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Abstract
We theoretically analyse an autonomous clock comprising a nanoelectromechanical system, which
undergoes self-oscillations driven by electron tunnelling. The periodic mechanical motion behaves
as the clockwork, similar to the swinging of a pendulum, while induced oscillations in the electrical
current can be used to read out the ticks. We simulate the dynamics of the system in the
quasi-adiabatic limit of slow mechanical motion, allowing us to infer statistical properties of the
clock’s ticks from the current auto-correlation function. The distribution of individual ticks
exhibits a tradeoff between accuracy, resolution, and dissipation, as expected from previous
literature. Going beyond the distribution of individual ticks, we investigate how clock accuracy
varies over different integration times by computing the Allan variance. We observe
non-monotonic features in the Allan variance as a function of time and applied voltage, which can
be explained by the presence of temporal correlations between ticks. These correlations are shown
to yield a precision advantage for timekeeping over the timescales that the correlations persist. Our
results illustrate the non-trivial features of the tick series produced by nanoscale clocks, and pave
the way for experimental investigation of clock thermodynamics using nanoelectromechanical
systems.

1. Introduction

The measurement of time is perhaps the most primitive and also the most important of all physical
measurements. Not only are clocks ubiquitous in our daily lives, but they also underpin satellite navigation,
magnetometry, and gravimetry [1, 2], among many other applications in metrology. However, despite the
spectacular precision that is now routinely achieved with atomic clocks, fundamental gaps in our
understanding of time at the quantum level still remain.

One fruitful and long-standing [3–5] strategy to address this problem is to formulate and study models
of clocks as dynamical systems. Recent work in this direction has shown that basic physical considerations,
stemming from information theory on the one hand [6–10] and thermodynamics on the other [11–14],
strongly constrain both the internal structure and the achievable performance of timekeeping devices. For
example, it is now understood that accurate clocks must produce a lot of entropy [11, 13], quantum clocks
can be more accurate than classical clocks with the same number of accessible states [9, 10, 15], and that
there exists a tradeoff between a clock’s accuracy and its timing resolution [16]. Similar constraints on
temporal precision known as thermodynamic or kinetic uncertainty relations have been discovered in other,
seemingly unrelated contexts, such as biomolecular systems [17–20] or mesoscopic transport setups [21–23].
Beyond their foundational importance, moreover, the physical limits of timekeeping have consequences for
the fidelity of time-dependent control protocols arising in quantum thermodynamics [24–26] and quantum
computation [27, 28], among other applications.

Here we focus on ticking clocks, which produce a continuous time reference to an external observer, as
opposed to stopwatch-like systems (e.g. the Larmor clock [29]) that measure only a single time interval. Any
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quantum ticking clock comprises two distinct parts: the clockwork and the register [7]. The clockwork is a
non-equilibrium system whose dynamics generates the ticks, which are then recorded by the register.
Separation of clockwork and register ensures that the tick readout does not disrupt the clockwork [30].
Although almost any out-of-equilibrium system can act as a clockwork, accurate timekeeping requires
temporal probability concentration [14], whereby the irreversible process that generates each tick is
permitted to occur only at well-spaced time intervals. For example, while a simple hourglass exploits
freefalling mass (e.g. sand) to indicate the passage of time, the escapement of a pendulum clock allows a mass
to fall incrementally—thereby generating the next tick—only after one full period of the swinging pendulum
has elapsed [13, 31]. However, much of this new understanding of quantum ticking clocks has been garnered
via theoretical analysis of simple toy models. The connection between the abstract theory of autonomous
quantum clocks and concrete experimental implementations remains lacking.

Here, we fill this gap, by proposing and analysing an autonomous quantum clock based on
nanoelectromechanical self-oscillations, which have recently been observed in the laboratory [32, 33]. A
self-oscillator [34] is a system that oscillates in the absence of periodic forcing, and therefore provides the
ideal setting to realise an autonomous clockwork. In nanoelectromechanical self-oscillators, the periodic
motion of a mechanical degree of freedom is driven by electron tunnelling [35]. This can occur either by
electron shuttling [36–41], where single-electron tunnelling resonantly drives the oscillator, or via a subtler
electromechanical instability that emerges from the time-delayed effect of many non-resonant tunnelling
events [32, 33, 42–46]. Thermodynamic aspects of both kinds of self-oscillations have recently been
investigated [47–49], but their potential for studying the thermodynamics of timekeeping has not yet been
studied in detail.

In this work, we consider an autonomous clock powered by electromechanical self-oscillations of the
latter kind, motivated by the experiments reported in [32, 33]. In our model, periodic mechanical motion
provides the clockwork while the ticks are registered by monitoring the induced oscillations in the electronic
current. As in previous studies, the autonomous nature of the clockwork dynamics allows for a
self-contained analysis of the thermodynamic resources needed to measure time [11]. However, our work
goes beyond existing literature on clock thermodynamics in at least two important respects.

First, our electromechanical clockwork is based on the oscillations of a continuous degree of freedom,
reminiscent of a pendulum. Yet, unlike a pendulum clock, or indeed any other clock considered in the
literature to our knowledge, these oscillations are driven by measurement backaction associated with the tick
readout itself. By contrast, existing theoretical models of quantum clocks consider the tick generation and
readout to arise from distinct irreversible processes [9–11, 14–16, 30], while experimental work on the
thermodynamics of timekeeping has either lain in a purely classical regime where measurement backaction is
negligible [50] or focussed purely on the role of measurement backaction in a non-autonomous setting [51].
Our setup is also distinct from [52], which considered a quantum clock powered by measurements that are
unrelated to tick readout.

Second, we go beyond the performance measures introduced in previous works [10, 11] by evaluating the
Allan variance [53], which quantifies clock accuracy over different integration times. At intermediate
timescales, our results corroborate the general expectation that higher accuracy entails more dissipation.
However, at longer timescales this trend reverses. To explain this crossover in the Allan variance, we show
that the non-trivial dynamics of the clockwork generates persistent temporal correlations between the clock’s
ticks. Our results thus call for further research to understand both the origin and consequences of such
temporal correlations, which have been largely neglected in previous studies of autonomous quantum clocks.

An outline of the manuscript is as follows. We first introduce our model for an electromechanical clock
(section 2.1), and explain how we model the clockwork’s nonequilibrium dynamics (section 2.2) and the
readout of ticks from oscillations induced in the electrical current (section 2.3). Our modelling is based on
the quasi-adiabatic assumption, i.e. that the mechanical motion is slow compared to electronic relaxation,
which is well satisfied in current experiments [32, 33]. Then we examine the induced current oscillations in
detail, identifying an interesting separation of timescales between amplitude and phase fluctuations
(section 3.1). Next, we analyse the distribution of individual ticks of the clock (section 3.2) and find a
tradeoff between accuracy, resolution, and entropy production, as expected from previous work [11]. Finally,
we show that the Allan variance exhibits a non-trivial dependence on integration time and applied voltage
(section 3.3), which can be understood in terms of correlations between the clock’s ticks that we quantify
explicitly (section 3.4). We conclude with a summary and a brief outlook on future work (section 4). The
reduced Planck constant, the Boltzmann constant, and the electron charge are all set to unity throughout this
work.
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Figure 1. Schematic of the setup. A central system, here a quantum dot, is coupled to two electrodes each at a temperature T, with
the left electrode having a chemical potential of µL and the right a chemical potential of µR. The quantum dot is coupled to
simple harmonic oscillator mode. Under an appropriate static voltage bias, the current flowing through the system drives
self-sustained mechanical oscillations, which in turn induces an oscillatory component in the current. A series of ticks are
recorded by counting oscillations in the output current.

2. Model

2.1. Description of the setup
We consider an electromechanical system similar to the model outlined in [49]. A schematic of the setup is
shown in figure 1. The clockwork consists of a resonant-level model coupled to a harmonic oscillator. The
oscillator motion is in the direction perpendicular to the current flow (parallel to the plane defined by the
leads), as shown in figure 1. The Hamiltonian of the clockwork is given by a sum of the following terms:

ĤS = ϵ̂c†ĉ, (1)

ĤB =
∑
k

(
ΩkLd̂

†
kLd̂kL +ΩkRd̂

†
kRd̂kR

)
, (2)

ĤT =
∑
k

(
gkL
[
ĉ†d̂kL + d̂†kLĉ

]
+ gkR

[
ĉ†d̂kR + d̂†kRĉ

])
, (3)

ĤV =
p̂2

2m
+

mω2
0 x̂

2

2
− Fn̂x̂. (4)

Here, ĤS is the Hamiltonian of a single-level fermionic quantum dot, described by its energy ϵ and the
annihilation operator ĉ. The leads coupled to the quantum dot are defined by the Hamiltonian ĤB. Each lead
is described by an infinite sum of noninteracting Fermi modes with energy Ωkα and annihilation operator
d̂kα, where α= L,R denotes the left or right lead. The tunnelling of electrons between the dot and the leads is
described by ĤT, with gkα the coupling strength. The vibrational Hamiltonian ĤV describes a single-mode
mechanical oscillator constrained to move in one dimension, with momentum operator p̂, position operator
x̂, natural oscillation frequency ω0, and massm. The final term in ĤV describes the electromechanical
interaction between the quantum dot and the harmonic oscillator, where F is the force per unit charge and n̂
is the excess charge present on the quantum dot, i.e. n̂= ĉ†ĉ−N0, with N0 = ⟨̂c†ĉ⟩F=0 being the average
charge on the oscillator in the absence of the electromechanical coupling. This kind of coupling can be
induced, for example, by means of a nearby gate electrode held at a constant potential , which produces an
electrostatic force on the oscillator depending on the number of charges present in the device [32] (e.g. in
figure 1 this force would act vertically).

The leads are initially at equilibrium with equal inverse temperature β but different chemical potentials,
µL ̸= µR, with V= µL −µR denoting the voltage bias. The tunnelling rate for each lead is determined by its
spectral density

κα (E) = 2π
∑
k

g2kαδ (E−Ωkα) . (5)

Self-sustained oscillations require an energy-dependent spectral density [44]. As in our previous work [49],
we assume the simple Lorentzian form

κα (E) =
Γδ2

(E−ωα)
2
+ δ2

, (6)

which models a single band of states with bandwidth δ centred on energy ωα, with Γ representing the overall
tunnelling rate. We focus on the quasi-adiabatic limit, where the relaxation rate of the electronic degrees of
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freedom are on a much faster timescale than the characteristic timescale of the oscillator. This is tantamount
to the conditions

min
(
β−1,V

)
,Γ≫ ω0,λ, (7)

where λ= F/
√
mω0 is the effective electromechanical coupling strength. These conditions are well satisfied

in typical experiments [32, 33] and also by our specific parameter choices below. Note that our minimal
model neglects charging effects due to Coulomb interaction as well as intrinsic mechanical damping of the
oscillator, since neither of these effects are crucial for the functioning of the clock.

2.2. Langevin equation for the clockwork dynamics
When the quasi-adiabatic conditions (7) hold, the electronic degrees of freedom can be adiabatically
eliminated to obtain a description for the oscillator alone. Full details can be found in the supplemental
material of [49], but we briefly sketch the derivation here because it is serves as a precursor for the modelling
of tick readout described in section 2.3.

We divide the Hamiltonian into two parts as Ĥ= Ĥel + ĤV, where Ĥel = ĤS + ĤB + ĤT describes the
electronic degrees of freedom and ĤV describes the oscillator dynamics including the electromechanical
coupling. We now introduce the Wigner transform of the density matrix

ρ̂(x,p) =
1

π

ˆ
dy⟨x+ y|ρ̂|x+ y⟩e−i2yp, (8)

where |x⟩ is a position eigenstate for the oscillator, so that ρ̂(x,p) acts as a quantum operator on the
electronic Hilbert space. The Wigner function of the oscillator follows fromW(x,p) = tr[ρ̂(x,p)], while the
electronic state is given by ρ̂el =

´
dx
´
dpρ̂(x,p). Using the operator correspondences for the Wigner

function [54], one finds that the quantum Liouville equation dρ̂/dt=−i[Ĥ, ρ̂] is equivalent to

∂

∂t
ρ̂(x,p) = (Lx +H+F) ρ̂(x,p) , (9)

where we define the following superoperators:

Lx•=−i
[
Ĥel − Fxn̂,•

]
, (10)

H•=
(
mω2

0x− F⟨n̂⟩x
) ∂

∂p
•− p

m

∂

∂x
•, (11)

F•=−F

2

∂

∂p
{n̂−⟨n̂⟩x,•} . (12)

Here, ⟨•⟩x = tr [•ρ̂x] denotes an average with respect to the electronic stationary state, ρ̂x, which depends on
x but not on p, and satisfies Lxρ̂x = 0 and tr [ρ̂x] = 1. Physically, Lx represents the evolution of the electronic
degrees of freedom conditioned on a particular oscillator position x,H represents the free mechanical
evolution including the mean-field electromechanical force, and F represents the fluctuating force on the
oscillator due to deviations of the electronic charge from its steady-state mean value.

By assumption (i.e. because of the conditions (7)), we have Lx ≫H,F so that the electronic degrees of
freedom are only weakly perturbed from their instantaneous steady state ρ̂x. This is formalised by defining,
for any operator-valued function Â(x,p) of the oscillator’s phase-space coordinates, the projector

PÂ(x,p) = tr
[
Â(x,p)

]
ρ̂x, (13)

whose orthogonal complement is denoted byQ= 1−P . The ‘relevant’ part of the density matrix P ρ̂(x,p)
determines the Wigner function, sinceW(x,p) = trP ρ̂(x,p). Thus, following the standard procedure [55],
we can perturbatively eliminate the irrelevant part,Qρ̂(x,p), taking into account contributions up to second
order in F andH within a Born–Markov approximation (see [49] for details). This results in a
Fokker–Planck equation for the Wigner function, which is equivalent to the classical Langevin
equation [44–46]

mẍ+mγxẋ+mω2
0x= F⟨n̂⟩x +

√
Dxξ (t) , (14)

where ξ(t) is a white-noise force with zero mean, E[ξ(t)] = 0, and autocorrelation function
E[ξ(t)ξ(t ′)] = δ(t− t ′), while γx and Dx are the damping and diffusion terms respectively, given by

Dx = Sx (0) , mγx =
dSx (ω)

dω

∣∣∣∣
ω=0

, (15)

4
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with Sx(ω) the noise spectrum of the fluctuating force:

Sx (ω) = F 2

ˆ ∞

−∞
dt eiωt

[
⟨n̂(t) n̂(0)⟩x −⟨n̂⟩2x

]
. (16)

In particular, since the oscillator’s Wigner function is positive within the quasi-adiabatic approximation, it
can be reconstructed by stochastically sampling the solutions of equation (14).

The dynamics of the clockwork depends qualitatively on the voltage bias. For zero or very low voltage
bias, the leads behave effectively like an equilibrium bath for the oscillator, such that the
fluctuation-dissipation relation βDx = 2mγx is approximately satisfied. The Langevin equation (14) then
predicts a steady state for the oscillator that is almost thermal. Conversely, when the voltage exceeds a certain
threshold value, electron tunnelling drives self-oscillations of the mechanical motion. In this regime, the
damping rate γx entering the Langevin equation (14) becomes negative for small x. As a result, the long-time
state of the oscillator predicted by equation (14) is a limit cycle that oscillates with period∼ 2π/ω0 [32, 49].

2.3. Electrical current and current noise
Under a voltage bias, electrical current flows continuously through the system. Mechanical oscillations
induce variations of this current that can be monitored to generate a series of ticks, as depicted in figure 1 and
explained in more detail in section 3.1. A key assumption of our work is that the current signal is effectively
classical, i.e. it can be read out without additional measurement backaction beyond that which is already
contained in the damping and diffusion terms of equation (14). This is justified in the quasi-adiabatic limit,
because a very large number of electrons tunnel through the device within a given oscillation period. In
practice, oscillations in the current can be continuously monitored by using a resonant tank circuit to filter
frequency components near the relevant frequency, together with quantum-limited amplification [32, 56].

To find how the oscillator motion modifies the current, we use the fact that ρ̂(x,p)≈ P ρ̂(x,p) to lowest
order in small quantities [49]. The electronic state at long times is therefore given to lowest order by

ρ̂el ≈
ˆ

dx

ˆ
dpW(x,p) ρ̂x =

ˆ
dxP(x) ρ̂x. (17)

whereW(x,p) is the steady-state Wigner function and P(x) =
´
dpW(x,p) is the corresponding marginal

probability distribution for the oscillator’s position. Equation (17) can be used to compute observables of the
electronic system. In particular, the average of the electronic current operator, Î, is given to lowest order by

⟨̂I⟩= tr
[̂
Iρ̂el
]
≈
ˆ

dxP(x) tr
[̂
Iρ̂x
]
=

ˆ
dxP(x) ⟨̂I⟩x. (18)

Here we have defined ⟨̂I⟩x ≡ tr
[̂
Iρ̂x
]
as the conditional expectation value of the current operator, given the

oscillator’s position x.
While the ensemble-averaged current tends to the stationary value (18) at long times, individual

trajectories of the measured current will show periodic oscillations. This is because fluctuations of the
oscillator position are transduced into current fluctuations, as characterised by the symmetrised
autocorrelation function [57]

C(t) = 1
2

({
Î(t) , Î(0)

})
− ⟨̂I⟩2 = Re

(
tr
[
eiĤt̂Ie−iĤt̂Iρ̂

])
− ⟨̂I⟩2, (19)

where all averages are taken with respect to the steady-state density matrix, ρ̂. Let us define an auxiliary
density operator

K̂(t) = e−iĤt̂Iρ̂eiĤt, (20)

such that the correlation function can be found from the real part of

⟨̂I(t) Î(0)⟩= tr
[̂
IK̂(t)

]
=

ˆ
dx

ˆ
dptr

[̂
IK̂(x,p, t)

]
, (21)

where K̂(x,p, t) is the Wigner transform of K̂(t), defined analogously to equation (8). Since K̂(t) obeys the
Liouville-von Neumann equation

dK̂

dt
=−i

[
Ĥ, K̂

]
, (22)

5
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we have that K̂(x,p, t) obeys the same equation of motion as ρ̂(x,p)): namely,

∂

∂t
K̂(x,p, t) = (Lx +H+F) K̂(x,p, t) , (23)

where the superoperators on the right-hand side are defined in equations (10)–(12). We can therefore
approximate the solution to this equation following an adiabatic elimination procedure analogous to
section 2.2, but where now both P andQ projections are needed to reconstruct the correlation function.

As shown in appendix A, this procedure yields the current autocorrelation function
C(t) = CQ(t)+CP(t), with

CQ (t) = E
[
∆x(0)

]
δ (t) , (24)

CP (t) = E
[
⟨̂I⟩x(t)⟨̂I⟩x(0)

]
−E

[
⟨̂I⟩x(0)

]2
. (25)

In these expressions, all averages E[•] are taken over oscillator trajectories x(t) sampled from the Langevin
equation (14), with initial condition x(0) distributed according to the steady-state position distribution,
P(x). Equation (24) derives from theQ component of the correlation function, which is effectively
delta-correlated in comparison to the slow timescales of the oscillator dynamics. This term represents the
quantum shot noise of the current,∆x, averaged over the steady-state position distribution. Equation (25) is
the P component of C(t): it describes slow fluctuations of the current induced by stochastic variations of the
oscillator position, x(t).

For our model, both the conditional average current ⟨I⟩x and current noise∆x can be found using
Landauer–Büttiker theory [58], as

⟨̂I⟩x =
1

π

ˆ
dEτx (E) [fL (E)− fR (E)] , (26)

∆x =
2

π

ˆ
dEτx(E) [fL(E)(1− fL(E))+ fR(E)(1− fR(E))]

+
2

π

ˆ
dEτx(E) [1− τx(E)] ( fL(E)− fR(E))

2
. (27)

Here, fα(E) =
[
eβ(E−µα) + 1

]−1
is the Fermi–Dirac distribution for lead α, while τx(E) is the transmission

function of the resonant-level model with the position-dependent energy ϵ− Fx [58]:

τx (E) =
κL (E)κR (E)

|E− ϵ+ Fx− χ̃L (E)− χ̃R (E)|2 ,
(28)

where κα(E) is the spectral density (equation (5)) of lead α= L,R and the corresponding self-energy is

χ̃α (E) =

ˆ
−dE ′

2π

κα (E ′)

E− E ′ − i
κα (E)

2
, (29)

with −́ a principal-value integral.
The above equations are valid assuming coherent electron transport through the device, so that we can

neglect Coulomb interactions and inelastic scattering. However, our conclusions are not strongly dependent
on the choice of transport model. We have checked explicitly that qualitatively similar results are obtained
using a sequential-tunnelling (i.e. rate equation [59]) description of transport.

3. Results

3.1. Analysis of current fluctuations
3.1.1. Current trajectories and timescale separation
As described in section 2.3, the mechanical motion induces changes in the measured current. Therefore,
mechanical self-oscillations will lead to a periodic current signal, which can be used to measure the passage
of time. The accuracy of such timekeeping is then limited by stochastic fluctuations in the current signal, as
characterised by the autocorrelation function C(t). The most relevant fluctuations for timekeeping are
encoded in the slow part of the correlation function CP(t) (equation (25)) because this varies on the same
timescale as the clockwork dynamics. The fast fluctuations described by CQ(t)merely add a constant to the
current noise spectrum, as discussed at the end of this section.

To characterise the properties of the measured current signal, we solve the Langevin equation (14) using
a stochastic Euler method and convert trajectories x(t) into a corresponding current signal ⟨̂I⟩x(t) via

6
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Figure 2. Portion of a single current trajectory above the self-oscillation voltage threshold, with V= 100ω0. The inset shows the
oscillations on a shorter time scale where the oscillations appear more sinusoidal. The red vertical lines indicate times when a tick
is recorded. Parameters: λ= 0.5ω0, Γ = 10ω0, βω0 = 0.1, ωL =−ωR = 2.5ω0, and δ = 5ω0.

Figure 3. Auto-correlation function of the current for the same parameters as figure 2 and three different voltages: V= 5ω0 (top),
V= 50ω0 (middle), V= 100ω0 (bottom). Two timescales emerge under high voltage bias: a fast-decaying component due to
phase fluctuations and a longer-lived component associated with amplitude noise.

equation (26). Figure 2 shows a sample current trajectory within the parameter regime where
self-oscillations occur. We use the same parameters as in [49], where the transition to self-sustained
oscillations was found to occur at V≈ 30ω0. We observe near-periodic oscillations of the current on shorter
timescales (figure 2 inset), with a peak-to-peak amplitude that varies significantly over longer timescales
(figure 2 main panel). We also see that the oscillation frequency is approximately twice the natural frequency
of the mechanical oscillator, and that the maximum oscillation amplitude has a fixed value that does not
fluctuate. Both of these observations can be understood by the fact that the maximum current is obtained
whenever the oscillator’s position crosses x= 0. A natural way to measure time is therefore to register a tick
of the clock whenever the current reaches its maximum value, as illustrated in the inset of figure 2. Note that
while the precise position x at which the current is maximised depends on the specific choice of parameters,
other parameters would yield qualitatively similar results.

Figure 3 shows the correlation function C(t) for three different applied voltages, spanning the transition
from thermal noise at low bias to self-sustained oscillations at high bias. At low voltage we observe decaying
oscillations, as would be expected for the thermal fluctuations of an underdamped harmonic oscillator [60].
Meanwhile, at voltages above the threshold for self-sustained oscillations, two distinct timescales can be
discerned. The first, fast timescale governs the decay of oscillations, which results from phase diffusion on the
limit cycle. The second, slow timescale dictates the asymptotic decay of the correlation function: for example,
in the lower panel of figure 3, oscillations decay over a few hundred oscillation periods, while the correlation
function itself does not decay completely until approximately 104 periods have elapsed. This latter decay is
monotonic rather than oscillatory and can, therefore, be understood as a consequence of long-lived
amplitude correlations, as we now explain.
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3.1.2. Modelling amplitude and phase fluctuations
To elucidate the different roles of amplitude and phase fluctuations, in appendix B we derive an effective
equation of motion describing small fluctuations of the oscillator trajectory away from the limit cycle. We
express the results in polar coordinates, i.e. x= Acos(ϕ) and ẋ/ω0 =−A sin(ϕ). An ideal limit cycle would
have a constant amplitude A= A0 and a linearly increasing phase ϕ = ω0t. Taking into account fluctuations
away from the limit cycle up to first order, we obtain an Ornstein–Uhlenbeck process describing amplitude
variations, and a biased diffusion process describing the phase evolution, viz.

dA=−γA (A−A0)dt+
√
DAdwA, (30)

dϕ = ω0dt+
√

Dϕdwϕ. (31)

Here, γA is the damping rate governing the regression of amplitude fluctuations back to the limit cycle A0,
dwA and dwϕ are independent Wiener increments describing amplitude and phase fluctuations, respectively,
and DA and Dϕ are the corresponding diffusion coefficients. Our simplified model assumes that the
limit-cycle amplitude is large and that the timescale of phase and amplitude diffusion is small compared to
the oscillation frequency, which justifies approximating the amplitude and phase noise as independent even
though they derive from the same Wiener process. The explicit expressions for the above parameters are
cumbersome (see appendix B for details), but a straightforward numerical evaluation shows that γA ≫ Dϕ in
the high-bias regime where equations (30) and (31) are valid. This indicates that small amplitude variations
evolve significantly faster than phase decoherence, and therefore this model alone cannot explain the
timescale separation evident in figure 3.

We thus turn to an alternative toy model that captures the large-scale amplitude variations seen in
figure 2. Specifically, the trajectory shown in figure 2 exhibits rare periods where the oscillation amplitude
reduces dramatically, so that the current remains close to its maximum value for a short time before
returning to its previous oscillatory state. We model this behaviour as a bistable process, where the stochastic
current switches between two states labelled by i = 1,2, with corresponding currents I1(t) and I2(t). This
kind of bistable behaviour was predicted for electromechanical self-oscillations in [46], and
electromechanical bistabilities have recently been observed experimentally [61]. We assume that these two
states have different steady-state averages Ii = E[Ii(t)], and that they are statistically independent from each
other and from the switching process itself. Under these assumptions, we show in appendix C that the
steady-state autocorrelation function takes the form

CP (t) =
2∑

i=1

pipi|i (t)Ci (t)+C1↔2 (t) , (32)

C1↔2 (t) =
2∑

i,j=1

pi
[
pj|i (t)− pj

]
Ii Ij, (33)

where pi is the steady-state probability to be in state i, pj|i(t) is the probability to transition i→ j over a time t,

and Ci(t) = E[Ii(t)Ii(0)]− Ii
2
is the auto-correlation function of Ii(t).

The first term in equation (32) clearly quantifies correlations within each state. The second term,
C1↔2(t), is the contribution from the bistability itself: its time dependence arises only from the statistics of
the switching process, while it depends on the current only through the conditional averages, Ii. Therefore,
the autocorrelation function will exhibit a separation of timescales whenever the switching process is much
slower than phase and amplitude fluctuations of the current within each state. In appendix C we demonstrate
this explicitly, showing that this simple bistable model recovers the features of the auto-correlation function
above threshold in figure 3. Crucially, using the conservation of probability,

∑
i pi =

∑
j pj|i(t) = 1, one can

show that C1↔2(t)∝ I1 − I2. Therefore, it is important that the cycle-averaged current depends on the
oscillation amplitude, which is indeed the case in our setup (cf figure 2).

3.1.3. Current noise power spectrum
Finally, it is instructive to analyse the current noise in the Fourier domain via the power spectrum

S(ω) =

ˆ
dteiωtC(t) . (34)

In addition to a flat white-noise contribution from the quantum shot-noise term CQ(t), we observe two
distinct peaks in the power spectrum at ω= 0 and ω ≈ 2ω0, reflecting the separation of timescales inherent
to CP(t). The height of both peaks grows with voltage bias, but for different reasons. The zero-frequency
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Figure 4. Power spectrum of the output current near the oscillation frequency ω ≈ 2ω0, for four different voltage biases; all other
parameters are the same as figure 2. The frequency-independent contribution from CQ(t) is small and only makes a significant
contribution for smaller biases as shown in the inset.

peak is associated with amplitude noise and its height scales with the lifetime of amplitude correlations (see
appendix C), which becomes very large well above threshold. This growth of the zero-frequency noise is
well-known in other non-equilibrium systems with long-lived metastable states [46, 62]. Meanwhile, the
peak inS(ω) at ω ≈ 2ω0 is related to electromechanical oscillations, and is plotted in figure 4. The height of
this peak scales with the oscillation amplitude, which is of course larger in the self-oscillating regime.

As the voltage increases, the position of the finite-frequency peak shifts slightly downwards in frequency,
while its width becomes narrower. This implies that the ticks of the clock become more regular in time, while
their frequency slightly decreases. As discussed in section 3.2, these results indicate an increase in the clock’s
accuracy as the rate of dissipation increases, accompanied by a small decrease in the clock’s resolution. This is
consistent with previous studies of autonomous clocks [11, 14, 16, 50].

3.2. Accuracy and resolution from the tick distribution
We now turn to a more detailed analysis of the individual ticks of the clock. The tick distribution or
waiting-time distribution (WTD) is defined as the probability,W(τ), of a time delay τ between two
consecutive ticks. In simple models of autonomous clocks, each tick is assumed to be generated by an
identical process, leading to the waiting times being independent and identically distributed (i.i.d.) random
variables. Then, the WTD fully characterises the statistical properties of the time signal.

In particular, the mean and variance of the WTD are

µ=

ˆ ∞

0
dτ τW(τ) , (35)

σ2 =

ˆ ∞

0
dτ (τ −µ)

2W(τ) . (36)

The clock’s resolution ν and accuracy N are then defined as [11]

ν = µ−1, (37)

N=
µ2

σ2
. (38)

The resolution is simply the rate at which the ticks are generated, while the accuracy is the expected number
of ticks before the clock’s reading is off by one tick. To see this, suppose that n ticks spaced by waiting times
τ1, τ2, . . . τn have been generated. The clock’s time reading is tn =

∑n
i=1 τi, with average E[tn] = nµ and

root-mean-square error∆tn =
√
nσ due to the assumption of i.i.d. ticks. The accuracy is then the effective

number of ticks N such that∆tN = µ, which leads directly to equation (38).
We construct the WTD for our model numerically as a normalised histogram of the waiting times

between all pairs of consecutive ticks in the time series. The results are plotted in figure 5 for three different
voltages. Above threshold, we find that the WTD is well approximated by an inverse Gaussian (Wald)
distribution

W(τ) =

√
µ3

2πσ2τ 3
exp

(
−µ(µ− τ)

2

2σ2τ

)
. (39)
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Figure 5.Waiting time distributions of the ticks for different voltage biases, with other parameters the same as figure 2. Dots are
the data from the numeric calculations, the solid curves are the lines of best fit to the inverse Gaussian distribution (39), with
fitting parameters µ and σ.

Figure 6. Accuracy (red line), and resolution (blue line) for increasing bias voltage, plotted against the entropy produced per tick
of the clock. Parameters are the same as figure 2.

As shown in [63], equation (39) can be derived by considering the distribution of the first-passage time τ for
the oscillation phase on the limit cycle to complete one full 2π rotation. This result holds when the phase is
described by a continuous-time biased random walk, as in equation (31). The solid curves in figure 5 show
the best fits of the numerical WTDs to equation (39), with µ and σ as fitting parameters.

Notably, as the bias across the system is increased, the mean of the distribution increases and the variance
of the distribution is decreased. This indicates that the clock’s accuracy increases as the bias across the system
is increased, while its resolution decreases slightly. Increasing the bias also increases the average rate of
entropy production, which is proportional to the power dissipated in the circuit:

Σ̇ = β⟨̂I⟩V. (40)

Figure 6 shows the accuracy and resolution of the electromechanical clock against the entropy produced per
tick,∆Stick = Σ̇/ν. We observe an approximately linear relationship between accuracy and entropy
production during the onset of self-sustained oscillations, showing that accurate timekeeping comes at the
cost of increased dissipation. However, as the voltage is increased further, the growth of accuracy slows and
begins to saturate to a value of around 4× 104: at this point, additional dissipation gives little further
advantage to timekeeping.

Meanwhile, the clock’s resolution decreases and eventually saturates with increasing dissipation.
However, the change in resolution is minimal for this model, which is unsurprising given that the tick period
is fundamentally fixed by the physical oscillator frequency. The small decrease in resolution is probably due
to effective non-linearities associated with the position dependence mean-field force∝ F⟨n̂⟩x and damping
rate γx, whose effect will change as the oscillator explores a larger region of phase space.
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3.3. Allan variance
The measures of accuracy and resolution considered in section 3.2 are only strictly applicable when the
waiting times are i.i.d. random variables. The latter condition is equivalent to the statement that the total
number of ticks is a renewal process [64]. However, this assumption does not exactly hold because the limit
cycle is mesoscopic in scale and subject to strong amplitude fluctuations. While the amplitude and phase
noise can be approximated as independent for very small deviations from the limit cycle [see section 3.1.2],
this conclusion does not hold in general. Larger amplitude fluctuations will become correlated with phase
noise because they both derive from the same underlying stochastic force induced by electron tunnelling.
Therefore, differences in the state of the system after each tick may cause the next tick to be correlated with
the previous ones.

Given that the ticks of our mesoscopic electromechanical clock are correlated, we need more a
sophisticated measure of performance than the accuracy and resolution defined in equations (37) and (38).
We focus instead on the Allan variance [53], which measures the frequency stability of a stochastic process
and is widely used to test the stability of sensors and clocks. The Allan variance quantifies the deviation of a
measured clock signal θ, from a second reference clock. For simplicity, we take this reference to be an ideal
clock whose reading is the coordinate time, t, so that the measured deviation is

X(t) = θ (t)− t. (41)

Then, y(t) = dX/dt is the instantaneous frequency difference between the measured clock and the reference
clock at a time t. This frequency deviation is estimated by observing the clock’s reading over a finite
integration time T, leading to the average fractional frequency difference

ȳ(t,T) =
1

T

ˆ T

0
dt ′ y(t+ t ′) =

X(t+T)−X(t)

T
. (42)

The Allan variance is then proportional to the mean-square deviation of successive average fractional
frequency differences

σ2
y (T) =

1

2
E
{
[ȳ(t+T,T)− ȳ(t,T)]2

}
, (43)

thus quantifying how instability in the average frequency scales with integration time. In the case of
deterministic signals, where the frequency remains constant, the anticipated frequency deviation is zero.
Consequently, a clock that closely adheres to deterministic behaviour—and is, therefore, more
accurate—would exhibit a smaller Allan variance.

We compute the Allan variance for our electromechanical clock by partitioning the stochastic current
trajectories into non-overlapping regions of equal duration T. The measured deviation pertaining to the nth
region, Xn = X(nτ), is evaluated by counting the number of registered ticks up to time t= nτ . Finally, the
Allan variance is computed as

σ2
y (T) =

1

2T2
E
[
(Xn−1 − 2Xn +Xn+1)

2
]
. (44)

The behaviour of the Allan variance as a function of T may be sensitive to the precise choice of T values—we
have repeated our calculations for different values of T to ensure that the results are robust.

The results for the Allan variance are plotted in figure 7, for a range of different voltages. In general, the
Allan variance decreases systematically with T: evidently, integrating the clock signal over a longer time
yields greater precision. This dynamic highlights the trade-off between the clock’s timekeeping accuracy and
resolution [16]. Note that here σ2

y decreases indefinitely with T, whereas real experiments usually find that
the Allan variance begins to grow beyond a certain integration time. This is typically due to the influence of
low-frequency fluctuations, e.g. due to temperature variations or the gradual degradation of the apparatus
over time, which are absent in our theoretical model.

At short and intermediate timescales, we observe from figure 7 that higher voltage leads to a smaller
values of σ2

y , demonstrating a quantitative link between accuracy and the rate of energy dissipation. It follows
that the relationship between timekeeping precision and entropy production extends over multiple ticks of
the clock, beyond the simple accuracy measure of equation (38) that only accounts for the single-tick WTD.
At long times, all curves in figure 7 tend to the approximate scaling σ2

y ∼ T−1. This is consistent with known
results for the long-time Allan variance for a renewal process (see appendix D or [30]):

σ2
y →

µ

NT
, (45)
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Figure 7. Allan variance as a function of integration time T for various different voltage biases. Parameters are the same as figure 2.

which is fully determined by the clock’s accuracy N defined in equation (38). A similar 1/T scaling is
observed in figure 7 across essentially all times for voltages below the threshold for self-oscillations.

Interestingly, however, the Allan variance initially decreases slightly faster than T−1 for voltages above
threshold. This trend continues up to an intermediate timescale on the order of a few thousand ticks, after
which the slope of σ2

y (T) changes dramatically and the advantage in timekeeping precision due to
self-oscillations is eventually lost altogether. The non-trivial behaviour of the Allan variance as a function of
T indicates that temporal correlations play a significant role in determining the clock’s performance over
multiple ticks.

3.4. Quantifying correlations between ticks
In this section we turn to explicitly quantifying correlations between the ticks of the clock, which are
responsible for the faster decrease of σ2

y (T) above threshold. We consider two different measures of statistical
correlations. First, we consider the clock reading after n ticks, tn =

∑n
i=1 τi, which is the sum of n consecutive

waiting times τ1, τ2, . . . , τn. Let Pn(tn) be the corresponding probability distribution. If the ticks were
generated by a renewal process, so that the individual waiting times were i.i.d. this distribution would be
given by the n-fold convolution of single-tick WTDs, i.e.[

n
⊛W

]
(tn) =

ˆ tn

0
dt1

ˆ tn

t1

dt2 · · ·
ˆ tn

tn−2

dtn−1W(t1)×W(t2 − t1)× ·· ·×W(tn − tn−1) . (46)

We use the relative entropy (Kullback–Leibler divergence) to measure the distance between Pn(tn) and the
i.i.d. result in equation (46):

DKL

(
Pn||

n
⊛W

)
=

ˆ ∞

0
dtPn (t) ln

 Pn (t)[
n
⊛W

]
(t)

 . (47)

Since we are considering a stationary process, if the waiting times are not i.i.d. then they are not independent.
Equation (47) can thus be understood as a measure of the total statistical correlations among all n ticks.

The inset of figure 8 demonstrates that the ticks are indeed correlated: the relative entropy grows as a
function of n. Moreover, this growth is faster for higher voltages, indicating that correlations between ticks
become more significant in the self-oscillation regime. Since these correlations should have a finite range in
time, we expect the total correlations to eventually saturate as n increases. Unfortunately, we are unable to
reliably extend our calculation of DKL(Pn||⊛nW) to higher values of n: the results become very noisy due to
the limited quantity of available numerical data and the relative complexity of the n-fold convolution.

To estimate the timescale over which correlations decay, we therefore focus on a simpler measure of
correlations: the mutual information between pairs of ticks that arem ticks apart. This is defined as

I (τi : τi+m) = 2H [W(τi)]−H [W(τi, τi+m)] , (48)

whereW(τi, τi+m) is the joint distribution of the waiting times τ i and τi+m,W(τi) is the WTD (identical for
τ i and τi+m) and H[W(τ)] =−

´
dτW(τ) lnW(τ) denotes the Shannon entropy. Unlike the relative entropy,

which measures the total correlations among all ticks, equation (48) quantifies only correlations between
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Figure 8. The main panel shows the mutual information (equation (48)) between a tick and themth subsequent tick, i.e. the
pairwise correlations between the waiting times τ i and τi+m. The inset shows the relative entropy (equation (47)) between the
distribution of the n-tick clock reading P(tn) and the n-fold convolution of single-tick WTD, which measures the total
correlations among all n ticks. Parameters are the same as figure 2.

specific pairs of ticks and can be computed reliably over long timescales using our numerical data. The
mutual information is plotted in the main panel of figure 8. This plot demonstrates that indeed the
correlations are short-ranged in time: I(τi : τi+m) is largest for smallm and at lower voltages. However,
especially at voltages above threshold, these correlations persist over long timescales on the order of several
thousand ticks. This is the same timescale at which the non-monotonic behaviour of the Allan variance in
figure 7 appears.

We thus conclude that σ2
y decreases more rapidly above threshold because of temporal correlations

between the ticks. These correlations provide an advantage in timekeeping precision, so long as the
integration time T is not much greater than the correlation time. By contrast, when T far exceeds the range
of temporal correlations, the integrated signals in two neighbouring time periods become effectively
independent and the behaviour of the Allan variance reduces to that of a renewal process, i.e. σ2

y ∼ T−1.
These correlations are likely dictated by several factors acting in tandem. The timescale over which they

persist appears to be far longer than the timescale of pure phase decoherence apparent in figure 3, indicating
that amplitude fluctuations also play a role. This can be understood from the fact that amplitude and phase
fluctuations are generally not independent, meaning that a variation in amplitude after one cycle can
influence the time taken for the next cycle to be completed. The timescale over which tick correlations persist
will then be determined by a combination of phase decoherence, amplitude fluctuations near the limit cycle,
and large-scale amplitude variations due to bistability in the current signal.

4. Conclusions and outlook

In this work, we have introduced a self-contained model of an autonomous clock, where the clockwork is an
electromechanical self-oscillator and the ticks of the clock are read out from the electrical current passing
through the system. A peculiar and novel feature of our setup is that the clockwork is driven by the same
irreversible process that is used for tick readout—the tunnelling of electrons through the device. We have
confirmed that the clock’s accuracy increases with the rate of entropy production, as the current drives the
oscillator into a limit cycle with long-lived phase coherence. We have identified that both phase and
amplitude fluctuations play an important role in determining the statistical properties of the measured
current.

A key finding of our work is that the ticks of the clock are generally correlated with each other and that
these correlations can improve the clock’s accuracy, as quantified by the Allan variance. It remains an open
problem to understand under what conditions such correlations can improve clock accuracy in general. We
note that temporal correlations have recently been considered in the context of (classical) parameter
estimation, where they may either help or hinder depending on their nature [65]. Yet far more work is
needed to unify the theory of quantum ticking clocks with the standard framework of quantum parameter
estimation, especially beyond the asymptotic regime of infinitely many samples (or in this case, ticks).

Our model is strongly motivated by modern electromechanical platforms, meaning that our predictions
could be probed directly in state-of-the-art experiments. In the present work, we have limited ourselves to
the quasi-adiabatic regime, which is often the most experimentally relevant one and is also the simplest
regime to treat theoretically. However, the quasi-adiabatic regime is very far from thermodynamically
optimal, since many electrons tunnel through the device per tick of the clock. This regime is also sub-optimal
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from the perspective of readout, since the mechanical oscillations are ‘oversampled’ by the tunnelling
events [16]. It is thus important to explore the complementary regime where each oscillation is sampled by
only a handful of electrons, approaching the lower sensitivity limit of electrical readout and entailing thus a
far smaller rate of dissipation. In this regime, fluctuations in the tunnelling time of individual electrons
(e.g. see [66] and references therein) may become relevant for the clock’s performance. At the level of theory
and modelling, going beyond the quasi-adiabatic limit requires a non-perturbative methodology capable of
tackling situations where the electromechanical coupling and the tunnelling rates are comparable. In future
work, we plan to apply the mesoscopic-leads/extended-reservoir approach [67, 68] to address this problem.

It is interesting to note that our model predicts clock accuracies (figure 6) that significantly surpass
thermodynamic performance bounds that apply to classical clocks with a discrete state space [12]. In
particular, the thermodynamic uncertainty relation [17, 18] limits the accuracy of such clocks to one half of
the entropy production per tick, i.e. N⩽ Σ̇/2ν (assuming the ticks are generated by a renewal process) . The
fact that our electromechanical clock can surpass these bounds is unsurprising: the dynamics of our clock is
governed by an underdamped classical Langevin equation, which does not necessarily obey these bounds [31,
69]. Nevertheless, the approximations inherent to our model do neglect some potentially relevant
contributions, which lead us to overestimate the accuracy and underestimate the entropy production.

First, our definition of the ticks is based on the quasi-adiabatic current fluctuations quantified by CP(t).
We have neglected the shot-noise contribution due to the discrete nature of the electronic charge, i.e. CQ(t).
This additional source of white noise would partially obscure the precise time at which ticks occur. To
improve tick identification in the presence of such noise, one could redefine the tick time to occur when the
time derivative of the current, rather than the current itself, is at its maximum [50]. Second, reading out
relatively small currents would require amplification in practice, and we have ignored the additional
dissipation associated with this measurement step. We note that the thermodynamic cost of the
measurement has also been neglected in previous work on autonomous clocks [9, 11, 14, 30]. Understanding
how this additional source of dissipation enters the balance of entropy production for timekeeping is an
important open question for future work.

Finally, it would be interesting to explore the thermodynamics of timekeeping for other kinds of
self-oscillators in the quantum regime. Conditions for self-oscillations to emerge from open quantum
dynamics have only recently been established [70–73], within the broader context of research on broken
time-translation symmetry [74–76]. However, a general recipe to exploit such symmetry breaking for
accurate timekeeping remains lacking.
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Appendix A. Derivation of the electronic correlation function

In this appendix, we derive the expression (25) for the electronic correlation function. The starting point is
the auxiliary density operator defined in equation (20), i.e.

K̂(t) = e−iĤt̂Iρ̂eiĤt. (A1)
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Taking the Wigner transform as in equation (8), we have the equation of motion

∂

∂t
K̂(x,p, t) = (Lx +H+F) K̂(x,p, t) , (A2)

with the superoperators given by equations (10)–(12). The projection operator P defined in equation (13),
and its orthogonal complementQ= 1−P , obey the following properties [49]

P2 = P, (A3a)

PLx = 0= LxP, (A3b)

PFP = 0, (A3c)

[P,H] =
p

m

∂ρ̂x
∂x

tr [•] , (A3d)

P [P,H] = 0. (A3e)

As in [49], we assume that Lx ≫H,F , which follows from the quasi-adiabatic conditions (7). Then the
electronic degrees of freedom can be assumed to relax quickly to the stationary state of Lx, whileH and F
can be treated perturbatively.

To proceed, we define the compact notation r̂(t) = PK̂(x,p, t) and q̂(t) =QK̂(x,p, t), suppressing
phase-space arguments for concision. Inserting appropriate factors of the identity 1=Q+P on both sides
of equation (A2), and using the properties (A3), one has

∂ r̂

∂t
= PHr̂+P (H+F) q̂, (A4)

∂q̂

∂t
= Lxq̂+Q(H+F) q̂+Q(H+F) r̂. (A5)

Formally integrating equation (A5) yields

q̂(t) = G (t) q̂(0)+

ˆ t

0
dt ′G (t− t ′)Q(H+F) r̂(t ′) , (A6)

G (t) = exp{[Lx +Q(H+F)] t} . (A7)

Substituting this back into equation (A4), we obtain the closed equation of motion

∂ r̂

∂t
= PHr̂(t)+

ˆ t

0
dt ′P (H+F)G (t− t ′)Q(H+F) r̂(t ′)+P (H+F)G (t) q̂(0) . (A8)

The first two terms on the right-hand side (RHS) of equation (A8) are identical to equation (A14) in the
supplemental material of [49], and can be treated by identical manipulations. In brief, we make the following
approximations: (i) sinceH,F ≪Lx we write G(t)≈ eLxt to lowest non-trivial order in small quantities
(Born approximation), (ii) assuming that the integrand decays rapidly as a function of t′, we approximate
r̂(t− t ′)≈ r̂(t) and extend the upper integration limit to infinity (Markov approximation). After tracing over
the electronic degrees of freedom, therefore, the first two terms on the RHS of equation (A8) reduce to the
Fokker–Planck generator

LFPK=
∂

∂p

(
mω2

0x− F⟨n̂⟩x + γxp
)
K− p

m

∂K

∂x
+

Dx

2

∂2K

∂p2
, (A9)

where K(x,p, t) = trK̂(x,p, t). The same Fokker–Planck operator dictates the evolution of the Wigner
function, ∂W/∂t= LFPW, which can therefore be reconstructed by sampling the equivalent Langevin
equation (14). However, unlike the Wigner function, the equation for K(x,p, t) has an additional
inhomogeneity deriving from the third term on the RHS of equation (A8), i.e.

∂K

∂t
= LFPK+ tr [P (H+F)G (t) q̂(0)] . (A10)

This equation has the solution

K(t) = eLFPtK(0)+

ˆ t

0
dt ′ eLFP(t−t ′)tr [P (H+F)G (t ′) q̂(0)] . (A11)
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Since PK̂(x,p, t) = K(x,p, t)ρ̂x and PK̂(x,p, t) is given by equation (A6), we have a formal solution for both
components of K̂(x,p, t).

Now, since we are considering the steady-state current correlation function, the initial condition of
equation (A2) is

K̂(x,p,0) = Îρ̂(x,p)≈ Îρ̂xW(x,p) , (A12)

to lowest order in small quantities, where ρ̂(x,p) andW(x,p) correspond to the stationary state. Applying the
projection operators, we get at lowest order

PK̂(x,p,0)≈ ρ̂x⟨̂I⟩xW(x,p) , (A13)

QK̂(x,p,0)≈
(̂
I− ⟨̂I⟩x

)
ρ̂xW(x,p) . (A14)

To the same order, the second term on the right-hand side of both equations (A6) and (A11) can be
neglected and we can write G(t)≈ eLxt. Therefore, we finally obtain the approximate solution

K̂(x,p, t) = PK̂(x,p, t)+QK̂(x,p, t)

≈ ρ̂xe
LFPt[⟨W(x,p)⟩] + eLxt

[(̂
I− ⟨̂I⟩x

)
ρ̂x
]
W(x,p) . (A15)

Plugging this into equation (21) yields

⟨̂I(t) Î(0)⟩=
ˆ

dx

ˆ
dp ⟨̂I⟩xeLFPt

[
⟨̂I⟩xW(x,p)

]
+

ˆ
dx

ˆ
dpW(x,p)

[
⟨eL

†
x t
(̂
I
)
Î⟩x − ⟨̂I⟩2x

]
. (A16)

The first term in equation (A16) can be interpreted as an autocorrelation function of the stochastic
variable ⟨̂I⟩x(t) with respect to the Langevin evolution of the oscillator. To see this, note that

eLFPt
[
⟨̂I⟩xW(x,p)

]
is the solution of the Fokker–Planck equation with initial condition ⟨̂I⟩xW(x,p). We define

the Fokker–Planck propagator Π(x ′,p ′, t ′|x,p, t) as the conditional probability to find the oscillator at the
phase space point (x ′,p ′) at time t′ given that it was at (x, p) at time t. We may therefore write the first term
in equation (A16) as

ˆ
dx

ˆ
dp ⟨̂I⟩xeLFPt

[
⟨̂I⟩xW(x,p)

]
=

ˆ
dx ′
ˆ

dp ′
ˆ

dx

ˆ
dp ⟨̂I⟩xΠ(x,p, t|x ′,p ′,0) ⟨̂I⟩x ′W(x ′,p ′)

=

ˆ
dx ′
ˆ

dp ′
ˆ

dx

ˆ
dp ⟨̂I⟩x⟨̂I⟩x ′P(x,p, t;x ′,p ′,0)

≡ E
[
⟨̂I⟩x(t)⟨̂I⟩x(0)

]
, (A17)

where P(x,p, t;x ′,p ′,0) = Π(x,p, t|x ′,p ′,0)W(x ′,p ′) is the joint probability to find the system initially (time
t= 0) at (x ′,p ′) and finally (time t) at (x, p), while E[•] denotes an average over the joint distribution which
can be computed by sampling Langevin trajectories.

The second term in equation (A16) represents the instantaneous current fluctuations conditioned on the
oscillator position x. Within the quasi-adiabatic limit, this correlation decays very quickly compared to the
slow timescales of the oscillator. Thus, on timescales relevant for the oscillator, the real part of this
correlation function can by approximated by a Dirac delta function:

Re
(
⟨eL

†
x t
(̂
I
)
Î⟩x − ⟨̂I⟩2x

)
≈∆xδ (t) , (A18)

where∆x is the steady-state current noise conditioned on x, i.e.

∆x =

ˆ ∞

−∞
dtRe

(
⟨eL

†
x t
(̂
I
)
Î⟩x − ⟨̂I⟩2x

)
. (A19)

Putting everything together, we obtain equation (25). Finally, we note that the above derivation holds for an
arbitrary operator Î whose support is restricted to the electronic system in the Schrödinger picture
(otherwise equation (A12) does not hold).
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Appendix B. Modelling small amplitude and phase fluctuations near the limit cycle

In this appendix, we derive a simple description of phase and amplitude fluctuations on the oscillator’s limit
cycle. Our starting point is the Langevin equation (14) governing the evolution of the oscillator. We first
transform the equation to polar coordinates. Using the substitution zω0 = v and converting the system to
polar coordinates, x= Acosϕ, z= Asinϕ the equations of motion become

dA= cosϕdx+ sinϕdz+
cos2ϕ

2A
dz2, (B1)

dϕ =− sinϕ

A
dx+

cosϕ

A
dz− cosϕsinϕ

2A2
dz2. (B2)

Here we have used Itô’s lemma, where dz2 = Dx

ω2
0
dt, dx2 = 0 and dxdz= 0. Focusing first on the amplitude

equation, the equation of motion is given as

dA=−mγ(A,ϕ)Asin
2 (ϕ)dt+

F

ω0
⟨n⟩(A,ϕ)sin(ϕ)dt+

√
D(A,ϕ)

w0
sin(ϕ)dw+

cos2 (ϕ)

2A

D(A,ϕ)

ω2
0

dt. (B3)

Here dw is a Wiener increment, and the subscript (A,ϕ) is used to highlight dependence on both amplitude
and the phase. Assuming the amplitude change over a single cycle is small, we can replace the deterministic
terms with their mean over a single oscillation and the stochastic term with its RMS over a single oscillation;

dA=− A

2π

˛ (
γ(A,ϕ)sin

2 (ϕ)
)
dϕdt+

F

2πω0

˛ (
⟨n⟩(A,ϕ)sin(ϕ)

)
dϕdt

+
1√
2πω0

√˛ (√
D(A,ϕ)sin(ϕ)

)2
dϕdwA +

1

4πAω2
0

˛ (
D(A,ϕ)cos

2 (ϕ)
)
dϕdt. (B4)

Here dwA is an effective coarse-grained Wiener increment. Due to symmetry in the ⟨n̂⟩x term, its average
over a single cycle will be zero. We can find the limit cycle of the system by taking the expectation value of

both sides of the equation and setting ∆E[A]
∆t = 0. The limit cycle is given by the solution of the transcendental

equation

1=
1

2E [A]2ω2
0

E
[¸

cos2 (ϕ)D(A,ϕ)dϕ
]

E
[¸

sin2 (ϕ)γ(A,ϕ)dϕ
] . (B5)

We can also truncate equation (B4) to lowest order for the dissipation and the fluctuation terms around the
limit cycle. Using the substitutions

γA =
d

dA

(
− A

2π

˛ (
γ(A,ϕ)sin

2 (ϕ)
)
dϕ +

1

4πAω2
0

˛ (
D(A,ϕ)cos

2 (ϕ)
)
dϕ

)∣∣∣∣∣
A=A0

, (B6)

√
DA =

1√
2πω0

√˛ (√
D(A,ϕ)sin(ϕ)

)2
dϕ

∣∣∣∣∣
A=A0

. (B7)

Substituting these into the equation (B4), one arrives at the much simpler equation

dA=−γA (A−A0)dt+
√
DAdwA. (B8)

This equation describes the amplitude of the system as an Ornstein–Uhlenbeck process [55].
We can perform a similar analysis on the equation of motion for the phase:

dϕ =−ω0dt− γxcos(ϕ) sin(ϕ)dt+
cosϕF

ω0A
dt+

cos(ϕ)
√
Dx

Aω0
dw− cos(ϕ) sin(ϕ)Dx

2A2ω2
0

dt. (B9)
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Figure 9. Ratio between the phase diffusion coefficient Dϕ and the amplitude damping rate γA computed for small fluctuations
away from the ideal limit cycle. The relatively small values indicate that phase coherence on the limit cycle is long-lived compared
to the rate of amplitude variation. Parameters are the same as figure 2.

We will assume that the oscillator’s natural frequency is the dominate term in the deterministic part of the
equation. The phase evolution is given by

dϕ =−ω0dt+
cos(ϕ)

√
Dx

Aω0
dw. (B10)

Assuming sufficiently large ω2
0A/

√
Dx we can linearise equation (B10) by replacing the stochastic term

prefactor with its RMS over a single cycle so that

dϕ =−ω0dt+
√

Dϕdwϕ, (B11)

here dwϕ is the effective Wiener increment originating from the linearisation. The diffusion term is given by

√
Dϕ =

1

Aω0

√
2π

√˛
[cos2 (ϕ)Dx]dϕ

∣∣∣∣∣
A=A0

. (B12)

Note that in the main text near equations (30) and (31) we have replaced ϕ →−ϕmerely for clarity of
presentation.

Since the amplitude and phase noise are independent within our approximations, it is straightforward to
compute the steady-state position autocorrelation function [55]

E [x(t)x(0)]−E [x(0)]2 = E [A(t)A(0)]E [cosϕ(t)cosϕ(0)]

=

(
A2
0 +

DAe−2γAt

2γA

)
cos(ω0t)e−Dϕ t/2

2
. (B13)

This function exhibits oscillatory decay at a rate that is ultimately dictated by the phase decoherence time,
D−1

ϕ . This conclusion holds irrespectively of the scale, DA, and regression rate, γA, of amplitude fluctuations.
This point is discussed in more detail at the end of appendix A.

To compare the characteristic timescales of amplitude and phase fluctuations that result from this
description, we numerically compute the quantities γA and Dϕ from equations (B6) and (B12), respectively.
Their ratio is plotted in figure 9 as a function of the voltage bias, for values of V above and beyond the
threshold for self-oscillations. We see that for all voltages considered, we have Dϕ/4γA ≪ 1, implying that
phase coherence lasts longer than the characteristic timescale of amplitude variations.

Appendix C. Bistable model of large amplitude fluctuations

In this appendix, we derive the autocorrelation function (32) for a bistable current that switches between two
states, finding that it reproduces the features seen in figure 3 when the switching process is sufficiently slow.
Concretely, consider a stochastic process I(t) that switches randomly between two different oscillatory states
labelled by i = 1,2, giving rise to stochastic sub-signals I1(t) and I2(t). We are interested in the steady-state
correlation function

C(t) = E [I(t) I(0)]−E [I(0)]2 . (C1)
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The average signal is

E [I(0)] = p1I1 + p2I2, (C2)

where pi is the steady-state probability to be in state i and Ii = E[Ii(0)] is the steady-state average of the
corresponding sub-signal. Assuming that switching between the two states occurs independently of the value
of Ii(t), we can write

E [I(t) I(0)] =
2∑

i,j=1

pj|i (t)piE
[
Ij (t) Ii (0)

]
, (C3)

where pj|i(t) is the conditional probability to be in state j at time t, given state i at t= 0. Here we take t> 0
without loss of generality, since the stationary correlation function obeys C(t) = C(−t). We further assume
that the two sub-signals are statistically independent from each other, i.e.

E [I1 (t) I2 (t
′)] = E [I1 (t)]E [I2 (t

′)] . (C4)

Now, splitting the sum in equation (C3) into diagonal (i= j) and off-diagonal (i ̸= j) terms, and subtracting
the square of equation (C2), we arrive at equations (32) and (33), i.e.

C(t) =
2∑

i=1

pipi|i (t)Ci (t)+C1↔2 (t) , (C5)

C1↔2 (t) =
2∑

i,j=1

pi
[
pj|i (t)− pj

]
Ii Ij, (C6)

where Ci(t) = E[Ii(t)Ii(0)]− Ii
2
is the auto-correlation function of Ii(t).

The switching term C1↔2(t) has the properties expected of an autocorrelation function: in particular,
it vanishes as t→∞ since pj|i(t)→ pj at long times. Using the conservation of probability,

∑
i pi =∑

j pj|i(t) = 1, one can also show that

C1↔2 (t) =
(
I2 − I1

)(
p1I1

[
p2|1 (t)− p2

]
− p2I2

[
p1|2 (t)− p1

])
. (C7)

Therefore, the switching term is non-zero only if I2 ̸= I1, i.e. the two sub-signals have a different mean value.
If this is the case, and if the switching probabilities pj|i(t) evolve on a slow timescale compared to Ci(t), then
equation (C5) will exhibit two well-separated timescales as in figure 3.

To demonstrate this explicitly, we assume that the switching occurs via a simple telegraph process
described by the master equation

ṗ1 (t) = λ2p2 (t)−λ1p1 (t) =−ṗ2 (t) , (C8)

where λi are transition rates between the sub-signals. The steady-state probabilities are given by(
p1
p2

)
=

1

λ1 +λ2

(
λ2

λ1

)
. (C9)

The transition probability of switching from state i to state j ̸= i after a time t> 0 is given by the solution of
equation (C8) with pi(0) = 1, i.e.

pj|i (t) =
λi

λ1 +λ2

(
1− e−(λ1+λ2)t

)
. (C10)

Substituting these results into equation (C7) gives the two-point correlation function of the telegraph
process

C1↔2 (t) =

(
I2 − I1

)2
λ1λ2e−(λ1+λ2)|t|

(λ1 +λ2)
2 . (C11)

Therefore, the total correlation function (equation (C5)) is the sum of two terms: an oscillatory function
determined by the Ci(t), which decays due to amplitude and phase fluctuations within each state, and a pure
exponential decay given by equation (C11). So long as the total switching rate λ1 +λ2 is slow compared to
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the decay of the Ci(t), the latter contribution will survive after the oscillations have died out. This is precisely
the qualitative behaviour above threshold seen in figure 3.

This model also predicts a large zero-frequency component to the current noise, consistent with our
observations in section 3.1.3. From equation (34) one has [77]

S(0) = 2

ˆ ∞

0
dtC(t) . (C12)

Therefore the switching term contributes a term that scales as

S(0)∼ λ1λ2

(λ1 +λ2)
3 , (C13)

which diverges as λi → 0. For example, if λ1 = λ2 = λ then we simply haveS(0)∼ λ−1, where λ−1 is the
lifetime of each state.

Note that other models of slow amplitude fluctuations give rise to similar behaviour. However, it is crucial
that the cycle-averaged signal depends on the amplitude, which is reflected here by the condition that I1 ̸= I2.
For example, the model of independent amplitude and phase fluctuations developed in appendix B yields a
position autocorrelation function given by equation (B13). This does not show a separation of timescales,
even when the amplitude fluctuations are much slower than phase fluctuations, i.e. DA,γA ≪ Dϕ. This is
because the average of x(t) = A(t)cosϕ(t) around one cycle is zero, independently of the value of A(t).

To illustrate the importance of an amplitude-dependent cycle average, let us instead consider a model of
stochastic oscillations with an offset:

I(t) = A(t){cos [ϕ(t)]− b}+ c, (C14)

where b and c are constants, and A(t) and ϕ(t) are described by an Ornstein-Uhlenbeck process
(equation (30)) and a biased diffusion process (equation (31)), respectively. The resulting stochastic
dynamics is qualitatively similar to the behaviour seen in figure 2 in regions where the peak-to-peak
amplitude is large, with c representing the maximum current and the scale factor b determining how much
oscillations reduce the current on average. In particular, the cycle average of this signal is now amplitude
dependent and given by Eϕ[I(t)] = c− bA(t). We find the autocorrelation function for this model is given by

C(t) =

(
A2
0 +

DAe−2γAt

2γA

)
cos(ω0t)e−Dϕ t/2

2
+

b2DAe−2γAt

2γA
. (C15)

The first term above is identical to equation (B13), but now another term appears that depends only on the
amplitude fluctuations. This latter term can be understood as a continuous analogue of equation (C6), where
now b instead of I1 − I2 determines how amplitude fluctuations affect the cycle-averaged signal.

Appendix D. Allan variance for a renewal clock

In this appendix we derive the asymptotic Allan variance for a clock whose ticks are generated by a renewal
process. Our derivation takes a different approach from that of [30], although the results are equivalent up to
a rescaling. Let n(t) denote the number of ticks generated after a coordinate time t has elapsed. Let us assume
that n(t) is a renewal process for which the mean and variance are well known [64]

E [n(t)] =
t

µ
+O

(
t0
)
, (D1)

E
[
n(t)2

]
−E [n(t)]2 =

σ2t

µ3
+O

(
t0
)
, (D2)

where µ and σ are the mean and variance of the waiting-time distribution.
The clock reading at time t is taken to be

θ (t) = µn(t) , (D3)

which is the ‘asymptotically unbiased’ choice since then E[θ(t)] = t at long times. The fractional frequency
deviation averaged over a time T is then, from equation (42),

ȳ(t,T) =
µ

T
[n(t+T)− n(t)] . (D4)

20



New J. Phys. 26 (2024) 023047 O Culhane et al

Now, the Allan variance is defined as

σ2
y (T) =

1

2
E
{
[ȳ(t+T,T)− ȳ(t,T)]2

}
=

1

2
E
[
ȳ(t+T,T)2

]
+

1

2
E
[
ȳ(t,T)2

]
−E [ȳ(t+T,T) ȳ(t,T)]

−→
T→∞

E
[
ȳ(t,T)2

]
−E [ȳ(t,T)]2 . (D5)

On the second line, the first two terms are equal because the process is stationary. The third line then follows
in the limit of large T because ȳ(t+T,T) and ȳ(t,T) become statistically independent, i.e. the number of
renewals in time interval [t, t+T] becomes independent of the number of renewals in the following time
interval [t+T, t+ 2T]. Therefore, the Allan variance for large T is (up to scale factors) nothing but the
variance of, n(t+T)− n(t), i.e. the number of renewals within a time interval of duration T. Analogously to
equation (D2), this result is known asymptotically to be Var [n(t+T)− n(t)] = σ2T/µ3 +O(T0) [64].
Finally, this yields the asymptotic Allan variance for a renewal process

σ2
y (T)−→

σ2

µT
, (D6)

which is equivalent to equation (45).
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