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Abstract 
In recent years, phylogenetic reconciliation has emerged as a promising approach for studying microbial ecology and evolution. The 
core idea is to model how gene trees evolve along a species tree and to explain differences between them via evolutionary events 
including gene duplications, transfers, and losses. Here, we describe how phylogenetic reconciliation provides a natural framework for 
studying genome evolution and highlight recent applications including ancestral gene content inference, the rooting of species trees, 
and the insights into metabolic evolution and ecological transitions they yield. Reconciliation analyses have elucidated the evolution of 
diverse microbial lineages, from Chlamydiae to Asgard archaea, shedding light on ecological adaptation, host–microbe interactions, and 
symbiotic relationships. However, there are many opportunities for broader application of the approach in microbiology. Continuing 
improvements to make reconciliation models more realistic and scalable, and integration of ecological metadata such as habitat, pH, 
temperature, and oxygen use offer enormous potential for understanding the rich tapestry of microbial life. 
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Introduction 
Phylogenetic trees are important in microbial ecology, because 
to understand an ecosystem you need to understand its evo-
lutionary history across multiple levels, ranging from genes to 
species to entire communities. For example, horizontal transfer 
of key genes between members of a community can have a large 
impact on organismal and community function as a whole [1]. 
The identification of such genes is often achieved via manual 
comparisons of species and gene trees to identify putative trans-
fers of interest. Recently, new gene tree–species tree reconciliation 
methods including RANGER-DTL 2 [2], TALE [3], and AleRax [4] 
have emerged that take this approach to the next level, allowing 
thousands of genes to be compared with species trees. 

These phylogenetic reconciliation methods have many appli-
cations in the study of microbial ecology and evolution, and 
indeed in biology more broadly, beyond the detection of horizontal 
gene transfer (HGT). For example, they can be used to infer more 
accurate species and gene trees and to root them. Furthermore, 
these inferences can be used to reconstruct ancestral gene 
content or to evaluate the evidence for coevolution between 
host and parasite or symbiont lineages. Reconciliation analyses 
have also been used to improve the reconstruction of ancestral 
protein sequences for use in evolutionary biochemistry and 
synthetic biology applications [5], and for studying whole-genome 
duplication in land plants [6]. 

As with any kind of data analysis, the accuracy of phylo-
genetic reconciliation depends on the algorithms used and the
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assumptions they make about the processes of evolution [7]. 
There has been substantial progress in method development in 
recent years [8], including the development of methods that can 
accommodate uncertainty in the evolutionary history of single 
genes [9–11], incomplete lineage sorting [12], and that allow the 
inferred rates of gene duplication, transfer, and loss (DTL) to 
vary across the species tree [4], resulting in more sophisticated 
software packages for performing these analyses. Here, we first 
review how reconciliation methods work and argue that they 
provide a natural framework for modelling microbial genome 
evolution. We then review a body of recent work that illustrates 
how reconciliation methods can provide insight into microbial 
ecology and evolution. 

Modelling microbial evolution 
The application of phylogenetics to the study of microbial ecology 
and evolution has proven powerful but does not come without 
limitations. With the advent of high-throughput sequencing, 
single-gene alignments often contain more taxa than sites 
(aligned amino acid or nucleotide positions) and may contain 
too little information with which to confidently resolve sequence 
relationships. Even well-supported gene trees are statistical 
estimates of evolutionary history and are not guaranteed to be 
correct. In particular, trees depend on the model of sequence 
evolution used to infer them, which describes the rates of different 
amino acid or nucleotide substitutions over time (substitution 
model). Numerous models are available, and model choice 
is important because poorly fitting models can result in the 
inference of an incorrect tree with high statistical support [7]. 
A specific issue for microbial evolution is that existing models, 
many of which have been in use for decades, were inferred from 
small datasets predominantly comprising closely related animals 
and plants. Therefore, these models may not be representative of 
prokaryotic evolution [13]. Recent work has aimed to develop 
more appropriate substitution models for prokaryotes and 
microbes more broadly, with packages such as MAMMaL, EDClus-
ter, and QMaker now available for estimating new models [13–15]. 

The importance of the substitution model in phylogenetics 
is exemplified by long-running debates in the literature about 
the deep structure of the tree of life, in which analyses of the 
same data using different models resulted in support for either 
two [16] or three [17] primary domains of life [18]. Best practice 
in phylogenetics is therefore to evaluate the fit of a range of 
substitution models to a given dataset and perform inference 
using the best-fitting model, as judged by statistical tests such 
as the Bayesian information criterion or the Akaike informa-
tion criterion. However, better-fitting models are generally more 
complex and less computationally tractable, such that difficult 
decisions have to be made about the trade-off between dataset 
size and model adequacy—the degree to which a model captures 
the evolutionary process that gave rise to the sequence data. The 
scalability of phylogenetic methods, both simple and complex, is 
an increasing challenge in microbial evolution research that aims 
to integrate the wealth of new genome data being generated by 
cultivation-free approaches. 

HGT, an important driver of microbial evolution [19], presents 
another modelling challenge. On generation-to-generation 
timescales, inheritance in prokaryotes is usually vertical, with 
transmission of the genome from mother to daughter cells [20]. 
This genetic process gives rise to the species tree describing the 
relationships among lineages. Among closely related genomes, 
HGT and homologous recombination can sometimes act to 
homogenize the gene pool and reinforce species boundaries [21]. 

However, HGT over longer genetic distances induces differences 
between gene trees, and between the gene trees and the species 
tree. The cumulative effect of gene transfer is that very few, if 
any, prokaryotic genes share the same history as the lineages 
they reside in [22], with the possible exception of very young 
(i.e. recently evolved) genes that have not yet experienced 
transfer. When viewed on a long evolutionary timescale, lineages 
of prokaryotes (and, perhaps, microbial eukaryotes) might be 
regarded as “ships of Theseus”, continuously remodelled by 
gene transfer despite clear continuity of inheritance from one 
generation to the next [23]. 

In addition to HGT, gene duplication and loss are fundamental 
processes that shape microbial genomes and need to be taken 
into account in any model. Duplicated genes are particularly 
common in eukaryotes [24] but are important for the emergence 
of novelty in all lifeforms, with duplicated genes experiencing less 
selective constraints that can enable the evolution of new func-
tions [25]. Ancient gene duplications underpinned the evolution 
of core molecular complexes of prokaryotic cells, including the 
membrane-bound ATP synthase [26, 27] and the signal recognition 
particle/receptor system for targeting proteins to the cell mem-
brane [28], but gene duplication also plays an important role in 
prokaryotes on more recent timescales. For example, exposure 
to antibiotics can promote the fixation of duplicate resistance 
genes [29] as a means of increasing gene dosage and therefore 
expression level [30], and gene duplication followed by functional 
divergence has been shown to drive the evolution of biosynthetic 
gene clusters that produce novel secondary metabolites in Strep-
tomyces [31]. 

Gene loss is frequent in both prokaryotes and eukaryotes 
and underpins the evolution of symbiotic and parasitic lin-
eages, including the nutritional endosymbionts of aphids [32], 
DPANN Archaea(“DPANN” Archaea were originally defined 
as a superphylum containing Diapherotrites, Parvarchaeota, 
Aenigmaarchaeota, Nanoarchaeota, and Nanohaloarchaeota [33], 
but now also contain other small-genome lineages such as Woe-
searchaeota and Pacearchaeota [34].) [33, 34], Patescibacteria/CPR 
[35, 36], and parasitic fungi such as Microsporidia [37]. Although 
the lost genes often encode metabolic functions that are no 
longer required following the shift to a host-associated lifestyle, 
it has also been suggested that periods of gene loss may facilitate 
subsequent adaptive evolution via the disruption of preexisting 
gene interaction networks [38]. 

A complete picture of microbial genome evolution therefore 
requires consideration of HGT, gene duplication, and loss. These 
processes can be captured via a conceptual model of microbial 
evolution along the lines of that depicted in Fig. 1A, in which genes 
evolve vertically along a species tree, sometimes experiencing 
gene duplications, losses, and transfers into other contemporary 
lineages. The questions we might want to ask of this model 
include what is the overarching species tree? What are the relative 
contributions of vertical transmission and horizontal transfer to 
genome evolution, and do these vary over the tree? Where in 
evolutionary history did gene duplications, transfers, and losses 
occur? Which gene families were present at each internal node on 
the tree, and consequently which ancestral metabolic capabilities 
and environmental adaptations can be inferred at each time 
point? 

The first of these questions—the topology of the species tree— 
can be addressed using concatenation or supertree approaches, 
whereby phylogenetic information is combined from multiple 
genes predicted to have been inherited vertically from a common 
ancestor (Fig. 1B). In the concatenation approach, initial phylo-
genetic analyses are used to identify a set of genes that, within
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Figure 1. Modelling microbial evolution using phylogenetic reconciliation. (A) A conceptual model of microbial genome evolution, showing an 
overarching species (or lineage) tree with three speciations and one extinction event. Genes evolve along this tree, occasionally jumping between 
lineages by HGT (arrow), being duplicated (triangle), or being lost (cross). A, B, and C are different species; a1 and a2 are homologous genes that are 
part of the broader gene family being analysed, and which are both found in species A. (B) Standard phylogenetic inference reconstructs the tree from 
the sequence alignment using a stochastic substitution model. Single gene alignments are often short and contain limited information, so that the 
inferred gene tree can contain weakly supported branches. To estimate the species tree, information can be aggregated from multiple genes using 
concatenation or supertree approaches. However, these approaches estimate the topology but in most cases not the root of the species tree, unless an 
outgroup is included [117] or a nonreversible model is used [118, 119]. (C) To model microbial evolution, we need to capture not only the evolution of 
gene sequences along gene trees (via a substitution model) but also the evolution of gene trees along the species tree (via a reconciliation model that 
describes rates of DTL). The result is a kind of “species tree aware” phylogenetics, in which information from many gene families is used to infer the 
species tree, and in turn the histories of the individual gene families are contextualized as a series of gene duplication, loss, and transfer events. 
Phylogenetic reconciliation can combine this information by jointly optimising the phylogenetic (substitution) and reconciliation likelihoods. In  the  
example gene tree in panel B, there is strong support for a sister relationship between the a2 and b2 genes (in the red clade), indicating a transfer event 
from Branch A to B on the species tree (Panel C); however, the sister relationship predicted for the a1 and b1 genes (in the blue clade) is weakly 
supported and likely incorrect, given the B + C relationship in the species tree. By incorporating information from the species tree, reconciled gene 
trees can show improved accuracy over the gene tree estimated from the sequence alignment alone [56]. 

the limits of statistical resolution, appear to have congruent 
evolutionary histories. Multiple sequence alignments for each of 
these genes are then stitched together and analysed as a single 
alignment, providing a simple way to pool phylogenetic informa-
tion. User-friendly tools for inferring trees from sequence align-
ments are now available, with some of the most popular packages 
including RAxML-NG [ 39], IQ-TREE [40], and PhyloBayes [41]. By 
contrast, supertree or “species tree” methods take a two-step 
approach: single gene trees are inferred separately for each gene 
(using a program such as RAxML-NG or IQ-TREE) and then their 
phylogenetic signal is combined using one of a variety of heuristic 
algorithms [42–44], with ASTRAL and related tools among the 
most popular and performant methods [45]. An advantage of 
concatenation methods is that longer alignments allow the use of 
better-fitting but more complex substitution models, which have 
repeatedly been shown to be important for accurate inference 
of phylogenetic trees in deep time [46]. Supertree methods can 
be faster and are more robust to incomplete lineage sorting and 
HGT among the input gene trees than is concatenation [47]. It 
is encouraging that the results of concatenation and supertree 
analyses are often concordant and, in recent years, have been 
converging on the topology of the tree of life. For example, con-
catenation of core genes and supertree analysis of broadly shared 
gene families both recovered a “two domains” tree of life [48], and 
taxonomic schemes inferred from large-scale prokaryotic trees 
inferred using concatenation and supertree methods were 98.2% 
identical [49]. 

Beyond species tree estimation, answering the other questions 
about microbial genome evolution posed above requires compar-
ison of gene and species trees. Manual comparison of individual 
gene trees with the species tree can identify putative gene trans-
fers, but the approach lacks power because any given gene tree 
can be explained by many different combinations of DTL events. 
The problem is compounded by phylogenetic uncertainty, further 

increasing the number of possible scenarios, and by phylogenetic 
error. Phylogenetic reconciliation systematically addresses these 
issues by modelling the evolution of gene families in the shared 
context of the overarching species tree, capturing both sequence 
evolution and higher-level processes of DTL. 

Figure 1C illustrates how the conceptual model of microbial 
evolution outlined above and in Fig. 1A can be operationalized 
using phylogenetic reconciliation methods. Reconciliations are 
mechanistically explicit scenarios that describe how a gene family 
has evolved on the species tree, starting with an origination event 
at a specific ancestral node, and followed by a series of events, 
each of which is mapped to a specific branch of the species tree. 
The reconciliation scenario ends with the members of the gene 
family observed in modern genomes arriving at the tips of the 
species tree. The set of possible events include vertical trans-
missions from ancestor to descendant node, gene duplications, 
transfers (from a donor to a recipient branch), and losses. For 
a given species tree and gene tree, many distinct reconciliation 
scenarios are possible, so we need criteria for choosing between 
them. One approach is to use the principle of parsimony: if we 
can assign relative costs to the different possible event types in 
advance (e.g. DTLs), we can find the reconciliation(s) that have 
the lowest summed cost [2, 50–53]. Alternatively, probabilistic 
model-based approaches can be used to estimate the rates of 
each type of event from the data using maximum likelihood or 
Bayesian methods [4, 9, 10, 54]. These are more computationally 
intensive but have the advantage that rates do not need to be set a 
priori. What we know of microbial ecology and evolution suggests 
that the relative rates of events vary across the tree of life. For 
example, duplications are more frequent in eukaryotes, trans-
fers in prokaryotes, and losses in host-associated lineages [55]. 
As such, model-based approaches that estimate the DTL rates 
directly from the data have clear advantages for studying micro-
bial evolution [56]. For example, reconciled gene trees inferred
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Table 1. A selection of available reconciliation software that can model DTL; for a more comprehensive overview of available packages, 
see [ 8]. 

Package Inference framework Input Remark Repository Reference 

RANGER-DTL2 Parsimony Single  gene tree for  
each multiple 
sequence alignment 
(MSA) 

Widely used parsimony 
reconciliation tool 

https://compbio.engr.uconn.edu/ 
software/RANGER-DTL/ 

[2] 

TreeFix DTL Parsimony Single  gene tree for  
each MSA 

Widely used parsimony 
reconciliation tool 

https://compbio.mit.edu/treefix-
dtl/index.html#download 

[11] 

ecceTERA Parsimony Sample of gene trees 
for each MSA 

Reconciliation of gene trees in a 
parsimony framework 

https://mbb.univ-montp2.fr/ 
MBB/subsection/softExec.php? 
soft=eccetera 

[52] 

ALE Probabilistic (maximum 
likelihood, Bayesian) 

Distribution of gene 
trees for each MSA 

Calculate species tree likelihood 
and sample reconciled gene trees 
in a probabilistic framework 

https://github.com/ssolo/ALE [10] 

TALE Probabilistic (Bayesian) Host species tree, 
single or distribution of 
symbiont and gene 
trees 

Implements a three-level 
hierarchical reconciliation 
approach: genes within 
symbionts within hosts 

https://github.com/hmenet/ 
TALE 

[3] 

GeneRax Probabilistic (maximum 
likelihood) 

MSA Directly estimates ML reconciled 
gene tree, good for very similar 
sequences 

https://github.com/BenoitMorel/ 
GeneRax 

[59] 

AleRax Probabilistic (maximum 
likelihood) 

Distribution of gene 
trees for each MSA 

Calculate species tree likelihood 
and sample reconciled gene trees 
in a probabilistic framework 

https://github.com/BenoitMorel/ 
AleRax 

[4] 

using the probabilistic reconciliation method ALE (amalgamated 
likelihood estimation [ 10]) were more accurate than those inferred 
with a range of parsimony methods [56, 57]. Thus, while analyses 
with a diversity of reconciliation methods have provided insights 
into microbial ecology and evolution (see practical applications 
discussed in the next section and Table 1), our recommendation 
is that probabilistic model-based methods should be used where 
possible (see Box 1). 

Box 1 Best practices in phylogenetic reconciliation. 

The most common phylogenetic reconciliation task is map-
ping the evolutionary histories of a collection of gene families 
onto a rooted species tree. We describe one workflow using 
AleRax, a fast and accurate state-of-the-art tool recently 
developed by some of us, but we encourage interested users 
to explore the range of tools available. Each of the steps 
below is itself a large topic, and we refer the interested 
reader to further literature throughout. The software repos-
itory is usually the best resource for information on how to 
run tools. For example, see https://github.com/BenoitMorel/ 
AleRax/wiki for AleRax or https://compbio.engr.uconn.edu/ 
software/RANGER-DTL/ for RANGER-DTL2. 

We will first infer the gene trees, and infer and root 
the species tree. We recommend using the most accurate 
methods for each of these steps, to the extent that time 
and computational resources allow. However, consider using 
faster, less accurate alignment and tree inference options or 
trading off dataset size when doing initial analyses, to save 
time and carbon emissions. 

1. Gene tree inference. 
a. Work with the nucleotide or protein sequences 

from a set of genomes of interest and label each 
with the genome of origin and the unique gene ID. 

For example, “ECOLI_XBV38467.” By default, AleRax 
will interpret what comes before the underscore as 
the species name, and what comes after as the gene 
ID, which will aid with mapping later. 

b. Cluster the sequences into gene families, either 
using established sets of homologous clusters (such 
as through COG or KEGG annotation of your set of 
genomes using eggNOG-mapper [123]), or a de novo 
gene clustering tool (such as mcl [124] or Broccoli 
[125]) Gene families must include all homologous 
genes, i.e. orthologues, paralogues, and xenologues. 

c. Align the gene families using e.g. muscle 5 [126]. 
d. Infer trees for each gene family using software such 

as IQ-TREE2 [40], RAxML-NG [39], PhyloBayes [41], 
or MrBayes [127]. If using a maximum likelihood 
program, tell it to write the bootstrap trees to an 
output file (e.g. “-wbtl” in IQ-TREE2), because it 
is these—not the maximum likelihood tree—that 
capture the uncertainty about evolutionary rela-
tionships within the gene family. If using a Bayesian 
tool, use a sample of trees from the posterior dis-
tribution to represent this uncertainty. We recom-
mend using a Bayesian tool if dataset size allows, 
because the conditional clade probabilities used in 
AleRax benefit from an accurate sample of the pos-
terior distribution, which the maximum likelihood 
bootstrap can only approximate. 

2. Species tree inference [47, 128]. 
a. Use a best-practice approach to species tree infer-

ence—either using a concatenate of universal 
markers or supertree methods (see main text). 
There are several established tools for obtaining 
marker genes, including BUSCO [129], GTDB-Tk 
[130], or OrthoFinder [131]. 
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b. Root the species tree based on prior evidence or 
using an appropriate rooting method; e.g. in a study 
of opisthokonts, you might root the tree between 
Holozoa and Holomycota. If you are unsure of the 
root position, if inferring the root is the goal of your 
study, or if the root position is controversial, you 
might use the reconciliation analysis itself to infer 
the root (see below). 

3. Gene tree–species tree reconciliation. 
a. Set up the AleRax gene families file, which specifies 

where the gene tree samples for each gene family 
are to be found (see AleRax wiki at https://github. 
com/BenoitMorel/AleRax/wiki/Running-AleRax# 
families-file). 

b. Run an AleRax analysis using the default model 
and a rooted fixed species tree, using 10 cores on 
a machine with MPI installed: 

mpiexec -np 10 alerax -f families.txt -s rooted_species_ 
tree.newick —species-tree-search SKIP. 

Top tips 

– For analyses of protein datasets on deep evolutionary 
timescales, we have found that deleting (or “trimming”) 
poorly aligned positions (e.g. using a tool such as BMGE 
or trimAl) can improve phylogenetic inference. 

– When selecting marker genes for species tree infer-
ence, it is important to choose genes that are single 
copy in most of the species analysed. In the case of 
duplicate genes, mixing orthologues and paralogues will 
confound the phylogenetic signal. 

– Two useful optional AleRax commands include –trim-
ratio X and –memory-savings. Not to be confused with 
“trimming” alignment sites, –trim-ratio X will discard 
some proportion X of the families with the largest num-
ber of clades in their sample of input trees; this can 
greatly reduce total runtime. For example, –trim-ratio 
0.05 will discard the 5% of families with the largest 
number of clades in the input tree sample. –memory-
savings will substantially reduce RAM usage at the cost 
of 10-20% additional runtime, which can be useful when 
analysing large datasets or when using machines with 
limited RAM. 

– Remove highly similar or identical sequences in gene 
family alignments. 

– Explore using branch-wise DTL models if the gene 
evolutionary process is highly heterogeneous (cf. 
https://github.com/BenoitMorel/AleRax/wiki/Running-
AleRax#model-parametrization). 

– Although the standard optimizer (GRADIENT) is fast 
compared to other options, it might struggle occasion-
ally to converge to a global optimum. If your analysis 
allows for more runtime, we recommend using the 
LBFGSB optimizer via the –rec-opt flag. 

Probabilistic reconciliation-based approaches to 
studying microbial evolution 
Probabilistic phylogenetic reconciliation can be considered a nat-
ural extension of traditional phylogenetic inference using substi-
tution models. Just as the parameters of the substitution model 

include the gene tree and the relative rates of change between 
different nucleotide or amino acid states, the parameters of the 
reconciliation model describe the rooted species tree and the rates 
of DTL events. Reconciliation scenarios are then equivalent to 
substitution histories, with each sampled history representing a 
specific series of evolutionary events giving rise to the observed 
gene tree (or sequence alignment). In both cases, we sum over 
all possible scenarios when calculating the likelihood. As in the 
case of substitution models, we can choose among different rec-
onciliation models that describe the evolutionary process in a 
more simple or complex way. For example, the simplest model 
in the phylogenetic reconciliation package AleRax [4] assumes a 
single set of DTL rate parameters for all genes and all branches of 
the species tree (Table 1). Alternatively, we might use a model in 
which rates vary among different clades or branches of the tree, 
potentially capturing important biological signal at the expense of 
additional model complexity and risk of overparameterization (i.e. 
the inclusion of additional unnecessary parameters that might 
increase computational cost and decrease accuracy). 

The input to phylogenetic reconciliation packages varies 
(Table 1). Some methods (e.g. Phyldog [58], GeneRax [59]) take 
gene family sequence alignments as input and infer the rooted 
species tree as well as the reconciliations by jointly optimizing 
the likelihood of the reconciliation and substitution models. 
Most current methods use a two-step approach. First, gene trees 
are inferred using a standard phylogenetic reconstruction tool 
(perhaps IQ-TREE [40], RAxML-NG [39], or PhyloBayes [41]), which 
are then provided as input to the reconciliation software. Due 
to this inherent uncertainty of gene trees, some packages [4, 
10] represent each gene family via a sample of plausible trees, 
obtained using bootstrapping or, in Bayesian analyses, by Markov 
Chain Monte Carlo sampling. Taking a sample of trees for each 
gene family captures this phylogenetic uncertainty, leading to 
reconciliations that better represent the potentially weak signal in 
the original sequence alignments [4]. The number of gene families 
reconciled in an analysis depends on the scientific question and 
can range from a single gene family to all available gene families 
on the set of genomes being analysed (see examples below). 

How phylogenetic reconciliation has been 
applied in microbial ecology and evolution 
The use of phylogenetic reconciliation methods in microbial ecol-
ogy and evolution has recently gained popularity. Reconciliation-
based approaches to ancestral gene content inference are partic-
ularly useful for studying microbial evolution because the recon-
structions naturally incorporate phylogenetic evidence for HGT 
(Fig. 2). Probabilistic reconciliation methods have the additional 
benefit that they can accommodate phylogenetic uncertainty by 
averaging over possible reconciliation histories when inferring 
ancestral gene repertoires. In what follows, we briefly summa-
rize some interesting applications that demonstrate how these 
methods can be used to link the tree of life and Earth history, 
reconstruct metabolic repertoires, infer past ecological transi-
tions, and reconstruct the evolution of biogeochemical cycles 
(Fig. 3A–D). To date, most probabilistic reconciliation studies in 
microbial evolution have used ALE [10], which was the first effi-
cient implementation of an algorithm that can account for gene 
tree uncertainty and model HGT. ALE has now been superseded by 
AleRax [4], which provides a faster, parallelizable and more flexi-
ble implementation of the original model, alongside other useful 
new features. In the examples below, we note when reconciliation 
packages other than ALE were used.
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Figure 2. Reconstructing ancestral gene content using phylogenetic reconciliation. By “drawing” the gene tree into the species tree, phylogenetic 
reconciliation provides an explicit estimate of gene presence at internal nodes of the species tree and therefore ancestral gene complements. One 
advantage of reconciliation-based approaches to ancestral gene content inference is that the method accounts for gene transfer, as illustrated here. 
Grey dots denote observed gene copies in extant species, blue dots denote inferred ancestral presence of a gene, blue Xs denote inferred ancestral 
absence of a gene. (A) Consider a gene family broadly distributed in extant taxa. On the basis of this phylogenetic distribution alone, it appears likely 
that the gene traces to the root of the species tree. (B) However, a comparison of the gene tree to the species tree suggests a recent horizontal 
acquisition of the gene on the right hand side of the species tree root; as a result, the gene is inferred to have originated more recently. Comparison of 
(A) and (B) illustrates why methods based on gene copy number distribution alone may overestimate ancestral gene contents. (C) However, 
incorporating phylogenetic information comes at a potential cost: Errors in the reconstructed gene tree may be interpreted as additional gene 
transfers, so that the evolutionary age of the gene is underestimated. This case illustrates why reconciliation-based methods may tend to 
underestimate ancestral gene repertoires. (D) Performing reconciliation analyses for all gene families in a dataset results in the inference of gene 
contents at ancestral nodes, with per-family presence probabilities based upon the reconciliation model. By taking all gene families above a given 
probability threshold and cross-referencing with information about gene functions (e.g. based upon the COG or KEGG databases), ancestral metabolic 
capabilities can be inferred. (E) The reconstructed history of gene origination, DTL events on each branch of the species tree can be used to quantify 
genome dynamics through time, identifying periods of genome remodelling and evolutionary innovation. This figure is based on that of [120] with  
some modifications. 

The origin of eukaryotes and the tree of life 
Phylogenetic reconciliation has recently been used to reconstruct 
ancestral gene repertoires among the Asgard archaea, the 
archaeal lineage most closely related to eukaryotes [60]. The 
analysis indicated that rates of gene duplication were higher in 
two Asgard lineages, the Lokiarchaeales and Hodarchaeales, the 
latter of which appear to be the closest living archaeal relatives 
of the eukaryotic cell. This result suggests that some of the 
genome dynamics that distinguish prokaryotes and eukaryotes 
(such as a higher rate of gene duplication in eukaryotes) might 
have predated the prokaryote-to-eukaryote transition [60], also 
recently suggested by other analyses [61]. The analysis also 
suggested that the archaeal lineage ancestral to eukaryotes 
likely lost the capacity for autotrophic growth using genes of 
the Wood-Ljungdahl pathway prior to entering symbiosis with 
the bacterial ancestor of the mitochondrion, arguing against 
eukaryogenesis scenarios in which the archaeal partner was a 
hydrogen-dependent autotroph [60]. 

Looking still further back in evolutionary history, phyloge-
netic reconciliation was used to root the bacterial phylogeny 
(Fig. 3A and B) [56]. The advantage of this approach is that the bac-
terial tree could be rooted without relying on a distant archaeal 
outgroup that may introduce long-branch attraction artefacts 
and which some have argued may not even be an outgroup to 
bacteria [62, 63]. Similar considerations have motivated the use 
of reconciliation methods to infer the root of the archaeal [64] 
and eukaryotic [65] domains (Fig. 3A). The root position inferred 
[56] provided support for a deep divide between the Terrabacteria 
[66, 67] and Gracilicutes, at odds with recent inferences that the 
Patescibacteria/CPR are basal in the bacterial domain [68, 69]. 
Instead, this group of ultrasmall, reduced bacteria was recovered 
as sister to the Chloroflexota within the Terrabacteria, in agree-
ment with other recent inferences [70–73]. The analysis also sug-
gested a loss of 0.47–0.56 Mb during reductive evolution along the 
Patescibacteria/CPR stem lineage. Interestingly, another recent 
reconciliation analysis [74] indicated that reductive evolution in
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Figure 3. Inferences of microbial evolution from reconciliation analyses. (A) Phylogenetic reconciliation can be used to root trees without the use of an 
outgroup, which is useful when the outgroup is distant—as is the case when rooting entire domains of life—or when no outgroup is available, as is the 
case for the universal tree. The schematic tree shown in A is based on a recent timetree, [121] whereas ancestral gene sets were inferred in separate 
studies [56, 64] and are based on distinct approaches. (B) Reconciliation-based ancestral genome reconstruction has been used to infer the gene 
repertoires of key ancestors across the tree of life, including the archaea, bacteria, Chlamydiae [83] and Rickettsiales [82]. (C) Reconciling gene trees 
with a dated species tree enabled the earliest steps in the sulphur cycle to be discerned [89]. (D) Combining reconciliation analysis with machine 
learning classification of oxygen adaptation [95] enabled transitions in oxygen use to be mapped across the bacterial phylogeny; the earliest 
transitions were inferred to have occurred among the Cyanobacteriota, Chloroflexota, and Armatimonadota. (E) Three-level reconciliation models 
capturing host, endosymbiont, and gene trees can identify nested cases of host–symbiont coevolution, such as transfer of niche-relevant genes 
between endosymbionts of Cinara aphids [3, 104]. (F) Reconciliation of host and viral trees provided evidence for frequent host switching and 
within-host viral speciation in herpesviruses [122]; this panel is inspired by and adapted from Fig. 1 of the original study [122]. Although probabilistic 
reconciliation methods are powerful, results depend on the assumptions of the model used, the quality of the genomic information available and the 
taxon sampling, and it is likely that the view of early microbial evolution depicted here will be revised and updated as new, better-fitting models are 
developed and applied to these enduring questions. 

Patescibacteria/CPR also continued in parallel more recently in 
their evolution. 

The reconciliation analysis used to root Bacteria [56] indi-
cated that roughly two-thirds of inferred gene transmissions were 
vertical (from ancestor to descendant), whereas one-third were 

horizontal on the species tree, identifying both a significant ver-
tical and horizontal component of deep bacterial evolution [19]. 
Based on the reconstructed ancestral gene repertoire, the last 
bacterial common ancestor was rod-shaped, flagellated, motile, 
and diderm; i.e. it possessed a double membrane, suggesting that
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the monoderm (single-membrane) phenotypes of bacteria such 
as the Chloroflexota, Patescibacteria, Actinomycetota, and most 
Bacillota are the result of multiple independent losses of the outer 
membrane during terrabacterial evolution [71, 75]. 

Genome evolution associated with ecological 
adaptation 
Reconciliation analyses have also been used to study changes 
in gene content during historical periods of ecological adapta-
tion, such as changes in niche or transitions from free-living 
to host-associated lifestyles. One of the most striking ecologi-
cal transitions in evolutionary history was the evolution of the 
Haloarchaea—aerobic halophiles—from anaerobic methanogenic 
ancestors, and several reconciliation studies have investigated the 
genomic changes associated with this transition [76, 77]. These 
analyses showed that adaptation to halophilic conditions may 
have occurred at least four times in different archaeal lineages, 
with some niche-relevant genes shared among these groups by 
HGT, and that a reverse transition—from salt-tolerant to more 
moderate conditions—may have occurred in the Hikarchaeia, 
close relatives of the Haloarchaea [77]. 

Reconciliation-based reconstruction of ancestral gene reper-
toires was performed in Woesearchaeota [78], a lineage within 
the DPANN Archaea with larger genomes and greater metabolic 
versatility than their sister clade, the Pacearchaeota. The authors 
reported that the common ancestor of the two groups also had 
a small genome, with the acquisition of new genes, primarily via 
HGT, driving an increase in metabolic versatility, and transitions 
between host-associated and potentially free-living lifestyles in 
Woesearchaeota [78]. This study demonstrates the utility of track-
ing genome expansion and contraction across the tree of life using 
reconciliation methods. 

Phylogenetic reconciliation has been used [79] to trace  the  
genomic basis of niche partitioning between non-ammonia oxi-
dising Thaumarchaeota living in acidic topsoils and subsoils in 
Scotland. The divergence between topsoil and subsoil-dwelling 
lineages corresponded to a deep phylogenetic split. A progres-
sive expansion of gene content was observed throughout the 
evolution of the topsoil lineage, resulting in the extant microbes 
possessing significantly larger genomes than the subsoil lineage. 
This work also identified the horizontal acquisition of peptidases, 
carbohydrate-active enzymes, and an acid-tolerant ATP synthase 
as factors associated with ecological adaptation to topsoil. 

In a different study, the same authors [80] used this approach 
to infer the acquisition of metabolic traits across the ecolog-
ical history of Thermoplasmatota (previously the superclass 
Diaforarchaea [81]), an archaeal phylum that has expanded into a 
myriad of diverse ecosystems, including hot spring, marine, soil, 
sediment, and rumen environments. The reconciliation analysis 
revealed that essential metabolisms such as aerobic respiration 
and adaptation to acidic environments were likely acquired 
independently multiple times in the phylum’s history associated 
with the colonisation of new ecological niches [80]. 

Reconciliation methods have also been used to study the evo-
lution of eukaryotic host association in the Chlamydiae and Rick-
ettsiales [82, 83]. Reconstruction of the early evolution of Chlamy-
diae [83] suggested that the common ancestor was a facultative 
anaerobe that already had many of the genes needed to infect 
eukaryotic hosts (Fig. 3B). 

The last common ancestor of Rickettsiales was predicted to 
be free-living or facultatively host-associated, rather than the 
obligate host association usually associated with members of 
this order. Evolution towards host association was shown to 

involve a general reduction in central metabolic capacity. Notably, 
the transition to host association corresponded with the loss 
of genes involved in biofilm formation and exogenous sulphate 
and ammonium uptake, and the gain of ATP/ADP translocase—a 
hallmark enzyme of energy parasitism. Furthermore, evolution 
towards intracellularity corresponded with a loss of amino 
acid biosynthesis. Conversely, evolution towards ectosymbiosis 
corresponded with the gain of adhesin production and export 
genes [82]. 

In addition to analyses of individual lineages, a number of 
reconciliation studies have focused on identifying large collec-
tions of HGT events in order to identify underlying genetic and 
ecological structure [84–86]. From a dataset of 960 000 trees, the 
parsimony method RANGER-DTL 2 was used to generate a dataset 
of ∼2.4 million recent transfer events [86]. From these data, 
they observed widespread HGT with transfers inferred in 66% of 
gene trees. From the perspective of pangenomes [87], “accessory” 
genes (genes encoded by only some members of a species) were 
more frequently transferred than “core” genes (genes found in all 
members of a species). Rates of transfer also differed markedly 
by gene functional category and lineage, with highly abundant 
and co-occurring lineages exchanging the most genes [86]. These 
insights might inform the development of increasingly realistic 
reconciliation models. 

Linking microbial evolution with Earth history 
Present-day biogeochemical cycles are to a large extent driven by 
microbial metabolism, and one emerging use of phylogenetic 
reconciliation is to reconstruct their historical assembly by 
determining the origins of the associated genes and metabolic 
pathways. One study [88] reconciled gene trees for nitrogen-
metabolising enzymes with a dated species tree using the 
parsimony reconciliation method AnGST [51], reconstructing 
the evolution of the nitrogen cycle by dating the origin of each 
step. Their results suggested that nitrogen fixation mediated 
by molybdenum-dependent nitrogenases evolved early in life’s 
history (in the Archaean period, prior to 2.7Ga), whereas 
enzymes for denitrification evolved later, and proliferated 
widely by HGT after the Great Oxidation Event [88]. A similar 
analysis of key enzymes of sulphur metabolism using AnGST 
and another parsimony method, ecceTERA [52], indicated 
that energy conversion via sulphite reduction (or sulphide 
oxidation) was likely the earliest step in the evolution of the 
sulphur cycle [89]. ecceTERA [52] has also been used to map 
genes for phosphorus uptake and metabolism onto the tree of 
life, in order to reconstruct the bioavailability of phosphorus 
compounds through geological time [90]. The results suggested 
that phosphate uptake using a phosphate/sodium symporter 
was the earliest means of phosphorus acquisition among extant 
prokaryotes, consistent with the hypothesis that concentrations 
of environmental phosphate were relatively high in the Archaean 
period [91]. 

Reconciliation analysis was recently used to confirm that 2-
methylhopane is a reliable biomarker for early cyanobacterial 
evolution, which had been contested based upon the presence 
of the biosynthetic gene in some Alphaproteobacteria [92]. A 
reconciliation analysis using the parsimony algorithm Notung 
[53] showed that the gene was acquired relatively recently by this 
latter group, suggesting that 2-methylhopane remains a reliable 
indicator of Cyanobacteria in older rocks [93]. 

One of the most significant biospheric transitions in Earth 
history was the Great Oxidation Event, when oxygen began to 
accumulate in the atmosphere, and the planet transitioned from
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a predominantly anaerobic to an oxidised world [94]. We recently 
combined machine learning with phylogenetic reconciliation to 
reconstruct the history of oxygen metabolism in Bacteria [95]. 
We used machine learning to learn the relationship between 
gene content and aerobic metabolism in modern taxa, then used 
reconciliation to trace the evolution of oxygen use phenotypes 
through time. Our analyses suggested that aerobic respiration 
evolved before the Great Oxidation Event but did not become 
widespread until the oxidation of the atmosphere [95], providing 
additional time constraints for inferring the geological history of 
Bacteria (Fig. 3D). 

More broadly, several reconciliation methods have recently 
been developed that use the relative age constraints implied 
by patterns of donor-to-recipient gene transfer to improve the 
accuracy of molecular clock inferences for microbes, which have 
traditionally been hindered by the lack of an interpretable fossil 
record [96, 97]. Although the application of these methods is in its 
infancy, they promise to substantially refine the timescale for the 
early evolution of life. 

These examples illustrate how phylogenetic reconciliation 
can provide new perspectives on evolutionary questions that 
have proven intractable based upon the fossil or biogeochemical 
records alone. However, the reverse is also true, where fossil or 
biogeochemical information can inform reconciliation—e.g. by 
providing age constraints that have to be taken into consideration 
by the reconciliation model [98], thus reflecting the interplay 
between microbial evolution and Earth history. 

Host-symbiont coevolution 
Although most attention has been focused on reconciliation 
of gene and species trees, phylogenetic reconciliation has the 
potential to be applied to other systems with similar hierarchical 
relationships [8]. Of potential interest to microbial ecologists is 
the use of phylogenetic reconciliation to model host-symbiont 
coevolution and the evolution of microbiome composition over 
time, where the symbionts are the “genes” and the host is the 
“species.” The approach could be used to determine the extent 
and timescale of host-symbiont coevolution and to identify host 
(or symbiont) switching events [99, 100]. This has already been 
demonstrated for obligate symbiont–host relationships such as 
Wolbachia and arthropod hosts [101]. In a more complex microbial 
ecosystem, Groussin et al. [102] used phylogenetic reconciliation 
to show how diet and host evolution shape gut bacteria over 
time, supporting a role for cospeciation in mammalian gut 
microbiome evolution and suggesting connections to human 
immune diseases. By contrast, recent reconciliation analyses by 
Maestri et al. [103] suggested that mammalian coronaviruses 
arose recently and have been horizontally transmitted among 
distantly related hosts, finding no evidence for long-term 
codiversification during mammalian evolution. A promising new 
approach for analysing cases of host-symbiont coevolution is the 
TALE algorithm [3], which implements a three-level reconciliation 
model capturing dependencies between host lineages, their 
symbiotic bacteria, and symbiont genes. Initial application of this 
method showed that it was better able to identify gene transfers 
of niche-relevant metabolic genes among bacterial symbionts of 
Cinara aphids than a simpler two-level (symbiont-gene) model [3, 
104] (Fig. 3E). 

Viral evolution 
Reconciliation methods provide a useful framework for investi-
gating cospeciation and coevolution between viruses and their 
hosts, but an interesting open question is whether, and to what 

extent, the conceptual model of microbial evolution implicit in 
reconciliation analyses (Fig. 1A) is applicable to the evolution of 
viruses more generally. Is it appropriate to think of viral lin-
eages that retain coherence through time despite gene transfer 
or is viral evolution sufficiently dynamic that the imposition of 
an overarching lineage tree hinders, rather than aids, concep-
tual understanding, and practical phylogenetic inference? Recent 
advances in viral taxonomy—and the recognition of several major 
lineages of viruses, each united by shared core genes [105, 106]— 
may provide a framework with which to test these questions 
empirically. Recent work suggests that a lineage tree may provide 
a useful structure for the study of at least some lineages, including 
the large DNA viruses (Nucleocytoviricota, [107]). A practical chal-
lenge to reconciliation-based analyses of viral evolution is the dif-
ficulty of inferring reliable trees for viral genes, which often con-
tain long branches that can be difficult to resolve accurately and 
might exhibit insufficient phylogenetic signal due to relatively 
short genomes in conjunction with an extremely large number of 
sequences [108]. However, reconciliation approaches are valuable 
to study virus–host coevolution and to investigate viral genome 
dynamics over shorter evolutionary timeframes and at shallow 
taxonomic levels. For example, a time-resolved reconciliation-
based approach was recently implemented to determine to what 
extent herpesviruses evolve by coevolution (Fig. 3F), revealing that 
other mechanisms such as intrahost speciation, virus loss, and 
host switches are much more prevalent than anticipated previ-
ously (Brito et al., 2021 [122]). In another study, a phylogenetic rec-
onciliation workflow combining the parsimony methods TreeFix-
DTL [11] and RANGER-DTL [2] was used to identify recombination 
events in rapidly evolving viruses like SARS-CoV-2 [109]. 

Using machine learning to improve reconciliation 
analyses 
Reconciliation analyses face a major scaling challenge to handle 
the enormous amount of genome data now available for known 
microbial lineages, both in the reconciliation step itself but also in 
the phylogenetic inference of the underlying gene trees. However, 
progress is rapid in this field, and the even more rapid devel-
opment of machine learning methods offers new opportunities 
to accelerate phylogenetic and reconciliation analyses without 
compromising accuracy. New methods that use machine learning 
to rapidly select the best-fit phylogenetic model [110, 111], to 
optimise analysis settings [112, 113], to efficiently search tree 
space [114], and to inexpensively predict bootstrap support val-
ues [115] will all benefit phylogenetic inference. One reason for 
the efficiency of these new methods is that machine learning 
algorithms can predict the results of computationally expen-
sive likelihood calculations using cheap-to-compute input fea-
tures, such as parsimony (gene) trees, which exhibit high feature 
importance in recent studies (70%–80%; [112, 115]). An analogous 
approach may prove beneficial for reconciliation, where compu-
tationally cheap input features derived from parsimony reconcil-
iations could be used to predict the results of a full probabilistic 
analysis. 

Conclusions and prospects for progress 
Phylogenetic reconciliation methods have emerged from the evo-
lutionary biology community and are now becoming increasingly 
popular in the analysis of microbial genomes. As our examples 
demonstrate, reconciliation methods provide a natural analytical 
framework for studying microbial ecology and evolution that, 
in our view, is currently underutilized. We expect that these 
approaches will become more popular and deliver new insights
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into microbial diversity. There are underlying similarities between 
the substitution models used in traditional phylogenetics 
and probabilistic models for phylogenetic reconciliation, and 
just as with standard phylogenetic analyses, reconciliation 
studies will benefit from the development of improved models 
that better capture the patterns and processes of microbial 
evolution. 

In addition to helping to speed up pipelines, it may also be 
possible to use machine learning in combination with reconcil-
iation analyses to better model key aspects of microbial ecology 
and evolution. A current limitation of reconciliation methods (and 
indeed, most phylogenetic approaches) is that they do not con-
sider coevolutionary interactions among gene families due to the 
computational complexity of doing so. Existing work that models 
gene co-occurrence and mutual avoidance patterns in modern 
bacterial pangenomes [116] might be extended to model inter-
actions through time, in order to improve inference of ancestral 
gene complements. Machine learning may also be of use in infer-
ring ancestral metabolic capabilities based upon reconstructed 
gene complements, as we demonstrated recently [95]. Beyond 
the origin of aerobic respiration, other metabolic transitions— 
such as the origin of photosynthesis—could be studied using the 
same approaches, raising the possibility of reconstructing ancient 
ecologies and biogeochemical cycles by integrating the genomic, 
fossil, and isotopic records, providing a powerful new statistical 
framework for studying microbial ecology and evolution through 
deep time. 

Conflicts of interest 
None declared. 

Funding 
This work was supported by the Gordon and Betty Moore Foun-
dation through grant GBMF9741 to T.A.W., A.S., L.L.S., and G.J.S. 
Furthermore, G.J.S., L.L.S., and L.E. received funding from the 
European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 714774, GENECLOCKS to G.J.S. and 
L.S. and No. 803151 to L.E.). A.S. has received funding from the 
European Research Council (ERC) under the European Union’s 
Horizon 2020 research and innovation programme (grant agree-
ment No. 947317, ASymbEL), the Simons Foundation (735929LPI 
https://doi.org/10.46714/735929LPI)), A.A.D. and P.H. were sup-
ported by an Australian Research Council Laureate Fellowship 
(grant FL150100038). L.E. was also supported by a grant from 
the Simons Foundation (No. 812811). This work was financially 
supported by the European Union’s Horizon Europe ERA Chair 
program under grant agreement No. 101087081 (Comp-Biodiv-
GR). C.G.R. was supported by a Royal Society University Research 
Fellowship (URF150571). 

Data availability 
Data sharing not applicable to this article as no datasets were 
generated or analysed during the current study. 

References 
1. Lindell D, Sullivan MB, Johnson ZI et al. Transfer of photo-

synthesis genes to and from Prochlorococcus viruses. Proc 
Natl Acad Sci USA 2004;101:11013–8. https://doi.org/10.1073/ 
pnas.0401526101 

2. Bansal MS, Kellis M, Kordi M et al. RANGER-DTL 2.0: rigor-
ous reconstruction of gene-family evolution by duplication, 
transfer and loss. Bioinformatics 2018;34:3214–6. https://doi. 
org/10.1093/bioinformatics/bty314 

3. Menet H, Trung AN, Daubin V et al. Host-symbiont-gene phylo-
genetic reconciliation. PeerCommunityJournal 2023;3. https://doi. 
org/10.24072/pcjournal.273 

4. Morel B, Williams TA, Stamatakis A et al. AleRax: a tool 
for gene and species tree co-estimation and reconciliation 
under a probabilistic model of gene duplication, transfer, and 
loss. Bioinformatics 2024;40:btae162. https://doi.org/10.1093/ 
bioinformatics/btae162 

5. Blanquart S, Groussin M, Le Roy A et al. Resurrection of 
ancestral malate dehydrogenases reveals the evolutionary his-
tory of Halobacterial proteins: deciphering gene trajectories 
and changes in biochemical properties. Mol Biol Evol 2021;38: 
3754–74. https://doi.org/10.1093/molbev/msab146 

6. Zwaenepoel A, Van de Peer Y. Inference of ancient whole-
genome duplications and the evolution of gene duplication 
and loss rates. Mol Biol Evol 2019;36:1384–404. https://doi. 
org/10.1093/molbev/msz088 

7. Kapli P, Flouri T, Telford MJ. Systematic errors in phyloge-
netic trees. Curr Biol 2021;31:R59–64. https://doi.org/10.1016/j. 
cub.2020.11.043 

8. Menet H, Daubin V, Tannier E. Phylogenetic reconciliation. PLoS 
Comput Biol 2022;18:e1010621. https://doi.org/10.1371/journal. 
pcbi.1010621 

9. Akerborg O, Sennblad B, Arvestad L et al. Simultaneous 
Bayesian gene tree reconstruction and reconciliation analysis. 
Proc Natl Acad Sci USA 2009;106:5714–9. https://doi.org/10.1073/ 
pnas.0806251106 

10. Szöllõsi GJ, Rosikiewicz W, Boussau B et al. Efficient exploration 
of the space of reconciled gene trees. Syst Biol 2013;62:901–12. 
https://doi.org/10.1093/sysbio/syt054 

11. Bansal MS, Wu Y-C, Alm EJ et al. Improved gene tree error 
correction in the presence of horizontal gene transfer. Bioinfor-
matics 2015;31:1211–8. https://doi.org/10.1093/bioinformatics/ 
btu806 

12. Mishra S, Smith ML, Hahn MW. reconcILS: a gene tree-species 
tree reconciliation algorithm that allows for incomplete lineage 
sorting. bioRxiv 2024; 2023.11.03.565544. 

13. Minh BQ, Dang CC, Vinh LS et al. QMaker: fast and 
accurate method to estimate empirical models of protein 
evolution. Syst Biol 2021;70:1046–60. https://doi.org/10.1093/ 
sysbio/syab010 

14. Susko E, Lincker L, Roger AJ. Accelerated estimation of fre-
quency classes in site-heterogeneous profile mixture models. 
Mol Biol Evol 2018;35:1266–83. https://doi.org/10.1093/molbev/ 
msy026 

15. Schrempf D, Lartillot N, Szöllösi G. Scalable empirical mix-
ture models that account for across-site compositional hetero-
geneity. Mol Biol Evol 2020;37:3616–31. https://doi.org/10.1093/ 
molbev/msaa145 

16. Lake JA, Henderson E, Oakes M et al. Eocytes: a new ribosome 
structure indicates a kingdom with a close relationship to 
eukaryotes. Proc Natl Acad Sci USA 1984;81:3786–90. https://doi. 
org/10.1073/pnas.81.12.3786 

17. Woese CR, Kandler O, Wheelis ML. Towards a natural system 
of organisms: proposal for the domains archaea, bacteria, and 
Eucarya. Proc Natl Acad Sci USA 1990;87:4576–9. https://doi. 
org/10.1073/pnas.87.12.4576 

18. Eme L, Spang A, Lombard J et al. Archaea and the origin 
of eukaryotes. Nat Rev Microbiol 2017;15:711–23. https://doi. 
org/10.1038/nrmicro.2017.133

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ej/article/18/1/w
rae129/7713227 by U

niversity of Aberdeen user on 27 August 2024

https://doi.org/10.46714/735929LPI
https://doi.org/10.46714/735929LPI
https://doi.org/10.46714/735929LPI
https://doi.org/10.46714/735929LPI
https://doi.org/10.1073/pnas.0401526101
https://doi.org/10.1073/pnas.0401526101
https://doi.org/10.1073/pnas.0401526101
https://doi.org/10.1073/pnas.0401526101
https://doi.org/10.1093/bioinformatics/bty314
https://doi.org/10.1093/bioinformatics/bty314
https://doi.org/10.1093/bioinformatics/bty314
https://doi.org/10.1093/bioinformatics/bty314
https://doi.org/10.1093/bioinformatics/bty314
Peer Community Journal
https://doi.org/10.24072/pcjournal.273
https://doi.org/10.24072/pcjournal.273
https://doi.org/10.24072/pcjournal.273
https://doi.org/10.24072/pcjournal.273
https://doi.org/10.1093/bioinformatics/btae162
https://doi.org/10.1093/bioinformatics/btae162
https://doi.org/10.1093/bioinformatics/btae162
https://doi.org/10.1093/bioinformatics/btae162
https://doi.org/10.1093/bioinformatics/btae162
https://doi.org/10.1093/molbev/msab146
https://doi.org/10.1093/molbev/msab146
https://doi.org/10.1093/molbev/msab146
https://doi.org/10.1093/molbev/msab146
https://doi.org/10.1093/molbev/msab146
https://doi.org/10.1093/molbev/msz088
https://doi.org/10.1093/molbev/msz088
https://doi.org/10.1093/molbev/msz088
https://doi.org/10.1093/molbev/msz088
https://doi.org/10.1093/molbev/msz088
https://doi.org/10.1016/j.cub.2020.11.043
https://doi.org/10.1016/j.cub.2020.11.043
https://doi.org/10.1016/j.cub.2020.11.043
https://doi.org/10.1016/j.cub.2020.11.043
https://doi.org/10.1016/j.cub.2020.11.043
https://doi.org/10.1371/journal.pcbi.1010621
https://doi.org/10.1371/journal.pcbi.1010621
https://doi.org/10.1371/journal.pcbi.1010621
https://doi.org/10.1371/journal.pcbi.1010621
https://doi.org/10.1371/journal.pcbi.1010621
https://doi.org/10.1073/pnas.0806251106
https://doi.org/10.1073/pnas.0806251106
https://doi.org/10.1073/pnas.0806251106
https://doi.org/10.1073/pnas.0806251106
https://doi.org/10.1093/sysbio/syt054
https://doi.org/10.1093/sysbio/syt054
https://doi.org/10.1093/sysbio/syt054
https://doi.org/10.1093/sysbio/syt054
https://doi.org/10.1093/sysbio/syt054
https://doi.org/10.1093/bioinformatics/btu806
https://doi.org/10.1093/bioinformatics/btu806
https://doi.org/10.1093/bioinformatics/btu806
https://doi.org/10.1093/bioinformatics/btu806
https://doi.org/10.1093/bioinformatics/btu806
https://doi.org/10.1093/sysbio/syab010
https://doi.org/10.1093/sysbio/syab010
https://doi.org/10.1093/sysbio/syab010
https://doi.org/10.1093/sysbio/syab010
https://doi.org/10.1093/sysbio/syab010
https://doi.org/10.1093/molbev/msy026
https://doi.org/10.1093/molbev/msy026
https://doi.org/10.1093/molbev/msy026
https://doi.org/10.1093/molbev/msy026
https://doi.org/10.1093/molbev/msy026
https://doi.org/10.1093/molbev/msaa145
https://doi.org/10.1093/molbev/msaa145
https://doi.org/10.1093/molbev/msaa145
https://doi.org/10.1093/molbev/msaa145
https://doi.org/10.1093/molbev/msaa145
https://doi.org/10.1073/pnas.81.12.3786
https://doi.org/10.1073/pnas.81.12.3786
https://doi.org/10.1073/pnas.81.12.3786
https://doi.org/10.1073/pnas.81.12.3786
https://doi.org/10.1073/pnas.87.12.4576
https://doi.org/10.1073/pnas.87.12.4576
https://doi.org/10.1073/pnas.87.12.4576
https://doi.org/10.1073/pnas.87.12.4576
https://doi.org/10.1038/nrmicro.2017.133
https://doi.org/10.1038/nrmicro.2017.133
https://doi.org/10.1038/nrmicro.2017.133
https://doi.org/10.1038/nrmicro.2017.133


Phylogenetic reconciliation | 11

19. Doolittle WF. Phylogenetic classification and the universal 
tree. Science 1999;284:2124–8. https://doi.org/10.1126/ 
science.284.5423.2124 

20. Maddison WP. Gene trees in species trees. Syst Biol 1997;46: 
523–36. https://doi.org/10.1093/sysbio/46.3.523 

21. Diop A, Torrance EL, Stott CM et al. Gene flow and intro-
gression are pervasive forces shaping the evolution of bacte-
rial species. Genome Biol 2022;23:239. https://doi.org/10.1186/ 
s13059-022-02809-5 

22. Dagan T, Martin W. Ancestral genome sizes specify the mini-
mum rate of lateral gene transfer during prokaryote evolution. 
Proc Natl Acad Sci USA 2007;104:870–5. https://doi.org/10.1073/ 
pnas.0606318104 

23. Doolittle WF. W. Ford Doolittle. Curr Biol 2004;14:R176–7. 
https://doi.org/10.1016/j.cub.2004.02.010 

24. Lynch M, Conery JS. The origins of genome complexity. Science 
2003;302:1401–4. https://doi.org/10.1126/science.1089370 

25. Ohno S. Evolution by Gene Duplication. Berlin/Heidelberg, Ger-
many: Springer-Verlag, 1970. 

26. Gogarten JP, Kibak H, Dittrich P et al. Evolution of the vac-
uolar H+-ATPase: implications for the origin of eukaryotes. 
Proc Natl Acad Sci USA 1989;86:6661–5. https://doi.org/10.1073/ 
pnas.86.17.6661 

27. Iwabe N, Kuma K, Hasegawa M et al. Evolutionary relationship 
of archaebacteria, eubacteria, and eukaryotes inferred from 
phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 
1989;86:9355–9. https://doi.org/10.1073/pnas.86.23.9355 

28. Nagai K, Oubridge C, Kuglstatter A et al. Structure, function 
and evolution of the signal recognition particle. EMBO J 2003;22: 
3479–85. https://doi.org/10.1093/emboj/cdg337 

29. Maddamsetti R, Yao Y, Wang T et al. Duplicated antibiotic 
resistance genes reveal ongoing selection and horizontal gene 
transfer in bacteria. Nat Commun 2024;15:1449. https://doi. 
org/10.1038/s41467-024-45638-9 

30. Dhar R, Bergmiller T, Wagner A. Increased gene dosage plays 
a predominant role in the initial stages of evolution of dupli-
cate TEM-1 beta lactamase genes. Evolution 2014;68:1775–91. 
https://doi.org/10.1111/evo.12373 

31. Booth TJ, Bozhüyük KAJ, Liston JD et al. Bifurcation drives 
the evolution of assembly-line biosynthesis. Nat Commun 
2022;13:3498. https://doi.org/10.1038/s41467-022-30950-z 

32. McCutcheon JP, Moran NA. Extreme genome reduction in sym-
biotic bacteria. Nat Rev Microbiol 2011;10:13–26. https://doi. 
org/10.1038/nrmicro2670 

33. Rinke C, Schwientek P, Sczyrba A et al. Insights into the phy-
logeny and coding potential of microbial dark matter. Nature 
2013;499:431–7. https://doi.org/10.1038/nature12352 

34. Castelle CJ, Wrighton KC, Thomas BC et al. Genomic expansion 
of domain archaea highlights roles for organisms from new 
phyla in anaerobic carbon cycling. Curr Biol 2015;25:690–701. 
https://doi.org/10.1016/j.cub.2015.01.014 

35. Brown CT, Hug LA, Thomas BC et al. Unusual biology across a 
group comprising more than 15% of domain bacteria. Nature 
2015;523:208–11. https://doi.org/10.1038/nature14486 

36. Jaffe AL, Castelle CJ, Matheus Carnevali PB et al. The rise 
of diversity in metabolic platforms across the candidate 
phyla radiation. BMC Biol 2020;18:69. https://doi.org/10.1186/ 
s12915-020-00804-5 

37. Katinka MD, Duprat S, Cornillot E et al. Genome sequence and 
gene compaction of the eukaryote parasite Encephalitozoon cuni-
culi. Nature 2001;414:450–3. https://doi.org/10.1038/35106579 

38. Albalat R, Cañestro C. Evolution by gene loss. Nat Rev Genet 
2016;17:379–91. https://doi.org/10.1038/nrg.2016.39 

39. Kozlov AM, Darriba D, Flouri T et al. RAxML-NG: a fast, 
scalable and user-friendly tool for maximum likelihood phy-
logenetic inference. Bioinformatics 2019;35:4453–5. https://doi. 
org/10.1093/bioinformatics/btz305 

40. Minh BQ, Schmidt HA, Chernomor O et al. IQ-TREE 2: new 
models and efficient methods for phylogenetic inference in 
the genomic era. Mol Biol Evol 2020;37:1530–4. https://doi. 
org/10.1093/molbev/msaa015 

41. Lartillot NL, Odrigue NIR, Tubbs DAS et al. PhyloBayes MPI : 
phylogenetic reconstruction with infinite mixtures of profiles 
in a parallel environment. Syst Biol 2013;62:611–5. https://doi. 
org/10.1093/sysbio/syt022 

42. Vachaspati P, Warnow T. ASTRID: accurate species TRees from 
internode distances. BMC Genomics 2015; 16 Suppl 10: S3, 
https://doi.org/10.1186/1471-2164-16-S10-S3. 

43. Zhang C, Sayyari E, Mirarab S. ASTRAL-III: increased scalability 
and impacts of contracting low support branches. In: Meidanis 
J, Nakhleh L, (eds.), Comparative Genomics. Cham, Switzerland: 
Springer, 2017, 53–75. 

44. Zhang C, Scornavacca C, Molloy EK et al. ASTRAL-Pro: Quartet-
Based Species-Tree Inference despite Paralogy. Mol Biol Evol  
2020;37:3292–307. https://doi.org/10.1093/molbev/msaa139 

45. Zhang C, Mirarab S. ASTRAL-Pro 2: ultrafast species 
tree reconstruction from multi-copy gene family trees. 
Bioinformatics 2022;38:4949–50. https://doi.org/10.1093/ 
bioinformatics/btac620 

46. Lartillot N, Brinkmann H, Philippe H. Suppression of long-
branch attraction artefacts in the animal phylogeny using a 
site-heterogeneous model. BMC Evol Biol 2007; Suppl 1: S4, 7, 
https://doi.org/10.1186/1471-2148-7-S1-S4. 

47. Mirarab S, Nakhleh L, Warnow T. Multispecies coales-
cent: theory and applications in phylogenetics. Annu Rev 
Ecol Evol Syst 2021;52:247–68. https://doi.org/10.1146/annurev-
ecolsys-012121-095340 

48. Williams TA, Cox CJ, Foster PG et al. Phylogenomics provides 
robust support for a two-domains tree of life. Nat Ecol Evol 
2020;4:138–47. https://doi.org/10.1038/s41559-019-1040-x 

49. Hugenholtz P, Chuvochina M, Oren A et al. Prokaryotic 
taxonomy and nomenclature in the age of big sequence 
data. ISME J 2021;15:1879–92. https://doi.org/10.1038/ 
s41396-021-00941-x 

50. Chaudhary R, Bansal MS, Wehe A et al. iGTP: a software package 
for large-scale gene tree parsimony analysis. BMC Bioinformatics 
2010;11:574. https://doi.org/10.1186/1471-2105-11-574 

51. David LA, Alm EJ. Rapid evolutionary innovation during an 
Archaean genetic expansion. Nature 2011;469:93–6. https://doi. 
org/10.1038/nature09649 
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