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Abstract: This study introduces an innovative approach by incorporating statistical offset features, range
profiles, time–frequency analyses, and azimuth–range–time characteristics to effectively identify various
human daily activities. Our technique utilizes nine feature vectors consisting of six statistical offset
features and three principal component analysis network (PCANet) fusion attributes. These statistical
offset features are derived from combined elevation and azimuth data, considering their spatial angle
relationships. The fusion attributes are generated through concurrent 1D networks using CNN-BiLSTM.
The process begins with the temporal fusion of 3D range–azimuth–time data, followed by PCANet
integration. Subsequently, a conventional classification model is employed to categorize a range of
actions. Our methodology was tested with 21,000 samples across fourteen categories of human daily ac-
tivities, demonstrating the effectiveness of our proposed solution. The experimental outcomes highlight
the superior robustness of our method, particularly when using the Margenau–Hill Spectrogram for
time–frequency analysis. When employing a random forest classifier, our approach outperformed other
classifiers in terms of classification efficacy, achieving an average sensitivity, precision, F1, specificity,
and accuracy of 98.25%, 98.25%, 98.25%, 99.87%, and 99.75%, respectively.

Keywords: human activity recognition; CNN-BiLSTM; mmWave; feature fusion; point cloud

1. Introduction

The World Health Organization has noted a significant growth in the global population
of individuals aged 60 and above, from 1 billion in 2019 to an anticipated 1.4 billion by
2030 and further to 2.1 billion by 2050 [1]. Specifically, in China, the elderly population is
expected to reach 402 million, making up 28% of the country’s total population by 2040, due
to lower birth rates and increased longevity [2]. This demographic shift has led to a rise in fall-
induced injuries among the elderly, which is a leading cause of discomfort, disability, loss of
independence, and early mortality. Statistics indicate that 28–35% of individuals aged 65 and
above fall each year, which is a figure that increases to 32–42% for those aged over 70 [3]. As
such, the remote monitoring of senior activities is becoming increasingly important.

Techniques for recognizing human activities fall into three categories: those that rely
on wearable devices, camera systems, and sensor technologies [4]. Unlike wearables [5],
camera- [6] and sensor-based methods offer the advantage of being fixed in specific indoor
locations, eliminating the need for constant personal wear and thus better serving the home-
bound elderly through remote monitoring while also addressing privacy concerns. Sensor-
based technologies, in particular, utilize radio frequency signals’ phase and amplitude
without generating clear images, significantly reducing privacy violations compared to
traditional methods.
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Over the past decades, research in human activity recognition has explored various
sensors. K. Chetty demonstrated the potential of using passive bistatic radar with WiFi
for covertly detecting movement behind walls, enhancing signal clarity with the CLEAN
method [7]. V. Kilaru explored identifying stationary individuals through walls using a
Gaussian mixture model [8]. In our previous research, we developed a software-defined
Doppler radar sensor for activity classification and employed various time–frequency
image features, including the Choi-Williams and Margenau-Hill Spectrograms [9]. We
proposed iterative convolutional neural networks with random forests [10] to accurately
categorize several activities and individuals using FMCW radar, achieving successful
activity recognition in diverse settings. Unfortunately, using the entire autocorrelation
signal as input for the iterative convolutional neural networks with random forests led to
excessive computational workload and frequent out-of-memory errors.

Thanks to numerous scattering centers, often called point clouds, mmWave radars are
liable to provide high resolution. Because of their low cost and ease of use, mmWave radars
have been gaining popularity. The team of A. Sengupta detected and tracked real-time human
skeletons using mmWave radar in [11], while the team of S. An proposed a millimeter-based
assistive rehabilitation system and a 3D multi-model human pose estimation dataset in [12,13].
Unfortunately, training fine-grained, accurate activity classifiers is challenging, as low-cost
mmWave radar systems produce sparse, non-uniform point clouds.

This article introduces a cutting-edge classification algorithm designed to address
the shortcomings of sparse and non-uniform point clouds generated by economical
mmWave radar systems, thereby enhancing their applicability in practical scenarios.
Our innovative solution boosts performance through the integration of statistical offset
measures, range profiles, time–frequency analyses, and azimuth–range–time evaluations.
It features nine distinct feature vectors composed of six statistical offset measures and
three principal component analysis network (PCANet) fusion features derived from
range profiles, time–frequency analyses, and azimuth–range–time imagery. These sta-
tistical offset measures are derived from I/Q data, which are harmonized through an
angle relationship incorporating elevation and azimuth details. The fusion process
involves channeling elevation and azimuth PCANet inputs through simultaneous 1D
CNN-BiLSTM networks. This method prioritizes temporal fusion in the CNN-BiLSTM
architecture for 3D range–azimuth–time data, followed by PCANet integration, en-
hancing the quality of fused features across the board and thereby improving overall
classification accuracy.

The key contributions of this research are highlighted as follows:

(1) The introduction of an original method for classifying fourteen types of human daily
activities, leveraging statistical offset measures, range profiles, time–frequency analy-
ses, and azimuth–range–time data.

(2) Pioneering the use of the CNN-BiLSTM framework for fusing 3D range–azimuth–time
information.

(3) Recommendation of the Margenau–Hill Spectrogram (MHS) for optimal feature quality
and minimal feature count, which has been validated by analysis of four time–frequency
methods.

In this paper, scalars and vectors are denoted by lowercase letters x and bold lowercase
letters x, whereas = denotes the equal operator.

The remainder of this paper is structured as follows. Section 2 introduces the related
works. Section 3 describes our methodology details using radar formula, feature source,
feature fusion structure, and the framework of our method. Section 4 describes the experi-
mental environment and the recording process of the measurement data. Our algorithm
performance outcomes are illustrated with numerical results from the combinations classi-
fication of human daily action, which are also in Section 4. Future works and conclusions
are drawn in Section 5.
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2. Related Work

Numerous studies have focused on human activity recognition using millimeter wave
(mmWave) technology. For instance, A. Pearce et al. [14] provided an in-depth review
of the literature on multi-object tracking and sensing using short-range mmWave radar,
while J. Zhang et al. [15] summarized the work on mmWave-based human sensing, and
H. D. Mafukidze et al. [16] explored advancements in mmWave radar applications, offering
ten public datasets for benchmarking in target detection, recognition, and classification.

Research employing feature-level fusion technology for human activity recognition
includes a study in [17], which calculated mean Doppler shifts alongside micro-Doppler, sta-
tistical, time, and frequency domain features to feed into a support vector machine, achieving
between 98.31% and 98.54% accuracy in classifying activities such as falling, walking, standing,
sitting, and picking. E. Cardillo et al. [18] used range-Doppler and micro-Doppler features to
classify different users’ gestures. Given the challenges posed by sparse and irregular point
clouds from budget-friendly mmWave radar, data enhancement techniques have become
crucial for achieving high accuracy. A method proposed in [19] created samples with varied
angles, distances, and velocities of human motion specifically for mmWave-based activity
recognition. Another study in [20] utilized radar image classification and data augmenta-
tion, along with principal component analysis, to distinguish six activities, achieving 95.30%
accuracy with the convolutional neural network (CNN) algorithm. E. Kurtoǧlu et al. [21]
exploited an approach that utilized multiple radio frequency data domain representations,
including range-Doppler, time–frequency, and range–angle, for the sequential classification of
fifteen American Sign Language words and three gross motor activities, achieving a detection
rate of 98.9% and a classification accuracy of 92%.

Beyond feature-level fusion, autoencoders are widely used in mmWave signal analysis
for activity recognition. The mmFall system in [22], utilizing a hybrid variational RNN
autoencoder, reported a 98% success rate in detecting falls from 50 instances with only
two false alarms. R. Mehta et al. [23] conducted a comparative study on extracting fea-
tures through a convolutional variational autoencoder, showing the highest classification
accuracy of 81.23% for four activities with the Sup-EnLevel-LSTM method.

Point cloud neural network technologies also play a pivotal role in recognizing human
activities through mmWave signals. A real-time system in [24], using the PointNet model,
demonstrated 99.5% accuracy in identifying five activities. The m-Activity system in [25]
filtered human movements from background noise before classification with a specially
designed lightweight neural network, resulting in 93.25% offline and 91.52% real-time accu-
racy for five activities. G. Lee and J. Kim leveraged spatial–temporal domain information
for activity recognition using graph neural networks and a pre-trained model on point
cloud and Kinect data [26], with their MTGEA model [27] achieving 98.14% accuracy in
classifying various activities with mmWave and skeleton data.

Moreover, long short-term memory (LSTM) and CNN technologies have been essen-
tial in processing point clouds. C. Kittiyanpunya and team achieved 99.50% accuracy in
classifying six activities using LSTM networks with 1D point clouds and Doppler velocity
as inputs [28]. An end-to-end learning approach in [29] transformed each point cloud frame
into 3D data for a custom CNN model, achieving a recall rate of 0.881. S. Khunteta et al. [30]
showcased a technique where CNN extracted features from radio frequency images, fol-
lowed by LSTM analyzing these features over time, reaching a peak accuracy of 94.7%
for eleven activities. RadHAR in [31] utilized a time sliding window to process sparse
point clouds into a voxelized format for CNN-BiLSTM classification, achieving 90.47%
accuracy. Lastly, DVCNN in [32] improved data richness through radar rotation symmetry,
employing a dual-view CNN to recognize activities, attaining accuracies of 97.61% and
98% for fall detection and a range of activities, respectively.

3. Methodology

This section includes four subsections. The first one introduces the standard formula
of mmWave radar [33] for context. The second one displays where the information comes
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from. The third one introduces the neural network structure for obtaining the fusion
features. The last one presents the framework of our approach.

3.1. Radar Formula

In this article, mmWave radar with chirps was applied in human activity recognition.
The transmission frequency was linearly increased over time through the transmit antenna.
The chirp can be a formulated as follows:

S(t) = ej2πt( fc+
Bt

2Tc t), 0 ≤ t ≤ Tc (1)

where B, fc, and Tc denote the bandwidth, carrier frequency, and chirp duration.
The time delay of the received signal has the following formula:

τ = 2(R + vt)/c, (2)

where R, v, and c denote the target range, the target velocity, and the light speed.
A radar frame is a consecutive chirp sequence, which is likely to be reshaped to a

two-dimensional waveform across fast and slow time dimensions. There are M chirps with a
sampling period Trep (slow time dimension) in a frame, and each chirp has N points (fast
time dimension) with fs as the sampling rate. Hence, the intermediate frequency across fast
and slow time dimensions together can be approximated as

d(n, m) ≈ ej2π[
( fr+ fd)n

fs
+ fdmTrep+

2 fc R
c ], (3)

where n and m denote the index of fast and slow time samples, respectively. The infor-
mation can be extracted by fast Fourier transform (FFT) along the fast and slow temporal
dimensions. The range frequency fr and Doppler fd frequencies can be expressed as

fr =
2BR
cTc

, (4)

fd = 2 fcv/c. (5)

Thanks to the received signal of each antenna having a different phase, a linear antenna
array can estimate the target’s azimuth. The phase shift between received signals from
two adjacent antennas can be expressed as

∆ϕ = 2π
d sin θ

λ
, (6)

where θ denotes the target azimuth, while d denotes the distance between adjacent antennas.
λ = c/ fc denotes the base wavelength of the transmitted chirp.

For I number of targets, the three-dimensional intermediate frequency signal can be
approximated as

d(n, m, l) ≈
I

∑
i=1

aie
j2π[

( frq+ fdq)n
fs

+
ld sin θq

λ + fdqmTrep+
2 fc Rq

c ], (7)

where i indicates the receiving antenna’s index, while ai denotes the ith target’s complex
amplitude. The samples of the intermediate frequency signal can be arranged to form a 3D
Raw Data Cube across slow time, fast time, and channel dimensions, wherein the FFT can
be applied along for velocity, range, and angle estimation.

3.2. Feature Source

In this article, the features as the classifiers’ inputs mainly come from four categories of
sources, i.e., the offset parameters, range profiles, time–frequency, and range–azimuth–time.

3.2.1. Offset Parameters

Some physical features such as speed and variation rates [34] also are liable to be
extracted by the traditional statistic methods using time domain or frequency domain
data. This article calculated the offset parameters, including the mean, variance, standard
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deviation, kurtosis, skewness, and central moment. The mean [35] measures the signal
probability distribution central tendency. The variance [36] measures the distance between
the signal and its mean. The standard deviation [37] measures the input signal’s variation
or dispersion. The kurtosis [38] measures the signal probability distribution tailedness.
The skewness [39] measures the asymmetry of the signal probability distribution about its
mean. The central moment [40] measures the moment of the signal probability distribution
about its mean, and we applied a two-order central moment in the following computation.
These six offsets have proven to be effective for classification and were also used in our
previous research. Algorithm 1 presents the pseudocode used to compute offsets.

Algorithm 1 Offsets()
Input: Elevation, Azimuth
Output: Offset Parameters
Signal = Elevation + Azimuth · e−iπ/2

Mean = mean(Signal)
Std = std(Signal)
Skewness = skewness(Signal)
Kurtosis = kurtosis(Signal)
Var = var(Signal)
Moment = moment(Signal, 2)

3.2.2. Range Profiles

The range profile represents the target’s time domain response to a high-range res-
olution radar pulse. As shown in Figure 1, the range profiles of measured data without
desampling, which will be introduced in Section 4.1, show two targets. In this figure,
the upper line represents the falling subject, while the lower line represents the standing
subject. This is because the mmWave radar provides vertical information, so the range of
the falling subject is greater than that of the standing subject when both the base of the
standing subject and the radar are at the same horizontal level.

Figure 1. This figure shows the range profiles of measured data with two subjects doing standing
(lower) and falling (upper).

3.2.3. Time-Frequency

Thanks to micro-Doppler signatures, different activities generate uniquely distinctive
spectrogram features. Therefore, time-frequency analysis is significant for feature extraction.
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The most common time-frequency analysis approach is the short-time Fourier transform
(STFT) in Figure 2. Moreover, in addition to the STFT, three additional time–frequency dis-
tributions (Margenau-Hill Spectrogram [41], Choi-Williams [42], smoothed pseudo Wigner-
Ville [43]) and their contributions in the final recognition will be compared in Section 4.

Figure 2. This figure displays the STFT image of measured data in Figure 1 with 800 Hz
sampling frequency.

3.2.4. Range–Azimuth–Time

Range–azimuth–time plays a pivotal role in point cloud extraction, particularly in
the context of object detection [44]. The range–azimuth dimensions, which are polar
coordinates in Figure 3, are often converted into Cartesian coordinates to enhance their
interpretability. The following Equations (8) formulated the coordinate transformation
from the range and azimuth domain [r, θ] to the Cartesian domain represented by [x, y].{

x = r cos(θ)
y = r sin(θ)

, θ ∈ [−π

2
,

π

2
]. (8)

The instantaneous sparse point cloud can be drawn through the constant false alarm
rate, as shown in Figure 4. If the time dimension is added to Figure 4, the mmWave radar
data can be represented as 4D point clouds.

Figure 3. These images display the relationships between (a) horizontal and (b) vertical range and
angles using elevation and azimuth information of measured data in Figure 1.
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Figure 4. This figure shows the instantaneous 3D point cloud of measured data in Figure 3.

To reduce the number of features for the final recognition, the time-frequency and range-
azimuth images should be analyzed and fused. Orthogonal and linear PCA transform input
signals into a new coordinate system to extract main features and reduce the computational
complexity [45,46]. The most important variance lies in the first coordinate, while the second
most important variance lies in the second. Hence, the first PCA value is the most significant
of the whole PCA value, and the following PCA value calculation is based on the former one.
Moreover, CNN-BiLSTM has a structure that is BiLSTM. Thereby, the CNN-BiLSTM can fuse
the PCANet. We applied PCA to analyze the images and CNN-BiLSTM to fuse the PCANet
in this study.

3.3. CNN-BiLSTM

CNN-BiLSTM is a network that can reduce and eliminate the network for noise
and dimensionality in data using a parallel structure for reducing the time complexity
and an attention mechanism for promoting high accuracy via the key representations’
weights redistribution [47,48].

As shown in Figure 5, the values of PCANet are fed into parallel 1D CNN networks,
i.e., Stream A and Stream B. The parallel outputs of CNN streams will be multiplied based
on the element. After unfolding and flattening, the multiplied sequence will be the input
of a bidirectional LSTM (BiLSTM) structure. The BiLSTM structure includes two LSTM
networks. The first LSTM network is for forward learning from the previous values, while
the second LSTM network is for inverse learning from the upcoming values. The learned
information will be combined in the attention layer. The attention layer has four hidden
fully connected layers and a softmax, which is used to merge the upstream layer’s output
and filter the significant representations out for recognition purposes, i.e., the fusion feature
of the inputs. The pseudocode for computing CNN-BiLSTM with K-fold cross-validation is
shown in Algorithm 2, and its options are listed in Table 1.The usage of trainNetwork is
shown in Figure 6, and its analysis is listed in Table 2.

Figure 5. This figure shows the CNN-BiLSTM structure.
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Algorithm 2 CNN-BiLSTM()
Input: FusionInput, KFoldNum
Output: Fusion Feature
Create CNN-BiLSTM Layers.
Set CNN-BiLSTM Options.
COV = cvpartition(Label,′ KFold′, KFoldNum);
for group = 1 : KFoldNum do

Index_Train(group, :) = find(training(COV, group));
Index_Test(group, :) = find(test(COV, group));
Train = InputFusion(Index_Train(group, :), :);
Test = InputFusion(Index_Test(group, :), :);
res = [Train; Test];
for i = 1 : length(unique(Label)) do

mid_res = res((res(:, end) == i), :);
mid_size = size(mid_res, 1);
mid_tiran = round(1 − 1/KFoldNum × mid_size);
P_train = [P_train; mid_res(1 : mid_tiran, 1 : end − 1)];
T_train = [T_train; mid_res(1 : mid_tiran, end)];
P_test = [P_test; mid_res(mid_tiran + 1 : end, 1 : end − 1)];
T_test = [T_test; mid_res(mid_tiran + 1 : end, end)];

end for
net = trainNetwork(P_train, T_train, Layers, Options);
T_sim1(group, :) = vec2ind(predict(net, P_train)′);
T_sim2(group, :) = vec2ind(predict(net, P_test)′);

end for
for ii = 1 : group do

temp_T_sim1 = T_sim1(ii, :);
temp_T_sim2 = T_sim2(ii, :);
for jj = 1 : size(temp_T_sim1, 2) do

Temp(Index_Train(ii, jj)) = temp_T_sim1(jj);
end for
for jj = 1 : size(temp_T_sim2, 2) do

Temp(Index_Test(ii, jj)) = temp_T_sim2(jj);
end for
Fea(ii, :) = Temp;

end for
FuseFeature = mean(Fea, 1);

Table 1. Option parameters of CNN-BiLSTM.

Optimizer Parameters

Optimization adam
Initial Learn Rate 0.001
ℓ2 regularization 1 × 10−4

Learn Rate Schedule piecewise
Learn Rate Drop Factor 0.5
Learn Rate Drop Period 400
Shuffle every epoch
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Figure 6. This figure displays the trainNetwork.
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Table 2. Details of trainNetwork Usage in Figure 6.

Name Type Activations Learnable Properties

sequence Sequence Input 256(S) × 1(S) × 1(C) × 1(B) × 1(T) -
seqfold Sequence Folding out 256(S) × 1(S) × 1(C) × 1(B) -

miniBatchSize 1(C) × 1(U)
conv_1 2D Convolution 254(S) × 1(S) × 32(C) × 1(B) Weights 3 × 1 × 1 × 32

Bias 1 × 1 × 32
relu_1 ReLU 254(S) × 1(S) × 32(C) × 1(B) -
conv_2 2D Convolution 252(S) × 1(S) × 64(C) × 1(B) Weights 3 × 1 × 32 × 64

Bias 1 × 1 × 64
relu_2 ReLU 252(S) × 1(S) × 64(C) × 1(B) -
gapool 2D Global 1(S) × 1(S) × 32(C) × 1(B) -

Average Pooling
fc_2 Fully Connected 1(S) × 1(S) × 16(C) × 1(B) Weights 16 × 32

Bias 16 × 1
relu_3 ReLU 1(S) × 1(S) × 16(C) × 1(B) -
fc_3 Fully Connected 1(S) × 1(S) × 64(C) × 1(B) Weights 64 × 16

Bias 64 × 1
sigmoid Sigmoid 1(S) × 1(S) × 64(C) × 1(B) -
multiplication Elementwise 252(S) × 1(S) × 64 (C) × 1(B) -

Multiplication
sequnfold Sequence 252(S) × 1(S) × 64(C) × 1(B) × 1(T) -

Unfolding
flatten Flatten 16,128(C) × 1(B) × 1(T) -
lstm BiLSTM 12(C) × 1(B) InputWeights 48 × 16,128

RecurrentWeights 48 × 6
Bias 48 × 1

fc Fully Connected 14(C) × 1(B) Weights 14 × 12
Bias 14 × 1

softmax Softmax 14(C) × 1(B) -
classification Classification 14(C) × 1(B) -

Output

3.4. Method Framework

Due to low-cost mmWave radar systems producing sparse, non-uniform point
clouds—leading to low-quality feature extraction—training fine-grained, accurate activity
classifiers is challenging. To solve this problem, fewer and more high-quality features for
final classification are required to boost classification performance. Our novel approach
for human activity classification, based on the statistical offset parameters, range profiles,
time–frequency, and azimuth–range–time, is presented in Figure 7. Our method has nine
fused feature vectors as the input of the classifier.

One of the key aspects of our method is the use of mmWave radar, which is capable
of measuring elevation and azimuth information through its scanning method. We lever-
aged this capability by applying the angle relationship in space to fuse these two types
of information, creating fused I/Q data. This data were then used for six statistical fea-
ture calculations: mean, variance, standard deviation, skewness, kurtosis, and two-order
central moment.

Another one of the key aspects of our method is fusing PCANet images of range
profiles and time–frequency. After the CNN-BiLSTM training, two fused vectors of range
profiles and time–frequency can be obtained. In this part, we applied the elevation and
azimuth data to obtain the PCANet instead of the angle relation fused I/Q data. The
elevation and azimuth PCANet values were fed into parallel 1D networks of CNN-BiLSTM.
We calculated the fusing PCANet features of images from range profiles or time–frequency
using the pseudocode, as shown in Algorithms 3 and 4.
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Figure 7. This figure shows the framework of our method.

Algorithm 3 RangeFusion()
Input: Elevation, Azimuth and Label of Sample Data, KFoldNum
Output: Fusion Feature of Range Profiles of Samples
Calculate Range Profiles of Elevation and Azimuth respectively.
Calculate PCANet of Range Profiles of Samples via SVD.
for ii = 1 : size(PCA_Ele, 2) do

FuseInput(:, (ii − 1)× 2 + 1) = PCA_Ele(:, ii);
FuseInput(:, 2 × ii) = PCA_Azi(:, ii);
FuseInput(:, 2 × size(PCA_Ele, 2) + 1) = Label;

end for
RangeFusion = CNN-BiLSTM(FuseInput, KFoldNum);

Algorithm 4 TFFusion()
Input: Elevation, Azimuth and Label of Sample Data, KFoldNum, Frebin, TFWin
Output: Fusion Feature of TF image of Samples
Ele = tfrmhs(Elevation′, 1 : length(Elevation), Frebin, TFWin);
Azi = tfrmhs(Azimuth′, 1 : length(Azimuth), Frebin, TFWin);
Calculate PCANet of Range Profiles of Samples via SVD.
for ii = 1 : size(PCA_Ele, 2) do

FuseInput(:, (ii − 1)× 2 + 1) = PCA_Ele(:, ii);
FuseInput(:, 2 × ii) = PCA_Azi(:, ii);
FuseInput(:, 2 × size(PCA_Ele, 2) + 1) = Label;

end for
TFFusion = CNN-BiLSTM(FuseInput, KFoldNum);

The third one of the key aspects of our method is fusing the PCANet of 3D range–
azimuth–time. Because the actions are temporal processes, fusing 3D range–azimuth–time
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temporally first can achieve higher quality features. The 3D range-azimuth-time fusion
procedure was carried out on the CNN-BiLSTM structure with temporal fusion first, and
PCANet fusion followed to ensure the best fusion, as shown in Algorithm 5. In this part,
we calculated the range–azimuth–time using elevation and azimuth data instead of the
angle relation fused I/Q data.

Algorithm 5 RanAziTimeFusion()
Input: Elevation, Azimuth and Label of Sample Data, KFoldNum
Output: Fusion Feature of Range–Azimuth–Time
Calculate Range–Azimuth–Time of Elevation and Azimuth, respectively.
Calculate the PCANet of Range–Azimuth–Time.
%PCAofRAT(SampleNum, FrameNum, PCANum)
for ii = 1 to FrameNum do

Fusion(:, (ii − 1) ∗ 2 + 1, :) = PCAo f RAT_Ele(:, ii, :)
Fusion(:, 2 ∗ ii, :) = PCAo f RAT_Azi(:, ii, :)

end for
for ii = 1 to PCANum do

Input(:, :) = Fusion(:, :, ii)
Temp = [Input, Label]
FuseTime = CNN-BiLSTM(Temp, KFoldNum)

end for
FuseInput = [FuseTime, Label]
RATFusion = CNN-BiLSTM(FuseInput, KFoldNum)

4. Experimental Results and Analysis

This section will display the experiment setup and data collection in the first part and
the implementation details and performance analysis in the following parts.

4.1. Experiment Setup and Data Collection

Classifying actions by individual subjects is straightforward, but identifying combi-
nations of actions presents challenges. The experiments in this paper aimed to classify
these action combinations. In this article, two evaluation modules named AWR2243 and
DCA1000 EVM were applied for the experiment. The AWR2243 is the ideal mmWave radar
sensor because of its ease of use, low cost, low power consumption, high-resolution sensing,
precision, and compact size, whose parameters are listed in Table 3.

For the experimental setting, an activity room (6 m × 8 m) within the Doctoral Building
of the University of Glasgow was chosen to support ample ground for our experiments.
The distances between the testee (1.5 m), glass wall, and AWR2243 are shown in Figure 8.
The radar resolution of the azimuth and elevation were 15◦ and 30◦, respectively. In the
experiment, the azimuth angle was mainly concerned with the moving testee. Therefore,
the angular separation should range from 20◦ to 40◦, which can resolve the two subjects
spatially. The horizontal and vertical radar fields of view (FoVs) are both 60◦, giving the
radar FoV a concical shape. In our experiments, all testing subjects were within the radar’s
FoV. However, if additional targets are present outside the FoV, they may appear as ‘ghost’
targets in the radar spectrogram. The further these targets are from the radar’s FoV, the
lower their signal-to-noise ratio (SNR) will be.

Nine males and nine females participated in the experiment, with participants’
identities made confidential for privacy. Detailed participant information is available
in Table 4.
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Table 3. Parameters of experimental device.

Parameters Value

Radar Name AWR2243
Frequency Range 76–81 GHz
Carrier Frequency 77 GHz
Number of Receivers 4
Number of Transmitters 3
Number of Samples per Chirp 256
Number of Chirps per Frame 128
Bandwidth 4 GHz
Range Resolution 4 cm
ADC Sampling Rate (max) 45 Msps
MIMO Modulation Scheme TDM
Interface Type MIPI-CSI2, SPI
Rating Automotive
Operating Temperature Range −40 to 140 ◦C
TI Functional Safety Category Functional Safety Compliant
Power Supply Solution LP87745-Q1
Evaluation Module DCA1000

Figure 8. This figure displays the experimental scene diagram and photo.

Table 4. Information of the participants.

Participant ID Gender Height (cm) Age

Participant 1 Male 172 25
Participant 2 Male 167 23
Participant 3 Male 165 24
Participant 4 Male 177 22
Participant 5 Male 174 26
Participant 6 Male 180 23
Participant 7 Male 185 25
Participant 8 Male 183 24
Participant 9 Male 188 22
Participant 10 Female 157 25
Participant 11 Female 155 23
Participant 12 Female 159 24
Participant 13 Female 167 22
Participant 14 Female 165 26
Participant 15 Female 170 23
Participant 16 Female 175 25
Participant 17 Female 173 24
Participant 18 Female 177 22
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The experimental data were collected from fourteen categories of combinations of
actions such as (I) bend and bend, (II) squat and bend, (III) stand and bend, (IV) walk
and bend, (V) fall and bend, (VI) squat and squat, (VII) stand and squat, (VIII) fall and
squat, (IX) walk and squat, (X) stand and stand, (XI) walk and stand, (XII) fall and stand,
(XIII) walk and walk, and (XIV) fall and walk. There were 1500 samples in every category,
with 21,000 samples in total. The time length of every sample was 3 s, with 800 Hz sam-
pling after desampling processing. Hence, 21,000 was the total number of 3 s samples,
while 2400 was the total number of frames of every sample, with the scatter plot shown in
Figure 9. Moreover, the coherent processing interval (CPI) was 80 ms.

Figure 9. This figure shows the scatter plot of the fourteen categories of samples.

4.2. Implement Details

In this section, we applied five statistics (sensitivity, precision, F1, specificity, and
accuracy) to measure the performance. These measures can be expressed as

Sensitivity =
TP

TP + FN
, (9)

Precision =
TP

TP + FP
, (10)

F1 =
2TP

2TP + FP + FN
, (11)

Speci f icity =
TN

TN + FP
, (12)

Accuracy =
TP + TN

TP + FP + TN + FN
, (13)

where TP and FP are the number of true and false positives, while TN and FN are the
number of true and false negatives. A true positive means a combination of actions is
labeled correctly, a false positive means another combination of actions is labeled as the
combination of actions, a true negative is a correct rejection, and a false negative is a
missed detection.

Moreover, besides the STFT, three additional time–frequency distributions, named
Margenau–Hill Spectrogram, Choi–Williams, and smoothed pseudo Wigner–Ville, contributed
in the final recognition and will be compared in the following part. The four expressions of
time–frequency can be written as

STFTx(t, f ; h) =
∫∫ +∞

−∞
x(u)H∗(u − t)e(−j2π f u)du, (14)
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MHSx(t, f ) = R{K−1
gh STFTx(t, f ; g)STFT∗

x (t, f ; h)}
Kgh =

∫
h(u)g∗(u)du

, (15)

SPWVx(t, τ) =
∫∫ +∞

−∞
h(τ)

∫∫ +∞

−∞
g(s − t)

x(s +
τ

2
)x∗(s − τ

2
)dse−j2πvτdτ

, (16)

CWx(t, f ) =2
∫∫ +∞

−∞

√
σ

4
√

π|τ|
e−

f 2σ

16τ2

x(t + f +
τ

2
)x∗(t + f − τ

2
)e−i2πτd f dt

, (17)

where x is the input signal, t represents the vectors of time instants, and f represents
the normalized frequencies. σ denotes the square root of the variance. STFTx(·) is the
short-time Fourier transform of x. h is a smoothing window, while g is the analysis window.

In the feature extraction step, 5-fold cross-validation was employed to split the dataset
into training and testing sets. Following the computation of five sets of fusion features,
the results from these five groups were reconstructed into new datasets. Ultimately, the
final classification outcomes for these new datasets were determined based on 10-fold
cross-validation.

4.3. Performance Analysis

Figure 10 draws the classification sensitivity of every combination of actions of compet-
itive temporal neural networks, such as the gated recurrent unit (GRU), LSTM, residual and
LSTM recurrent networks (MSRLSTM), BiLSTM, attention-based BiLSTM (ABLSTM), tem-
poral pyramid recurrent neural network (TPN), temporal CNN (TCN), and CNN-BiLSTM.
The option parameters of these temporal neural network algorithms were all six hidden
units, with Adam as the optimizer during training, a 0.0001 ℓ2 regularization, a 0.001 initial
learn rate, a 0.5 drop factor learning rate, and 100 epochs. The time length of every sample
was 3 s with 0.00125 s as the time interval. All the results are based on the average of
10-fold cross-validation. The average classification sensitivity for these action combinations
is as follows: 34.56% for GRU, 35.57% for LSTM, 13.05% for MSRLSTM, 34.11% for BiLSTM,
34.95% for ABLSTM, 7.18% for TPN, 26.91% for TCN, and 33.69% for CNN-BiLSTM. All
the algorithms in this figure serve as comparison methods for our proposed approach.
Moveover, although CNN-BiLSTM did not have the highest average performance in tem-
poral signal classification, we selected CNN-BiLSTM as the fusion method due to its data
compatibility with the 3D fusion requirement in our algorithm.

As shown in Figure 7, the extracted features in our method came from the statistical
offset parameters, range profiles, time–frequency, and azimuth–range–time. The offset
parameters were based on the statistical calculation of the signal fused according to its
elevation and azimuth information. The feature of range profiles was the output of the
fusion of the PCANet of range profiles. The time–frequency feature was the output of
the fusion of the PCANet of time–frequency images. The TF toolbox [49] analyzed the
time–frequency, including the STFT, Margenau–Hill Spectrogram, Choi–Williams, and
smoothed pseudo Wigner–Ville, i.e., (tfrstft.m, tfrmhs.m, tfrcw.m, and tfrspwv.m). The
Frequency bin was 128, with a 127 hamming window. The feature of azimuth–range–time
is the fusion output of both the temporal and PCANet of azimuth–range–time. Besides
the offset parameters calculation, all the other feature fusion methods are based on CNN-
BiLSTM. Moreover, all output results from CNN-BiLSTM in this paper are based on the
5-fold cross-validation to obtain the fusion output. Then, nine fused feature vectors were
obtained as the classifier’s inputs.
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Figure 10. This figure shows the classification sensitivity of these combinations of actions using
competitive temporal neural networks.

To find out the most suitable classifier for our approach, we utilized eight classifiers
for the final classification, such as naïve Bayes (NB), pseudo quadratic discriminant analysis
(PQDA), diagonal quadratic discriminant analysis (DQDA), K-nearest neighbors (K = 3),
boosting, bagging, random forest (RF), and support vector machine (SVM). The SVM had the
kernel of a two-order polynomial function with the auto-kernel scale, and the constraint was
set to one with true standardization. The time length of every sample was 3 s, with 800 Hz
sampling after desampling processing. Every group of 10-fold cross-validation was used by
selecting 90% (18,900 samples) for learning features and the remaining 10% (2100 samples)
for testing. All the results in this article are based on the average of all these 10 folds.

Figure 11 shows our average sensitivity of fourteen categories via various classifiers un-
der the time–frequency condition of the STFT, Margenau–Hill Spectrogram, Choi–Williams,
smoothed pseudo Wigner–Ville, and the joint of the above four methods, whose details
are shown in Table 5. In CNN-BiLSTM processing, the epoch number was 100, and the
fusion output was based on the average of five groups of 5-fold cross-validation. The final
classification performance of all trials from the 10-fold partitions was the average of all ten
groups. In this figure, the sensitivities from the bagging, random forest, and SVM surpassed
94%, while random forest, as the classifier, played better than the others. Thereby, ran-
dom forest was subsequently considered as the unique classifier in the following research
for convenience.

To evaluate the effect of the number of epochs of CNN-BiLSTM structure on the different
time–frequency features for final classification performance, we tested the feature performance
of our method under different epoch numbers with random forest as the classifier. The
accuracies of these tests are displayed in Figure 12. In this figure, the joint of the four methods
performed the best, followed by MHS. The vector number of the time–frequency feature was
four, while that of the others was only one. The performance differences between the joint
of four methods and MHS with 100 epochs came out to 0.15% sensitivity, 0.016% F1, 0.016%
precision, 0.01% specificity, and 0.02% accuracy with 100 epochs. Hence, the time–frequency
analysis method recommended in this article was MHS for fairness, which will be displayed
in the following research of this paper for convenience.

Figure 13 displays the precision for classification using random forest as the classifier
and MHS as the time–frequency analysis method. Details of this setup are listed in Table 6.
The features in Test 1 and Test 2 include six offset parameters, 1 or 10 PCA values per range
profile, and MHS images. In Test 3, the features consist of six offset parameters, the most
significant PCA value of the range profile image, and the PCANet fusion of the MHS image.
The key difference between Test 1 and Test 3 is whether the most significant PCA value or
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the fused PCANet of the MHS image was used. In Test 4, the features include six offset
parameters and PCANet fusions of both the range profile and MHS images. The difference
between Test 3 and Test 4 is whether the feature set used the most significant PCA value
or the PCANet fusion of the range profile images. Test 5 features include PCANet fusion
features derived from range profiles, time–frequency analyses, and azimuth–range–time
imagery. The difference between Test 4 and Test 6 (our method) is whether the feature
vector came from the range–azimuth–time data. The difference between Test 5 and Test 6 is
whether the feature vectors were derived from the offsets.

Table 5. Performance details of Figure 11.

Sensitivity STFT MHS CW SPWV Joint 4TFs

NB 0.7380 0.7710 0.7449 0.7460 0.8066
PQDA 0.7926 0.8063 0.7889 0.7950 0.8376
DQDA 0.7414 0.7717 0.7458 0.7454 0.8062
KNN (k = 3) 0.5877 0.5875 0.5880 0.5861 0.5920
Boosting 0.4861 0.4863 0.4858 0.4862 0.4862
Bagging 0.9473 0.9595 0.9401 0.9424 0.9594
Random Forest 0.9771 0.9825 0.9754 0.9746 0.9840
SVM 0.9547 0.9651 0.9545 0.9550 0.9682

Precision STFT MHS CW SPWV Joint 4TFs

NB 0.7663 0.7929 0.7691 0.7692 0.8176
PQDA 0.8127 0.8232 0.8105 0.8163 0.8503
DQDA 0.7691 0.7934 0.7700 0.7699 0.8170
KNN (k = 3) 0.5954 0.5952 0.5958 0.5938 0.5995
Boosting 0.3257 0.3399 0.3647 0.3970 0.3764
Bagging 0.9479 0.9598 0.9409 0.9429 0.9597
Random Forest 0.9772 0.9825 0.9755 0.9747 0.9841
SVM 0.9552 0.9655 0.9549 0.9554 0.9684

F1 STFT MHS CW SPWV Joint 4TFs

NB 0.7058 0.7453 0.7127 0.7140 0.7884
PQDA 0.7701 0.7879 0.7652 0.7712 0.8235
DQDA 0.7101 0.7459 0.7144 0.7139 0.7873
KNN (k = 3) 0.5859 0.5854 0.5861 0.5843 0.5900
Boosting 0.3570 0.3577 0.3748 0.3765 0.3681
Bagging 0.9471 0.9594 0.9399 0.9422 0.9594
Random Forest 0.9772 0.9825 0.9754 0.9746 0.9841
SVM 0.9548 0.9651 0.9546 0.9551 0.9682

Accuracy STFT MHS CW SPWV Joint 4TFs

NB 0.9798 0.9824 0.9804 0.9805 0.9851
PQDA 0.9840 0.9851 0.9838 0.9842 0.9875
DQDA 0.9801 0.9824 0.9804 0.9804 0.9851
KNN (k = 3) 0.9683 0.9683 0.9683 0.9682 0.9686
Boosting 0.9605 0.9605 0.9604 0.9605 0.9605
Bagging 0.9959 0.9969 0.9954 0.9956 0.9969
Random Forest 0.9982 0.9987 0.9981 0.9980 0.9988
SVM 0.9965 0.9973 0.9965 0.9965 0.9976

Specificity STFT MHS CW SPWV Joint 4TFs

NB 0.9626 0.9673 0.9636 0.9637 0.9724
PQDA 0.9704 0.9723 0.9698 0.9707 0.9768
DQDA 0.9631 0.9674 0.9637 0.9636 0.9723
KNN (k = 3) 0.9411 0.9411 0.9411 0.9409 0.9417
Boosting 0.9266 0.9266 0.9265 0.9266 0.9266
Bagging 0.9925 0.9942 0.9914 0.9918 0.9942
Random Forest 0.9967 0.9975 0.9965 0.9964 0.9977
SVM 0.9935 0.9950 0.9935 0.9936 0.9955
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Figure 11. This figure shows our average sensitivity of fourteen categories via various classifiers
under the time–frequency condition of STFT, Margenau–Hill Spectrogram, Choi–Williams, smoothed
pseudo Wigner–Ville, and the joint of the above four methods.

Figure 12. This figure shows the accuracy of our method under different epoch numbers.

In Table 6, it is shown that while the feature quantity could improve final classification
performance, the feature quality had a greater impact on the boosting classification perfor-
mance compared to the feature quantity. Table 7 presents the classification performance of
random forest for each individual feature type from Table 6. Comparing the performance
of Test 4 and Test 1, the features based on image PCANet fusion improved the final results
by 10.92% in sensitivity, 11.01% in precision, 11.01% in F1, 0.84% in specificity, and 1.56% in
accuracy. In Test 6, the offset feature vectors improved sensitivity, precision, F1, specificity,
and accuracy by 1.34%, 1.34%, 1.34%, 0.10%, and 0.19%, respectively, compared to Test 5.
Additionally, features derived from range–azimuth–time via temporal and PCANet fusion
boosted sensitivity, precision, F1, specificity, and accuracy by 2.56%, 2.53%, 2.55%, 0.20%,
and 0.37%, respectively, compared to Test 4. Tables 8 and 9 provide the confusion matrix
and performance metrics for every action combination in Test 6.
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Figure 13. This figure shows the precision of our method (Test 6) and alternative method (Test 1–5).

Table 6. Performance fetails of Figure 13.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Statistical Offsets 6 6 6 6 0 6
Range Features 1 10 1 1 1 1
TF Features 1 10 1 1 1 1
Range–Azimuth–Time 0 0 0 0 1 1
Total Features 8 26 8 8 3 9
Sensitivity 0.8477 0.9115 0.9535 0.9569 0.9691 0.9825
Precision 0.8472 0.9114 0.9538 0.9572 0.9692 0.9825
F1 0.8469 0.9112 0.9535 0.9570 0.9691 0.9825
Specificity 0.9883 0.9932 0.9964 0.9967 0.9976 0.9987
Accuracy 0.9782 0.9874 0.9934 0.9938 0.9956 0.9975

Table 7. Performance details of single-feature type of Table 6.

Single Feature Type Feature Sensitivity Precision F1 Specificity AccuracyVectors

Mean 1 0.0699 0.0701 0.0697 0.9285 0.8671
Variance 1 0.2605 0.2585 0.2588 0.9431 0.8944
Standard Deviation 1 0.2596 0.2576 0.2578 0.9430 0.8942
Kurtosis 1 0.2058 0.2055 0.2050 0.9389 0.8865
Skewness 1 0.1664 0.1670 0.1661 0.9359 0.8809
Central Moment 1 0.2485 0.2470 0.2471 0.9422 0.8926
Offset Parameters 6 0.2769 0.2763 0.2758 0.9444 0.8967
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Table 7. Cont.

Single Feature Type Feature Sensitivity Precision F1 Specificity AccuracyVectors

PCA of Range Profiles 1 0.2769 0.2763 0.2758 0.9444 0.8967
PCA of Range Profiles 10 0.7675 0.7706 0.7663 0.9821 0.9668
PCANet Fusion of Range Profiles 1 0.6758 0.7048 0.6707 0.9751 0.9537
PCA of TF Image 1 0.3555 0.3551 0.3545 0.9504 0.9079
PCA of TF Image 10 0.7910 0.7960 0.7907 0.9839 0.9701
PCANet Fusion of TF Image 1 0.8937 0.8975 0.8941 0.9918 0.9848
Fusion of Range–Azimuth–Time 1 0.9253 0.9286 0.9251 0.9943 0.9893

Table 8. Confusion matrix of our method with STFT, 100 epochs, and random forest.

Action Combinations ID I II III IV V VI VII VIII IX X XI XII XIII XIV

Bend and Bend I 1465 33 2 0 0 0 0 0 0 0 0 0 0 0
Squat and Bend II 13 1448 18 1 1 11 4 0 0 4 0 0 0 0
Stand and Bend III 1 21 1468 0 0 6 4 0 0 0 0 0 0 0
Walk and Bend IV 0 0 0 1475 15 0 0 2 5 0 3 0 0 0
Fall and Bend V 0 0 0 4 1470 19 0 6 0 0 1 0 0 0
Squat and Squat VI 1 9 1 1 12 1450 15 7 0 4 0 0 0 0
Stand and Squat VII 0 1 1 0 0 16 1475 4 0 3 0 0 0 0
Fall and Squat VIII 0 1 0 0 6 6 17 1455 9 1 3 2 0 0
Walk and Squat IX 0 0 0 4 1 0 0 20 1469 1 4 1 0 0
Stand and Stand X 0 1 1 0 0 1 1 2 0 1494 0 0 0 0
Walk and Stand XI 0 0 0 0 0 0 0 2 9 0 1485 4 0 0
Fall and Stand XII 0 0 0 0 0 1 1 4 1 1 4 1488 0 0
Walk and Walk XIII 0 0 0 0 0 0 0 0 0 0 0 3 1497 0
Fall and Walk XIV 0 0 0 0 0 0 0 0 0 0 0 5 2 1493

Table 9. The performance of the confusion matrix in Table 8.

Action Combinations Sensitivity Precision F1 Specificity Accuracy

Bend and Bend 0.9767 0.9899 0.9832 0.9992 0.9976
Squat and Bend 0.9653 0.9564 0.9608 0.9966 0.9944
Stand and Bend 0.9787 0.9846 0.9816 0.9988 0.9974
Walk and Bend 0.9833 0.9933 0.9883 0.9995 0.9983
Fall and Bend 0.9800 0.9767 0.9784 0.9982 0.9969
Squat and Squat 0.9667 0.9603 0.9635 0.9969 0.9948
Stand and Squat 0.9833 0.9723 0.9778 0.9978 0.9968
Fall and Squat 0.9700 0.9687 0.9694 0.9976 0.9956
Walk and Squat 0.9793 0.9839 0.9816 0.9988 0.9974
Stand and Stand 0.9960 0.9907 0.9934 0.9993 0.9990
Walk and Stand 0.9900 0.9900 0.9900 0.9992 0.9986
Fall and Stand 0.9920 0.9900 0.9910 0.9992 0.9987
Walk and Walk 0.9980 0.9987 0.9983 0.9999 0.9998
Fall and Walk 0.9953 1.0000 0.9977 1.0000 0.9997

Average Performance 0.9825 0.9825 0.9825 0.9987 0.9975

5. Conclusions and Future Works

This paper introduces a pioneering method that utilizes statistical offset measures,
range profiles, time–frequency analyses, and azimuth–range–time evaluations to effectively
categorize various human daily activities. Our approach employs nine feature vectors,
encompassing six statistical offset measures (mean, standard deviation, variance, skew-
ness, kurtosis, and second-order central moments) and three principal component analysis
network (PCANet) fusion attributes. These statistical measures were derived from com-
bined elevation and azimuth data, considering their spatial angle connections. Fusion
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processes for range profiles, time–frequency analyses, and 3D range–azimuth–time eval-
uations were executed through concurrent 1D CNN-BiLSTM networks, with a focus on
temporal integration followed by PCANet application.

The effectiveness of this approach was demonstrated through rigorous testing, show-
casing enhanced robustness particularly when employing the Margenau–Hill Spectrogram
(MHS) for time–frequency analysis across fourteen distinct categories of human actions,
including various combinations of bending, squatting, standing, walking, and falling.
When tested with the random forest classifier, our method outperformed other classifiers
in terms of overall efficacy, achieving impressive results: an average sensitivity, precision,
F1, specificity, and accuracy of 98.25%, 98.25%, 98.25%, 99.87%, and 99.75%, respectively.

Research in radar-based human activity recognition has made strides, yet several
promising areas remain in their infancy. Future directions include the following:

Radio-frequency-based activity recognition is known for minimizing privacy intrusions
compared to traditional methods. Unlike camera-based systems that produce clear images
through the combination of phase and amplitude in radio frequency signals, radio-frequency-
based methods still raise privacy concerns, particularly when features could be linked to
personal habits, or the handling of personal data requires careful consideration. An emerging
field of study focuses on safeguarding user privacy while accurately detecting their activities.

For practical application, it is crucial to deploy activity recognition models in real time.
This involves segmenting received signals into smaller sections for analysis. Addressing
variables like window size and overlap during segmentation is vital. Moreover, training
classification models presents unique challenges, especially in recognizing transitions
between activities. Labeling these transitions and employing AI algorithms to fine-tune
segmentation parameters represents a significant area for development.

Data augmentation has proven useful in image classification via generative adversarial
networks (GANs). Applying GANs for augmenting time series data involves converting
these data into images for augmentation and then back into time series format, addressing
the issue of insufficient training data for classifiers—especially deep neural networks.
Moreover, accurately labeling collected data without compromising privacy is challenging.
While cameras are commonly used to verify data labels, they pose privacy risks, making
unsupervised learning approaches that can cluster and label data without supervision
increasingly relevant.

Moreover, the validation of our proposed method on other public radar datasets will
be part of future work.
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Abbreviations
The following abbreviations are used in this manuscript:

ABLSTM Attention-based Bidirectional Long Short-term Memory
BiLSTM Bidirectional Long Short-term Memory
CPI Coherent Processing Interval
CNN Convolutional Neural Network
CNN-BiLSTM Convolutional Neural Network with Bidirectional Long Short-term Memory
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CW Choi–Williams
DQDA Diagonal Quadratic Discriminant Analysis
FFT Fast Fourier Transform
FoV Radar Field of View
GANs Generative Adversarial Networks
GRU Gated Recurrent Unit
LSTM Long Short-term Memory
MHS Margenau–Hill Spectrogram
mmWave Millimeter Wave
MSRLSTMs Residual and Long Short-term Memory Recurrent Networks
NB Naïve Bayes
PCA Principal Component Analysis
PCANet Principal Component Analysis Network
PQDA Pseudo Quadratic Discriminant Analysis
RF Random Forest
RNN Recurrent Neural Network
SNR Signal-to-Noise Ratio
STFT Short-Time Fourier Transform
SVD Singular Value Decomposition
SVM Support Vector Machine
TCN Temporal Convolutional Neural Network
TF Time–Frequency
TPN Temporal Pyramid Recurrent Neural Network
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