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Abstract: Enzymatic amperometric procedures for measuring arsenic, based on the 

inhibitive action of this metal  on acetylcholinesterase enzyme  activity,  have been 

developed. Screen-printed carbon electrodes (SPCEs) were used with acetylcholinesterase 

covalently bonded directly to its surface. The amperometric response of acetylcholinesterase 

was affected by the presence of arsenic ions, which caused a decrease in the current 

intensity. The experimental optimum working conditions of pH, substrate concentration and 

potential applied, were established. Under these conditions, repeatability and reproducibility 

of biosensors were determined, reaching values below 4% in terms of relative standard 

deviation. The detection limit obtained for arsenic was 1.1 × 10−8 M for Ach/SPCE 

biosensor. Analysis of the possible effect of the presence of foreign ions in the solution was 

performed. The method was applied to determine levels of arsenic in spiked tap water 

samples. 
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1. Introduction 

 

Nowadays, environmental pollution caused by metals in different quantities is common, and their 

traces may often originate from natural as well as anthropogenic sources. Many waters contain high 

concentration of toxic metals such as arsenic, and excessive concentrations are known to naturally 

occur in some areas. Natural arsenic contamination is a cause of concern in many countries of the 

world including Argentina, Bangladesh, Chile, China, India, Mexico, Thailand and the United States 

of America. The World Health Organization’s (WHO's) [1] Guideline Value for arsenic in drinking 

water is 10 g L−1. This figure is limited by the ability to analyze low concentrations of arsenic in 

water. Many detection methods have been developed for determination of such levels of arsenic. These 

include atomic fluorescence spectrometry (AFS) [2], atomic absorption spectrometry (AAS) [3], 

inductively coupled plasma optical emission spectrometry/mass spectrometry (ICP-OES/MS) [4,5] and  

high-performance liquid chromatography-inductively coupled plasma mass spectrometry  

(HPLC-ICPMS) [6]. However, most of these techniques are only suitable for laboratory conditions, 

and additionally, are time-consuming. In fact, these techniques are impractical for on-site screening or 

for quantification as part of a decision tool owing to their size and high labour and analytical costs. 

Hence, there is a need for portable analytical systems, which can be met by using electrochemical 

methods [7]. Electroanalytical techniques bring with them important advantages, such as high 

sensitivity, low detection limits, relative simplicity, low costs and portable field-based equipment able 

to determine trace elements. For this reason, electrochemical techniques offer an interesting alternative 

to methods that are currently in use. Voltammetric methods are among the electrochemical techniques 

described for the analysis of arsenic. These are relatively widespread, and due to their accuracy and 

sensitivity, have contributed greatly to its determination at trace level [8,9]. 

It is well-known that some metals act as enzyme inhibitors. This phenomenon, when it is used to 

determine these hazardous toxic elements, offers several advantages, among which are sensitivity and 

specificity. Numerous enzyme inhibition based amperometric sensors have recently appeared in 

scientific literature for the determination of different metals [10-15]. Acetylcholinesterase, a biological 

catalyst of primary importance in the transmission of the nerve impulse, is a frequently enzyme used 

for this purpose [10,16,17]. 

The possibilities for the amperometric biosensors can be increased by means of replacing the 

classical electrodes by disposable screen-printed electrodes (SPEs). SPEs present important 

advantages, such as the elimination of memory effects in the analysis at trace levels, and they appear to 

be particularly attractive for in situ determinations. The construction of SPEs involves the printing of 

different inks on planar ceramic or plastic supports. The great flexibility of SPEs resides in their high 

number of possible modifications. In fact, the composition of the inks used in the printing process can 

be modified by adding substances of a very different nature, such as metals, enzymes, polymers, 

complexing agents, etc.  

In the present work, acetylcholinesterase (Ach) based amperometric biosensors were utilized for 

determination of arsenic(III) based on the inhibition of Ach enzyme activity caused by this metal. To 

the best of our knowledge, this is the first time that a disposable Ach amperometric biosensor has been 

used for the high sensitive and selective determination of arsenic. The enzyme was immobilized by 

covalent linkage on the surface of screen-printed carbon electrodes (SPCEs). 
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2. Results and Discussion 

 

In order to build the Ach/SPE biosensor, several experiments were done with the aim to find the 

optimum conditions for enzyme immobilization. The maximum inhibition response recorded was 

reached using the immobilization procedure described [18,19]. 

The Ach/SPE biosensor produces an amperometric signal, which is sensitive to the concentration of 

acetylthiocholine iodide. The principle of the determinations is based on the inhibition effect of AsO3
3− 

on the activity of the enzyme Ach, immobilized on a SPCEs. 

 

      Ach 

Acetylthiocholine iodide + H2O   thiocholine iodide + acetic acid 

 

It has been proved that thiocholine, the product of this process, is electroactive. This specie suffers 

an anodic oxidation, providing a suitable signal for the arsenic determination 

 

  Thiocholine(ox) + 2 H+  

 

 

 Thiocholine(red) 

 

 

The As(III), interacting with the Ach, inactivates this enzyme; the quantity of thiocholine generated 

diminishes and the value of the registered oxidation current also decreases as a function of AsO3
3− 

concentration, under similar conditions. 

As it is well known, arsenate(V) is not an Ach inhibitor, contrary to arsenite(III) [20].  

As(III) inhibition action was quantitatively evaluated by determining the difference between the 

steady-state current in the absence of arsenic (I0) and the steady-state current in the presence of arsenic 

(I) (Figure 1). The parameter I (I0 – I) depends on acetylthiocholine iodide concentration, applied 

potential (Eap) and pH of the buffer solution. Therefore, it is necessary to optimize all of these 

variables in order to ensure the quality of the results. Several experiments were carried out at different 

values of the experimental variables. From these experiments, the following optimum values can be 

set: concentration of the substrate 3.6 × 10−4 M, Britton-Robinson buffer pH 7 and applied potential 

+0.6 V (versus Ag/AgCl), because under these conditions high analytical quality signals were 

obtained. 

 
2e- 

Ach/SPEs 
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Figure 1. Typical amperometric recording for an acetylthiocholine iodide concentration:  

(1) 3.64 × 10-4 M and consecutive addition of aliquots of As(III) solution into the cell to 

give an overall concentration of: (2) 1.90 × 10−8 M, (3) 5.60 × 10−8 M, (4) 7.40 × 10−8 M, 

(5) 9.0 × 10−8 M, (6) 1.07 × 10−7 M, (7) 1.22 × 10−7 M, (8) 1.37 × 10−7 M, (9) 1.52 × 10−7 

M and (10) 1.66 × 10−7 M. Eap = 0.6 V vs. Ag/AgCl, Britton-Robinson buffer pH = 7.  

The inset shows the relative calibration plot.  
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2.1. Calibration and detection limit 

 

Once the optimal experimental conditions were found for the analysis of arsenic by means of 

Ach/SPCE, a calibration was performed using a least-median-squares regression (LMS) to detect the 

existence of anomalous points [21], which might have led to incorrect adjustments altering the 

sensitivity and the detection limit. Several calibration curves were obtained in the concentration  

range 1 × 10−8 to 1 × 10−7 M for AcH/SPCE. 

A key feature of any analytical method is its detection limit; the smallest concentration of the 

analyte that can be detected to a specified degree of certainty. The detection limit, based on the 

variability of eight samples with a 1 × 10−8 M concentration of As(III), was evaluated according to 

[22] and ISO 11843-2 [23]. At the chosen probability level of 5% (α = β = 0.05), the detection limit  

was 1.1 × 10−8 M.  
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2.2. Precision 

The precision of the developed method was calculated in terms of repeatability and reproducibility. 

In order to calculate the repeatability of the method, successive amperometric measurements with the 

same electrode surface, conditioned at 4 ºC for 1 h in a Britton-Robinson buffer solution pH 7 between 

experiments, were tested. Sets of three successive calibrations for arsenic were realized yielding a 

relative standard deviation for their slopes of 3.4%. Likewise, the reproducibility of the amperometric 

signal was checked using the slopes of three regressions carried out with different electrode surfaces. 

The RSD values obtained were 4.0%. These results suggest that the fabrication procedure of the Ach 

based biosensors is reliable, and allows reproducible electroanalytical responses to be obtained with 

different electrodes constructed in the same way. 

2.3. Interferences 

The action of As(III) as an Ach inhibitor is not specific. A number of possible interfering metals 

ions (Zn(II), Cu(II), Cd(II), Ni(II), Fe(III), Pb(II), Hg(II), Cr(VI) and Cr(III)) were investigated. Ni(II) 

and Cu(II) at concentrations higher than 2 × 10−6 M were found to have some influence, causing a fall 

in the acetylthiocholine iodide response. But, the most important interference was caused by Hg(II), 

which is detectable at mercury concentrations higher than 2 × 10−7 M. This interference study was 

carried out in absence of As(III). The described inhibition effect can be seen in Figure 2. The figure 

represents the percentage of inhibition caused by two different concentration levels of the interfering 

ion. The degree of inhibition % I was calculated on the basis of the relation: % I = I × 100/Io, where 

I is the difference between the value of substrate registered amperometric signal in absence, Io, and in 

presence of interference. In this Figure, the high inhibition caused by a low concentration of arsenic is  

also represented. 

Figure 2. Percentage of inhibition % I caused by different metals. Eap = 0.6 V vs. 

Ag/AgCl, Britton-Robinson buffer pH = 7 and acetylthiocholine iodide concentration  

3.64 × 10−4 M. 
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2.4. Analytical application 

 

Determination of As(III) in spiked tap water samples. The developed disposable biosensor was 

used for the analysis of As(III) in spiked tap water samples by standard addition (concentration of 

As(III) 1.00 μM). The concentration found in the tap water sample was 1.04 ± 0.05 μM (n = 6,  

α = 0.05, RSD = 4.1%). This value closely agrees with the real one. 

Determination of As(V) in a certified water sample. The proposed method was also successfully 

applied to the determination of arsenic(V) in a certified water sample by standard addition. Since 

As(V) is not an Ach inhibitor, a previous reduction stage of this specie is necessary in order to 

determine the concentration of this sample by the developed method. The reduction process was 

carried out by  

mixing 100 L of the certificate sample (1.336 × 10−2 M) with 100 L of 0.1 M sodium thiosulfate and 

water until a final volume of 10 mL. The mixture was left to react for 70 minutes at room temperature. 

The arsenic concentration obtained in the certified water sample was (1.361 ± 0.095) × 10−2 M  

(n = 6,  = 0.05, RSD = 6.7%). This result is in good agreement with that supported by manufacture 

(1.336 ± 0.006) × 10−2 M. 

 

3. Experimental Section  

 

3.1. Chemical reagents 

 

Ach (E. C. 3.1.1.7, 1047 U/mg from electric eel) purchased from Sigma (Steinheim, Germany), 

acetylthiocholine iodide and N-cyclo-hexyl-N’-[2-(N-methylmorpholino) ethyl]carbodiimid 4 

toluensulfonate (Fluka, Buchs, Switzerland) were used. Sodium thiosulfate (Na2S2O3·5H2O) was 

obtained from Merck (Darmstadt, Germany). Potassium chloride was purchased from Panreac 

(Barcelona, Spain). Sodium (meta)arsenite (NaAsO2, 99%) was purchased from Fluka (Buchs, 

Switzerland). Arsenic acid (H3AsO4, 1,002 ± 5 mg L−1) solution CertiPur® was obtained by Merck 

(Darmstadt, Germany). Britton-Robinson buffer with different pH values was used. All the reagents 

were used without further purification. All solutions and subsequent dilutions were prepared using 

deionized water obtained with a Barnstead NANO Pure II system.  

As(III) stock solutions (10 mM) was prepared fresh daily from NaAsO2 (0.013 g NaAsO2 dissolved 

in 10 mL deionized water). 

The electrochemical system was produced using polymeric commercial inks. Electrodag PF-407 A 

(carbon ink), Electrodag 6037 SS (silver/silver chloride ink) and Electrodag 452 SS (insulator ink) 

were obtained from Acheson Colloiden (Scheemda, Netherlands).  

 

3.2. Instrumentation 

 

Hand-made screen-printed electrodes were produced with a DEK 248 printing machine (DEK, 

Weymouth, UK) using polyester screens with appropriate stencil designs mounted at 45º to the  

printer stroke.  
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Electrochemical measurements were recorded using a Autolab type III electrochemical system 

with GPES software (EcoChemie, Utrecht, Netherlands). 

The pH of the solutions was measured with a Crison Model 2002 (Barcelona, Spain) pH meter. 

 

3.3. Software 

 

Data analysis was performed using a STATGRAPHICS PLUS software package [24], and 

PROGRESS [21] for the robust regression.  

 

3.4. Construction of the biosensors 

 

SPECs preparation. Hand-made screen-printed electrodes (working electrode area, 4 mm2) were 

used in the electrochemical determination of arsenic. For the construction of the screen-printed 

electrodes (Figure 3) successive layers of different inks were printed onto a polyester film substrate 

using three different screens with appropriate stencils to transfer the required design following the 

printing procedure described in previous works [25,26].  

Figure 3. Diagram of the three-electrodes screen-printed configuration used in the 

fabrication of the biosensors.  

Carbon auxiliary
electrode

Ag/AgCl reference
electrode

Insulator

Carbon working
electrode

Carbon base-patterns

 
 

Electrode cleaning. Before utilization, the SPCEs, working and counter electrodes were softly 

polished during almost one second with a SiC-paper No 4000 disc (Struers, Copenhagen, Denmark). 

After polishing, the electrode system was washed with water. Then, the working electrode surface was 

activated by recording 40 cycle voltammograms between 2 and –2 V, scan rate, 100 mV s−1, in a 0.1 M 

KCl solution. 

 

Acetylcholinesterase immobilization in SPCEs. Ach was immobilized by covalent linkage on the 

working electrode surface. The mode of preparation of the Ach amperometric sensor was adapted from 

previously published reports [18,19]. 5 L of a 0.05 M N-cyclo-hexyl-N’-[2-(N-methylmorpholino) 

ethyl] carbodiimid 4 toluensulfonate solution prepared in Britton-Robinson pH 7 were deposited on the 

working electrode surface. After 80 min activation at room temperature, 5 L of Britton-Robinson 
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buffer (pH 7) solution containing 2.5 mg/mL of Ach were dropped on the working electrode surface. 

During this activation step [27] the reaction between carboxilic groups and carbodiimid gives rise to a 

more active substrate for its reaction with the amine groups of the enzyme. Then, the electrode was 

kept at 30 ºC for 2 h. Finally, the electrode surface was rinsed with buffer solution.  

 

Arsenic determination procedure. The Ach biosensors were placed in the electrochemical cell 

containing 5 mL of Britton-Robinson buffer solution. An adequate potential was applied, and once a 

steady-state current was set, a defined amount of acetylthiocholine iodide stock solution was added to 

the measuring cell. A large oxidation current was observed, and a plateau corresponding to the  

steady-state response was reached. Then, fixed portions of the arsenic stock solution were added 

consecutively, being reached each time a plateau. The addition of arsenic solution resulted in a current 

decrease of the oxidation signal of acetylthiocholine iodide proportional to the amount of arsenic 

added.  

Between its calibration setting the biosensor was conditioned by dipping in a Britton-Robinson 

buffer (pH 7) solution at 4 ºC for 1 h.  

 

Biosensor storage. Enzyme electrodes were storage in a Britton-Robinson buffer (pH 7) solution  

at 4º C. Under these conditions, the biosensor was stable for arsenic determination for at least 15 days. 

 

4. Conclusions 

 

The developed Ach/SPCE biosensor allows the selective and sensitive amperometric determination 

of As(III). The proposed method shows high reproducibility and repeatability in the determination of 

this metal in water samples.  

Comparing this study with previous described works, the proposed method offers several 

advantages. Firstly, the disposable character of the SPCE should be highlighted. Also, the construction 

procedure used in this work is simpler and it minimizes considerably the amount of enzyme and other 

reagents used in the immobilization step. On other hand, the potential used for arsenic determination, 

+0.6 V, is lower than the potential used in previous reported works. This fact could improve the 

selectivity of the proposed method. 

Finally, this method is also potentially useful for redox speciation analysis of arsenic. 
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