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14 

Abstract: The motion response of an offshore floating wind turbine (FOWT) platform is 15 

closely related to the control operation regarding the safety of a wind turbine. It is affected by 16 

various factors such as sea state environments and mooring systems. In practice, how to predict 17 

the motion response of the wind turbine platform in the short term has always been a concern 18 

of engineering practice. At present, the development of deep learning technology has brought 19 

some potential solutions to this problem. In this paper, a Multi-Input Long-Short Term Memory 20 

(MI-LSTM) neural network method is proposed to predict the short-term motion response of a 21 

floating offshore wind turbine platform. Specifically, the numerical simulation of the 5MW 22 

Braceless platform is carried out under different environmental conditions, and the data of 23 
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platform motion response, wave elevation, and mooring force are selected as input variables. 24 

Then the training and test groups are established after post-processing data. Subsequently, a 25 

Single-Input LSTM (SI-LSTM) model and a Multi-Input LSTM (MI-LSTM) model are 26 

established to learn the input data. After comparing the overall accuracy of the results, it is 27 

found that the additional mooring force and wave elevation positively affects the platform 28 

response prediction results. From the aspects of discreteness and overall accuracy, it is verified 29 

that the established MI-LSTM model is also applicable, considering the influence of second-30 

order hydrodynamics. Lastly, compared with the prediction results obtained by the multi-input 31 

one-dimensional convolutional neural network (MI1D-CNN), the advantages of the two 32 

different models are expounded from the perspectives of training time and accuracy, which 33 

provides ideas for the optimization of the FOWT motion response prediction model. This study 34 

sheds insights on the short-term motion response forecast and platform positioning of a FOWT. 35 

Short-term forecasts of a FOWT can be achieved under various sea conditions by combining 36 

the global positioning system. 37 

Keywords: Floating offshore wind turbine; deep learning; response prediction; multi-input 38 

LSTM model; second-order hydrodynamic  39 

1. Introduction 40 

With the rapid development of the global economy, energy has become a critical factor in 41 

determining social and economic development. To meet the Net Zero target by utilizing 42 

sustainable energy, the vigorous growth of renewable energy has become an essential part of 43 

the development strategy worldwide. Due to its high energy conversion ability, offshore wind 44 

power has been gradually installed in various countries recently. Different foundations of 45 

floating offshore wind turbines have been proposed, including spar, tension leg platform (TLP) 46 

shape, semi-submersible, and barge [1]-[2]. Substantial research has been carried out in terms 47 

of hydrodynamics, mooring systems, stability, performance, and survivability of a FOWT [3]-48 
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[6]. 49 

Compared with the onshore wind turbine structure, a FOWT encounters a more complex 50 

ocean environment. The motion response of a FOWT occurs at six degrees of freedom (6DOF) 51 

and leads to significant challenges in design and assessment [7]. Therefore, it is of great 52 

significance to propose an accurate prediction method for the motion response of the FOWT to 53 

guide the design and assess structural safety. In the deep learning model, motion response 54 

prediction is generally based on the historical data of motion response and many other results 55 

from numerical and experimental measurements. In general, deep learning technology is 56 

applied to predict the motion response of structures in the next few seconds [8]. According to 57 

the length of the forecast time, motion response prediction can be categorized as short-term and 58 

safe-period motion prediction. Short-term prediction plays a vital role in improving dynamic 59 

positioning control performance, and it provides early warning in extreme sea conditions to 60 

reduce platform damage to a certain extent. A short-term forecast's prediction advanced time 61 

(PAT) is generally a few seconds, and it requires high forecast accuracy [9]. 62 

In recent years, the application of deep learning technology in offshore structures has 63 

gradually expanded. The research is mainly carried out by the convolutional neural network 64 

(CNN) and the recurrent neural network (RNN) methods [10]-[18]. Wang et al. [11] proposed 65 

the Low-frequency adds wave-frequency responses (LAWR) method to predict the mooring 66 

line tension of a semi-submersible platform. Combined with the LSTM method, accurate results 67 

are obtained for predicting mooring line tension under different cases. Pena et al. [15] proposed 68 

the Wave-Generative Adversarial Network (Wave-GAN) technology, combined with CNN 69 

convolutional neural network and CFD method, to predict the load of nonlinear waves on fixed 70 

structural columns. Pena et al. [15] concluded the maximum error between the Wave-GAN 71 

predicted value and CFD simulated value of 1.5%-2% by adjusting several parameters, and the 72 

mean absolute error (MAE) of the test group is about 0.014. Lian et al. [16] constructed the 73 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

4 

 

digital twin of mesh clothing and established the deep neural network (DNN) to predict whether 74 

the mesh clothing is damaged. The average accuracy of the final identification model is 94.3%. 75 

Bjørni et al. [17] predicted the mooring line tension in the next 30 s by taking the platform 76 

motion response in the first 60 s as input and constructed a three-layer deep neural network with 77 

bias term. It is concluded that the average error of anchor chain tension is 0.46% through cross-78 

sectional comparisons. According to the combined prediction method of the Extreme Learning 79 

Machine (ELM), the Empirical Mode Decomposition (EMD), and LSTM neural network, 80 

Zhang et al. [18] proved that the combined prediction method presented higher prediction 81 

accuracy than the single LSTM model and ELM-LSTM model. However, when considering the 82 

influence of environmental factors and mooring force, there is limited research on predicting 83 

the motion response of a FOWT. At the same time, in practice, it needs to assess the motion 84 

response of a FOWT under the influence of various complex factors and consider the impact of 85 

second-order hydrodynamic force. Moreover, the amount of research on the motion response 86 

prediction of a FOWT under the effect of the second-order hydrodynamic force is also limited. 87 

To investigate the short-term motion prediction of a FOWT, the MI-LSTM Neural 88 

Network model is used. This paper is organized as follows: Section 2 introduces the basic 89 

principles of the RNN. The architecture and differences between the established SI-LSTM 90 

model and the MI-LSTM model are explained in detail. The hyperparameters of the model and 91 

the selection of the training and test groups are also given in this section. Then, in Section 3, 92 

the structure size of the 5 MW Braceless platform model is shown. A detailed comparison is 93 

made between the prediction results of the SI-LSTM and MI-LSTM models under different 94 

environmental conditions in Section 4. This proves the positive excitation of the increased input 95 

factor numbers on the prediction results and illustrates the advantages and benefits of the MI-96 

LSTM model. In Section 5, the applicability of the proposed model is demonstrated when the 97 

second-order hydrodynamic force is considered. Given that there are few comparisons between 98 
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the RNN model and CNN model regarding time domain problems, in Section 6, by comparing 99 

the prediction results of the proposed model with the multi-input one-dimensional 100 

convolutional neural network (MI1D-CNN) model, the advantages of the two models are 101 

illustrated from the perspectives of overall accuracy and training time. Finally, the conclusions 102 

and recommendations are made to the future optimization of the platform response prediction 103 

model. 104 

2. Long-Short Term Memory (LSTM) Neural Network  105 

2.1. Recurrent Neural Network (RNN) 106 

Recurrent neural network (RNN) is gradually emerging in the interdisciplinary field as a 107 

typical representative of deep learning technology. RNN takes time series data as input and 108 

performs recursion in the evolution direction of the sequence, where all nodes (cyclic units) are 109 

linked in a chain [19]. RNN has memorization, parameter sharing, and turning completeness 110 

[20]-[22], so it has clear advantages in learning the nonlinear features in sequences. RNNs are 111 

widely used in natural language processing, such as speech recognition, language modeling, 112 

and time series prediction. RNN performs outstandingly in solving scheduling problems, and 113 

motion response prediction is the typical time domain problem. Therefore, in this paper, RNN 114 

is selected for model architecture.  115 

Since the motion of the platform at time t is affected by the motion at the previous time 116 

𝑡 − 1, meanwhile, the motion at current time t will also have an impact at forward time 𝑡 + 1, 117 

platform motion response is a continuous process with time dependence. Considering this 118 

characteristic, the traditional deep neural network (DNN) cannot convey information precisely 119 

in the time sequence, but the RNN is developed to overcome this problem. Training input data 120 

from a FOWT system to predict the motion response in the next few seconds can be viewed as 121 

an adaptive function mapping. The input is the previous time series information of different 122 

input factors, and the output is the motion response in the future. Hence, the trained deep 123 
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learning model can achieve prediction in a short time. 124 

The timeline expansion of the RNN is shown in Figure 1, where 𝑥 is the network input 125 

layer, 𝑠 is the network node hiding layer, and 𝑜 is the network node output layer. After the 126 

network receives the input 𝑥𝑡 at time 𝑡, the value of the hidden layer is 𝑠𝑡 and the output 127 

value is 𝑜𝑡 . The value of 𝑠𝑡  depends not only on 𝑥𝑡 , but also on 𝑠𝑡−1 . In other words, 𝑠 128 

inherits the information from each node. 129 

 130 

Figure 1. An unfolded RNN network 131 

The calculation method of the RNN network is shown in Equations 1-2: 132 

𝑜𝑡 = 𝒈(𝐕 ∙ 𝑠𝑡) (1) 133 

𝑠𝑡 = 𝒇(𝐔 ∙ 𝑥𝑡 + 𝐖 ∙ 𝑠𝑡−1) (2) 134 

where V is the weight matrix of the output layer, g is the activation function for the output layer, 135 

U is the weight matrix of the input layer x, W is the weight matrix of the last value, which is 136 

the input of this time, and f is the activation function for the hidden layer. Common activation 137 

functions, such as sigmoid, tanh, Rectified Linear Unit (ReLU), and linear activation function, 138 

can be selected according to data characteristics and experimental effects. The sigmoid 139 

activation function is generally selected for hidden layer activation function f, while the linear 140 

activation function is generally chosen for output layer activation function g. Equation 1 is the 141 

calculation formula of the output layer. The output layer is fully connected, indicating every 142 

node in the output layer is connected to every node in the hidden layer. Equation 2 is the 143 
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calculation formula of the hidden layer. 144 

2.2. Long-Short Term Memory (LSTM) Network 145 

LSTM is first proposed by Hochreiter and Schmidhuber [22]. Compared with traditional 146 

RNN, the LSTM network has improved the gradient explosion and gradient extinction. It has 147 

been one of the most popular RNN models and is widely applied in many fields, such as speech 148 

recognition, image description, and natural language processing. The internal structure of the 149 

LSTM node is shown in Figure 2 [24]. 150 

 151 

Figure 2. LSTM node unit internal structure 152 

At time 𝑡, the LSTM network has three inputs: current time input value 𝑥𝑡, LSTM output 153 

value ℎ𝑡−1 at the last time, and the unit state 𝑐𝑡−1 at the previous time. The output of LSTM 154 

has two parts: the output value of LSTM at the current time ℎ𝑡, and the unit state at the current 155 

time 𝑐𝑡. 𝑥, ℎ, and 𝑐 are vectors. In addition, LSTM uses the concept of a Gate to control the 156 

state of the unit [24]. Gate is a full connection layer which controls information transmission 157 

between input and output. Its input is a vector of time series information, and its output is a 158 

vector of real numbers between 0 and 1. The gate can be expressed as: 159 

𝐺(𝑥) = 𝛔(𝑾 ∙ 𝑥 + 𝐛) (3) 160 

where 𝑾 is the weight matrix of the gate, 𝐛 is the bias term, and 𝛔 is the generally sigmoid 161 
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activation function. 162 

The output vector of the gate is multiplied by the element and the vector is controlled to 163 

achieve the gate effect. The gated output is a vector of real numbers between 0 and 1. When the 164 

gated output is 0, any vectors multiplied by the output will get the 0 vectors, indicating that no 165 

information can pass through. When the gated output is 1, no changes are applied by multiplying, 166 

indicating that any information can pass through. Because 𝛔 has a range of (0,1), the gate is 167 

an intermediate state. 168 

LSTM relies on two gates to control the content of the cell state: (1) one is the forget gate 169 

that determines the amount of the cell state 𝑐𝑡−1 at the last moment. 𝑐𝑡−1 is used to retain the 170 

current moment 𝑐𝑡; (2) one is the input gate that determines the amount of the current network 171 

input 𝑥𝑡, which is saved to the unit state 𝑐𝑡. Meanwhile, LSTM uses an output gate to control 172 

the amount of unit state 𝑐𝑡 that is generated from the current output value ℎ𝑡. The governing 173 

equations of each gate are given as follows: 174 

𝑓𝑡 =  𝛔(𝐖𝐟 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝐛𝐟) (4) 175 

𝑖𝑡 = 𝛔(𝐖𝐢 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝐛𝐢) (5) 176 

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑐 ⋅ 𝑡𝑎𝑛ℎ(𝐖𝐂 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝐛𝐜) (6) 177 

𝑜𝑡 = 𝛔(𝐖𝐨 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝐛𝐨) (7) 178 

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝑐𝑡) (8) 179 

where 𝑓𝑡  is the forgetting gate equation, 𝐖𝐟  is the weight matrix of the forgetting gate, 180 

[ℎ𝑡−1,𝑥𝑡] is joining two vectors into a longer vector, 𝐛𝐟 is the biased term of the forgetting gate, 181 

𝑖𝑡 is the input gate equation, 𝐖𝐢 is the weight matrix of the input gate, 𝐛𝐢 is the offset term 182 

of the input gate, 𝑐𝑡 is the current moment element state equation, 𝑜𝑡 is the output gate control 183 

equation, ℎ𝑡 is the final output equation determined by the output gate and unit state. 184 

Existing LSTM network prediction modes mainly fall into the following four types [25]: 185 

point-to-point, point-to-sequence, sequence-to-point, and sequence-to-sequence, shown in 186 
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Figure 3: 187 

 188 

Figure 3. LSTM network prediction modes 189 

The LSTM network in this paper is set up by using sequence-to-point mode for a prediction 190 

model, which uses forecasting point response from previous time series after the selected data 191 

input mode is adopted in the form of the sliding window. Each window length has 200 time 192 

points and the 10 s surge motion. The sliding window form is shown in Figure 4, where the 193 

mapping relationship between the data input and output is presented when the forecast time is 194 

5 s. Therefore, the response at 𝑡 + 5 is predicted based on the response from t-10 to t. 195 

 196 

Figure 4. Sliding windows for data input and output 197 

2.3. LSTM Model Structure 198 

The LSTM network model established in this paper has three hidden layers and one fully 199 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

10 

 

connected output layer, shown in Figure 5. The data sampling frequency is 20 Hz. The input 200 

time step of the LSTM network contains 200 time series points with a motion response of 10s. 201 

The batch size is set to 256 sample sets, which are also the input for training and updating 202 

internal parameters. The number of neurons is set to 200. These two parameters are 203 

hyperparameters and can be adjusted according to the performance of the actual test. 204 

Input layer: input time series with a window of 200 data points, representing the motion 205 

response of 10s. The input dimension of the single-input model is 1, and that of the multi-input 206 

model is 3. 207 

Hidden layer: The hidden layer has 200 nodes. 208 

Output layer: The output layer is dense, the activation function is Linear, and the output 209 

result is the motion response at the target time.  210 

 211 

Figure 5. LSTM network model structure and data transfer format 212 

The Adam algorithm is configured for the LSTM network [27]. Adam algorithm is an 213 

advanced Stochastic Gradient Descent (SGD) algorithm, which introduces an adaptive learning 214 

rate for each parameter. The adaptive learning method and the Momentum method are 215 

combined. The learning rate is dynamically adjusted by the first and second moment estimation 216 
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of the gradient. The gradient descent process is relatively stable and suitable for most non-217 

convex optimization problems in large data sets and high-dimensional space. 218 

Simultaneously, the Dropout layer is added after the input layer and the hidden layer to 219 

prevent overfitting [28], and the Dropout_1 and Dropout_2 are set to 0.2. Overfitting may occur 220 

due to a large number of unknown network parameters or training times. The principle of 221 

dropout is that during the neural network training, some neurons are randomly discarded and 222 

not used for training at this round to avoid overfitting and accelerate loss convergence. 223 

In this paper, the LSTM neural network is constructed, and the input data consists of three 224 

parts, including time series of previous motion response, mooring force, and wave elevation. 225 

And the current motion response is set as the output data. The process of using the LSTM neural 226 

network model to predict the motion response is shown in Figure 6. The process of predicting 227 

motion response by LSTM neural network.  228 

 229 

 230 

Figure 6. The process of predicting motion response by LSTM neural network 231 

3.  Braceless Platform model 232 

The 5 MW Braceless model is established by SIMA, and the time domain response is 233 
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obtained by numerical simulation. SIMA is developed for the analysis of flexible marine riser 234 

systems, but it is also suited for any slender structures, such as mooring lines, and umbilicals, 235 

and for steel pipelines and conventional risers. The data used in training in this paper came from 236 

the FOWT model of a 5 MW Braceless semi-submersible platform in the water depth of 100 m. 237 

The Braceless platform consists of one central column, three side columns, and three pontoons, 238 

shown in Figure 7.  239 

 240 

     241 

Figure 7. Schematic of 5-MW Braceless platform 242 

Three side columns are evenly distributed around the central column at 120°. They are 243 

connected to the bottom of the central column by a floating buoy to form a Braceless semi-244 

submersible platform. The three-point mooring system is adopted, and the anchor chain is set 245 

at the bottom of the side column. 0° wave-wind misalignment is considered in the simulation. 246 

The main parameters of the Braceless platform are shown in Table 1. Parameters of the 5 MW 247 

Braceless Platform. 248 

In the following cases, the water depth is 100 m. The average wind speed 𝑉𝑡, effective 249 

wave height 𝐻𝑆, and spectrum peak period 𝑇𝑝 at the selected cabin height are listed in Table 250 

2. Environment matrix (JONSWAP). The significant wave height and spectrum peak period are 251 

in 50 years return period. The two-parameter JONSWAP spectrum is used to describe random 252 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

13 

 

ocean waves. The Kaimal wind speed spectrum is used to describe the offshore wind conditions. 253 

Table 1. Parameters of the 5 MW Braceless Platform  254 

Parameter Value 

Central column diameter (m) 6.5 

Side column diameter (m) 6.5 

Buoy height (m) 6 

Buoy bottom width (m) 9 

Buoy short radius (m) 41 

Buoy long radius (m) 45.5 

Depth of the draft (m) 30 

Displacement (t) 10555 

Steel weight (t) 1804 

Equivalent thickness (m) 0.03 

 255 

Table 2. Environment matrix (JONSWAP) 256 

Case 𝑉𝑡 (m/s) 

Turbulence  

intensity (%) 

𝐻𝑠 (m) 𝑇𝑝 (s) 

EC 1 9.8 10.1 2.9 9.98 

EC 2 14.8 15 4.5 11.81 

EC 3 16 13 5.3 12.81 

 257 

4. Single-input and Multi-input 258 

4.1. Data Partitioning and Error Measurement 259 

The sampling frequency of the Braceless platform simulation test is 20 Hz. The total 260 

sampling length of motion response (surge, pitch, and sway) is 2000 s. The collected time series 261 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

14 

 

contains 40000 data points. In the training model, the first 32000 points of response data are 262 

the training groups and the last 8000 points of response data are the test groups. Three test cases 263 

(EC1, EC2, and EC3) are selected, and each test case contained 2000 s surge, pitch, and sway 264 

motion data. 265 

The training group data is used to train and obtain the neural network model. The 266 

relationship between training Epochs and Loss is observed through the Loss function. Then the 267 

test group data is imported into the trained neural network model to verify the accuracy and 268 

performance of the trained model. 269 

The Loss function adopted in this paper is the Mean Squared Error (MSE), which is the 270 

averaged squared difference between the predicted value and the measured value as shown in 271 

Equation 9: 272 

𝑀𝑆𝐸 =
𝛴(𝑦𝑡

′ − 𝑦𝑡)2

𝑛
(9) 273 

where 𝑦𝑡′ is the predicted value of the motion response at time 𝑡, 𝑦𝑡 is the measured value 274 

of the motion response at time 𝑡, and 𝑛 is the total number of predicted values 8000 in this 275 

study. 276 

4.2. Single-input Predicted Results 277 

Single-input LSTM (SI-LSTM) model is used to train the motion response data in the 278 

training group in terms of the heave, surge, sway, and pitch. The training input of the model is 279 

only based on the previous motions. The output of the model is compared and analyzed with 280 

the data of the test group. The predicted advance time is set as 2.5 s and 5 s respectively. The 281 

actual and predicted values are shown in Figures 8-10. 282 
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     283 

(a)                                 (b)   284 

        285 

                     (c)                                 (d) 286 

Figure 8. Simulated and predicted values of EC 1 at 2.5 s and 5 s： 287 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 288 

      289 

(a)                                      (b) 290 
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           291 

(c)                                      (d) 292 

Figure 9. Simulated and predicted values of EC 2 at 2.5 s and 5 s： 293 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 294 

     295 

(a)                                     (b) 296 

        297 

(c)                                    (d) 298 
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Figure 10. Simulated and predicted values of EC 3 at 2.5 s and 5 s: 299 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 300 

It can be seen from Figures 8-10 that when the previous motion response is used as the 301 

single input, the predicted value at PAT of 2.5 s is closer to the simulated value. Due to the large 302 

amplitude of motion in the surge, the predicted results in Figure 8(a) agree well with the 303 

simulation results, apart from the minor discrepancy at the peak of the surge in Figures 9-10(a). 304 

Due to the small amplitude in sway, the predicted results under the two PATs generally agree 305 

with simulated results compared to the agreement between predicted and simulated surge. 306 

Similarly, there is also a minor discrepancy at the peak. The amplitude of heave motion is the 307 

smallest among the three motions, but it contains higher frequency components. The predicted 308 

heave motion in three test cases in Figure 8-10 presents better agreement with simulated results 309 

at PAT of 2.5 s, but a minor discrepancy can be noted at the peak and trough at PAT of 5 s. The 310 

peak value of pitch in Figures 8-10(d) is also large, but there is higher-order fluctuation at the 311 

peak and trough due to the nonlinear motion induced by wind and waves. Single-input LSTM 312 

model learned the nonlinear features from the training data group, so the predicted value agrees 313 

well with the simulated results. 314 

In summary, compared with the simulated values, the predicted values in all motions have 315 

very minor discrepancies at peak and trough, but a fairly good agreement has been presented. 316 

The discrepancy at peak and trough can be attributed to the limited input factors to train the 317 

neural network. To unravel this, the multi-input network structure is investigated in detail in 318 

Section 4.3. 319 

4.3. Muti-input Predicted Results 320 

A multi-input model is trained to explore the effects of multiple factors as input conditions 321 

on the predicted results. Unlike the single-input model, the training input of the multi-input 322 

LSTM (MI-LSTM) model is based on the previous motions, mooring forces, and wave 323 
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elevation. The output of the model is compared and analyzed with the data of the test group. 324 

The predicted advance time is set as 2.5 s and 5 s respectively. The test and predicted results 325 

are shown in Figures 11-13. 326 

 327 

     328 

(a)                                   (b) 329 

      330 

(c)                                   (d) 331 

Figure 11. Simulated and predicted values of EC 1 at 2.5 s and 5 s： 332 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 333 
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     334 

(a)                                     (b) 335 

      336 

(c)                                     (d) 337 

Figure 12. Simulated and predicted values of EC 2 at 2.5 s and 5 s： 338 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 339 

      340 

(a)                                     (b) 341 
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        342 

(c)                                     (d) 343 

Figure 13. Simulated and predicted values of EC 3 at 2.5 s and 5 s： 344 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 345 

When the model input factors become multiple, i.e., adding mooring force and wave 346 

elevation, a better agreement between the predicted value and the simulated value is obtained 347 

compared with the single input case. Improved agreement of surge prediction at peak in Figure 348 

12(a) is presented compared to Figure 9(a). But in the case of multiple inputs, the fluctuations 349 

can also be noticed from the predicted surge. Sway and heave are not significantly improved 350 

due to their less sensitivity to mooring force. With the additional input factors, the accuracy of 351 

the predicted pitch has been improved significantly as pitch motion is sensitive to mooring 352 

forces, comparing Figures 9(d) and 12(d). It can be found that in the period 1900s-2000s, the 353 

discrepancy of the single-input model can be found, while the multi-input model presented 354 

better performance with additional input data sets. Similar to the pitch, better agreements have 355 

been achieved for the predicted surge. 356 

In a word, after adding the additional input factors to train the multi-input model, better 357 

performance in predicting the FOWT motion response has been demonstrated. However, the 358 

saw-tooth effect of the MI-LSTM model is more obvious, caused by the deep learning of the 359 

additional input information. The saw tooth effect is further analyzed after analyzing the 360 

scatterplot of discrete situations in Section 4.4. 361 
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4.4 Error Analysis 362 

In this study, the number of Epochs is set to 50 rounds. It is shown in Figure 14 the trend 363 

of the Loss function changing with the Epochs is generated and recorded during the training. It 364 

can be noted that with the increment of Epochs, Loss decrease rapidly in the beginning. Then 365 

after the rapid decrease stage, Loss finally tended to be stable. After the Epochs reaches 50, 366 

Loss remains unchanged. It can be concluded that the network training effect will not be further 367 

improved after 50 rounds and a neural network model with good accuracy is generated. The 368 

model has completed learning about the relationship between the input and output data. 369 

     370 

(a)                                    (b) 371 

     372 

(c)                                 (d) 373 

Figure 14. The curve of Loss affected by Epochs for different directions:  374 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch  375 

At the same time, the Loss of the MI-LSTM model is found to be lower than that of the 376 
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SI-LSTM model both in 2.5 s and 5 s. It can be considered that the learning ability of the model 377 

is improved after additional factors are added to the training. The predicted results are shown 378 

in Sections 4.2 and 4.3 and compared with simulation data. It is difficult to observe their overall 379 

discretization, so a scatter plot of the prediction results in different input modes is plotted in 380 

this Section, as shown in Figure 15. 381 

 382 

Figure 15. The discrete scatter plot of prediction results with two models  383 
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According to Figure 15, comparing the SI-LSTM model with the MI-LSTM model under 384 

the different cases, it can be found that after adding two additional input factors, the discrete 385 

situation of the MI-LSTM model prediction results is significantly smaller than that of the SI-386 

LSTM model prediction results. This phenomenon is more evident in the sway and heave of 387 

EC1, surge and sway of EC2, and sway and heave of EC3. The use of the MI-LSTM model is 388 

beneficial in reducing the discrete nature of predicted results. 389 

In addition to the impact of discrete situations, the overall accuracy of the MI-LSTM 390 

model and the single-input model is also important. The individual statistics for predicting the 391 

final result of the FOWT motion response using both models are listed in Table 3. The overall 392 

accuracy of both models is presented in Figure 16. 393 

Table 3. The accuracy of each statistic under the different input model 394 

 395 

Mode Statistics 
EC 1 EC 2 EC 3 

Heave Pitch Surge Sway Heave Pitch Surge Sway Heave Pitch Surge Sway 

Single-

input 

2.5 s 

Max 73.2% 95.9% 99.9% 96.7% 96.2% 92.6% 95.3% 81.2% 84.3% 98.8% 97.8% 81.0% 

Min 92.3% 99.0% 96.2% 96.2% 93.4% 92.4% 93.0% 97.1% 96.8% 96.2% 92.4% 76.9% 

Average 99.7% 97.2% 99.8% 88.6% 95.6% 92.4% 98.5% 90.6% 96.9% 93.3% 96.5% 94.9% 

STD 87.5% 93.7% 94.3% 94.0% 97.7% 98.9% 83.7% 90.6% 96.0% 92.1% 93.5% 97.7% 

Overall 88.2% 96.4% 97.6% 93.9% 95.7% 94.1% 92.6% 89.9% 93.5% 95.1% 95.0% 87.6% 

Multi-

input 

2.5 s 

Max 73.2% 98.0% 97.6% 97.1% 97.4% 96.1% 96.8% 92.5% 95.8% 98.5% 99.4% 82.9% 

Min 96.0% 97.8% 95.8% 89.6% 93.3% 93.9% 98.2% 98.7% 98.3% 93.5% 96.6% 91.9% 

Average 97.5% 98.2% 99.4% 88.6% 96.0% 98.5% 98.9% 96.6% 99.2% 98.2% 99.0% 92.4% 

STD 97.3% 95.3% 96.8% 97.9% 97.8% 98.8% 95.6% 95.5% 96.6% 98.1% 94.9% 96.6% 

Overall 91.0% 97.3% 97.4% 93.3% 96.1% 96.8% 97.4% 95.8% 97.5% 97.1% 97.5% 91.0% 

Single-

input 

5 s 

Max 73.2% 92.5% 98.7% 83.2% 82.9% 95.9% 86.1% 81.1% 69.7% 88.9% 97.4% 67.9% 

Min 89.3% 93.0% 96.7% 92.2% 91.4% 80.1% 74.9% 94.4% 90.8% 89.5% 67.2% 74.3% 

Average 98.9% 97.7% 97.8% 75.0% 93.0% 89.0% 89.8% 91.7% 92.3% 93.5% 98.3% 92.9% 

STD 75.6% 81.5% 88.3% 82.6% 93.3% 89.8% 76.2% 78.7% 90.4% 87.3% 85.3% 70.2% 

Overall 84.3% 91.2% 95.4% 83.3% 90.1% 88.7% 81.8% 86.5% 85.8% 89.8% 87.1% 76.3% 

Multi-

input 

5 s 

Max 73.2% 93.3% 98.1% 76.8% 82.5% 98.2% 87.8% 80.8% 85.3% 89.1% 97.4% 82.1% 

Min 91.3% 95.1% 98.5% 98.4% 96.0% 76.5% 85.7% 94.4% 91.0% 94.3% 78.4% 89.0% 

Average 97.7% 95.5% 98.6% 83.7% 96.9% 89.8% 88.4% 91.9% 98.0% 97.5% 96.4% 89.3% 

STD 89.7% 86.2% 91.3% 85.3% 97.0% 98.0% 90.8% 81.0% 88.8% 91.6% 87.2% 93.2% 

Overall 88.0% 92.5% 96.7% 86.1% 93.1% 90.6% 88.2% 87.0% 90.8% 93.1% 89.8% 88.4% 
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Based on Table 3 and Figure 16, the results at PAT of 2.5 s present better agreements than 396 

at PAT of 5 s. After adopting the MI-LSTM model, the accuracy of the prediction results in 397 

pitch and heave has been significantly improved. With the increment of PAT, the period between 398 

input and output becomes larger, so the time correlation between the two decreases and the 399 

uncertainty increases. The upper limit of learning ability decreases as the correlation between 400 

input and output information decreases. Therefore, the accuracy at PAT of 5 s is lower than that 401 

of 2.5 s. 402 

At the same time, the overall prediction result of the MI-LSTM model is better than the 403 

SI-LSTM model. The additional input factors increase the dimension of information, which 404 

enables the MI-LSTM model to explore more relationships between different input factors and 405 

the motion response of the target output. MI-LSTM model also adds more details to the final 406 

prediction results, improving the overall accuracy of the prediction results. In other words, there 407 

is a positive correlation between mooring force, wave elevation, and the motion response of the 408 

platform. 409 

        410 

(a)                                     (b) 411 

Figure 16. Overall accuracy under different PATs: (a) 2.5 s; (b) 5 s 412 

 413 
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5. Second-order Hydrodynamic Effects 414 

5.1 Prediction results under the influence of second-order hydrodynamic effects 415 

The influence of second-order hydrodynamics is significant for the load prediction of a 416 

FOWT [30]. EC1-EC3 are again simulated considering second-order hydrodynamic effects, the 417 

simulation data is imported into the MI-LSTM model for training. The prediction results under 418 

the second-order hydrodynamic force are obtained after the training, shown in Figures 17-19. 419 

   420 

(a)                                     (b) 421 

    422 

(c)                                      (d) 423 

Figure 17. Simulated and predicted values of EC 1 at 2.5 s and 5 s： 424 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 425 
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   426 

(a)                                    (b) 427 

    428 

(c)                                     (d) 429 

Figure 18. Simulated and predicted values of EC 2 at 2.5 s and 5 s： 430 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 431 

    432 

(a)                                    (b)    433 
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 434 

     435 

(c)                                     (d) 436 

Figure 19. Simulated and predicted values of EC 3 at 2.5 s and 5 s： 437 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 438 

Figures 17-19 show that the peak fitting in all directions at 5 s is weaker than that of 2.5 s, 439 

similar to the case when the platform model is affected by first-order hydrodynamic forces. 440 

Compared with the first-order hydrodynamic influence, the prediction results under the second-441 

order hydrodynamics show smaller fluctuations in both surge and pitch. On the other hand, the 442 

predicted value of sway is smooth, and there is no slight fluctuation. The error of prediction 443 

results in heave mainly occurs in peaks and troughs, but it is not obvious. The statistical 444 

accuracy in each direction, as well as the overall accuracy, is further analyzed in Section 5.2. 445 

5.2. Error Analysis 446 

To compare the short-term prediction effect of the MI-LSTM model in both first-order 447 

hydrodynamics and second-order hydrodynamics cases, the results of the PAT of 2.5 s under 448 

EC 1 are selected for comparison, shown in Figure 20. 449 
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  450 

(a)                                  (b) 451 

 452 

  453 

(c)                                    (d) 454 

Figure 20. Comparison of 1st-order and 2nd-order hydrodynamic prediction results: 455 

(a) Surge; (b) Sway; (c)Heave; (d) Pitch 456 

According to Figure 20, it is observed that the motion response exhibits a stronger 457 

nonlinear characteristic under the influence of second-order hydrodynamic forces. This 458 

phenomenon is particularly evident in the surge, pitch, and sway directions, where more 459 

nonlinear fluctuations appear at the extremes of the kinematic response in all three directions. 460 

The effect of second-order hydrodynamic forces did not have much influence in the heave 461 

direction. 462 
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At the same time, in the surge, sway and pitch directions, there are significant deviations 463 

in the predicted values at the extremes of the motion response for the first-order hydrodynamics 464 

case. While in the second-order hydrodynamics case, the MI-LSTM model has better prediction 465 

at both peak and trough values. In the heave direction, the motion response of the platform in 466 

the two cases does not differ much and does not have the nonlinear characteristics in the other 467 

three directions. Therefore, the prediction effect of the MI-LSTM model in the heave direction 468 

under the influence of second-order hydrodynamics is not significantly improved. 469 

Under the influence of second-order hydrodynamics, this section also analyzes the 470 

individual statistics of the prediction results and calculates the overall accuracy of each 471 

direction of motion response, shown in Table 4. 472 

Table 4. The accuracy of each statistic under the influence of second-order hydrodynamics 473 

Mode Statistics 
EC 1 EC 2 EC 3 

Heave Pitch Surge Sway Heave Pitch Surge Sway Heave Pitch Surge Sway 

Multi-

input 

2.5 s 

Max 96.5% 99.4% 99.6% 98.7% 92.6% 96.3% 99.5% 92.2% 98.0% 98.9% 98.8% 91.8% 

Min 88.5% 99.2% 98.5% 99.1% 90.9% 90.7% 99.2% 97.0% 90.2% 96.2% 99.1% 94.9% 

Average 98.8% 98.8% 98.9% 96.5% 98.0% 97.6% 99.7% 99.0% 99.9% 99.0% 98.9% 99.2% 

STD 89.9% 96.2% 96.1% 98.6% 95.8% 96.5% 99.6% 94.6% 98.6% 99.2% 96.7% 92.8% 

Overall 93.4% 98.4% 98.3% 98.2% 94.3% 95.3% 99.5% 95.7% 96.7% 98.3% 98.4% 94.7% 

Multi-

input 

5 s 

Max 87.0% 99.5% 97.6% 71.0% 97.1% 97.5% 96.6% 63.4% 94.2% 97.2% 97.8% 77.1% 

Min 94.3% 95.5% 96.5% 97.5% 89.5% 82.5% 97.4% 97.0% 94.3% 93.4% 94.4% 94.9% 

Average 98.6% 98.1% 97.3% 80.7% 94.6% 96.5% 99.3% 98.2% 94.5% 98.8% 99.6% 99.0% 

STD 87.9% 92.3% 91.4% 98.1% 93.1% 92.5% 90.9% 80.4% 92.6% 98.0% 91.3% 84.1% 

Overall 92.0% 96.3% 95.7% 86.8% 93.6% 92.3% 96.0% 84.8% 93.9% 96.9% 95.8% 88.8% 

 474 

According to the results given in Table 4, it can be seen that the accuracy of the predicted 475 

results in all directions under the influence of second-order hydrodynamics is still at a high 476 

level, overall accuracy exceeds 90% at PAT of 2.5 s and 85% at PAT of 5 s. This phenomenon 477 

verifies the conclusions of Section 4 and confirms that an increase in PAT leads to a decrease 478 

in prediction accuracy.  479 

The overall accuracy of the 4 degrees of freedom directions calculated from Table 4 is 480 
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shown in Figure 21. At PAT of 2.5 s, the difference in prediction accuracy between the second-481 

order hydrodynamics and the first-order hydrodynamics is more obvious in surge and sway. At 482 

PAT of 5 s, in the direction of surge, heave, and pitch, the prediction accuracy in the second-483 

order hydrodynamics case is about 3% higher than that in the first-order hydrodynamics. 484 

By comparing with the results in the first-order hydrodynamics in Section 4, it can be 485 

found that the MI-LSTM model in the second-order hydrodynamics case not only has a good 486 

ability to learn multi-factor relationships and platform response prediction but also has a higher 487 

prediction accuracy than the first-order hydrodynamics case. 488 

 489 

(a)                               (b) 490 

Figure 21. Overall accuracy under different PATs: (a) 2.5 s; (b) 5 s 491 

 492 

6. Comparison with the MI1D-CNN model  493 

6.1 Predicted results with MI1D-CNN model 494 

Currently, the mainstream deep learning methods mainly include the CNN method and the 495 

RNN method, and the MI-LSTM model established in Section 4 belongs to the RNN method. 496 

CNN methods are mostly used in image recognition and text recognition. As a representative 497 

method to deal with time series problems in CNN, a one-dimensional convolutional neural 498 

network (1D-CNN) has a certain effect on short-term prediction by adding a pooling layer. 499 

 In this section, a multi-input one-dimensional convolutional neural network (MI1D-CNN) 500 
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is built to compare the CNN method with the LSTM method for the motion response prediction 501 

problem, using the same training data as in Section 4. The training of the MI1D-CNN model is 502 

completed, and the results obtained from the multi-input LSTM model are compared in Section 503 

6.2 in terms of training time and overall accuracy. The prediction results obtained by the MI1D-504 

CNN model are shown in Figures 22-24. 505 

    506 

(a)                                    (b) 507 

    508 

(c)                                   (d) 509 

Figure 22. Simulated and predicted values of EC 1 at 2.5 s and 5 s： 510 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 511 
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   512 

(a)                                   (b) 513 

    514 

(c)                                    (d) 515 

Figure 23. Simulated and predicted values of EC 2 at 2.5 s and 5 s： 516 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 517 

    518 

(a)                                   (b) 519 
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    520 

(c)                                    (d) 521 

Figure 24. Simulated and predicted values of EC 3 at 2.5 s and 5 s： 522 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 523 

According to Figures 22-24, and compared with Figures 11-13 in Section 4.3, it can be 524 

found that the motion response predicted by the MI1D-CNN model produces a large number of 525 

serrations in surge and pitch of each environmental condition, especially at PAT of 2.5 s. At the 526 

same time, the prediction result at PAT of 5 s in sway does not fit well with the simulation 527 

results. To further compare the results of the MI-LSTM model with the MI1D-CNN model, it 528 

is further explained from the aspects of training time and overall accuracy in Section 6.2. 529 

6.2 Comparison with Multi-input LSTM Model 530 

To further observe the imitative effect between the predicted values obtained by the two 531 

models and the simulated values, EC1 is selected and the results are summarized as shown in 532 

Figure 25. 533 

 534 
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    535 

(a)                                   (b)     536 

     537 

(c)                                   (d)     538 

Figure 25. The results of the MI1D-CNN model and the MI-LSTM model are compared: 539 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 540 

According to Figure 25, from the overall imitative effect of the time series curve, the 541 

prediction results of both models fit well with the simulation results at PAT of 2.5 s. However, 542 

at PAT of 5 s, the result of the MI1D-CNN model is slightly inferior to the MI-LSTM model 543 

result, and when the PAT is at 5 s, the predicted value of the former has a large fluctuation. This 544 

volatility does not exist in the simulation value, particularly in Figures 25(a) and (d). The time 545 

series of the platform response has a certain smoothness in sway, so both models’ imitative 546 

effects are good. While the time series of the platform response itself is more volatile in heave, 547 

the imitative effects of the peak are not as good as in other directions. 548 
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To find out the difference between the MI1D-CNN model and the MI-LSTM model, the 549 

overall accuracy of the MI1D-CNN model is calculated by combining each operating condition. 550 

Then compare the overall accuracy of the MI1D-CNN model with the MI-LSTM model 551 

proposed in Section 4 and the result is shown in Figure 26. 552 

  553 

(a)                                 (b) 554 

Figure 26. Comparison of the overall accuracy of different models in each direction: 555 

(a) 2.5 s; (b) 5s 556 

According to Figure 26, it can be found that there is no significant difference between the 557 

results of the two models when PAT is at 2.5 s, the overall effect of the MI-LSTM model is 558 

slightly better than the MI1D-CNN model, and the accuracy of the former is 1%-2% higher 559 

than the latter in all directions. But at PAT of 5 s, the situation is very different, the MI-LSTM 560 

model performs much better than the MI1D-CNN model, and the accuracy of the former is 561 

about 5% higher than the latter in all directions.  562 

It can be seen that when the corresponding period of the prediction platform becomes 563 

longer, the traditional CNN model is not satisfactory, while the MI-LSTM model proposed in 564 

this paper performs well. Since 1D-CNN only performs convolution operations on time series 565 

information within the length of a convolution, heritability in time series information is only 566 

reflected in a single convolutional neuron. Therefore, when PAT is small, the effect on the 567 

MI1D-CNN model and the MI-LSTM model is insignificant. However, with the increase of 568 
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PAT, the disadvantage of the MI1D-CNN model in processing temporal genetic information 569 

will become significant. 570 

In addition, the training time of the two models is also recorded, as shown in Table 5. 571 

According to Table 5, the training time of the MI1D-CNN model is much shorter than that of 572 

the MI-LSTM model, which is related to the learning and calculation method of the model itself. 573 

The training time of the MI1D-CNN model is short, but it sacrifices a part of the accuracy, and 574 

the training time of the MI-LSTM model is relatively long, but the accuracy is greatly improved. 575 

 576 

Table 5. Statistics on the training duration of the two models 577 

Modes PAT (s) Epochs Time (s) 

MI-LSTM 
2.5  50 912  

5  50 1053 

MI1D-CNN 
2.5  50 108 

5  50 157 

 578 

In summary, balancing training time and accuracy has always been an important issue in 579 

deep learning. If the goal is ultra-short-term forecasting of the FOWT motion response and the 580 

accuracy requirement is relatively low, the MI1D-CNN model can be chosen. However, to 581 

increase the time span of motion response forecasting and maintain the prediction accuracy, 582 

MI-LSTM model is a better choice. 583 

7. Conclusion  584 

Based on the motion response data of the Braceless platform, the MI-LSTM prediction 585 

model is established by the RNN deep learning method and is trained for different degrees of 586 

freedom under different environmental conditions. The accuracy of prediction results under 587 

different PAT and input methods are determined and compared using statistics. Based on the 588 

analysis and discussions, the conclusion can be made as follows: 589 

(1)Taking the previous data of platform motion response, mooring force, and wave 590 

elevation as input, after 50 rounds of training with two LSTM models, the Loss no longer 591 
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decreases, resulting in accurate prediction results. The Loss of the MI-LSTM model is slightly 592 

better than the SI-LSTM model. The MI-LSTM model more comprehensively learns the 593 

relationship between multiple factors and the target output. 594 

(2)Based on the established and trained LSTM neural network model, the prediction 595 

results of the model fit well with the simulated value. The prediction accuracy with PAT at 2.5 596 

s is slightly higher than the accuracy with PAT at 5 s and the overall performance of the MI-597 

LSTM model is better than the SI-LSTM model. The additional two factors can positively 598 

improve the accuracy of the final prediction result. 599 

(3) The established MI-LSTM model is applied to the situation where the platform is 600 

affected by second-order hydrodynamics, and it is found that the model has a better predictive 601 

effect on the response of the Braceless platform affected by second-order hydrodynamics. The 602 

MI-LSTM model has a better performance for the case where the nonlinearity phenomenon is 603 

more pronounced. 604 

(4) The MI-LSTM model established in this paper is compared with the traditional MI1D-605 

CNN model, and the advantages and disadvantages of the two models are clarified from the 606 

aspects of training time and overall accuracy. When the PAT is small, the difference between 607 

the results of the two models is not significant, while when the PAT increases, the results 608 

obtained by the MI-LSTM model are better than those obtained by the MI1D-CNN model. 609 
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 14 

Abstract: The motion response of an offshore floating wind turbine (FOWT) platform is 15 

closely related to the control operation regarding the safety of a wind turbine. It is affected by 16 

various factors such as sea state environments and mooring systems. In practice, how to predict 17 

the motion response of the wind turbine platform in the short term has always been a concern 18 

of engineering practice. At present, the development of deep learning technology has brought 19 

some potential solutions to this problem. In this paper, a Multi-Input Long-Short Term Memory 20 

(MI-LSTM) neural network method is proposed to predict the short-term motion response of a 21 

floating offshore wind turbine platform. Specifically, the numerical simulation of the 5MW 22 

Braceless platform is carried out under different environmental conditions, and the data of 23 
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platform motion response, wave elevation, and mooring force are selected as input variables. 24 

Then the training and test groups are established after post-processing data. Subsequently, a 25 

Single-Input LSTM (SI-LSTM) model and a Multi-Input LSTM (MI-LSTM) model are 26 

established to learn the input data. After comparing the overall accuracy of the results, it is 27 

found that the additional mooring force and wave elevation positively affects the platform 28 

response prediction results. From the aspects of discreteness and overall accuracy, it is verified 29 

that the established MI-LSTM model is also applicable, considering the influence of second-30 

order hydrodynamics. Lastly, compared with the prediction results obtained by the multi-input 31 

one-dimensional convolutional neural network (MI1D-CNN), the advantages of the two 32 

different models are expounded from the perspectives of training time and accuracy, which 33 

provides ideas for the optimization of the FOWT motion response prediction model. This study 34 

sheds insights on the short-term motion response forecast and platform positioning of a FOWT. 35 

Short-term forecasts of a FOWT can be achieved under various sea conditions by combining 36 

the global positioning system. 37 

Keywords: Floating offshore wind turbine; deep learning; response prediction; multi-input 38 

LSTM model; second-order hydrodynamic  39 

1. Introduction 40 

With the rapid development of the global economy, energy has become a critical factor in 41 

determining social and economic development. To meet the Net Zero target by utilizing 42 

sustainable energy, the vigorous growth of renewable energy has become an essential part of 43 

the development strategy worldwide. Due to its high energy conversion ability, offshore wind 44 

power has been gradually installed in various countries recently. Different foundations of 45 

floating offshore wind turbines have been proposed, including spar, tension leg platform (TLP) 46 

shape, semi-submersible, and barge [1]-[3]. Substantial research has been carried out in terms 47 

of hydrodynamics, mooring systems, stability, performance, and survivability of a FOWT [4]-48 
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[9]. 49 

Compared with the onshore wind turbine structure, a FOWT encounters a more complex 50 

ocean environment. The motion response of a FOWT occurs in six degrees of freedom (6DOF) 51 

and leads to significant challenges in design and assessment [10]. Therefore, it is of great 52 

significance to propose an accurate prediction method for the motion response of the FOWT to 53 

guide the design and assess structural safety. In the deep learning model, motion response 54 

prediction is generally based on the historical data of motion response and many other results 55 

from numerical and experimental measurements. In general, deep learning technology is 56 

applied to predict the motion response of structures in the next few seconds [11]. According to 57 

the length of the forecast time, motion response prediction can be categorized as short-term and 58 

safe-period motion prediction. Short-term prediction plays a vital role in improving dynamic 59 

positioning control performance, and it provides early warning in extreme sea conditions to 60 

reduce platform damage to a certain extent. A short-term forecast's prediction advanced time 61 

(PAT) is generally a few seconds, and it requires high forecast accuracy [12]. 62 

In recent years, the application of deep learning technology in offshore structures has 63 

gradually expanded. The research is mainly carried out by the convolutional neural network 64 

(CNN) and the recurrent neural network (RNN) methods [13]-[21]. Wang et al. [14] proposed 65 

the Low-frequency adds wave-frequency responses (LAWR) method to predict the mooring 66 

line tension of a semi-submersible platform. Combined with the LSTM method, accurate results 67 

are obtained to predict mooring line tension under different cases. Pena et al. [18] proposed the 68 

Wave-Generative Adversarial Network (Wave-GAN) technology, combined with CNN 69 

convolutional neural network and CFD method, to predict the load of nonlinear waves on fixed 70 

structural columns. Pena et al. [18] concluded the maximum error between the Wave-GAN 71 

predicted value and CFD simulated value of 1.5%-2% by adjusting several parameters, and the 72 

mean absolute error (MAE) of the test group is about 0.014. Lian et al. [19] constructed the 73 
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digital twin of mesh clothing and established the deep neural network (DNN) to predict whether 74 

the mesh clothing is damaged. The average accuracy of the final identification model is 94.3%. 75 

Bjørni et al. [20] predicted the mooring line tension in the next 30 s by making use of the 76 

platform motion response in the first 60 s as input and constructed a three-layer deep neural 77 

network with bias term. It is concluded that the average error of anchor chain tension is 0.46% 78 

through cross-sectional comparisons. According to the combined prediction method of the 79 

Extreme Learning Machine (ELM), the Empirical Mode Decomposition (EMD), and LSTM 80 

neural network, Zhang et al. [21] proved that the combined prediction method presented higher 81 

prediction accuracy than the single LSTM model and ELM-LSTM model. However, when 82 

considering the influence of environmental factors and mooring force, there is limited research 83 

on predicting the motion response of a FOWT. At the same time, in practice, it needs to assess 84 

the motion response of a FOWT under the influence of various complex factors and consider 85 

the impact of second-order hydrodynamic force. Moreover, the amount of research on the 86 

motion response prediction of a FOWT under the effect of the second-order hydrodynamic force 87 

is also limited. 88 

To investigate the short-term motion prediction of a FOWT, the MI-LSTM Neural 89 

Network model is used. This paper is organized as follows: Section 2 introduces the basic 90 

principles of the RNN. The architecture and differences between the established SI-LSTM 91 

model and the MI-LSTM model are explained in detail. The hyperparameters of the model and 92 

the selection of the training and test groups are also given in this section. Then, in Section 3, 93 

the structure size of the 5 MW Braceless platform model is shown. A detailed comparison is 94 

made between the prediction results of the SI-LSTM and MI-LSTM models under different 95 

environmental conditions in Section 4. This proves the positive excitation of the increased input 96 

factor numbers on the prediction results and illustrates the advantages and benefits of the MI-97 

LSTM model. In Section 5, the applicability of the proposed model is demonstrated when the 98 
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second-order hydrodynamic force is considered. Given that there are few comparisons between 99 

the RNN model and CNN model regarding time domain problems, in Section 6, by comparing 100 

the prediction results of the proposed model with the multi-input one-dimensional 101 

convolutional neural network (MI1D-CNN) model, the advantages of the two models are 102 

illustrated from the perspectives of overall accuracy and training time. Finally, the conclusions 103 

and recommendations are made for the future optimization of the platform response prediction 104 

model. 105 

2. Long-Short Term Memory (LSTM) Neural Network  106 

2.1. Recurrent Neural Network (RNN) 107 

Recurrent neural network (RNN) is gradually emerging in the interdisciplinary field as a 108 

typical representative of deep learning technology. RNN takes time series data as input and 109 

performs recursion in the evolution direction of the sequence, where all nodes (cyclic units) are 110 

linked in a chain [22]. RNN has memorization, parameter sharing, and turning completeness 111 

[23]-[25], so it has clear advantages in learning the nonlinear features in sequences. RNNs are 112 

widely used in natural language processing, such as speech recognition, language modeling, 113 

and time series prediction. RNN performs outstandingly in solving scheduling problems, and 114 

motion response prediction is the typical time domain problem. Therefore, in this paper, RNN 115 

is selected for model architecture.  116 

Since the motion of the platform at time t is affected by the motion at the previous time 117 

𝑡 − 1, meanwhile, the motion at current time t will also have an impact at forward time 𝑡 + 1, 118 

platform motion response is a continuous process with time dependence. Considering this 119 

characteristic, the traditional deep neural network (DNN) cannot convey information precisely 120 

in the time sequence, but the RNN is developed to overcome this problem. Training input data 121 

from a FOWT system to predict the motion response in the next few seconds can be viewed as 122 

an adaptive function mapping. The input is the previous time series information of different 123 
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input factors, and the output is the motion response in the future. Hence, the trained deep 124 

learning model can achieve prediction in a short time. 125 

The timeline expansion of the RNN is shown in Figure 1, where 𝑥 is the network input 126 

layer, 𝑠 is the network node hiding layer, and 𝑜 is the network node output layer. After the 127 

network receives the input 𝑥𝑡 at time 𝑡, the value of the hidden layer is 𝑠𝑡 and the output 128 

value is 𝑜𝑡 . The value of 𝑠𝑡  depends not only on 𝑥𝑡 , but also on 𝑠𝑡−1 . In other words, 𝑠 129 

inherits the information from each node. 130 

 131 

Figure 1. An unfolded RNN network 132 

The calculation method of the RNN network is shown in Equations 1-2: 133 

𝑜𝑡 = 𝒈(𝐕 ∙ 𝑠𝑡) (1) 134 

𝑠𝑡 = 𝒇(𝐔 ∙ 𝑥𝑡 + 𝐖 ∙ 𝑠𝑡−1) (2) 135 

where V is the weight matrix of the output layer, g is the activation function for the output layer, 136 

U is the weight matrix of the input layer x, and W is the weight matrix of the last value, which 137 

is the input of the present time, and f is the activation function for the hidden layer. Common 138 

activation functions, such as sigmoid, tanh, Rectified Linear Unit (ReLU), and linear activation 139 

function, can be selected according to data characteristics and experimental effects. The 140 

sigmoid activation function is generally selected for hidden layer activation function f, while 141 

the linear activation function is generally chosen for output layer activation function g. Equation 142 

1 is the calculation formula of the output layer. The output layer is fully connected, indicating 143 
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that every node in the output layer is connected to every node in the hidden layer. Equation 2 is 144 

the calculation formula of the hidden layer. 145 

2.2. Long-Short Term Memory (LSTM) Network 146 

LSTM is first proposed by Hochreiter and Schmidhuber [25]. Compared with traditional 147 

RNN, the LSTM network has improved the gradient explosion and gradient extinction. It has 148 

been one of the most popular RNN models and is widely applied in many fields, such as speech 149 

recognition, image description, and natural language processing. The internal structure of the 150 

LSTM node is shown in Figure 2 [27]. 151 

 152 

Figure 2. LSTM node unit internal structure 153 

At time 𝑡, the LSTM network has three inputs: current time input value 𝑥𝑡, LSTM output 154 

value ℎ𝑡−1 at the last time, and the unit state 𝑐𝑡−1 at the previous time. The output of LSTM 155 

has two parts: the output value of LSTM at the current time ℎ𝑡, and the unit state at the current 156 

time 𝑐𝑡. 𝑥, ℎ, and 𝑐 are vectors. In addition, LSTM uses the concept of a Gate to control the 157 

state of the unit [27]. Gate is a full connection layer that controls information transmission 158 

between input and output. Its input is a vector of time series information, and its output is a 159 

vector of real numbers between 0 and 1. The gate can be expressed as: 160 

𝐺(𝑥) = 𝛔(𝑾 ∙ 𝒙 + 𝐛) (3) 161 
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where 𝑾 is the weight matrix of the gate, 𝐛 is the bias term, and 𝛔 is the generally sigmoid 162 

activation function. 163 

The output vector of the gate is multiplied by the element and the vector is controlled to 164 

achieve the gate effect. The gated output is a vector of real numbers between 0 and 1. When the 165 

gated output is 0, any vectors multiplied by the output will get the 0 vectors, indicating that no 166 

information can pass through. When the gated output is 1, no changes are applied by multiplying, 167 

indicating that any information can pass through. Because 𝛔 has a range of (0,1), the gate is 168 

an intermediate state. 169 

LSTM relies on two gates to control the content of the cell state: (1) one is the forget gate 170 

that determines the amount of the cell state 𝑐𝑡−1 at the last moment. 𝑐𝑡−1 is used to retain the 171 

current moment 𝑐𝑡; (2) one is the input gate that determines the amount of the current network 172 

input 𝑥𝑡, which is saved to the unit state 𝑐𝑡. Meanwhile, LSTM uses an output gate to control 173 

the amount of unit state 𝑐𝑡 that is generated from the current output value ℎ𝑡. The governing 174 

equations of each gate are given as follows: 175 

𝑓𝑡 =  𝛔(𝐖𝐟 ∙ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝐛𝐟) (4) 176 

𝑖𝑡 = 𝛔(𝐖𝐢 ∙ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝐛𝐢) (5) 177 

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑐 ⋅ 𝑡𝑎𝑛ℎ(𝐖𝐂 ⋅ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝐛𝐜) (6) 178 

𝑜𝑡 = 𝛔(𝐖𝐨 ∙ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝐛𝐨) (7) 179 

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝒄𝒕) (8) 180 

where 𝑓𝑡  is the forgetting gate equation, 𝐖𝐟  is the weight matrix of the forgetting gate, 181 

[ℎ𝑡−1,𝑥𝑡] is joining two vectors into a longer vector, 𝐛𝐟 is the biased term of the forgetting gate, 182 

𝑖𝑡 is the input gate equation, 𝐖𝐢 is the weight matrix of the input gate, 𝐛𝐢 is the offset term 183 

of the input gate, 𝑐𝑡 is the current moment element state equation, 𝑜𝑡 is the output gate control 184 

equation, ℎ𝑡 is the final output equation determined by the output gate and unit state. 185 

The unique Gate structure in the LSTM model effectively improves the phenomenon of 186 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

9 

 

gradient explosion and gradient disappearance. the activation function of the gate structure in 187 

the LSTM model is the sigmoid function, and the Sigmoid function controls the value of the 188 

forgetting gate between 0 and 1. When the output of the gate is 1, the forgetting gate is saturated, 189 

at this time the long-range information gradient does not disappear, and the gradient can be well 190 

passed in the LSTM, largely mitigating the probability of gradient disappearance occurring; 191 

when the output of the gate is 0, at this time the model is blocking the gradient flow and 192 

forgetting the previous information, indicating that the information of the previous moment 193 

does not affect on the current moment. Through the gate structure and sigmoid activation 194 

function, the LSTM model can effectively solve the gradient disappearance and gradient 195 

explosion problems. 196 

Existing LSTM network prediction modes mainly fall into the following four types [28]: 197 

point-to-point, point-to-sequence, sequence-to-point, and sequence-to-sequence, as shown in 198 

Figure 3: 199 

 200 

Figure 3. LSTM network prediction modes 201 

The LSTM network in this paper is set up by using sequence-to-point mode for a prediction 202 

model, which uses forecasting point response from previous time series after the selected data 203 

input mode is adopted in the form of the sliding window. Each window length has 200 time 204 

points and the 10 s surge motion. The sliding window form is shown in Figure 4, where the 205 

mapping relationship between the data input and output is presented when the forecast time is 206 

5 s. Therefore, the response at 𝑡 + 5 is predicted based on the response from t-10 to t. 207 
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 208 

Figure 4. Sliding windows for data input and output 209 

2.3. LSTM Model Structure 210 

The LSTM network model established in this paper has three hidden layers and one fully 211 

connected output layer, shown in Figure 5. The data sampling frequency is 20 Hz. The input 212 

time step of the LSTM network contains 200 time series points with a motion response of 10s. 213 

The batch size is set to 256 sample sets, which are also the input for training and updating 214 

internal parameters. The number of neurons is set to 200. These two parameters are 215 

hyperparameters and can be adjusted according to the performance of the actual test. 216 

Input layer: input time series with a window of 200 data points, representing the motion 217 

response of 10s. The input dimension of the single-input model is 1, and that of the multi-input 218 

model is 3. 219 

Hidden layer: The hidden layer has 200 nodes. 220 

Output layer: The output layer is dense, the activation function is linear, and the output 221 

result is the motion response at the target time.  222 
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 223 

Figure 5. LSTM network model structure and data transfer format 224 

The Adam algorithm is configured for the LSTM network [30]. Adam algorithm is an 225 

advanced Stochastic Gradient Descent (SGD) algorithm, which introduces an adaptive learning 226 

rate for each parameter. The adaptive learning method and the Momentum method are 227 

combined. The learning rate is dynamically adjusted by the first and second moment estimation 228 

of the gradient. The gradient descent process is relatively stable and suitable for most non-229 

convex optimization problems in large data sets and high-dimensional space. 230 

Simultaneously, the Dropout layer is added after the input layer and the hidden layer to 231 

prevent overfitting [31-[32], and the Dropout_1 and Dropout_2 are set to 0.2. Overfitting may 232 

occur due to a large number of unknown network parameters or training times. The principle 233 

of dropout is that during the neural network training, some neurons are randomly discarded and 234 

not used for training at this round to avoid overfitting and accelerate loss convergence. 235 

In this paper, the LSTM neural network is constructed, and the input data consists of three 236 

parts, including time series of previous motion response, mooring force, and wave elevation. 237 

And the current motion response is set as the output data. The process of using the LSTM neural 238 

network model to predict the motion response is shown in Figure 6. The process of predicting 239 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

12 

 

motion response by LSTM neural network.  240 

 241 

 242 

Figure 6. The process of predicting motion response by LSTM neural network 243 

3.  Braceless Platform model 244 

The 5 MW Braceless model is established by SIMA, and the time domain response is 245 

obtained by numerical simulation. SIMA is developed for the analysis of flexible marine riser 246 

systems, but it is also suited for any slender structures, such as mooring lines, umbilicals, steel 247 

pipelines, and conventional risers. The data used in training in this paper came from the FOWT 248 

model of a 5 MW Braceless semi-submersible platform in the water depth of 100 m. The 249 

Braceless platform consists of one central column, three side columns, and three pontoons, 250 

shown in Figure 7.  251 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

13 

 

     252 

Figure 7. Schematic of 5-MW Braceless platform 253 

Three side columns are evenly distributed around the central column at 120°. They are 254 

connected to the bottom of the central column by a floating buoy to form a Braceless semi-255 

submersible platform. The three-point mooring system is adopted, and the anchor chain is set 256 

at the bottom of the side column. 0° wave-wind misalignment is considered in the simulation. 257 

The main parameters of the Braceless platform are shown in Table 1. Parameters of the 5 MW 258 

Braceless Platform: 259 

Table 1. Parameters of the 5 MW Braceless Platform  260 

Parameter Value 

Central column diameter (m) 6.5 

Side column diameter (m) 6.5 

Buoy height (m) 6 

Buoy bottom width (m) 9 

Buoy short radius (m) 41 

Buoy long radius (m) 45.5 

Depth of the draft (m) 30 

Displacement (t) 10555 

Steel weight (t) 1804 
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Equivalent thickness (m) 0.03 

 261 

Based on the data given in Ref. [33], site 5 in Norway was selected as a representative site 262 

for the simulation. In the following cases, the water depth is 100 m. The average wind speed 263 

𝑉𝑡, effective wave height 𝐻𝑆, and spectrum peak period 𝑇𝑝 at the selected cabin height are 264 

listed. The JONSWAP spectrum is used to describe random ocean waves, and the JONSWAP 265 

spectrum is shown in Equations 9-1 to 9-3. The Kaimal wind speed spectrum is used to describe 266 

the offshore wind conditions. 267 

𝑆(𝑓) = 𝛼
𝐻𝑠

2

𝑇𝑝
4𝑓5 𝑒𝑥𝑝 [−

5

4
(𝑇𝑝𝑓)−4] 𝛾

𝑒𝑥𝑝[−
(𝑇𝑝𝑓−1)

2𝜎2 ]
               (9-1) 268 

where 𝑓 is the wave frequency, 𝛾 is the shape parameter, and 𝜎 and 𝛼 are shown below, 269 

𝜎 = {
0.09  𝑓 ≥ 𝑓𝑝

0.07 𝑓 < 𝑓𝑝 
                          (9-2) 270 

𝛼 =
0.0624

0.230+0.0336𝛾−0.185/(1.9+𝛾)
                      (9-3) 271 

 272 

Table 2. Environment matrix  273 

Case 𝑉𝑡 (m/s) 𝛾 𝐻𝑠 (m) 𝑇𝑝 (s) 

EC 1 9.8 3.3 2.9 9.98 

EC 2 14.8 3.3 4.5 11.81 

EC 3 16 3.3 5.3 12.81 

 274 

4. Single-input and Multi-input 275 

4.1. Data Partitioning and Error Measurement 276 

The sampling frequency of the Braceless platform simulation test is 20 Hz. The total 277 

sampling length of motion response (surge, pitch, and sway) is 2000 s. The collected time series 278 
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contains 40000 data points. In the training model, the first 32000 points of response data are 279 

the training groups and the last 8000 points of response data are the test groups. Three test cases 280 

(EC1, EC2, and EC3) are selected, and each test case contained 2000 s surge, pitch, and sway 281 

motion data. 282 

The training group data is used to train and obtain the neural network model. The 283 

relationship between training Epochs and Loss is observed through the Loss function. Then the 284 

test group data is imported into the trained neural network model to verify the accuracy and 285 

performance of the trained model. 286 

The Loss function adopted in this paper is the Mean Squared Error (MSE), which is the 287 

averaged squared difference between the predicted value and the measured value as shown in 288 

Equation 10: 289 

𝑀𝑆𝐸 =
𝛴(𝑦𝑡

′ − 𝑦𝑡)2

𝑛
(10) 290 

where 𝑦𝑡′ is the predicted value of the motion response at time 𝑡, 𝑦𝑡 is the measured value 291 

of the motion response at time 𝑡, and 𝑛 is the total number of predicted values 8000 in this 292 

study. 293 

4.2. Single-input Predicted Results 294 

Single-input LSTM (SI-LSTM) model is used to train the motion response data in the 295 

training group in terms of the heave, surge, sway, and pitch. The training input of the model is 296 

only based on the previous motions. The output of the model is compared and analyzed with 297 

the data of the test group. The predicted advance time is set as 2.5 s and 5 s respectively. The 298 

actual and predicted values are shown in Figures 8-10. 299 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

16 

 

     300 

(a)                                 (b)   301 

        302 

                     (c)                                 (d) 303 

Figure 8. Simulated and predicted values of EC 1 at 2.5 s and 5 s： 304 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 305 

      306 

(a)                                      (b) 307 
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           308 

(c)                                      (d) 309 

Figure 9. Simulated and predicted values of EC 2 at 2.5 s and 5 s： 310 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 311 

     312 

(a)                                     (b) 313 

        314 

(c)                                    (d) 315 
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Figure 10. Simulated and predicted values of EC 3 at 2.5 s and 5 s: 316 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 317 

It can be seen from Figures 8-10 that when the previous motion response is used as the 318 

single input, the predicted value at PAT of 2.5 s is closer to the simulated value. Due to the large 319 

amplitude of motion in the surge, the predicted results in Figure 8(a) agree well with the 320 

simulation results, apart from the minor discrepancy at the peak of the surge in Figures 9-10(a). 321 

Due to the small amplitude in sway, the predicted results under the two PATs generally agree 322 

with simulated results compared to the agreement between predicted and simulated surge. 323 

Similarly, there is also a minor discrepancy at the peak. The amplitude of heave motion is the 324 

smallest among the three motions, but it contains higher frequency components. The predicted 325 

heave motion in three test cases in Figures 8-10 presents better agreement with simulated 326 

results at PAT of 2.5 s, but a minor discrepancy can be noted at the peak and trough at PAT of 5 327 

s. The peak value of pitch in Figures 8-10(d) is also large, but there is higher-order fluctuation 328 

at the peak and trough due to the nonlinear motion induced by wind and waves. Single-input 329 

LSTM model learned the nonlinear features from the training data group, so the predicted value 330 

agrees well with the simulated results. 331 

In summary, compared with the simulated values, the predicted values in all motions have 332 

very minor discrepancies at peak and trough, but a fairly good agreement has been presented. 333 

The discrepancy at peak and trough can be attributed to the limited input factors to train the 334 

neural network. To unravel this, the multi-input network structure is investigated in detail in 335 

Section 4.3. 336 

4.3. Muti-input Predicted Results 337 

A multi-input model is trained to explore the effects of multiple factors as input conditions 338 

on the predicted results. Unlike the single-input model, the training input of the multi-input 339 

LSTM (MI-LSTM) model is based on the previous motions, mooring forces, and wave 340 
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elevation. The output of the model is compared and analyzed with the data of the test group. 341 

The predicted advance time is set as 2.5 s and 5 s respectively. The test and predicted results 342 

are shown in Figures 11-13: 343 

     344 

(a)                                   (b) 345 

     346 

(c)                                   (d) 347 

Figure 11. Simulated and predicted values of EC 1 at 2.5 s and 5 s： 348 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 349 
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     350 

(a)                                     (b) 351 

      352 

(c)                                     (d) 353 

Figure 12. Simulated and predicted values of EC 2 at 2.5 s and 5 s： 354 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 355 

      356 

(a)                                     (b) 357 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

21 

 

        358 

(c)                                     (d) 359 

Figure 13. Simulated and predicted values of EC 3 at 2.5 s and 5 s： 360 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 361 

When the model input factors become multiple, i.e., adding mooring force and wave 362 

elevation, a better agreement between the predicted value and the simulated value is obtained 363 

compared with the single input case. Improved agreement of surge prediction at peak in Figure 364 

12(a) is presented compared to Figure 9(a). But in the case of multiple inputs, the fluctuations 365 

can also be noticed from the predicted surge. Sway and heave are not significantly improved 366 

due to their less sensitivity to mooring force. With the additional input factors, the accuracy of 367 

the predicted pitch has been improved significantly as pitch motion is sensitive to mooring 368 

forces, comparing Figure 9(d) and 12(d). It can be found that in the period 1900s-2000s, the 369 

discrepancy of the single-input model can be found, while the multi-input model presented 370 

better performance with additional input data sets. Similar to the pitch, better agreements have 371 

been achieved for the predicted surge. 372 

In a word, after adding the additional input factors to train the multi-input model, better 373 

performance in predicting the FOWT motion response has been demonstrated. However, the 374 

saw-tooth effect of the MI-LSTM model is more obvious, caused by the deep learning of the 375 

additional input information. The saw tooth effect is further analyzed after analyzing the 376 

scatterplot of discrete situations in Section 4.4. 377 
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4.4 Error Analysis 378 

In this study, the number of Epochs is set to 50 rounds. It is shown in Figure 14 the trend 379 

of the Loss function changing with the Epochs is generated and recorded during the training. It 380 

can be noted that with the increment of Epochs, Loss decreases rapidly in the beginning. Then 381 

after the rapid decrease stage, Loss finally tended to be stable. After the Epochs reaches 50, 382 

Loss remains unchanged. It can be concluded that the network training effect will not be further 383 

improved after 50 rounds and a neural network model with good accuracy is generated. The 384 

model has completed learning about the relationship between the input and output data. 385 

     386 

(a)                                    (b) 387 

     388 

(c)                                 (d) 389 

Figure 14. The curve of Loss affected by Epochs for different directions:  390 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch  391 

At the same time, the Loss of the MI-LSTM model is found to be lower than that of the 392 
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SI-LSTM model both in 2.5 s and 5 s. It can be considered that the learning ability of the model 393 

is improved after additional factors are added to the training. The predicted results are shown 394 

in sections 4.2 and 4.3 and compared with simulation data. It is difficult to observe their overall 395 

discretization, so a scatter plot of the prediction results in different input modes is plotted in 396 

this section, as shown in Figure 15. 397 

According to Figure 15, comparing the SI-LSTM model with the MI-LSTM model under 398 

the different cases, it can be found that after adding two additional input factors, the discrete 399 

situation of the MI-LSTM model prediction results is significantly smaller than that of the SI-400 

LSTM model prediction results. This phenomenon is more evident in the sway and heave of 401 

EC1, surge and sway of EC2, and sway and heave of EC3. The use of the MI-LSTM model is 402 

beneficial in reducing the discrete nature of predicted results. 403 
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 404 

Figure 15. The discrete scatter plot of prediction results with two models  405 

 406 

Comparing the prediction results of the SI-LSTM model with the MI-LSTM model on the 407 

same image, the comparison results for EC 1 are shown in Figure 16. From the figure, one can 408 

find that the prediction results of both SI-LSTM model and MI-LSTM model have high 409 

accuracy. For the surge motion, both models have the best results and have a good fit in both 410 
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peak and trough positions as well. For the sway motion, the MI-LSTM model predicts a certain 411 

absolute value bias at the response extremes, while the SI-LSTM model predicts a certain 412 

absolute value bias at the response extremes. For the heave motion, since the SI-LSTM model 413 

does not take into account the effect of wave elevation, and the response in the heave direction 414 

happens to be most affected by the wave, the accuracy of the SI-LSTM model in this direction 415 

is not as good as that of the MI-LSTM model. For the pitch motion, the results of both models 416 

are similar to those of the surge direction, but the predicted values are smaller at the peak, which 417 

is more obvious in the SI-LSTM model. 418 

  419 

(a)                                     (b) 420 

  421 

(c)                                     (d) 422 

Figure 16. Comparison of 1st-order and 2nd-order hydrodynamic prediction results: 423 

(a) Surge; (b) Sway; (c)Heave; (d) Pitch 424 

 425 
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In addition to the impact of discrete situations, the overall accuracy of the MI-LSTM 426 

model and the single-input model is also important. The individual statistics for predicting the 427 

final result of the FOWT motion response using both models are listed in Table 3. The overall 428 

accuracy of both models is presented in Figure 17. 429 

Based on Table 3 and Figure 16, the results at PAT of 2.5 s present better agreements than 430 

at PAT of 5 s. After adopting the MI-LSTM model, the accuracy of the prediction results in 431 

pitch and heave has been significantly improved. With the increment of PAT, the period between 432 

input and output becomes larger, so the time correlation between the two decreases and the 433 

uncertainty increases. The upper limit of learning ability decreases as the correlation between 434 

input and output information decreases. Therefore, the accuracy at PAT of 5 s is lower than that 435 

of 2.5 s. 436 

Table 3. The accuracy of each statistic under the different input model 437 

Mode Statistics 
EC 1 EC 2 EC 3 

Heave Pitch Surge Sway Heave Pitch Surge Sway Heave Pitch Surge Sway 

Single-

input 

2.5 s 

Max 73.2% 95.9% 99.9% 96.7% 96.2% 92.6% 95.3% 81.2% 84.3% 98.8% 97.8% 81.0% 

Min 92.3% 99.0% 96.2% 96.2% 93.4% 92.4% 93.0% 97.1% 96.8% 96.2% 92.4% 76.9% 

Average 99.7% 97.2% 99.8% 88.6% 95.6% 92.4% 98.5% 90.6% 96.9% 93.3% 96.5% 94.9% 

STD 87.5% 93.7% 94.3% 94.0% 97.7% 98.9% 83.7% 90.6% 96.0% 92.1% 93.5% 97.7% 

Overall 88.2% 96.4% 97.6% 93.9% 95.7% 94.1% 92.6% 89.9% 93.5% 95.1% 95.0% 87.6% 

Multi-

input 

2.5 s 

Max 73.2% 98.0% 97.6% 97.1% 97.4% 96.1% 96.8% 92.5% 95.8% 98.5% 99.4% 82.9% 

Min 96.0% 97.8% 95.8% 89.6% 93.3% 93.9% 98.2% 98.7% 98.3% 93.5% 96.6% 91.9% 

Average 97.5% 98.2% 99.4% 88.6% 96.0% 98.5% 98.9% 96.6% 99.2% 98.2% 99.0% 92.4% 

STD 97.3% 95.3% 96.8% 97.9% 97.8% 98.8% 95.6% 95.5% 96.6% 98.1% 94.9% 96.6% 

Overall 91.0% 97.3% 97.4% 93.3% 96.1% 96.8% 97.4% 95.8% 97.5% 97.1% 97.5% 91.0% 

Single-

input 

5 s 

Max 73.2% 92.5% 98.7% 83.2% 82.9% 95.9% 86.1% 81.1% 69.7% 88.9% 97.4% 67.9% 

Min 89.3% 93.0% 96.7% 92.2% 91.4% 80.1% 74.9% 94.4% 90.8% 89.5% 67.2% 74.3% 

Average 98.9% 97.7% 97.8% 75.0% 93.0% 89.0% 89.8% 91.7% 92.3% 93.5% 98.3% 92.9% 

STD 75.6% 81.5% 88.3% 82.6% 93.3% 89.8% 76.2% 78.7% 90.4% 87.3% 85.3% 70.2% 

Overall 84.3% 91.2% 95.4% 83.3% 90.1% 88.7% 81.8% 86.5% 85.8% 89.8% 87.1% 76.3% 

Multi-

input 

5 s 

Max 73.2% 93.3% 98.1% 76.8% 82.5% 98.2% 87.8% 80.8% 85.3% 89.1% 97.4% 82.1% 

Min 91.3% 95.1% 98.5% 98.4% 96.0% 76.5% 85.7% 94.4% 91.0% 94.3% 78.4% 89.0% 

Average 97.7% 95.5% 98.6% 83.7% 96.9% 89.8% 88.4% 91.9% 98.0% 97.5% 96.4% 89.3% 

STD 89.7% 86.2% 91.3% 85.3% 97.0% 98.0% 90.8% 81.0% 88.8% 91.6% 87.2% 93.2% 

Overall 88.0% 92.5% 96.7% 86.1% 93.1% 90.6% 88.2% 87.0% 90.8% 93.1% 89.8% 88.4% 
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 438 

At the same time, the overall prediction result of the MI-LSTM model is better than the 439 

SI-LSTM model. The additional input factors increase the dimension of information, which 440 

enables the MI-LSTM model to explore more relationships between different input factors and 441 

the motion response of the target output. MI-LSTM model also adds more details to the final 442 

prediction results, improving the overall accuracy of the prediction results. In other words, there 443 

is a positive correlation between mooring force, wave elevation, and the motion response of the 444 

platform. 445 

        446 

(a)                                     (b) 447 

Figure 17. Overall accuracy under different PATs: (a) 2.5 s; (b) 5 s 448 

 449 

5. Second-order Hydrodynamic Effects 450 

5.1 Prediction results under the influence of second-order hydrodynamic effects 451 

The influence of second-order hydrodynamics is significant for the load prediction of a 452 

FOWT [34]. EC1-EC3 are again simulated considering second-order hydrodynamic effects, the 453 

simulation data is imported into the MI-LSTM model for training. The prediction results under 454 

the second-order hydrodynamic force are obtained after the training, shown in Figures 18-20. 455 
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   456 

(a)                                     (b) 457 

    458 

(c)                                      (d) 459 

Figure 18. Simulated and predicted values of EC 1 at 2.5 s and 5 s： 460 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 461 

   462 

(a)                                    (b) 463 
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    464 

(c)                                     (d) 465 

Figure 19. Simulated and predicted values of EC 2 at 2.5 s and 5 s： 466 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 467 
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(a)                                    (b)    469 
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(c)                                     (d) 472 

Figure 20. Simulated and predicted values of EC 3 at 2.5 s and 5 s： 473 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 474 

Figures 18-20 show that the peak fitting in all directions at 5 s is weaker than that of 2.5 475 

s, similar to the case when the platform model is affected by first-order hydrodynamic forces. 476 

Compared with the first-order hydrodynamic influence, the prediction results under the second-477 

order hydrodynamics show smaller fluctuations in both surge and pitch. On the other hand, the 478 

predicted value of sway is smooth, and there is no slight fluctuation. The error of prediction 479 

results in heave mainly occurs in peaks and troughs, but it is not obvious. The statistical 480 

accuracy in each direction, as well as the overall accuracy, is further analyzed in section 5.2. 481 

5.2. Error Analysis 482 

To compare the short-term prediction effect of the MI-LSTM model in both first-order 483 

hydrodynamics and second-order hydrodynamics cases, the results of the PAT of 2.5 s under 484 

EC 1 are selected for comparison, shown in Figure 21. 485 

  486 

(a)                                  (b) 487 
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  489 

(c)                                    (d) 490 

Figure 21. Comparison of 1st-order and 2nd-order hydrodynamic prediction results: 491 

(a) Surge; (b) Sway; (c)Heave; (d) Pitch 492 

According to Figure 21, it is observed that the motion response exhibits a stronger 493 

nonlinear characteristic under the influence of second-order hydrodynamic forces. This 494 

phenomenon is particularly evident in the surge, pitch, and sway directions, where more 495 

nonlinear fluctuations appear at the extremes of the kinematic response in all three directions. 496 

The effect of second-order hydrodynamic forces did not have much influence in the heave 497 

direction. 498 

At the same time, in the surge, sway and pitch directions, there are significant deviations 499 

in the predicted values at the extremes of the motion response for the first-order hydrodynamics 500 

case. While in the second-order hydrodynamics case, the MI-LSTM model has better prediction 501 

at both peak and trough values. In the heave direction, the motion response of the platform in 502 

the two cases does not differ much and does not have the nonlinear characteristics in the other 503 

three directions. Therefore, the prediction effect of the MI-LSTM model in the heave direction 504 

under the influence of second-order hydrodynamics is not significantly improved. 505 

The response spectrum analysis of the platform under the influence of second-order 506 

hydrodynamics are supplemented and chose EC 1 to plot the power spectrum density (PSD), as 507 
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shown in Figure 22. There is a common phenomenon in all four directions, the predicted value 508 

of 2.5s is better than 5s in the performance of PSD, and both of them fit better with the PSD 509 

results of simulation values. The difference between the predicted and simulated values is 510 

mainly in the low-frequency peak of the response spectrum, while the PSD performance of the 511 

model predictions is better at the off-peak. 512 

  513 
(a)                                    (b) 514 

  515 

(c)                                     (d) 516 

Figure 22. Power spectral density of motion response in different directions 517 

(a) Surge; (b) Sway; (c)Heave; (d) Pitch 518 

 519 

Under the influence of second-order hydrodynamics, this section also analyzes the 520 

individual statistics of the prediction results and calculates the overall accuracy of each 521 

direction of motion response, shown in Table 4. 522 

Table 4. The accuracy of each statistic under the influence of second-order hydrodynamics 523 
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Mode Statistics 
EC 1 EC 2 EC 3 

Heave Pitch Surge Sway Heave Pitch Surge Sway Heave Pitch Surge Sway 

Multi-

input 

2.5 s 

Max 96.5% 99.4% 99.6% 98.7% 92.6% 96.3% 99.5% 92.2% 98.0% 98.9% 98.8% 91.8% 

Min 88.5% 99.2% 98.5% 99.1% 90.9% 90.7% 99.2% 97.0% 90.2% 96.2% 99.1% 94.9% 

Average 98.8% 98.8% 98.9% 96.5% 98.0% 97.6% 99.7% 99.0% 99.9% 99.0% 98.9% 99.2% 

STD 89.9% 96.2% 96.1% 98.6% 95.8% 96.5% 99.6% 94.6% 98.6% 99.2% 96.7% 92.8% 

Overall 93.4% 98.4% 98.3% 98.2% 94.3% 95.3% 99.5% 95.7% 96.7% 98.3% 98.4% 94.7% 

Multi-

input 

5 s 

Max 87.0% 99.5% 97.6% 71.0% 97.1% 97.5% 96.6% 63.4% 94.2% 97.2% 97.8% 77.1% 

Min 94.3% 95.5% 96.5% 97.5% 89.5% 82.5% 97.4% 97.0% 94.3% 93.4% 94.4% 94.9% 

Average 98.6% 98.1% 97.3% 80.7% 94.6% 96.5% 99.3% 98.2% 94.5% 98.8% 99.6% 99.0% 

STD 87.9% 92.3% 91.4% 98.1% 93.1% 92.5% 90.9% 80.4% 92.6% 98.0% 91.3% 84.1% 

Overall 92.0% 96.3% 95.7% 86.8% 93.6% 92.3% 96.0% 84.8% 93.9% 96.9% 95.8% 88.8% 

 524 

According to the results given in Table 4, it can be seen that the accuracy of the predicted 525 

results in all directions under the influence of second-order hydrodynamics is still at a high 526 

level, overall accuracy exceeds 90% at PAT of 2.5 s and 85% at PAT of 5 s. This phenomenon 527 

verifies the conclusions of Section 4 and confirms that an increase in PAT leads to a decrease 528 

in prediction accuracy.  529 

The overall accuracy of the 4 degrees of freedom directions calculated from Table 4 is 530 

shown in Figure 23. At PAT of 2.5 s, the difference in prediction accuracy between the second-531 

order hydrodynamics and the first-order hydrodynamics is more obvious in surge and sway. At 532 

PAT of 5 s, in the direction of surge, heave, and pitch, the prediction accuracy in the second-533 

order hydrodynamics case is about 3% higher than that in the first-order hydrodynamics. 534 

By comparing with the results in the first-order hydrodynamics in Section 4, it can be 535 

found that the MI-LSTM model in the second-order hydrodynamics case not only has a good 536 

ability to learn multi-factor relationships and platform response prediction but also has a higher 537 

prediction accuracy than the first-order hydrodynamics case. 538 
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 539 

(a)                               (b) 540 

Figure 23. Overall accuracy under different PATs: (a) 2.5 s; (b) 5 s 541 

 542 

6. Comparison with the MI1D-CNN model  543 

6.1 Predicted results with MI1D-CNN model 544 

Currently, the mainstream deep learning methods mainly include the CNN method and the 545 

RNN method, and the MI-LSTM model established in Section 4 belongs to the RNN method. 546 

CNN methods are mostly used in image recognition and text recognition. As a representative 547 

method to deal with time series problems in CNN, a one-dimensional convolutional neural 548 

network (1D-CNN) has a certain effect on short-term prediction by adding a pooling layer. 549 

 In this section, a multi-input one-dimensional convolutional neural network (MI1D-CNN) 550 

is built to compare the CNN method with the LSTM method for the motion response prediction 551 

problem, using the same training data as in Section 4. The training of the MI1D-CNN model is 552 

completed, and the results obtained from the multi-input LSTM model are compared in Section 553 

6.2 in terms of training time and overall accuracy. The prediction results obtained by the MI1D-554 

CNN model are shown in Figures 24-26. 555 
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    556 

(a)                                    (b) 557 

    558 

(c)                                   (d) 559 

Figure 24. Simulated and predicted values of EC 1 at 2.5 s and 5 s： 560 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 561 

   562 

(a)                                   (b) 563 
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    564 

(c)                                    (d) 565 

Figure 25. Simulated and predicted values of EC 2 at 2.5 s and 5 s： 566 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 567 

    568 

(a)                                   (b) 569 

    570 

(c)                                    (d) 571 
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Figure 26. Simulated and predicted values of EC 3 at 2.5 s and 5 s： 572 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 573 

According to Figures 24-26, and compared with Figures 11-13 in Section 4.3, it can be 574 

found that the motion response predicted by the MI1D-CNN model produces a large number of 575 

serrations in surge and pitch of each environmental condition, especially at PAT of 2.5 s. At the 576 

same time, the prediction result at PAT of 5 s in sway does not fit well with the simulation 577 

results. To further compare the results of the MI-LSTM model with the MI1D-CNN model, it 578 

is further explained from the aspects of training time and overall accuracy in Section 6.2. 579 

6.2 Comparison with Multi-input LSTM Model 580 

By counting the Loss values during the training of the MI1D-CNN model, we show the 581 

decrease of the model training Loss for EC 1, shown in Figure 27. One can observe that, unlike 582 

the change process of the MI-LSTM model's Loss value, the oscillation phase of the MI1D-583 

CNN model's Loss value is not obvious in the decreasing process. the MI1D-CNN model's Loss 584 

value stops changing when the number of training rounds reaches 50 rounds, which indicates 585 

that the model training has been completed and the performance is satisfactory. To further 586 

observe the imitative effect between the predicted values obtained by the two models and the 587 

simulated values, EC1 is selected and the results are summarized as shown in Figure 28. 588 
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    591 

(c)                                      (d) 592 

Figure 27. The curve of Loss affected by Epochs for different directions:  593 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 594 

 595 

    596 

(a)                                   (b)     597 

     598 

(c)                                   (d)     599 
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Figure 28. The results of the MI1D-CNN model and the MI-LSTM model are compared: 600 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 601 

According to Figure 28, from the overall imitative effect of the time series curve, the 602 

prediction results of both models fit well with the simulation results at PAT of 2.5 s. However, 603 

at PAT of 5 s, the result of the MI1D-CNN model is slightly inferior to the MI-LSTM model 604 

result, and when the PAT is at 5 s, the predicted value of the former has a large fluctuation. This 605 

volatility does not exist in the simulation value, particularly in Figures 28(a) and (d). The time 606 

series of the platform response has a certain smoothness in sway, so both models’ imitative 607 

effects are good. While the time series of the platform response itself is more volatile in heave, 608 

the imitative effects of the peak are not as good as in other directions. 609 

To find out the difference between the MI1D-CNN model and the MI-LSTM model, the 610 

overall accuracy of the MI1D-CNN model is calculated by combining each operating condition. 611 

Then compare the overall accuracy of the MI1D-CNN model with the MI-LSTM model 612 

proposed in Section 4 and the result is shown in Figure 29. 613 

  614 

(a)                                 (b) 615 

Figure 29. Comparison of the overall accuracy of different models in each direction: 616 

(a) 2.5 s; (b) 5s 617 

According to Figure 29, it can be found that there is no significant difference between the 618 

results of the two models when PAT is at 2.5 s, the overall effect of the MI-LSTM model is 619 
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slightly better than the MI1D-CNN model, and the accuracy of the former is 1%-2% higher 620 

than the latter in all directions. But at PAT of 5 s, the situation is very different, the MI-LSTM 621 

model performs much better than the MI1D-CNN model, and the accuracy of the former is 622 

about 5% higher than the latter in all directions.  623 

It can be seen that when the corresponding period of the prediction platform becomes 624 

longer, the traditional CNN model is not satisfactory, while the MI-LSTM model proposed in 625 

this paper performs well. Since 1D-CNN only performs convolution operations on time series 626 

information within the length of a convolution, heritability in time series information is only 627 

reflected in a single convolutional neuron. Therefore, when PAT is small, the effect on the 628 

MI1D-CNN model and the MI-LSTM model is insignificant. However, with the increase of 629 

PAT, the disadvantage of the MI1D-CNN model in processing temporal genetic information 630 

will become significant. 631 

In addition, the training time of the two models is also recorded, as shown in Table 5. 632 

According to Table 5, the training time of the MI1D-CNN model is much shorter than that of 633 

the MI-LSTM model, which is related to the learning and calculation method of the model itself. 634 

The training time of the MI1D-CNN model is short, but it sacrifices a part of the accuracy, and 635 

the training time of the MI-LSTM model is relatively long, but the accuracy is greatly improved. 636 

 637 

Table 5. Statistics on the training duration of the two models 638 

Modes PAT (s) Epochs Time (s) 

MI-LSTM 
2.5  50 912  

5  50 1053 

MI1D-CNN 
2.5  50 108 

5  50 157 

 639 

In summary, balancing training time and accuracy has always been an important issue in 640 

deep learning. If the goal is ultra-short-term forecasting of the FOWT motion response and the 641 
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accuracy requirement is relatively low, the MI1D-CNN model can be chosen. However, to 642 

increase the time span of motion response forecasting and maintain prediction accuracy, the 643 

MI-LSTM model is a better choice. 644 

7. Conclusion  645 

Based on the motion response data of the Braceless platform, the MI-LSTM prediction 646 

model is established by the RNN deep learning method and is trained for different degrees of 647 

freedom under different environmental conditions. The accuracy of prediction results under 648 

different PAT and input methods are determined and compared using statistics. Based on the 649 

analysis and discussions, the conclusion can be made as follows: 650 

(1)Taking the previous data of platform motion response, mooring force, and wave 651 

elevation as input, after 50 rounds of training with two LSTM models, the Loss no longer 652 

decreases, resulting in accurate prediction results. The Loss of the MI-LSTM model is slightly 653 

better than the SI-LSTM model. The MI-LSTM model more comprehensively learns the 654 

relationship between multiple factors and the target output. 655 

(2)Based on the established and trained LSTM neural network model, the prediction 656 

results of the model fit well with the simulated value. The prediction accuracy with PAT at 2.5 657 

s is slightly higher than the accuracy with PAT at 5 s and the overall performance of the MI-658 

LSTM model is better than the SI-LSTM model. The additional two factors can positively 659 

improve the accuracy of the final prediction result. 660 

(3) The established MI-LSTM model is applied to the situation where the platform is 661 

affected by second-order hydrodynamics, and it is found that the model has a better predictive 662 

effect on the response of the Braceless platform affected by second-order hydrodynamics. The 663 

MI-LSTM model has a better performance for the case where the nonlinearity phenomenon is 664 

more pronounced. 665 

(4) The MI-LSTM model established in this paper is compared with the traditional MI1D-666 
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CNN model, and the advantages and disadvantages of the two models are clarified from the 667 

aspects of training time and overall accuracy. When the PAT is small, the difference between 668 

the results of the two models is not significant, while when the PAT increases, the results 669 

obtained by the MI-LSTM model are better than those obtained by the MI1D-CNN model. 670 
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 14 

Abstract: The motion response of an offshore floating wind turbine (FOWT) platform is 15 

closely related to the control operation regarding the safety of a wind turbine. It is affected by 16 

various factors such as sea state environments and mooring systems. In practice, how to predict 17 

the motion response of the wind turbine platform in the short term has always been a concern 18 

of engineering practice. At present, the development of deep learning technology has brought 19 

some potential solutions to this problem. In this paper, a Multi-Input Long-Short Term Memory 20 

(MI-LSTM) neural network method is proposed to predict the short-term motion response of a 21 

floating offshore wind turbine platform. Specifically, the numerical simulation of the 5MW 22 

Braceless platform is carried out under different environmental conditions, and the data of 23 
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2 

 

platform motion response, wave elevation, and mooring force are selected as input variables. 24 

Then the training and test groups are established after post-processing data. Subsequently, a 25 

Single-Input LSTM (SI-LSTM) model and a Multi-Input LSTM (MI-LSTM) model are 26 

established to learn the input data. After comparing the overall accuracy of the results, it is 27 

found that the additional mooring force and wave elevation positively affects the platform 28 

response prediction results. From the aspects of discreteness and overall accuracy, it is verified 29 

that the established MI-LSTM model is also applicable, considering the influence of second-30 

order hydrodynamics. Lastly, compared with the prediction results obtained by the multi-input 31 

one-dimensional convolutional neural network (MI1D-CNN), the advantages of the two 32 

different models are expounded from the perspectives of training time and accuracy, which 33 

provides ideas for the optimization of the FOWT motion response prediction model. This study 34 

sheds insights on the short-term motion response forecast and platform positioning of a FOWT. 35 

Short-term forecasts of a FOWT can be achieved under various sea conditions by combining 36 

the global positioning system. 37 

Keywords: Floating offshore wind turbine; deep learning; response prediction; multi-input 38 

LSTM model; second-order hydrodynamic  39 

1. Introduction 40 

With the rapid development of the global economy, energy has become a critical factor in 41 

determining social and economic development. To meet the Net Zero target by utilizing 42 

sustainable energy, the vigorous growth of renewable energy has become an essential part of 43 

the development strategy worldwide. Due to its high energy conversion ability, offshore wind 44 

power has been gradually installed in various countries recently. Different foundations of 45 

floating offshore wind turbines have been proposed, including spar, tension leg platform (TLP) 46 

shape, semi-submersible, and barge [1]-[3]. Substantial research has been carried out in terms 47 

of hydrodynamics, mooring systems, stability, performance, and survivability of a FOWT [4]-48 
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[9]. 49 

Compared with the onshore wind turbine structure, a FOWT encounters a more complex 50 

ocean environment. The motion response of a FOWT occurs in six degrees of freedom (6DOF) 51 

and leads to significant challenges in design and assessment [10]. Therefore, it is of great 52 

significance to propose an accurate prediction method for the motion response of the FOWT to 53 

guide the design and assess structural safety. In the deep learning model, motion response 54 

prediction is generally based on the historical data of motion response and many other results 55 

from numerical and experimental measurements. In general, deep learning technology is 56 

applied to predict the motion response of structures in the next few seconds [11]. According to 57 

the length of the forecast time, motion response prediction can be categorized as short-term and 58 

safe-period motion prediction. Short-term prediction plays a vital role in improving dynamic 59 

positioning control performance, and it provides early warning in extreme sea conditions to 60 

reduce platform damage to a certain extent. A short-term forecast's prediction advanced time 61 

(PAT) is generally a few seconds, and it requires high forecast accuracy [12]. 62 

In recent years, the application of deep learning technology in offshore structures has 63 

gradually expanded. The research is mainly carried out by the convolutional neural network 64 

(CNN) and the recurrent neural network (RNN) methods [13]-[21]. Wang et al. [14] proposed 65 

the Low-frequency adds wave-frequency responses (LAWR) method to predict the mooring 66 

line tension of a semi-submersible platform. Combined with the LSTM method, accurate results 67 

are obtained to predict mooring line tension under different cases. Pena et al. [18] proposed the 68 

Wave-Generative Adversarial Network (Wave-GAN) technology, combined with CNN 69 

convolutional neural network and CFD method, to predict the load of nonlinear waves on fixed 70 

structural columns. Pena et al. [18] concluded the maximum error between the Wave-GAN 71 

predicted value and CFD simulated value of 1.5%-2% by adjusting several parameters, and the 72 

mean absolute error (MAE) of the test group is about 0.014. Lian et al. [19] constructed the 73 
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digital twin of mesh clothing and established the deep neural network (DNN) to predict whether 74 

the mesh clothing is damaged. The average accuracy of the final identification model is 94.3%. 75 

Bjørni et al. [20] predicted the mooring line tension in the next 30 s by making use of the 76 

platform motion response in the first 60 s as input and constructed a three-layer deep neural 77 

network with bias term. It is concluded that the average error of anchor chain tension is 0.46% 78 

through cross-sectional comparisons. According to the combined prediction method of the 79 

Extreme Learning Machine (ELM), the Empirical Mode Decomposition (EMD), and LSTM 80 

neural network, Zhang et al. [21] proved that the combined prediction method presented higher 81 

prediction accuracy than the single LSTM model and ELM-LSTM model. However, when 82 

considering the influence of environmental factors and mooring force, there is limited research 83 

on predicting the motion response of a FOWT. At the same time, in practice, it needs to assess 84 

the motion response of a FOWT under the influence of various complex factors and consider 85 

the impact of second-order hydrodynamic force. Moreover, the amount of research on the 86 

motion response prediction of a FOWT under the effect of the second-order hydrodynamic force 87 

is also limited. 88 

To investigate the short-term motion prediction of a FOWT, the MI-LSTM Neural 89 

Network model is used. This paper is organized as follows: Section 2 introduces the basic 90 

principles of the RNN. The architecture and differences between the established SI-LSTM 91 

model and the MI-LSTM model are explained in detail. The hyperparameters of the model and 92 

the selection of the training and test groups are also given in this section. Then, in Section 3, 93 

the structure size of the 5 MW Braceless platform model is shown. A detailed comparison is 94 

made between the prediction results of the SI-LSTM and MI-LSTM models under different 95 

environmental conditions in Section 4. This proves the positive excitation of the increased input 96 

factor numbers on the prediction results and illustrates the advantages and benefits of the MI-97 

LSTM model. In Section 5, the applicability of the proposed model is demonstrated when the 98 
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second-order hydrodynamic force is considered. Given that there are few comparisons between 99 

the RNN model and CNN model regarding time domain problems, in Section 6, by comparing 100 

the prediction results of the proposed model with the multi-input one-dimensional 101 

convolutional neural network (MI1D-CNN) model, the advantages of the two models are 102 

illustrated from the perspectives of overall accuracy and training time. Finally, the conclusions 103 

and recommendations are made for the future optimization of the platform response prediction 104 

model. 105 

2. Long-Short Term Memory (LSTM) Neural Network  106 

2.1. Recurrent Neural Network (RNN) 107 

Recurrent neural network (RNN) is gradually emerging in the interdisciplinary field as a 108 

typical representative of deep learning technology. RNN takes time series data as input and 109 

performs recursion in the evolution direction of the sequence, where all nodes (cyclic units) are 110 

linked in a chain [22]. RNN has memorization, parameter sharing, and turning completeness 111 

[23]-[25], so it has clear advantages in learning the nonlinear features in sequences. RNNs are 112 

widely used in natural language processing, such as speech recognition, language modeling, 113 

and time series prediction. RNN performs outstandingly in solving scheduling problems, and 114 

motion response prediction is the typical time domain problem. Therefore, in this paper, RNN 115 

is selected for model architecture.  116 

Since the motion of the platform at time t is affected by the motion at the previous time 117 

𝑡 − 1, meanwhile, the motion at current time t will also have an impact at forward time 𝑡 + 1, 118 

platform motion response is a continuous process with time dependence. Considering this 119 

characteristic, the traditional deep neural network (DNN) cannot convey information precisely 120 

in the time sequence, but the RNN is developed to overcome this problem. Training input data 121 

from a FOWT system to predict the motion response in the next few seconds can be viewed as 122 

an adaptive function mapping. The input is the previous time series information of different 123 
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input factors, and the output is the motion response in the future. Hence, the trained deep 124 

learning model can achieve prediction in a short time. 125 

The timeline expansion of the RNN is shown in Figure 1, where 𝑥 is the network input 126 

layer, 𝑠 is the network node hiding layer, and 𝑜 is the network node output layer. After the 127 

network receives the input 𝑥𝑡 at time 𝑡, the value of the hidden layer is 𝑠𝑡 and the output 128 

value is 𝑜𝑡 . The value of 𝑠𝑡  depends not only on 𝑥𝑡 , but also on 𝑠𝑡−1 . In other words, 𝑠 129 

inherits the information from each node. 130 

 131 

Figure 1. An unfolded RNN network 132 

The calculation method of the RNN network is shown in Equations 1-2: 133 

𝑜𝑡 = 𝒈(𝐕 ∙ 𝑠𝑡) (1) 134 

𝑠𝑡 = 𝒇(𝐔 ∙ 𝑥𝑡 + 𝐖 ∙ 𝑠𝑡−1) (2) 135 

where V is the weight matrix of the output layer, g is the activation function for the output layer, 136 

U is the weight matrix of the input layer x, and W is the weight matrix of the last value, which 137 

is the input of the present time, and f is the activation function for the hidden layer. Common 138 

activation functions, such as sigmoid, tanh, Rectified Linear Unit (ReLU), and linear activation 139 

function, can be selected according to data characteristics and experimental effects. The 140 

sigmoid activation function is generally selected for hidden layer activation function f, while 141 

the linear activation function is generally chosen for output layer activation function g. Equation 142 

1 is the calculation formula of the output layer. The output layer is fully connected, indicating 143 
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that every node in the output layer is connected to every node in the hidden layer. Equation 2 is 144 

the calculation formula of the hidden layer. 145 

2.2. Long-Short Term Memory (LSTM) Network 146 

LSTM is first proposed by Hochreiter and Schmidhuber [25]. Compared with traditional 147 

RNN, the LSTM network has improved the gradient explosion and gradient extinction. It has 148 

been one of the most popular RNN models and is widely applied in many fields, such as speech 149 

recognition, image description, and natural language processing. The internal structure of the 150 

LSTM node is shown in Figure 2 [27]. 151 

 152 

Figure 2. LSTM node unit internal structure 153 

At time 𝑡, the LSTM network has three inputs: current time input value 𝑥𝑡, LSTM output 154 

value ℎ𝑡−1 at the last time, and the unit state 𝑐𝑡−1 at the previous time. The output of LSTM 155 

has two parts: the output value of LSTM at the current time ℎ𝑡, and the unit state at the current 156 

time 𝑐𝑡. 𝑥, ℎ, and 𝑐 are vectors. In addition, LSTM uses the concept of a Gate to control the 157 

state of the unit [27]. Gate is a full connection layer that controls information transmission 158 

between input and output. Its input is a vector of time series information, and its output is a 159 

vector of real numbers between 0 and 1. The gate can be expressed as: 160 

𝐺(𝑥) = 𝛔(𝑾 ∙ 𝒙 + 𝐛) (3) 161 
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where 𝑾 is the weight matrix of the gate, 𝐛 is the bias term, and 𝛔 is the generally sigmoid 162 

activation function. 163 

The output vector of the gate is multiplied by the element and the vector is controlled to 164 

achieve the gate effect. The gated output is a vector of real numbers between 0 and 1. When the 165 

gated output is 0, any vectors multiplied by the output will get the 0 vectors, indicating that no 166 

information can pass through. When the gated output is 1, no changes are applied by multiplying, 167 

indicating that any information can pass through. Because 𝛔 has a range of (0,1), the gate is 168 

an intermediate state. 169 

LSTM relies on two gates to control the content of the cell state: (1) one is the forget gate 170 

that determines the amount of the cell state 𝑐𝑡−1 at the last moment. 𝑐𝑡−1 is used to retain the 171 

current moment 𝑐𝑡; (2) one is the input gate that determines the amount of the current network 172 

input 𝑥𝑡, which is saved to the unit state 𝑐𝑡. Meanwhile, LSTM uses an output gate to control 173 

the amount of unit state 𝑐𝑡 that is generated from the current output value ℎ𝑡. The governing 174 

equations of each gate are given as follows: 175 

𝑓𝑡 =  𝛔(𝐖𝐟 ∙ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝐛𝐟) (4) 176 

𝑖𝑡 = 𝛔(𝐖𝐢 ∙ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝐛𝐢) (5) 177 

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑐 ⋅ 𝑡𝑎𝑛ℎ(𝐖𝐂 ⋅ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝐛𝐜) (6) 178 

𝑜𝑡 = 𝛔(𝐖𝐨 ∙ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝐛𝐨) (7) 179 

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝒄𝒕) (8) 180 

where 𝑓𝑡  is the forgetting gate equation, 𝐖𝐟  is the weight matrix of the forgetting gate, 181 

[ℎ𝑡−1,𝑥𝑡] is joining two vectors into a longer vector, 𝐛𝐟 is the biased term of the forgetting gate, 182 

𝑖𝑡 is the input gate equation, 𝐖𝐢 is the weight matrix of the input gate, 𝐛𝐢 is the offset term 183 

of the input gate, 𝑐𝑡 is the current moment element state equation, 𝑜𝑡 is the output gate control 184 

equation, ℎ𝑡 is the final output equation determined by the output gate and unit state. 185 

The unique Gate structure in the LSTM model effectively improves the phenomenon of 186 
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gradient explosion and gradient disappearance. the activation function of the gate structure in 187 

the LSTM model is the sigmoid function, and the Sigmoid function controls the value of the 188 

forgetting gate between 0 and 1. When the output of the gate is 1, the forgetting gate is saturated, 189 

at this time the long-range information gradient does not disappear, and the gradient can be well 190 

passed in the LSTM, largely mitigating the probability of gradient disappearance occurring; 191 

when the output of the gate is 0, at this time the model is blocking the gradient flow and 192 

forgetting the previous information, indicating that the information of the previous moment 193 

does not affect on the current moment. Through the gate structure and sigmoid activation 194 

function, the LSTM model can effectively solve the gradient disappearance and gradient 195 

explosion problems. 196 

Existing LSTM network prediction modes mainly fall into the following four types [28]: 197 

point-to-point, point-to-sequence, sequence-to-point, and sequence-to-sequence, as shown in 198 

Figure 3: 199 

 200 

Figure 3. LSTM network prediction modes 201 

The LSTM network in this paper is set up by using sequence-to-point mode for a prediction 202 

model, which uses forecasting point response from previous time series after the selected data 203 

input mode is adopted in the form of the sliding window. Each window length has 200 time 204 

points and the 10 s surge motion. The sliding window form is shown in Figure 4, where the 205 

mapping relationship between the data input and output is presented when the forecast time is 206 

5 s. Therefore, the response at 𝑡 + 5 is predicted based on the response from t-10 to t. 207 
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 208 

Figure 4. Sliding windows for data input and output 209 

2.3. LSTM Model Structure 210 

The LSTM network model established in this paper has three hidden layers and one fully 211 

connected output layer, shown in Figure 5. The data sampling frequency is 20 Hz. The input 212 

time step of the LSTM network contains 200 time series points with a motion response of 10s. 213 

The batch size is set to 256 sample sets, which are also the input for training and updating 214 

internal parameters. The number of neurons is set to 200. These two parameters are 215 

hyperparameters and can be adjusted according to the performance of the actual test. 216 

Input layer: input time series with a window of 200 data points, representing the motion 217 

response of 10s. The input dimension of the single-input model is 1, and that of the multi-input 218 

model is 3. 219 

Hidden layer: The hidden layer has 200 nodes. 220 

Output layer: The output layer is dense, the activation function is linear, and the output 221 

result is the motion response at the target time.  222 
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 223 

Figure 5. LSTM network model structure and data transfer format 224 

The Adam algorithm is configured for the LSTM network [30]. Adam algorithm is an 225 

advanced Stochastic Gradient Descent (SGD) algorithm, which introduces an adaptive learning 226 

rate for each parameter. The adaptive learning method and the Momentum method are 227 

combined. The learning rate is dynamically adjusted by the first and second moment estimation 228 

of the gradient. The gradient descent process is relatively stable and suitable for most non-229 

convex optimization problems in large data sets and high-dimensional space. 230 

Simultaneously, the Dropout layer is added after the input layer and the hidden layer to 231 

prevent overfitting [31-[32], and the Dropout_1 and Dropout_2 are set to 0.2. Overfitting may 232 

occur due to a large number of unknown network parameters or training times. The principle 233 

of dropout is that during the neural network training, some neurons are randomly discarded and 234 

not used for training at this round to avoid overfitting and accelerate loss convergence. 235 

In this paper, the LSTM neural network is constructed, and the input data consists of three 236 

parts, including time series of previous motion response, mooring force, and wave elevation. 237 

And the current motion response is set as the output data. The process of using the LSTM neural 238 

network model to predict the motion response is shown in Figure 6. The process of predicting 239 
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motion response by LSTM neural network.  240 

 241 

 242 

Figure 6. The process of predicting motion response by LSTM neural network 243 

3.  Braceless Platform model 244 

The 5 MW Braceless model is established by SIMA, and the time domain response is 245 

obtained by numerical simulation. SIMA is developed for the analysis of flexible marine riser 246 

systems, but it is also suited for any slender structures, such as mooring lines, umbilicals, steel 247 

pipelines, and conventional risers. The data used in training in this paper came from the FOWT 248 

model of a 5 MW Braceless semi-submersible platform in the water depth of 100 m. The 249 

Braceless platform consists of one central column, three side columns, and three pontoons, 250 

shown in Figure 7.  251 
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     252 

Figure 7. Schematic of 5-MW Braceless platform 253 

Three side columns are evenly distributed around the central column at 120°. They are 254 

connected to the bottom of the central column by a floating buoy to form a Braceless semi-255 

submersible platform. The three-point mooring system is adopted, and the anchor chain is set 256 

at the bottom of the side column. 0° wave-wind misalignment is considered in the simulation. 257 

The main parameters of the Braceless platform are shown in Table 1. Parameters of the 5 MW 258 

Braceless Platform: 259 

Table 1. Parameters of the 5 MW Braceless Platform  260 

Parameter Value 

Central column diameter (m) 6.5 

Side column diameter (m) 6.5 

Buoy height (m) 6 

Buoy bottom width (m) 9 

Buoy short radius (m) 41 

Buoy long radius (m) 45.5 

Depth of the draft (m) 30 

Displacement (t) 10555 

Steel weight (t) 1804 
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Equivalent thickness (m) 0.03 

 261 

Based on the data given in Ref. [33], site 5 in Norway was selected as a representative site 262 

for the simulation. In the following cases, the water depth is 100 m. The average wind speed 263 

𝑉𝑡, effective wave height 𝐻𝑆, and spectrum peak period 𝑇𝑝 at the selected cabin height are 264 

listed. The JONSWAP spectrum is used to describe random ocean waves, and the JONSWAP 265 

spectrum is shown in Equations 9-1 to 9-3. The Kaimal wind speed spectrum is used to describe 266 

the offshore wind conditions. 267 

𝑆(𝑓) = 𝛼
𝐻𝑠

2

𝑇𝑝
4𝑓5 𝑒𝑥𝑝 [−

5

4
(𝑇𝑝𝑓)−4] 𝛾

𝑒𝑥𝑝[−
(𝑇𝑝𝑓−1)

2𝜎2 ]
               (9-1) 268 

where 𝑓 is the wave frequency, 𝛾 is the shape parameter, and 𝜎 and 𝛼 are shown below, 269 

𝜎 = {
0.09  𝑓 ≥ 𝑓𝑝

0.07 𝑓 < 𝑓𝑝 
                          (9-2) 270 

𝛼 =
0.0624

0.230+0.0336𝛾−0.185/(1.9+𝛾)
                      (9-3) 271 

 272 

Table 2. Environment matrix  273 

Case 𝑉𝑡 (m/s) 𝛾 𝐻𝑠 (m) 𝑇𝑝 (s) 

EC 1 9.8 3.3 2.9 9.98 

EC 2 14.8 3.3 4.5 11.81 

EC 3 16 3.3 5.3 12.81 

 274 

4. Single-input and Multi-input 275 

4.1. Data Partitioning and Error Measurement 276 

The sampling frequency of the Braceless platform simulation test is 20 Hz. The total 277 

sampling length of motion response (surge, pitch, and sway) is 2000 s. The collected time series 278 
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contains 40000 data points. In the training model, the first 32000 points of response data are 279 

the training groups and the last 8000 points of response data are the test groups. Three test cases 280 

(EC1, EC2, and EC3) are selected, and each test case contained 2000 s surge, pitch, and sway 281 

motion data. 282 

The training group data is used to train and obtain the neural network model. The 283 

relationship between training Epochs and Loss is observed through the Loss function. Then the 284 

test group data is imported into the trained neural network model to verify the accuracy and 285 

performance of the trained model. 286 

The Loss function adopted in this paper is the Mean Squared Error (MSE), which is the 287 

averaged squared difference between the predicted value and the measured value as shown in 288 

Equation 10: 289 

𝑀𝑆𝐸 =
𝛴(𝑦𝑡

′ − 𝑦𝑡)2

𝑛
(10) 290 

where 𝑦𝑡′ is the predicted value of the motion response at time 𝑡, 𝑦𝑡 is the measured value 291 

of the motion response at time 𝑡, and 𝑛 is the total number of predicted values 8000 in this 292 

study. 293 

4.2. Single-input Predicted Results 294 

Single-input LSTM (SI-LSTM) model is used to train the motion response data in the 295 

training group in terms of the heave, surge, sway, and pitch. The training input of the model is 296 

only based on the previous motions. The output of the model is compared and analyzed with 297 

the data of the test group. The predicted advance time is set as 2.5 s and 5 s respectively. The 298 

actual and predicted values are shown in Figures 8-10. 299 
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     300 

(a)                                 (b)   301 

        302 

                     (c)                                 (d) 303 

Figure 8. Simulated and predicted values of EC 1 at 2.5 s and 5 s： 304 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 305 

      306 

(a)                                      (b) 307 
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           308 

(c)                                      (d) 309 

Figure 9. Simulated and predicted values of EC 2 at 2.5 s and 5 s： 310 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 311 

     312 

(a)                                     (b) 313 

        314 

(c)                                    (d) 315 
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Figure 10. Simulated and predicted values of EC 3 at 2.5 s and 5 s: 316 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 317 

It can be seen from Figures 8-10 that when the previous motion response is used as the 318 

single input, the predicted value at PAT of 2.5 s is closer to the simulated value. Due to the large 319 

amplitude of motion in the surge, the predicted results in Figure 8(a) agree well with the 320 

simulation results, apart from the minor discrepancy at the peak of the surge in Figures 9-10(a). 321 

Due to the small amplitude in sway, the predicted results under the two PATs generally agree 322 

with simulated results compared to the agreement between predicted and simulated surge. 323 

Similarly, there is also a minor discrepancy at the peak. The amplitude of heave motion is the 324 

smallest among the three motions, but it contains higher frequency components. The predicted 325 

heave motion in three test cases in Figures 8-10 presents better agreement with simulated 326 

results at PAT of 2.5 s, but a minor discrepancy can be noted at the peak and trough at PAT of 5 327 

s. The peak value of pitch in Figures 8-10(d) is also large, but there is higher-order fluctuation 328 

at the peak and trough due to the nonlinear motion induced by wind and waves. Single-input 329 

LSTM model learned the nonlinear features from the training data group, so the predicted value 330 

agrees well with the simulated results. 331 

In summary, compared with the simulated values, the predicted values in all motions have 332 

very minor discrepancies at peak and trough, but a fairly good agreement has been presented. 333 

The discrepancy at peak and trough can be attributed to the limited input factors to train the 334 

neural network. To unravel this, the multi-input network structure is investigated in detail in 335 

Section 4.3. 336 

4.3. Muti-input Predicted Results 337 

A multi-input model is trained to explore the effects of multiple factors as input conditions 338 

on the predicted results. Unlike the single-input model, the training input of the multi-input 339 

LSTM (MI-LSTM) model is based on the previous motions, mooring forces, and wave 340 
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elevation. The output of the model is compared and analyzed with the data of the test group. 341 

The predicted advance time is set as 2.5 s and 5 s respectively. The test and predicted results 342 

are shown in Figures 11-13: 343 

     344 

(a)                                   (b) 345 

     346 

(c)                                   (d) 347 

Figure 11. Simulated and predicted values of EC 1 at 2.5 s and 5 s： 348 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 349 
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     350 

(a)                                     (b) 351 

      352 

(c)                                     (d) 353 

Figure 12. Simulated and predicted values of EC 2 at 2.5 s and 5 s： 354 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 355 

      356 

(a)                                     (b) 357 
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        358 

(c)                                     (d) 359 

Figure 13. Simulated and predicted values of EC 3 at 2.5 s and 5 s： 360 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 361 

When the model input factors become multiple, i.e., adding mooring force and wave 362 

elevation, a better agreement between the predicted value and the simulated value is obtained 363 

compared with the single input case. Improved agreement of surge prediction at peak in Figure 364 

12(a) is presented compared to Figure 9(a). But in the case of multiple inputs, the fluctuations 365 

can also be noticed from the predicted surge. Sway and heave are not significantly improved 366 

due to their less sensitivity to mooring force. With the additional input factors, the accuracy of 367 

the predicted pitch has been improved significantly as pitch motion is sensitive to mooring 368 

forces, comparing Figure 9(d) and 12(d). It can be found that in the period 1900s-2000s, the 369 

discrepancy of the single-input model can be found, while the multi-input model presented 370 

better performance with additional input data sets. Similar to the pitch, better agreements have 371 

been achieved for the predicted surge. 372 

In a word, after adding the additional input factors to train the multi-input model, better 373 

performance in predicting the FOWT motion response has been demonstrated. However, the 374 

saw-tooth effect of the MI-LSTM model is more obvious, caused by the deep learning of the 375 

additional input information. The saw tooth effect is further analyzed after analyzing the 376 

scatterplot of discrete situations in Section 4.4. 377 
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4.4 Error Analysis 378 

In this study, the number of Epochs is set to 50 rounds. It is shown in Figure 14 the trend 379 

of the Loss function changing with the Epochs is generated and recorded during the training. It 380 

can be noted that with the increment of Epochs, Loss decreases rapidly in the beginning. Then 381 

after the rapid decrease stage, Loss finally tended to be stable. After the Epochs reaches 50, 382 

Loss remains unchanged. It can be concluded that the network training effect will not be further 383 

improved after 50 rounds and a neural network model with good accuracy is generated. The 384 

model has completed learning about the relationship between the input and output data. 385 

     386 

(a)                                    (b) 387 

     388 

(c)                                 (d) 389 

Figure 14. The curve of Loss affected by Epochs for different directions:  390 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch  391 

At the same time, the Loss of the MI-LSTM model is found to be lower than that of the 392 
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SI-LSTM model both in 2.5 s and 5 s. It can be considered that the learning ability of the model 393 

is improved after additional factors are added to the training. The predicted results are shown 394 

in sections 4.2 and 4.3 and compared with simulation data. It is difficult to observe their overall 395 

discretization, so a scatter plot of the prediction results in different input modes is plotted in 396 

this section, as shown in Figure 15. 397 

According to Figure 15, comparing the SI-LSTM model with the MI-LSTM model under 398 

the different cases, it can be found that after adding two additional input factors, the discrete 399 

situation of the MI-LSTM model prediction results is significantly smaller than that of the SI-400 

LSTM model prediction results. This phenomenon is more evident in the sway and heave of 401 

EC1, surge and sway of EC2, and sway and heave of EC3. The use of the MI-LSTM model is 402 

beneficial in reducing the discrete nature of predicted results. 403 
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 404 

Figure 15. The discrete scatter plot of prediction results with two models  405 

 406 

Comparing the prediction results of the SI-LSTM model with the MI-LSTM model on the 407 

same image, the comparison results for EC 1 are shown in Figure 16. From the figure, one can 408 

find that the prediction results of both SI-LSTM model and MI-LSTM model have high 409 

accuracy. For the surge motion, both models have the best results and have a good fit in both 410 
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peak and trough positions as well. For the sway motion, the MI-LSTM model predicts a certain 411 

absolute value bias at the response extremes, while the SI-LSTM model predicts a certain 412 

absolute value bias at the response extremes. For the heave motion, since the SI-LSTM model 413 

does not take into account the effect of wave elevation, and the response in the heave direction 414 

happens to be most affected by the wave, the accuracy of the SI-LSTM model in this direction 415 

is not as good as that of the MI-LSTM model. For the pitch motion, the results of both models 416 

are similar to those of the surge direction, but the predicted values are smaller at the peak, which 417 

is more obvious in the SI-LSTM model. 418 

  419 

(a)                                     (b) 420 

  421 

(c)                                     (d) 422 

Figure 16. Comparison of 1st-order and 2nd-order hydrodynamic prediction results: 423 

(a) Surge; (b) Sway; (c)Heave; (d) Pitch 424 

 425 
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In addition to the impact of discrete situations, the overall accuracy of the MI-LSTM 426 

model and the single-input model is also important. The individual statistics for predicting the 427 

final result of the FOWT motion response using both models are listed in Table 3. The overall 428 

accuracy of both models is presented in Figure 17. 429 

Based on Table 3 and Figure 16, the results at PAT of 2.5 s present better agreements than 430 

at PAT of 5 s. After adopting the MI-LSTM model, the accuracy of the prediction results in 431 

pitch and heave has been significantly improved. With the increment of PAT, the period between 432 

input and output becomes larger, so the time correlation between the two decreases and the 433 

uncertainty increases. The upper limit of learning ability decreases as the correlation between 434 

input and output information decreases. Therefore, the accuracy at PAT of 5 s is lower than that 435 

of 2.5 s. 436 

Table 3. The accuracy of each statistic under the different input model 437 

Mode Statistics 
EC 1 EC 2 EC 3 

Heave Pitch Surge Sway Heave Pitch Surge Sway Heave Pitch Surge Sway 

Single-

input 

2.5 s 

Max 73.2% 95.9% 99.9% 96.7% 96.2% 92.6% 95.3% 81.2% 84.3% 98.8% 97.8% 81.0% 

Min 92.3% 99.0% 96.2% 96.2% 93.4% 92.4% 93.0% 97.1% 96.8% 96.2% 92.4% 76.9% 

Average 99.7% 97.2% 99.8% 88.6% 95.6% 92.4% 98.5% 90.6% 96.9% 93.3% 96.5% 94.9% 

STD 87.5% 93.7% 94.3% 94.0% 97.7% 98.9% 83.7% 90.6% 96.0% 92.1% 93.5% 97.7% 

Overall 88.2% 96.4% 97.6% 93.9% 95.7% 94.1% 92.6% 89.9% 93.5% 95.1% 95.0% 87.6% 

Multi-

input 

2.5 s 

Max 73.2% 98.0% 97.6% 97.1% 97.4% 96.1% 96.8% 92.5% 95.8% 98.5% 99.4% 82.9% 

Min 96.0% 97.8% 95.8% 89.6% 93.3% 93.9% 98.2% 98.7% 98.3% 93.5% 96.6% 91.9% 

Average 97.5% 98.2% 99.4% 88.6% 96.0% 98.5% 98.9% 96.6% 99.2% 98.2% 99.0% 92.4% 

STD 97.3% 95.3% 96.8% 97.9% 97.8% 98.8% 95.6% 95.5% 96.6% 98.1% 94.9% 96.6% 

Overall 91.0% 97.3% 97.4% 93.3% 96.1% 96.8% 97.4% 95.8% 97.5% 97.1% 97.5% 91.0% 

Single-

input 

5 s 

Max 73.2% 92.5% 98.7% 83.2% 82.9% 95.9% 86.1% 81.1% 69.7% 88.9% 97.4% 67.9% 

Min 89.3% 93.0% 96.7% 92.2% 91.4% 80.1% 74.9% 94.4% 90.8% 89.5% 67.2% 74.3% 

Average 98.9% 97.7% 97.8% 75.0% 93.0% 89.0% 89.8% 91.7% 92.3% 93.5% 98.3% 92.9% 

STD 75.6% 81.5% 88.3% 82.6% 93.3% 89.8% 76.2% 78.7% 90.4% 87.3% 85.3% 70.2% 

Overall 84.3% 91.2% 95.4% 83.3% 90.1% 88.7% 81.8% 86.5% 85.8% 89.8% 87.1% 76.3% 

Multi-

input 

5 s 

Max 73.2% 93.3% 98.1% 76.8% 82.5% 98.2% 87.8% 80.8% 85.3% 89.1% 97.4% 82.1% 

Min 91.3% 95.1% 98.5% 98.4% 96.0% 76.5% 85.7% 94.4% 91.0% 94.3% 78.4% 89.0% 

Average 97.7% 95.5% 98.6% 83.7% 96.9% 89.8% 88.4% 91.9% 98.0% 97.5% 96.4% 89.3% 

STD 89.7% 86.2% 91.3% 85.3% 97.0% 98.0% 90.8% 81.0% 88.8% 91.6% 87.2% 93.2% 

Overall 88.0% 92.5% 96.7% 86.1% 93.1% 90.6% 88.2% 87.0% 90.8% 93.1% 89.8% 88.4% 
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 438 

At the same time, the overall prediction result of the MI-LSTM model is better than the 439 

SI-LSTM model. The additional input factors increase the dimension of information, which 440 

enables the MI-LSTM model to explore more relationships between different input factors and 441 

the motion response of the target output. MI-LSTM model also adds more details to the final 442 

prediction results, improving the overall accuracy of the prediction results. In other words, there 443 

is a positive correlation between mooring force, wave elevation, and the motion response of the 444 

platform. 445 

        446 

(a)                                     (b) 447 

Figure 17. Overall accuracy under different PATs: (a) 2.5 s; (b) 5 s 448 

 449 

5. Second-order Hydrodynamic Effects 450 

5.1 Prediction results under the influence of second-order hydrodynamic effects 451 

The influence of second-order hydrodynamics is significant for the load prediction of a 452 

FOWT [34]. EC1-EC3 are again simulated considering second-order hydrodynamic effects, the 453 

simulation data is imported into the MI-LSTM model for training. The prediction results under 454 

the second-order hydrodynamic force are obtained after the training, shown in Figures 18-20. 455 
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   456 

(a)                                     (b) 457 

    458 

(c)                                      (d) 459 

Figure 18. Simulated and predicted values of EC 1 at 2.5 s and 5 s： 460 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 461 

   462 

(a)                                    (b) 463 
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    464 

(c)                                     (d) 465 

Figure 19. Simulated and predicted values of EC 2 at 2.5 s and 5 s： 466 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 467 

    468 

(a)                                    (b)    469 

 470 

     471 
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(c)                                     (d) 472 

Figure 20. Simulated and predicted values of EC 3 at 2.5 s and 5 s： 473 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 474 

Figures 18-20 show that the peak fitting in all directions at 5 s is weaker than that of 2.5 475 

s, similar to the case when the platform model is affected by first-order hydrodynamic forces. 476 

Compared with the first-order hydrodynamic influence, the prediction results under the second-477 

order hydrodynamics show smaller fluctuations in both surge and pitch. On the other hand, the 478 

predicted value of sway is smooth, and there is no slight fluctuation. The error of prediction 479 

results in heave mainly occurs in peaks and troughs, but it is not obvious. The statistical 480 

accuracy in each direction, as well as the overall accuracy, is further analyzed in section 5.2. 481 

5.2. Error Analysis 482 

To compare the short-term prediction effect of the MI-LSTM model in both first-order 483 

hydrodynamics and second-order hydrodynamics cases, the results of the PAT of 2.5 s under 484 

EC 1 are selected for comparison, shown in Figure 21. 485 

  486 

(a)                                  (b) 487 
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  489 

(c)                                    (d) 490 

Figure 21. Comparison of 1st-order and 2nd-order hydrodynamic prediction results: 491 

(a) Surge; (b) Sway; (c)Heave; (d) Pitch 492 

According to Figure 21, it is observed that the motion response exhibits a stronger 493 

nonlinear characteristic under the influence of second-order hydrodynamic forces. This 494 

phenomenon is particularly evident in the surge, pitch, and sway directions, where more 495 

nonlinear fluctuations appear at the extremes of the kinematic response in all three directions. 496 

The effect of second-order hydrodynamic forces did not have much influence in the heave 497 

direction. 498 

At the same time, in the surge, sway and pitch directions, there are significant deviations 499 

in the predicted values at the extremes of the motion response for the first-order hydrodynamics 500 

case. While in the second-order hydrodynamics case, the MI-LSTM model has better prediction 501 

at both peak and trough values. In the heave direction, the motion response of the platform in 502 

the two cases does not differ much and does not have the nonlinear characteristics in the other 503 

three directions. Therefore, the prediction effect of the MI-LSTM model in the heave direction 504 

under the influence of second-order hydrodynamics is not significantly improved. 505 

The response spectrum analysis of the platform under the influence of second-order 506 

hydrodynamics are supplemented and chose EC 1 to plot the power spectrum density (PSD), as 507 
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shown in Figure 22. There is a common phenomenon in all four directions, the predicted value 508 

of 2.5s is better than 5s in the performance of PSD, and both of them fit better with the PSD 509 

results of simulation values. The difference between the predicted and simulated values is 510 

mainly in the low-frequency peak of the response spectrum, while the PSD performance of the 511 

model predictions is better at the off-peak. 512 

  513 
(a)                                    (b) 514 

  515 

(c)                                     (d) 516 

Figure 22. Power spectral density of motion response in different directions 517 

(a) Surge; (b) Sway; (c)Heave; (d) Pitch 518 

 519 

Under the influence of second-order hydrodynamics, this section also analyzes the 520 

individual statistics of the prediction results and calculates the overall accuracy of each 521 

direction of motion response, shown in Table 4. 522 

Table 4. The accuracy of each statistic under the influence of second-order hydrodynamics 523 
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Mode Statistics 
EC 1 EC 2 EC 3 

Heave Pitch Surge Sway Heave Pitch Surge Sway Heave Pitch Surge Sway 

Multi-

input 

2.5 s 

Max 96.5% 99.4% 99.6% 98.7% 92.6% 96.3% 99.5% 92.2% 98.0% 98.9% 98.8% 91.8% 

Min 88.5% 99.2% 98.5% 99.1% 90.9% 90.7% 99.2% 97.0% 90.2% 96.2% 99.1% 94.9% 

Average 98.8% 98.8% 98.9% 96.5% 98.0% 97.6% 99.7% 99.0% 99.9% 99.0% 98.9% 99.2% 

STD 89.9% 96.2% 96.1% 98.6% 95.8% 96.5% 99.6% 94.6% 98.6% 99.2% 96.7% 92.8% 

Overall 93.4% 98.4% 98.3% 98.2% 94.3% 95.3% 99.5% 95.7% 96.7% 98.3% 98.4% 94.7% 

Multi-

input 

5 s 

Max 87.0% 99.5% 97.6% 71.0% 97.1% 97.5% 96.6% 63.4% 94.2% 97.2% 97.8% 77.1% 

Min 94.3% 95.5% 96.5% 97.5% 89.5% 82.5% 97.4% 97.0% 94.3% 93.4% 94.4% 94.9% 

Average 98.6% 98.1% 97.3% 80.7% 94.6% 96.5% 99.3% 98.2% 94.5% 98.8% 99.6% 99.0% 

STD 87.9% 92.3% 91.4% 98.1% 93.1% 92.5% 90.9% 80.4% 92.6% 98.0% 91.3% 84.1% 

Overall 92.0% 96.3% 95.7% 86.8% 93.6% 92.3% 96.0% 84.8% 93.9% 96.9% 95.8% 88.8% 

 524 

According to the results given in Table 4, it can be seen that the accuracy of the predicted 525 

results in all directions under the influence of second-order hydrodynamics is still at a high 526 

level, overall accuracy exceeds 90% at PAT of 2.5 s and 85% at PAT of 5 s. This phenomenon 527 

verifies the conclusions of Section 4 and confirms that an increase in PAT leads to a decrease 528 

in prediction accuracy.  529 

The overall accuracy of the 4 degrees of freedom directions calculated from Table 4 is 530 

shown in Figure 23. At PAT of 2.5 s, the difference in prediction accuracy between the second-531 

order hydrodynamics and the first-order hydrodynamics is more obvious in surge and sway. At 532 

PAT of 5 s, in the direction of surge, heave, and pitch, the prediction accuracy in the second-533 

order hydrodynamics case is about 3% higher than that in the first-order hydrodynamics. 534 

By comparing with the results in the first-order hydrodynamics in Section 4, it can be 535 

found that the MI-LSTM model in the second-order hydrodynamics case not only has a good 536 

ability to learn multi-factor relationships and platform response prediction but also has a higher 537 

prediction accuracy than the first-order hydrodynamics case. 538 
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 539 

(a)                               (b) 540 

Figure 23. Overall accuracy under different PATs: (a) 2.5 s; (b) 5 s 541 

 542 

6. Comparison with the MI1D-CNN model  543 

6.1 Predicted results with MI1D-CNN model 544 

Currently, the mainstream deep learning methods mainly include the CNN method and the 545 

RNN method, and the MI-LSTM model established in Section 4 belongs to the RNN method. 546 

CNN methods are mostly used in image recognition and text recognition. As a representative 547 

method to deal with time series problems in CNN, a one-dimensional convolutional neural 548 

network (1D-CNN) has a certain effect on short-term prediction by adding a pooling layer. 549 

 In this section, a multi-input one-dimensional convolutional neural network (MI1D-CNN) 550 

is built to compare the CNN method with the LSTM method for the motion response prediction 551 

problem, using the same training data as in Section 4. The training of the MI1D-CNN model is 552 

completed, and the results obtained from the multi-input LSTM model are compared in Section 553 

6.2 in terms of training time and overall accuracy. The prediction results obtained by the MI1D-554 

CNN model are shown in Figures 24-26. 555 
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    556 

(a)                                    (b) 557 

    558 

(c)                                   (d) 559 

Figure 24. Simulated and predicted values of EC 1 at 2.5 s and 5 s： 560 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 561 

   562 

(a)                                   (b) 563 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

36 

 

    564 

(c)                                    (d) 565 

Figure 25. Simulated and predicted values of EC 2 at 2.5 s and 5 s： 566 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 567 

    568 

(a)                                   (b) 569 

    570 

(c)                                    (d) 571 
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Figure 26. Simulated and predicted values of EC 3 at 2.5 s and 5 s： 572 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 573 

According to Figures 24-26, and compared with Figures 11-13 in Section 4.3, it can be 574 

found that the motion response predicted by the MI1D-CNN model produces a large number of 575 

serrations in surge and pitch of each environmental condition, especially at PAT of 2.5 s. At the 576 

same time, the prediction result at PAT of 5 s in sway does not fit well with the simulation 577 

results. To further compare the results of the MI-LSTM model with the MI1D-CNN model, it 578 

is further explained from the aspects of training time and overall accuracy in Section 6.2. 579 

6.2 Comparison with Multi-input LSTM Model 580 

By counting the Loss values during the training of the MI1D-CNN model, we show the 581 

decrease of the model training Loss for EC 1, shown in Figure 27. One can observe that, unlike 582 

the change process of the MI-LSTM model's Loss value, the oscillation phase of the MI1D-583 

CNN model's Loss value is not obvious in the decreasing process. the MI1D-CNN model's Loss 584 

value stops changing when the number of training rounds reaches 50 rounds, which indicates 585 

that the model training has been completed and the performance is satisfactory. To further 586 

observe the imitative effect between the predicted values obtained by the two models and the 587 

simulated values, EC1 is selected and the results are summarized as shown in Figure 28. 588 
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    591 

(c)                                      (d) 592 

Figure 27. The curve of Loss affected by Epochs for different directions:  593 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 594 

 595 
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Figure 28. The results of the MI1D-CNN model and the MI-LSTM model are compared: 600 

(a) Surge; (b) Sway; (c) Heave; (d) Pitch 601 

According to Figure 28, from the overall imitative effect of the time series curve, the 602 

prediction results of both models fit well with the simulation results at PAT of 2.5 s. However, 603 

at PAT of 5 s, the result of the MI1D-CNN model is slightly inferior to the MI-LSTM model 604 

result, and when the PAT is at 5 s, the predicted value of the former has a large fluctuation. This 605 

volatility does not exist in the simulation value, particularly in Figures 28(a) and (d). The time 606 

series of the platform response has a certain smoothness in sway, so both models’ imitative 607 

effects are good. While the time series of the platform response itself is more volatile in heave, 608 

the imitative effects of the peak are not as good as in other directions. 609 

To find out the difference between the MI1D-CNN model and the MI-LSTM model, the 610 

overall accuracy of the MI1D-CNN model is calculated by combining each operating condition. 611 

Then compare the overall accuracy of the MI1D-CNN model with the MI-LSTM model 612 

proposed in Section 4 and the result is shown in Figure 29. 613 

  614 

(a)                                 (b) 615 

Figure 29. Comparison of the overall accuracy of different models in each direction: 616 

(a) 2.5 s; (b) 5s 617 

According to Figure 29, it can be found that there is no significant difference between the 618 

results of the two models when PAT is at 2.5 s, the overall effect of the MI-LSTM model is 619 
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slightly better than the MI1D-CNN model, and the accuracy of the former is 1%-2% higher 620 

than the latter in all directions. But at PAT of 5 s, the situation is very different, the MI-LSTM 621 

model performs much better than the MI1D-CNN model, and the accuracy of the former is 622 

about 5% higher than the latter in all directions.  623 

It can be seen that when the corresponding period of the prediction platform becomes 624 

longer, the traditional CNN model is not satisfactory, while the MI-LSTM model proposed in 625 

this paper performs well. Since 1D-CNN only performs convolution operations on time series 626 

information within the length of a convolution, heritability in time series information is only 627 

reflected in a single convolutional neuron. Therefore, when PAT is small, the effect on the 628 

MI1D-CNN model and the MI-LSTM model is insignificant. However, with the increase of 629 

PAT, the disadvantage of the MI1D-CNN model in processing temporal genetic information 630 

will become significant. 631 

In addition, the training time of the two models is also recorded, as shown in Table 5. 632 

According to Table 5, the training time of the MI1D-CNN model is much shorter than that of 633 

the MI-LSTM model, which is related to the learning and calculation method of the model itself. 634 

The training time of the MI1D-CNN model is short, but it sacrifices a part of the accuracy, and 635 

the training time of the MI-LSTM model is relatively long, but the accuracy is greatly improved. 636 

 637 

Table 5. Statistics on the training duration of the two models 638 

Modes PAT (s) Epochs Time (s) 

MI-LSTM 
2.5  50 912  

5  50 1053 

MI1D-CNN 
2.5  50 108 

5  50 157 

 639 

In summary, balancing training time and accuracy has always been an important issue in 640 

deep learning. If the goal is ultra-short-term forecasting of the FOWT motion response and the 641 
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accuracy requirement is relatively low, the MI1D-CNN model can be chosen. However, to 642 

increase the time span of motion response forecasting and maintain prediction accuracy, the 643 

MI-LSTM model is a better choice. 644 

7. Conclusion  645 

Based on the motion response data of the Braceless platform, the MI-LSTM prediction 646 

model is established by the RNN deep learning method and is trained for different degrees of 647 

freedom under different environmental conditions. The accuracy of prediction results under 648 

different PAT and input methods are determined and compared using statistics. Based on the 649 

analysis and discussions, the conclusion can be made as follows: 650 

(1)Taking the previous data of platform motion response, mooring force, and wave 651 

elevation as input, after 50 rounds of training with two LSTM models, the Loss no longer 652 

decreases, resulting in accurate prediction results. The Loss of the MI-LSTM model is slightly 653 

better than the SI-LSTM model. The MI-LSTM model more comprehensively learns the 654 

relationship between multiple factors and the target output. 655 

(2)Based on the established and trained LSTM neural network model, the prediction 656 

results of the model fit well with the simulated value. The prediction accuracy with PAT at 2.5 657 

s is slightly higher than the accuracy with PAT at 5 s and the overall performance of the MI-658 

LSTM model is better than the SI-LSTM model. The additional two factors can positively 659 

improve the accuracy of the final prediction result. 660 

(3) The established MI-LSTM model is applied to the situation where the platform is 661 

affected by second-order hydrodynamics, and it is found that the model has a better predictive 662 

effect on the response of the Braceless platform affected by second-order hydrodynamics. The 663 

MI-LSTM model has a better performance for the case where the nonlinearity phenomenon is 664 

more pronounced. 665 

(4) The MI-LSTM model established in this paper is compared with the traditional MI1D-666 
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CNN model, and the advantages and disadvantages of the two models are clarified from the 667 

aspects of training time and overall accuracy. When the PAT is small, the difference between 668 

the results of the two models is not significant, while when the PAT increases, the results 669 

obtained by the MI-LSTM model are better than those obtained by the MI1D-CNN model. 670 
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