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Abstract 

The reliability parameters of a Mathematical model are analyzed for a system 

with three identical units and a standby. In this study, the primary unit is considered 

more important due to its high cost and working in two types of degraded conditions 

before a complete malfunction. Under the concept of preventive maintenance, the states 

of deterioration are reversed. The working of the system under two different efficiencies 

is discussed. The reliability of the Mathematical model, depending on the availability 

and working time, has been optimized using the Mathematical tool “Genetic 

Algorithm”. The optimum values of all parameters based on the exponential 

distribution are considered to optimize the reliability, and thus provide maximum 

benefits to the industry. Sensitivity analysis of the availability and the working time is 

carried out to understand the effects of changing parameters. Graphical and tabular 

analyses are presented to discuss the results and to draw conclusions about the 

system’s behavior. 

Keywords: deteriorated state, genetic algorithm, malfunction rate, preventive 

maintenance, regenerative point graphical technique, sensitivity analysis. 
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Acronym 

 

• α → Malfunction time from S0 to S1 and A to (A). 

• α2 → Malfunction time from B to b. 

• α3 / α4 → Malfunction time from D to D1, and D1 to D2 respectively. 

• α5 → Malfunction time from D2 to d. 

• β → Rate of preventive maintenance from S1 to S0 and (A) to A. 

• β2 → Rate of preventive maintenance from b to B. 

• β3 / β4 / β5→ Rate of preventive maintenance from D1 to D, D2 to D1, and d to D 

respectively. 

• 𝑞𝑖→𝑗(𝑡) → Probability density function (p.d.f.) for change in states, i.e. from state 

‘i’ to state ‘j’ in the time interval (0, t]. 

• 𝑝𝑖→𝑗 →  𝑞𝑖→𝑗
∗ (0), where * denotes the Laplace transformation. 

• 𝑅𝑖(𝑡) → Reliability of the system in state i. 

• 𝜇𝑖 → Mean sojourn time in state i, i.e. 𝜇𝑖 = ∫ 𝑅𝑖
∞

0
(𝑡)𝑑𝑡. 

• 𝜇𝑖
1 → Time gap in starting preventive maintenance work in the regenerative state 

i. 

• GA → Genetic algorithm. 

• RPGT → Regenerative point graphical technique. 

• ATSF → Average time to system failure. 

I.    Introduction 

The majority of industrial production is contingent on the reliability of systems 

used for testing the final product's quality. From the industry’s perspective, it is 

unsettling to have an unexpected system failure or work stoppage. For this reason, the 

reliability parameters are enhanced by employing the concept of corrective 

maintenance thus reducing the collapse chances of the system. In this paper, we have 

employed the concept of degradation based on preventive maintenance with two states 

of poor effectiveness. The Mathematical framework contains three units: A (with a 

standby), B (with a perfect preventive maintenance facility), and D (with two states of 

degradation). The operational effectiveness of unit D was reduced to 70% after the first 

deterioration, whereas it worked at a 50-55% efficiency after the second deterioration. 

The standby used here is not in perfect condition, i.e., it functions at a decreased level. 

Unit ‘B’ can break down in one mode of operation, i.e., complete collapse. The standby 

is called right away, without any hesitation. The preventive maintenance concept is 

implemented in two degraded states: D1 (first degraded state) and D2 (second degraded 

state). Flawless fixing and perfect switching of the standby system result in an effortless 

operation. In the previous investigations, the majority of research was based on 

corrective maintenance of the units comprising the system with an increasing 

malfunction rate and repair frequency. In this study, the computations are optimized to 

obtain the most appropriate parameters for achieving a progressively more reliable 

system under preventive as well as corrective measures. 

-full working state -failed state -Degraded state 
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Bhunia and Sahoo [I] applied two different real-coded GA to optimize the reliability in 

an interval environment and compared the results over different operations used in GA. 

Naithani et al. [VIII] examined the induced draft fans with a standby thermal plant to 

check their reliability over failure and repair time using semi-Markov processes. The 

overview of reliability analysis of different manufacturing industries, such as sugar, 

milk, petroleum, etc., was discussed by Kumar et al. [II]. Kumari et al. [IV] analyzed a 

harvester plant to find its benefits for agribusinesses using a technique called RPGT. 

The mist group of a coal-fired thermal impact shrub was optimized by Malik et al. [VI]. 

RPGT was further utilized to understand the effect of malfunctioning units on the 

reliability of systems by Singla and Dhawan [X]. Semi-Markov processes and 

regenerative point techniques were applied by Naithani et al. [VII] to understand the 

behaviour of a system consisting of a main unit that works with the property of 

substituting two sub-units on demand after a failing process, arranged in parallel mode. 

To optimize the cost of rubber plants, a nature-inspired algorithm for particle swarm 

optimization was addressed by Kumari et al. [V]. Taj and Rizwan [XI] performed the 

reliability analysis of a three-unit parallel system with a single maintenance facility. 

Kumari and Poonia [III] focused on the availability parameter regarding the reliability 

of a cast iron industry using the genetic algorithm tool to depict the behaviour 

concerning the number of generations and population size.  

II. Model Description 

The state transformation diagram of the system is shown in Figure 1. 

 

Fig. 1. State transformation diagram of the system. 
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The arrangement of units in various states is given as follows: 

S0 = ABD   

S1 = (A)BD   

S2 = ABD1    

S3 = ABD2 

S4 = (A)BD1   

S5 = (A)BD2   

S6 = (A)bD    

S7 = AbD 

S8 = (A)bD1   

S9 = AbD1   

S10 = AbD2    

S11 = (A)bD2 

S12 = (A)Bd   

S13 = ABd 

Note that: 

• Small letters denote the malfunctioning units. 

• Capital letters within brackets denote the standby units. 

III.      Mathematic Modelling 

Transformation Probabilities 

The steady-state probabilities of transformation from one state to another are 

given in Table 1. 

Table 1: Transformation probabilities. 

𝒒𝒊→𝒋(𝒕) 𝒑𝒊→𝒋 =  𝒒𝒊→𝒋
∗ (𝒕) 

𝑞0→1 = 𝛼𝑒−𝑘𝑡 𝑝0→1 = 𝛼/𝑘 

𝑞0→2 = 𝛼3𝑒
−𝑘𝑡 

 

𝑝0→2 = 𝛼3/𝑘 

 𝑞0→7 = 𝛼2𝑒
−𝑘𝑡 𝑝0→7 = 𝛼2/𝑘 

𝑞1→0 = 𝛽𝑒−𝑙𝑡 𝑝1→0 = 𝛽/𝑙 

𝑞1→4 = 𝛼3𝑒
−𝑙𝑡 𝑝1→4 = 𝛼3/𝑙 

𝑞1→6 = 𝛼2𝑒
−𝑙𝑡 𝑝1→6 = 𝛼2/𝑙 

𝑞2→0 = 𝛽3𝑒
−𝑚𝑡 𝑝2→0 = 𝛽3/𝑚 

𝑞2→3 = 𝛼4𝑒
−𝑚𝑡 𝑝2→3 = 𝛼4/𝑚 

𝑞2→4 = 𝛼𝑒−𝑚𝑡 𝑝2→4 = 𝛼/𝑚 
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where, 

𝑘 = 𝛼 + 𝛼2 + 𝛼3,   𝑙 = 𝛽 + 𝛼2 + 𝛼3,   𝑚 = 𝛼 + 𝛽3 + 𝛼2 + 𝛼4, 

𝑛 = 𝛽4 + 𝛼 + 𝛼2 + 𝛼5,    𝑟 = 𝛽3 + 𝛽 + 𝛼2 + 𝛼4,   𝑠 =  𝛽 + 𝛽4 + 𝛼2 + 𝛼5. 

Mean Sojourn Times 

The mean sojourn times in various states are given in Table 2. 

Table 2: Mean sojourn times. 

𝑹𝒊(𝒕) 𝝁𝒊
=  𝑹𝒊

∗(𝟎) 𝑅0(𝑡) = 𝑒−𝑘𝑡 µ0 = 1/k 

𝑅1(𝑡) = 𝑒−𝑙𝑡 µ1 = 1/l 

𝑅2(𝑡) = 𝑒−𝑚𝑡 µ2 = 1/m 

𝑅3(𝑡) = 𝑒−𝑛𝑡 µ3 = 1/n 

𝑅4(𝑡) = 𝑒−𝑟𝑡 µ4 = 1/r 

𝑅5(𝑡) = 𝑒−𝑠𝑡 µ5 = 1/s 

𝑅𝑖(𝑡) = 𝑒−𝛽2𝑡, i=6 to11 µ6 = 1/𝛽2 

𝑅12(𝑡) = 𝑒−𝛽5𝑡 µ12 = 1/𝛽5 

𝑅13(𝑡) = 𝑒−𝛽5𝑡 µ13 = 1/𝛽5 

 

𝑞2→9 = 𝛼2𝑒
−𝑚𝑡 𝑝2→9 = 𝛼2/𝑚 

𝑞3→2 = 𝛽4𝑒
−𝑛𝑡 𝑝3→2 = 𝛽4/𝑛 

𝑞3→5 = 𝛼𝑒−𝑛𝑡 𝑝3→5 = 𝛼/𝑛 

𝑞3→10 = 𝛼2𝑒
−𝑛𝑡 𝑝3→10 = 𝛼2/𝑛 

𝑞3→13 = 𝛼5𝑒
−𝑛𝑡 𝑝3→13 = 𝛼5/𝑛 

𝑞4→1 = 𝛽3𝑒
−𝑟𝑡 𝑝4→1 = 𝛽3/𝑟 

𝑞4→2 = 𝛽𝑒−𝑟𝑡 𝑝4→2 = 𝛽/𝑟 

𝑞4→5 = 𝛼2𝑒
−𝑟𝑡 𝑝4→5 = 𝛼2/𝑟 

𝑞4→8 = 𝛼4𝑒
−𝑟𝑡 𝑝4→8 = 𝛼4/𝑟 

𝑞5→3 = 𝛽𝑒−𝑠𝑡 𝑝5→3 = 𝛽/𝑠 

𝑞5→4 = 𝛽4𝑒
−𝑠𝑡 𝑝5→4 = 𝛽4/𝑠 

𝑞5→11 = 𝛼2𝑒
−𝑠𝑡 𝑝5→11 = 𝛼2/𝑠 

𝑞5→12 = 𝛼5𝑒
−𝑠𝑡 𝑝5→12 = 𝛼5/𝑠 

𝑞𝑖 →1 = 𝛽2𝑒
−𝛽2𝑡 

~=6 to11 

𝑝𝑖→1 = 1 

𝑞12→1 = 𝛽5𝑒
−𝛽5𝑡 𝑝12→1 = 1 

𝑞13→0 = 𝛽5𝑒
−𝛽5𝑡 𝑝13→0 = 1 
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Path Probabilities 

Using Tables 1 and 2, the transition probabilities from state S0 to other states can be 

written as follows. 

V0→0 = 1 (verified) 

V0→1 = p0→1 = [α/k] 

V0→2 = p1→2 = [α3/k] 

V0→3 = [2α2𝛼4
2(1+α3)(β β5)]/[lkn2] 

V0→4 = [𝛼4
2α4(3+2α2)(1+β4)]/[(k+α2+2β3)(5+4α2+3β2)] 

V0→5 = [(α2α5 β β4)(2β+3α2)]/[(3α4+α2+β)(β4+α2+4α3+k)2(α2+α3)] 

V0→6 = [(αα2)/kl]/[(α3+β)/l] 

V0→7 = p1→7 = [α2/k] 

V0→8 = (0,1,4,8)/[(1-L3)(1-L4)] = (p0→1p1→4p4→8)/[(1-p1→6p6→1)(1-p1→4p4→1)] 

= [(2α+3β4+α2+2β)/(1+α2+β)2(4α2+3α5)
3] 

V0→9 = (0,2,9)/[(1-L4)(1-L2)] = (p0→2p2→9)/[(1-p0→7p7→0)(1-p2→4p4→2)] 

= [(α3α2)/km]/[(α+α3)k{(r/3α3}] 

V0→10 = (2α2+α2+α4𝛼2
2)/(β+2α4+α3+4β4)

2(3α+β4)] 

V0→11 = (s+β)/(β4+α2+3α+α5)
2 

V0→12 = (0,1,4,5,12)/[(1-L3)(1-L5)]+(0,2,3,5,12)/[(1-L1)] 

= (2α2+β4+3α+α5)/(3α+β4)(3β2+3α5+4α)2 

V0→13 = (0,2,3,13,)/[(1-L1)(1-L5)(1-L3)] 

= (p0→2 p2→3 p3→13)/[(1-p0→7 p7→0)(1-p2→4 p4→2)(1-p2→9 p9→2)] 

= (2α+β4+β2+5α3)/(α
2+β4+9β2+βα5) 

IV.     Modeling System Parameters 

For evaluating the reliability parameters, the process of RPGT is implemented 

with exponentially distributed malfunction and preventive maintenance times under the 

consideration that the standby unit is available for operation without any elapsed time. 

Average Time to System Failure 

Taking the base state as i = 0, the average time of working of the system in the good 

state (i = 1, 2, 3, 4, 5) is given as follows. 
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  ATSF (T0) = [∑ {
{pr(ξ

sr(sff)
→      i)}μi

Πm1≠ξ
{1-Vm1m1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }

}i,sr ] ÷ [1-∑ {
{pr(ξ

sr(sff)
→      ξ)}

Πm2≠ξ
{1-Vm2m2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }

}sr ] 

  = [(0,0)µ0]+[{(0,0)µ1}/(1-L3)]+[{(0,2)µ2}/(1-L1)]/[{1-(0,1,0)}/(1-L3)(1-L4)] 

  = [µ0+{(p0→1µ1)/(1-L3)}+{(p0→2µ2)/(1-L1)}]/[1-{(p0→1p1→0)/(1-L3)(1-L4)}] 

  = [β(α2+α3+α)2]+[(2α2+β3+α4)/(3α2+3β+βα4+𝛼2
3)] 

Availability of the System 

The system is available in the states 0, 1, 2, 3, 4, and 5, in which it performs its intended 

function under the fuzzy logic, so we get the following. 

   A0 = [∑ {
{pr(ξsr→j)}fj,μj

Πm1≠ξ
{1-Vm1m1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }

}j,sr ] ÷ [∑ {
{pr(ξsr→i)}μi

1

Πm2≠ξ
{1-Vm2m2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }

}i,sr ] 

= [∑ 𝑉𝜉→𝑗𝑗 , 𝑓𝑗, 𝜇𝑗] ÷ [∑ 𝑉𝜉→𝑖𝑖 , 𝑓𝑗, 𝜇𝑖
1] 

= (∑𝑉0→𝑖fiµi)÷ (∑𝑉0→𝑗fjµj), where 1≤i ≤5, fi = 1 and 1≤j ≤13, fj = 0, for i ≠j.  

=1/k+[α/k(β3+α2+α+α4)]+[2α2𝛼4
2 (1+α3)(ββ5)]/[(α2+α3+β)(α2+α3+α)(α+α2+

α5+β4)
2][1/n] 

+[{𝛼4
2α4(3+2α2)(1+β4)(r+α2+β3)(5+4α2+3β2)}/r]+[{(α2α5ββ4)(2β+3α2)}/ 

{(3α4+α2+β)(β4+2α2+5α3+α)2(α2+α3)}]/s 

= (3α2+5β+𝛼2
2β4+4α)/[3α4+(β+β4)2+3𝛼2

2β+4αβ2)] 

V.   Methodology 

In computer science and operations research, a genetic algorithm (GA) is 

a metaheuristic inspired by the process of natural selection that belongs to the larger 

class of evolutionary algorithms. Genetic algorithms are commonly used to generate 

high-quality solutions to optimization and search problems by relying on biologically 

inspired operators such as mutation, crossover, and selection. 

In this research, GA is used to optimize the ATSF and availability of the two-unit 

system. GA is a computational tool used to arrive at an optimal solution for constrained 

and unconstrained problems. This algorithm follows the natural process of biological 

evolution. GA is experimented with the concept of population which corresponds to a 

subset of solutions in the current generation. After the selection of the initial population, 

several iterations are carried out which are referred to as the generations. In generations, 

various genetic processes such as selection, crossover, and mutation take place. These 

processes are identical to natural selection, reproduction, and genetic variation as 

observed in biological evolution to find offspring. Figure 2 shows a general flowchart 

that illustrates how genetics can be applied to biological evolution. 

 

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Natural_selection
https://en.wikipedia.org/wiki/Evolutionary_algorithm
https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
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Fig. 2. Application of genetics to biological evolution - flowchart. 

In this study, the decision variables are confined by initial and final bounds. Various 

bounds for the decision variables are given in Table 3. Following the choice of the 

population, the objective function (expressions for ATSF and availability) is optimized 

to achieve its maximum for various parameter values by altering the number of 

generations. 

Table 3: Bounds for decision variables. 

0.01 ≤ 𝛼 ≤ 1 0.02 ≤ 𝛽 ≤ 0.99 

0.02 ≤ 𝛼2 ≤ 0.8 0.03 ≤ 𝛽2 ≤ 0.98 

0.025 ≤ 𝛼3 ≤ 0.97 0.05 ≤ 𝛽3 ≤ 0.96 

0.03 ≤ 𝛼4 ≤ 0.9 0.04 ≤ 𝛽4 ≤ 0.97 

 

To help comprehend the reasoning behind the outcome, the methodology's flow chart 

is shown in Figure 3. 
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Fig. 3. Flowchart of the methodology used. 

Table 4 shows the effect of the number of generations on the ATSF of the system. 

Table 4: Effect of number of generations on ATSF. 

Sr. 

No. 

No. of 

generations 
ATSF 𝜶 𝜶𝟐 𝜶𝟑 𝜶𝟒 𝜷 𝜷𝟑 

1 10 0.805356 0.463 0.273 0.396 0.067 0.254 0.078 

2 20 0.978292 0.521 0.043 0.3 0.496 0.833 0.742 

3 30 1.038777 0.609 0.08 0.653 0.492 0.33 0.356 

4 40 1.085978 0.656 0.342 0.256 0.516 0.213 0.363 

5 50 1.265516 0.047 0.205 0.688 0.683 0.463 0.381 

6 60 1.273820 0.664 0.297 0.279 0.478 0.492 0.509 

7 70 1.110024 0.366 0.301 0.345 0.341 0.58 0.276 

8 80 1.157690 0.473 0.391 0.085 0.42 0.658 0.48 6 

9 90 1.146288 0.29 0.22 0.375 0.098 0.71 0.916 

10 100 1.038439 0.38 0.316 0.329 0.084 0.403 0.334 

 

Start 

Create Initial random population  

Evaluate fitness for  random population 

Store best individual parameters  

Selection 

Crossover 

Create next generation 

            Stopping criteria 

End 

No 

Yes 
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11 120 1.027753 0.948 0.384 0.771 0.336 0.078 0.954 

12 140 1.275321 0.279 0.182 0.557 0.412 0.433 0.643 

13 160 1.165921 0.984 0.061 0.711 0.895 0.237 0.651 

14 180 0.968699 0.289 0.352 0.085 0.097 0.856 0.726 

15 200 1.115047 0.613 0.326 0.203 0.533 0.304 0.423 

Table 5 shows the effect of the number of generations on the availability of the system. 

Table 5: Effect of number of generations on availability. 

Sr.  

No. 

No. of 

generations 

Availability 𝜶 𝜶𝟐 𝜶𝟒 𝜷 𝜷𝟐 𝜷𝟒 

1 10 0.730714 0.572 0.166 0.509 0.099 0.886 0.882 

2 20 0.709653 0.092 0.238 0.846 0.199 0.698 0.131 

3 30 0.971924 0.019 0.684 0.761 0.126 0.976 0.605 

4 40 0.870411 0.223 0.291 0.692 0.21 0.228 0.779 

5 50 0.806286 0.010 0.020 0.488 0.641 0.980 0.970 

6 60 0.832041 0.620 0.041 0.823 0.553 0.735 0.917 

7 70 0.931294 0.932 0.024 0.264 0.04 0.921 0.228 

8 80 0.861439 0.579 0.498 0.882 0.244 0.795 0.959 

9 90 0.889587 0.268 0.185 0.754 0.566 0.503 0.912 

10 100 0.882030 0.272 0.191 0.771 0.57 0.512 0.92 

11 120 0.957653 0.827 0.547 0.888 0.981 0.98 0.97 

12 140 0.933115 0.144 0.573 0.9 0.148 0.573 0.261 

13 160 0.837675 0.352 0.352 0.766 0.323 0.898 0.831 

14 180 0.751431 0.357 0.39 0.864 0.163 0.98 0.613 

15 200 0.706654 0.507 0.044 0.826 0.565 0.975 0.969 

 

Graphs portraying the variation in ATSF of the system and availability of the system 

concerning the number of generations are shown in Figures 4 and 5 respectively. 
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Fig. 4. Variation in ATSF w.r.t. no. of generations. 

 

 

Fig. 5. Variation in availability w.r.t. no. of generations. 

VI.     Sensitivity Analysis 

Sensitivity analysis is a novel approach for examining the level of impact a 

parameter has on a derived measure (Sachdeva et al. [IX]). As the parameters may have 

a wide range of numerical values, relative sensitivity analysis is also performed to 

compare the effects of various parameters. A relative sensitivity function is a 

standardized version of a sensitivity function. The sensitivity function ∆𝒙  and the 

relative sensitivity function 𝒚𝒙 are defined as follows, respectively: 

    ∆𝒙=
𝝏(𝑴)

𝝏𝒙
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and 

  𝒚𝒙 =
∆𝒙∗𝒙

𝑴
 

where 

𝑴 and 𝒙 are the derived measure and parameter respectively. 

Sensitivity analysis for the ATSF of the system for different parameters is shown in 

Table 6. 

 

Table 6: Sensitivity analysis for ATSF. 

Parameter (𝒙) Sensitivity 

∆𝒙=
𝝏(𝑻𝟎)

𝝏𝒙
 

Relative Sensitivity 

𝒚𝒙 =
∆𝒙 ∗ 𝒙

𝑻𝟎
 

𝛼 0.0758 0.01658 

𝛼2 1.9986 0.28525 

𝛼3 0.8816 0.38508 

𝛼4 0.3740 0.12083 

𝛽 -0.6061 -0.20580 

𝛽3 0.5824 0.29367 

 

Sensitivity analysis for the availability of the system for different parameters is shown 

in Table 7. 

Table 7: Sensitivity analysis for availability. 

Parameter (𝒙) Sensitivity 

∆𝒙=
𝝏(𝑨𝟎)

𝝏𝒙
 

Relative Sensitivity 

𝒚𝒙 =
∆𝒙 ∗ 𝒙

𝑨𝟎
 

𝛼 0.04262 0.00082 

𝛼2 1.08042 0.74564 

𝛼4 -0.96900 -0.74403 

𝛽 0.70394 0.08937 

𝛽2 -0.02455 -0.02418 

𝛽4 -0.31975 -0.19519 

VII.    Results and Discussion 

• From Table 4 it can be observed that the ATSF of the system is maximum when 

the number of generations is 140. 

• From Table 5 it can be observed that the availability of the system is maximum 

when the number of generations is 30. 

• From Table 6 it has been confirmed that the ATSF of the system is substantially 

influenced by 𝛼3. 
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• From Table 7 it has been confirmed that the availability of the system is 

substantially influenced by 𝛼2. 

• Sensitivity analysis shows that the order in which various parameters impact the 

ATSF and availability of the system is as follows: 

ATSF: 𝛼3 > 𝛽3 > 𝛼2 > 𝛽 > 𝛼4 > 𝛼 

Availability: 𝛼2 > 𝛼4 > 𝛽4 > 𝛽 > 𝛽2 > 𝛼 

VIII. Conclusion 

Using a genetic algorithm, the reliability optimization of a degraded system 

under preventive maintenance has been discussed in this paper.  

Relationships between the number of generations and reliability characteristics have 

been depicted. The effects of various genetic algorithm boundaries such as populations, 

generations, and crossover functions, have been presented. It has been observed that 

the ATSF and availability of the system maximize when the number of generations is 

140 and 30 respectively, for optimized values of various rates. Thus, the industry may 

adopt these values to achieve higher levels of ATSF and availability. 

Sensitivity and relative sensitivity analysis have been conducted to measure the level 

of impact of various parameters on the reliability characteristics. It has been observed 

that the ATSF and availability of the system are most affected by the malfunction times 

from D to D1, and B to b respectively. Thus, the industry may review its maintenance 

policies to reduce these rates to increase the ATSF and availability. 
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