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Abstract: The precise segmentation of different regions of the prostate is crucial in the diagnosis
and treatment of prostate-related diseases. However, the scarcity of labeled prostate data poses
a challenge for the accurate segmentation of its different regions. We perform the segmentation
of different regions of the prostate using U-Net- and Vision Transformer (ViT)-based architectures.
We use five semi-supervised learning methods, including entropy minimization, cross pseudo-
supervision, mean teacher, uncertainty-aware mean teacher (UAMT), and interpolation consistency
training (ICT) to compare the results with the state-of-the-art prostate semi-supervised segmentation
network uncertainty-aware temporal self-learning (UATS). The UAMT method improves the prostate
segmentation accuracy and provides stable prostate region segmentation results. ICT plays a more
stable role in the prostate region segmentation results, which provides strong support for the medical
image segmentation task, and demonstrates the robustness of U-Net for medical image segmentation.
UATS is still more applicable to the U-Net backbone and has a very significant effect on a positive
prediction rate. However, the performance of ViT in combination with semi-supervision still requires
further optimization. This comparative analysis applies various semi-supervised learning methods to
prostate zonal segmentation. It guides future prostate segmentation developments and offers insights
into utilizing limited labeled data in medical imaging.

Keywords: comparative analysis; prostate zonal segmentation; semi-supervised learning; U-Net;
vision transformer

1. Introduction

With the massive increase in annotated data, deep learning has achieved significant
success in image segmentation. However, the acquisition of annotated medical image
data is often expensive because generating accurate annotations requires expertise and
time. The accuracy of medical image segmentation in specific areas such as the prostate
is crucial [1]. In recent years, multiparametric magnetic resonance imaging (mpMRI) has
provided an important analytical basis for the detection and staging of prostate cancer [2].
Most of the current analyses are based on tumor detection and analysis but ignore the
importance of structural information in different anatomical regions of the prostate for
quantitative analysis of the prostate [3]. The prostate consists of four anatomical zones: the
transition zone (TZ), peripheral zone (PZ), central zone (CZ), and anterior fibromuscular
stroma (AFS) [4]. The clinical importance of these regions is mainly in the diagnosis
and treatment of prostate diseases. For example, prostate cancer often occurs in the PZ,
whereas benign prostatic hyperplasia occurs mainly in the TZ [5], and the location of the
AFS also constitutes an important guide for prostate surgery [6]. Owing to the complex
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morphology of the four prostate regions, there are currently few annotated data and an
increasing amount of unlabeled prostate image data, which poses challenges to the accurate
segmentation of prostate regions.

Prior to the rise of deep learning, prostate region segmentation was addressed by
methods such as an approach to atlas matching using local mutual information [7] and
feature pattern recognition [8]. Classical methods do present significant challenges in
distinguishing internal regions of the prostate. Conventional edge detection algorithms
usually rely on binarization, an approach that has limitations in multi-region segmentation
tasks. Following the success of U-Net [9], supervised learning has been proposed to employ
variants of U-Net to segment the prostate as a whole structure [10], or simply segment it
into PZ and TZ [11]. Robin et al. [12] proposed a novel approach for semantic segmentation
based on Vision Transformer, which did not use convolution and was successful in semantic
segmentation by capturing contextual information by design.

After the success of deep learning in the field of segmentation, current prostate-based
segmentation methods only detect the entire prostate region or simply divide it into PZ
and TZ [13]. However, these methods do not take into account internal structures that are
difficult to distinguish, such as the small amount of AFS and distal prostatic urethra (DPU).
When a more detailed segmentation of the prostate is needed, it becomes more challenging
due to the limited number of labeled data for deep learning model development.

Karimi et al. [14] learned subtle patterns of prostate shape changes in a process
known as statistical shape modeling in order to overcome the lack of training data for
prostate images. This strategy did not guarantee that all the generated data correspond
exactly to the labels. Semi-supervised learning using unlabeled data is therefore more
in line with the current state of medical images than generated data. So, we selected
five semi-supervised learning models, namely, entropy minimization (EM) [15], mean
teacher (MT) [16], uncertainty-aware mean teacher (UAMT) [17], cross pseudo-supervision
(CPS) [18], and interpolation consistency training (ICT) [19]. We used the Dice [20] and
true positive rate (TPR) [21] indicators to evaluate these experiments and compared the
outcomes with the results of the current state-of-the-art (SOTA) prostate semi-supervised
network uncertainty-aware temporal self-learning (UATS) [22].

Semi-supervised learning has an advantage in that it can not only make use of the
powerful feature extraction capabilities of deep learning models, but can also use unlabeled
data to improve model generalization [23]. EM was initially proposed as an extremely
simple and effective method [24], which demonstrated that minimizing the entropy of
the prediction over unlabeled data could improve model performance and inspired many
subsequent works [25]. Pseudo-label trains an initial model on labeled data and uses the
unlabeled data to infer in order to generate pseudo-labels and iteratively further trains using
the pseudo-label [26]. CPS took advantage of this feature and achieved good performances
in semantic segmentation. This idea was also extended to some new semi-supervised
learning models [27].

Consistency regularization training is the most commonly used semi-supervised
learning method in the field of deep learning, which perturbs or augments the inputs
and applies consistency so that the model produces similar outputs for them. MT was
an algorithm proposed for temporal ensemble [28] with a large computational cost to
improve on the weights of the model. MT achieved good performances in natural image
classification. Continuing this idea of MT, there has been much subsequent work in
medical imagery [29]. UAMT achieved good performances in natural image classification
by Monte Carlo Dropout to estimate the uncertainty of each target prediction to improve
the performance of MT. UAMT was guided by estimation uncertainty, and unreliable
predictions were filtered out when calculating the loss of consistency. UAMT was based on
3D left lung images for medical image segmentation. This task only required segmentation
of the foreground and background and has not been applied to prostate zonal segmentation.
To prevent the problem that adversarial perturbation training impairs the generalization
performance, ICT used interpolation to improve MT in natural image classification.
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Specifically, EM achieves semi-supervised learning by jointly training supervised
segmentation loss and unsupervised entropy loss. CPS employs models with different
initializations but the same network structure for natural image segmentation and achieves
model consistency through pseudo-label consistency loss computation. The MT targets
natural image classification and uses average model weights rather than label predictions to
improve the training and testing accuracy through fewer labels. UAMT focuses on left lung
segmentation and estimates the uncertainty of the target prediction through Monte Carlo
Dropout to improve the training and testing accuracy by filtering unreliable predictions to
improve the reliability of the student model. ICT overcomes the impairment of general-
ization performance by adversarial perturbation training, with particular applications in
natural landscape classification. UATS combines the concepts of self-learning and temporal
integration to improve the accuracy of segmentation of different regions of the prostate. We
explore the impact of multiple semi-supervised models on prostate image segmentation
using U-Net and the natural image segmentation method Vision Transformer (ViT) [12]
as backbones.

MT and ICT were applied to natural image classification, CPS was applied to the
semantic segmentation of natural images, and UAMT was applied to medical images with
only foreground and background. These methods have not been tried on segmenting
regions of prostate images. Therefore, we put these five representative semi-supervised
learning methods into ViT as well as U-Net backbones and compared them with the
temporal ensemble-based SOTA method UATS for semi-supervised segmentation methods
for the prostate region. This allows for a more comprehensive analysis of the capabilities of
semi-supervised learning in the field of prostate segmentation.

This comparative analysis presents valuable insights into the relative strengths and lim-
itations of the U-Net and ViT architectures for semi-supervised prostate zonal segmentation.
The subdivided regions of the prostate are challenging and therefore their segmentation is
not an easy task to accomplish. By investigating the details of their performance on the
prostate dataset, this comparative analysis is expected to provide new understanding and
methods for semi-supervised learning in other areas of medical image segmentation with
complex structures.

2. Materials and Methods
2.1. Dataset and Pre-Processing

For the prostate region segmentation, we used the ProstateX dataset [30], which
provided publicly available ground truth annotations introduced by Meyer et al. [31]. The
dataset contained multisite prostate MRI scans of healthy individuals, patients with cancer,
and patients with hyperplasia under a variety of conditions. The dataset contained 346 T2w
axial volumes. Of these, 98 volumes were associated with labels for the PZ, TZ, AFS, and
DPU. Importantly, 248 masses were unlabeled to facilitate our semi-supervised learning
strategy. We randomly selected 58 labeled samples as the training set, with the validation
and test sets each containing 20 samples. During the semi-supervised training, we added
248 unlabeled patient samples to the training set. To investigate whether additional labeled
data would benefit the semi-supervised model, we randomly split the 20 test samples into
two groups. One group continued to serve as the test set, while the other group was added
to the training set. The groups were then swapped, and the experiment was repeated.

The raw volumes showed different resolutions in the range of [0.3–0.6] × [0.3–0.6]
× [3.0–5.0] mm. To establish consistency in the input dimensions, we resampled all the
volumes to a common spacing of 0.5 × 0.5 × 3 mm to adjust the spatial resolution of an
image so that it had the same pixel spacing to achieve a more accurate segmentation. For
the labels, we used the closest interpolation to ensure label integrity. These 3D volumes
were cropped into 2D images with a fixed size of 224 × 224 pixels to normalize the input
dimensions and reduce possible noise or irrelevant information. The intensity values were
normalized to fall within the [0, 1] interval. This reduced sensitivity to changes in the
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distribution of the input data, which helped the model learn features more efficiently and
updated weights more stably during the training process.

2.2. Supervised Learning Methods
2.2.1. U-Net

As shown in Figure 1, U-Net, which is renowned for its outstanding performance
in medical image segmentation, features an encoder–decoder structure. We fine-tune the
U-Net parameters, including the learning rates and weight decay, to adapt them to our
segmentation task. The encoder–decoder structure facilitates the extraction of both local
and global features in the images.
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Figure 1. Overview of U-Net framework. The grey box indicates a multi-channel feature map, with
the number of channels marked at the top of the box and the dimensions in the bottom left corner.
The white box indicates a copied feature map, and the arrows indicate different operations.

2.2.2. Vision Transformer

As shown in Figure 2, the ViT approach first divides the input image into patch
embeddings and uses position embeddings to correspond to the patch embeddings. The
position embeddings are fed into the transformer encoder, which uses its self-attention
mechanism to capture the relationships between image blocks and generates sequential
encoding filled with global contextual information. The decoding stage uses a mask
transformer specifically tailored to image segmentation, which learns pixel relationships
and semantic information to produce a segmented output corresponding to the input image.
The final step consists of the decoder output and applying class embeddings to assign class
labels to each pixel to generate a final pixel-by-pixel segmentation map.
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Figure 2. Overview of Vision Transformer framework. Transformer Encoder: The image patches are
projected onto a sequence of embeddings and then encoded with a transformer. Decoder: A mask
transformer takes as input the output of the encoder and class embeddings to predict segmentation
masks [12].

2.3. Semi-Supervised Learning Methods
2.3.1. Entropy Minimization

EM increases confidence in the predictions of unlabeled data by reducing the en-
tropy of the model output and increasing confidence in the overall model output using
unlabeled data.

The regularization term, denoted as Lentropy(p), is mathematically expressed as:

Lentropy(p) = − 1
log(C)∑

C
i=1 pilog(pi + ϵ) (1)

Here, C represents the number of classes, pi signifies the predicted probability for class
i, and ϵ is a small constant introduced to prevent numerical instability.

2.3.2. Cross Pseudo-Supervision

In the CPS framework shown in Figure 3, P1 and P2 are derived from the same input
image. P1 and P2 generate labels Y1 and Y2, respectively, using argmax. Among these, Y2
acts as the supervisor of P1 and Y1 supervises P2.
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Figure 3. Overview of cross pseudo-supervision framework. The F stands for backbone and the
double slash on the arrow stands for integration.

The CPS framework predicts unlabeled data through models with the same network
structure but different initialization parameters and then uses the prediction results of
different models to calculate the losses for each other. CPS exploits the differences between
model parameters to improve the adaptability of semi-supervised segmentation tasks.

2.3.3. Mean Teacher

As shown in Figure 4, the MT framework divides the model into teachers and students.
The teacher model is used to generate learning goals for students, and the student model
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uses the goals provided by the teacher for learning. The weight of the teacher model is
obtained from the weighted average of the student model’s time memory. It is believed
that when a small amount of perturbation noise is added to the input data, the prediction
results of the model do not change.
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In the context of the MT, the exponential moving average (EMA) mechanism is em-
ployed for parameter updates. The updated formula is expressed as

θ′t = αθ′t−1+(1 − α )θt (2)

where α signifies momentum, θ′t is the teacher network, and θ is the student network. For
instance, when α is set to 0.95, the teacher network retains 95% of its parameters unchanged
during each update, incorporating 5% from the student network.

2.3.4. Uncertainty-Aware Mean Teacher

In the UAMT framework shown in Figure 5, both the teacher and student models
share identical network structures. The teacher model parameters are updated through the
EMA of the student model parameters. The student model is optimized by minimizing
both the supervised loss (Ls) of labeled data (DL) and consistency loss (LC) of both the
unlabeled data (DU) and labeled data.
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Figure 5. Overview of uncertainty-aware mean teacher framework.

During training, the teacher model not only generates target outputs but also estimates
the uncertainty of each target prediction through Monte Carlo Dropout. Under the guidance
of Monte Carlo Dropout, unreliable predictions are filtered out, and only reliable predictions
are retained when calculating the consistency loss.

2.3.5. Interpolation Consistency Training

The ICT framework shown in Figure 6 involves interpolation between two distinct
transformations of the input data, compelling the model to maintain consistency in its pre-
dictions. ICT leverages this concept by generating additional training samples through the
interpolation and utilization of both labeled and unlabeled data. The consistency constraints
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imposed on these interpolated samples enable the model to adapt better to the distribution
of unlabeled data, ultimately enhancing its performance in semi-supervised scenarios.
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The parameter θ receives updates at each iteration t through stochastic gradient
descent to minimize the loss function L, defined as the sum of the cross-entropy loss (LS)
on the labeled samples and a weighted consistency regularization loss (LUS). Both losses
are computed on the mini-batch, and the weight w(t) is incrementally increased after each
iteration. This incremental increases in w(t) amplifies the significance of the consistency
regularization loss, aiding the model in effectively capturing and maintaining consistency
in its predictions.

The formula for the interpolation operation on unlabeled data awakening is:

Mixλ(a, b) = λa + (1 − λ)b (3)

where two inputs, a and b, are linearly interpolated based on a mixing coefficient, λ.
ICT trains a prediction model, fθ, to provide consistent predictions at the interpola-

tions of unlabeled points:

fθ
(

Mix
(
uj, uk

))
≈ Mixλ

(
fθ′

(
uj
)
, fθ′(uk)

)
(4)

where θ′ is a moving average of θ, fθ
(

Mix
(
uj, uk

))
is the prediction of the model fθ on the

mixup of unlabeled points uj and uk, and Mixλ

(
fθ′

(
uj
)
, fθ′(uk)

)
is the mixup of predictions

generated by the MT model fθ′ on the same unlabeled points.

2.3.6. Uncertainty-Aware Temporal Self-Learning

As shown in Figure 7, UATS combines two semi-supervised learning techniques,
self-learning and temporal integration. The idea of self-learning is to iteratively obtain
improved models by extending the dataset. In order to limit the impact of erroneous
pseudo-labels, the most plausible prediction is selected based on an uncertainty metric.
Also, some concepts derived from temporal integration are incorporated, where the pseudo-
label is updated based on the integrated prediction rather than the current period prediction.
In addition, the loss of consistency between current and integrated forecasts is computed,
enforcing consistency between current and prior period forecasts.

The consistency loss is obtained by computing the dissimilarity between the integrated
prediction and the current network prediction. In the original spatio-temporal ensemble
approach designed for classification, the similarity was measured by the mean square
error. For the segmentation task, we find it more effective to define the similarity of the
two segmentation results, as it is less sensitive to category imbalance and can cope with
probabilistic segmentation.
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2.4. Training Settings

We standardized the initialization parameters of U-Net and ViT to better compare the
semi-supervised performances of the two models. In the semi-supervised learning, the
batch sizes for both labeled and unlabeled data were experientially set to 12, and the initial
learning rate was set to 0.005. The SGD was used to optimize model convergence. We
combined the cross-entropy (CE) loss and Dice loss in the supervision part. We defined the
total loss of the supervised part as 0.5 × (CE loss + Dice loss). The model learned features
through the classification information of the CE loss and the segmentation accuracy of the
Dice loss.

3. Results
3.1. Semi-Supervised Learning Methods

It should provide a concise and precise description of the experimental results and
their interpretation, as well as the experimental conclusions that can be drawn.

Dice and TPR using supervised and semi-supervised segmentation methods are listed
in Table 1. To comprehensively evaluate the overall performance of the model, we calculate
the mean values of the overall Dice and TPR.

Table 1. Dice (%) and TPR (%) of the four regions of the prostate using supervised and semi-
supervised segmentation methods and their mean values with 58 patients used for training.

Backbone
PZ TZ DPU AFS Mean

Dice TPR Dice TPR Dice TPR Dice TPR Dice TPR

U-Net

Supervised 76.59 73.65 85.99 85.01 72.22 70.43 42.61 49.05 69.35 69.54
EM 78.09 74.66 87.75 86.40 74.07 73.57 45.33 48.69 71.31 70.83
CPS 79.68 81.77 87.74 86.04 72.64 70.12 46.42 52.94 71.62 72.72
MT 77.96 75.39 86.89 84.92 74.35 74.71 43.78 50.73 70.75 71.44

UAMT 77.71 74.84 86.02 88.40 73.13 77.33 44.09 50.40 70.24 72.74
ICT 78.87 78.08 87.75 86.37 72.77 71.35 47.88 55.17 71.82 72.74

UATS 78.90 76.73 87.56 89.61 73.09 73.56 43.60 51.52 70.79 72.86

ViT

Supervised 69.49 70.35 82.68 80.06 61.86 56.75 37.79 38.36 62.96 61.38
EM 67.61 68.91 81.46 79.89 57.75 49.95 35.88 39.20 60.68 59.49
CPS 69.34 72.98 82.31 79.30 61.99 60.19 38.30 41.96 62.99 63.61
MT 69.95 72.91 83.18 79.65 61.97 57.42 33.64 30.99 62.19 60.24

UAMT 70.54 72.25 82.95 82.16 61.42 55.93 38.39 46.30 63.33 64.16
ICT 69.59 73.49 82.72 80.89 62.34 58.38 37.28 38.36 62.98 62.78

UATS 70.43 70.11 83.92 83.21 61.33 58.10 35.88 33.29 62.89 61.18

In supervised learning, the performance of U-Net is superior to that of ViT. In the TZ
area, which has a large number of pixels and a relatively regular segmentation area, Dice
reaches 85.99% and TPR reaches 85.01%. U-Net demonstrates consistent performance in
areas with a large number of pixels, such as the PZ and TZ, as well as in areas with fewer
pixels, such as the DPU and AFS, showing that U-Net can demonstrate the accuracy of its
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segmentation with a small amount of labeled data. On the other hand, ViT only parallels
the performance of U-Net in the TZ area, where the number of pixels is larger, and the
segmentation area is more regular. The segmentation performance of ViT in the rest of the
prostate zones and the overall performance are affected by limited data and the large gap
between medical and natural images.

To assess the improvement in U-Net and ViT after incorporating semi-supervised
learning intuitively, we calculated the growth percentage of the four prostate regions and
the overall mean values compared with supervised learning, as shown in Table 2.

Table 2. Percentage increase in Dice and TPR when semi-supervised learning is used in comparison
to supervised learning for the four regions with 58 patients used for training.

Backbone PZ TZ DPU AFS Mean
Dice
(%)

TPR
(%)

Dice
(%)

TPR
(%)

Dice
(%)

TPR
(%)

Dice
(%)

TPR
(%)

Dice
(%)

TPR
(%)

EM 1.96 1.37 2.05 1.64 2.56 4.46 6.38 −0.73 2.82 1.86
CPS 4.03 11.03 2.04 1.21 0.58 −0.44 8.94 7.93 3.27 4.58

U-Net MT 1.79 2.36 1.05 −0.11 2.95 6.08 2.75 3.43 2.01 2.74
UAMT 1.46 1.62 0.03 3.99 1.26 9.80 3.47 2.75 1.28 4.61

ICT 2.98 6.01 2.05 1.60 0.76 1.31 12.37 12.48 3.55 4.61
UATS 3.02 4.18 1.83 5.41 1.2 4.44 2.32 5.04 2.08 4.77

EM −2.05 −2.05 −1.48 −0.21 −6.64 −11.98 −5.05 2.19 −3.62 −3.08
CPS −0.22 3.74 −0.45 −0.95 0.21 6.06 1.35 9.38 0.05 3.63

ViT MT 0.66 3.64 0.60 −0.51 0.18 1.18 −10.98 −19.21 −1.22 −1.85
UAMT 1.51 2.70 0.33 2.62 −0.89 −1.44 1.59 20.70 0.59 4.53

ICT 0.14 4.46 0.05 1.04 0.78 2.87 1.35 0.00 0.04 2.28
UATS 1.35 −0.34 1.50 3.93 −0.86 2.38 −5.05 −13.21 −0.11 −0.33

Figure 8 illustrates the comparison and supervised learning segmentation results with
U-Net as the backbone. The supervised and semi-supervised segmentation effects of U-Net
are relatively good, and the segmentation edges are smoother.

In the experiments using U-Net as the backbone, we observe the impact of different
methods on the model performance. Specifically, EM shows a significant improvement in
the DPU area, where Dice and TPR increase by 2.56% and 4.46%, respectively. In the AFS
area, Dice increases by 6.38%, whereas TPR decreases by 0.73%. CPS achieves remarkable
results in the PZ area, where Dice and TPR increase by 4.03% and 11.03%, respectively. In
the AFS area, Dice and TPR increase by 8.94% and 7.93%. However, in the DPU area, Dice
increases by 6.38%, whereas TPR decreases by 0.44%. The MT achieves good results in the
DPU area, with Dice and TPR increasing by 2.95% and 6.08%. In the TZ, Dice increases
by 6.38%, but TPR decreases by 0.11%. The UAMT shows a significant improvement in
TPR, with an increase of 3.99% in the TZ area, an increase of 9.08% in the DPU area, and
an overall performance improvement of 9.08%. The ICT achieves a 2.98% increase in Dice
and a 6.01% increase in TPR in the PZ area. In the AFS area, Dice and TPR increase by
12.37% and 12.48%. Overall, the performance improvs by 3.55% for Dice and 4.61% for
TPR. UATS provides a significant improvement in TPR in every area, with an average TPR
improvement of up to 4.77% in the aggregate.

Using ViT as the backbone, the CPS exhibits a slight overall improvement, with Dice
increasing 0.05% and TPR increasing 3.63%. For the UAMT, the TPR improvement effect is
more significant, with an increase of 2.62% in the TZ area, 20.7% in the AFS area, and an
overall increase of 4.53%. ICT improves in terms of overall performance, with increases in
Dice and TPR in each region.

Figure 9 shows the segmentation results with ViT as the backbone. It can be seen
that when the prostate image is segmented into different patches and put into the network
under the ViT network, the tissue under the prostate is misinterpreted as prostate and the
edges of the segmentation result are very rough.
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The red contour represents the ground truth, the blue contour represents the result of segmentation
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supervised learning.



Bioengineering 2024, 11, 865 11 of 16
Bioengineering 2024, 11, x FOR PEER REVIEW 12 of 18 
 

 

Figure 9. Four prostate zones are segmented based on ViT with 58 patients used for training. The 

red contour represents the ground truth, the blue contour represents the result of segmentation us-

ing ViT supervised learning, and the yellow contour is the result of segmentation using semi-super-

vised learning. 

Figure 9. Four prostate zones are segmented based on ViT with 58 patients used for training. The
red contour represents the ground truth, the blue contour represents the result of segmentation
using ViT supervised learning, and the yellow contour is the result of segmentation using semi-
supervised learning.
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To verify the effect of adding labeled data on the segmentation results, we randomly
divided the 20 test patients into two groups and included them in the training and test
sets, respectively. Subsequently, we switched the order and performed the experiment
again. The test results are shown in Table 3. Comparing Tables 2 and 3, we can find that
when U-Net is used as the backbone, the addition of labeled data significantly improves the
segmentation results, but semi-supervised learning decreases the increase in segmentation
results compared to supervised learning. However, when using ViT as the backbone,
adding labeled data is still less effective.

Table 3. Dice (%) and TPR (%) and their averages for supervised and semi-supervised segmentation
methods for the four regions of the prostate with 68 patients used for training.

Backbone
PZ TZ DPU AFS Mean

Dice TPR Dice TPR Dice TPR Dice TPR Dice TPR

U-Net

Supervised 78.94 80.23 88.75 87.36 72.49 74.78 39.14 40.58 69.83 70.74
EM 79.31 81.82 89.66 89.13 70.07 70.93 41.75 49.88 70.20 72.94
CPS 80.43 81.12 89.63 88.85 71.64 71.27 39.49 47.47 70.30 72.18
MT 80.47 82.35 88.58 85.95 71.07 71.56 40.18 47.16 70.07 71.76

UAMT 81.12 82.38 89.36 87.13 71.79 75.09 40.29 47.71 70.64 73.08
ICT 80.72 83.19 88.99 89.05 72.42 74.06 40.87 46.64 70.75 73.23

UATS 80.39 83.26 88.66 88.57 68.53 67.89 43.15 51.20 70.18 72.73

ViT

Supervised 69.04 74.95 84.25 82.20 58.66 54.73 36.63 38.52 62.15 62.60
EM 69.26 77.68 85.19 82.40 60.19 54.06 36.7 34.94 62.84 62.27
CPS 69.14 74.66 84.58 82.50 57.91 53.14 37.79 44.85 62.35 63.79
MT 69.23 72.21 85.06 82.69 58.95 51.62 36.52 37.08 62.44 60.90

UAMT 69.02 77.34 84.73 82.20 59.16 56.82 35.42 38.18 62.08 63.63
ICT 69.11 73.51 84.53 83.30 59.61 55.56 37.88 42.39 62.78 63.70

UATS 68.70 74.34 85.14 81.82 60.75 56.36 37.92 43.11 63.13 63.91

3.2. Classical Methods

To explore the advantages of deep learning comparison with classical segmentation
methods, we used the traditional multi-category segmentation methods Markov Random
Fields (MRF) [32], Mean Shift [33], and Ostu [34] for comparison. Table 4 shows the results
of the classical method segmentation. Comparing it with Table 2, it can be seen that the
segmentation accuracy of the classical method in the four regions is much lower than that
of the deep learning method. In addition, the classical method is almost unrecognizable in
the DPU area (targets with a small number of pixels and surrounded by other tissues). This
further illustrates the superiority of deep learning methods in handling complex medical
image segmentation tasks.

Table 4. Dice (%) and TPR (%) for classical segmentation methods for the four regions of the prostate.

PZ TZ DPU AFS
Dice TPR Dice TPR Dice TPR Dice TPR

MRF 13.77 25.78 18.92 46.86 0.04 2.23 8.56 34.37
Mean Shift 9.06 19.21 14.15 30.21 0.07 3.31 6.36 22.51

Ostu 9.44 20.15 13.52 45.04 0 0 8.43 22.23

Figure 10 shows the segmentation results of the three classical learning methods. It is
obvious from the figure that the surrounding tissues have a very strong influence on the
segmentation of the prostate. Specifically, the classical methods show significant limitations
in dealing with the complex tissue structure around the prostate. The interference of
the surrounding tissues led to inaccurate segmentation results, especially in the border
region of the prostate, where the classical method was susceptible to the influence of the
surrounding tissues, resulting in imprecise segmentation. These results further indicate
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that the performance of traditional segmentation methods is far inferior to modern deep
learning methods when dealing with complex medical images.
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4. Discussion

As medical datasets expand, a noteworthy amount of data from specialized fields
such as prostate imaging still remains unlabeled. Classical edge extraction [35] methods are
largely suitable only for binary segmentation tasks, while traditional multi-region segmen-
tation approaches like MRF, Mean Shift, and Ostu are highly susceptible to interference
from surrounding tissues when applied to prostate imaging. Consequently, using deep
learning for prostate segmentation has become a prominent area of research. To address
this problem, semi-supervised learning has attracted a lot of attention in the computer
vision community, especially in the field of medical image analysis [23].

This comparative analysis presents a comprehensive evaluation of the U-Net and
ViT architectures as the backbone of semi-supervised medical image segmentation on the
ProstateX dataset. We highlight the significant performance differences in semi-supervised
learning methods and reveal the unique advantages and limitations of each architecture.
U-Net consistently outperforms ViT across all regions for the baseline tasks, as evidenced by
the higher Dice coefficients. This demonstrates the remarkable flexibility and competence
of U-Net when applied to medical image segmentation tasks [36].

In U-Net with 58 patients used for training, the mean values of Dice and TPR in
the four parts of the prostate can be considered as the backbone. In terms of overall
performance, the effects of the five types of semi-supervised learning have demonstrated
growth, among which ICT has the most obvious improvement effect on the overall model.
All the semi-supervised learning methods have a higher Dice for region segmentation than
supervised learning. However, if we pay attention to the growth percentage of Dice and
TPR in the four regions, it can be seen that in EM, CPS, and MT, Dice in a certain region
increases, while TPR decreases slightly.

EM is used to reduce the uncertainty of the model and achieves better performance
in the TZ region where the morphology is more regular. In the AFS region, where the
proportion of pixels is small and the morphology is irregular, making the prediction contour
more closely fit the real labels may lead to some changes in the prediction values that exist
within the labels themselves, and the small proportion of pixels in AFS can easily lead to
the result of elevated Dice and decreased TPR. CPS uses models with the same initialization
structure and shows better performance for the PZ and AFS with irregular morphology.
The relative pixel ratio of the DPU is very small, while the PZ has the best segmentation
effect. The perturbation of the added data in the MT performs better in DPUs with a smaller
number of pixels and more regular morphology. The random noise in the TZ region, which
introduces some uncertainty during training, may be easily recognized in the TZ as being
in the region of the DPU inside it, and a much larger increase in the TPR of the region of
the DPU can be seen. However, the edges of the model are closer to the labels, which may
also lead to a decrease in the detection of true positives in some regions.
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The trade-off for U-Net to obtain more accurate segmentation results for the perfor-
mance of the model is the need to combine Dice and CE loss when choosing the loss
function. So, we can ignore the small amount of TPR in a single region. UAMT is a Monte
Carlo uncertainty estimation used in combination with the MT. The addition of this un-
certainty estimate improves the accuracy of the prediction value between the TZ and PZ
regions and makes the profile of the segmentation results close to the true labels. Notably,
this has a high impact on TPR. The strength of ICT lies in the irregular PZ and AFS and
becomes the most effective semi-supervised model of the five, with an average increase of
3.55% in Dice and 4.61% in TPR in the overall performance.

The UATS approach achieves the highest overall TPR improvement of 4.77%. It can
be seen that the SOTA in prostate semi-supervised learning is still more applicable to the
proposed U-Net as a backbone and shows good performance.

On the other hand, in ViT with 58 patients used for training, the effect of the semi-
supervised model across all five methods is very small in terms of the overall performance
of the model. A decline in performance in certain regions is also observed, even if the
overall effect has been improved. Each region is noted to be unstable, but UAMT and
CPS demonstrate a great improvement for TPR, while ICT improves in terms of both the
overall performance and specific prostate regions. In a framework like ViT that splits
images into patches before putting them into the network, simply adding noise can affect
the performance of the network. UATS in ViT as the backbone in the AFS is lower in
number and the effect of segmentation decreases more for morphological irregularities.
This approach is limited with ViT as the backbone.

We added labeled data to our study in an attempt to obtain better image segmentation
results in semi-supervised learning. The results show that the segmentation effect of the
U-Net backbone network is significantly improved as the amount of labeled data increases.
However, the improvement in semi-supervised learning compared to supervised learning
decreases, suggesting that when the amount of labeled data is sufficient, semi-supervised
learning does not provide a significant improvement in performance. Although for ViT,
segmentation is improved by adding training data, the overall performance is still not good.
Therefore, simply dividing images into patch embeddings as input has certain requirements
on the amount of data in medical images and is not applicable when the amount of labeled
data is small.

In the ViT fully supervised case, the tissue region below the prostate is incorrectly
identified as a prostate region, and there is no improvement in the semi-supervision
learning. Therefore, in the field of prostate segmentation, if semi-supervised learning is
added to the training, it is necessary that the fully supervised network is robust for the
overall benefit of the model and that the supervised part of learning does not require a
very large amount of data. And it also confirms that semi-supervised learning can produce
more accurate results for better backbones [16] that remain consistent.

There are some limitations to this comparative study: in the publicly available dataset
containing the four regions of the prostate gland segmented, we only found the Prosta-
teX dataset. Therefore, our semi-supervised methods were only experimented on using
this dataset. There are many more semi-supervised learning methods available, and we
only compared the segmentation results of the more commonly used methods applied to
the prostate.

5. Conclusions

In this study, after comparing U-Net and ViT, it can be seen that U-Net is more suitable
as a backbone in the semi-supervised segmentation of the prostate. Although ViT has
achieved great success in natural image data segmentation, it is difficult to demonstrate
its performance in medical image data with its morphological complexity and similarity
between tissues and small numbers. In semi-supervised learning methods, the UAMT
is very effective in improving the accuracy of the segmentation model. With U-Net as
a backbone, the TPR of the TZ region increases by 3.99%, the TPR of the DPU region
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increases by 9.08%, and the overall TPR increases by 9.08%. With ViT as a backbone, the TZ
region increases by 2.62%, the AFS region increases by 20.7%, and the overall improvement
is 4.53%. Thus, UAMT can be the first choice for improving the accuracy of regional
segmentation. ICT typically involves interpolating between the predictions of a model to
ensure that similar points in the data distribution have similar predictions. This improves
in terms of both the overall and regional performance. The SOTA prostate semi-supervised
segmentation method UATS is more applicable to U-Net as the backbone. With U-Net
as the backbone, the Dice of the AFS region improved by 12.37% while TPR increased by
12.48%. In terms of overall performance, Dice improved by 3.55% while TPR increased by
4.61%. With ViT as the backbone, Dice and TPR improved in every region. For the stable
improvement of the segmentation effect of every region, ICT is preferred. Thus, for regional
segmentation, ICT can be the first choice for semi-supervised methods.
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