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ABSTRACT 

We report colossal conductivities, dc ~ 10-1.5·S cm-1, of new dicationic ionic liquids, close to the 

range of benchmark materials/electrolytes applied in fuel cells and batteries.  The new ionic liquids 

consist of extended viologen bistriflimides containing oligoethyleneoxy groups, were prepared via 

Zinke reaction under mild conditions, and are excellent candidates as components in devices for 

energy conversion and storage applications. 
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Ionic liquids (ILs) are salts consisting of organic cations and inorganic/organic anions 

having melting transitions (Tm) lower than 100°C.  Indeed, many ILs melt well below ambient 

temperatures, with typical glass transition temperatures (Tg) in the range from -93 to -53°C.  They 

hold promise as engineered materials in a variety of modern fields, including green solvents or 

catalysts for chemical reactions [1,4], biocatalysts [5], biopolymers processing [6-9], active 

pharmaceutical ingredients in medicine [10], and electrolytes for batteries [11-13]. Multi-charged 

ILs and poly(ionic liquid)s exhibit a wider range of physical properties than their mono-charged 

analogues, e.g., higher density, Tg, Tm, surface tension and viscosity, due to their higher molecular 

weights [14-19]. These result in superior properties, such as, higher thermal stabilities [20-23], 

better antimicrobial activity [24], higher electrical capacities [25-27], better performance as 

stationary phases for gas chromatography [28-30], among others [31-36]. Multi-charged ILs are 

particularly attractive due to their combination of low viscosity (like traditional ILs) and high ionic 

conductivity (like poly(ionic liquid)s). The physical properties of multi-charged ILs can be fine-

tuned by combining different cations and anions, with well-defined chemical structures that avoid 

polydispersity issues.  Current multi-charged ILs range ammonium, phosphonium, imidazolium, 

pyridinium, pyrrolidinium, piperidinium, triazolium and 4,4 -bipyridinium (viologen) cations.  

The majority of these multi-charged ionic liquids are synthesized via quaternization SN
2 

Menshutkin reactions, followed by metathesis of anions [14-38].  

 
In the search of new ionic liquid electrolytes for energy applications, we have recently 

studied the conductivity of a series of multi-charged ionic liquids with different cationic structures, 

containing triflimide anions, (Tf)2N- (see Fig. 1(a)) [39].  
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Fig. 1 Different cationic structures containing (a) triflimide anion, (Tf)2N; (b) stilbazolium salts, 
n =10, 12 [39]; (c) asymmetric viologens, n= 7, 11, 14 [40]; (d) Ionic salts prepared in this work, 
1 (n=1), 2 (n=2) and 3 (n=3); and (e) Alkoxy-terminated viologens [51]. 
 

 

We found that dicationic stilbazolium salts (refer to the structure in Fig. 1(b)) reached direct current 

conductivities in the dc ~ 10-4.5 S·cm-1 range, well above room temperature (T > 80 oC) and 

activated by the larger free volume [39] available beyond their glass transitions, Tgs. On the other 

hand, we reported maximum values of dc~10-2.5 S·cm-1 for asymmetric viologen bistriflimide salts 

(refer to Fig. 1(c)) [40] associated with the formation of liquid crystalline smectic-T phases and 

correlated to short-range motions around the rod-like aromatic units [40]. It seems that the (close) 

location of the N+ sites, and their capability to form -  aggregates may benefit ionic conductivity. 

These results have prompted us to investigate new triflimide viologens with extended core 
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structures, and herein we assess the conducting properties of new viologens, 1 to 3, prepared via 

Zincke reactions (refer to Fig. 1(d)). 

 Viologens and their multitude derivatives have already been postulated as functional 

materials in electrochromic devices, diodes and transistors, memory devices, molecular machines, 

and dye-sensitized solar cells [41-48]. The reason to introduce the oxyethylene(s) terminations is 

two-fold. On the one hand, we aim to offset (at least partially) the rigidity of the four-ring phenyl 

core (which could increase viscosity).  Besides, the presence of polar chains can help delocalize 

the triflimide anions and avoid complexation, which would ultimately inhibit ion mobility [49]. 

 The 4-oligoethyleneoxypheylanilines were prepared according to modified literature 

procedures [50,51]. The synthesis of bis-(4-oligoethyleneoxyphenyl)-4,4 -bipyridinium 

dichlorides (P1-P3) with different ethyleneoxy groups, is summarized in Scheme 1 (SI). The 

method involved: (i) the aromatic nucleophilic substitution between the 1-chloro-2,4-

dinitrobenzene and 4,4 -bipyridine in acetonitrile under reflux, to yield the so-called Zincke salts 

[52,53] (steps 1 and 2); and (ii) subsequent anionic ring opening and ring closing reactions 

(ANROC) with the corresponding 4-oligoethyleneoxypheylanilines, in N,N-dimethylacetamide 

(DMAc) at room temperature (steps 3 and 4).  Detailed synthetic procedures and analyses are also 

given as Supplementary Information (SI).  Lastly, P1-P3 were converted to the 1-3 salts under 

study by metathesis with lithium triflimides in methanol [54] (step 5). Each of the prepared salts 

was in brown powdered form. The chemical structures of the intermediates and final products were 

confirmed by Fourier transform infrared (FT-IR) spectroscopy, 1H, 13C, and 19F nuclear magnetic 

resonance (NMR) obtained in CD3OD (Figs. S1-S9), and their purities were determined by 

elemental analysis. To our knowledge, these are the first examples of ionic liquids prepared via 

Zincke reactions.  
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 The thermal properties and phase behavior of the new salts were determined by 

thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and polarized optical 

microscopy (POM).  The three salts display less than 5% weight loss up to 300 oC (degradation 

temperatures, Td~311-334 °C) under nitrogen atmosphere (Fig. S10, Table S1). Whilst it was 

expected that the bistriflimide ions conferred high thermal stabilities, the high Td values confirm 

that the presence of flexible oxyethylene groups do not have a destabilizing effect on our salts.  

 Fig. 2 shows the DSC thermograms of the three salts, corresponding to their first heating 

scans obtained at 10 °C·min-1 rates. While 1 and 2 display first-order endotherms associated to 

crystal to crystal (2) and melting (1 and 2) processes, 3 only displays a glass transition at low 

temperature (Tg = -6 °C ) [1-13].  According to these results, both 1 and 2 act as ionic liquids that 

melt on heating (as expected, an increase in the oxyethylene termination length reduces the melting 

point).  The absence of first-order transitions in the corresponding thermogram indicates that 3 

behaves like an amorphous salt, due to inhibition of crystalization at sufficiently long ethyleneoxy 

chains, n=3.  It is worth noting that there are no further thermal events visible in subsequent heating  

and cooling scans of 1 and 2, suggesting that crystallization of these samples must be a slow 

process, see Figs. S11-S13. The absence of liquid crystal behavior contrasts with the formation of 

smectic phases by analogous alkoxy-  recently reported by our own 

group [54] and others [55-57]. Even though we could have expected that comparable lengths of 

terminal chains (refer to Fig. 1(e)) [51] would promote microphase separation and smectic 

behavior in 1-3, the formation of stronger interactions by the ethyleneoxy groups may restrict the 

local mobility required to yield liquid crystallinity.  The effect of the terminal chain lengths on 

nanosegregation between the polar chains and the aromatic cores in similar viologens is the object 

of further ongoing research. 
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Fig. 2. DSC thermograms of 1-3 obtained at a heating rate of 10 ·min-1 in nitrogen.  Exo up. 

 

We now focus on the conductivity response of the viologens under study, and Fig. 3 shows their 

dielectric loss factor, 

in isothermal steps on heating from room temperature, see the supplementary information for 

further details. The values are remarkably high for organic media, which is attributed to the strong 

polar character of ionic liquids and salts [40]. All double logarithmic 

(with slopes ~-1) that denote the rise of direct current (DC) conductivity at sufficiently low 

frequencies [58]. This DC component overshadows any potential dielectric relaxation, even though 

some peaks are observed for 2 and 3 in Fig. 3(b) and 3(c), respectively. For these ionic liquids, the 

isotherms shift with temperature, denoting thermal activation effects that will be reviewed later 

[59]. The salt 3, on the other hand, depicts the highest salts, see Fig. 

3(c). The occurrence of direct current conductivity is confirmed by the formation of plateaus in 

the double logarithmic f plots in Fig. 4, which have similar temperature dependences as the 

corresponding dielectric loss moduli depicted in Fig. 3 [60,61]. The DC conductivity values, dc, 

can be estimated by extrapolating the constant f 0 at each temperature, and the 
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resulting Arrhenius plots are shown in Fig. 5. The activation energies of the conductivity process 

from the Arrhenius plot, Ea, are calculated using the equation; dc = 0 exp(Ea/RT), where R is the 

gas constant, 8.31 J·mol-1·K-1, T is the absolute temperature, and  is a pre-exponential term.  

 

Fig. 3.  Dielectric loss modulus, 1 (a), 2 (b), and 3 (c), on 

heating from room temperature (see arrows). 
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Fig. 4.  Real component of the complex conductivity, 1 (a), 2 

(b) and 3 (c), on heating from room temperature (see arrows). 

The Cole-Cole plot of 3 is shown in Fig.S14. The AC oscillation voltage was 0.5 V. The results 

indicate that longer ethyleneoxy terminal chains promote conductivity in the salts.  Indeed, 3 shows 

exceptional dc values (between 10-3.5 and 10-1.5 S·cm-1) comparable to bench electrolytes used in 

fuel cells [62] and batteries [63]. To our knowledge, this material is one of the few examples of an 

organic salt exhibiting such large conductivities under anhydrous conditions, and at mild 

temperatures, even close to room temperature [11,64-68]. The activation energies estimated from 

the Arrhenius plots of the samples are Ea = 95. 9 kJ·mol-1 for 1;  Ea = 84.5 kJ·mol-1 for 2; and Ea  
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Fig. 5 Arrhenius plots (base 10) of 1-3 corresponding to the direct current conductivity, dc, 

estimated from the plateaus in the double logarithmic vs frequency plots. 

= 79.4 kJ·mol-1, for 3. These values are considerably high for locally activated processes and are 

in good agreement with the occurrence of so-called -relaxations, involving the rotation of rod-

like molecules (extended viologen moieties) around their long axis within the crystal lattice 

[40,69]. It seems that, when the -(CH2CH2O)- terminal chains are short, the conductivity process 

is dominated (and partially hindered) by the motions around the bulky four-phenyl core [58,70-

72]. In salt 3, alternatively, the plasticizing effect of the longer terminal chains endows in the 

formation of a rubbery phase above its low glass transition (Tg ~ -6 oC, see Fig. 2), with large free 

volumes that facilitate ionic motion (resulting in high dc values and slightly lower activation 

energy) [73-74]. 
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In conclusion, we have prepared new viologens using Zincke reactions, resulting in ionic 

liquids and salts with strong dielectric responses, attributed to the presence of both flexible 

oxyethylene groups and triflimide ions. Sufficiently long terminal chains promote exceptionally 

high ionic conductivities at room temperature, comparable to benchmark electrolytes used 

commercially, highlighting their potential use in energy devices, such as, fuel cells, batteries, 

supercapacitors, or solar cells.  This work opens new horizons for designing ionic liquids with 

tuned electrostatic interactions and nanostructures by extending the central rigid core, exchanging 

different cations, or modifying the length of the oxyethylene terminations. 
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ABSTRACT 

We report colossal conductivities, dc ~ 10-1.5·S cm-1, of new dicationic ionic liquids, close to the 

range of benchmark materials/electrolytes applied in fuel cells and batteries.  The new ionic liquids 

consist of extended viologen bistriflimides containing oligoethyleneoxy groups, were prepared via 

Zinke reaction under mild conditions, and are excellent candidates as components in devices for 

energy conversion and storage applications. 

 

Keywords: Extended viologen salts; Ionic liquids; Zincke reaction, Differential scanning 

calorimetry; Ionic conductivity, Dielectric impedance spectroscopy  
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Ionic liquids (ILs) are salts consisting of organic cations and inorganic/organic anions 

having melting transitions (Tm) lower than 100°C.  Indeed, many ILs melt well below ambient 

temperatures, with typical glass transition temperatures (Tg) in the range from -93 to -53°C.  They 

hold promise as engineered materials in a variety of modern fields, including green solvents or 

catalysts for chemical reactions [1,4], biocatalysts [5], biopolymers processing [6-9], active 

pharmaceutical ingredients in medicine [10], and electrolytes for batteries [11-13]. Multi-charged 

ILs and poly(ionic liquid)s exhibit a wider range of physical properties than their mono-charged 

analogues, e.g., higher density, Tg, Tm, surface tension and viscosity, due to their higher molecular 

weights [14-19]. These result in superior properties, such as, higher thermal stabilities [20-23], 

better antimicrobial activity [24], higher electrical capacities [25-27], better performance as 

stationary phases for gas chromatography [28-30], among others [31-36]. Multi-charged ILs are 

particularly attractive due to their combination of low viscosity (like traditional ILs) and high ionic 

conductivity (like poly(ionic liquid)s). The physical properties of multi-charged ILs can be fine-

tuned by combining different cations and anions, with well-defined chemical structures that avoid 

polydispersity issues.  Current multi-charged ILs range ammonium, phosphonium, imidazolium, 

pyridinium, pyrrolidinium, piperidinium, triazolium and 4,4 -bipyridinium (viologen) cations.  

The majority of these multi-charged ionic liquids are synthesized via quaternization SN
2 

Menshutkin reactions, followed by metathesis of anions [14-38].  

 
In the search of new ionic liquid electrolytes for energy applications, we have recently 

studied the conductivity of a series of multi-charged ionic liquids with different cationic structures, 

containing triflimide anions, (Tf)2N- (see Fig. 1(a)) [39].  
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Fig. 1 Different cationic structures containing (a) triflimide anion, (Tf)2N; (b) stilbazolium salts, 
n =10, 12 [39]; (c) asymmetric viologens, n= 7, 11, 14 [40]; (d) Ionic salts prepared in this work, 
1 (n=1), 2 (n=2) and 3 (n=3); and (e) Alkoxy-terminated viologens [51]. 
 
We found that dicationic stilbazolium salts (refer to the structure in Fig. 1(b)) reached direct current 

conductivities in the dc ~ 10-4.5 S·cm-1 range, well above room temperature (T > 80 oC) and 

activated by the larger free volume [39] available beyond their glass transitions, Tgs. On the other 

hand, we reported maximum values of dc~10-2.5 S·cm-1 for asymmetric viologen bistriflimide salts 

(refer to Fig. 1(c)) [40] associated with the formation of liquid crystalline smectic-T phases and 

correlated to short-range motions around the rod-like aromatic units [40]. It seems that the (close) 

location of the N+ sites, and their capability to form -  aggregates may benefit ionic conductivity. 

These results have prompted us to investigate new triflimide viologens with extended core 
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structures, and herein we assess the conducting properties of new viologens, 1 to 3, prepared via 

Zincke reactions (refer to Fig. 1(d)). 

 Viologens and their multitude derivatives have already been postulated as functional 

materials in electrochromic devices, diodes and transistors, memory devices, molecular machines, 

and dye-sensitized solar cells [41-48]. The reason to introduce the oxyethylene(s) terminations is 

two-fold. On the one hand, we aim to offset (at least partially) the rigidity of the four-ring phenyl 

core (which could increase viscosity).  Besides, the presence of polar chains can help delocalize 

the triflimide anions and avoid complexation, which would ultimately inhibit ion mobility [49]. 

 The 4-oligoethyleneoxypheylanilines were prepared according to modified literature 

procedures [50,51]. The synthesis of bis-(4-oligoethyleneoxyphenyl)-4,4 -bipyridinium 

dichlorides (P1-P3) with different ethyleneoxy groups, is summarized in Scheme 1 (SI). The 

method involved: (i) the aromatic nucleophilic substitution between the 1-chloro-2,4-

dinitrobenzene and 4,4 -bipyridine in acetonitrile under reflux, to yield the so-called Zincke salts 

[52,53] (steps 1 and 2); and (ii) subsequent anionic ring opening and ring closing reactions 

(ANROC) with the corresponding 4-oligoethyleneoxypheylanilines, in N,N-dimethylacetamide 

(DMAc) at room temperature (steps 3 and 4).  Detailed synthetic procedures and analyses are also 

given as Supplementary Information (SI).  Lastly, P1-P3 were converted to the 1-3 salts under 

study by metathesis with lithium triflimides in methanol [54] (step 5). Each of the prepared salts 

was in brown powdered form. The chemical structures of the intermediates and final products were 

confirmed by Fourier transform infrared (FT-IR) spectroscopy, 1H, 13C, and 19F nuclear magnetic 

resonance (NMR) obtained in CD3OD (Figs. S1-S9), and their purities were determined by 

elemental analysis. To our knowledge, these are the first examples of ionic liquids prepared via 

Zincke reactions.  
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 The thermal properties and phase behavior of the new salts were determined by 

thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and polarized optical 

microscopy (POM).  The three salts display less than 5% weight loss up to 300 oC (degradation 

temperatures, Td~311-334 °C) under nitrogen atmosphere (Fig. S10, Table S1). Whilst it was 

expected that the bistriflimide ions conferred high thermal stabilities, the high Td values confirm 

that the presence of flexible oxyethylene groups do not have a destabilizing effect on our salts.  

 Fig. 2 shows the DSC thermograms of the three salts, corresponding to their first heating 

scans obtained at 10 °C·min-1 rates. While 1 and 2 display first-order endotherms associated to 

crystal to crystal (2) and melting (1 and 2) processes, 3 only displays a glass transition at low 

temperature (Tg = -6 °C ) [1-13].  According to these results, both 1 and 2 act as ionic liquids that 

melt on heating (as expected, an increase in the oxyethylene termination length reduces the melting 

point).  The absence of first-order transitions in the corresponding thermogram indicates that 3 

behaves like an amorphous salt, due to inhibition of crystalization at sufficiently long ethyleneoxy 

chains, n=3.  It is worth noting that there are no further thermal events visible in subsequent heating  

and cooling scans of 1 and 2, suggesting that crystallization of these samples must be a slow 

process, see Figs. S11-S13. The absence of liquid crystal behavior contrasts with the formation of 

smectic phases by analogous alkoxy-  recently reported by our own 

group [54] and others [55-57]. Even though we could have expected that comparable lengths of 

terminal chains (refer to Fig. 1(e)) [51] would promote microphase separation and smectic 

behavior in 1-3, the formation of stronger interactions by the ethyleneoxy groups may restrict the 

local mobility required to yield liquid crystallinity.  The effect of the terminal chain lengths on 

nanosegregation between the polar chains and the aromatic cores in similar viologens is the object 

of further ongoing research. 
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Fig. 2. DSC thermograms of 1-3 obtained at a heating rate of 10 ·min-1 in nitrogen.  Exo up. 

 

We now focus on the conductivity response of the viologens under study, and Fig. 3 shows their 

dielectric loss factor, ed 

in isothermal steps on heating from room temperature, see the supplementary information for 

further details. The values are remarkably high for organic media, which is attributed to the strong 

polar character of ionic liquids and salts [40]. All double logarithmic 

(with slopes ~-1) that denote the rise of direct current (DC) conductivity at sufficiently low 

frequencies [58]. This DC component overshadows any potential dielectric relaxation, even though 

some peaks are observed for 2 and 3 in Fig. 3(b) and 3(c), respectively. For these ionic liquids, the 

isotherms shift with temperature, denoting thermal activation effects that will be reviewed later 

[59]. The salt 3, on the other hand, depicts the highest salts, see Fig. 

3(c). The occurrence of direct current conductivity is confirmed by the formation of plateaus in 

the double logarithmic f plots in Fig. 4, which have similar temperature dependences as the 

corresponding dielectric loss moduli depicted in Fig. 3 [60,61]. The DC conductivity values, dc, 

can be estimated by extrapolating the constant f 0 at each temperature, and the 
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resulting Arrhenius plots are shown in Fig. 5. The activation energies of the conductivity process 

from the Arrhenius plot, Ea, are calculated using the equation; dc = 0 exp(Ea/RT), where R is the 

gas constant, 8.31 J·mol-1·K-1, T is the absolute temperature, and  is a pre-exponential term.  

 

Fig. 3.  Dielectric loss modulus, 1 (a), 2 (b), and 3 (c), on 

heating from room temperature (see arrows). 
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Fig. 4.  Real component of the complex conductivity, 1 (a), 2 

(b) and 3 (c), on heating from room temperature (see arrows). 

The Cole-Cole plot of 3 is shown in Fig.S14. The AC oscillation voltage was 0.5 V. The results 

indicate that longer ethyleneoxy terminal chains promote conductivity in the salts.  Indeed, 3 shows 

exceptional dc values (between 10-3.5 and 10-1.5 S·cm-1) comparable to bench electrolytes used in 

fuel cells [62] and batteries [63]. To our knowledge, this material is one of the few examples of an 

organic salt exhibiting such large conductivities under anhydrous conditions, and at mild 

temperatures, even close to room temperature [11,64-68]. The activation energies estimated from 

the Arrhenius plots of the samples are Ea = 95. 9 kJ·mol-1 for 1;  Ea = 84.5 kJ·mol-1 for 2; and Ea  
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Fig. 5 Arrhenius plots (base 10) of 1-3 corresponding to the direct current conductivity, dc, 

estimated from the plateaus in the double logarithmic vs frequency plots. 

= 79.4 kJ·mol-1, for 3. These values are considerably high for locally activated processes and are 

in good agreement with the occurrence of so-called -relaxations, involving the rotation of rod-

like molecules (extended viologen moieties) around their long axis within the crystal lattice 

[40,69]. It seems that, when the -(CH2CH2O)- terminal chains are short, the conductivity process 

is dominated (and partially hindered) by the motions around the bulky four-phenyl core [58,70-

72]. In salt 3, alternatively, the plasticizing effect of the longer terminal chains endows in the 

formation of a rubbery phase above its low glass transition (Tg ~ -6 oC, see Fig. 2), with large free 

volumes that facilitate ionic motion (resulting in high dc values and slightly lower activation 

energy) [73-74]. 
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In conclusion, we have prepared new viologens using Zincke reactions, resulting in ionic 

liquids and salts with strong dielectric responses, attributed to the presence of both flexible 

oxyethylene groups and triflimide ions. Sufficiently long terminal chains promote exceptionally 

high ionic conductivities at room temperature, comparable to benchmark electrolytes used 

commercially, highlighting their potential use in energy devices, such as, fuel cells, batteries, 

supercapacitors, or solar cells.  This work opens new horizons for designing ionic liquids with 

tuned electrostatic interactions and nanostructures by extending the central rigid core, exchanging 

different cations, or modifying the length of the oxyethylene terminations. 
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