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A B S T R A C T

Microorganisms are able to synthesize secondary metabolites of various structures and
bioactivities. These metabolites are produced to help the organism compete successfully
with other organisms in their natural habitat and adapt with changing environmental
milieu. The ability of rhizosphere bacteria (Bacillus subtilis NC_000964.3 and Pseu-
domonas aeruginosa NC_002516.2) isolated from the rhizospheric soil of Manatee food
plants Mimosa pygra, Ipomeoa aquatica and Pistia stratoites to inhibit the growth of
human pathogens (P. aeruginosa, E. coli, S. aureus and B. subtilis) was evaluated using
standard methods. It was observed that the growth extracts of B. subtilis strains M5,
M8 and P7 and P. aeruginosa strains I3 and M9 contained useful bioactive compound.
GC-MS analysis of the cell -free methanol extract of the antibiotic producing bacterial
strains was also evaluated and the results showed that their inhibitory potentials against
bacterial pathogens are due to the presence of phenylethyl alcohol, 2-ethyl-4-methyl-
1,3-dioxolane, bicyclo [4.2.0] octa-1,3,5-triene and 4-amino-2-methyl-5,6-dimethyl
pyrimidine for B. subtilis and 3,4-dimethyl tetrahydrofuran, 4,6-dimethyl-4-hydroxy-5-
heptenoic acid and 2,4-dimethyl-4-heptanol for Pseudomonas aeruginosa. These strains
of rhizosphere bacteria may be exploited to produce new antibiotics.
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1. INTRODUCTION
A phenomenon known as antibiosis occurs when the growth of
one or more organisms is hampered by the presence of other
species or the release of their metabolites. Antibiotics are chem-
ical or bioactive metabolites created by bacteria that, in small
doses, have the power to prevent other organisms from grow-
ing, metabolizing, and even killing them. The role of natu-
ral antibiotics has been disputed for decades and has been the
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subject of much investigation [1]. Natural antibiotics are hy-
pothesized to aid in microbial defense, fitness, interference, and
competition. Antibiotic-producing organisms are widespread in
microbial communities around the world [1–3]. It is well ac-
knowledged that in terrestrial ecosystems, naturally occurring
antibiotics accumulate at inhibiting concentrations largely in
nutrient-rich environments, including those that antibiotic pro-
ducers come across when colonizing the rhizosphere of plants or
animal hosts [1].

Numerous crucial environmental tasks are carried out by the
freshwater ecosystem, including nutrient recycling, water purifi-
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cation, floodmitigation, groundwater recharge, and the provision
of habitat for species. Additionally, people utilize them for recre-
ation, especially in coastal areas [4]. This environment supports
a wide variety of hydrophytes, vertebrate and non-vertebrate
species, and microbiomes because to its high biological diver-
sity. Pseudomonas, Bacillus, Azotobacter, Micrococcus, Ente-
rococcus, Acromobacterium, Salmonella, Shigella, Citrobacter,
Flavobacterium, and Escherichia species are only a few of the
known bacterial species. There are additional known instances of
fungi from the genera Penicillium, Aspergillus, Candida, Fusar-
ium,Geotricum, Saccharomyces, and others [5]. These microbes
are crucial to themineralization of the intricate organics and other
substances found in freshwater sediment. Within plants rhizo-
sphere, considerable microbial activity occurs. The microbes
present modulate biogeochemical processes within this system
[6]. Simulation of bacteria is due to release from plant roots
of a vast majority of plant materials including carbohydrates,
vitamins, amino acids, enzymes, mucilage, sloughed root cells
and carbon allocated to root-associated symbionts [7, 8]. This in
turn affects the number and diversity of microorganisms present
within the rhizosphere, their composition and interactions [9].
Recent studies have expanded our understanding of rhizo-

sphere bacteria in aquatic systems, highlighting their unique
roles and interactions within their environments. Findings by
Pan et al. [10] & Lu et al. [11] demonstrated that aquatic rhizo-
sphere bacteria, similar to their terrestrial counterparts, produce
a diverse array of secondary metabolites that influence nutrient
cycling and plant health. These findings underscore the complex-
ity and dynamism of microbial interactions in semi-aquatic envi-
ronments, where water flow and sediment composition add ad-
ditional layers of ecological interaction not commonly observed
in terrestrial habitats.
Furthermore, comparative analyses of secondary metabolite

production in terrestrial and aquatic rhizospheres have revealed
significant differences in the chemical profiles of produced an-
tibiotics, likely due to the distinct selective pressures exerted by
the aquatic environment [12, 13]. These studies suggest that
aquatic rhizosphere bacteria might employ unique biochemical
pathways to synthesize secondary metabolites, which could offer
novel bioactive compounds for medical and agricultural applica-
tions.
The impact of these metabolites on microbial community dy-

namics and plant interactions in aquatic systems has also been
explored in recent research. For example, a study by Etesami &
Glick [14] in coastal marshlands showed that secondary metabo-
lites from rhizosphere bacteria significantly affect the growth
patterns of both plant hosts and neighboring microbial popula-
tions, potentially influencing the overall ecosystem stability and
resilience to environmental stressors.
Moreover, the exploration of antibacterial activity in these en-

vironments has gained momentum, with studies such as those by
Saeed et al. [15] identifying potent antimicrobial agents from
bacteria isolated from the rhizosphere of aquatic plants. These
agents not only offer potential for therapeutic uses but also play
crucial ecological roles, mediating interactions within the micro-
bial community and protecting plant hosts against pathogens.
Rhizosphere bacteria have been documented to serve as bio-

control and antibacterial agents in addition to influencing plant

development. Raaijmakers [16], Weller et al. [17], and Mavrodi
et al. [18] all found that rhizosphere-dwelling biocontrol bac-
teria may suppress plant diseases through the use of antibiotics.
Examples of antibiosis that protects eukaryotic hosts and their
symbionts from pathogens include associations between ants and
Pseudonocardia species, which produce antibiotics that shield
ant fungal gardens from the mycoparasite Escovopsis [19], and
the southern pine beetle Dendroctonus frontalis and the fun-
gus Entocorticium sp. A, which is shielded [20]. The gen-
era Pseudomonas and Baccilus isolated from the rhizosphere of
maize and potatoes plant showed antagonistic activity against
Aspergillus flavus, Fusarium verticilliodes and phytopathogenic
fungi such as Fusarium osysporum, Fusarium solani, Rhizocto-
nia solani and Pythium ultimum respectively [20, 21]. Rhizo-
sphere bacteria isolated from Kochi, India, showed positive ac-
tivity against Enterococcus sp and Staphylococcus aureus [22].
Also, Nair et al. [23] isolated antibacterial compound from Bac-
cilus horikoshii found in the rhizosphere region of Alfalfa plant.
In addition, it has been observed that the growth of Micrococ-
cus luteus and Staphylococcus aureus is inhibited by other soil
bacteria, including Streptomyces species, Pseudomonas aerug-
inosa, Actinomyces strain, and Bacillus species [24, 25]. These
findings suggest that soil microbes are good sources of secondary
metabolites with potent antimicrobial properties.

Mammals get their gut bacteria mostly from the food they con-
sume [26]. Recent research has revealed that metabolites isolated
from commensal microorganisms of aquatic mammals possess a
variety of antimicrobial activities. Studies on faecal specimens
from terrestrial mammalian species have shown striking degrees
of host specificity of microbiota, reflecting the influence of host
phylogeny, gut anatomy, and diet [26]. It is well recognized that
certain of these metabolites alter how the host behaves, which
may have an impact on a person’s susceptibility to illness and
pathogen invasion. The West African manatee, or Trichechus
senegalensis, is a big aquatic animal that is also known as a
sea cow. Ipomoea aquatica, Echinochloa stagnina, Echinochloa
stagnina, Nymphaea lotus, Echinochloa cruspavonis, Pistia stra-
tiotes, Vossia cuspidate, Mimosa pygra, and Nymphaea lotus are
noTable examples of the aquatic and emergent plants that they
consume. Manatees have recently been wrongfully and illegally
taken from the humic freshwater habitat of the Eniong River in
Nigeria’s Akwa Ibom State. When the animals were killed, the
intestines were dominated by newly cropped specimens of the
plants Mimosa pygra, Ipomoea aquatica, and Pistia stratiotes.
Recent arguments contend that antibiotics serve less as defen-
sive agents and more as signaling molecules crucial to bacterial
physiology, communication, and gene regulation. Antibiotics
are thought to seldom accumulate in natural environments in in-
hibitory quantities [27]. According toMavrodi et al. [18], antibi-
otics are likely to serve as signaling chemicals as well as antago-
nists in natural environments. Our understanding of the function
played by these substances in nature, however, has been signifi-
cantly hampered by our knowledge of the quantities, spatial and
temporal patterns of antibiotic synthesis in the field. Natural an-
tibiotics are notoriously difficult to detect and measure in situ
because of microbial destruction, chemical breakdown, and/or
binding to soil and organic materials, according to Bonsall [28]
and Mavrodi et al. [18].
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Although the mechanisms that affect the form and function of
the microbiotas of terrestrial and aquatic animals are becoming
more understood, relatively little is known about the factors that
affect aquatic species that live in humic habitats. There are in-
creasing concerns about the rising levels of antibiotic resistance,
high cost and toxicity, the need to look for new therapeutic agents
from soil microbiome has been on the increase. This is because
soil microbiomes represent a promising habitat for the discovery
and isolation of highly effective antibiotics as less than 1% of soil
bacterial species are currently known. Information on the antibi-
otic potentials of bacterial isolates from the Niger Delta region
of Nigeria is scanty, this prompted our search for new antibiotics
from the rhizosphere of manatee food plants. Therefore, we re-
port in this study the antibacterial activity andGC-MS analysis of
methanolic extracts of bacteria from the rhizosphere of manatee
food plants.

2. MATERIALS AND METHODS
The research area is a humic environment of the Eniong River,
a tributary of the Cross River’s middle course, and is situated on
Nigeria’s southern coast in the Niger Delta. The river lies be-
tween latitude 5o12’N – 5o22’N and longitude 7o54’E – 8o20’E.
Rhizosphere samples (plant root and associated sediment) of
three commonly encountered Manatee food plants (Mimosa py-
gra (Figure 1a), Ipomeoa aquatica (Figure 1b) and Pistia stra-
toites (Figure 1c) detected in the stomach of dead manatee were
collected manually from 10 different locations within the study
area. All rhizosphere samples collected were placed in sterile
tubes, transported to the laboratory and stored at 4◦C for no
more than 24 h before processing. Due to the presence of hu-
mic chemicals and soluble iron complexes, the river has a vivid
coloration. Additionally, it supports a variety of aquatic animal
species, including the critically endangered manatee (Trichechus
senegalensis (Figure 2). Isolation of bacteria was carried out us-
ing serial dilution technique as described by Willey et al. [29].
Bacterial isolates were obtained on nutrient agar slant (NA) using
the pour plate technique [30].

A sensitivity assay was carried out to determine the antibiotic
producing ability of the bacterial isolates against pure and clin-
ical isolates of Pseudomonas aeruginosa, Staphylococcus au-
reus, Escherichia coli and Bacillus subtilis using the crowded
technique. Assay plates were incubated for 24hrs at 37oC. The
method of Maniatis et al. [31] and Kraft et al. [32] were em-
ployed to extract and cure the plasmid from the antibiotic – pro-
ducing isolates. Preliminary identification of the antibiotic pro-
ducing bacterial strain revealed a Gram positive, cocci in pairs
(EHSA4) as the best producer [33, 34]. Confirmation was done
by the 16S rRNA gene sequence analysis. DNA was extracted
from the pure culture by a salting –out procedure [35] and am-
plified by polymerase chain reaction using primers and PCR con-
ditions adapted from Tuleva et al. [36] with forward primer 12F1
(5’CGTGCTTAACACATGCAA3’) and the reverse primer 1390
(5’GCCACCGGCTTCGGGTGTTTA 3’). The amplified prod-
ucts were electrophoresed using 2% agarose gel and stained with
ethidium bromide. The Sanger sequencing approach was used to
do DNA sequencing utilizing an automated PCR cycle - Sanger
SequencerTM 3730/3730XL DNA analyser (Applied Systems).
Direct blasting on http://blast.ncbi.nlm.nih.gov yielded the nu-

cleotide sequence. Using the agar well diffusion technique, an-
tibiotic susceptibility of clinical isolates of Pseudomonas aerug-
inosa, Escherichia coli, Staphylococcus aureus, and Bacillus
subtilis to methanolic growth extracts of antibiotic manufactur-
ers was assessed [37]. The zones of inhibition were measured
and recorded. Ciprofloxacin (100µg/mL) was used as the pos-
itive control. Whereas, bioactive compounds present in potent
antibiotic-producing bacterial isolates were characterized and
identified in accordance with the method of Elleuch [37]. GC-
MS was performed on the methanolic extract of the crude culture
medium (3mg/0.2mL), which had passed through a 0.45µm sy-
ringe filter to remove bacterial cells. A Hewlett-Packard 5890
gas chromatograph coupled with an AutoSpec mass spectrome-
ter was used. Identification of individual compounds was done
by comparison with the mass spectra of authentic reference com-
pounds and reference libraries.

3. RESULTS
Thirteen (13) bacterial species includingBacillis subtilitis, Strep-
tococcus sp, Proteus sp, Clostridium sp, Micrococcus sp, Serra-
tia sp, Staphylococcus aureus, Pseudomonas aeruginosa, Chro-
matium sp, Klebsiella sp, Flavobacterium sp, Actinomyetes and
Enterobacter sp were isolated from the rhizosphere of Manatee
food plants. Their Gram staining characteristics is given in Ta-
ble 1. Extracts from B. subtilis and P. aeruginosa were active
against clinical isolates of E. coli and S. aureus, with zones of
inhibition greater than 10mm (Table 2). Isolates M5, M8 and P7
were found to be strains of B. subtilis, while isolates I3 and M9
were strains of P. aeruginosa based on their genomic properties
(Table 3). GC-MS analysis of methanol extracts from broth cul-
tures of B. subtilis and P. aeruginosa strains revealed variations
in compounds elaborated (Table 4). Nine compounds were de-
tected in broth culture of isolates M5, M8 and P7 strains from B.
subtilis while seven bioactive compounds were detected in iso-
lates I3 and M9 from P. aeruginosa. The chromatograms of the
bioactive compounds are given in Figures 3 and 4 while the elu-
cidated structure of the compounds are presented in Figure 5.

4. DISCUSSION
Gram staining characteristics of the bacterial strains from the root
zone of manatee food plants showed the presence of thirteen (13)
isolates, of which ten (10) were rod shaped, two (2) cocci, and
one (1) filamentous with many having the ability for spore for-
mation. They were identified as P. aeruginosa, E. coli, B. subtilis
and species of Streptococcus, Clostridium, Micrococcus, Serra-
tia, Chromatium, Klebsiella, Flavobacterium, Proteus, Actino-
mycetes, and Enterobacter.

The ability of rhizosphere bacteria isolates to inhibit the
growth of human pathogens (P. aeruginosa, E. coli, S. aureus
and B. subtilis) was also evaluated. Methanol extracts of iso-
lates from B. subtilis(P7) exhibited promising antibacterial ac-
tivity against clinical isolates of E. coli and S. aureus (inhibi-
tion zone 10 - 14mm), but was bacteriostatic to P. aeruginosa
(inhibition zone 6- 8mm). Similarly, the methanol extract of P.
aeruginosa isolates (I3 and M9) was most active against clinical
strains of E. coli and S. aureus (inhibition zone = 10-14mm), but
bacteriostatic against B. subtilis (inhibition zone <8mm). These
results corroborate with report in literature. Bacillus species
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Figure 1. a = Mimosa pygra; b = Ipomeoa aquatica; c = Pistia stratoites.

from terrestrial and marine environment are known to be good
sources of antibiotic compounds [38–40]. Similarly, the genera
Pseudomonas has been reported to show biological activity [40].
Also, Gislin et al. [22] reported the antibacterial activity of B.
amyloliquefaciens from the rhizosphere and diverse cultivation
at Kochi, India against Enterococcus sp and S. aureus. Nair et al.
[23] reported antibacterial activity of Bacillus horikoshii isolated
from the rhizosphere of Alfalfa plant against Klebsiella and S.
aureus. Similar reports exist for actinomycetes, streptomycetes,
Pseudomonads and other genera from rhizospheric soils [41, 42].
Therefore, our results suggest that P. aeruginosa and B. subtilis
from the rhizosphere of manatee food plants could serve as po-
tent sources of novel antibiotic compounds.

Molecular analysis of the antibiotic producing bacterial iso-

lates was done using the 16S rRNA gene amplification and se-
quencing, followed by BLAST analysis using the mega blast
tool of GenBank (http://blast.ncbi.nlm.nih.gov). This method
is generally accepted as a better method of bacterial identifica-
tion in comparison to other phenotypic methods [22]. Using this
method, gene sequence comparison of P7, M5 and M8 demon-
strated 99% similarities to B. subtilis NC_000964.3. Similarly,
sequence comparison of I3 and M9 demonstrated 99% similari-
ties to P. aeruginosa NC_002516.2, confirming the identity of
the five bacterial strains (P7, M5, M8, I3 and M9).

GC-MS analysis of the cell -free methanol extract of the
antibiotic producing bacterial strains was also evaluated. B.
subtilis produced a total of nine bioactive compounds from
its culture broth. Similarly, P. aeruginosa synthesized seven
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Table 1. Gram staining characteristics of isolated bacterial species.
Isolate code Gram staining reaction Shape Probable organism
P7, M5, M8 + Thick rod Bacillis subtilus
P1 + Cocci in chain Streptococcus sp
I6, M1 - Rod Proteus sp
M6 + Thick rod Clostridium sp
M3, M7 + Tiny cocci Micrococcus sp
P4, M4 - Rod Serratia sp
P3 - Short rod Escheriichia coli
I3, M9 - Rod Pseudomonas aeruginosa
P5, M4 - Rod Chromatium sp
I2, I4 - Rod Klebsiella sp
P2, P6 - Rod Flavobacterium sp
I1 + Filamentous Actinomycetes
I5, M2 - Rod Enterobacter sp

Table 2. Gram staining characteristics of isolated bacterial species.
Test clinical isolates

Code Isolates P. aeruginosa E. coli S. aureus B. subtilis
P7M5M8 B. subtilis + - - +++-- +++ - - - - -
P1 Streptococcus sp - - - -
I6, M1 Proteus sp - - - -
M6 Clostridium sp - - - -
M3, M7 Micrococcus sp - - - -
P4, M4 Serratia sp - - - -
P3 E. coli - - - -
I3, M9 P. aeruginosa - +++ +++ +
P5, M4 Chromatium sp - - - -
I2, I4 Klebsiella sp - - - -
P2,P6 Flavobacterium sp - - - -
P1 Actinomycetes - - - -
I5, M2 Enterobacter sp - - - -
Key: 0-6mm = -, 6-8mm = +, 8-10mm = ++, 10-14mm = +++.

Table 3. Genomic properties of bioactive strains.
Isolate number Sample type DNA type Gene bank accession number ID of organism

1 P7 DNA Genomic NC_000964.3 B. subtilis
2 M8 DNA Genomic NC_000964.3 B. subtilis
3 I3 DNA Genomic NC_002516.2 P. aeruginosa
4 M9 DNA Genomic NC_002516.2 P. aeruginosa
5 M5 DNA Genomic NC_000964.3 B. subtilis

bioactive components. For extract of B. subtilis strains, 2-
ethyl-2-pentanal (22.25%) and 2-ethyl-2-hexenal (21.49%) were
the major compounds detected. Others were 2-ethyl-4-methyl-
1,3-dioxalane (17.91%), 3-octanol (11.91%), trimethyl silanol
(7.25%), 4-amino-2-methyl-5,6-dimethyl pyrimidine (5.77%),
cyclohexane carboxylic acid (4.97%), bicyclo [4.2.0] octa-1,3,5-
triene(4.51%) and 4-methyl-1,3-dioxane (3.95%). For P. aerug-
inosa extract, the major compound detected was 4-methyl-
4-octanol (35.31%), followed by 2-ethyl-2-hexenal (16.77%),
2-ethyl-2-pentenal (15.05%), 2-methyl-2-hexanol (12.67%),
1,1-dimethoxy-2-methylpropane (8.26%), 2-methoxy quinoline
(6.57%), and isothiocyanato ethane (5.37%). The antimicrobial
activity of phenolic compounds and aromatic alcohols such as

phenylethyl alcohol, have been reported [43]. Their bactericidal
action was related to their physicochemical properties, and in-
volved alterations in membrane function, resulting in cell death,
particularly for Gram – negative bacteria. The antibacterial ac-
tivity of fatty alcohols has been documented. Alcohols with car-
bon length between 8 and 12 showed activity against S. aureus
and P. acnes [44]. These alcohols disrupt cell membrane fluid-
ity by infiltrating the membrane’s molecular structure, with the
polar hydroxyl group hydrogen-bonded into the aqueous phase
and the nonpolar carbon chain aligned into the lipid phase by
dispersion forces. The antibacterial strains’ extracts included
cyclohexane carboxaldehyde, 2-ethyl-2-pentenal, and 2-ethyl-2-
hexenal. Antibacterial activity has been observed for aliphatic
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Table 4. Bioactive compounds from methanol extract of broth cultures from rhizosphere bacterial isolates.
Isolate RT Area (%) Compound

B. subtilis strains M5, M8 and P7.

3.297 4.51 Bicyclo [4.2.0] octa-1,3,5-triene
3.387 4.97 Cyclohexane carboxaldehyde
3.600 22.25 2-ethyl-2-pentenal
3.657 11.91 3-octanol
3.773 17.91 2-ethyl-4-methyl-1,3-dioxolane
4.144 21.49 2-ethyl-2-hexenal
4.271 3.95 4-methyl-1,3dioxane
4.942 7.25 Trimethyl silanol
6.667 5.77 4-amino-2-methyl-5,6-dimethyl pyrimidine

P. aeruginosa strains I3 and M9.

3.660 15.05 2-ethyl-2-pentenal
3.709 12.67 2-methyl-2-hexanol
3.818 5.37 Isothiocyanato-ethane
4.178 16.77 2-ethyl-2-hexenal
4.369 35.31 4-methyl-4-octanol
4.950 8.26 1,1-dimethoxy-2-methyl-propane
5.880 6.57 2-methoxy-quinoline

Figure 2. Manatee (Trichechus senegalensis) encountered during the
study.

aldehydes [45]. These aldehydes work by changing the function
of membrane-associated proteins, interacting with the cell mem-
brane’s nucleophilic groups and producing considerable disrup-
tion in the lipidic bilayer. This action is more noticeable for
the α, β unsaturated aldehydes. According to Kim et al. [46],
silanols are a novel family of antibacterial drugs that appear to
be more effective than their comparable alcohols. The authors
examined the antibacterial activities of silanols, alcohols, and
phenols on E. coli C3000 (ATCC15597), a laboratory strain of
S. aureus, P. aeruginosa, and E. faecalis and discovered that
silanols with stronger antibacterial activity had lower MIC val-
ues. Quinolones, on the other hand, have been shown to exhibit

Figure 3. Profile of bioactive compounds elaborated by B. subtilis strains
M5, M8 and P7 .

Figure 4. Profile of bioactive compounds elaborated by Pseudomonas
aeruginosa strains I3 and M9.

a wide range of biological actions, including antibacterial [47],
antimalarial [48], anti-inflammatory [49], cytotoxicity [50], and
so on. These compounds may be responsible for the extracts’
antibacterial effect, either alone or in combination. In contrast to
other species, the bioactive B. subtilis and P. aeruginosa strains
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Figure 5.Bioactive compounds frommethanolic extracts of A (Bacillus subtilisNC_000964.3) and the bioactive compounds frommethanolic extracts
B (Pseudomonas aeruginosa NC_002516.2).

support previous findings. Gislin et al. [22] discovered that
Bacillus species are rich in antibiotic substances. This is con-
sistent with the findings of this study. Sharma and Kaur [51] in-
vestigated the antibacterial activity of Pseudomonas and Bacillus
rhizobacterial strains obtained from carnation rhizosphere soil.
Bacillus sp isolated from the Amazon basin has also been shown
to have antibacterial properties [52]. Iqbal et al. [53] identified
antibacterial peptides from B. safensis strain MK12 waste dump
soil in Pakistan and screened, characterized, and optimized them.

The bioactive compounds identified in our study, derived from
the rhizosphere bacteria of manatee food plants, show promising
antibacterial activity. To understand the potential mechanisms
through which these compounds exert their effects, it is crucial
to consider their molecular interactions with bacterial cells. This
understanding is pivotal for leveraging their therapeutic poten-
tial and ecological significance. The primary mode of action of
many natural bioactive compounds involves disrupting the bac-
terial cell membrane integrity. This disruption can lead to in-
creased cell permeability, resulting in the leakage of vital cellular
contents and eventual cell death. For instance, compounds such
as lipopeptides and polyketides, commonly produced by soil bac-
teria, are known to insert themselves into the lipid bilayer of bac-
terial membranes, distorting the membrane structure and causing
functional disruptions [54, 55].

Another potential mechanism is the inhibition of protein syn-
thesis. Some bioactive compounds bind to bacterial ribosomes,
blocking the ribosomal tunnel used during protein translation.
This action effectively halts the protein production necessary for
bacterial growth and replication, a mechanism employed by sev-
eral known antibiotics like tetracyclines and macrolides [56].
Given the diverse microbial origin of the compounds studied,
similar interactions could be involved in their antibacterial ac-
tivity. Furthermore, these compounds might interfere with the
synthesis or function of essential bacterial enzymes. Enzymatic
inhibition can occur through the binding of bioactive compounds
to the active sites of key bacterial enzymes, altering their confor-
mation and thereby inhibiting their catalytic activity. This type of
inhibition is crucial as it affects bacterial metabolic pathways and
can lead to the buildup of toxic intermediates or the depletion of
essential metabolites necessary for cell survival [57]. Bioactive
compounds may also affect bacterial DNA replication. Certain

compounds are capable of intercalating into DNA or binding to
DNA gyrase, an enzyme critical for DNA replication. By dis-
rupting these processes, the compounds prevent the bacteria from
reproducing and maintaining their genomic integrity [58].

5. CONCLUSION
Secondary metabolites with a range of structures and bioactivi-
ties can be produced by microorganisms. Nutrients, growth rate,
enzyme induction, and enzyme inactivation all affect how they
are produced. The production of these metabolites, which have
been crucial in the discovery and development of several antibi-
otics, helps the organism compete successfully with other species
in its natural habitat and adapt to changing environmental con-
ditions. As a result, a significant portion of commercially avail-
able antimicrobial medicines have microbial origins. The results
of the current investigation have demonstrated that bacteria from
the rhizosphere of manatee food plants can be powerful sources
of new antibiotics and other bioactive substances.
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