
Sheridan College Sheridan College

SOURCE: Sheridan Institutional Repository SOURCE: Sheridan Institutional Repository

Publications and Scholarship Sheridan Research

9-25-2020

Towards a Natural Language Query Processing System Towards a Natural Language Query Processing System

Chantal Montgomery
Queen's University - Kingston, Ontario

Haruna Isah
Sheridan College, haruna.isah@sheridancollege.ca

Farhana Zulkernine
Queen's University - Kingston, Ontario

Follow this and additional works at: https://source.sheridancollege.ca/centres_publications

 Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information Systems

Commons

Let us know how access to this document benefits you

SOURCE Citation SOURCE Citation
Montgomery, Chantal; Isah, Haruna; and Zulkernine, Farhana, "Towards a Natural Language Query
Processing System" (2020). Publications and Scholarship. 8.
https://source.sheridancollege.ca/centres_publications/8

This work is licensed under a Creative Commons Attribution 4.0 License.
This Conference Paper is brought to you for free and open access by the Sheridan Research at SOURCE: Sheridan
Institutional Repository. It has been accepted for inclusion in Publications and Scholarship by an authorized
administrator of SOURCE: Sheridan Institutional Repository. For more information, please contact
source@sheridancollege.ca.

https://source.sheridancollege.ca/
https://source.sheridancollege.ca/centres_publications
https://source.sheridancollege.ca/research
https://source.sheridancollege.ca/centres_publications?utm_source=source.sheridancollege.ca%2Fcentres_publications%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=source.sheridancollege.ca%2Fcentres_publications%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=source.sheridancollege.ca%2Fcentres_publications%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=source.sheridancollege.ca%2Fcentres_publications%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.google.com/forms/d/e/1FAIpQLSf7q5WZp0i0L8SWABAz3ZpRCipBkE5zHDR2o3dFhtHvN8DaXA/viewform
https://source.sheridancollege.ca/centres_publications/8?utm_source=source.sheridancollege.ca%2Fcentres_publications%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:source@sheridancollege.ca

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Towards a Natural Language Query Processing System

Chantal Montgomery
School of Computing
Queen’s University
Kingston, Canada

15clm1@queensu.ca

Haruna Isah
School of Computing
Queen’s University
Kingston, Canada

h.isah@cs.queensu.ca

Farhana Zulkernine
School of Computing
Queen’s University
Kingston, Canada

farhana@cs.queensu.ca

Abstract — Tackling the information retrieval gap between
non-technical database end-users and those with the knowledge of
formal query languages has been an interesting area of data
management and analytics research. The use of natural language
interfaces to query information from databases offers the
opportunity to bridge the communication challenges between end-
users and systems that use formal query languages. Previous
research efforts mainly focused on developing structured query
interfaces to relational databases. However, the evolution of
unstructured big data such as text, images, and video has exposed
the limitations of traditional structured query interfaces. While
the existing web search tools prove the popularity and usability of
natural language query, they return complete documents and web
pages instead of focused query responses and are not applicable to
database systems. This paper reports our study on the design and
development of a natural language query interface to a backend
relational database. The novelty in the study lies in defining a
graph database as a middle layer to store necessary metadata
needed to transform a natural language query into structured
query language that can be executed on backend databases. We
implemented and evaluated our approach using a restaurant
dataset. The translation results for some sample queries yielded a
90% accuracy rate.

Keywords—Cypher, graph database, natural language interface,
Neo4j, queries

I. INTRODUCTION

In the real world, humans communicate using natural
languages such as English or French. The query-response cycle
in a human-to-human communication is often very effective
since the person responding to the query can ask for further
clarification if the query is not clear. This is, however, different
in human-to-computer settings such as querying a database [1].
While databases have been around for decades, query languages
for accessing such databases are unlikely to ever become
common knowledge for the average end-user. For instance,
Structured Query Language (SQL), despite its expressiveness,
may hinder users with little or no relational database knowledge
from exploring and making use of the data stored in an RDBMS
[2]. Furthermore, different databases have different query
languages and require that the user understand the exact schema
of the database and the roles of various entities in a query [3, 4].
These challenges have led to an increasing interest in research
and development of tools such as the natural language interface
to databases to enhance human-to-database communications.

Commonly used natural language query interfaces according
to Li and Jagadish [3] include (i) keyword-based search
interfaces such as Google Scholar, a web-based search engine
that indexes the full text or metadata of scholarly literature

across many publishing formats and disciplines, (ii) form-based
interface such as Web of Science and Scopus in which users first
select fields such as topic or author and then type appropriate
values for each field, and (iii) visual query builder, a web-based
framework that helps researchers in various domains search
through database records to identify and correlate data based on
semantic concepts. Besides, keywords are insufficient in
conveying complex query intent, form-based interfaces are only
suitable in cases where queries are predictable and limited to the
encoded logic, while visual query builders require users to have
extensive knowledge of the schema [3].

A Natural Language Interface to Databases (NLIDB) is a
system that allows users to access information stored in a
database by typing requests expressed in some natural language
such as English [6, 7]. NLIDBs are designed to simplify the
interaction between users and computers. Through a natural
language interface, users can express queries using natural
language and get relevant results in one step without the need to
fill out forms or trying different keywords which only returns a
ranked list of relevant documents instead of a concise reply
containing the specific information [5]. NLIDB enables the
retrieval of useful information from any database without the
knowledge of specific query languages such as Structured Query
Language (SQL) for relational databases [8].

Query-response task in NLIDB is often approached by
mapping natural language queries to logical forms or programs
that provide the desired response when executed on a database
[4]. These interfaces use intermediate representation languages
to parse and transform the query from users to formal languages
supported by the database [9]. Modern NLIDB systems are
increasingly leveraging recent advances in deep learning to
parse and translate natural language queries to a corresponding
query language such as SQL query over a given database [10].
A major limitation, however, is that training data is assumed to
have been acquired a priori and crafted to be well-representative
of the types of queries one might ask in the target domain [2].

NLIDBs rely on techniques such as pattern matching,
syntactic parsing, and semantic grammar interpretation for
natural language queries [3, 4]. Research and development
efforts in NLIDB were initially focused on relational databases
which are useful in storing structured information, however,
there is currently an increasing interest in building natural
language interfaces for non-relational databases such as RDF-
triple stores or knowledge bases and graph databases [5]. Other
existing studies surveyed by Affolter et al. [10] focus on
generating a distribution of data values stored in the databases
to match values in the user queries to database field names to
construct SQL queries. However, as we are currently in the era
of big data, such approaches of generating a subset of possible

values by applying statistical distribution methods have become
impractical and inefficient. This study, therefore, focuses on the
development of an interface to a backend relational database for
translating natural language queries to SQL queries. Related
information about the relational database is kept in a graph
database to extend the backend to support multiple distributed
databases in the future and be able to compose a query that joins
fields from multiple data sources.

Query over graph databases is increasingly attracting much
attention [13]. Storing and managing connected semi-structured
datasets within relational databases is very challenging because
relational databases were originally designed to store and
process data in tabular structures. The strength of relational
databases lies in their abstraction, however, in practice,
maintaining foreign key constraints and computing many JOINs
becomes prohibitively expensive [12]. The underlying data
layout in graph databases usually does not follow the fixed
schema based on tables that implement relations. Multiple types
of relational and complex data can be mapped and organized in
a non-rigid structure in graph databases [14]. The benefit of
using a graph database is the ability to quickly traverse nodes
and relationships to find relevant data [11].

A. Use Case Scenario
The use case considered in this study is a large restaurant with
an existing relational database which is the primary system for
storing all transaction records. The data is linked in nature and
the restaurant is looking to optimize its data management
strategies by developing a cloud-based interface for its
customers to effectively access and query information from its
database. The proposed interface is aimed at answering
questions such as: which restaurants have excellent ratings?

This natural language query should be translated into the
following SQL query:

SELECT DISTINCT restaurant_name FROM restaurants
WHERE rating_text= “excellent”;

An example of the expected result should look as follows:
Restaurant_name City Average_rating
Atlantic Dishes Kingston 4.8
Northern Buffet Ottawa 4.7
Lunch Basics Toronto 4.6

B. Key Contributions
The key contributions in this study include (i) background

concepts on NLIDB design strategies, (ii) literature review on
translating natural language inputs into SQL queries, and (iii)
design and implementation of a 3-layered architecture for
executing natural language queries on a relational database. The
first layer is a cloud-based text entry platform for the users to
enter the query text. The middle layer consists of a graph
database and algorithms to transform the natural language query
into an SQL query. Finally, the third layer consists of a relational
database to run the SLQ query on. The novelty of this study is
the use of a graph database to store the schema of the backend
databases in a way to enable graph search for semantic matching
of the natural language query text with database field names.
Additional algorithms use the search results and predefined SQL
query templates to transform the user query into a SQL query.

C. Organization
The paper is organized as follows. Section II presents a

background study on approaches to designing NLIDBs and a
literature review of recent studies on natural language interfaces
to graph databases. Section III presents the architecture and
describes the components of the cloud-based interface. Section
IV provides details about the implementation and evaluation of
the proposed system. Finally, Section V presents concluding
remarks and a list of future work.

II. BACKGROUND STUDY

A. NLIDB Research Challenges
There have been numerous attempts towards supporting

arbitrary natural language query processing on databases [15].
The use of natural language interfaces for querying databases
offers the opportunity to bridge the technological gap between
end-users and systems that use formal query languages [6]. The
key research problems in this area are depicted in Fig. 1.

User queries accepted through voice or chat must be (1) first

transformed into natural language text from which (2) word
tokens have to be extracted and mapped to the backend database
schema. Typically, organizations have a hybrid distributed
storage system and (3) ideally queries should support existing
storage architecture. (4) The next challenge is to find DB
relations to join DBs through one or more subqueries and deduce
the response. (5) Once relations are mapped, queries must be
formulated using appropriate languages for specific storage
systems and (6) executed in a distributed manner to optimize
query response. (7) Finally, responses must be presented using
the preferred format and visualization tools.

B. Literature Survey
Affolter et al. [10] identified five different approaches to

designing NLIDBs: (i) Keyword-based, (ii) Pattern-based, (iii)
Parsing-based, (iv) Grammar-based, and (v) Neural machine
translation-based approaches as described below.

1) Keyword-based
The keyword-based approach is the most widely used

interface for information retrieval [5]. At the core of the
keyword-based NLIDB is a token lookup step where the system
tries to match the given keywords against an inverted index of
the base and metadata [13].

2) Pattern-based
The pattern-based NLIDB is an extension of the keyword-

based approach with natural language patterns for answering
more complex questions such as concepts or aggregations. This
approach focuses on the optimization of user interaction.

3) Parsing-based
In the parsing-based approach, the input query is first parsed,

then the information generated is used to understand the
grammatical structure and dependencies in the query.

4) Grammar-based
At the core of the grammar-based NLIDB is a set of rules

that defines the questions that can be understood and answered

Fig. 1. NLIDB research challenges.

Accept user
query text

Map text
tokens to

DB schema

Support a
variety of

backend DB

Resolve DB
relations for

complex query

Formulate
structured query

Execute multi-DB
distributed query

Present response /
visualization

1 2 3 4

6 7 5

by the system. Using rules which may have to be written by hand
and are highly domain-dependent, the system can give the users
suggestions on how to complete their questions during typing.
This supports users to write understandable questions.

5) Neural machine translation-based
Neural machine translation-based NLIDB is a recent

approach with a focus on applying supervised machine learning
techniques on a set of query-response pairs where the queries are
the natural language inputs from the user while the responses are
the output SQL or SPARQL statements. This approach is highly
dependent on data availability.

Research on natural language interfaces to relational
databases has spanned several decades [7]. This study focuses
on graph databases which excel in traversing through the nodes
in a graph data by following relationships between nodes to find
relevant data [11]. Many applications of the future will be built
using graph databases [12]. According to Robinson et al. [14],
there are three dominant graph data models, the property graph,
Resource Description Framework (RDF) triples, and
hypergraphs. Furthermore, graph databases such as Neo4j and
JanusGraph use a variant of the property graph model. An
important difference between relational and graph databases is
the query language for retrieving information. While SQL is the
de facto language in relational databases, a variety of declarative
query languages have recently emerged for querying graph
databases. SPARQL is one such language that was adopted by
many vendors for querying RDF graphs while Cypher and
Gremlin are the query languages for property graphs [16].

According to Park and Lim [13], a keyword-based search on
a graph database usually returns a set of connected structures
that represent how the data containing query keywords are
interconnected in the database. The authors propose and
evaluate a new ranked keyword search method for graph
databases by adopting a tree-based approach in their study for
efficient query processing over a large volume of graph data.
They also observe that top-k answer trees based on their
proposed structure and relevance measures can satisfy users’
information needs better than conventional answer structures.

Oro and Ruffolo [6] designed a modular system capable of
translating natural language questions into different formal
queries such as SPARQL and Cypher to exploit various
knowledge bases and databases. Given a specific domain,
queries submitted by users contain concepts that can be
categorized into ontological classes and relations.

Zhu et al. [5] propose and evaluate a natural language
interface to graph-based bibliographic information retrieval. The
interface can parse and interpret natural language queries by
recognizing bibliographic named entities and dependency
relations among the entities. The authors reported that the
system can correctly answer 39 out of 40 annotated queries with
varying lengths and complexities. These interfaces were
fundamental to our study. Next, we describe the design of our
proposed cloud-based customer query interface.

III. SYSTEM DESIGN

A. Design Decisions
We aimed to address the NLIDB challenges depicted in Fig.

1 and develop a proof of concept to assess the feasibility of using

1 https://www.zomato.com/ncr

a multi-layered architecture with a graph database to serve
queries involving multiple different distributed databases.
Although in this paper we illustrate a simple use case solution
involving only one relational database and a few simple queries,
our architecture is designed to address multi-DB backends and
complex queries which we will demonstrate in our future work.
We provide a flexible chat interface to enter a natural language
query and transform it into an SQL query that is executed on a
backend MySQL restaurant database. Following the guidelines
from Perkins et al. [11] to choose the data management and
analytics use cases, we built our multi-layered solution using
Neo4j as the graph database as it is open-source, fast, typeless,
schemaless, and puts no constraints on relations in the data.

B. Workflow
Our NLIDB workflow is shown in Fig. 2. A user can type a

question into the system and will be returned either a ranked list
of results from the main transactional database or a response
indicating that the question cannot be answered. The user input
is first lemmatized for improved database element selection.
Parts of speeches are tagged and semantic analysis is done for
noun phrase extraction. The nouns, adjectives, and noun phrases
are extracted for a mapping operation. A mapping table is used
to find associations between tokens and data values, while a
graph database is used to find matching schema components or
attributes (columns in tables) and relations (connections)
between the graph nodes. Once these mappings are done, the
extracted information is inserted into predefined SQL templates
to formulate and execute the SQL query.

Fig.2. Data processing workflow.

IV. SYSTEM IMPLEMENTATION

A. Data
The data used in this project was collected from Zomato1, a

restaurant search engine, and available on Kaggle, a public data
platform. The data was extracted in CSV files and inserted into
MySQL. Although this system is not independent of the
database, it could be adapted to other databases by refactoring
the mapping table and graph database to reflect the altered
schema. The schema for the SQL database is shown in Fig. 3.

B. Implementation Details
Python 3.7 was chosen as the implementation language as its

clean syntax makes it a popular choice for most data processing
and analytics tasks. There are also many NLP libraries
compatible with Python. TextBlob2 was chosen as the NLP
library as it is lightweight and provides various standard

2 https://textblob.readthedocs.io/en/dev/

functions such as part-of-speech tagging and lemmatization
Neo4j was chosen as the graph database to represent the schema.

Fig.3. The database schema.

The system was implemented on a Mac OS but the source
code (Python) can be easily ported to any operating systems. The
PyCharm integrated development environment (IDE) was used
to develop the source to help with quicker development time and
fast compilation. The Python unit testing framework unittest3
was chosen for testing as it supports test automation, sharing of
setup, and shutdown code for tests.

The implementation architecture of the system is shown in
Fig. 4 and consists of three layers: User Interface, Query
Analysis and SQL Mapping, and Backend DBs layers. We used
a simple text input in this proof of concept implementation for
the user query interface which can be extended to support web-
based query interface in the future. The SQL Mapping layer
contains several components as described below.

Fig. 4. The system architecture.

1) Graph Database
A Neo4j graph database was used to represent the schema of

the backend MySQL database which can be extended to support
multiple distributed and hybrid data sources. It was used to
represent the tables, attributes and columns as nodes and
relationships as edges. We assigned Neo4j node values as table

3 https://docs.python.org/3/library/unittest.html

names (e.g., code), attribute names, and synonyms according to
the schema and node property values to indicate the type of
schema component as table, attribute or synonym (e.g., table).
Similarly, edges were also assigned values to indicate
relationships and properties to indicate the types of
relationships. Thus, a search through the node values based on
query words (e.g., country) would lead to the matching schema
component, an attribute or table or synonym, that could be used
in formulating the SQL query. For example, when given the
token 'country', our graph query would return all nodes having
value=country and the property would indicate the node type,
which would be processed further and handled based on the
node type. Synonyms helped find similar terms as the query
words which can be linked to an attribute or value.

Therefore, the graph in parts forms a word ontology to help
map query text to SQL query which can be easily partitioned if
necessary, for scalability based on the property values. Fig. 5
shows the Neo4j data model.

Fig.5. The Neo4j data model.

2) Query Analysis and Mapping
The part of the query text analysis phase consists of

tokenization, mapping, and mapping table.
a) Tokenization
The first task of tokenization is to lemmatize the words in

the given input text. Lemmatization is the process of removing
inflectional endings from words and returning its base form.
This transforms words such as 'restaurants' into 'restaurant' and
'deliveries' into 'delivery', making it easier for the database to
correctly distinguish a concept or topic. After lemmatization, we
performed part-of-speech (POS) tagging using the TextBlob
NLP library to extract adjectives and nouns from the query text.
Subsequently, noun phrase extraction is performed to capture
multi-token semantics. To extract noun phrases from a cohesive
text, a process called chunking is used to compose semantic
phrases of multi-token sequences from the original text. If noun
phrases are neglected, the system would not recognize words
such as 'dim sum' as a cohesive entity. From the POS tagging,
nouns, adjectives, and noun phrases are extracted and used in the
mapping phase as these elements are most commonly used to
describe database elements.

b) Mapping
The role of mapping is to attempt to map each token to a

database element. Each token can have a set of possible
corresponding elements: relation, attribute, or value. First, a
mapping table is used to find if the token corresponds to a value
in the database. If the value is found, then the attribute and
subsequent relation will be known. If the token does not
correspond to a value, it is checked to be either a relation or

attribute by querying the graph database. The mapping steps for
the tokens “restaurant” and “italian” is shown in Fig. 6.

Fig. 6. The mapping steps for the tokens “restaurant” and “italian”.

c) Mapping Table
The mapping table was designed to recognize a small

number of unique values in the database from columns that
would be queried often. In the future, we plan to apply machine
learning algorithms to populate and update this table. We built
the table using Python dictionary type which is in the form:

mapping_table [x] = y
where x is a unique value and y is the column name

(attribute) that it corresponds to. Python dictionary was chosen
because it has O(1) access time since the keys are accessed
through a hashing function. The current mapping table contains
all the unique values from the columns: cuisine, city,
country_name, rating_text, currency. The mapping table in this
study is relatively small (12KB) and fast to query, but with a
larger database, this may become a limitation on the system
resources.

3) MySQL Database
The SQL queries generated were restricted to the form:
SELECT {attributes} FROM {table} [, {table}] (WHERE

{attribute=value} [and {attribute=value}]) … (1)
where elements in curly braces occur once, elements in

round brackets may occur once, and elements in square brackets
may occur zero or more times. The mapped tokens were
compiled into three lists: tables, attributes, and attribute-value
pairs as follows.
1. All tables in any mapped token will be in {tables}.
2. Attributes that are not a part of an attribute-value pair will be

in {attributes}.
3. All tokens which have been mapped to a table, attribute, and

value will be in {attribute=value}.

We defined template strings with placeholders as shown in
Eq. 1. Data from the 3 lists were used to replace the placeholders
to formulate SQL queries. We used the DISTINCT keyword in
the template for clarity.

As the last step, the system executed the generated SQL
query on the database. Fig. 7 shows the workflow to process the
natural language query “What are the restaurants and cities in
India that serve fast food” and translate it into an SQL query.
The text in italics describes the operation carried out at each step.

4) Results and Validation
The purpose of this study was to devise an algorithm to

convert a natural language query into an SQL query to be
executed on backend databases. Currently, the most reliable
method of creating SQL queries is manual query generation by
database experts. Two experiments were performed to validate
our approach. The first experiment involved running multiple
English queries and verifying the outputs against the human-
generated SQL queries.

Fig. 7. A full breakdown of natural language query to SQL query.

The system was tested on numerous queries and the results
of three queries are shown in TABLE I grouped by questions
(Q#), human and system generated queries. Since the same
query can sometimes be formulated differently, our approach
was validated both quantitatively based on the accuracy in 1)
retrieving the desired information, 2) extracting the correct
relations, attributes, and values given the natural language
query, and qualitatively based on 3) the optimality of the
formulated query. Test cases were defined to validate the
functionality at different phases. The translation results for ten
questions yielded a 90% accuracy rate.

5) Discussion
The qualitative analysis for the simple correct queries proved

that our approach, in comparison with previous approaches
described in the literature survey section, was near-optimal. As
shown in Q3, an additional column is included in the query,
however, it is contextually relevant and generated the correct
result. The reason behind this is that a synonym node existed in
the graph database which related the word 'rating' to
'aggregate_rating', and thereby caused the selection of this
column in the SQL query. Some queries did not produce correct
results such as Q2, where the system generated query failed to
recognize and map the adjective ‘chinese’ into a WHERE
clause. Other queries such as Q4: “which chinese restaurants are
in mumbai” also failed for the same reason, which has a similar

meaning as Q2 and should produce the same SQL query and
result. In Q2, the system recognized and tagged the word
'chinese' as a past participle verb, whereas for Q4 above, it was
tagged as an adjective. As the system uses adjectives, nouns, and
noun phrases to map to database elements, Q2 and Q4 resulted
in wrong/incomplete queries. This study was exploratory to
learn the challenges and develop a prototype architecture for
NLI to database systems. It revealed the following key
challenges which we plan to address in the future work: a)
ambiguity in mapping natural language words to database
schema i.e., table and column names, b) composing complex
queries with multiple joins, parts and nested queries, c)
distinguishing between item names and values to compose
queries, and d) resolving parts of speech and error in NL query.
Some of the options we would like to consider for our future
work are to use an interactive NLI to resolve ambiguity, missing
value and noise in query, apply machine learning methods to
identify frequent queries and relationships among query items to
create a rich metadata table, and extend the graph database and
the architecture to support queries over hybrid distributed
databases.

TABLE I: Questions (Q) and generated SQL queries
Symbol SQL Queries
Q1
Human

System

what are the italian restaurants?
SELECT DISTINCT restaurant_name FROM
restaurants NATURAL JOIN cuisines WHERE
cuisine='italian'
SELECT DISTINCT restaurant_name FROM
restaurants NATURAL JOIN cuisines WHERE
cuisine='italian'

Q2
Human

System

what restaurants in mumbai have chinese food?
SELECT DISTINCT restaurant_name FROM
restaurants NATURAL JOIN cuisines WHERE
city='mumbai' and cuisine='chinese'
SELECT DISTINCT cuisine, restaurant_name FROM
cuisines NATURAL JOIN restaurants WHERE
city='mumbai'

Q3
Human

System

which restaurants have an excellent rating?
SELECT DISTINCT restaurant_name FROM
restaurants WHERE rating_text='excellent'
SELECT DISTINCT aggregate_rating,
restaurant_name FROM restaurants WHERE
rating_text='excellent'

V. CONCLUSION

This paper reports a feasibility study on designing an NLIDB
system for translating natural language queries to SQL. We
define a graph model based on the schema of the backend
relational database and synonymous terms, which is searched
using query terms to find matching schema elements. Values in
the query are searched for in a metadata table to recognize
relevant schema elements. These search results are used to
formulate the SQL query using predefined templates through a
three-level system architecture. The test results were promising
although much work is needed to support more complex queries
and distributed database backends.

The future work will focus on exploring machine learning
algorithms to define the metadata table, replace synonyms with
existing ontologies, define complex SQL templates, for
example, to support the aggregate function and nested queries

such as ‘how many restaurants in Canada has Mexican cuisine’,
and allow hybrid distributed storage systems. Recent deep
learning models have shown great success in identifying phrases
in natural language which can be used to process the query text
to correctly identify the parts of speech and correct ill-formed
queries. Although we implemented a very simple proof of
concept prototype in this study, we validated the feasibility of
using the graph database in a multi-tiered architecture to
implement an NLIDB system that can support multiple backend
databases. The architecture can be further leveraged using
machine learning techniques to learn query patterns, frequent
queries and cache the responses to reduce response time and
improve the overall system performance. Artificial intelligence
conversation techniques can be used to enable interactive query
processing which can also help disambiguate the query
objectives and enable prediction of the next query for efficient
query processing.

REFERENCES
[1] C. Baik, H. V. Jagadish, and Y. Li, "Bridging the semantic gap with SQL

query logs in natural language interfaces to databases," 35th International
Conference on Data Engineering (ICDE), 2019: IEEE, pp. 374-385.

[2] P. Utama et al., "An End-to-end Neural Natural Language Interface for
Databases," arXiv preprint arXiv:1804.00401, 2018.

[3] F. Li and H. Jagadish, "Constructing an interactive natural language
interface for relational databases," Proceedings of the VLDB Endowment,
vol. 8, no. 1, pp. 73-84, 2014.

[4] A. Neelakantan, Q. V. Le, M. Abadi, A. McCallum, and D. Amodei,
"Learning a natural language interface with neural programmer," arXiv
preprint arXiv:1611.08945, 2016.

[5] Y. Zhu, E. Yan, and I.-Y. Song, "A natural language interface to a graph-
based bibliographic information retrieval system," Data & Knowledge
Engineering, vol. 111, pp. 73-89, 2017.

[6] E. Oro and M. Ruffolo, "A Natural Language Interface for Querying RDF
and Graph Databases," in Consiglio Nazionale delle Ricerche Istituto di
Calcoloe Reti and Alte Prestazioni, 2015.

[7] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch, "Natural language
interfaces to databases–an introduction," Natural language engineering,
vol. 1, no. 1, pp. 29-81, 1995.

[8] F. Brad, R. C. A. Iacob, I. A. Hosu, and T. Rebedea, "Dataset for a Neural
Natural Language Interface for Databases (NNLIDB)," in Proceedings of
the Eighth International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), 2017, pp. 906-914.

[9] H. Li and Y. Shi, "A wordnet-based natural language interface to
relational databases," in 2010 The 2nd International Conference on
Computer and Automation Engineering (ICCAE), 2010, pp. 514-518.

[10] K. Affolter, K. Stockinger, and A. Bernstein, "A Comparative Survey of
Recent Natural Language Interfaces for Databases," arXiv preprint
arXiv:1906.08990, 2019.

[11] L. Perkins, E. Redmond, and J. Wilson, Seven databases in seven weeks:
a guide to modern databases and the NoSQL movement. Pragmatic
Bookshelf, 2018.

[12] M. Hunger, "From Relational to Graph: A Developer's Guide," in DZone,
ed, 2016.

[13] C.-S. Park and S. Lim, "Efficient processing of keyword queries over
graph databases for finding effective answers," Information Processing &
Management, vol. 51, no. 1, pp. 42-57, 2015.

[14] I. Robinson, J. Webber, and E. Eifrem, Graph databases: new
opportunities for connected data. " O'Reilly Media, Inc.", 2015.

[15] Y. Li, H. Yang, and H. Jagadish, "NaLIX: A generic natural language
search environment for XML data," ACM Transactions on database
systems (TODS), vol. 32, no. 4, p. 30, 2007.

[16] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, and D. Vrgoč,
"Foundations of modern query languages for graph databases," ACM
Computing Surveys (CSUR), vol. 50, no. 5, p. 68, 2017.

	Towards a Natural Language Query Processing System
	SOURCE Citation

	tmp.1721068493.pdf.9juBq

