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Neural intelligent systems can provide a visualization of the network traffic for security staff, in order
to reduce the widely known high false-positive rate associated with misuse-based Intrusion Detection
Systems (IDSs). Unlike previous work, this study proposes an unsupervised neural models that generate
an intuitive visualization of the captured traffic, rather than network statistics. These snapshots of
network events are immensely useful for security personnel that monitor network behavior. The system
is based on the use of different neural projection and unsupervised methods for the visual inspection of
honeypot data, and may be seen as a complementary network security tool that sheds light on internal
data structures through visual inspection of the traffic itself. Furthermore, it is intended to facilitate
verification and assessment of Snort performance (a well-known and widely-used misuse-based IDS),
through the visualization of attack patterns. Empirical verification and comparison of the proposed
projection methods are performed in a real domain, where two different case studies are defined and
analyzed.
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1. Introduction

A network attack or intrusion will inevitably violate
one of the three computer security principles — avail-
ability, integrity and confidentiality — by exploit-
ing certain vulnerabilities such as Denial of Service
(DoS), Modification and Destruction.1 One of the
most harmful issues of attacks and intrusions, which
increases the difficulty of protecting computer sys-
tems, is precisely the ever-changing nature of attack
technologies and strategies.

For that reason alone, among others, IDSs2–6

have become an essential asset, to complement to
the computer security infrastructure of most orga-
nizations. In the context of computer networks, an
IDS can roughly be defined as a tool designed to

detect suspicious patterns that may be related to a
network or system attack. Intrusion Detection (ID)
is therefore a field that focuses on the identifica-
tion of attempted or ongoing attacks on a computer
system (Host IDS – HIDS) or network (Network
IDS – NIDS).

Visual inspection of traffic patterns is an alter-
native and crucial aspect in network monitoring.7

Visualization is a critical issue in the computer net-
work defense environment. It serves to generate a
synthetic and intuitive representation of the current
situation for the network manager. As a result, sev-
eral research initiatives have recently applied infor-
mation visualization to this challenging task.8–11

Visualization techniques typically aim to make the
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available statistics supplied by traffic-monitoring sys-
tems more understandable in an interactive way.
They therefore focus on traffic data as well as on
network topology. Regardless of their specific char-
acteristics, these methods all map high-dimensional
feature data into a low-dimensional space for visual
presentation purposes. The baseline of the novel
research presented in this study is that Artificial
Neural Networks (ANNs),12–17 in general, and unsu-
pervised connectionist models, in particular, can
prove quite adequate for the purpose of network data
visualization through dimensionality reduction.18–20

As a result, unsupervised projection models21,22 are
applied in the present research for the visualization
and subsequent analysis of network traffic data col-
lected by a network of honeypots, also known as a
honeynet.

A honeypot has no authorized function or pro-
ductive value within the corporate network other
than to be explored, attacked or compromised.23 A
honeypot should not receive any traffic at all. As a
consequence, all the traffic arriving at any honeynet
sensor must be considered as suspicious by default.
Every packet should be considered as an attack
or at least as part of a multi-step attack. Recent
works24,25 have shown that not every packet is a part
of an attack, but most of the traffic corresponds to
infected computers, while the rest come from mis-
configured devices. Numerous studies propose the
use of honeypots to detect automatic large-scale
attacks; honeyd26 and nepenthes.27 among others.
The first Internet traffic monitors known as Net-
work Telescopes, Black Holes or Internet Sinks were
presented by Moore et al.28 This paper advances
previous preliminary work29–31 on visual analysis of
Honeynet data by the same authors, as described in
the conclusions.

The remaining five sections of this paper are
structured as follows: Sec. 2 briefly describes the
topic of computer and network security (mainly
Intrusion Detection). Section 3 presents the novel
approach proposed for ID while the neural pro-
jection and visualization techniques applied in this
research are described in Sec. 4. Some experimen-
tal results for two different real-life datasets are then
presented and comprehensively described in Sec. 5.
Finally, the conclusions of this interdisciplinary
study and the future research lines are discussed
in Sec. 6.

2. Computer and Network Security

This section introduces the main concepts of com-
puter and network security that are the foundations
of this novel study.

2.1. Intrusion detection systems

Intrusions can be produced by attackers that access
the system, by authorized users that attempt to
obtain unauthorized privileges, or by authorized
users that misuse the privileges given to them. The
complexity of such situations increases in the case
of distributed network-based systems and insecure
networks. Attacks that attempt to access a system
through external networks such as the Internet may
involve one or several hosts. From a victim’s perspec-
tive, intrusions are characterized by their manifesta-
tions, which might or might not include damage.32

Some attacks may produce no manifestations while
some apparent manifestations can be produced by
system or network malfunctions.

An IDS can be defined as a piece of software
that runs on a host, which monitors the activities
of users and programs on the same host and/or the
traffic on networks to which that host is connected.33

The main purpose of an IDS is to alert the system
administrator to any suspicious and possibly intru-
sive event taking place in the system that it is ana-
lyzing. Thus, they are designed to monitor and to
analyze computer and/or network events, in order to
detect suspect patterns that may uncover a system
or network intrusion.

Ever since the first studies in this field in the
80s,3,34 the accurate, real-time detection of com-
puter and network system intrusions has always
been an intriguing problem for system administra-
tors and information security researchers. It may be
attributed on the whole to the dynamic nature of
systems and networks, the creativity of attackers, the
wide range of computer hardware and operating sys-
tems and so on. Such complexity arises when dealing
with distributed network-based systems and insecure
networks such as the Internet.35

A standard characterization of IDSs, based on
their detection method, or model of intrusions,
defines the following paradigms:

• Anomaly-based ID (also known as behavior-
based ID): the IDS detects intrusions by looking
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for activity that differs from the previously defined
“normal” behavior of users and/or systems. In
keeping with this idea, the observed activity is
compared against “predefined” profiles of expected
normal usage. It is assumed that all intrusive activ-
ities are necessarily anomalous. In real-life envi-
ronments, instead of their being identical, the set
of intrusive activities in some cases intersects the
set of anomalous activities. As a consequence,36

anomalous activities that are not intrusive are
flagged as intrusive (i.e. false positives) and intru-
sive activities that are not anomalous are not
flagged up (i.e. false negatives). Anomaly-based
IDSs can support detection of novel (zero-day)
attack strategies, but may suffer from a relatively
high rate of false positives,37

• Misuse-based ID (also known as knowledge-
based ID): intrusions are detected by check-
ing activity that corresponds to known intrusion
techniques (signatures) or system vulnerabilities.
Misuse-based IDSs are therefore commonly known
as signature-based IDSs. They detect intrusions
by exploiting the available knowledge on specific
attacks and vulnerabilities. As opposed to anomaly
detection, misuse detection assumes that each
intrusive activity can be represented by a unique
pattern or signature.38 This approach entails one
main problem; intrusions with signatures that are
not archived by the system can not be detected.
As a consequence, a misuse-based IDS will never
detect a 0-day attack.38 The completeness of such
IDSs requires regular updating of their knowledge
of attacks.

• Specification-based ID: relying on program
behavioral specifications, they reflect system poli-
cies that are used as a basis to detect attacks.39

2.1.1. Snort

Snort, a libpcap-based40 lightweight network intru-
sion detection system, is one of the most widely
deployed IDSs. It is a network-based, misuse-based
IDS that detects many types of malicious activity in
the packet payload that can be characterized in a
unique detection signature. Snort functions by col-
lecting packets as quickly as possible and process-
ing them in its detection engine. It is composed of
three primary modules: a packet decoder, a detec-
tion engine and a logging and alerting subsystem.

Table 1. Snort rules to log all TCP, UDP and ICMP
traffic.

alert tcp $EXTERNAL NET any ->$HOME NET any
(msg:”TCP”; sid:1000001;)

alert udp $EXTERNAL NET any ->$HOME NET any
(msg:”UDP”; sid:1000002;)

alert icmp $EXTERNAL NET any ->$HOME NET any
(msg:”ICMP”; sid:1000003;)

Even though the capabilities of Snort allow in-
depth analysis of traffic flows, what is of interest
in this research is the detection, alerting and log-
ging of the network packets as they are received
in the Honeynet system. Snort is used as a net-
work data classifier, without discarding any packet.
In that sense, in addition to the default rules of the
Snort community, three basic rules that log all TCP,
UDP and ICMP traffic are included, as shown in
Table 1.

On the other hand, each incoming packet is
inspected and compared with the default rule base.
In this way, besides alerting, when the packet
matches the three signatures shown above, many
of them are also shown to match the Snort rule-
base signatures. Therefore, even if a large amount
of packets trigger more than one alarm, it facili-
tates a simple way to separate these alarms into two
subsets:

• Alarms triggered by a match with the Snort
default rule base. This dataset can be considered
as known attack data.

• Alarms that did not match any of the known
attack rules, which are considered the unknown
data.

These two subsets will allow network administrators
to distinguish between known and unknown traffic.
This permits the success rate of Snort to be tested,
and the unknown traffic to be visualized, to inspect
for new and unknown attacks. A clear advantage of
using Snort IDS in this study is its ease of use, con-
figuration and the development of new rules.

2.2. Honeypots and Honeynets

Recently, two monitoring systems for automatic
large-scale attack detection have been proposed:
honeypots and network telescopes. Since 1992,
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honeypots have been used to deceive attackers and
to learn from the new attacks they accomplish.41–44

A honeypot is a decoy system that consists of a vul-
nerable computing resource that distracts attackers.
It is used as an early warning system for new attack
proliferations and to ease the later analysis of the
attacks (forensics).45 When used to monitor activ-
ities derived from automatic attacks based on ran-
dom or pseudo-random scanning, these systems have
certain particularities. Unassigned IP addresses are
given to these honeypots so that each time a hon-
eypot receives a connection request, it will be cat-
egorized as suspicious. Nevertheless, the interaction
level of the honeypot is fundamental. The higher the
interaction between the honeypot and the attacker
(response to TCP connection request for example),
the greater the amount of information that is col-
lected, which implies greater levels of knowledge
about the attack. A system with a low level of inter-
action will also be valid to analyze the noise level,
detect infected hosts, etc.

One of the most extended classifications of hon-
eypots takes into account their level of interaction.
Low interaction honeypots offer limited interaction
with attackers and the most common ones only sim-
ulate services and operating systems. High interac-
tion honeypots follow a different strategy: instead of
using simulated services and operating systems, real
systems and applications are used, usually running
on virtual machines.

Found somewhere between those two types,
medium interaction honeypots also emulate vulner-
able services, but leave the operating system to
manage the connections with their network pro-
tocol stack. Recently, a new type of honeypot
has been proposed as a response to the behav-
ioral change observed in the attackers. Instead of
waiting for the attackers to reach traditional hon-
eypots, client side honeypots, also known as hon-
eyclients, scan communication channels looking for
malware.

The case studies analyzed in this paper focus on
medium interaction honeypots.

Different platforms exist as observatories of
malicious threats using honeypots. Examples are
NoAH26 and SGNET.27 This research follows these
approaches, based on the application of unsupervised
learning to network level packets, collected from a
honeypot-based observatory.

3. A Neural Visualization-Based
Approach for Data Monitored
by Honeypots

This study proposes the application of neural pro-
jection models for the visualization of network traffic
received by honeypots. There are various approaches
to the collection of Internet-based attacks, but there
is still a lack of techniques that ease comprehen-
sion and analysis of the information that is gathered.
Visualization techniques have been applied to mas-
sive datasets for many years. These techniques are
considered a viable approach to information seek-
ing, as humans are able to recognize different fea-
tures and to detect anomalies by inspecting graphs.46

The underlying operational assumption of the pro-
posed approach is largely grounded in the ability to
render the high-dimensional traffic data in a con-
sistent yet low-dimensional representation. So, secu-
rity visualization tools have to map high-dimensional
feature data into a low-dimensional space for pre-
sentation. One of the main assumptions of this
research is that neural projection models will prove
satisfactory for the purpose of honeynet data visual-
ization through dimensionality reduction, by analyz-
ing complex high-dimensional datasets received by
honeypots.

Projection methods project high-dimensional
data points onto a lower dimensional space, in order
to identify “interesting” directions in terms of any
specific index or projection. Having identified the
most interesting projections, the data are then pro-
jected onto a lower dimensional subspace plotted into
two or three dimensions, which makes it possible to
examine the structure with the naked eye. Projection
methods can be seen as smart compression tools that
map raw, high-dimensional data onto two or three
dimensional spaces for subsequent graphical display.
By doing so, the structure that is identified through a
multivariable dataset may be visually analyzed with
greater ease by the naked eye.

Visualization tools can therefore support security
tasks in the following way:

• Visualization tools may be understood intuitively
(even by inexperienced staff) and require less con-
figuration time than more conventional tools.

• Providing an intuitive visualization of data allows
inexperienced security staff to learn more about
standard network behavior, which is a key issue in
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ID.47 The monitoring task can be then assigned to
less experienced security staff.

• As stated in8 “visualizations that depict patterns in
massive amounts of data, and methods for inter-
acting with those visualizations can help analysts
prepare for unforeseen events”. Hence, such tools
can also be used in security training.

• They can work in unison with some other security
tools in a complementary way.

As with other machine learning paradigms, an inter-
esting facet of ANN learning is not just that the
input patterns may be precisely learned/classified/
identified, but that this learning can be generalized.
Whereas learning takes place within a set of training
patterns, an important property of the learning pro-
cess is that the network can generalize its results on
a set of test patterns that were not previously learnt.
Also, their capability to identify unknown patterns
fits the 0-day attack37 detection.

Owing to the aforementioned reasons, the present
study approaches the analysis of attack data from
a visualization standpoint. Thus, some unsupervised
neural projection techniques are applied for the visu-
alization of data monitored by honeypots. As previ-
ously proposed,20 the continuous honeynet dataflow
can be split into variable-length segments to reduce
depiction time.

3.1. Previous work

Even though great effort has been dedicated to ID
research, several issues concerning IDS design, devel-
opment, and performance remain open for further
research.

Nevertheless, scant attention has been given
to visualization in the ID field,48 although visual
presentations do assist operators, in general, and
security managers, in particular, to interpret large
quantities of data. Most IDSs do not provide any
way of viewing information other than through lists,
aggregates, or trends of raw data. They can gener-
ate different alarms when an anomalous situation is
detected, broaden monitoring tasks, and increase sit-
uational awareness. However, they neither provide a
general overview of what is happening in the net-
work, nor support a detailed packet-level inspection9

as is the case for honeypots and honeynets.
Some other authors have previously addressed

the analysis of traffic data and intrusion detection

under the application of ANN49,50 and more partic-
ularly projection methods.18,51

The underlying idea in this research is not only
to detect anomalous situations under data sets mon-
itored by honeypots, but also to visualize proto-
col interactions and traffic volume. Packet-based ID,
that is actually performed in this present research,
has several advantages.52

Some Exploratory Projection Pursuit (EPP)53

models have been previously applied to the ID field
as part of a hybrid intelligent IDS.18–20 Unlike pre-
vious studies, neural EPP models, are applied here
as a complementary tool to IDSs for the first time,
to analyze real complex high-dimensional honeynet
data sets. Accordingly, the output of both the neu-
ral model and Snort are combined, together with
some other customized visualizations for comprehen-
sive analysis and understanding of network status.

4. Neural Visualization Techniques

The different projection models applied in this study
are described in the following subsections.

4.1. Principal component analysis

Principal Component Analysis (PCA) is a statisti-
cal model (introduced in54 and independently in55),
which describes the variation in a set of multivari-
ate data in terms of a set of uncorrelated variables,
each of which is a linear combination of the original
variables.

Its goal is to derive new variables, in decreasing
order of importance, that are linear combinations of
the original variables and are uncorrelated with each
other.

4.2. Cooperative maximum likelihood
Hebbian learning

Exploratory Projection Pursuit (EPP)53 is a more
recent statistical method aimed at solving the diffi-
cult problem of identifying structure in high dimen-
sional data. It does this by projecting the data onto a
low dimensional subspace in which we search for the
data structure by eye. However, not all projections
will reveal this structure equally well. It therefore
defines an index that measures how “interesting” a
given projection is, and then represents the data in
terms of projections that maximize the index.
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The first step for EPP is to define which indexes
represent interesting directions. “Interestingness” is
usually defined with respect to the fact that most
projections of high-dimensional data give almost
Gaussian distributions.56 Thus, in order to iden-
tify “interesting” features in data, it is appropriate
to look for those directions onto which the data-
projections are as far from the Gaussian as possible.

Two simple measures of deviation from a Gaus-
sian distribution are based on the higher order
moments of the distribution. Skewness is based on
the normalized third moment and measures the
deviation of the distribution from bilateral sym-
metry. Kurtosis is based on the normalized fourth
moment and measures the heaviness of the tails of a
distribution. A bimodal distribution will often have
a negative kurtosis, which will therefore signal that a
particular distribution shows evidence of clustering.

If a Gaussian distribution with mean a and vari-
ance x is as interesting as a Gaussian distribution
with mean b and variance y, then such information
may be removed from the data (sphering). In effect,
the second order structure can obscure structures of
a higher order that are more interesting.

Cooperative Maximum Likelihood
Hebbian Learning (CMLHL)21,57 is based on Maxi-
mum Likelihood Hebbian Learning (MLHL),21,58 an
EPP connectionist model. CMLHL includes lateral
connections57,59 derived from the Rectified Gaussian
Distribution (RGD).60 The RGD is a modification of
the standard Gaussian distribution in which the vari-
ables are constrained to be non-negative, enabling
the use of non-convex energy functions. The CMLHL
architecture is depicted in Fig. 1, where lateral con-
nections are highlighted.

The lateral connections used by CMLHL are
based on the cooperative distribution mode that is
closely spaced along a non-linear continuous mani-
fold. In consequence, the resultant net can find the
independent factors of a dataset in a way that cap-
tures some type of global ordering.

Considering an N-dimensional input vector (x),
an M-dimensional output vector (y) and with Wij

being the weight (linking input j to output i),
CMLHL can be expressed as:

Feed-forward step:

yi =
N∑

j=1

Wijxj , ∀ i (1)

Fig. 1. CMLHL: lateral connections between neighbor-
ing output neurons.

Lateral activation passing:

yi(t + 1) = [yi(t) + τ(b − Ay)]+ (2)

Feedback step:

ej = xj −
M∑

i=1

Wijyi, ∀ j (3)

Weight change:

∆Wij = η · yi · sign(ej)|ej |p (4)

where η is the learning rate, τ is the “strength” of
the lateral connections, b the bias parameter and p

is a parameter related to the energy function.21,57,58

A is a symmetric matrix used to modify the
response to the data, the effect of which is based
on the relation between the distances between the
output neurons. It is based on Cooperative Dis-
tribution, but to speed learning up, it can be
simplified to:

A(i, j) = δij − cos(2π(i − j)/M) (5)

where, δij is the Kronecker delta.
It has already been demonstrated that CMLHL

can itself successfully perform data visualization.
It was initially applied in the field of artificial
vision57,59 and then to some other problems.61–63

4.3. Curvilinear Component Analysis

Curvilinear Component Analysis (CCA)56 is a non-
linear dimensionality reduction method. Developed

00310-6



1st Reading

February 1, 2012 18:22 00310

A Neural-Visualization IDS For Honeynet Data

as an improvement on the SOM, it tries to circum-
vent the limitations inherent in previous linear mod-
els such as PCA.

The principle of CCA is a self-organized neural
network performing two tasks: a vector quantiza-
tion of the submanifold in the data set (input space)
and a nonlinear projection of these quantizing vec-
tors toward an output space, providing a revealing
view of the way in which the submanifold unfolds.
Quantization and nonlinear mapping are separately
performed by two layers of connections: firstly, the
input vectors are forced to become prototypes of
the distribution using a vector quantization (VQ)
method; then, the output layer builds a nonlinear
mapping of the input vectors according to Euclidean
distances.

In the vector quantization step, the input vectors
(xi) are forced to become prototypes of the distri-
bution by using competitive learning and the reg-
ularization method57 of vector quantization. Thus,
this step, which is intended to reveal the subman-
ifold of the distribution, regularly quantizes the
space covered by the data, regardless of the den-
sity. Euclidean distances between these input vectors
(Xij = d(xi, xj)) are applied, as the output layer has
to build a nonlinear mapping of the input vectors.
The corresponding distances in the output space are
also used (Yij = d(yi, yj)).

Perfect matching is not possible at all scales when
the manifold is “unfolding”, so a weighting func-
tion (F (Yij , λy)) is introduced, yielding the quadratic
cost function:

E =
1
2

∑

i

∑

j �=i

(Xij − Yij)2F (Yij , λy) (6)

where λy is a user-tuned parameter allowing an inter-
active selection of the scale at which the unfolding
takes place.

As regards its goal, the projection part of CCA
is similar to other nonlinear mapping methods, in
that it minimizes a cost function based on interpoint
distances in both input and output spaces. Instead
of moving one of the output vectors (yi) according
to the sum of the influences of every other yj (as
would be the case for a stochastic gradient descent),
CCA proposes pinning down one of the output vec-
tors (yi) “temporarily”, and moving all the other yj

around, disregarding any interactions between them.
Accordingly, the proposed “learning” rule can be

expressed as:

∆yj = α(t)F (Yij , λy)(Xij − Yij)
yj − yi

Yij
∀ j �= i

(7)

where λ is the step size that decreases over time.

4.4. Self-organizing map

The Self-Organizing Map (SOM)65,66 was developed
as a visualization tool for representing high dimen-
sional data on a low dimensional display. It is also
based on the use of unsupervised learning. However,
it is a topology preserving mapping model rather
than a projection architecture.

Typically, the array of nodes is one or two-
dimensional, with all nodes connected to the N

inputs by an N -dimensional weight vector. The self-
organization process is commonly implemented as an
iterative on-line algorithm, although a batch version
also exists. An input vector is presented to the net-
work and a winning node, the weight vector of which,
Wc, the closest (in terms of Euclidean distance) to
the input, is chosen:

c = arg min
i

(‖x − Wi‖) (8)

Data vectors are quantized to the reference vector
in the map that is closest to the input vector. The
weights of the winning node and the nodes close to
it are then updated to move closer to the input vec-
tor. There is also a learning rate parameter (η) that
usually decreases as the training process progresses.
The weight update rule for N inputs is defined as
follows:

∆Wi = ηhci[x − Wi], ∀ i ∈ N (c) (9)

where Wi is the weight vector associated with neuron
i, x is the input vector, and h is the neighborhood
function.

When this algorithm is sufficiently well iter-
ated, the map self-organizes to produce a topology-
preserving mapping of the lattice of weight vectors to
the input space based on the statistics of the training
data.

5. Experimental Study

Researchers usually make use of well-known attack
datasets such as the DARPA dataset67–69 or the
KDD Cup ’99 sub-dataset70,71 in order to validate
the systems they have developed. However, these
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data are simulated, non-validated and irregular, so
they are not fully reliable.72,73 Even if the results
obtained by such systems are good, no one can ensure
that their algorithms will make the system more
secure or will detect real attacks. This is the main
reason for using two real traffic data sets coming from
a running honeynet in this research.

The experimental work has been conducted by
using real data traffic received by the Euskalert
network.74 These data are depicted through differ-
ent neural projection and visualization techniques in
order to discover real attack behavior and strategies.

The Euskalert project74 has deployed a net-
work of honeypots in the Basque Country (northern
Spain), where eight companies and institutions have
installed one of the project’s sensors behind the fire-
walls of their corporate networks. The honeypot sen-
sor transmits all the traffic received to a database via
a secure communication channel. These partners can
consult information relative to their sensor as well
as general statistics on the project’s website. Once a
large amount of data has been collected, the available
information can be used to analyze attacks received
by the honeynet at network and application level.

Euskalert is a distributed honeypot network
based on a Honeynet GenIII architecture.53 The

Fig. 2. Architecture of the Euskalert network.

Eusakalert architecture is shown in Fig. 2. The var-
ious sensors installed in corporate networks of the
different participants are shown on the left in Fig. 2.

Each sensor has a permanently established
encrypted connection (using different virtual private
networks) to a tunnel server, which is in the DMZ
(Demilitarized Zone) of Mondragon University. Any
attack on one of the sensors is redirected through
these tunnels to reach the Honeypot (right side of
Fig. 2), which is responsible for responding to any
connection attempt. The traffic also passes through
a server responsible for collecting all the information,
which is then displayed on the Web platform.74

This honeypot system receives about 164 packets
a day on average. All the incoming traffic is analyzed
by the Snort IDS, and an alert is launched whenever
a packet matches a known signature.

The following features were extracted from each
one of the records in the dataset:

• Time: The time when the attack was detected.
Difference in relation to the first attack in the
dataset (in minutes).

• Protocol: Either TCP, UDP or ICMP (codified
as three binary features).

• Ip len: Number of bytes in the packet.
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• Source Port: Number of the port from which
the source host sent the packet. In the case of
the ICMP protocol, this represents the ICMP type
field.

• Destination Port: Destination host port num-
ber to which the packet was sent. In the case of
the ICMP protocol, this represents the ICMP type
field.

• Flags: Control bits of a TCP packet, which con-
tains 8 1-bit values.

Two different real-life case studies were analyzed in
this research as attack behavior may change over
time. First, a one-month snapshot of data received
(February, 2010) was analyzed, to observe its inter-
nal structure. A five-month period (February–June,
2010) was subsequently analyzed to see how attacks
had changed and to discover new trends.

The projection models introduced the earlier sec-
tions have been applied to these two case studies,
the results of which are shown and described in the
following subsections.

5.1. Case study 1: A 1-month dataset

For this real case study, the logs coming from
Euskalert and Snort were collected over one month
(February, 2010). Figure 3 shows the traffic volume
in terms of the number of packets received for that
period of time. The amount of daily network traf-
fic received changes from day to day. Most of the
traffic is malicious, thus it does not follow any pre-
defined pattern or distribution, as the traffic vol-
ume is unpredictable. In this case, days 11/02/2010
and 14/02/2010 might reflect a new worm outbreak,
or a Denial of Service attack. Furthermore, occa-
sional breaks occur in the connection between the
server and the sensors that collect the traffic, which

Fig. 3. Temporal distribution of the traffic volume in
terms of number of packets captured by Euskalert during
February 2010.

Table 2. Characterization of data traffic captured by
Euskalert, during February, 2010.

Signature # Packets % of traffic

Unknown Traffic 3404 89.62
POLICY Reserved IP Space

Traffic – Bogon Nets 2
127 3.34

WORM Allaple ICMP
Sweep Ping Inbound

58 1.52

ICMP PING 75 1.97
Wormledge, microsoft-ds,

smb directory packet
(port 445)

34 0.89

Wormledge, KRPC
Protocol, BitTorrent

11 0.28

Wormledge, NetBios Session
Service (port 139)

7 0.18

Wormledge, NetBios Name
Query (udp port 137)

7 0.18

Wormledge, Microsoft RPC
Service, dce endpoint
resolution (port 135)

7 0.18

WEB-IIS view source via
translate header

6 0.15

SCAN LibSSH Based SSH
Connection

5 0.13

also causes a drop in traffic (see 10/02/2010 or
28/02/2010).

The February 2010 dataset contains a total of
3798 packets, including TCP, UDP and ICMP traf-
fic received by the distributed honeypot sensors. The
characterization of the traffic in the dataset is shown
in Table 2. The table shows which alerts have been
triggered in that period of time and their percent-
age. Those signatures starting with “Wormledge” are
automatically generated and are not present in the
default signature database.

From this dataset, it may be said that a misuse
detection-based IDS such as Snort is only capable of
identifying about 10.38% of bad-intentioned traffic.
Furthermore, it was demonstrated that only 2% of
the unsolicited traffic was identified by the IDS when
automatically generated signatures were included
from a previous work.24 Thus, a more exhaustive
data analysis is needed in order to discover the inter-
nal structure of the remaining 90% of the traffic.
Explaining the behavior of the unknown traffic is a
difficult task that must be performed to better pro-
tect computer networks and systems. Several neu-
ral projection models were applied to acquire more
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Fig. 4. CMLHL projection of 1-month data — Snort
output. Parameters: number of iterations = 10,000, learn-
ing rate =0.0208, p parameter =2.1429, and τ parame-
ter = 0.067.

knowledge, and the results and conclusions are shown
in the following sub-sections.

The data in the visualizations are depicted by dif-
ferent colors and shapes, according to their original
features. In the projections that are shown (Figs. 4
to 7), the axes are combinations of the features con-
tained in the original datasets. Then, the X and Y
axes of the projections can not be associated with a
unique original feature.21,57

5.1.1. CMLHL projections

The CMLHL-training parameter values for the
projections in this section were: number of

Fig. 5. CMLHL projection of 1-month data — IP
length. Parameters: number of iterations =10,000, learn-
ing rate =0.0208, p parameter =2.1429, and τ parame-
ter = 0.067.

Fig. 6. CMLHL projection of 1-month data —
Timestamp. Parameters: number of iterations = 10,000,
learning rate =0.0208, p parameter =2.1429, and τ
parameter =0.067.

Fig. 7. CCA projection of 1-month data — Snort
output. Parameters: standardized Euclidian distance,
lambda =230,000, alpha= 0.5 and 10 epochs.

iterations= 10,000, learning rate=0.0208, p param-
eter =2.1429, and τ parameter=0.067.

Figure 4 shows the CMLHL projection of the
output generated by Snort. Packets that triggered
alarms are depicted as black crosses, while packets
identified as unknown are depicted as red circles.

An analysis of this projection (Fig. 4) confirms
the poor detection performance of Snort IDS when
filtering honeypot traffic. CMLHL provides a way
of differentiating known from unknown traffic for
the naked eye. Most of the traffic corresponds to
unknown packets, or at least to traffic that Snort is
not capable of identifying using all of its predefined
rule sets.
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The CMLHL projection, in Fig. 5, depicts the
packets in terms of the detection timestamp (in min-
utes): red circles from 0 to 6692; black crosses from
6693 to 13384; green pluses from 13385 to 20076;
magenta stars from 20077 to 26768; yellow squares
from 26769 to 33460; and cyan diamonds from 33461
to 40148.

The temporal evolution of the traffic in that
month shows that similar traffic patterns repeat over
time, as almost every cluster has a similar shape.
This occurs for both known and unknown traffic
(shown in Fig. 4). It can be concluded that anoma-
lous or unknown behavior is not a one-off event, but
a recurring pattern in time.

The CMLHL projection, in Fig. 6, depicts the
packets in terms of their IP length (in bits): red cir-
cles from 28 to 273; black crosses from 274 to 519;
green pluses from 520 to 765; magenta stars from 766
to 1011; yellow squares from 1012 to 1257; and cyan
diamonds from 1258 to 1500.

Most of the traffic is composed of small packets,
but it can also be observed that very large pack-
ets are received by the honeypot sensors. Attack-
ers must create specially prepared packets, in order
to overflow the listening service’s memory buffers
and stacks first, and then execute arbitrary com-
mands later. This payload, known as shellcode, can
have a large size. These are synonyms for reception
of malware, exploitation of vulnerabilities, and DoS
attacks.

All those visualizations are in general very helpful
information for explaining the different traffic behav-
ior on their systems and assist security administra-
tors to interpret the data.

5.1.2. Comparative study

The CMLHL projections are compared with two
other dimensionality-reduction models (CCA and
SOM). Several experiments were required to tune
CCA to different options and parameters: initial-
ization, epochs and distance criterion, among oth-
ers. In the case of SOM, other parameters, such
as grid size, batch/online training, initialization,
number of iterations and distance criterion were
tuned. Only the best results (from the standpoint
of the projection) for each model, which were
obtained after the tuning stage, are included in this
section.

5.1.2.1. Curvilinear component analysis

Figure 7 shows the CCA projection of case study 1
of the Snort output. The following parameters were
tuned: alpha, lambda, number of epochs and distance
criterion. The final selected parameter values were:
standardized Euclidian distance, lambda=230,000,
alpha =0.5 and 10 epochs.

This projection (Fig. 7) shows a visual explana-
tion of the distribution of packets identified by Snort
and those which are not. CCA is much more resource
demanding than the other models as the pair-wise
distance matrix must be calculated.

5.1.2.2. Self-organizing map

Finally, the SOM was also applied to the 1-month
dataset. Figure 8 shows the SOM map of Case Study
1 by depicting the Snort output. The two different
Snort outputs (1= triggered alarms, 0= no triggered
alarms) are assigned to SOM neurons, in order to
analyze the resulting maps.

Fig. 8. SOM mapping of 1-month data — Snort out-
put. Parameters: linear initialization, batch training,
hexagonal lattice, “Cut Gaussian” neighborhood func-
tion, and grid size (determined by means of a heuristic
formula) = 15 × 21.
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In the case of the SOM, the following options
and parameters, among others, were tuned: grid
size, batch/online training, initialization, number of
iterations and distance criterion among others. The
parameter values were: linear initialization, batch
training, hexagonal lattice, “Cut Gaussian” neigh-
borhood function, and grid size (determined by
means of a heuristic formula)=15 × 21.

After analyzing this mapping, it can be concluded
that SOM is not able to cluster the data distin-
guishing the traffic classification of Snort (alarm/no
alarm). The cluster in the upper left section (Fig. 8)
is the only one that identifies traffic of only one class
(packets that triggered an alarm), while the other
ones identify traffic from the two classes.

5.2. Case study 2: A 5-month real
dataset

For this experiment, we have analyzed the logs com-
ing from Euskalert and Snort collected over five
months starting from February, 2010. Figure 9 shows
the traffic volume in terms of number of packets
received for that period of time.

The dataset contains a total of 22,601 packets,
including TCP, UDP and ICMP traffic received by
the distributed honeypot sensors. The characteriza-
tion of the traffic in this dataset, in Table 3, shows
which alerts were triggered in that period of time and
their percentage. Signatures starting with “Worm-
ledge” were automatically generated and are not
present in the default Snort signature database. As
Table 3 shows, the largest group of signatures were
generated for unknown packets (both TCP, UDP and
ICMP), and the automatically generated signatures
from a previous work.24

Fig. 9. Temporal distribution of the traffic volume in
terms of number of packets captured by Euskalert from
February to June, 2010.

Table 3. Characterization of traffic data captured by
Euskalert, from February to June, 2010.

Signature # Packets % of traffic

Unknown TCP packet 19096 84.49183664
Reserved IP Space

Traffic – Bogon Nets
1071 4.738728375

Unknown packet 741 3.27861599
Unknown UDP packet 397 1.756559444
ICMP ping 290 1.283129065
WORM Allaple ICMP

Sweep Ping Inbound
251 1.110570329

Wormledge, KRPC
Protocol, BitTorrent

99 0.438033715

Wormledge, Slammer
Worm

62 0.274324145

Wormledge, Microsoft-ds,
smb directory packet
(port 445)

62 0.274324145

Wormledge,
MS-SQL-Service(port
tcp 1433)

58 0.256625813

ICMP PING speedera 40 0.176983319
Wormledge, NetBios

Name Query (udp port
137)

35 0.154860404

Wormledge, Possible SQL
Snake/Spida Worm

34 0.150435821

Wormledge, NetBios
Session Service (port
139)

34 0.150435821

SIP TCP/IP message
flooding directed to SIP
proxy

33 0.146011238

From this dataset, it may be said that a misuse
detection-based IDS such as Snort is only capable
of identifying less than 3.75% (847 packets out of
22,601) of bad-intentioned traffic. Compared to the
initial month, the percentage of identified packets is
smaller in this case study. There are two reasons that
might explain this fact. Firstly, there is an element
of randomness, as neither can the volume that will
generate old and new malware be known, nor traf-
fic from misconfigured devices, nor the nature of that
traffic (known/unknown classification by Snort IDS).
Traffic bursts of any type may occur at any time. Sec-
ondly, it is related with the time that elapses until
the Snort signatures are updated. The older the sig-
natures are, the greater the likelihood of unknown
traffic. Another observation in this dataset is the
higher average volume traffic found in this period.
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This occurred because of traffic congestion, but espe-
cially due to the fact that a new sensor was added to
the Euskalert platform. Thus, a more in-depth anal-
ysis of the data is needed, in order to discover the
internal structure of the remaining 96.25% of the
traffic data set. As in case study 1, neural unsuper-
vised models were applied, in order to explain the
behavior of the unknown traffic.

5.2.1. CMLHL projections

CMLHL was applied, in order to analyze the dataset
described above and to identify its inner structure.
The CMLHL-training parameter values for the pro-
jections in this section were: number of iterations =
30,000, learning rate = 0.01, p parameter=1.22, and
τ parameter= 0.13137.

Figure 10 shows the CMLHL projection by con-
sidering the output generated by Snort. Packets that
triggered an alarm are depicted as black crosses,
while packets that were not identified as anomalous
are depicted as red circles.

Visualization of packets using Snort output shows
the detection rate of the most widely used misuse-
based IDS. The only ones detected by Snort have
black crosses, where all of the records constitute a
suspicious activity by default. It is therefore impor-
tant to use additional supporting systems, such as
the visualization aids proposed in this study, in order
to give a more comprehensive picture of what is actu-
ally happening and how an IDS is performing.

Fig. 10. CMLHL projection of 5-month data — Snort
output. Parameters: number of iterations = 30,000, learn-
ing rate = 0.01, p parameter =1.22, and τ parame-
ter= 0.13137.

Fig. 11. CMLHL projection of 5-month data — Desti-
nation Port. Parameters: number of iterations = 30,000,
learning rate = 0.01, p parameter = 1.22, and τ parame-
ter = 0.13137.

The CMLHL projection, in Fig. 11, depicts the
packets in terms of the detection timestamp; red cir-
cles from 0 to 27044 minutes; black crosses from
27045 to 54089; green pluses from 54090 to 81134;
magenta stars from 81135 to 108179; yellow squares
from 108180 to 135224; and cyan diamonds from
135225 to 162267.

It can be observed that groups are highly over-
lapped, which means that the temporal distribution
of attacks is very homogenous, so they constantly
repeat over time. If we look at some of the attacks
carefully, we still see very old worm instances such
as Slammer or Blaster (see Table 3).

Figure 12 shows the CMLHL projection by con-
sidering different ranges of the destination port to
depict the packets; red circles correspond to ICMP
type codes at 3 and at 8; black crosses correspond to
known application listening services from 0 to 1023
(excluding 3 and 8); and green pluses correspond to
non-privileged ports from 1024 to 54612. Had we cho-
sen particular port numbers of commonly exploited
services, we would have depicted too many clusters.
Choosing the privileged, non-privileged and ICMP
bands provides a clear view of the nature of the traf-
fic that is observed.

This visualization shows that Euskalert receives
packets and connection attempts to ports above
1023. We find two possible explanations of this obser-
vation. On the one hand, there are attack attempts
to applications listening on ports above 1023. In
this case we should focus on these ports and create
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Fig. 12. CMLHL projection of 5-month data —
Timestamp. Parameters: number of iterations = 30,000,
learning rate = 0.01, p parameter = 1.22, and τ parame-
ter = 0.13137.

a new simulated service for that application, if we
find any prevalence. On the other hand, backscat-
ter is received, as this port is the source port of the
attacker.

5.2.2. Comparative study

As in case study 1, the CMLHL projections are com-
pared with those of other dimensionality-reduction
models; PCA and MLHL in this case.

5.2.2.1. Principal component analysis

The PCA projection of Case Study 2, in Fig. 13,
depicts the packets in terms of the time feature: red
circles from 0 to 27044 minutes; black crosses from

Fig. 13. PCA projection of 5-month data — Time.

Fig. 14. MLHL projection of 5-month data — Snort
output. Parameters: number of iterations =35,000, learn-
ing rate =0.02, and p parameter =0.9.

27045 to 54089; green pluses from 54090 to 81134;
magenta stars from 81135 to 108179; yellow squares
from 108180 to 135224; and cyan diamonds from
135225 to 162267. The two first principal components
amount to 96.87% of original data variance.

Analysis of this visualization allows us to affirm
that it offers a clear representation of the conclusions
that we have observed, as the packet distribution in
time is similar.

5.2.2.2. Maximum likelihood Hebbian learning

The MLHL-training parameter values for the
projection in this section were: number of itera-
tions =35,000, learning rate=0.02, and p parame-
ter =0.9.

Figure 14 shows the MLHL projection of the
Snort output (Case Study 2). This visualization
shows the conclusions obtained from Fig. 10 in sharp
relief. It demonstrates that most of the traffic reach-
ing the honeypot remains unexplained, although in
the MLHL projection there are no clearly defined
clusters.

6. Conclusions and Future Work

Apart from the previously stated conclusions,
regarding each dataset analysis, some other (more
general) conclusions are provided in this section.
These conclusions are different from the ones in
previous studies, mainly because one of the dataset
analysed is larger than any of the preceding ones.
In consequence, new attacks and situations are
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considered. Moreover, a comprehensive comparative
study is provided, compressing results from a wide
range of projection/visualization models.

After comparing the different pro-
jections obtained in this study, it can be concluded
that CMLHL provides a sparser and clearer represen-
tation than the other projection methods. This facil-
itates intuitive visualization of the Honeynet data, in
which the general structure of these data can be seen
and interpreted. Advancing previous work, the visu-
alizations obtained through CMLHL incorporating
Snort output, provide insight into the captured hon-
eynet data, and useful knowledge of potential net-
work attacks. The application of this neural model
generates a depiction of the captured traffic, rather
than network statistics or topology, as some previous
works have done.

A further contribution of this study is the fact
that CMLHL is capable of analyzing large volumes
of data, keeping the visualization patterns clear, thus
easing the analysis of the honeypot phenomena.

It has been shown how CMLHL provides a helpful
technique to visualize backscatter attacks, as well as
to identify those attacks that overflow a buffer and
download malware.

The neural visualization technique builds on pre-
vious works, by providing insight into honeynet data
to intuitively check the performance of Snort. From
a general perspective, the value of the Snort classifi-
cation error rate can be seen from the Snort output
visualizations.

After gaining a general idea of the dataset struc-
ture, an in-depth analysis conducted a comprehen-
sive analysis of each of the points in the groups
identified by CMLHL (Figs. 4–6 and 10–12). As a
result, the following conclusions can be drawn for
each one of the destination ports:

• 8: We are able to identify the type of ICMP packet,
by inserting its code into the field destination port.
ICMP type 8 corresponds to ICMP echo or ping,
used for probing the Internet, looking for victim
hosts.

• 22: SSH appears to be traffic flow with many pack-
ets coming from one source to one of the honey-
pots. They correspond to connection attempts by
attackers or infected machines.

• 80: HTTP. Attackers try different vulnerabilities
against web applications.

• 135: DCE endpoint resolution, used by Microsoft
for Remote Procedure Call protocol. It has always
been and still is one of the most exploited services
by virus and worms.

• 139: NETBIOS Session Service. Plenty of attacks
to this Microsoft Windows service were identified.

• 443: HTTP protocol over TLS/SSL connection
attempts.

• 445: SMB directly over IP. As most of the traffic in
the biggest group identified by CMLHL is aimed
at this destination port, we can conclude that this
is a widely exploited service.

• 1433: Microsoft-SQL-Server, used by the old SQL
Slammer worm.

• 1521: Oracle TNS Listener. It appears that attack-
ers try to connect to the honeypot via Oracle
service.

• 2967: Symantec System Center. Vulnerabilities
have been found in the Symantec service, which
are exploited in the wild.

• 3128: Proxy Server//Reverse WWW Tunnel Back-
door, where the MyDoom worm operates.

• 3389: MS Terminal Services, used for Remote
Desktop.

• 4444: This port is a common return port for the
rpc dcom.c buffer overflow and for the msblast rpc
worm.

• 4899: Remote Administrator default port. There
is a known remotely exploitable vulnerability in
some radmin server versions that allows code
execution.

• 5061: SIP-TLS. Used for VoIP communications.
• 5900: Virtual Network Computer or VNC, used

also as a remote desktop solution.
• Port 8080: HTTP Alternate port, also used as an

HTTP proxy.
• Port 19765: Used in Kademlia (Bittorrent

protocol).

This in-depth analysis remains necessary, in order to
further our understanding of some of the visualized
attacks, but CMLHL projections appear sufficient for
a swift understanding of Internet attacks.

Further work will focus on the application of dif-
ferent projection/visualization models, as well as on
visualization using different metrics, instead of the
original features of the data.

More analysis can be done with the data, such
as visualization of this attack traffic by each of the
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Á. Herrero, U. Zurutuza & E. Corchado

honeynet infrastructure sensors. In this way, one
could compare the pattern of attack behavior, dis-
tinguishing the Internet space placement. On the
other hand, to speed up the data analysis, High
Performance and Parallel Computing can be also
applied.

Another interesting improvement of CMLHL
visualization may be to provide interactive capa-
bilities; a user or analyst could select one or more
points from the projections and the system could
give details about the data behind them. In a fur-
ther approach, the system could automatically gen-
erate signatures for user selected clusters, suggesting
a solution to the large amount of Snort’s undetected
packets.

Enrichment of the attack dataset may also be a
focus of attention. Researchers are correlating net-
work traffic data with attempts to exploit networks
collected during simulated vulnerability exploitation.
Malware is also obtained for those attacks that aim
to spread the infection. All this data requires further
in-depth analysis, and neural projection techniques
will assist greatly in that task.

These datasets may be shared with any interested
researchers upon request, thereby providing a solu-
tion to a known issue and allowing other groups to
compare their results.
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