UNIVERSITY OF BURGOS

Area of Electronic Technology

José Maria Camara Nebreda, César Represa Pérez, Pedro Luis Sdnchez Ortega
MPI Parallel Programming Fundamentals. 2015

Area of Electronic Technology

Electromechanical Engineering Department

University of Burgos

LYo Yo [V Tox 4o o TR 1

Activity 0: A SIMPIE EXAMIPIE ceeeeiiiiee ettt e e e st e e e s e e e s sb e e e e e ntae e e enreeeeenes 3
L0211 T I LV SR 3
THEORETICAL CONCEPTS...co ettt ittt ettt stee e stte s st e e site e site e sbae s sabeeebteessteesssaeesasessnseeensseesnseesnsseenn 3
PRACTICAL CASE eieeieeeeeee ettt e st te e et e e e e e stte e eateeesateeassaeasseeansaeessseeanseeassteeansasasnseesnseesnseeesnsneensees 5
QUESTIONS ...ttt et et e et e et e et e e et e e e teeesa s e e e saeaasseeasseeansaeeansasessseessseeansasasnseesnsaeenseeeansaeenssen 6
FLOW G CHART ettt sttt estee st s e e st e e st e ssba e e sbteessbeeesateesabeesasteesnbeeesteesateeenseeesnsaeensseesaseesnseassnseeensses 6

Activity 1: Point to Point COMMUNICAIONSeueiiiiiiiiiieeiieeee ettt e e e e s srere e e e e e e s e anenee 7
L0211 2 I VSR 7
THEORETICAL CONCEPTS...co ettt ittt ettt esiee st stee e site e st e s site e sate e stae s sabeeesbbeessteesnseeessseesnseeensseesnsaesnsseenn 7
PRACTICAL EXERCISE ..ot ieiee et ectieesiee ettt e e eeeseteesteeeseteesstaeasstaesnsasesssaeensasanssaesnsasesnseesnseeenseeesnsesensees 9
QUESTIONS ...t eeee ettt et e et e et e e et e e e tee e s st e e assaeeasseeasseeansasaansaeersseessseeansasesnseesnseeensteesnseeensses 9
FLOW G CHART ettt ettt et sttt et s e e st e st e et e e sabae s sat e e sateesabaeesabeesasaeesaseesnseeesaseeensseenaseesnseeennseeanes 10

Exercise 2: Collective CoOMMUNICAtIONScciiiiiiiiiiiiiee ettt ree e s e e s s sabee e e s nreeas 11
(0] 211 2 I LV USRS 11
THEORETICAL CONCEPTS...c ittt ettt ettt e ettt ste e s svte e st te e e e e e sste e ssaeeesseeesnbeeessseesnseeenseessnseesnsees 11
PRACTICAL CASE ...t eeeee ettt e tee ettt e st e e tae e s beeestteesataeeaaeesnsaeeasseesasaeenseeesasesesseessseesnseeesnsaeanes 13
QUESTIONS ...ttt ettt ettt et e e et e et ae e e abe e e taeesaaeeasseeessseesaseeansaeasnseeansseesseeansasesssassnsesansesesnseeanes 13
FLOW G CHART ettt ette ettt et e e tee s st e e st e et te e s bee s saaeessteesasaeesnseeeaseeessseeenseaesnseessaeesnsessnseessnsenanes 14

Activity 3: Scattering & REAUCHION....coccuiiii it e s s rra e e sarae e e esneaeeeens 15
(0] 211 2 I LV USRS 15
THEORETICAL CONCEPTS...c ettt etie ettt ettt e ettt e st e s svte e s e e ebe e e sste e saeeesaeeesnseeessseesnseesnneessnseeennees 15
PRACTICAL CASE ... et eetee ettt e e tte e ettt e et e e tte e s taeesateestaessaeesnsaeesseesasaeansaaesaseeesseesssesaseeesnseeanes 17
QUESTIONS ...ttt ettt e st e st e et te e st e e e be e e saaeeaaaeeessaeesateeenseeeanseeesseeanteeenseaessseesnsessnseesasenanes 17
FLOW G CHART ettt ettt ettt e et et e e tte s st e e s te e et te e sabeeesateessteesasaeesnseeeasaeessseeenseaesnseeensaeesnsessnseessnsenanes 18

ACtiVity 4: VIrtual TOPOIOZIES. ..eiieiiiiiieiiiie ettt et e s ae e e et e e e ssabaeeesssaeeesataeeesansseeeens 19
(01211 2 1 SRS 19
THEORETICAL CONCEPTS. ..ottt ettt ettt s e tte et e s svae e s te e esbee e ssteeeneeessteesnbeeessseesnseeestessnseesnees 19
PRACTICAL EXERCISEeiiitieiiieeitee ettt sttt ettt e s tte e site e st e sate e sbeeesabeesateesasaeesabaessbeesasaesnseeesaseennne 20
QUESTIONS ...ttt ettt ettt ettt e st e et ee e st e e e beeesateessseeeaseeesneeeenseeeanseesaneeesneeeanseeesnsaesnsesenseeeasenanes 20
FLOW G CHART .ttt etee st s e s tte s sttt este e et te e s ateeesaaeessteeesseeeanseesasaeessseeenseeeanseeensseesnsesenseeesnseennns 21

ACHIVILY 5: PArallel I/O e ittt ettt et ettt e te e s ta e et e s b e ebe e be e baesaaeeabeeabeenbeebeesaaestsenes 22
(0121 2 I USSP 22
THEORETICAL CONCEPTS. ..ttt ettt stee ettt s s stte et e s stte e sa e e esbee e ssaeesaeeesnteesnseeessseesnseeestessnseesnes 22
PRACTICAL EXERCISEeiiittiiiieeitee ettt eritee sttt ettt e sttt e site e sate e sate e sabeeessbeesaseesanaeesabeessbeesasaesnsaeesaseennns 24
QUESTIONS ...ttt ettt ee ettt e st e et e e st e e e beeesateeasseeeaseeesaseeenseeeanseeenseeesnsaeanseeessseesnsesenseesasenanes 24
FLOW G CHART .ttt ettt et st e s tee et e e st e et te e s ateeessteessteeesseeeanseesasaeessseeenseeeanseeensseesnsesensenesnseennes 25

Activity 6: New commUNICAtioN MOTES ...cccuiiiiiiiiiieiciiee et e e s e e e e sra e e e s araeeessneaeeeens 27
OBJETIVES.... ettt ettt e ettt e et e et e e et e e e te e e s teeaaseeeaseeesnteeenseeeanseeenneeesnseesnseeeansaesnsesesenesnsenanns 27
THEORETICAL CONCEPTS...c ittt ee ettt e tee e e st e e s e e e bt e e ssteeesseeeneeesaseeesnseeansaeeneeesnseesnees 27
RPRACTICAL EXERCISEc.uetieiiieiiteeiite ettt e ettt stte e site e steesbte e sabaessaaeesataesabteesabaessseenasaesnseesnaseennn 28
QUESTIONS ...ttt ettt ee ettt e st e et ee e et e e e te e e s teeaaseeeasseeanseeenseeeanseeanseeesnseesnseeesnseesnsesasenesnsennnns 28
oI T Y 2 SRS 28

ACtiVity 7: Derived data tYPES ..oecuiieeieiiie ettt ere e e et e et e e et e e st br e e e e ata e e e earaaeeeaaaaeeaan 29

OBUECTIVES. ettt ettt e et e s st e e s st e e s e s s e e e s e sr e e e e s amn e e e e smreneesnreneesnnnneenan 29

THEORETICAL CONCEPTS ...ttt 29

PRACTICAL EXERCISEottt ettt sttt s e s e ettt e e e s e e e e e eae e e e e e e e e aaab e e s e e e eaeesabaaaeeeeesannsssanns 31
QUESTIONS . e et e e e e e e e et ta e e e e e e e eaeba b e s aeeeeeaaa s e seaesaaesssanseeeaeennnsannnaseaes 31
FLOW G CHART ettt ettt sttt e st e st e st e ette e sabee s sateesateesabaeesaseesasaeesaseesnseaesnseeensaeenateesnseeesnseeanes 32
Activity 8: Dynamic Process ManagemeNnt..........uuiiiiiiiiiiiiiiiieeeeeeeeriiteeee e e e e et ee e e e e e sersreeeee e s e s snnnnes 33
(O] 1 1 I A R PO POUPPPTPPRPPPPRt 33
THEORETICAL CONCEPTS...c ittt ettt ettt e ettt s it e s stee e s te e ssbe e e ssbe e sbeeesateesabeeessseesaseesnneessnseesnsens 33
PRACTIAL EXERCISE ... ettt ettt e s s e e e e et e s s e s e e e e e e bbb e s e e e e aeeaabaaeseeesaeesnnanns 34
QUESTIONS Lottt e et e e e e e e ettt s e e e e e e et e baa e s aeeeeeaas s s eseeesaaesssanseeeaeensnsannsenaaes 34
FLOW G CHART ettt ettt ettt sttt e st e st e ette e sabee s sab e e sateessbaesenseesabaeesaseesnseaesnsaesnsaeenateesnseeesnseesnes 34
Activity 9: Example of real applicationc.ueii i 35
OBUETIVES ...ttt ettt ee e e e e e ettt e e s e e e e e e et s e s aeeeeaaae b s e s eeesaaesssanseeeaeensssannnasaans 35
THEORETICAL CONCEPTS...c ittt ettt ettt ettt e ste e s stte s te e sba e e sste e ssbeeesateesnbeeessseesnseesnseassnseesnses 35
PRACTICAL EXERCISEttt ttees e s s e et tat e e s e e e e e e eaa e e e e e e e e aaebaaaesaeeeaeaaasaaaeseeesannsssanns 35
QUESTIONS Lt e et ree e e e e e et e ta e e e e eeea e et s b e s aeeeaeaes s e seeesaaesssanseeeaesesssannneseans 36
Activity 10: Performance ASSESSIMENT......cciciiiiieiiieeeeciieeeectte e e ecrreeeeereeeeeetbeeeeessaeeessssaeeesassaeeesnsseneenan 37
OBJECTIVES . ettt e ettt e e e e e e e ettt e e e e e e e e e et s b e e aeeeaeaess e eseeesaaesssanseeeaeensnsannnneeans 37
THEORETICAL CONCEPTS. e etttiee ittt sttt s s e e e e e e e et s e e e e e e e e e b ab s e e eaeaanebaaaeseeeeenesnsanns 37
PRACTICAL EXERCISEeiiiieeitieesiteeeieeesiteeseteeestteesveessateesaaeesaeeesnseeessseessseesnseessnsessnssnesnsessnsenssnseennns 40
QUESTIONS .ttt e et ree e e e e e e e et e e e e eeeaa et ab e s aeeeaaaes s e eseeesaaesssannseeeeasesnsannsenaans 41
Appendix A: INStalliNg DEINOMPI.....ccocuiiie ettt e s e e e saba e e s sta e e e ssraeeesasaeeeesnsseeeens 42
(191 =1 | = o o USSR 42
(@00 7= (U= 1 4 To o W USRS 42
LAUNCNING JODS oottt et e e et e e e et e e e e ebte e e e ebaeeeeebaseeeabaeeesanstaeaeaseeeanannes 42
(CT =T o] o 1Tol = a1V T oY o s 411 | AU 42
Deino MPI manual. Available at: http://mpi.deino.net/manual.htmccccoovviiiiiiieiienieecee, 46
Appendix B: Project Configuration in Visual Studio 2010ccueeeeeiiiiieeeiiiee ettt e e evreee e 47

Appendix C: Configuration Of IMS-IMPL.ooo ittt e e et e e e et e e e e ebee e e s ebeeeeeeanes 52

LABORATORY GUIDE Introduction

Introduction

Our interest will be focused on parallel programing for multicomputer MIMD machines. Our
application programs will split into several processes and each one will have the potential capability
to be executed on a different node of our cluster.

The processes created by the user will cooperate to achieve a common computational objective. The
collaboration will be possible due to communication and synchronization tools provided by the
programming environment. Communication is implemented in the form of message exchanging.

Most of the scenarios proposed admit a number of different parallel solutions. We should try to
come up with the most advantageous in terms of system performance. To do so we must take into
account:

e We will try to increase performance (execution time). To do so, we will try to squish the
application’s potential locality, that is, its capability to work with local data avoiding the need
for much information exchange between processes.

e Another important point is “scalability”. In a hardware environment, where the amount of
available resources is unknown at programming time, the application must scale to make the
most of the available resources at any time.

Parallel programing is not an easy job. The theory around the development of concurrent and
parallel software is beyond the scope of this course but, we will provide some hints. Parallel
programming, as well as sequential programming is a creative task; what is about to be exposed is
nothing more than a series of steps we recommend to follow when facing a parallelization. Let’s split
up the process in 4 steps:

e Fragmentation: this initial step is meant to find potential parallel structures within the
problem to be solved. As a first approach, we may try to decompose the job in as many small
parallel tasks as possible. Two criteria can be followed to carry out this decomposition:

o The functional way: seeks for possible divisions in the job to be carried out by paying
attention to its nature.

o The data way: pays attention to the nature of the data to be processed trying to
decompose them into the smallest chunks.

e Communication: once identified potential parallel tasks, communication needs between
them must be analyzed.

e Binding: given that the cost of communications is high in terms of global execution time, the
formerly identified tasks have to merge partially in order to balance computation and
communication.

e Mapping: once the program’s structure is settled, the recently generated processes have to
be spread across the computers available. The strategy to be adopted differs according to

Introduction LABORATORY GUIDE

the fragmentation way. As a rule of thumb, there should be at least as many processes as
computers are available in order to prevent anyone being unused. If all computers are equal,
it would be recommendable to make as create as many processes as computers. If not, the
most powerful computers can host a higher number of processes. It is also possible to assign
processes to nodes on the go, thus balancing processors’ load dynamically.

LABORATORY GUIDE Activity 0: A simple example

Activity 0: A Simple Example

OBJECTIVES
+» Understand the structure of a parallel program.

+» Learn the main concepts associated to MPI through a simple practical case.

7
0.0

Conduct a first try in parallel programming and to understand its compilation and execution
process.

THEORETICAL CONCEPTS

The structure of a MPI program.

The structure of a parallel MPI program is not different from any other C program. To make the MPI
function set available we only need to include the corresponding header file: <mpi.h>. Now we are
going to introduce the most basic functions and the order in which some of them have to be called.

There is a conflict of names between stdio.h and mpi.h for C++ affecting SEEK_SET, SEEK_CUR, Y
SEEK_END functions. MPI generates them within its name space but, stdio.h defines then as
integer. Using #undef by bring about some conflicts with other included libraries, such as
iostream, thus triggering a fatal error. To sort this out #undef can be introduced before
#include<mpi.h>:

#include <stdio.h>
#undef SEEK SET
#undef SEEK CUR
#undef SEEK END

#include<mpi.h>

also #include<mpi.h> before #include<stdio.h> or iostream:

#include <mpi.h>

#include <stdio.h>

In <mpi.h> all the functions we use are referenced but some of them must be called according to a
certain sequence.

The first MPI function must be:
intMPI_Init(&argc, &argv|[])

Command line initialization parameters are included as function parameters. They need to be
declared in function main ().

The last MPI function on the program must be:

int MPI_Finalize()

It has no parameters. All other MPI functions will be placed between these two.

Activity 0: A simple example LABORATORY GUIDE

As a last remark we have to mention that LINUX systems require a exit (0) or return 0 ending
of the code so function main must be declared as int. This is not mandatory in Windows systems
but be keep it for the sake of compatibility.

Communicators

A communicator is a virtual entity that includes a number of processes capable of communicating
within the communicator. It is mandatory for two processes to communicate that they belong to a
common communicator. However, any process may belong to several communicators.

Within the communicator a process is identified by an integer number called “rank”.

The communicator itself is identified by a name. In every MPI program a default communicator
including all processes is generated: MPI_COMM_WORLD. Additional communicators can be created
by the user but this is out of the scope of this early exercise.

Some useful information can be retrieved from the communicator:

e Rank: in most cases, launched processes need to know their own ranks in order to identify
the specific tasks they have to carry out. Imagine there is a process in charge of delivering
workload to others and gathering results from them. Since the program’s code is seen the
same by all processes they at least need to know if they are the one to deliver or working
rest. Usually is the 0 ranked processes the one to behave as a master; the rest (and maybe
the 0 as well) do the hard work. The MPI function that returns the local rank is:

int MPI_Comm rank (MPI Comm comm, int *rank)

The input parameter comm is the communicator’s name. It is a MPI Comm, variable type (MPI
exclusive). The output parameter *rank points to the integer variable holding the
communicator’s rank.

e Size: it is usually useful to know the communicator’s size, that is, the number of processes
belonging to it. It is commonly used to split up workload between processes. The
corresponding MPI function is:

int MPI_Comm;size(MPI_Comm comm, int *size)
Output parameter *size returns the requested value.

The following function may also be useful. It returns the computer’s ID:

int MPI_Get_ processor_name (char *name, int *resultlen)

The first output parameter points to a string containing the computer’s name. The second one,
resultlen, returns the number of characters in the string.

LABORATORY GUIDE Activity 0: A simple example

PRACTICAL CASE

In this introductory exercise we provide the whole program’s code. Its purpose is to fully understand
the use of the elementary MPI functions and the process to write, compile and execute a MPI
program.

It is the typical “Hello world” program but in a parallel manner this time:

#include <mpi.h>

#include <stdio.h>

int main (int argc,char *argv([])
{

int myrank,size;

int length;

char name[10];

MPI Init (&argc,&argv);
MPI Comm rank (MPI COMM WORLD, &émyrank) ;
MPI Comm size (MPI_COMM WORLD, &size);

MPI Get processor name (name, &lenght);

printf (" [Computer $%$s]> Process %d out of %d: Hello World\n", name,
myrank, size);

fflush (stdout) ;

MPI Finalize();

return 0;

REMARKS:

1. Remember to write #include<mpi.h> before #include<stdio.h> to prevent the name
conflicts already explained.

2. Function £flush (stdout) intends to clean up the standard output (display results) before
resuming program execution.

In this course we use Ms Visual Studio to write and compile programs. Appendices B & C provide
detailed configuration information for Visual Studio 2005 & 2010 respectively.

Executable application programs must be launched from the DeinoMPI environment (or any other
MPI launcher) already installed at the lab. Appendix A describes the use of this graphical launcher.

Activity 0: A simple example LABORATORY GUIDE

QUESTIONS

After seeing the results, is it possible to guess how Rank is assigned to processes within the
Communicator?

e Explain how system reacts when MPI is not initiated or finalized. Explain also the reaction to
MPI function calls out of the space between these two events.

FLOWCHART

Begin

A

[Varaibles declaration]

v
MPI
Initialization

[Get size and rank]

Display size and rank

A 4

[End MPI J

'

LABORATORY GUIDE Activity 1: Point to Point Communications

Activity 1: Point to Point
Communications

OBJETIVES

7
0.0

To learn the different communication modes available in MPI and the structure of messages.
Get to know the basic message passing functions.

Make a first application program to deliver workload by means of message exchanging
functions.

THEORETICAL CONCEPTS

Communication between processes
We can classify communication modes according to different criteria. These criteria are not

alternative but complementary:

According to the number of processes that generate and receive information we have
communications:

o Point to point: one process sends a message to another.
o Point to multipoint (broadcast): one process sends information to several others.

o Multipoint to point: various processes send a message to the same one. This is
physically not possible as messages would collide but MPI provides a function that
virtualizes this possibility.

According to the synchronization between emitter and receiver:
o Synchronous exchanges: the emitter is idled until the receiver takes the message.

o Asynchronous exchanges: the emitter saves the message in an internal buffer to be
sent in background.

According to processes blocking, it may occur:

o Both emitter and receiver are idled until the send and receive operations have
completed. This doesn’t mean that the message has been collected by the receiver.
In both cases (send and receive) it is just necessary to have a copy of the message in
a local buffer. Processes only stop in case the buffer has no more space.

o Processes never stop regardless of the situation of the message. Unless outdated
data is used by later instruction, there is no issue on the use of this mode.

Activity 1: Point to Point Communications LABORATORY GUIDE

Messages
MPI messages are composed of two main parts: envelope and body.

The envelope is integrated by:

e Source: Sender’s ID (rank).
e Destination: Receiver’s ID (rank).
e Communicator: Name of the communicator to which emitter and receiver belong.

e Tag: Number used by both processes to classify messages.

The body is integrated by:

o Buffer: Memory area where the information is temporarily stored, either for send and
receive operations.

e Data type: Can be a simple data type: int, float, etc; or complex data types previously
defined by the user.

e Count: Number of pieces of “Data type” to be exchanged.

MPI uses its own data types. These types are equivalent to the standard C types (see table below) but
independent of the computer’s system. Therefore it is not necessary to deal with different data
formats when the hardware is heterogeneous.

Send & Receive functions.

MPI permits all communication modes already explained and some additional modes such as the
“ready” and “buffered” ones. At this point we are going to introduce only the functions
implementing the asynchronous blocking mode. They are:

int MPI_Send(void *buf, int count, MPI Datatype dtype, int dest, int
tag, MPI Comm comm)

int MPI_Recv(void *buf, int count, MPI Datatype dtype, int source, int
tag, MPI Comm comm, MPI Status *status)

MPI_Send requires a number of input parameters:

e *buf: points to the buffer (variable) representing the data to be sent.
e count: number of data units to be sent.

e dtype: MPI datatype.

e dest: receiver’s rank.

® tag:message’s tag.

e comm: communicator to which both sender and receiver belong.

MPI_Recv manages the following input parameters:

e count: humber of data to be received.

LABORATORY GUIDE Activity 1: Point to Point Communications

e dtype: MPI datatype.
e source: emitter’s rank.
e tag:message’s tag.

e comm: communicator to which both sender and receiver belong.

Output parameters are:

e *buf: points to the buffer (variable) where the received data are to be stored.
e *status: returns some relevant information such as message’s tag and source. It has to be
declared asMPI Status variable type.

Both functions return an error code in case they are not successfully completed.

Below we can find a quick reference table showing equivalent C and MPI data types:

MPI type C type

MPI_ CHAR Signed char
MPI SHORT Signed short int
MPI INT Signed int
MPI_LONG Signed long int

MPI_UNSIGNED_ CHAR

Unsigned char

MPI_UNSIGNED_ SHORT

Unsigned short int

MPI_UNSIGNED

Unsigned int

MPI UNSIGNED_LONG

Unsigned long int

MPI FLOAT

Float

MPI_DOUBLE

Double

MPI LONG_DOUBLE

Long double

MPI BYTE

Ninguno

MPI_PACKED

Ninguno

PRACTICAL EXERCISE

We will generate a simple program to test asynchronous blocking mode. 0 ranked process will
request an integer through the standard input, then it will be sent to process 1 who will display the

integer through the standard output.

QUESTIONS

Table 1. MPI datatypes.

e How could the same data be sent to various processes?

Activity 1: Point to Point Communications LABORATORY GUIDE

e How would be the receptions sorted in this case: by rank, by geographic proximity, by

program sequence...?

FLOWCHART
A\ 4
[Declaration of variables]
A 4
MPI
initialization
A 4
[Get rank]
Yes No
A 4 A
Get datum [Receive datum
4
Send datum] Show datum
\4 A\ 4

v

[End MPI }

10

LABORATORY GUIDE Activity 2: Collective communications

Exercise 2: Collective Communications

OBJETIVES

« Extend communication possibilities towards collective exchanges meant to make
communication programing simpler.

«»+ Think about different applications of collective communications.

THEORETICAL CONCEPTS

Collective Communications

On the previous exercise we exchanged messages between processes in the simplest possible way. In
spite of its flexibility and simplicity it isn’t in many cases the most adequate option. In most
computing scenarios a single master process delivers workload to several slave processes and then
gathers the results they all generate. It is possible to manage all necessary communication events via
point to point functions, but if higher level functions are available there it is pointless.

Collective communication functions allow one process to send the same data to many others and to
collect results from all of them in one step. This results in an extreme simplification of most parallel
applications.

Figure 2.1. Master Slave scheme.

MPI implementation
Broadcast is a word used to describe information deliveries from one sender to all possible receivers.
MPI provides a single function to manage this type of exchange:

int MPI_Bcast(void *buf, int count, MPI Datatype dtype, int source,
MPI Comm comm)

We already know the meaning and use of all its parameters. Just notice that there is a source but no
destination. It is important to remark that all processes see the function in their code exactly the

11

Activity 2: Collective communications LABORATORY GUIDE

same, but only the one whose rank is equal to source is the sender and the rest will consider the
function as a receive. Figure 2.2 shows how MPI_Bcast works. It copies the content of sender’s
*buf to the rest of the processes.

MPI|_Bcast

Figure 2.2. MPI_Bcast behavior.

Opposite to broadcasting is gathering. The results generated by all processes are reported to the
master. All this data is arranged in the master’s memory space according to the slave’s Rank. It is also
possible to collect results in all participating processes instead of only one. MPI functions providing
this functionality are:

int MPI_Gather (void *sendbuf, int count, MPI Datatype dtype, void
*recbuf, int count, MPI Datatype dtype, int dest, MPI Comm comm)

int MPI_Allgather (void *sendbuf, int count, MPI Datatype dtype, void
*recbuf, int count, MPI Datatype dtype, MPI Comm comm)

The first one puts results only in receiver’s recbuf. The second one leaves results in all processes’
recbuf. In this case no dest parameter is needed. In all cases, data are arranged according to the
sender’s rank.

The value of count is the same for both the sender and the receiver, remarkably. It is the amount of
date sent and the amount of data received from each process respectively.

MPI_Gather

Figure 2.3. MPI_Gather behavior.

12

LABORATORY GUIDE Activity 2: Collective communications

MPI_Allgather

Figure 2.4. MPI_Allgather behavior.

PRACTICAL CASE

The program to be carried out will sum up two matrices (NxN). Process O will initialize both and
broadcast them to the rest. Each process will sum the columns coinciding with its own rank. Process
0 will then collect all results, construct the final matrix and display it. Launch N process to avoid
caring about size mismatches.

In addition to that we will measure execution time. MPI provides this functionality by means of the
following function:

double MPI Wtime (void)

it returns an absolute time so it has to be called at the beginning and end of the program and then
subtract both times.

QUESTIONS

e Collective communications ease programming and make the code more straightforward.
Would it be wide to believe that they shorten program’s execution time?

e Explain what time is measured by the MPI function.

e Think of other time measurements that make possible to differentiate between

communication and calculation times.

13

Activity 2: Collective communications

LABORATORY GUIDE

FLOWCHART

Begin

A 4

Declaration of variables

A 4

MPI
initialization

Get rank

No
'd N\
Initialization of matrices
A\ J
A 4
'd)\
Timer initialization
A J
\ 4
'd ~\
Broadcast matrices Receive matrices
A J
4 N\ " ~N
Sum of columns Sum columns
(. J Y,
v
'd ~\
Collect results Send results
. J J

A\ 4

Display result

P
<
A

End MPI

14

LABORATORY GUIDE Activity 3: Scattering & Reduction

Activity 3: Scattering & Reduction

OBJETIVES
«* Try higher level collective functions.

THEORETICAL CONCEPTS

Scatter and reduction operations

Collective communication functions provide noticeable advantages over point to point functions in
many cases. Nevertheless it is still possible to increase the level of abstraction by means of the above
mentioned operations. Unlike broadcasting, scattering splits up the workload between the available
workers. Each process receives a chunk of the data to be processed. Reduction processes all results
generated by the slaves performing a certain operation on them and thus generating a final result.

MPI implementation
MPI function providing scattering capabilities is:

int MPI_Scatter(void *bufsend, int count, MPI Datatype dtype, void
*bufrecv, int count, MPI Datatype dtype, int source, MPI Comm comm)

It works similarly to other previous functions. In this particular case, data from master process
(*bufsend) are sent to slaves’ memory (*bufrecv). Parameter “count” indicates how many are sent
to each slave and its value is the same in both cases. Unlike MPI_Bcast, MPI_Scatter sends only
a subset of data to each receiving process. As depicted in figure 3.1, MPI_Scatter this subset is
distributed to the receivers according to their rank: first element (red) to process 0, second (green) to
process 1, etc. It is important to notice that the first element is copied to process 0 even though it
comes from the same process.

MPI_Bcast

15

Activity 3: Scattering & Reduction LABORATORY GUIDE

MPI_Scatter @
>b%

Figure 3.1. Diferences between functions MPI|_Bcast & MPI_Scatter.

Reduction capability is provided by:

int MPI_Reduce (void *bufsend, void *bufrecv, int count, MPI Datatype
dtype, MPI op op, int dest, MPI Comm comm)

MPI_Reduce

D2

Figure 3.2. Reduction operation with MPI_Reduce.

Like MPI_Gather, this function collects information from slave processes. Each one of them sends
count data stored in buffer *bufsend to the process whose Rank equals parameter dest. This
process doesn’t store the data in its buffer *bufrecv, but the result of an operation performed on
these data (fig. 3.2). Parameter MPI op, tells what the operation must be. Most common operations
in MPI are described in Table 2.

Operacién ‘Descripcién
MPI MAX Highest wvalue
MPI MIN Lowest value
MPI_SUM Sum

MPI PROD Product
MPI_LAND AND

MPI_LOR OR

MPI_ LXOR XOR

MPI BXOR Bit level XOR

16

LABORATORY GUIDE Activity 3: Scattering & Reduction

Determines the Rank of the process

MPI MINLOC)
- providing the lowest value.

Determines the Rank of the process

MPI MAXL
- oc providing the highest wvalue.

Table 2. MPI operations.

PRACTICAL CASE
In this case, the program must calculate the scalar product of two vectors of whatever size:

(x0, x1, ..., xn)e (y0, y1, ..., yn) = xOey0 + x1eyl + ... + xneyn

It is suggested to build up the program in a way that each process calculates one term of the whole
sum. The number of processes must be equal to the vector size in this scenario. Process 0 will
initialize the vectors x & y and it will also dispatch their elements to the rest. Process 0 will eventually
gather all individual terms of the sum and display the final result.

QUESTIONS

e Provided that the higher Rank processes have to perform more complex calculations, try to
propose how to optimize system performance delivering more work to lower Rank
processes.

e Isit possible to keep using the reduction function in this scenario?

17

Activity 3: Scattering & Reduction

LABORATORY GUIDE

FLOWCHART

Begin

A 4

Declaration of variables

A 4

MPT
initialization

Get rank

Display results

No
'd N\
Inicialization of vectors
A\ J
A 4
'd N\
Set timer
A\ J
\ 4
'd N\
Data delivery Receive data
A\ J
'd)\ ‘ ' N
Multiplition of elements Multiplition of elements
A J)
v
'd ~\
Reduction Send result
. J J
A 4

<
4

End MPI

18

LABORATORY GUIDE Activity 4: Virtual Topologies

Activity 4: Virtual Topologies

OBJETIVES

«»+ A first approach to virtual topologies as a fundamental tool for the resolution of certain
computing problems.

THEORETICAL CONCEPTS

MPI Cartesian topology

So far we’ve realized that all processes willing to Exchange messages must belong to a common
communicator. Since the complexity of the previous exercises has been low, only the default
communicator MPI COMM WORLD has been used. What we are going to do in this exercise is to
modify the virtual distribution of the processes within a new communicator. By doing so we intend to
make communicator’s virtual shape more similar to the structure of the problem to be solved.

We will work on the Cartesian topology, that is, processes will be identified according to n-dim
coordinates instead of a linear rank number. The number of dimensions and the size of each
dimension are configurable. After the creation of the virtual topology, processes keep their linear
rank ID within MPI_COMM WORLD but they will be given coordinates in the virtual matrix as well.

Various functions implement this functionality. Here we present the main ones:

int MPI_Cart create (MPI Comm comml, int ndims, int *dim size, int
*periods, int reorder, MPI Comm *comm2)

This function creates a new communicator comm2 to which all processes belonging to comml
(MPI COMM WORLD) are included. In comm2 processes are identified by ndims coordinates. Each
dimension’s size is set through *dim size poiting to an ndims size vector. Each vector component
set the size of the corresponding dimension of the topology. For instance, if we intend to arrange 12
processes in 4x2 matrix, we have to initialize ndims = 2, declare a two components vector; the first
one has two be initialized to 4 and the second one to 3.

Slightly more complex is the behavior of *periods and reorder. The first one, (*periods) point
to a ndims components vector setting the periodicity of each dimension’s numbering. Don’t worry
too much about this at this point.

Parameter (reorder) allows MPI to modify (1) the order of the processes in respect to their order in
MPI COMM WORLD. Againitis not an issue for the moment.

In order to be able to assign workload to the processes according to their brand new coordinates,
these must be known first. The following function returns the local coordinates:

int MPI_Cart_coords (MPI Comm comm, int rank, int ndims, int* coords)

Coordinates of process rank are returned in coords vector. Comm is the new communicator
although rank is the process ID in MPT COMM WORLD.

19

Activity 4: Virtual Topologies LABORATORY GUIDE

PRACTICAL EXERCISE

A matrix sum has to be programmed. Processes will be arranged according to the matrices’ structure
so each process will sum the elements whose position within the matrix corresponds to the process’
coordinates. Once again, process 0 will display the result and the elapsed time.

QUESTIONS

e How are matrices stores in memory in the C language?
e Think of other situations where this topology can also be exploited.

e Think of other different topologies that could be of interest.

20

LABORATORY GUIDE Activity 4: Virtual Topologies

FLOWCHART

Begin

'

[Declaration of variables]

A 4

[MPI initialization]

|

Get rank

A 4

Create topology

h 4

Get coordinates

A 4

Display coordinates

No

[Inicialization of matrices
A 4

[Set timer
v v

[Dispatch data [Receive data
l . \ 4

[Sum data [Sum data
l \ 4

[Collect results] [Send result

Display results
)
[End MPI]

End

21

Activity 5: Parallel I/0O LABORATORY GUIDE

Activity 5: Parallel I/0

OBJETIVES
+» Get to know parallel input/output techniques.

THEORETICAL CONCEPTS

Serial I/0

Traditional application programs manage input/output. This usually implies reading input data at the
beginning and writing results at the end. It is all conducted by the only process at work. Parallel
application can easily keep this serial approach; so have we done so far. Process 0 has always been in
charge of obtaining input data, deliver then to the rest and collecting and displaying results. Although
feasible in many cases, this serial i/o can become a bottleneck in certain situations since process 0
has to manage all transactions. If all processes are granted access to input data and can send results
to output channels, the bottleneck is cleared. This is what we know as parallel input/output.

Parallel I/0

Parallel input/output requires accesses to the corresponding channels from all processes. This is
achieved by the use of shared files. All processes may have read and write access rights over these
files. It is undoubtedly useful but some constraints have to be imposed to make it feasible.

First, the view each process has of the file has to be set. Obviously processes cannot have arbitrary
access to the contents of the file, otherwise race conditions may occur. Each process will have a
particular view or the file, meaning that its default read and writes will take place on a specific area
of the file different from the rest. This area is not private; in fact, processes can access each other’s
area whenever they need to do so to Exchange information.

The second issue it the sort of privileges each process has over the file. MPI manages this in a way
that every process establishes its own access rights.

MPI parallel 1/0
MPI implements this functionality through a set of functions. The first one in the program must be
the one to open the common file:

int MPI_File open (MPI Comm com, char *fichero, int mode, MPI Info info,
MPI File *fh)

The file pointed by *fichero is opened to perform operation mode on it (see table below). The
function returns the file handler *fh. Parameter info refers to a process information handler
whose content depends on the MPI distribution. At this point we will give it a null value
(Mp1 1NFO NULL). The following table shows all possible operation modes on the file:

22

LABORATORY GUIDE Activity 5: Parallel I/O

Access mode Description

MPI_MODE_RDONLY Read only

MPI_MODE_WRONLY Write only

MPI_MODE_RDWR Read & Write

MPI_MODE_CREATE Create file in case it doesn’t yet exists

Return error when trying to créate an

MPI MODE EXCL
_MODE_EXC already existing file.

MPI MODE DELETE ON_CLOSE Delete file when closed.

Concurrent access to the file is not

MPI MODE UNIQUE OPEN
- - - allowed

Only sequential access to the file is

MPI MODE SECUENTIAL .
— — permitted

All pointers are initially set to the end

MPI_MODE_APPEND OF file

Table 3. MPI file access modes.

All these modes are not alternative but complementary. In fact, it is quite common to combine
several ones. For instance, we can create it in case it’s necessary and open it for read and write:

MPI MODE CREATE | MPI MODE RDWR

Next operation to be performed is the definition of file view for each process. Each one has to set
where exactly will it set the beginning of the file, what its internal structure will be and what sort of
data are to be stored. The MPI function to do it all is:

int MPI File set_view (MPI File fh, MPI Offset offset, MPI Datatype
dtipo, MPI Datatype ftype, char *datarep, MPI Info info)

The file to be configured is set by the handler obtained from the previous function. Current process
will see the file as if it began at position offset. From there on dtype data are to be stored.
Parameter ftype sets the file’s structure, that is, the way data introduced by different processes are
going to interleave. This is actually a powerful tool as it allows to interleave different data types and
sized introduced from different processes. To do so it is a MPI derived data type has to be created.
We will ignore this for the moment thus making ftype and dtype equal. Our files will present a
homogeneous structure. Parameter *datarep sets how data are represented in the file when
transferring them from memory. There are three possibilities: “native”, “internal” or
“external32”. The “native” data are moved from memory to the file unchanged. Their format
differs according to the specific MPI distribution, so different computers might see the file contents
differently. Format “external32” is common to all MPIl implementations. The downside of this is
that a format conversion is required. Midway between these two is the “internal” format. It only
performs data conversions when necessary. Since all the nodes in our system are equal, we’ll use the
“native” formatin our experiments.

23

Activity 5: Parallel I/0O LABORATORY GUIDE

After initializing the file view it is already possible to read and write data. There are several functions
available, let’s see the most simple:

int MPI_File read at(MPI File fh, MPI Offset offset, void *buf, int
count, MPI Datatype dtype, MPI Status *estatus)

File £h will be read from position offset. As usual, count is the number of data to be read and to
be stored in buf. These pieces of information will be of dtype type.

int MPI _File write_ at (MPI_File fh, MPI Offset offset, void *buf, int
count, MPI Datatype dtipo, MPI Status *estado)

File £h will be written from position offset. Again, count is the number of data to be read and to
be stored in buf. These pieces of information will be of dtype type.

Once the read/write operation is performed, the file must be closed:

int MPI_File_close(MPI_File *fh)

PRACTICAL EXERCISE

We will carry out a simple program to check the use of parallel input/output. All launched processes
must store in a file their rank a certain number of times (configurable). The writings will be sorted
according again to the rank. Afterwards, each process will read and display the data introduced by it.
In order to make the file readable, 48 value can be added to the rank. This will transform the integer
value of the rank into its ASCIl equivalent. Alternatively, a char could be written.

QUESTIONS

e s it possible to use parallel input output as an alternative way of scattering information to
other processes?
e What are the setbacks of this procedure?

e Isthere any advantage on its use?

24

LABORATORY GUIDE

Activity 5: Parallel 1/0

FLOWCHART

Begin

Declaration of variables]

A4

[MPI initialization]

|

Get rank

Open file

A 4

Create file view

A 4

Write data in file

Close file

Open file

A 4

Create file view

A

REad data from file

Close file

A 4

Display data

A 4

[Bnd weT]
v

25

MANUAL DE PRACTICAS Activity 6: New communication modes

Activity 6: New communication modes

OBJETIVES
«»* Increase our knowledge on MPI communication modes.

THEORETICAL CONCEPTS

Other communication modes in MPI

In exercise 1 various different way of communicating were introduced but only the standard mode
was then used under the functions MPI_Send y MPI_Recive. We are now in a position to take
further steps.

Previous communication functions implement the so called blocking mode, that is, they don’t allow
process progression until the communication event is completed. It is important to remember that
this completion means nothing else than copying the message in a local buffer.

Nevertheless, this process blocking leads to a performance penalty. So as to sort out these negative
implications, MPI provides an alternative, included within the standard communication mode as well.
In the non-blocking mode the communication event is Split in two parts: in the first one the
operation is initiated, whereas in the second one it is finished. Meanwhile instructions not depending
on communication results can be processed. In general terms, all operations that don’t depend on
the data to be transferred can proceed in that interval.

Let’s have a look at the functions that trigger the communication event:

int MPI_Isend(void *buf, int count, MPI Datatype dtype, int dest, int
tag, MPI Comm comm, MPI Request *request)

int MPI_Irecv(void *buf, int count, MPI Datatype dtype, int source, int
tag, MPI Comm comm, MPI Request *request)

As we can see, the syntax doesn’t change much. The main difference is the presence of parameter
*request. It returns a pointer to the communication task itself so it can be addressed in the
finalization operation.

Communication operations may end up in two forms: wait or test. If we choose wait, processing will
stop until the communication is completed. Non-blocking send plus wait does not differ much from a
blocking send. In case a test operation is launched the processes will be aware of the finalization
status of the operation and behave consequently.

Wait function for both send and receive operations is:

int MPI_Wait (MPI Request *request, MPI Status *status)

Its input parameter *request is the pointer returned by the starting functions. Test function is:

int MPI_Test (MPI Request *request, int *flag, MPI Status *status)

27

Activity 6: New communication modes MANUAL DE PRACTICAS

Unlike the previous one, this one returns a flag indicating whether the operation has finished “1” or
not “0”.

RPRACTICAL EXERCISE

Let’s imagine a scenario where the factorial of a certain number is to be calculated. Process 0 will
obtain the numbers (integers) from the user. Calculations will be performed by process 1 (suppose it
resides in a powerful machine where calculations are faster). In order to avoid collapsing calculation
by an excessive number of requests from the user, input data will be requested only when previous
operation has finished. Otherwise a wait message will be displayed. The message will be followed by
an increasing number of dots as the time goes on. This scenario is quite unlikely to happen since
factorial calculations are actually quite short for modern computers. To force waits to happen we can
repeat calculation at process one as many times as necessary to make its work harder.

Process 0 will display the result of the factorial calculation. In order to provide the user a proper way
to end up this program the number 0 will be treated as a “scape” condition.

QUESTIONS

e How can the power of non-blocking communications be exploited to avoid working with
obsolete data?

e s it possible to generate a deadlock (processes waiting for one another) when using non-
blocking functions?

e Make a brief dissertation about the concept of deadlock and how it affects the different

communication modes.

FLOWCHART

28

MANUAL DE PRACTICAS Activity 7: Derived data types

Activity 7: Derived data types

OBJECTIVES
«+ Improve data Exchange capabilities with the use of derived data types.

THEORETICAL CONCEPTS

MPI derived data types

So far, very simple data types have been exchanged: integer, float or vectors. It is enough in many
cases but, in certain situations it’s worth using more potent capabilities. Let’s imagine we could
exchange data structures defined by the user. Structures don’t exist as primary data types in MPI so
its components would have to be delivered separately. This is a feasible solution but there is a better
option though. The question is, Can data structures be defined in MPI? The answer is yes but... This
possibility is available through the creation of the derived data types. This is a bit more complex than
the use of data structures in C since not only different data types can be interleaved but also their
relative location in memory has to be specified. This means that the user can create gaps between
the data. This has some relevant uses. If we think about the way matrices are stored in memory,
where they are saved in row order, if we need to deal with sub-matrices, we can introduce the
mentioned gaps to skip the parts of a row that are not to be processed.

Let’s have a look at the tools provided by MPI:

int MPI_Type struct(int count, int *vector block length, MPI Aint
*vector offset, MPI Datatype *vector types, MPI Datatype *new type)

Parameter count describes the number of elements in the data type. Parameter
vector block length contains each element’s length (the elements could be arrays). Parameter
vector offset specifies the position of the element in memory related to the beginning of the
message. Parameter vector types describes the MPI data type of each element. Finally new type
is a pointer to the just created data type. Note that it points to a data type not to a real data
structure.

Once the new type has been defined, the following function has to be called to make it available:
int MPI_Type commit (MPI Datatype *new type)
The following example intends to make the use of these functions more straightforward:

#include <stdio.h>
#include <math.h>

#include <mpi.h>

int main (int argc, char *argv([])

int mirango;

int vector long[3];

29

Activity 6: New communication modes MANUAL DE PRACTICAS

MPI Aint vector despl[3];
MPI Datatype vector tipos[3];
MPI Datatype nuevo_tipo;

typedef struct{
float a;
int b;
char c;

}viejo_tipo;

viejo tipo datos;

vector long[0] = vector long[l] = vector long[2] = 1;
vector despl[0] = 0;

vector despl[l] = sizeof(float);

vector despl[2] = vector despl[l]+sizeof (int);

vector tipos[0] = MPI FLOAT;

vector_ tipos[l] = MPI INT;

vector tipos([2] = MPI CHAR;

MPI Init (&argc, &argv);
MPI Comm rank (MPI_ COMM WORLD, é&mirango);
MPI Type struct(3,vector long,vector despl,vector tipos,
&nuevo_tipo);
MPI Type commit (&nuevo tipo);
if (mirango==0)
{
datos.a 1.5;
datos.b = 10;

datos.c = '2"';

}
MPI Bcast(&datos, 1, nuevo tipo, 0, MPI_ COMM WORLD) ;

if (mirango!=0)
{
printf ("a=%f b=%d c=%c",datos.a,datos.b,datos.c);
}
MPI Finalize();

return 0;

30

MANUAL DE PRACTICAS Activity 7: Derived data types

The function described before is the most flexible option but, in case our data type is to be quite
simple some more functions can be considered:

int MPI_Type contiguous (int count, MPI Datatype old type, MPI Datatype
*new_type)

int MPI_Type vector (int count, int block length, int hop, MPI Datatype
element type, MPI Datatype *new type)

int MPI_Type indexed(int count,int *vector length, int *vector offset,
MPI Datatype element type, MPI Datatype *new type)

The first one converts count contiguous elements from the old type, into one element of the new
one.

The second one converts count blocks with block length contiguous elements from the old type
separated hop elements from one another, into the new type.

The third one takes count blocks, where the i block is integrated by a number of elements given by
the n" component of vector length and are element type typed. This block is shifted from the
beginning of the new type a distance equal to the size of element type multiplied by the it
component of vector offset. Itis a bit complicated but can be useful in certain cases.

In all cases function MPI_Type commit has to be called afterwards.
PRACTICAL EXERCISE

Our program will have three processes. Process 0 will initialize an NxN matrix containing random
numbers. Processes 1 and 2 will initialize their matrices to null. Then process 0 will send process 1
the upper triangular matrix whereas process 2 will be given the lower triangular in turn (figure 7.1).
Both receiving processes will then display their matrices.

Figure 7.1. Square matrix with the main diagonal in blue.

QUESTIONS

e In this exercise, what sort of problems would we find if we used dynamic memory allocation
to generate space for the matrices? How does this affect the creation of the new data types?

31

Activity 6: New communication modes MANUAL DE PRACTICAS

e There are some applications where, in order to perform a certain operation with a sub-
matrix, the surrounding data are necessary (a row and a column for instance) although they
will remain unchanged. How could this application be modified to make it possible?

e Think of other situations where derived data types may be of help.

FLOWCHART

32

LABORATORY GUIDE Activity 8: Dynamic process management

Activity 8: Dynamic Process
Management

OBJETIVES

.

+» Try the dynamic cluster configuration tools as an approach to the virtual machine model.

THEORETICAL CONCEPTS

Dynamic cluster management

A complete dynamic management tool should make possible the creation and deletion of remote
processes already in progress without restriction. Esto, que estd muy bien logrado en PVM, en MPI
estd aun al principio del camino. Given the fact that MPI is a cluster oriented environment rather
than to a virtual machine related done, it is not so concerned about the dynamic creation and
removal of processes at run time. This not only restricts the capabilities of the message passing
system but also may lead to full system failures in case one of its nodes vanishes.

The relentless expansion of MPI makes its developers try to overcome these constraints thus nearing
MPI to the concept of virtual machine. A first step has been the introduction of some functions that
permit the dynamic management of processes. In this form, an already running process is able to
launch child processes to carry out some tasks for him.

Process management functions in MPI-2
The main and almost only function so far is:

int MPI_Comm_spawn(char *command, char *argv[], int maxprocs, MPI Info
info, int root, MPI Comm comm., MPI Comm *intercom, int
array of errcodes[])

With this function, maxprocs copies of the MPI program pointed by command, are launched. The
communicator pointed by intercomm is created to facilitate data exchange with them. A second
MPI COMM WORLD is automatically created to provide communication between child processes.
Initialization data can be passed to child processes through argv. Parameter root is parent’s ID
within communicator comm. Parameter info provides a series of values related to where and how to
start child processes. Finally, an array of possible error codes is returned, one for each launched
process.

The name of the child process can be directly written between quotation marks. Since info
parameter is not to be used in this exercise it can be ignored using MPI INFO NULL and so can be
done to ignore error codes: MPI_ERRCODES IGNORE. If no command line arguments are not to be
used MPI ARGV NULL is the value for argv.

Another useful function is:

int MPI_Comm get parent (MPI Comm *comm)

33

Activity 8: Dynamic process management MANUAL DE PRACTICAS

It returns an inter-communicator to connect parent and child processes.

Another one:

int MPI_Attr get (MPI Comm comm, MPI UNIVERSE SIZE, int *universe sizep,
int *flag)

Parameter universe sizep returns the expected number of processes. It is automatically set and
depends on MPI distribution. LAM MPI initializes it to the number of machines in the cluster. Its value
can be used as maxprocs in MPI_Comm_spawn function. Should this functionality not be available
flag will be set to false.

In order to make communication between parents and child processes possible the inter-
communicator must be transformed into intra-communicator at both sides:

int MPI_Intercomm merge (MPI Comm intercom, int order, MPI Comm
*intracom)

The intra-communicator is integrated by both parents and child processes. Parameter order sets the
order of the processes within the new communicator. This parameter set to false in the parent
processes means that it will have rank 0; likewise, child processes musk set it to true.

PRACTIAL EXERCISE

We will launch a single process which, at run time will launch a number of child processes. To do so,
two “.exe” files have to be created, one for the parent and a different one for the child/children. Yet
the parent is the one that is launched by MPI. Greeting messages will be exchanged and displayed
between parent and child processes and between child processes as well.

QUESTIONS

e It is possible for a parent process to launch several children. Would it be possible for a child
process to have several parents?

e Could a child process be launched by several parents alternatively?

e Can a child process become a parent and launch other ones?

e Try to think of more opportunities opened by these tools.

FLOWCHART

34

LABORATORY GUIDE Activity 9: Sample practical application

Activity 9: Example of real application

OBJETIVES

¢ Apply previously acquired knowledge to develop a bit more complex program intended to be
used as a benchmark to measure system performance.

THEORETICAL CONCEPTS

No new concepts will be introduced in this chapter since it is meant to exploit those already learned.
As obvious, not all aspects of MPI development environment have been exposed and nor our
application program is expected to find the most optimal solution but quite a good job is possible
though.

However, it may be helpful to introduce some additional information about the functions we already
know. Function MPI_Recv returns a MPI_Status type parameter that we haven’t used so far. It is a
structure integrated by 3 elements: MPI SOURCE, MPI TAG & MPI ERROR. The first one contains
the Rank of the sender process. If the message was received under MPI ANY SOURCE it can be
necessary to find out who sent it later on in the program. The second one returns the message’s tag.
If it was received under MPI_ANY TAG, it could be interesting to get to know the tag’s value as well.
The third one returns an error code. We won’t deal with error codes in this exercise.

PRACTICAL EXERCISE

We will program a parallel matrix multiply. It is the student’s decision how to scatter calculations
among all the processes. The size of the matrices (square) must be configurable. Dynamic memory
allocation is strongly recommended so no limits to the size of the matrices are imposed.

Process 0 will initialize the operand matrices with any value (random, loop, etc). Data type will be
float. In a first stage, multiplication results will be displayed to check correctness. Once the program
has been validated, result printing must be removed to allow matrix size to grow. Execution time has
to be displayed in all cases.

REMARK:

To combine double indexing with dynamic memory allocation for matrices, we must use double
pointers. Each pointer within an array will give access to a row in a matrix:

// Declare a double poiter for the matrix
// This will let us refer to the elements in a [row] [column] manner
float **Matrix;
// Initialize the double poiter to store poiters to each and every row in the matrix.
Matrix = (float **) malloc (ROWS*sizeof (float *));
// We initialize each poiter to the starting poit of each row
for (i=0; i< ROWS; i++)
{
MatriX[i] = (float *) malloc (COLUMNS*sizeof (float));
}

// Now we can us [row] [column] format for our matrix:

35

Activity 9: Sample practical application LABORATORY GUIDE

for (int i=0; i<ROWS; i++)
{
for (int j=0; j<COLUMNS; 7j++)
{
Matrix[i][j] = 0.0;

}

However, this dynamic allocation procedure does not guarantee that rows in the matrix are
contiguous in memory. This can be necessary for sending functions in our program. We should send
data row by row in that scenario. If we want to keep double indexing while adding contiguity, we will
have to proceed as follows:

// Declare a double poiter for the matrix
// This will let us refer to the elements in a [row] [column] manner
float **Matrix;
// Initialize the double poiter to store poiters to each and every row in the matrix.
MatriX = (float **) malloc (ROWS*sizeof (float *));
// Declare a new pointer to allocate memory space for the whole matrix.
float *Mf;
// Initialize the pointer that will guarantee consecutive location of all rows
Mf = (float *) malloc (ROWS*COLUMNS*sizeof (float)):;
// We initialize each poiter to the starting poit of each row.
for (i=0; i< ROWS; i++)
{

MatrixX[i] = Mf + i* COLUMNS;
}
// Now we can us [row] [column] format for our matrix:
for (int i=0; 1i<ROWS; i++)
{

for (int j=0; j<COLUMNS; j++)

{

Matrix[i][j] = 0.0;

}
It is now important to notice that this alternative leads to the use of Matrix[0] as the starting
address of the data stored in the matrix.

QUESTIONS

e In order to multiply AxB matrix A can be delivered to all processes whilst matrix B se can be
distributed in columns. Think of a different option.

e Would it be possible to avail of the power of Cartesian topology to facilitate the resolution of
this exercise?

e The need to broadcast one of the matrices slows program execution. Think of a different
solution to avoid delivering so much information. Try to guess what the performance of this
new option would be compared with the current program.

36

LABORATORY GUIDE Activity 10: Performance assessment

Activity 10: Performance Assessment

OBJECTIVES

+» To measure system’s performance in various circumstances.

R/

% To learn how to estimate system’s power and how to exploit it. A compromise between

7

learning effort and code optimization must be obtained.
THEORETICAL CONCEPTS
In this chapter some common performance related concepts are presented:

e Degree of parallelism (DOP): Number of processors used to run a program in a precise
moment on time. The curve, DOP = P(t), representing the degree of parallelism as a function
of time is called parallelism profile of the program. It doesn’t need to match the number of
processors available (n). For the following definitions we will assume that there are more
processors than necessary to reach the maximum degree of parallelism admitted by a
program: max{P(t)} = m<n.

e Total amount of work: Being A the computation capacity of a single processor, given either
in MIPS or MFLOPS, and assuming all processors to be equal, it is possible to measure the
amount of work carried out between time instant t, and tz from the area under the
parallelism profile as:

tg
W=A-IP(t)-dt.
ta

Usually the parallelism profile is a discrete graph (figure 3), so the total amount of work can
be computed as:

Where t; is the time span when the degree of parallelism is i, being m the maximum degree
of parallelism all over the program’s execution time.

According to this, the sum of the different time intervals is equal to the program’s execution
time:

iti —t, —t,.
i=1

e Average parallelism: Is the arithmetic mean of the degree of parallelism along time:

37

Activity 10: Performance assessment LABORATORY GUIDE

DOP

Average
parallelism

time
Figure 3.Parallelism profile and average parallelism.

e Available parallelism: Maximum degree of parallelism that can be extracted from a program,
regardless of hardware constraints.
m
e Asymptotic speedup: Let W. =i-A-t. be the work done when DOP =/, hence W = ZWi .

i=1

In this situation, the time employed by a single processor to carry out the work W, is

W, W,
t@= ZI; for k processors it is t, (k) = " IA , and for an infinite number of processors it is

Hence, the response time is defined as:

TO-Yt0-Y

T(0) = iti (o0) = iIW_IA

The maximum speed-up on a parallel system is reached when the number of processors is
unlimited. It will be determined by the quotient of both:

38

LABORATORY GUIDE Activity 10: Performance assessment

W, DAL
C_TO_Za o &Y
TT) oW, LA 8

Zia Zia X

Il
JUN

It can be stated that the maximum speed-up for a parallel system with an unlimited number
of processors is equal to the intrinsic average parallelism of the program to be parallelized.
Obviously what is difficult is to figure out this intrinsic parallelism and make the program be
as parallel as that.

A different way to calculate speed-up assumes that a job (being it either a single program or
a group of them), is to be run in “i” mode if “/ processors are to be employed. In this
scenario, R; represents the collective speed of them all in either MIPS or MFLOPS; R; would
be the speed of a single processor and T; = 1/R; the execution time. Let’s suppose the job is
conducted in “n” different modes, with different workload for each one, which results in a

different weight f; assigned to each mode. In this scenario, speed-up is defined as:

e
"2

Where T* is the weighted harmonic mean of the execution time for the

ll ”

execution modes.

In an ideal scenario, no delays are introduced by communications or lack of resources, so R; =
1, R,’ =i:

1

This expression is equivalent to the previous one.

From the previous case, the Amdahl’s law is derived. R; =i and it is assumed that W; = e and
W, =1 — o, which implies that part of the work is to be done in sequential mode and the rest
will exploit all system power. In this scenario:

1 n

g+1—a :1+(n—1)a
n

Hence:
n—>oo:S—>}/
a

In other words, system performance is upper bounded by the sequential part of the job.

System efficiency: Determines the degree of exploitation of the resources available:

39

Activity 10: Performance assessment LABORATORY GUIDE

S_TO
n n-T()

e Redundancy: Is the ratio between the number of operations performed by the system and
those performed by a single processor to carry out the same job:

2 o)
o)
e System utilization:
u-r.g-20
n-T(n)
e Quality of parallelism:
S-E T3 _
Q= R = - Tz(n()) ()assummgT(l):O(l).

PRACTICAL EXERCISE

The program developed in the previous exercise (matrix multiply) is to be used as a benchmark to
measure system performance. Matrix multiply is a cubic order problem that involves a significant
calculation increase for a small increase in matrix size. In this exercise we will explore the influence of
both system size and computation on execution time.

Concerning the amount of calculation, we must choose some precise values for matrix size. The first
figure is intended to result in a similar execution time regardless of the amount of resources
available. It will depend on the capabilities of the computers available. In our case we will start from
matrices 3000x3000 in size. This leads to 27x10° multiplication operations.

Starting from this size, we will increase matrix size to 4000 and 5000. For each of this values we will
launch from 1 (2 in case process 0 doesn’t perform calculations) to 6 (7) processes to be executed on
the same number of computers. A graph representing execution time as a function of the number of
computers (processes) should demonstrate that, when the workload is high, execution time is
reduced proportionally to the number of resources deployed.

Speed-up graphs
Make a graph of the evolution of speed-up (S) and efficiency (E) as a function of the number of
Computers and compare it with the ideal scenarios (figure a and figure b, respectively).

40

LABORATORY GUIDE Activity 10: Performance assessment

10

of
12t
sl
1
7k
D 0
Q 6 @ 08
3 S
kel
3 51 -% 06F
& L &
04t
3l
02f
2k
1 ; ; ; ; 0 ; ; ; ;
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
N° de maquinas (n) N° de maquinas (n)
(a) (b)
QUESTIONS

e For our experiments, determine: efficiency, utilization, redundancy and system quality.

e Compare the speed-up obtained with the one that should be achieved according to the

amount of resources utilized.
e Tryto figure out the reasons for the deviation.

e Describe which aspects should be improved to obtain a higher speed-up.

41

Appendix A: Installing DeinoMPI LABORATORY GUIDE

Appendix A: Installing DeinoMPI

DeinoMPI in an implementation of the standard MPI-2 for Microsoft Windows derived from Argonne
Nacional Laboratory’s MPICH2.

System requirements:

e Windows 2000/XP/Server 2003/Windows 7
e _NET Framework 2.0

Installation

DeinoMPI has to be downloaded and then installed in all computers in the cluster. The installation
process is the same in all nodes. It requires administrator privileges for installation but all users can
execute it afterwards.

Once it is installed folder \bin has to be added to the path.
Note: make sure Deino’s version matches the operating systems requirements (32 or 64 bits).
Configuration

Once the software has been installed, each user will need to create a “Credential Store”. It is used to
launch routines in a secure manner. Mpiexec will not execute any of them without this “Credential
Store”. The graphic environment will show the user this option in the first execution.

Launching Jobs
Once again, both the graphic environment and the command line are valid.
Graphic Environment

This tool can be used to launch MPI processes, manage the “Credential Store”, search for computers
within the local network that have MPI installed, verify mpiexec entries to diagnose common
problems, and go to the DeinoMPI web site to look for help and documentation.

Mpiexec tab
It is the main page and is used to launch and manage MPI processes.

42

LABORATORY GUIDE Appendix A: Installing DeinoMPI

Mpiexec | Credential Store | Cluster | Verfyjob [Web |

=5 A edcturas paralelashevaluacion' 1415\progra i g x| -
Break 2 2| Number of processes chema w Credential Store Account

General | Directory Staging | Corfiguration File

localonly (all processes will be launched on the local host)

[7] localroct fthe raot process will be launched with the ability ta interact with the deskton)
Environment variables: Format: "env=val envZ=val2 ..", example: MAXX=100 MAXY=200

Working directory:
Metwork drive mappings: Format: "z:\\server\share"

[T Add MPI Histary

[Add SMP Optimizations {many collective operstions have been optimized for multiple processes per node)
[Z] Print the exit codes of each process

[F] Usa MPE ta generate a log fils of all the MPIfunction calls Jumpshot

w channel

Show Messages

Introduce el tamano de la matriz N=N: 50 -
Primera matriz
1.0 4.0 3.0 8.0 2.0 5.0 1.0 1.0 5.0 7.0 1.0 2.0 2.0 1.0 8.C
3.0 9.0 4.0 7.0 3.0 1.0 4.0 0.0 7.0 7.0 6.0 1.0 5.0 5.0 1.cC
3.0 5.0 0.0 3.0 8.0 4.0 4.0 9.0 5.0 3.0 3.0 4.0 8.0 8.0 0.C
6.0 8.0 5.0 4.0 1.0 5.0 8.0 9.0 9.0 7.0 9.0 6.0 3.0 7.0 6.C
3.0 3.0 2.0 2.0 3.0 2.0 7.0 3.0 3.0 1.0 3.0 5.0 5.0 2.0 2.C
4.0 2.0 0.0 1.0 1.0 3.0 0.0 8.0 0.0 2.0 0.0 8.0 5.0 7.0 8.C
4.0 1.0 9.0 1.0 6.0 5.0 0.0 2.0 3.0 7.0 6.0 6.0 2.0 1.0 3.0 -
a'n A A R - FRrs 1A z' A A'a a'n 4 A a'a 1A s A A'r

< m b

Figure A1. Mpiexec tab.

These are the main elements of this tab:
e Application:

o The MPI application’s path is introduced here. The same path will be taken by default in
all nodes within the cluster so it is recommendable to copy the .exe file in the same
folder in all of them.

o If a network folder is specified, it is necessary to have sufficient privileges in the server.
o The “application” button can be used to locate the .exe file.

e Execute: the program selected in the application dialog is launched when this button is
pressed..

e Break: aborts program execution.

e Number of processes: Sets the number of processes to be launched.
e Credential Store Account: Sets the active user of the Credential Store.
o Check box “more options”: It expands/contracts the options area.

e Hosts: Introduce here the list of hosts where you want the processes to run. Host names are
separated by blanks. To execute the program in the local machine only, keep the default
option “localonly” active or write down its name on this list

43

Appendix A: Installing DeinoMPI LABORATORY GUIDE

Credential Store Tab.

This tab is used to manage user’s credential store. If no credential store has been created so far,
select “enable create store options” check box to make remaining options available. They are hidden
by default since they are only used the first time Deino is initiated.

[F DeinoMPL 2.0.1 A B AR L ' = | O |-

Mpiexec | Credential Store | Cluster | Verfy job | Web |

Location
Passward login Select | Registry
Credentials Add Credential Keys
chema Account Public Key hash:

TADDCDGSFF7D7BIGEASEEFCI44

Password if you believe your keys need to be replaced
(compromised, policy, etc) you can do so here.
The new public key will need to be distributed
to the machines in your cluster.

[7] enable create = Create New Keys

enable create store options
Create a Credential Store

Help High securty Secure and convenient Create Credential Store
Password Encryption Location
() Password protect private k&Y @ Windows ProtectData AP Removable media
) symmetric key @ Registry
@ Mo password) no encryption ™) Hard drive E]

Figure A2. Credential Store tab including all options.

In order to create a credential store, the “enable create store options” check box must be selected.
Three possibilities arise:

e “Password”:

o If this option is selected, the credential store will be protected from access by a
password. It is the most secure option but forces the user to introduce the password any
time a job has to be launched.

o If “No password” is selected, the use of MPI is easier but more vulnerable. Without a
password any program launched by the user can access the credential store which is not
really a problem provided no malicious software is being used.

o Even with this “No password” option active, the credential store is not available to other
users if the encryption option is selected.

e “Encryption”:

44

LABORATORY GUIDE Appendix A: Installing DeinoMPI

o “Windows ProtectData API” allows encryption of the credential store using the
encryption scheme used by Windows for the current user. This ensures the credential
store will only be available when the user is validated.

o If a password is selected the “symmetric key” encryption format can be chosen. This
encryption is not specific to the user so other user knowing the password could access
the store.

o The “no encryption” option is not recommended since it stores the credential store in a
plain text file accessible to all users.

e ‘“Location”:

o Take the “Removable media” option to save the store in an external device such as a
memory stick. In this case, jobs can only be launched when the device is attached to the
computer. This can be the safest option since the user can decide when the credential
store is present. Combined with the use of a password and its encryption it can be
protected even against loss or robbery.

o The “Registry” option moves the “Credential Store” to the Windows registry.
o Finally, it can be stored in the “Hard drive” which turns out to be the most common

decision.

Cluster tab
In this tab, the computers in the cluster are displayed and the DeinoMPI version installed in each of
them.

r@ DeinoMPI 2.0.1 *“ 4 BE anw . = | B |
| Mpiexec | Credential Store | Cluster | Verfy job | Web |

Domain: - ’ Get host names l ’ Scan hosts l [Reset hosts] View:

Host: | Addhost || Clearhostlist | | Savelist || Loadlist |

SONY-VAIO

Microsoft Windows 7 Home Premium
6.1.7601

Win64 - x64-based PC

CPU: Intel&4 Family & Model 42
Stepping 7

CPU name: Intel{R) Core(TM})i5-
2450M CPU @ 2 50GHz
Number of CPUs: 4

Physical memory: 7,58 Gigabytes
Free disk space: 12594 Gigabytes
IP: feB0:acc2f3fa298:1f1a% 14
IP: 152.168.1.12

NIC speed: 0 baud

NIC speed: 54 Megabit

NIC speed: 0 baud

DeinoMPI: 2.0.1

Figure A3. Cluster tab — Big icons view.

45

Appendix A: Installing DeinoMPI LABORATORY GUIDE

More hosts can be added writing down their name of can be found automatically within the selected
domain.

Deino MPI manual Available at: http: //mpi.deino.net/manual.htm

46

LABORATORY GUIDE Appendix B: Project Configuration in Visual Studio 2010

Appendix B: Project Configuration in
Visual Studio 2010

In this section we will describe the same configuration process but for the 2010 version of Microsoft
Visual Studio. Configuration in more recent versions of Visual Studio is analogous.

e Generate a new project and solution. They may have both the same name:

s .
Mew Project L9 i
Recent Templates [.NET Framework 4 = | Sort by: | Default Search Installed Templates 2|
Installed Templates o Visual C
il : e+
)) B4 Win32 Console Application Visual C++ ype: Hisua
4 Visual Basic = A project for creating 2 Win32 console
Windows application
M ec Application Visual C++
Web EiC
Office
Cloud | Win32 Project Visual C++
Reporting
U SharePoint .| Empty Project Visual C++ | _
Silverlight 1
Test [aTL| ATL Project Visual C++
WCF
Workflow M e o Visual C++
Visual C# Egl
—[%| Windows Forms Application Visual C++
Visual F# =
Other Project Types |
Database IE CLR Console Application Visual C++
Test Projects
.| CLREmpty Project Visual C++
Online Templates
5_ F| Class Library Visual C++
i' “| Custom Wizard Visual C++
Name: <Enter_name>
Location: chusershchematdocumentsivisual studio 2010°\Projects -
Solution name: <Enter_names Create directory for solution
"] Add to source contral
=
\

e Set it as empty project:

Win32 Application Wizard - HelloWorld [9 S|

—_——

Welcome to the Win32 Application Wizard
Owverview These are the current project settings:
Application Settings * Console application

Click Finish from any window to accept the current settings.

After you create the project, see the project's readme. txt file for information
about the project features and files that are generated.

[Mext >][Finish][Cancel]

47

Appendix B: Project Configuration in Visual Studio 2010

LABORATORY GUIDE

-

‘Win32 Application Wizard - HelloWorld

=)

Overview

Application Settings

Application Settings

Application type:
() Windows application
(@ Console application
0 DL
() Static library
Additional options:
Empty project

< Previous

Add commen header files for:

Finish | [

Cancel

b

Once created both the Project and solution, add a code file as new item:

B5 Hellowo

File Edit View Project Build Debug Team Data

X0Q|00] . J210|dx3 1aA135 e

Installed Templates

TR

Resource
‘Web

Utility
Property Sheets

Name:

Location:

P gl v 5| V8 Add Class..

B Class Wizard...
i Add New Item...
(3] Add Existing Item...

Exclude From Project
Show All Files

E{;

Rescan Solution
Set as StartUp Project
Refresh Project Toolbox ftems

=] Properties

Ctrl+Shift+X
Ctrl+Shift+A
Shift+Alt+A

Tools Test Window Help

| | win32

‘Windows Form

Co+ Fill (<pp)

Cov File (5
HTML Page (L._,J,
Static Discavery File [disco)

Header File (h)

b,

Midl File (id])

Resource File (.rc)

s@

Server Response File (s)

2

Module-Definition File (.def)

Registration Script (.rgs)

f ik

3

MFC Ribbon Definition XML File

i

Property Sheet (.props)

<Enter_name>

<\Users\Chema'doc

studio jectsit

| searchInstalled Templates

2|

Visual C++ Type: Visual C++

Creates a file containing C++ seurce code

Visual C++
Visual C++
Visual C++
Visual C++
Visual C++
Visual C++
Visual C++
Visual C++
Visual C++
Visual C++

Visual C++

- Browse...

Cancel

48

LABORATORY GUIDE Appendix B: Project Configuration in Visual Studio 2010

e Now, and never before, the Project settings are entered (“Properties”):

Project | Budd Debug Team Dota Tools Test Window Help
¥ Add Class. | | |winz2 - JREEArRE -
B Closs Wizard... el Shift X
8 % Add Resource...
E Solution Explorer -1
) AddNewkem.. CirieShifte A [SIS
4 - = 31
2 Add Bsting Shilt= A=A
= = Z| 3 sclution HelloWorld' 1 projec
Za Mew Fiter < 4 1 HelloWorld
D ShomAllFies = ;xlzr;a\::pmdenns
o 5 Header Fles:
Unload Project] resourcen
Rescen Solution 4 5 Resource Files
R S HelloWorldre
ST + G Source Files

& HelloWorld.cop
Build Customizations

=] Properies
5 OpenFolder in Windows Explorer

1. In the C/C++ section we must enter the route to the folder where the header MPI files
are located (“Additional Include Directories”). By default the \Archivos de Programa
(x86)\DeinoMPI\include is assumed:

HelloWorld Property Pages M

Configuration: | Active{Debug) | Platform: [Active(Wmﬂ) vl l Configuration Manager...]
> Common Properties Additional Include Directories C:\Program Files%28}(85%29\DeimMPl\include,'C:\Pr

4 Configuration Properties Resolve #using References
General Debug Infermatien Format Program Database for Edit And Continue (/Z1)
Debugging Common Language RunTime Support
VC++ Directories Suppress Startup Banner Yes (/nologo)
> C/Cer Warning Level Level3 (/W3)
> Linker Treat Warnings As Errors Mo [fWX-)
> Manifest Tool Multi-processor Compilation
> Resources Use Unicode For Assembler Listing
» XML Document Generator
» Browse Information
> Build Events
» Custom Build Step

Additional Include Directories

Specifies one or more directories to add to the include path; separate with semi-colens if more than one,
< T] » (/Ilpath])

[Aceptar }[Cancelar H Aplicar]

2. In the Linker section we must enter the route to the folder where the MPI libraries are
located (“Additional Library Directories”). By default \Archivos de Programa
(x86)\DeinoMPI\lib is assumed:

49

Appendix B: Project Configuration in Visual Studio 2010

LABORATORY GUIDE

3.

!

4.

-
HelloWorld Property Pages

=)

Configuration: | Active(Debug)

| Platform: | Active(Win32)

'] [Configuration Manager...]

» Common Properties
4 Configuration Properties
General
Debugging
VC++ Directories
4 C/C++
General
Optimization
Preprocessor
Code Generation
Language
Precompiled Headers
Output Files
Browse Information
Advanced
Command Line
Linker
Manifest Tool
Resources

XML Document Generator

Browse Information
Build Events
Custom Build Step

“ [} 2

Output File

Show Progress

Version

Enable Incremental Linking
Suppress Startup Banner
Ignore Import Library
Register Qutput

Per-user Redirection

Additional Library Direct C:\Program Files %28x86%29\DeinoMPI\ib:C:\Prograf ~ |

Link Library Dependencies

Use Library Dependency Inputs
Link 5tatus

Prevent DIl Binding

Treat Linker Warning As Errors
Force File Qutput

Create Hot Patchable Image
Specify Section Attributes

S{0utDir)§(TargetName)5(TargetExt)
Not Set

Yes (/INCREMENTAL)
Yes (fNOLOGO)

No

No

No

Yes
No

Additional Library Directories
Allows the user to override the environmental library path (/LIBPATH:folder)

[Aceptar][Cancelar H Aplicar]

In the Linker section, in the input entry (“Input’) the “cxx.lib” y “mpi.lib” files must be
added as additional dependencies:

HelloWorld Property Pages

Configuration:

Active(Debug)

¥ | Platform: |Active(Win32)

> Common Properties
a4 Configuration Properties
General
Debugging
VC++ Directories
C/C++
Linker
General
Input
Manifest File
Debugging

[

System
Optimization
Embedded IDL
Advanced
Command Line
Manifest Tool
Resources

XML Document Generator

Erowse Information
Build Events
Custom Build Step

Additional Dependencies
Ignore All Default Libraries

Ignore Specific Default Libraries
Module Definition File

Add Module to Assembly
Embed Managed Resource File
Force Symbol References
Delay Loaded Dlls

Assembly Link Resource

P =
'l [Configuration Manager...]
ooclib;mpilib;%(AdditionalDependencies) L
-

Additional Dependencies @ﬂ
oalib -
mpilib
4 ’

Inherited values:

kernel32.lib
userd2lib
gdi32.lib
winspoellib
comdlg3llib

Inherit from parent or project defaults

Additional Dependencies
Specifies additional iterns to add to the link command line [i.e. kernel32.lib]

| Aceptar | [Cancelar | [Aplicar]IJ

In the General section the Multi-Byte

selected:

50

set of characters (“Characrer Set”) must be

LABORATORY GUIDE

Appendix B: Project Configuration in Visual Studio 2010

g
HelloWorld Property Pages

=)

Configuration: | Active(Debug) + | Platform: |Active(Win32)

'] [Configuration Manager...]

» Common Properties
4 Configuration Properties

General

Debugging

VC++ Directories

4 C/Cr+
General
Optimization
Preprocessor
Code Generation
Language
Precompiled Heade
Qutput Files
Browse Infermation
Advanced
Command Line
4 Linker

General
Input
Manifest File
Debugging
System
Optimization
Embedded IDL
Advanced

- i
4 1 2

-

a
Output Directory $(SolutionDin${Configuration),
Intermediate Directory S$(Configuration],
Target Name S(ProjectName)
Target Extension exe
Extensions to Delete on Clean *.cdf;™.cache ™ obj;™ilk " resources; ™ tlb; ™ ;" tlh;™ tmp; ".rsp;
Build Log File S{IntDir)\S(MSBuildProjectMame).log
Platform Toolset V100
a4
Configuration Type Application (.exe)
Use of MFC Use Standard Windows Libraries
Use of ATL Mot Using ATL
Character Set Use Multi-Byte Character Set |z|
Common Language Runtime Suppert Ne Common Language Runtime Support
‘Whole Program Optimization No Whole Program Optimization
Character Set

Tells the compiler to use the specified character set; aids in localization issues.

[Aceptar][Cancelar H Aplicar

51

Finally enter code in the selected source file and build the project.

Appendix C: Configuration of MS - MPI LABORATORY GUIDE

Appendix C: Configuration of MS-MPI.

DeinoMPI is hard to configure in some systems and it may not eventually work. As an alternative we
can install and configure the Microsoft distribution of MPI. It doesn’t provide a graphical interface
but from the command line everything can be done. Take the following steps to get it to work:

e Download MS-MPI v5 from its web location:

P @ hitps://msdn.microsoft.com/en-us/library/bb524831 (v=vs.85).aspx

Technologies « Downloads ~ Programs ~ Community ~ Documentation « Sampl

IN Library .
‘ers and Enterprise Development M IC rOSOft M PI
|

-osoft High Performance
puting for Developers Wicrosoft MPI (M53-MPI) is a Microsoft implementation of the Message Passing In

licrosoft MPI

M PI Reference MS-MPI offers several benefits:

Ease of porting existing code that uses MPICH.

Security based on Active Directory Domain Services.

High performance on the Windows operating system.

Binary compatibility across different types of interconnectivity options.

MS-MPI downloads

The following are current downloads for MS-MPL
® MS-MPI V5 (new!)
& Debugger for MS-MPI Applications with HPC Pack 2012 R2

Earlier versions of MS-MPI are available from the Microsoft Download Center.

e There are two files and both have to be downloaded and installed:

Choose the download you want

J| File Name Sire
1 mampisdiomesi 1.9 MEB
¥ MSMpiSetup.axa 4.9 MB

e Each package creates a new folder: Program Files > Microsoft MPI and Program Files >
Microsoft SDKs > MPI.

e Generate a new MS Visual Studio project and solution. They may have both the same name:

52

LABORATORY GUIDE Appendix B: Project Configuration in Visual Studio 2010

~ S
New Project (R
[.NET Framework 4 + | Sort by: [Defautt | Search Installed Templates 2|

Installed Templates -y Vieual C
)) “BY Win32 Cansole Application Visual C++ [PE VUl
4 Visual Basic = A project for creating 2 Win32 console
Windows application
M ec Application Visual C++
Web EiC
Office
Cloud | Win32 Project Visual C++
Reporting
U SharePoint Empty Project Visual C++ | _
Silverlight 1
Test [aTL| ATL Project Visual C++
WCF
Workflow M e o Visual C++
Visual C# Egl
Windows Forms Application Visual C++
Visual F#
Other Project Types |
Database CLR Console Application Visual C++
Test Projects
CLR Empty Project Visual C++
Class Library Visual C++
Custom Wizard Visual C++
Name: <Enter_name>
Location: chusershchematdocumentsivisual studio 2010°\Projects -
Solution name: <Enter_names Create directory for solution
"] Add to source contral

e Set it as empty project:

-

‘Win32 Application Wizard - HelloWorld

—_——
Welcome to the Win32 Application Wizard
Owverview These are the current project settings:
Application Settings * Console application

Click Finish from any window to accept the current settings.

After you create the project, see the project's readme. txt file for information
about the project features and files that are generated.

[Next >][Finish][Cancel]

53

Appendix C: Configuration of MS - MPI

LABORATORY GUIDE

-

‘Win32 Application Wizard - HelloWorld

=)

Application Settings

Overview

Application type:
Application Settings () Windows application
(@ Console application

& DLL

() Static library
Additional options:

Empty project

< Previous

Add commen header files for:

Finish] [Cancel

e Once created both the Project and solution, add a code file as new item:

bo HelloWorid

File Edit View Project Build Debug Team Data

Py r S| Y8 Add Class...
B Class Wizard... Ctrl+Shift+X
(3 Add New Item... Ctrl+Shift+A
[Add Existing Item... Shift+Alt+A

Exclude From Project
Show All Files

E{;

Rescan Solution

Set as StartUp Project

X0Q|00] . J210|dx3 1aA135 e

Refresh Project Toolbox Items

=] Properties

Tools Test Window Help

| | win32

Installed Templates Sort by: 2 Search Installed Templates al
Wi c--| .
= Type: Visual C++
ul ==| Windows Form Visual G-+ ype: Hisua
Creates a file containing C++ source code
Code =
Data |ﬂ C++ File (.cpp) Visual G+
Resource =
++ File (c
Web @ HTML Page (‘L_,ﬂ Visual C++
Utility —
Property Sheets L@ Static Discavery File (.disco) Visual C++
@ Header File (h) Visual C++
S| Midi File (idl) Visual C++
ig\ Resource File (.rc) Visual C++
@) i
Server Response File (srf) Visual C++
@ Module-Definition File (.def) Visual C++
ng_?] Registration Script (.rgs) Visual C++
[E5] MFC Ribbon Definition XML File Visual C-+
==| Property Sheet (.props) Visual C++
Name: <Enter_name>
f— ke Chemandos e 210 Precs oo .

Cancel

54

LABORATORY GUIDE

Appendix B: Project Configuration in Visual Studio 2010

e Now, and never before, the Project settings are entered (“Properties”):

Project | Buld Debug Team Data Tools Test Window Help
%5 Add Class.. |[winz2 Bls) RS HAEHE -
| B Closs Wizara.. Ctre Shifta X
8 7 Add Resource..
i Solution Explorer v 13
= AddNewlem... Ctrie Shift+A 2|38
= [Add Exsting e, Shift=Alt-A £| =3 sohution HelloWorld L projec
Si NewFiter | 4 ZIHeloWorid
2 Show All Files 4 Btemal Dependencies
s 5 Header Fles
Unload Project 8 resourceh
Rescan Solution s (5 Resource Files
References.. 5 HelloWorldrc
_ + 5 Source Files
Set as Startlp Project & HelloWorld.cpp
Build Customizations...
+1 Refresh Project Toolbex kems
5 OpenFolder in Windows Explorer

¢ When reaching the project configuration options proceed as follows:

1. Set the new additional include folder.

e propiedades de HelloWorld

racién: | Active(Debug)

v| Plataforma: | Active(Win32)

piedades comunes

-~

ipiedades de configurac

General
Depuracion

Directorios de VC++

C/Cas
General
Optimizacion
Preprocesador

Generacion de codi

Idioma

Encabezados precot
Archivos de salida
Informacion de exai
Avanzadas
Linea de comandos
Vinculador
General
Entrada

=] [i e rtcn- |

Directorios de inclusion adicionales

Resolver referencias Fusing

Formato de la informacién de depuracion
Compatible con Common Language Runtime
Suprimir la pancarta de inicio

Nivel de advertencia

Tratar advertencias como errores
Compilacién multiprocesador

Usar Unicode para la lista del ensamblador

C:\Program Files %28x86%29\Microsoft SDKs\MPIMnclu¢
Base de datos de programa para Editar y continuar (/ZI)
Si (/nologo)

Level3 (/W3)
No (/WX-)

2. Similarly set the new lib folder. Under lib choose the folder that matches your
development (x86 for 32 bit applications or x64 for 64 bit ones).

95

Appendix C: Configuration of MS - MPI

LABORATORY GUIDE

Paginas de propiedades de HelloWorld e x
Configuracién: ;Actwc(Debug) v | Plataforma: | Active(Win32) - ‘ Admi dor de configuracion |
Propiedades comunes - Archivo de salida ${OutDir)$(TargetName)S(TargetExt)
4 Propiedades de configurac Mostrar progrese Sin establecer
General Versién
Depuracién Habilitar vinculacion incremental Si VINCREMENTAL)
Directorios de VC++ Suprimir | pancarta de inicio Si (/NOLOGO)
4 C/Ces Omitir biblioteca de importacion No
General) Registrar resultados No
Optimizacién Redireccién por usuario No
:':::i::d:; odi Directonos de bibliotecas adicionales C:\Program Files %28x86%29\Microsoft SDKs\MPT\Lib\x!
S " Vincular dependencias de biblioteca Si

Encabersdos precos Usar entradas de dependencia de biblioteca

Archivos de salida
Informacién de exas
Avanzadas

Linea de comandos

Estado de vinculo

Impedir enlace de archivos DLL

Tratar advertencia del vinculador como un error
Forzar salida de archivo

4 Vinculador Crear imagen a ls que aplicar una revisién activa
General

Entrada

Archivo de manifie:
Depuracion

Especificar atributos de seccion

Sistema
Optimizacién
IDL incrustado
Avanzadas

Archivo de salida
~ | | La opcién /OUT invalida el nombre y la ubicacién p

No

Aol s o e e
« m ’

dos del prog que crea ¢ vinculador,

3. Set also the new library file.

Paginas de propiedades de HelloWaorld

(o]

Configuracién: ’Active(Debug]

-] Plataforma: | Active(Win32)

) [

» Propiedades comunes

4 Propiedades de configurac
General
Depuracian

- Dependencias adicionales

msmpi.lib;%(Additionall

Omitir todas las bibliotecas predeterminadas
Ormnitir biblictecas predeterminadas especificas
Archivo de definicién de modulos

Directorios de VC++
a CfC++
General

Agregar madulo al ensamblado

Incrustar un archivo de recursos administrado
o Forzar referencias de simbolos

Optimizacién Archivos DLL de carga retrasada
Preprocesador

Generacién de cadi

Recurso de vincule de ensamblado

m

Idioma

Encabezados precol

Archivos de salida

Informacian de exal

Avanzadas

Linea de comandos
4 Vinculador

General

Entrada

Archive de manifies |

Depuracian
Sisterna

Optimizacién

4. When all these parts have been configured the solution can be built as usual. In order
to execute the program, the .exe file and MPI’s launcher must be in the same folder
or either the path configured accordingly. The launcher is mpiexec.exe and is placed
in Program Files > Microsoft MPI > bin. Write down mpiexec —n np program.exe,
where np is the number of processes to be launched.

56

LABORATORY GUIDE Appendix B: Project Configuration in Visual Studio 2010

B C\Windows\system32\cmd.exe
C=“\Program Files>cd Microsoft HMPI
C:~Program Files icrosoft MPI>»dir
‘1l wolumen d nidad C no tiene etigueta.

El nimero de serie del volumen es: 7ABE-AS15

Directorio de C:wProgram Files“Hicrosoft HFPI

3 <{DIR> .
3 {DIR> -
6 <{DIR Bin
3 £ >

3

3 License
5:3: Redis

B archi] B hytes

5 dirs 4408.235.368.448 bytes libhres

C:“Program Files“Microsoft HPI>*cd bin

:isProgran FilessMicrosoft MPINBin>mpiexec -n 4 HelloWorld.exe

0 y 3 de 4: Hola Mundo?

1 de 4: Hola Mundo?

2 de 4: Hola Mundo?

Soy el proceso B de 4: Hola Hundo?

Program Files“Microsoft MPINBin»

57

Lo | B e

