeff Effective conductivity in the solid zone
η Overpotential
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