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A B S T R A C T

The performance of existing lesion semantic segmentation models has shown a steady improvement with
the introduction of mechanisms like attention, skip connections, and deep supervision. However, these
advancements often come at the expense of computational requirements, necessitating powerful graphics
processing units with substantial video memory. Consequently, certain models may exhibit poor or non-
existent performance on more affordable edge devices, such as smartphones and other point-of-care devices.
To tackle this challenge, our paper introduces a lesion segmentation model with a low parameter count
and minimal operations. This model incorporates polar transformations to simplify images, facilitating faster
training and improved performance. We leverage the characteristics of polar images by directing the model’s
focus to areas most likely to contain segmentation information, achieved through the introduction of a
learning-efficient polar-based contrast attention (PCA). This design utilizes Hadamard products to implement
a lightweight attention mechanism without significantly increasing model parameters and complexities.
Furthermore, we present a novel skip cross-channel aggregation (SC2A) approach for sharing cross-channel
corrections, introducing Gaussian depthwise convolution to enhance nonlinearity. Extensive experiments on the
ISIC 2018 and Kvasir datasets demonstrate that our model surpasses state-of-the-art models while maintaining
only about 25K parameters. Additionally, our proposed model exhibits strong generalization to cross-domain
data, as confirmed through experiments on the PH2 dataset and CVC-Polyp dataset. In addition, we evaluate
the model’s performance in a mobile setting against other lightweight models. Notably, our proposed model
outperforms other advanced models in terms of IoU and Dice score, and running time.
1. Introduction

Skin cancer and its various types are responsible for thousands of
deaths every year with reported number of cases and deaths rising
yearly [1–3]. Systems built to automatically detect and diagnose the
disease need to be able to identify the area of interest before any further
processing can take place. This is where semantic segmentation comes
in, which is where a model goes through an image and labels all the
pixels.

Training a segmentation model requires substantial training anno-
tated data. This might not be possible especially in the field of medical
image processing when acquiring training images can be challenging.
Difficulties like experts individually annotating each image which is not
only labour intensive and an inefficient application of already sparse
medical human resources, and privacy concerns in utilizing patient
data [4–6]. This is where the notion of data augmentation comes in
where existing data are altered. This alteration can be in the form of
random angle rotations, resizes, and flipping [7,8]. Another form of
data augmentation is polar transformations.
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Polar transformation is a geometric conversion that takes a point
from a Cartesian coordinate system and maps it into a polar coordinate
system. In the case of an image, polar transformation involves reposi-
tioning each pixel in the Cartesian image according to its distance from
a central point and its angular orientation. Concerning data augmenta-
tion in the field of medical image segmentation, polar transformation
can offer distinct advantages when dealing with datasets that contain
images of a circular or radial nature [9,10]. This transformation method
can yield substantial benefits in tasks like polyp, lesion, and liver
segmentation. By applying polar transformation to medical images with
circular attributes, such as lesions, these circular images can become
much less complex as a polar transformation of a perfect circle is a
straight line in polar coordinates [10]. This transformation can facil-
itate the learning process for neural networks, potentially enhancing
their performance. Polar transformation expedites the training of mod-
els, allowing networks to converge more rapidly. This, in turn, can
reduce training time and lead to decreased computational complexity
and associated costs.
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The proliferation of artificial intelligence has brought many benefits
to the field of medicine, from decision support to health data processing
and medical image processing like semantic segmentation [11,12].
Artificial intelligence driven systems usually require bespoke hardware
like a graphics processing unit to run which takes them out of the
reach of edge devices like mobile phones. This makes the area of
edge computing ripe for exploration for the application of machine
learning in edge devices to improve both the well-being of patients
and healthcare practitioners. This is because models can be designed to
be lightweight enough to run on inexpensive point of care devices or
even smartphones. Some of the benefits of medical applications in edge
devices are improved access to healthcare, especially in parts of the
world where physicians are in short supply and cost savings [13,14].
Mobile devices also have applications in telemedicine where consulta-
tions, examinations, and follow ups can take place entirely online using
patients smartphones [15].

Lightweight CNNs have proven to form a basis for efficient and
accurate semantic segmentation tasks for medical images [16]. Mul-
tilayer perceptrons (MLPs) have been shown to successfully reduce
number of parameters and computation all while maintaining and
in some cases even beating established segmentation models [17].
Segmentation models can be deployed on modestly powered devices
if the reduction in computational requirements and parameter count
can be significant enough. In [18], they were able to reduce parameter
count and computational cost by utilizing convolutions with fewer
feature counts and incorporating Hadamard products as a mechanism
of achieving an attention like mechanism to improve the performance
of the model. In [19], they were able to show that channel shuffling has
the ability to reduce computational requirements without a significant
reduction in system accuracy.

In this paper, we propose an efficient low parameter count encoder–
decoder model that performs semantic segmentation on skin lesions.
We also propose a novel, fast, and lightweight attention mechanism to
improve semantic segmentation performance. The attention mechanism
divides an image into chunks and draws the attention of the model
to the chunk that contains the boundary information between the
background and foreground thereby improving segmentation perfor-
mance. The module is implemented with Hadamard products instead
of expensive convolutions and linear transformation operations, this
helps in reducing model parameter count and improving inference time.
The model also includes a lightweight feature shuffling mechanism
utilizing lightweight aggregation operations instead of convolutional
operation to improve information flow and further reduce computation
without a significant loss in segmentation performance. These contri-
butions results in a model weight file of about 100 kB (kilobytes).
The model produces a polar segmentation mask which goes through a
Cartesian transformation to get the final prediction segmentation mask.
In summary, we make the following contributions:

∙ We propose a new and novel low parameter count and low
computational load model that trains on Cartesian images that
go through a polar transformation to produce polar images.
The model produces polar masks that go through a Cartesian
transformation to generate the final prediction mask.

∙ We develop a lightweight learning efficient polar contrast atten-
tion block that divides an image into chunks and draws the at-
tention of the model to the chunk that contains the boundary in-
formation between the background and foreground thereby im-
proving segmentation performance. The module is implemented
with Hadamard products instead of expensive convolutional and
linear transformation which keeps parameter count low and
improves inference time. Moreover, to make feature extrac-
tion more efficient, we combine group normalization layer with

GELU to speed up training and increase non-linearity. c

2 
∙ To model cross-channel correlations and spatial correlations in
a computation-efficient manner, we propose a new skip cross-
channel aggregation leveraging aggregation operations instead
of expensive convolutions thereby reducing computational load
and increasing speed, where we share cross-channel correlations
in a skip-connection way along with new Gaussian depthwise
convolution.

∙ We carry out an in-depth evaluation of the model against other
state-of-the-art (SOTA) segmentation models, where our pro-
posed model outperforms other models meanwhile being the
most lightweight with regard to parameter count and low com-
putational requirements. Moreover, we carry out an extensive
ablation study to investigate the effects of each component of
the model.

∙ We also conduct a mobile case study to test the model perfor-
mance in point of care scenarios, where our proposed model
outperforms other SOTA lightweight models both in accuracy
and inference time.

. Related work

.1. Semantic segmentation

The encoder–decoder architecture is able to improve semantic seg-
entation performance even in the absence of a lot of training images,

s in [20]. They propose upconvolution operations on the decoder
hase of the network to recover information from the encoder in con-
unction with skip connections that transfer information across blocks
n the same level in the network. Attention-based networks can also
nhance the process of medial image segmentation, as in [21]. They
ere also to improve segmentation performance by propagating the

egmentation mask from the current epoch to subsequent epochs to
elp the network refine its output masks and direct its focus towards
elevant regions of the image.

Research by Zhang et al. [19] explores the application of channel
huffle in network design. They propose convolution units that combine
hannel shuffling and pointwise group convolution in an attempt to
educe model complexity. They were able to reduce complexity while
aintaining similar accuracy to other segmentation models. This serves

s our inspiration for designing the Skip Cross-channel Aggregation
lock where we improve information flow to improve segmentation
erformance while keeping model size and computational load low.

Depthwise separable convolutional blocks can improve the per-
ormance of U-Net style architectures. In [22], they incorporate a
epthwise separable convolution into a U-Net style architecture to
apture more information from the image at the head of the encoder.
hey also design a channel split attention block for capturing feature
aps at different scale to improve segmentation performance.

Transformers have self-attention properties allowing them to cap-
ure global context information for improving segmentation perfor-
ance [23]. In [23], they improve lesion segmentation performance

y capturing information across different shape and size variations
nd using that information in generating the final segmentation mask.
ttention mechanisms were also shown to improve segmentation per-

ormance in [24] where they introduce the dot product, or otherwise
nown as the Hadamard product, attention.

Combining multiple networks in a model can improve overall per-
ormance as shown in [25,26]. In [25], the first network extracts the
eneral area of interest and another network uses that information
o perform semantic segmentation. The second network in [27] uses
he output of the first network as attention information to help focus
n the relevant parts of the image in carotid artery segmentation
asks. Semantic segmentation models can also be employed to improve

lassification tasks as shown in [28,29].
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2.2. Lightweight semantic segmentation

Research by Valanarasu and Patel [17] explores employing at-
tention style mechanisms while keeping the model light in terms of
trainable parameters, they utilize feature tokenization and shifting
to achieve this and also employ MLPs in latent space because of
their simplicity as a way of reducing parameter count and computa-
tional requirements. This combination allows them to perform compet-
itively against other segmentation models while utilizing much fewer
parameters and operations.

In [18], they also utilize attention-based mechanisms and low pa-
rameter count networks to produce lightweight models that can run
on inexpensive devices. They argue that conventional attention-based
mechanisms are heavy parameter-wise and require high computational
resources because of their quadratic complexity nature. To combat this,
they propose using Hadamard products to implement similar attention
mechanisms in linear complexity. They also utilize a mechanism that
outputs a segmentation mask at each level of the network, and the
individual masks are concatenated at the output stage of the network
to produce the final segmentation mask. These optimizations produce a
model that performs competitively against other segmentation models
while drastically reducing parameter count and operations. Lightweight
attention mechanisms have also been employed in [30] where they
combine elements of CNNs and transformers in a lightweight seg-
mentation architecture. Dilation convolutions together with channel
splitting can reduce memory consumption as shown in [16,31]. Dilation
convolution is a construct that allows a smaller kernel size to have
similar receptive fields to larger kernel sizes. This allows the model to
see more while using less memory. Other techniques for lightweight
architectures can be found in [32] where they combine a larger kernel
with depthwise convolutions for a lightweight model.

Dilation convolutions together with channel splitting can reduce
memory consumption as shown in [16,31]. Dilation convolution is a
construct that allows a smaller kernel size to have similar receptive
fields to larger kernel sizes. This allows the model to see more while
using less memory. Depthwise convolutions can also reduce model size
as shown in [32] where they combine a larger kernel with depthwise
convolutions for a lightweight model.

Our model follows a U-Net encoder–decoder style architecture. We
also utilize feature shuffling mechanisms and attention-like mecha-
nisms using Hadamard products to improve segmentation performance
while reducing parameter count and computing load.

2.3. Polar transformation in machine learning

Incorporating polar transformations in machine learning applica-
tions has been shown to improve model performance [10]. The polar
transformations can be automatically performed by the system during
training as in [10], or the system can request users to select an origin
for the transformation on the image as in [33]. In [10], they apply
polar transformation on the input images and train the model with
polar images. The model produces polar outputs which the system then
converts back to Cartesian images. Their investigation shows the ability
of polar transformations to reduce dimensionalities of images and also
improve segmentation performance and learning efficiency by having
the model use fewer epochs to attain reasonable results. The ability
of polar transformations to simplify image data and improve training
efficiency has also been proposed in [34] where they found intro-
ducing the transformation yields significant performance improvement
in classification tasks. Similar conclusions were also drawn in [35–
37]. From [10] we see that polar transformations encode boundary
information between foreground and background classes of images in
the middle, this is the ideal area to have machine learning models draw
attention to. This serves as the inspiration for designing our Polar-based
Contrast Attention module.
3 
Polar transformations have applications outside of semantic seg-
mentation, they can also be integrated with classification models.
In [38], they feed feature maps through a 1 × 1 convolution block to
predict the polar origin of the image before transformation can take
place. Polar transformation also has application outside of classification
and segmentation, it can also help in data augmentation and object
detection. In [39], they utilize polar transformation to help a model
detect objects regardless of rotational position. And in [40], they aug-
ment the size of dataset by performing numerous polar transformations
on a single image using different polar origins. Polar transformations
can also work together with Cartesian images for training at the same
time. In [41], they improve semantic segmentation performance by
having a network with two encoders and a single decoder. One encoder
works with polar images while the other encoder works with Cartesian
images.

Our model makes use of polar transformations to prepare input
images because of their ability to improve training efficiency without a
significant increase to computational load and no effect on parameter
count.

3. Proposed model

Our model has a polar transformation phase prior to training, and
because the model trains with polar images, it produces a polar output.
Therefore, there is a Cartesian transformation phase after the model
output to produce the final prediction mask. In the training phase, we
introduce feature shuffling to reduce parameters and computational
load, and a polar optimization block to improve improving segmen-
tation performance by having the model focus on specific points of
interests as a result of the polar transformation. We provide the full
architecture and descriptions in Fig. 1.

3.1. Network architecture

The network is an encoder–decoder style architecture with twelve
blocks. Six blocks are convolutional blocks, and the other six blocks are
feature shuffle/Polar optimization blocks. There are also skip connec-
tions between the encoder branch and decoder branch to recover spatial
information that may be lost during down-convolutions. We employ
small features counts to reduce parameter count and model size, the
channel list for the whole network utilizing 3 × 3 convolutional blocks
is [8,16,24,32,48,64]. We utilize GELU as the activation function. Max-
pooling operations follow the convolution blocks on the encoder phase
while a bilinear interpolation operation follows the convolution blocks
on the decoder phase.

Utilizing a reduced feature count tends to reduce model perfor-
mance. To get back some lost performance without a substantial in-
crease to model size, we introduce the Polar Contrast Attention (PCA)
together with feature shuffling to improve segmentation performance
without a significant increase to computing load. The PCA block ex-
ploits the nature of polar images by focusing the model on the area of
the polar image most likely to contain segmentation information. For
polar lesion images, this region is usually in the middle of the image.
We take the idea of channel shuffling from [19] and introduce feature
shuffling, this is a mechanism to ensure feature information flow across
network levels without increasing parameter count or computational
load.

3.2. Learning efficient polar contrast attention

3.2.1. Polar transformation
Polar transformation is a geometric transformation that displays an

image around a polar origin. The two points in the polar plane are
radius and angle and they determine the point in relation to the polar
origin of the image. This is in contrast to Cartesian images that use
points (𝑥, 𝑦) on a Cartesian plane. Therefore, polar transformation takes
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Fig. 1. Overview of our proposed model for skin lesion segmentation. The system performs a polar transformation on the skin lesion image to produce a polar image. This polar
image goes through a convolutional layer, group normalization, and GELU activation function. The features are shuffled and model focus is drawn to middle third of the polar
image in the polar optimization block. For upconvolutions, the model utilizes bilinear interpolation after convolutional operations to produce a polar mask. The system performs
a Cartesian transformation on the polar mask to generate the final prediction.
each point of the Cartesian image and converts them to its equivalent
polar radius and angle. After calculating the polar origin, we can
calculate the polar coordinates (𝜌, 𝜃). We calculate 𝜌 in Eq. (1)

𝜌(𝑥, 𝑦) = 𝑤
√

(

𝑊
2.0

)2
+
(

𝐻
2.0

)2
⋅ |(𝑥 − �̄�, 𝑦 − �̄�)| (1)

where 𝑤 is the width of the image. |(𝑥 − �̄�, 𝑦 − �̄�)| is the magnitude of
(𝑥−�̄�, 𝑦−�̄�). �̄� and �̄� are the polar origin which is the centroid property of
the image. For second polar coordinate 𝜃, we can compute it in Eq. (2),

𝜃(𝑥, 𝑦) = 𝐻
2𝜋

⋅ 𝑎𝑡𝑎𝑛2(𝑥 − �̄�, 𝑦 − �̄�) ⋅ 180
𝜋

(2)

where 𝑎𝑡𝑎𝑛2 is the arctangent function and 𝐻 is the height of the
image. With the help of Eqs. (1) and (2), the polar transformed image
is derived as follows.

𝐼𝑝 = 𝑓 [𝜌(𝑥, 𝑦), 𝜃(𝑥, 𝑦)] (3)

where 𝑥 and 𝑦 are the Cartesian coordinators of an image. 𝑓 [⋅, ⋅] is the
transformation function to convert Cartesian image to polar image and
𝐼𝑝 is polar transformed image.

Lastly, we rotate the image 90◦ anticlockwise. After the polar
transformation, the polar image is ready to go through the network
for training. The model will, then, produce a polar mask that needs to
be converted back to its Cartesian form to produce the final prediction
mask. The Cartesian transformation involves rotating the polar mask
90◦ clockwise and carrying out the polar transformation to retrieve the
final Cartesian prediction mask.
4 
3.2.2. Training effective feature extractor
First, a convolution layer with the kernel size of 3 × 3 is performed

to learn the inductive biases.

𝐹𝑐 = 𝐶𝑜𝑛𝑣3(𝐼𝑝) (4)

where 𝐶𝑜𝑛𝑣3 is a 3 × 3 convolution operation, 𝐼𝑝 is the input polar-
based image, and 𝐹𝑐 is the feature map from convolution layer.

Then, we add a group normalization (GN) which has been shown
in [42] to reduce training time, and make it easier for deep networks
to converge. Given an image, 𝑖 = (𝑖𝑁 , 𝑖𝐶 , 𝑖𝐻 , 𝑖𝑊 ) is a 4D vector indexing
the features in (𝑁,𝐶,𝐻,𝑊 ). 𝑁 is the batch axis, 𝐶 is the channel axis,
and 𝐻 and 𝑊 are the spatial height and width axes. 𝑆𝑖 is the set of
pixels for the calculation of mean and std and 𝑚 is the set size. In a GN
layer, the set of 𝑆𝑖 is defined as follows.

𝐹𝑔𝑛 =
∑

𝑁,𝐶,𝐻,𝑊
𝑆𝑖 = {𝑘|𝑘𝑁 = 𝑖𝑁 , ⌊

𝑘𝐶
𝐶∕𝐺

⌋ = ⌊

𝑖𝐶
𝐶∕𝐺

⌋} (5)

where 𝐹𝑔𝑛 is output from GN layer. 𝐺 is the number of groups, 𝐶∕𝐺
is the number of channels per group. ⌊∙⌋ is the floor operation so
‘‘⌊ 𝑘𝐶

𝐶∕𝐺 ⌋ = ⌊

𝑖𝐶
𝐶∕𝐺 ⌋’’ represents that the indexes 𝑖 and 𝑘 are in the same

group of channels, assuming each group of channels are stored in a
sequential order along the 𝐶 axis.

Finally, a GELU activation is followed by GN layer to form our
training effective feature extractor because GELU provides a smooth
alternative to ReLU, mitigates problems of dead neurons [43], and
performs better in medical segmentation tasks as shown in [44].

𝐹𝐺 = 𝐺(𝐹𝑔𝑛) =
𝐹𝑔𝑛 + 1

√ ∫

𝐹𝑔𝑛∕
√

2
𝑒−𝑡

2
𝑑𝑡 (6)
2 𝜋 0



M. Lawal and D. Yi

a

3

a
b
o
t
a
c
a

𝑆

w
s
a
a
ℎ

𝐶

w
f
t
f
m
i
t

3

p
c

𝑂

Computers in Biology and Medicine 181 (2024) 109047 
where 𝐺 is GELU activation function and 𝐹𝐺 is Gaussian feature map
fter applying GELU transformation.

.2.3. Polar-based contrast attention
Here, we propose a novel polar-based contrast attention, where we

ttempt to find out the region of the image with the most contrast
etween the background and lesion information. This is inspired by the
bservation that usually the part with the most contrast between the
wo is in the middle of the height chunks, which includes the bound-
ry of foreground and background. Specially, a polar-based image is
hunked based on the height dimension accordingly into top, middle,
nd bottom parts.

ℎ(𝐹𝐺) = ℎ𝑡, ℎ𝑚, ℎ𝑏; ℎ′𝑚 = ℎ𝑚 ⊙ ℎ𝑚
𝐹 ′
𝐺 = ℎ𝑡

⨁

ℎ′𝑚
⨁

ℎ𝑏
(7)

here 𝐹𝐺 is the input polar-based image and 𝑆ℎ(⋅) is the height-based
plitting function. Due to the fact that the boundary of foreground
nd background usually shows in the middle part of polar-based im-
ge, Hadamard product is applied in the middle part ℎ𝑚 to produce
′
𝑚. Then, we concatenate ℎ𝑡, ℎ′𝑚, ℎ𝑏 together to derive the contrast

attention map 𝐹 ′
𝐺.

The transformations all have the segmentation information encoded
some distance from the middle of the polar image. This is a natural
point to have the model focus on during training. This is the motivation
of introducing PCA block to help the model pay extra focus to the parts
of the image that most likely have lesion boundary information and
improve segmentation performance. We perform a layer normalization
operation before we split the tensor along the height dimensions into
three patches. We identify the patch that is most likely to contain the
segmentation information (middle patch) and have the model focus
on that patch. We achieve this focus using the Hadamard product on
the tensor with itself making it more prominent than other areas of
the image. We concatenate the resulting tensor back and feed it to
the feature shuffling block to improve feature information flow before
convolution.

The feature shuffling involves splitting the features into a different
number of patches, we achieve the shuffle by performing a cross
addition of the patches to improve information flow. We perform a
layer normalization operation on the resulting tensor after it has been
concatenated. We, then, pass the tensor through a depthwise convo-
lution block. We present the PyTorch style pseudocode in Algorithm
2

Algorithm 1: Polar-based Contrast Attention (PCA)
Input : Polar-based feature map (𝑥)
Output: Output feature map (𝑥) of PCA

// Layer Normalization function
1 𝑥 ← LayerNorm(𝑥);
// Split the batch of tensors along the third

dimension (height dimension)
2 ℎ𝑡, ℎ𝑚, ℎ𝑏 ← chunk(𝑥, 3, 𝑑𝑖𝑚 = 2);
// Amplify signal at middle patch using the

Hadamard product
3 ℎ′𝑚 ← ℎ𝑚 ∗ ℎ𝑚;
// Concatenate the tensor along third dimension

(height dimension
4 𝑥 ← cat(ℎ𝑡, ℎ′𝑚, ℎ𝑏, 𝑑𝑖𝑚 = 2);

5 return 𝑥

3.3. Skip cross-channel aggregation

3.3.1. Share cross-channel correlations
Depthwise separable convolution (DW) and bilinear interpolation

are used to resize high-level features to align with the dimensions
5 
of low-level features. Then, to aggregate features cross channels, skip
connection is introduced to share features cross channels. The channels
of feature map is chunked equally into 𝐶1, 𝐶2, 𝐶3, and 𝐶4. The skip
connections are defined as below.
𝑆𝑐 (𝐹 ′

𝐺) = 𝐶1, 𝐶2, 𝐶3, 𝐶4

𝐹 ′ = 𝐶1
⨁

𝐶2
⨁

𝐶𝑠𝑘𝑖𝑝(𝐶1, 𝐶3)
⨁

𝐷𝑊 (𝐶𝑠𝑘𝑖𝑝(𝐶2, 𝐶4))

𝑠𝑘𝑖𝑝(𝐶𝑖, 𝐶𝑗 ) = 𝐶𝑖 + 𝐶𝑗 , 𝐷𝑊 (𝑥𝑖𝑛) = 𝑥𝑖𝑛 ⋅ 𝑥𝑖𝑛

(8)

here 𝐶𝑠𝑘𝑖𝑝(⋅,⋅) is the skip connection function to aggregate the feature
rom different channels. ⨁ is the feature concatenation and 𝐷𝑊 (𝑥𝑖𝑛) is
he depthwise separable convolution operation. 𝐹 ′ is the new generated
eature map. We partly take inspiration from [20] where they imple-
ented skip connections using addition. We also implement improving

nformation flow with addition in this block as we tried implementing
his block with multiplication but observed reduced performance.

.3.2. Gaussian depthwise convolution
In Gaussian depthwise convolution, we factorize the above com-

utation into three steps. The first step applies a 3 × 3 depthwise
onvolution �̂� to each input channel,

̂𝑘,𝑙,𝑚 =
∑

𝑖,𝑗
�̂�𝑖,𝑗,𝑚 ⋅ 𝐹𝑘+𝑖−1,𝑙+𝑗−1,𝑚 (9)

The second step is to obtain a deterministic decision from a neural
network and this gives rise to new non-linearity, the non-linearity is
the expected transformation of the stochastic regularizer on an input
�̂�𝑘,𝑙,𝑚 as below. Loosely, this expression states that we scale 𝑥 by how
much greater it is than other inputs. Since the cumulative distribution
function of a Gaussian is often computed with the error function, we
define the Gaussian Error Linear Unit 𝐺 as
𝐺(�̂�𝑘,𝑙,𝑚) = �̂�𝑘,𝑙,𝑚𝑃 (�̂�𝑘,𝑙,𝑚 ≤ �̂�𝑘,𝑙,𝑚)

= 𝛷(�̂�𝑘,𝑙,𝑚) × 𝐼�̂�𝑘,𝑙,𝑚 + (1 −𝛷(𝑥)) × 0�̂�𝑘,𝑙,𝑚

=
�̂�𝑘,𝑙,𝑚

2
+ 1

√

𝜋 ∫

�̂�𝑘,𝑙,𝑚∕
√

2

0
𝑒−𝑡

2
𝑑𝑡

(10)

The third step applies 1 × 1 pointwise convolution �̃� to combine
the output of depthwise convolution as follows.

𝑂𝑘,𝑙,𝑛 =
∑

𝑚
�̃�𝑚,𝑛 ⋅ 𝐺(�̂�𝑘−1,𝑙−1,𝑚) (11)

Depthwise convolution and pointwise convolution have different
roles in generating new features: the former is used for capturing
spatial correlations while the latter is used for capturing channel-wise
correlations.

Algorithm 2: Skip Cross-channel Aggregation (SC2A)
Input : Input feature map (𝑥)
Output: Output Feature map (𝑥) of SC2A

1 𝐶1, 𝐶2, 𝐶3, 𝐶4 ← chunk(𝑥, 4, 𝑑𝑖𝑚 = 1);
2 𝐶3 ← 𝐶1 + 𝐶3;
3 𝐶4 ← 𝐶2 + 𝐶4

4 𝐶4 ← Depthwise(𝐶4);
5 𝑥 ← Concat(𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝑑𝑖𝑚 = 1);
6 𝑥 ← LayerNorm(𝑥);
7 𝑥 ← Depthwise(𝑥);
8 𝑥 ← GELU(𝑥)

9 return 𝑥

3.4. Loss function

Binary cross entropy loss is widely used in semantic segmentation
and has been shown to perform very well in medical image segmenta-
tion [45]. We incorporate Dice loss as well as a way of ensuring the
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model not only learns from pixelwise losses but also general segmen-
tation similarities. The combination of both loss functions also helps
in mitigating the problem of class imbalance that may arise if we use
either of the loss functions alone. The combined loss function is shown
in Eq. (12).

𝐿 = 𝐵𝐶𝐸(𝑝, 𝑦) +𝐷𝑖𝑐𝑒(𝑝, 𝑦) (12)

here 𝑝 and 𝑦 are the prediction and target respectively.

. Experiments and results

.1. Dataset

We choose the Skin Imaging Collaboration ISIC (2018) [46] and PH2

atasets [47] for training and evaluation of our model. The ISIC dataset
onsists of 2594 skin lesion images together with their corresponding
egmentation masks while the PH2 dataset consists of 200 images and
asks. We train the model on the ISIC dataset utilizing a 75-25 split

or training and validation and perform the generalization ability test
n the PH2 dataset.

We also utilize the CVC-Polyp dataset [48] which is a dataset of 612
mages extracted from colonoscopy videos together with the polyps an-
otated for segmentation masks and the Kvasir-SEG dataset [49] which
s a dataset of gastrointestinal polyp segmentation. The dataset con-
ains 1000 images of polyps in the human intestinal system and their
orresponding segmentation masks annotated by experienced gastroen-
erologists. We split the dataset into 70-30 for training and validation.

We also perform experiments on the dataset of breast ultrasound
magees [50]. The dataset consists of 780 images and their correspond-
ng ground truth masks. The images are taken from women between
he ages of 25 and 75. We split the dataset into 75-25 for training and
alidation.

We perform the following transformations on the training images:
andom horizontal and vertical flipping with a probability of 0.5,
andom rotation, and resize to 256 × 256. We normalize the images
ith a mean of 157.561 and standard deviation of 26.706.

.2. Metrics

We utilize the popular metrics intersection over union (IoU) and
ice score (DS) for evaluating the performance of the model. We give

he definitions of the metrics below:

𝑜𝑈 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛 + 𝑓𝑝
(13)

𝐷𝑆 =
2𝑡𝑝

2𝑡𝑝 + 𝑓𝑛 + 𝑓𝑝
(14)

here 𝑡𝑝 is true positives, 𝑓𝑛 is false negatives, and 𝑓𝑝 is false posi-
tives. We also utilize frames per second (FPS) and inference time in
milliseconds (ms) in evaluating how quickly the model produces a
prediction.

4.3. Implementation details

We implement our proposed method using the PyTorch framework.
More specially, we use the AdamW optimizer with a learning rate of
0.001, and the scheduler for the experiments is the CosineAnnealingLR.
All our experiments are implemented by a PC with a GeForce RTX 3070
Mobile graphics card with 8 GB video memory and 16 GB system mem-
ory. The lightweight nature of our model means it is also viable to test
it in a mobile environment where processing powers are much lower
than regular PCs. We optimize the model for mobile execution using
PyTorch Lite for android operating system and conduct experiments
to measure the inference time of the model. The specifications for the
mobile device for this experiment are a Snapdragon 720G System on
a Chip (SoC), which is an 8-core processor with Adreno 618 graphics
processor, 6 GB system RAM, and android version 12. The model of the

device is the Xiaomi Redmi Note 9 pro smartphone.

6 
Table 1
Confidence interval based analysis of the proposed approach.

Dataset Min (%) Max (%) 𝜎 CI

ISIC 2018 92.43 93.72 0.65 93.08 ± 0.13 (0.14%)
Kvasir-SEG 89.17 90.35 0.59 89.76 ± 0.12 (0.13%)
BUSI 81.69 82.13 0.22 81.91 ± 0.05 (0.06%)

Table 2
Quantitative comparison results on the ISIC 2018 dataset.

Method IoU DS FPS #Param GFLOPS

Proposed 0.8815 0.9372 95.33 0.026 0.055
EGEUNET [18] 0.7745 0.8730 46.52 0.053 0.081
MADGNet [51] 0.8387 0.9031 9 33.37 11.49
MobileNetV3 [52] 0.5879 0.7258 30 2.9 34.75
Polar U-Net [10] 0.8681 0.9073 42.09 26.08 18.425
MobileNetV4 [53] 0.5230 0.6868 50 19.09 0.38
UNeXT [17] 0.7840 0.8730 4.32 1.47 0.570
RESUNETPP [54] 0.7980 0.8726 42.09 26.08 18.425
DCSAU-Net [22] 0.7741 0.8571 17.62 2.60 6.724
Xbound [23] 0.8447 0.9091 22.88 30.64 6.538
Deeplab [55] 0.8031 0.8758 68.83 22.44 7.903
U-Net [20] 0.7285 0.8135 60.45 7.76 12.103
STDC [56] 0.8549 0.9101 41.02 8.27 33.771
PIDnet [57] 0.7411 0.8493 35.03 7.72 23.723

4.4. Performance comparison

In this section, we compare our model against other segmen-
tation models utilizing different architectures. We compare against
lightweight models, transformer inspired models, traditional encoder–
decoder inspired networks, and instance segmentation models.

4.4.1. Results on ISIC 2018 dataset
We present the result of our quantitative analysis on ISIC 2018

dataset in Table 2 where we see our model achieve the best Dice score
and IoU score. This means our model performs very well in terms of
pixelwise predictions as shown by the high Dice score of 0.9372, and it
also performs very well in terms of general segmentation performance
as shown by the high IoU score of 0.8815. Our model is also the
fastest as is evident from the lowest inference time of just 10.49 ms
and highest frames per second (FPS) of 95.33. Our model achieves
this performance while having the lowest parameter count and lowest
number of operations. We also present a qualitative comparison of the
models in Fig. 2 and a confidence based analysis in Table 1. We measure
the statistical significance of the result using a t-test. We conclude
that our model performance improvement is statistically significant
because of a combination of t-statistic value of 6.6863 and a 𝑝-value
of 1.172e−4.

4.4.2. Results on Kvasir-SEG dataset
In addition, we also compare our method against other advanced

segmentation models on Kvasir-SEG dataset [49]. Our proposed method
achieves the best performance in terms of Dice Score with a value
of 0.9035. Table 3 presents the findings of the experiments. This
represents a 12.08% improvement in terms of Dice score and a 21.64%
improvement in terms of IoU score in comparison with the next best
performing lightweight model tested [17] which has 10x more oper-
ations and over 50x trainable parameters. We provide the qualitative
comparisons of the methods in Fig. 3

4.4.3. Results on breast ultrasound dataset
To further evaluate the versatility of our approach, we also eval-

uate our model using the breast ultrasound images dataset [50]. Our
proposed method achieves the best performance in terms of Dice Score
with a value of 0.8213 as shown in Table 4. This is almost double the
Dice Score of the next best performing lightweight model (see Fig. 4).
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Fig. 2. Qualitative analysis and comparison. The first column is raw lesion image. Second column is the ground truth. The third column is mask generated by our proposed
method. The fourth, fifth, and sixth columns are masks generated by PIDnet, DCSAU-Net, and Mask2Former.
Fig. 3. Qualitative analysis and comparison. The first column is raw lesion image. Second column is the ground truth. The third column is mask generated by our proposed
method. The fourth, fifth, and sixth columns are masks generated by EGEUNET, PIDnet, and Deeplab.
4.5. Generalization ability

The generalization ability of artificial intelligence models is very
important especially when the models are for medical image processing
and have the ability to run on point of care devices and smartphones.
It is not plausible to capture every possible variant of segmentation
training data in the training dataset. This is the motivation for perform-
ing experiments to determine the generalization ability of our proposed
model.
7 
4.5.1. Train on ISIC 2018 generalize on PH2 dataset
We perform testing on the PH2 dataset to see how well how model

can generalize on a different dataset. We train the model on the ISIC
2018 dataset and test the model on all the images of the PH2 dataset.
We present the findings of this experiment in Table 5, where we see
from the results that our model performs very well on unseen data as
seen by the high Dice score of 0.9423 and IoU score of 0.8909. The next
best performing model is Valanarasu and Patel [17] with a Dice score of
0.9189 and IoU of 0.8504. Our model is reports a 2.55% improvement
in terms of Dice score over this method and a 4.76% improvement
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Fig. 4. Qualitative analysis and comparison. The first column is raw lesion image. Second column is the ground truth. The third column is mask generated by our proposed
method. The fourth, fifth, and sixth columns are masks generated by EGEUNET, PIDnet, and PoolFormer.
Table 3
Quantitative comparison results on Kvasir-SEG dataset.

Method IoU DS FPS #Param GFLOPS

Proposed 0.8240 0.9035 95.33 0.026 0.055
UNeXT [17] 0.6774 0.8061 4.32 1.42 0.570
PIDnet [57] 0.7154 0.8205 35.03 7.72 23.723
MobileNetV4 [53] 0.2304 0.3745 50 19.09 0.38
MADGNet [51] 0.8357 0.9028 9 33.37 11.49
SAN [58] 0.4905 0.6525 11 8.4 64.3
EGEUNET [18] 0.5217 0.6904 46.52 0.053 0.081
DDRNET [59] 0.4152 0.4610 43.7 5.73 18.24
SegNeXt [60] 0.5364 0.6343 23 4.23 25.18
RESUNETPP [54] 0.5847 0.6781 42.09 26.08 18.425
Deeplab [55] 0.7527 0.8348 68.83 22.44 7.903
U-Net [20] 0.5208 0.6435 60.45 7.76 12.103

Table 4
Quantitative comparison results on breast ultrasound dataset [50].

Method IoU DS FPS #Param GFLOPS

Proposed 0.6968 0.8213 95.33 0.026 0.055
PIDNET [57] 0.6244 0.7261 35.03 7.72 23.723
UNeXT [17] 0.2226 0.3396 4.32 1.42 0.570
EGE-UNET [18] 0.2971 0.4582 46.52 0.053 0.081
MADGNet [51] 0.7340 0.8130 9 33.37 11.49
PoolFormer [61] 0.6400 0.7417 28 15.65 48.02
DEEPLAB [55] 0.4005 0.4753 68.83 22.44 7.903
RESUNETPP [54] 0.1822 0.2395 42.09 26.08 18.425
U-NET [20] 0.2258 0.2994 60.45 7.76 12.103
STDC [56] 0.4497 0.4741 41.02 8.27 33.771
DDRNET [59] 0.3917 0.5202 43.7 5.73 18.24

in terms of IoU score. Our model achieves this improvement while
using over 50x fewer parameters than [17] and 10x fewer operations.
The other lightweight model [18] has 2x more parameters that our
proposed model and is able to report a Dice score of 0.8905 and IoU
score of 0.8026. This represents a 5.82% improvement in terms of Dice
score and an 11% improvement in terms of IoU score. This proves our
8 
Table 5
Generalization ability on PH2 dataset.

Method IoU DS FPS #Param GFLOPS

Proposed 0.8909 0.9423 95.33 0.026 0.055
UNeXT [17] 0.8504 0.9189 4.32 1.47 0.570
RESUNETPP [54] 0.7711 0.8560 42.09 26.08 18.425
Deeplab [55] 0.8042 0.8863 68.83 22.44 7.903
U-Net [20] 0.6925 0.7977 60.45 7.76 12.103
EGEUNET [18] 0.8026 0.8905 46.52 0.053 0.081
DCSAU-Net [22] 0.8255 0.9002 17.62 2.60 6.724
PIDNet [57] 0.6152 0.7585 35.03 7.71 23.723
STDC [56] 0.7345 0.8459 41.02 8.27 33.771
Xbound [23] 0.5925 0.6963 22.88 30.64 6.538

model outperforms the two SOTA lightweight models in the task of
generalization ability using the PH2 dataset.

4.5.2. Train on Kvasir-SEG generalize on CVC-Polyp dataset
In order to carry out the generalization test on the polyp segmenta-

tion task, we utilize the CVC-Polyp dataset [48]. For the generalization
ability test, we take the model trained on the Kvasir-SEG dataset and
test on the images of the CVC-Polyp dataset. We present the findings
of the test in Table 6. We see our model is able to generalize the best
among the models tested with a Dice score of 0.8437 and IoU of 0.7297.
The next best performing model in terms of generalization ability on the
polyp datasets is the deeplab [55] model with a Dice score of 0.6406
and an IoU score of 0.5432. This is a 31.70% improvement in terms of
Dice score and a 34.33% improvement in terms of IoU score all utilizing
much fewer parameters and operations.

4.6. Mobile performance

Semantic segmentation models can have immense applications in
the field of medical image processing, but these models can suffer from
some problems when they pursue accuracy without much regard for
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Table 6
Generalization ability on CVC-Polyp dataset.

Method IoU DS FPS #Param GFLOPS

Proposed 0.7297 0.8437 95.33 0.026 0.055
UNeXT [17] 0.2837 0.4399 4.32 1.47 0.570
PIDnet [57] 0.5229 0.6328 35.03 7.72 23.723
SAN [58] 0.2405 0.3445 11 8.4 64.3
EGEUNET [18] 0.3005 0.4621 46.52 0.053 0.081
MADGNet [51] 0.6970 0.7750 9 33.37 11.49
DDRNET [59] 0.4367 0.4686 43.7 5.73 18.24
SegNeXt [60] 0.0363 0.0682 23 4.23 25.18
RESUNETPP [54] 0.3494 0.4527 42.09 26.08 18.425
Deeplab [55] 0.5432 0.6406 68.83 22.44 7.903
U-Net [20] 0.4168 0.5221 60.45 7.76 12.103

Table 7
Performance benchmark on mobile device (Xiaomi Redmi Note 9 pro), the unit of
inference time is millisecond.

Method Inference time FPS #Param (M) GFLOPS

Proposed 55 18.182 0.026 0.055
EGEUNET [18] 112 8.929 0.053 0.081
UNeXT [17] 132 7.576 1.47 0.570
RESUNETPP [54] 910 1.099 26.08 18.425
DCSAU-Net [22] 1762 0.578 2.60 6.724
Xbound [23] 1091 0.917 30.64 6.538
Deeplab [55] 524 1.908 22.44 7.903
U-Net [20] 693 1.443 7.76 12.103

model complexity and computational requirements. They may suffer
with long inference time, high latency, and increased energy consump-
tion. This is where low parameter and low computational requirement
models have an added advantage. If model can be engineered to
be lightweight enough, it can run locally on the user’s device. This
immediately solves the problem of high latency, and it allows the model
to produce output with low inference times. It also helps in preserving
the users privacy by not sending any information to the cloud for
processing as all processing happens locally. It is in view of all these
reasons that we test the model performance on mobile devices.

To test the performance of the system in a low powered device, we
developed an android application and conduct experiments measuring
inference time on the device. Inference time is measured as the time
taken in milliseconds after the input is passed to the model and a
prediction is produced. Table 7 shows the results of the experiments
with a lower inference time being better. Our model achieves the lowest
inference time with a reported time of just 55 ms and by consequence
the highest FPS of 18.182. The next performing model is more than
2x slower in producing a prediction with an inference time of 112 ms
while have twice as many parameters and 1.5x more operations than
our proposed model.

The experiments show our model to be the best performing as
evidenced by the high Dice score and lowest inference time. The next
best performing model has 1000x more parameters and over 100x
operations and took 19x longer in producing a prediction on the mobile
device.

4.7. Ablation study

We follow the methods in [26] to conduct comprehensive ablation
experiments to determine what every component of the model con-
tributes to performance in terms of Dice score and IoU score. Table 10
shows the results of the experiments with the baseline serving as an
encoder–decoder model from Ruan et al. [62]. The introduction of skip
cross-channel aggregation (SC2 A) improves information flow which
enables capturing of higher-level spatial information and incorporating
them with lower-level semantic information. This results in an overall
improved semantic segmentation as shown by the increase of Dice score
from 0.8656 to 0.8808 which represents a 1.76% improvement, and
9 
Table 8
Performance metrics for different values of PCA and SC2A blocks on ISIC 2018
dataset.

k = 1 k = 2 k = 3 k = 4

IoU 0.8821 0.8833 0.8834 0.8834
Dice 0.9382 0.9391 0.9393 0.9393

Table 9
Performance metrics for different values of PCA and SC2A blocks on Kvasir-SEG
dataset.

k = 1 k = 2 k = 3 k = 4

IoU 0.8240 0.7907 0.7502 0.7395
Dice 0.9085 0.8831 0.8573 0.8503

Table 10
Ablation study on different Component of our proposed method on the ISIC
2018 Dataset, where SC2A: Skip Cross-Channel Aggregation, Polar-Transform: Polar
Transformation, PCA: Polar-based Contrast Attention.

Baseline SC2A Polar-Transform PCA IoU Dice score

✓ 0.7630 0.8656
✓ ✓ 0.7870 0.8808
✓ ✓ ✓ 0.8609 0.9253
✓ ✓ ✓ ✓ 0.8815 0.9372

an increase of IoU from 0.7630 to 0.7870 which represents a 3.15%
improvement. We introduce polar transformation as a way reducing
image complexities allowing for a model with low number parameters
to efficiently learn the necessary segmentation information, this results
in an increase of Dice score to 0.9253 which is a 5.05% improvement,
and an increase of IoU to 0.8609 which is a 9.39% improvement. This
also serves as a pre-processing step for the polar contrast attention
block which helps the model focus on the region most likely to contain
relevant segmentation information by amplifying the signal at the
point. The introduction of the polar contrast attention block results in
an increase in Dice score of 0.9371 which is a 1.29% improvement,
and an increase in IoU to 0.8815 representing a 2.39% improvement.
To further investigate the impact of the polar PCA and SC2 A blocks,
we added up to four blocks to the network. We report the findings in
Table 8 for the ISIC 2018 dataset and Table 9 for the Kvasir-SEG dataset
with k referring to the number of the blocks in the network. We also test
the impact of the Gaussian kernel by replacing it with a ReLU kernel,
we record a segmentation performance loss of 0.7%.

Taking all the components into account translates into an overall
improvement of 8.27% in Dice score and 15.53% in IoU score. We also
explored the training efficiency of the approach, we set the epoch to 10
with a batch size of 4 and we got a Dice score of 0.9246. To achieve the
best result on the IoU of 0.8815 and Dice score of 0.9372, the number
of epoch is only 20 with batch size of 4 as well.

5. A case study on skin care Internet of Medical Things (IoMT)

Although the performance of lesion segmentation models has been
steadily improving over time, they usually improve performance with
increasing computational requirements and parameter count. This leads
to a much more complex model with high inference time making them
inappropriate for point of care or mobile applications. This leaves a gap
in real world applications because some point of care devices are not
powerful devices able to run inference on complex models in a timely
manner. This observation is the motivation for designing a low com-
putational requirement and low parameter count model. Lightweight
models have the potential to save costs on expensive hardware and
reduce the load on physicians and patients.

To benchmark the performance of the model in a low powered
device, we develop an android application to run inference on and
record the time taken. The application presents an interface shown in
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Fig. 5. Overall architecture and data flows of mobile App on edge unit.
Fig. 5 allowing the patient to select an image from the phone gallery
. The application then converts the image into its polar form and
resizes and normalizes it accordingly. The polar form gets converted
to a PyTorch tensor and goes through the model. The model produces
the polar mask which is then converted back to a cartesian image and
resized appropriately for display to the user.

6. Discussion and conclusion

This paper proposes a novel lightweight lesion segmentation model
with low computational requirements by leveraging polar transfor-
mation in both training and prediction phases. These transformations
simplify the complexity of learning lesion segmentation tasks, enabling
the model to perform exceptionally well with minimal parameters and
operations. The model trains on polar images and produces polar masks
that are then converted to Cartesian masks. Moreover, it incorporates
skip cross-channel aggregation to enhance information flow without in-
creasing the number of parameters. Furthermore, a polar-based contrast
attention block is designed to concentrate on the boundary information
of the mask areas within the polar image. Experimental results demon-
strate that these enhancements improve segmentation performance
while maintaining a parameter count of approximately 25k making
the lightest segmentation model with a model weight file size of just
130KB and the fastest lesion semantic segmentation model. This means
the model can automatically segment 10k images in about 100 s on
consumer level hardware freeing the medical practitioner’s valuable
time. The lightweight model can also be utilized as a preprocessor to
improve classification tasks and ease memory requirements [63]. The
attention mechanism proposed here only work on polar images limiting
their functionality to models that incorporate polar transformation, and
polar transformation when applied in semantic segmentation models
work best in spherical lesions like skin and polyps.

We have demonstrated the ability of the proposed lightweight po-
lar attention blocks to improve segmentation performance in medical
images. These blocks are very fast because they use quick operations,
but a limitation of these blocks is they are designed to work on polar
images exclusively. This means they cannot be dropped into models
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that are not designed to work with polar images. Another limitation
of this approach is because this model extracts features by encoding
images around a polar origin, this means when presented with images
with many polar origins as in the case with many masks in one image,
pixel mislabelling can occur. This opens an avenue for future work,
to improve the performance of the model in the face of challenging
images.

The model is trained on the ISIC 2018 and Kvasir datasets and eval-
uated on both the ISIC 2018, PH2, Kvasir, and CVC-Polyp datasets to
assess its performance and generalization ability. The model performs
well on the ISIC 2018 dataset and demonstrates robust generaliza-
tion on the PH2 dataset, which achieve the highest Dice score and
IoU score on both datasets. We also conduct experiments in IoMT
based case study in a mobile environment to assess potential benefits
of a lightweight model in a point-of-care setting, where our model
can achieve the best performance in both segmentation accuracy and
inference time compared to other advanced models.
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