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Abstract — Tackling the information retrieval gap between 
non-technical database end-users and those with the knowledge of 
formal query languages has been an interesting area of data 
management and analytics research. The use of natural language 
interfaces to query information from databases offers the 
opportunity to bridge the communication challenges between end-
users and systems that use formal query languages. Previous 
research efforts mainly focused on developing structured query 
interfaces to relational databases. However, the evolution of 
unstructured big data such as text, images, and video has exposed 
the limitations of traditional structured query interfaces. While 
the existing web search tools prove the popularity and usability of 
natural language query, they return complete documents and web 
pages instead of focused query responses and are not applicable to 
database systems. This paper reports our study on the design and 
development of a  natural language query interface to a backend 
relational database. The novelty in the study lies in defining a 
graph database as a middle layer to store necessary metadata 
needed to transform a natural language query into structured 
query language that can be executed on backend databases. We 
implemented and evaluated our approach using a restaurant 
dataset. The translation results for some sample queries yielded a 
90% accuracy rate. 

Keywords—Cypher, graph database, natural language interface, 
Neo4j, queries 

I. INTRODUCTION 

In the real world, humans communicate using natural 
languages such as English or French. The query-response cycle 
in a human-to-human communication is often very effective 
since the person responding to the query can ask for further 
clarification if the query is not clear. This is, however, different 
in human-to-computer settings such as querying a database [1]. 
While databases have been around for decades, query languages 
for accessing such databases are unlikely to ever become 
common knowledge for the average end-user. For instance, 
Structured Query Language (SQL), despite its expressiveness, 
may hinder users with little or no relational database knowledge 
from exploring and making use of the data stored in an RDBMS 
[2]. Furthermore, different databases have different query 
languages and require that the user understand the exact schema 
of the database and the roles of various entities in a query [3, 4]. 
These challenges have led to an increasing interest in research 
and development of tools such as the natural language interface 
to databases to enhance human-to-database communications.  

Commonly used natural language query interfaces according 
to Li and Jagadish [3] include (i) keyword-based search 
interfaces such as Google Scholar, a web-based search engine 
that indexes the full text or metadata of scholarly literature 

across many publishing formats and disciplines, (ii) form-based 
interface such as Web of Science and Scopus in which users first 
select fields such as topic or author and then type appropriate 
values for each field, and (iii) visual query builder, a web-based 
framework that helps researchers in various domains search 
through database records to identify and correlate data based on 
semantic concepts. Besides, keywords are insufficient in 
conveying complex query intent, form-based interfaces are only 
suitable in cases where queries are predictable and limited to the 
encoded logic, while visual query builders require users to have 
extensive knowledge of the schema [3].  

A Natural Language Interface to Databases (NLIDB) is a 
system that allows users to access information stored in a 
database by typing requests expressed in some natural language 
such as English [6, 7]. NLIDBs are designed to simplify the 
interaction between users and computers. Through a natural 
language interface, users can express queries using natural 
language and get relevant results in one step without the need to 
fill out forms or trying different keywords which only returns a 
ranked list of relevant documents instead of a concise reply 
containing the specific information [5]. NLIDB enables the 
retrieval of useful information from any database without the 
knowledge of specific query languages such as Structured Query 
Language (SQL) for relational databases [8].  

Query-response task in NLIDB is often approached by 
mapping natural language queries to logical forms or programs 
that provide the desired response when executed on a database 
[4]. These interfaces use intermediate representation languages 
to parse and transform the query from users to formal languages 
supported by the database [9]. Modern NLIDB systems are 
increasingly leveraging recent advances in deep learning to 
parse and translate natural language queries to a corresponding 
query language such as SQL query over a given database [10]. 
A major limitation, however, is that training data is assumed to 
have been acquired a priori and crafted to be well-representative 
of the types of queries one might ask in the target domain  [2]. 

NLIDBs rely on techniques such as pattern matching, 
syntactic parsing, and semantic grammar interpretation for 
natural language queries [3, 4]. Research and development 
efforts in NLIDB were initially focused on relational databases 
which are useful in storing structured information, however, 
there is currently an increasing interest in building natural 
language interfaces for non-relational databases such as RDF-
triple stores or knowledge bases and graph databases [5]. Other 
existing studies surveyed by Affolter et al. [10] focus on 
generating a distribution of data values stored in the databases 
to match values in the user queries to database field names to 
construct SQL queries. However, as we are currently in the era 
of big data, such approaches of generating a subset of possible 



values by applying statistical distribution methods have become 
impractical and inefficient. This study, therefore, focuses on the 
development of an interface to a backend relational database for 
translating natural language queries to SQL queries. Related 
information about the relational database is kept in a graph 
database to extend the backend to support multiple distributed 
databases in the future and be able to compose a query that joins 
fields from multiple data sources.  

Query over graph databases is increasingly attracting much 
attention [13]. Storing and managing connected semi-structured 
datasets within relational databases is very challenging because 
relational databases were originally designed to store and 
process data in tabular structures. The strength of relational 
databases lies in their abstraction, however, in practice, 
maintaining foreign key constraints and computing many JOINs 
becomes prohibitively expensive [12]. The underlying data 
layout in graph databases usually does not follow the fixed 
schema based on tables that implement relations. Multiple types 
of relational and complex data can be mapped and organized in 
a non-rigid structure in graph databases [14]. The benefit of 
using a graph database is the ability to quickly traverse nodes 
and relationships to find relevant data [11]. 

A. Use Case Scenario 
The use case considered in this study is a large restaurant with 
an existing relational database which is the primary system for 
storing all transaction records. The data is linked in nature and 
the restaurant is looking to optimize its data management 
strategies by developing a cloud-based interface for its 
customers to effectively access and query information from its 
database. The proposed interface is aimed at answering 
questions such as: which restaurants have excellent ratings?  

This natural language query should be translated into the 
following SQL query: 

SELECT DISTINCT restaurant_name FROM restaurants 
WHERE rating_text= “excellent”; 

An example of the expected result should look as follows: 
Restaurant_name City Average_rating
Atlantic Dishes Kingston 4.8 
Northern Buffet Ottawa 4.7 
Lunch Basics Toronto 4.6 

B. Key Contributions 
The key contributions in this study include (i) background 

concepts on NLIDB design strategies, (ii) literature review on 
translating natural language inputs into SQL queries, and (iii) 
design and implementation of a 3-layered architecture for 
executing natural language queries on a relational database. The 
first layer is a cloud-based text entry platform for the users to 
enter the query text. The middle layer consists of a graph 
database and algorithms to transform the natural language query 
into an SQL query. Finally, the third layer consists of a relational 
database to run the SLQ query on. The novelty of this study is 
the use of a graph database to store the schema of the backend 
databases in a way to enable graph search for semantic matching 
of the natural language query text with database field names. 
Additional algorithms use the search results and predefined SQL 
query templates to transform the user query into a SQL query.  

C. Organization 
The paper is organized as follows. Section II presents a 

background study on approaches to designing NLIDBs and a 
literature review of recent studies on natural language interfaces 
to graph databases. Section III presents the architecture and 
describes the components of the cloud-based interface. Section 
IV provides details about the implementation and evaluation of 
the proposed system. Finally, Section V presents concluding 
remarks and a list of future work. 

II. BACKGROUND STUDY 

A. NLIDB Research Challenges 
There have been numerous attempts towards supporting 

arbitrary natural language query processing on databases [15]. 
The use of natural language interfaces for querying databases 
offers the opportunity to bridge the technological gap between 
end-users and systems that use formal query languages [6]. The 
key research problems in this area are depicted in Fig. 1.  

 
User queries accepted through voice or chat must be (1) first 

transformed into natural language text from which (2) word 
tokens have to be extracted and mapped to the backend database 
schema. Typically, organizations have a hybrid distributed 
storage system and (3) ideally queries should support existing 
storage architecture. (4) The next challenge is to find DB 
relations to join DBs through one or more subqueries and deduce 
the response. (5) Once relations are mapped, queries must be 
formulated using appropriate languages for specific storage 
systems and (6) executed in a distributed manner to optimize 
query response. (7) Finally, responses must be presented using 
the preferred format and visualization tools. 

B. Literature Survey 
Affolter et al. [10] identified five different approaches to 

designing NLIDBs: (i) Keyword-based, (ii) Pattern-based, (iii) 
Parsing-based, (iv) Grammar-based, and (v) Neural machine 
translation-based approaches as described below.  

1) Keyword-based  
The keyword-based approach is the most widely used 

interface for information retrieval [5]. At the core of the 
keyword-based NLIDB is a token lookup step where the system 
tries to match the given keywords against an inverted index of 
the base and metadata [13].  

2) Pattern-based 
The pattern-based NLIDB is an extension of the keyword-

based approach with natural language patterns for answering 
more complex questions such as concepts or aggregations. This 
approach focuses on the optimization of user interaction. 

3) Parsing-based 
In the parsing-based approach, the input query is first parsed, 

then the information generated is used to understand the 
grammatical structure and dependencies in the query. 

4) Grammar-based  
At the core of the grammar-based NLIDB is a set of rules 

that defines the questions that can be understood and answered 

Fig. 1. NLIDB research challenges. 

Accept user
query text

Map text 
tokens to 

DB schema

Support a 
variety of 

backend DB 

Resolve DB 
relations for 

complex query

Formulate 
structured query

Execute multi-DB 
distributed query 

Present response / 
visualization

1 2 3 4

6 7 5



by the system. Using rules which may have to be written by hand 
and are highly domain-dependent, the system can give the users 
suggestions on how to complete their questions during typing. 
This supports users to write understandable questions.  

5) Neural machine translation-based 
Neural machine translation-based NLIDB is a recent 

approach with a focus on applying supervised machine learning 
techniques on a set of query-response pairs where the queries are 
the natural language inputs from the user while the responses are 
the output SQL or SPARQL statements. This approach is highly 
dependent on data availability. 

Research on natural language interfaces to relational 
databases has spanned several decades [7]. This study focuses 
on graph databases which excel in traversing through the nodes 
in a graph data by following relationships between nodes to find 
relevant data [11]. Many applications of the future will be built 
using graph databases [12]. According to Robinson et al. [14], 
there are three dominant graph data models, the property graph, 
Resource Description Framework (RDF) triples, and 
hypergraphs. Furthermore, graph databases such as Neo4j and 
JanusGraph use a variant of the property graph model. An 
important difference between relational and graph databases is 
the query language for retrieving information. While SQL is the 
de facto language in relational databases, a variety of declarative 
query languages have recently emerged for querying graph 
databases. SPARQL is one such language that was adopted by 
many vendors for querying RDF graphs while Cypher and 
Gremlin are the query languages for property graphs [16]. 

According to Park and Lim [13], a keyword-based search on 
a graph database usually returns a set of connected structures 
that represent how the data containing query keywords are 
interconnected in the database. The authors propose and 
evaluate a new ranked keyword search method for graph 
databases by adopting a tree-based approach in their study for 
efficient query processing over a large volume of graph data. 
They also observe that top-k answer trees based on their 
proposed structure and relevance measures can satisfy users’ 
information needs better than conventional answer structures. 

Oro and Ruffolo [6] designed a modular system capable of 
translating natural language questions into different formal 
queries such as SPARQL and Cypher to exploit various 
knowledge bases and databases. Given a specific domain, 
queries submitted by users contain concepts that can be 
categorized into ontological classes and relations. 

Zhu et al. [5] propose and evaluate a natural language 
interface to graph-based bibliographic information retrieval. The 
interface can parse and interpret natural language queries by 
recognizing bibliographic named entities and dependency 
relations among the entities. The authors reported that the 
system can correctly answer 39 out of 40 annotated queries with 
varying lengths and complexities. These interfaces were 
fundamental to our study. Next, we describe the design of our 
proposed cloud-based customer query interface. 

III. SYSTEM DESIGN  

A. Design Decisions  
We aimed to address the NLIDB challenges depicted in Fig. 

1 and develop a proof of concept to assess the feasibility of using 

                                                           
1 https://www.zomato.com/ncr 

a multi-layered architecture with a graph database to serve 
queries involving multiple different distributed databases. 
Although in this paper we illustrate a simple use case solution 
involving only one relational database and a few simple queries, 
our architecture is designed to address multi-DB backends and 
complex queries which we will demonstrate in our future work.  
We provide a flexible chat interface to enter a natural language 
query and transform it into an SQL query that is executed on a 
backend MySQL restaurant database. Following the guidelines 
from Perkins et al. [11] to choose the data management and 
analytics use cases, we built our multi-layered solution using 
Neo4j as the graph database as it is open-source, fast, typeless, 
schemaless, and puts no constraints on relations in the data. 

B. Workflow 
Our NLIDB workflow is shown in Fig. 2. A user can type a 

question into the system and will be returned either a ranked list 
of results from the main transactional database or a response 
indicating that the question cannot be answered. The user input 
is first lemmatized for improved database element selection. 
Parts of speeches are tagged and semantic analysis is done for 
noun phrase extraction. The nouns, adjectives, and noun phrases 
are extracted for a mapping operation. A mapping table is used 
to find associations between tokens and data values, while a 
graph database is used to find matching schema components or 
attributes (columns in tables) and relations (connections) 
between the graph nodes. Once these mappings are done, the 
extracted information is inserted into predefined SQL templates 
to formulate and execute the SQL query. 

 
Fig.2. Data processing workflow. 

IV. SYSTEM IMPLEMENTATION 

A. Data 
The data used in this project was collected from Zomato1, a 

restaurant search engine, and available on Kaggle, a public data 
platform. The data was extracted in CSV files and inserted into 
MySQL. Although this system is not independent of the 
database, it could be adapted to other databases by refactoring 
the mapping table and graph database to reflect the altered 
schema. The schema for the SQL database is shown in Fig. 3. 

B. Implementation Details 
Python 3.7 was chosen as the implementation language as its 

clean syntax makes it a popular choice for most data processing 
and analytics tasks. There are also many NLP libraries 
compatible with Python. TextBlob2  was chosen as the NLP 
library as it is lightweight and provides various standard 

2 https://textblob.readthedocs.io/en/dev/ 



functions such as part-of-speech tagging and lemmatization 
Neo4j was chosen as the graph database to represent the schema. 

 
Fig.3. The database schema.  

The system was implemented on a Mac OS but the source 
code (Python) can be easily ported to any operating systems. The 
PyCharm integrated development environment (IDE) was used 
to develop the source to help with quicker development time and 
fast compilation. The Python unit testing framework unittest3 
was chosen for testing as it supports test automation, sharing of 
setup, and shutdown code for tests.  

The implementation architecture of the system is shown in 
Fig. 4 and consists of three layers: User Interface, Query 
Analysis and SQL Mapping, and Backend DBs layers. We used 
a simple text input in this proof of concept implementation for 
the user query interface which can be extended to support web-
based query interface in the future. The SQL Mapping layer 
contains several components as described below. 

 
Fig. 4. The system architecture.  

1) Graph Database 
A Neo4j graph database was used to represent the schema of 

the backend MySQL database which can be extended to support 
multiple distributed and hybrid data sources. It was used to 
represent the tables, attributes and columns as nodes and 
relationships as edges. We assigned Neo4j node values as table 

                                                           
3 https://docs.python.org/3/library/unittest.html 

names (e.g., code), attribute names, and synonyms according to 
the schema and node property values to indicate the type of 
schema component as table, attribute or synonym (e.g., table). 
Similarly, edges were also assigned values to indicate 
relationships and properties to indicate the types of 
relationships. Thus, a search through the node values based on 
query words (e.g., country) would lead to the matching schema 
component, an attribute or table or synonym, that could be used 
in formulating the SQL query. For example, when given the 
token 'country', our graph query would return all nodes having 
value=country and the property would indicate the node type, 
which would be processed further and handled based on the 
node type. Synonyms helped find similar terms as the query 
words which can be linked to an attribute or value.  

Therefore, the graph in parts forms a word ontology to help 
map query text to SQL query which can be easily partitioned if 
necessary, for scalability based on the property values. Fig. 5 
shows the Neo4j data model.  

 
Fig.5. The Neo4j data model.  

2) Query Analysis and Mapping 
The part of the query text analysis phase consists of 

tokenization, mapping, and mapping table.  
a) Tokenization 
The first task of tokenization is to lemmatize the words in 

the given input text. Lemmatization is the process of removing 
inflectional endings from words and returning its base form. 
This transforms words such as 'restaurants' into 'restaurant' and 
'deliveries' into 'delivery', making it easier for the database to 
correctly distinguish a concept or topic. After lemmatization, we 
performed part-of-speech (POS) tagging using the TextBlob 
NLP library to extract adjectives and nouns from the query text. 
Subsequently, noun phrase extraction is performed to capture 
multi-token semantics. To extract noun phrases from a cohesive 
text, a process called chunking is used to compose semantic 
phrases of multi-token sequences from the original text. If noun 
phrases are neglected, the system would not recognize words 
such as 'dim sum' as a cohesive entity. From the POS tagging, 
nouns, adjectives, and noun phrases are extracted and used in the 
mapping phase as these elements are most commonly used to 
describe database elements.  

b) Mapping 
The role of mapping is to attempt to map each token to a 

database element. Each token can have a set of possible 
corresponding elements: relation, attribute, or value. First, a 
mapping table is used to find if the token corresponds to a value 
in the database. If the value is found, then the attribute and 
subsequent relation will be known. If the token does not 
correspond to a value, it is checked to be either a relation or 



attribute by querying the graph database. The mapping steps for 
the tokens “restaurant” and “italian” is shown in Fig. 6. 

 
Fig. 6. The mapping steps for the tokens “restaurant” and “italian”. 

c) Mapping Table 
The mapping table was designed to recognize a small 

number of unique values in the database from columns that 
would be queried often. In the future, we plan to apply machine 
learning algorithms to populate and update this table. We built 
the table using Python dictionary type which is in the form:  

mapping_table [x]  = y 
where x is a unique value and y is the column name 

(attribute) that it corresponds to. Python dictionary was chosen 
because it has O(1) access time since the keys are accessed 
through a hashing function. The current mapping table contains 
all the unique values from the columns: cuisine, city, 
country_name, rating_text, currency. The mapping table in this 
study is relatively small (12KB) and fast to query, but with a 
larger database, this may become a limitation on the system 
resources.  

3) MySQL Database 
The SQL queries generated were restricted to the form:  
SELECT {attributes} FROM {table} [, {table}] (WHERE 

{attribute=value} [and {attribute=value}])             …             (1)  
where elements in curly braces occur once, elements in 

round brackets may occur once, and elements in square brackets 
may occur zero or more times. The mapped tokens were 
compiled into three lists: tables, attributes, and attribute-value 
pairs as follows. 
1. All tables in any mapped token will be in {tables}. 
2. Attributes that are not a part of an attribute-value pair will be 

in {attributes}. 
3. All tokens which have been mapped to a table, attribute, and 

value will be in {attribute=value}. 

We defined template strings with placeholders as shown in 
Eq. 1. Data from the 3 lists were used to replace the placeholders 
to formulate SQL queries. We used the DISTINCT keyword in 
the template for clarity.  

As the last step, the system executed the generated SQL 
query on the database. Fig. 7 shows the workflow to process the 
natural language query “What are the restaurants and cities in 
India that serve fast food” and translate it into an SQL query. 
The text in italics describes the operation carried out at each step. 

4) Results and Validation 
The purpose of this study was to devise an algorithm to 

convert a natural language query into an SQL query to be 
executed on backend databases. Currently, the most reliable 
method of creating SQL queries is manual query generation by 
database experts. Two experiments were performed to validate 
our approach. The first experiment involved running multiple 
English queries and verifying the outputs against the human-
generated SQL queries. 

 
Fig. 7. A full breakdown of natural language query to SQL query. 

The system was tested on numerous queries and the results 
of three queries are shown in TABLE I grouped by questions 
(Q#), human and system generated queries. Since the same 
query can sometimes be formulated differently, our approach 
was validated both quantitatively based on the accuracy in 1) 
retrieving the desired information, 2) extracting the correct 
relations, attributes, and values given the natural language 
query, and qualitatively based on 3) the optimality of the 
formulated query. Test cases were defined to validate the 
functionality at different phases. The translation results for ten 
questions yielded a 90% accuracy rate. 

5) Discussion 
The qualitative analysis for the simple correct queries proved 

that our approach, in comparison with previous approaches 
described in the literature survey section, was near-optimal. As 
shown in Q3, an additional column is included in the query, 
however, it is contextually relevant and generated the correct 
result. The reason behind this is that a synonym node existed in 
the graph database which related the word 'rating' to 
'aggregate_rating', and thereby caused the selection of this 
column in the SQL query. Some queries did not produce correct 
results such as Q2, where the system generated query failed to 
recognize and map the adjective ‘chinese’ into a WHERE 
clause. Other queries such as Q4: “which chinese restaurants are 
in mumbai” also failed for the same reason, which has a similar 



meaning as Q2 and should produce the same SQL query and 
result. In Q2, the system recognized and tagged the word 
'chinese' as a past participle verb, whereas for Q4 above, it was 
tagged as an adjective. As the system uses adjectives, nouns, and 
noun phrases to map to database elements, Q2 and Q4 resulted 
in wrong/incomplete queries.  This study was exploratory to 
learn the challenges and develop a prototype architecture for 
NLI to database systems. It revealed the following key 
challenges which we plan to address in the future work: a) 
ambiguity in mapping natural language words to database 
schema i.e., table and column names, b) composing complex 
queries with multiple joins, parts and nested queries, c) 
distinguishing between item names and values to compose 
queries, and d) resolving parts of speech and error in NL query. 
Some of the options we would like to consider for our future 
work are to use an interactive NLI to resolve ambiguity, missing 
value and noise in query, apply machine learning methods to 
identify frequent queries and relationships among query items to 
create a rich metadata table, and extend the graph database and 
the architecture to support queries over hybrid distributed 
databases.      

TABLE I: Questions (Q) and generated SQL queries  
Symbol SQL Queries 
Q1 
Human 

 

System 

what are the italian restaurants? 
SELECT DISTINCT restaurant_name FROM 
restaurants NATURAL JOIN cuisines WHERE 
cuisine='italian' 
SELECT DISTINCT restaurant_name FROM 
restaurants NATURAL JOIN cuisines WHERE 
cuisine='italian' 

Q2 
Human 

 

System 

what restaurants in mumbai have chinese food? 
SELECT DISTINCT restaurant_name FROM 
restaurants NATURAL JOIN cuisines WHERE 
city='mumbai' and cuisine='chinese' 
SELECT DISTINCT cuisine, restaurant_name FROM 
cuisines NATURAL JOIN restaurants WHERE 
city='mumbai' 

Q3 
Human 

System 

which restaurants have an excellent rating? 
SELECT DISTINCT restaurant_name FROM 
restaurants WHERE rating_text='excellent' 
SELECT DISTINCT aggregate_rating, 
restaurant_name FROM restaurants WHERE 
rating_text='excellent' 

 

V. CONCLUSION 

This paper reports a feasibility study on designing an NLIDB 
system for translating natural language queries to SQL. We 
define a graph model based on the schema of the backend 
relational database and synonymous terms, which is searched 
using query terms to find matching schema elements. Values in 
the query are searched for in a metadata table to recognize 
relevant schema elements. These search results are used to 
formulate the SQL query using predefined templates through a 
three-level system architecture. The test results were promising 
although much work is needed to support more complex queries 
and distributed database backends.  

The future work will focus on exploring machine learning 
algorithms to define the metadata table, replace synonyms with 
existing ontologies, define complex SQL templates, for 
example, to support the aggregate function and nested queries 

such as ‘how many restaurants in Canada has Mexican cuisine’, 
and allow hybrid distributed storage systems.  Recent deep 
learning models have shown great success in identifying phrases 
in natural language which can be used to process the query text 
to correctly identify the parts of speech and correct ill-formed 
queries. Although we implemented a very simple proof of 
concept prototype in this study, we validated the feasibility of 
using the graph database in a multi-tiered architecture to 
implement an NLIDB system that can support multiple backend 
databases. The architecture can be further leveraged using 
machine learning techniques to learn query patterns, frequent 
queries and cache the responses to reduce response time and 
improve the overall system performance. Artificial intelligence 
conversation techniques can be used to enable interactive query 
processing which can also help disambiguate the query 
objectives and enable prediction of the next query for efficient 
query processing.  
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