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Abstract

Smart homes offer great convenience for people living alone and assistance for physically
impaired inhabitants. Robust behavioural analysis technology is one of the keys to maximizing
the role of the Smart Home. Typically, when it comes to the behavioural analysis of its
inhabitants, most researchers have acquired it through data collection from sensors, cameras, and
portable Bluetooth sensors. However, a gap in research exists concerning activity recognition
in the context of the users physical location in the environment. In this paper, we propose
a hierarchical framework based on Hidden Markov Model (HMM) and suggest dividing
the behavioural sequence analysis into two layers: spatial transfer and sensor transfer. In
addition, we apply probabilistic model checking to verify the properties of each module’s state
transfer and obtain the probability of occurrence of the corresponding behavioural sequence.
By integrating an implicit Markov model and probabilistic model checking, we effectively
analyse the composition and probability of occurrence of three arbitrary sequences of complex
behaviours. Finally, anomaly detection and behavioural guidance are discussed based on the
proposed behavioural analysis methods.

Keywords: Smart home, Behavioural analysis, Hidden markov model, probabilistic model
checking

1. Introduction

With the rapid development of the Internet of Things (IoT), Smart Home is favoured by most
researchers as a product that benefits from the IoT. Smart homes are widely used in healthcare
[1], health monitoring [2], and guidance service [3] by installing sensors, cameras, and infrared
detection technology to record the daily behaviour of inhabitants. Sensor-based human behaviour
analysis is one of the hot topics in these applications [4]. In daily behaviour analysis, human
activities will have certain patterns due to the formation of behavioural habits. The sensor and
human health state can be detected based on the daily human behaviour patterns [2]. For example,
when the sensor data of a certain period is significantly different from the daily data and exceeds
a certain threshold, it can be regarded as an abnormal scenario. The scenario will be analysed
further to determine if it is the abnormal state of the resident or the abnormal sensor.

The challenges of human behaviour analysis include the complexity of human activities, the
spatial and temporal variability of behaviour execution, the variability of human health states,
and the uncertainty of sensor-based states [5]. The sensor-based smart home environment takes
Preprint submitted to Elsevier January 21, 2023



input from various underlying modules, including sensor readings, activation of sensor transfers,
spatial recognition of human activity, and human behaviour detection, to record a sequence of
behaviours that form human activity [6].

The complex activities’ behavioural structure and semantics require higher-level
representation and analysis methods. Compared to single-layer systems that represent and
categorise low-level activities as distinct behavioural sequences, hierarchical approaches to
design have the primary advantage of showing behavioural sequences with a more sophisticated
structure. Hierarchical methods based on Hidden Markov Model (HMM) are particularly
suitable for analysing human-environment interactions and complex behavioural sequences.
By encapsulating behaviour sequences composed of multiple spaces, hierarchical approaches
model data sets with smaller behaviour records and analyse the daily behaviour of an inhabitant
more effectively. In addition, hierarchical modelling of behavioural sequences can more easily
incorporate human knowledge. A clearer picture of the inhabitant’s living state can be obtained
by listing the sub-sequences in each space of the behaviour sequence and specifying the transfer
between them.

One of the main challenges in this application domain is integrating the association between
the human activity space and the given sensor data. Hierarchies can be regarded as structures
representing the underlying semantic relationships of the considered behavioural sequences.
For example, compound activities can be decomposed into simpler behavioural sequences and
activities based on space and activation sensor sequences in human activity recognition. On
the other hand, for modelling behavioural sequences, it is necessary to determine whether the
model satisfies certain properties and the degree to which certain property is satisfied based on
the model built. Thus, the behaviour state is judged. Traditional testing and simulation methods
can only determine whether there are certain bugs with the model but not the correctness of the
model. Therefore, the use of a more rigorous verification approach is essential for the analysis
of human behaviour.

Formal methods are methods for modelling and verification of models based on strict
mathematical semantics. In recent years, several researchers have made some progress in using
it for research related to human behaviour recognition [7]. Formal verification [8] are employed
to check whether the model is correct, whereas model checking [9] is one of the most popular
techniques. In model checking, the system is specified as a model and fed into the model checker
that thoroughly explores the model and confirms that it fulfils a logical formulation expressing
the required properties. Due to complex and uncertain smart environment, a more effective
approach which resolves this problem is integration of model-based method (e.g., the Markov
Chain [10], such as Discrete-Time Markov Chains (DTMCs) [11]) and model checking based
on logic reasoning. DTMCs are frequently used in performance analysis and implemented as a
probabilistic model, e.g., specifies state transition and probabilistic state transition choice (e.g.,
for some conditions when more than one transition in a state is enabled) [12]. Probabilistic
model checking is a formal verification method for probabilistic models that quantitatively verify
the extent to which a probabilistic model satisfies certain properties [12]. Probabilistic model
checking formulates the system as probabilistic transformation models such as Continuous-Time
Markov Chains (CTMCs), or DTMCs. Quantitative logical properties are then applied to the
models to check the results, returning ”True” if the requirements are satisfied, and ”False” and
counterexamples if they are not. PRISM [13] is one of the most popular probabilistic model
checker, which is a useful tool for formal modeling and study of systems that behave in a
stochastic or probabilistic way. It has been used to examine systems in a variety of application
domains [12].
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This paper proposes a framework for analysing inhabitant behaviour in smart homes based on
HMM and probabilistic model checking. Firstly, based on the HMM structure [14], the behaviour
sequences are divided into hidden and observable layers. The hidden layer refers to the human
activity space, and the observable layer is the sensor data. Based on Markov chains, the hidden
layer and observable layer state transfer matrices are calculated. Formal models of the hidden and
observed layers are developed based on DTMC and the input formats of PRISM. The behaviour
sequences are divided according to the activities’ space. The behaviour sequences under each
space are represented as PCTL logic formulas. PRISM is used to verify the probability value that
the formula holds and to verify that the model satisfies specific properties to judge the inhabitant’s
living status.

The main contributions of the paper include:

• A hierarchical analysis technique is suggested based on the structure of the HMM model.
Analyse the space and sensor transfer in combination for the sequence of human behaviour
in the smart home.

• The DTMC models for the hidden and observable layers are constructed using a
probabilistic model checking framework, and the PCTL logic formulae are employed
to create the behavioural sequences. PRISM is used to carry out the model’s automatic
verification.

• Integrate the results of HMM model and probabilistic model checking to represent the
probability of the entire sequence of behaviours occurring.

• A discussion on anomaly detection and behavioural guiding in smart homes is developed
within the context of the behavioural sequence analysis proposed in this study. The
anomaly detection includes sensor anomalies and human health anomalies. Moreover,
behavioural guidance refers to the ability to make the most feasible behavioural decision
as soon as possible in the event of transient memory loss of the inhabitant.

The rest of the paper is organized as follows. Section 2 reviews the related works. Section 3
introduces the preliminaries. Section 4 presents an analysis framework for sensor network in a
smart home environments based on HMM and probabilistic model checking. A case study based
on an existing dataset is provided in Section 5 to demonstrate the effectiveness of our proposed
methodology. Section 6 discusses anomaly detection and behaviour guidance based on human
behaviour analysis. Section 7 concludes this paper.

2. Related works

Behaviour analysis covers a wide range of areas of investigation, from motion detection
and context extraction to expert systems and advanced abstract behaviour models. Excellent
behavioural analysis are necessary as the foundation for several in-depth research, such as
anomaly identification and human health monitoring. Numerous approaches are already used
to analyse and identify a smart home’s human behaviour. Among them, Markov chains and
HMMs are used by a wide range of researchers with good results. The work of Yamato et al. is
one of the earliest attempts on HMM for behaviour analysis [15]. To better analyse the complex
multi-scale structure that appears in many natural sequences, especially in language, handwriting
and speech, Fine et al. proposed the Hierarchical Hidden Markov Models (HHMM)[16].
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Their model’s structure is fairly open-ended and allows for an infinite number of sub-model
activations. Quintas et al. [17] discussed learning and recognising models of human behaviour
from multi-modal observations in a smart home, and the method was successfully implemented
to recognise concurrent Hidden Markov Models of occurrence. Liisberg et al. [18] developed
methods for indirect observations and characterisation of inhabitant behaviour based on HMMs.
They discovered that by including more states in the HMM, a novel interpretation of these states
is generated, which may help explain how many people live in the apartment. Sánchez et al. [19]
used human behaviour modelling to determine whether the current activity is normal or abnormal
to simulate human behaviour in smart home environments, detect abnormal behaviour, and alert
family members or caregivers when assistance is required. Wang et al. [20] constructed a hidden
Markov Model of an individual’s daily behaviour activity state based on the long-term activity
data. The authors demonstrated that the daily behaviour HMM developed for individuals in
the study could detect changes in human behaviour patterns and indicate specific behaviours
that had changed. Even though existing smart home technologies have achieved substantial
success, more research is still required to maintain the mode’s reliability and safety because
of the environment’s complexity and unpredictability.

In recent years, there has been a great deal of research focusing on the factors influencing the
analysis of human behaviour in smart homes [21, 22, 23, 24, 25]. For example, Rialle et al. [22]
introduced a wide range of new information, communication, and data acquisition technologies
used in Health Smart Home (HSH), presented the HSH concept in terms of technical, economic,
and human requirements. To identify unusual behaviour among inhabitants of smart homes,
Lühr et al. [5] developed a novel application of Intertransaction Association Rule (IAR) mining.
Lundström et al. [26] applied clustering and the Random Forest (RF) algorithm to detect
deviating human behaviour. Their study considered three different forms of deviation time, space,
and the variation between clusters of comparable behavioural patterns. Li et al. [27] proposed
Joint Domain and Semantic Transfer Learning (JD-STL) algorithms for radar-based Human
Activity Recognition (HAR). The HAR model is trained by using a sparsely approach alleviates
the need to label a large number of radar signals. Birnbach et al. [28] leverages information
from several smart home sensors to verify physical events. These method guard against both
sophisticated attackers and malfunctioning event sensors. Meanwhile, they introduced the
PEEVES system, which uses the smart home’s physical properties to verify events automatically.
Lina et al. [29] proposed information filter-based fusion data in the research of sensors in a
smart home, where an inverted pendulum biomechanics model is introduced. Moore et al. [30]
suggested to detect sensor anomalies based on Markov model in the research on a smart home.
The results of the three different test vectors which are to be tested in each of the first, second, and
third order Markov models are also compared. Yang proposed an approach to activity recognition
by using an Extended Belief Rule-based System (EBRBS), which offers promising performance
compared to popular benchmark activity recognition models and exhibits high robustness in the
presence of sensor failures [31]. Li et al. [32] developed a method for recognizing a single
user’s daily behaviour that may adaptively control the sensor noise during human activities in
multitenant smart home scenarios. However, most of the current studies lack the verification of
the probabilistic model. Verifying probabilistic models of indeterminate behaviour allows for
clearer identification of patterns in behaviour, such as the probability of behaviour transfer, the
sequence in which behaviour occurs, or the probability of the next behaviour being performed in
the current state.

In the last few years, formal methods have been favoured by a large number of researchers
in ensuring the safety design of the software and hardware systems. Saives et al. employed
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formal methods to check the required qualities to get judgments on behavioural deviations [33].
The nondeterministic behaviour of inhabitants living in smart homes requires the introduction of
quantitative properties when analysing behaviour and verifying the extent to which the behaviour
satisfies a specified property, such as, what is the probability of completing an activity with a
set sequence of behaviours. Therefore, this paper is of greater interest in probabilistic model
checking techniques. Probabilistic model checking [12] is a well-established technology for
quantitatively and qualitative analysing state-based models of operation, such as Markov decision
processes. At present, many researchers in the industrial field have adopted the probabilistic
model checking technology. Wang et al. [34] integrated the probabilistic model checking and
reliability analysis method to solve reliability value in the research of the flight control system.
To check the reliability and quantitative properties of Energy Routing (ER) systems during the
design phase, Gao et al. [35] described the ER system architecture as a continuous-time Markov
chain model to provide a formal verification solution for the ER-based systems. Baouya et al.
[36] presented a deployment decision formulation based on the probabilistic model checker
PRISM. I’Yvonnet et al. [37] used the PRISM framework and the model checker to express and
examine interesting temporal logic properties of the dynamic evolution of human activities. It
is intended that this modeling approach may provide new behavioural guidelines for interpreting
medical patient performance. In order to assist Alzheimer’s disease patients, Gao et al. [38]
suggested a probabilistic model checking-based strategy to anticipate patient behaviours and
identify unusual behaviours connected to moderate cognitive impairment.

We have proposed a method to analyse the reliability of sensors in smart homes based on the
Markov model and probabilistic model checking.[39]. Building on existing researches, this paper
integrates HMM and probabilistic model checking method to propose a hierarchical analysis
framework in human behaviour analysis. It is possible to swiftly assess the probabilities that a
stationary inhabitant will engage in a series of behaviours. We build DTMC models based on
HMM and probabilistic model checking for the Markov models generated from the Van Kasteren
dataset [40]. Convert the sequence of behaviours to be verified into property formulas and verify
it by PRISM. It is feasible to notice the properties that can be satisfied between state transfers,
and we can conclude the intermediate behaviours from the results of the property verification.
The method can form the foundation for extended research related to the analysis of human
behaviour, such as anomaly detection.

3. Probabilistic Model and Model Checking

3.1. Markov chain

When a stochastic process possesses the Markov property, the conditional probability
distribution of its future state is entirely dependent on its present state. This is true for both the
current state and all past states. The Markov process is explained with the following definition.

Definition 1. (Markov process)[41]. Suppose {X(t), t ∈ T } is a stochastic process, E is the state
space, if {t1 < t2... < tn < t}, any x1, x2, ..., xn, x ∈ E, the conditional distribution function of
the random variable X(t) under the known variable X(t1) = x1, ..., X(tn) = xn is only related to
X(tn) = xn, but not related to X(t1) = x1, ..., X(tn−1) = xn−1. That is, the conditional distribution
function satisfies Equation (1).

F(x, t|xn, xn−1, ..., x2, x1, tn, tn−1, ..., t2, t1) = F(x, t|xn, tn) (1)
5



Discrete Time Markov Chain (DTMC) is a special form of Markov process, which has
discrete values in the general definition by implementing the time parameters and the state space.

Definition 2. (DTMC)[11]. A DTMC is a tuple D = (S , s, P, L, AP), where,

• S is a finite set of states.

• s denotes the initial state.

• P is a probabilistic transition function, such that for every state s ∈ S , and Σs′∈S P(s, s′) = 1.

• L : S → 2AP is a labelling function that assigns a set of atomic propositions to each state
s ∈ S .

• AP is a finite set of atomic propositions.

3.2. Hidden Markov Model (HMM)
The HMM is the simplest dynamic Bayesian network and a particularly well-known directed

graph structure, which is mainly used for modeling time series date. In general, HMM contain
two levels of uncertainty. A Markov chain that describes the probabilistic relationship between
states in terms of the likelihood that one state follows another, and a stochastic observation
process associated with each hidden state.

Definition 3. (HMM)[42]. A HMM is a tuple HMM = (Ot, It, π, A, B), where,

• Ot is a set of observable sequences.

• It denotes the hidden state sequences.

• π is the probability of the initial state.

• A is the state transition matrix for hidden layer.

• B is the transition matrix for observable states.

Let It indicates the hidden state at time t and Ot the corresponding observation. Assuming
that there are n possible state, we have It ∈ {1, ..., n}. Let o1, o2, ..., oT denotes the observation
sequence of random variable Ot. The three most important parameters in HMM are {π, A, B}.
Two basic assumptions need to be satisfied: the state at time t only depends on the state at time
t-1 and the observation at any moment only depends on the state at current moment.

3.3. Probabilistic model checking
The purpose of verifying a probabilistic model is to ensure that it satisfies fundamental

qualitative and quantitative properties. Probabilistic model checking is a technique to achieve this
purpose. It includes calculating the probability that specified properties are satisfied, as well as
determining whether specific properties are satisfied. A probability model checker PRISM [12],
developed initially at the University of Birmingham and now maintained and further developed at
the University of Oxford, is a helpful tool for studying and modelling stochastic or probabilistic
systems. Systems in various application fields, such as risk evaluation [43], communication
protocols [44], and security threats [45], have adopted probabilistic model checking techniques
for research. The model in PRISM [12] subsumes some well-known temporal logics by including
PCTL [46, 47], Continuous Stochastic Logic (CSL) [48], and Probabilistic Logic (PL) [49].
PCTL is a well-known temporal logic for probabilistic verification of DTMC model.
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Definition 4. (PCTL syntax)[46]. Given a set of atomic propositions AP, the PCTL formulae are
defined by the following BNF grammar.
ϕ ::= p | ¬ϕ | ϕ ∨ ψ | P./ α(ψ)
ψ ::= Xϕ |Fϕ | ϕ ∪ ψ | ϕ ∪≤k ψ

Where:

• p ∈ AP denotes a finite set of atomic propositions.

• ϕ and ψ are the state formulae and path formulae interpreted over the states and paths of
the model, respectively.

• ¬ and ∨ are the boolean connectives that defined in the usual way.

• P./ α(ψ) is a probabilistic operator where ./∈ {<, ≤, ≥, >} and α in [0, 1] is a probability
bound or threshod.

• k ∈ N+ is a positive integer number reflecting the maximum number of transitions needed
to reach a certain system.

• X, F are defined as ’next’ and ’finally’, respectively. Xϕ denotes the next state satisfies the
ϕ, Fϕ represents that the state will eventually meet ϕ.

A state s in a DTMC model meets an atomic proposition p if p ∈ AP. s satisfies a state
formula P./α(ψ), denotes s |= P./α(ψ), if the probability of taking a path starting from s and
satisfying ψ satisfies the bound ./ α. The path formula ϕ ∪≤k ψ is true on a path if ψ holds in the
state at several time step i ≤ k and at all preceding states ϕ holds.

Definition 5. (PCTL sematic)[46]. The following is a list of PCTL formulae’s formal semantic.
Assume V is the valuation function mapping each states s to a collection of propositions and M
is either a DTMC or MDP. The satisfaction relation |= is inductively defined on the structure of a
given PCTL formula ρ for a particular state s. Where,

• M, s � ρ iff ρ ∈ V(s).

• M, s � ¬ρ iff M, s 2 ρ.

• M, s � ρ ∧ ψ iff M, s � ρ and M, s � ψ.

• M, s � P∼r[ϕ] iff πm(σ ∈ Paths(s) s.t.,M, σ � ϕ) ∼ r.

• M, s � Xρ iff M, σ[1] � ρ.

• M, s � ρUψ iff ∃i ≥ 0s.t.,M, σ[i] � ψ and (∀ j < i)M, σ[ j] � ρ.

• M, s � ρUkψ iff ∃0 ≤ i ≤ ks.t.,M, σ[i] � ψ and (∀ j < i)M, σ[ j] � ρ.
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Figure 1: The framework for behaviour analysis.

4. Proposed Methodology and Framework

This section discusses the behaviour analysis framework, the complexity of HMM-based
hierarchical analysis, and combination methods. In Fig. 1, the proposed methodology is
illustrated, outlining the definition of the HMM-based hidden state and observable state layers.
It is worth noting that the framework employs a hierarchical approach to take the transmission
of sensor states in various spaces into distinct consideration. This analytical technique is
appropriate for scenarios when one or more independently operating sensors are spatially
distributed throughout the environment.

Initially, the given dataset is preprocessed to model the spatial and behavioural transfer of
the inhabitant in the smart home for the hidden and observable layers, respectively. Two types
of transfer matrix are obtained in the first step, they are location transfer matrix and sensor
transfer matrix. The location transfer matrix is calculated based on the activity transfer. The
sensor transfers reflect the inhabitant’s behaviours in a location. Employing these Markov
transfer matrices, DTMC models are constructed and entered into PRISM in a customized
format. Then, convert the specified properties into PCTL formulae. Finally, the model and
specific properties are verified with PRISM. The results of the verification shows the probability
values of performing the corresponding behaviour sequences. More detail for each aspect of the
framework is given below.

4.1. Hierarchical analysis based on HMM

The hierarchical analysis method suggested in this paper indicates that the spatial transfer
and sensor transfer layers are separated in the behaviour analysis of an inhabitant in a smart
home. Among other things, the space where the inhabitant is located is determined by activity,
such as sleeping should be in the bedroom and bathing should be in the washroom. The space in
which the inhabitant is located belongs to the hidden state layer. And sensor transfer refers to the
transfer of activated sensors in a space, where the activated sensors are considered as observable
states. Fig. 2 shows the process. Inside the rectangular box is a set of behaviour sequences. In
a smart home it can be regarded as a set of successive activated sensors. Li refers to the space
where the ith sensor activation occurs. We separate this behaviour sequence into two components
based on the HMM: the transfer of space and the transfer of activated sensors under a specific
space. First, each space’s transfer probability is calculated. On the other hand, the corresponding
sensor activation probability or the probability of the corresponding sensor activation sequence in
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Figure 2: Hierarchical analysis between hidden layer and observable layer.

a certain space is calculated. Finally, it is possible to determine the probability that the sequence
of behaviours will occur. The probability is calculated by the formula (2). si can be a transfer
probability value between spaces, or a probability value for the occurrence of a behaviour, and
or a set of behaviours under a space. ∏

si = s1s2s3 · · · sn. (2)

4.2. Calculate the state transfer matrix of the hidden and observable layers

Algorithm 1 shows the pseudo-code for solving the state transfer matrix based on Markov
chains. The behaviour sequence dataset is used as the input to the algorithm and the state
transition matrix as the output. Extracts the possible combinations in the sequence of behaviour,
i.e., the combination of two consecutive behaviours. The first behaviour denotes the current state
st and the second denotes the state st+1 entering at the next time. Calculate the set of all possible
states entering at the next moment when the current state is st, and the number of times each
state occurs. For the calculation of space transition probability, we consider all the instances of
the same state. The probability (pi j) of transition from ith state to jth state is calculated by (3).

pi j =
ni j

ni
(3)

Where ni j denotes the number of transition from state i to state j and ni the total number of
transition from ith state. In principle, the probability sum of all states that may occur at the next
moment is 1 when stay in the state st.

4.3. Formal modelling and probabilistic model checking for the behaviour analysis

Formal models are constructed for the state transfer of the hidden and observable layers based
on DTMC and PRISM input formats, respectively. The state transfer statements are defined in
the module. First, this module’s variables and comments are all defined. The format of the
comments is: [action]guard− > rate1 : updated1 + ... + raten : updatedn [50]. The action is
used to carry out the module synchronisation. One update will take place based on the value
of rate if the action is synchronising and the guard is satisfied. Each update shows a transition
took place. Formulas with a name and an expression are defined in the PRISM model to prevent
code duplication. On the other hand, rewards can be incorporated to PRISM models [50], linking
actual values to model states or transitions.
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Algorithm 1 Transition matrix based on Markov property
REQUIRE Behaviour transfer sequence.
ENSURE Behaviour transfer matrix.

1 : Extract distinct binary sequences st st+1 in behavioural sequences;
2 : The first in the binary sequence st is the current state;
3 : The second in the binary sequence st+1 is the next state that likely to enter;
4 : Calculate the number of entering the next state in the current state;
5 : Generate a state transition matrix that records the number of times each binary sequence

occurs;
6 : Based on the probability formula , convert the result of the fifth step into a transition

probability matrix.
6 : Output the transition probability matrix.

Here, PCTL is used to express the specified properties. P, which enables one to consider the
probability that an event will occur, it is the most significate operator. As mentioned previously,
P./mϕ is true in a state s of a model if the probability that the event happen is met by the paths
from state s satisfies the ./ m. For instance, the PCTL formula P=0.9[X (s=2)] holds in the initial
state if the probability that s=2 is true in the next state equals 0.9. In addition, the probability
of the existence of a path in the model can be obtained by probability model checking. Such as,
P=?[X (s=3)] indicates the probability that s=3 is true in the next state.

In this paper, we model the state transfer of the hidden and observable layers separately
and verify the spatial transfer and the sequence of behaviours occurring in each space based on
the sequence of behaviours, respectively, to obtain the corresponding probability. Finally, the
integrated probability value of a specific behaviour sequence is calculated.

5. Case Study

5.1. Illustrative example

A smart home with multiple sensors is developed in [40]. Here is an intelligent environment
equipped with 14 binary sensors, the detailed information is shown in Fig. 3. In this smart home,
there are four rooms where sensors are installed. Each room is a separate activity space. The
first is installing the front door sensor (F1) at the doorway. The second room is the bedroom
with bedroom door sensor (HS1). The third is the kitchen. Nine sensors are installed in the
kitchen. They are a Microwave sensor (KS1), a Cups cupboard sensor (KS2), a Fridge sensor
(KS3), a Plates Cupboard sensor (KS4), a Dishwasher sensor (KS5), a Freezer sensor (KS6), a
Pans cupboard sensor(KS7), a Washing Machine sensor (KS8), and a Groceries sensor (KS9).
The fourth is the washroom, with a Hall-Toilet door sensor (TS1), a Toilet Flush (TS2), and a
Hall-Bathroom door sensor (BS1) installed.

In the Van Kasteren dataset [40], the sensor data of a 26 years old man living alone in a smart
home for 28 days was recorded. During these 28 days, only the man was present in this home
and nobody else was there, not even guests or pets. Table 1 displays the typical activities of the
inhabitant in each space.

The daily behaviour of inhabitants is complex. Here we give 3 cases randomly. They will be
analysed in detail later.
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Figure 3: The sensors layout in the smart home.

Table 1: Sensors in the smart home
Room ID Label Activity

1 Outdoor Leave house
2 Bedroom Go to bed
3 Kitchen Cook (prepare breakfast, prepare dinner, get drink)
4 Washroom Use toilet, Take shower

Case 1 : In the morning, the inhabitant woke up, walked out of the bedroom, entered the
washroom, used the toilet flush, walked out of the washroom, and then walked into the kitchen.
After walking into the kitchen, he opened the fridge, took the bread, opened the plates cupboard,
took out a plate, put the bread on the plate, put it in the microwave oven and heated it up.

Case 2 : When the inhabitant returned at noon, he first put the vegetable into the fridge, then
took out the commonly used cup from the cupboard to drink water and put the cup back into the
cupboard. Then walk into the washroom, flush the toilet, and walk out. Walk into the kitchen
again and wash the dinner plates with the dishwasher.

Case 3 : In the evening, the inhabitant walks into the washroom to shower, uses the toilet,
flushes the toilet, walks out of the washroom and enters the bedroom. The three cases are
randomized, and each case corresponds to a sequence of behaviours. Based on the proposed
method, we aim to calculate the probability of the inhabitant completing the corresponding
sequence of behaviours in the smart home.

5.1.1. HMM parameters
Based on the sensor layout of the smart home, we can perform a more sophisticated analysis

of the inhabitant’s behaviour through the HMM. In a smart home, there are four spaces where
sensors can detect inhabitant behaviour. In the behaviour dataset, seven activities are given,
including leave house, use toilet, take shower, go to bed, prepare breakfast, prepare dinner, get
drink. Normally, these seven activities can be done in four spaces respectively. When leaving
the house, the front door sensor will be activated to enter the outdoor space. Use toilet and
take shower have to be completed in the washroom. Go to bed is implemented in the bedroom.
Prepare breakfast, prepare dinner, and get drink all belong to cooking, which is done in the
kitchen. Therefore, we reduce the analysis of activities to the analysis of the spaces in which the
inhabitants are located.

As shown in Fig. 4, inside the dotted box are the features we extracted from the environment,
and the circles represent different spaces as hidden layers. And the box below the circle
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L1 L2 L3 L4

F1 HS1
KS1, KS2, KS3,
KS4, KS5, KS6, 
KS7, KS8, KS9

TS1, TS2，BS1

L1 L2 Li ...... Lt...... Lt-1

S S S S S S S

Hidden layer 
(Space) 

Observable state
Sensor/Sensors

Figure 4: Activity HMM diagram for the inhabitant.

represents the sensors set up in the corresponding space. The bottom of Fig. 4 is the HMM
model. The first layer represents the hidden state layer and Li represents the space where the
inhabitant stays at time i. The lower S represents the sensor that is activated at this moment, it
can be a single sensor, or it represents a sequence of sensors that may be activated in this space.
The values of all the space transitions are provided in Matrix (4). L1, L2, L3, and L4 denote
outdoor, bedroom, kitchen, and washroom, respectively. Each row represents the current space,
and the column represents the space to be entered at next moment. For example, the value 0.958
marked in red in the Matrix means that the current is in bedroom and the probability of entering
washroom at the next moment is 0.958.

According to the records in the Van Kasteren dataset, the probability of the inhabitant
entering each space at start can be calculated as outdoor (0.076), bedroom (0.091), kitchen
(0.378), and washroom (0.456). Therefore, π = [0.076, 0.091, 0.378, 0.456].

L1 L2 L3 L4

L1
L2
L3
L4


0.030 0.030 0.182 0.757
0.000 0.000 0.042 0.958
0.020 0.000 0.220 0.760
0.228 0.162 0.235 0.375

 (4)

As for the sensor trigger events of each space, there is only one sensor in the front door and
bedroom. Therefore, once entering those spaces, the probability of the corresponding sensor
occurrence is 1.

In the washroom, a Hall-Toilet door sensor, a Toilet Flush sensor and a Hall-Bathroom door
sensor are installed. The first activated sensor to enter the washroom is the Hall-Bathroom door
sensor. Matrix (5) is the state transition matrix between the Hall-Toilet door sensor, the Toilet
Flush sensor, and the Hall-Bathroom door sensor.

TS 1 TS 2 BS 1
TS 1
TS 2
BS 2

 0.737 0.083 0.180
0.151 0.198 0.651
0.193 0.475 0.332

 (5)

Nine sensors were installed in the kitchen. By calculating the frequency of events in the
12



dataset, it can be seen that the probability of activating each sensor in turn at the initial moment
after entering the kitchen is KS1 (0.064), KS2 (0.100), KS3 (0.289), KS4 (0.131), KS5 (0.042),
KS6 (0.082), KS7 (0.102), KS8 (0.034), KS9 (0.155). Based on recording the number of sensor
activations and the transfer between states for this inhabitant during 28 days, we can calculate
the probability Matrix 6 of sensor activation transition in the kitchen.

KS 1 KS 2 KS 3 KS 4 KS 5 KS 6 KS 7 KS 8 KS 9
KS 1
KS 2
KS 3
KS 4
KS 5
KS 6
KS 7
KS 8
KS 9



0.374 0.042 0.250 0.042 0.042 0.083 0.042 0.000 0.125
0.043 0.361 0.277 0.106 0.021 0.043 0.064 0.000 0.085
0.064 0.100 0.517 0.100 0.018 0.055 0.055 0.027 0.064
0.098 0.115 0.180 0.115 0.000 0.131 0.066 0.000 0.295
0.000 0.000 0.056 0.277 0.388 0.000 0.167 0.056 0.056
0.079 0.105 0.211 0.184 0.000 0.237 0.026 0.026 0.132
0.000 0.061 0.184 0.122 0.082 0.000 0.469 0.000 0.082
0.000 0.000 0.100 0.000 0.100 0.000 0.000 0.700 0.100
0.042 0.028 0.310 0.085 0.028 0.099 0.028 0.000 0.380



(6)

5.1.2. PRISM implementation
The PRISM code describing the DTMC model of the space transfer is shown in Listing 1.

The model has an initial state and 4 states, 1 through 4, which denote the differ spaces, i.e.,
outdoor, bedroom, kitchen, and washroom, respectively. It is worth noting that the initial state
can be any space, and the corresponding probabilities is π = [0.076, 0.091, 0.378, 0.456]. The left
side of the ”→” represents the current state, and the right side represents the state and probability
that may be entered in the next step. For example, s = 1 → 0.030 : (s′ = 1) + 0.030 : (s′ =

2) + 0.182 : (s′ = 3) + 0.758 : (s′ = 4) means that the agent is now in space S 1, the probability
of entering S 1 is 0.030, entering S 2 is 0.030, entering S 3 is 0.183, and entering S 4 is 0.758.

Listing 1: The model of the space transition in smart home

dtmc
module s p a c e t r a n s i t i o n
s : [ 1 . . 4 ] i n i t 1 ;
[ ] s =1−>0.030:( s ’ = 1 ) + 0 . 0 3 0 : ( s ’ = 2 ) + 0 . 1 8 2 : ( s ’ = 3 ) + 0 . 7 5 8 : ( s ’ = 4 ) ;
[ ] s =2−>0:( s ’ = 1 ) + 0 : ( s ’ = 2 ) + 0 . 0 4 2 : ( s ’ = 3 ) + 0 . 9 5 8 : ( s ’ = 4 ) ;
[ ] s =3−>0.020:( s ’ = 1 ) + 0 : ( s ’ = 2 ) + 0 . 2 2 0 : ( s ’ = 3 ) + 0 . 7 6 0 : ( s ’ = 4 ) ;
[ ] s =4−>0.228:( s ’ = 1 ) + 0 . 1 6 2 : ( s ’ = 2 ) + 0 . 2 3 5 : ( s ’ = 3 ) + 0 . 3 7 5 : ( s ’ = 4 ) ;
end module

Listing 2 is the PRISM code for the activation sensor’s transitions in washroom. There are
three states here, 1 denotes activating Hall-Toilet door sensor, 2 indicates activating Toilet Flush
sensor, and 3 represents activating Hall-Bathroom door sensor. di represents the ith i ∈ {1, 2, 3}
sensor is activated. In the smart home, there are only two possible values for each sensor due
to the binary sensors that were used. The sensor is either active or inactive when it is given a
value of 1 or 0. The initial value of s is 3, which means that entering the space will first activate
Hall-Bathroom door sensor. Therefore, the initial value of d1 and d2 is 0, and the initial value
of d3 is 1. When the Hall-Bathroom door sensor is activated, there is 0.193 probability that
Hall-Toilet door sensor will be activated at the next moment, 0.475 probability that Toilet Flush
sensor will be activated, and 0.332 likelihood that Hall-Bathroom door sensor will be activated
again. Note that when the activated sensor changes at the next time step, the d-value of the
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activated sensor at the current time step becomes 0. More generally, it implies that only the
activated sensor has a d-value of 1, while the d-values of all other sensors remain at 0 or change
to 0.

Listing 2: The DTMC of the activation sensor’s transitions in washroom

dtmc
module s t a t e t r a n s i t i o n i n washroom
s : [ 1 . . 3 ] i n i t 3 ;
d1 : [ 0 . . 1 ] i n i t 0 ;
d2 : [ 0 . . 1 ] i n i t 0 ;
d3 : [ 0 . . 1 ] i n i t 1 ;
[ ] s =1−>0.737:( s ’=1)&( d1 ’=1)&( d2 ’=0)&( d3 ’ = 0 ) + 0 . 0 8 3 : ( s ’=2)&( d2 ’=1)&( d1 ’=0)
&(d3 ’ = 0 ) + 0 . 1 8 0 : ( s ’=3)&( d3 ’=1)&( d2 ’=0)&( d1 ’ = 0 ) ;
[ ] s =2−>0.151:( s ’=1)&( d1 ’=1)&( d2 ’=0)&( d3 ’ = 0 ) + 0 . 1 9 8 : ( s ’=2)&( d2 ’=1)&( d1 ’=0)
&(d3 ’ = 0 ) + 0 . 6 5 1 : ( s ’=3)&( d3 ’=1)&( d2 ’=0)&( d1 ’ = 0 ) ;
[ ] s =3−>0.193:( s ’=1)&( d1 ’=1)&( d2 ’=0)&( d3 ’ = 0 ) + 0 . 4 7 5 : ( s ’=2)&( d2 ’=1)&( d1 ’=0)
&(d3 ’ = 0 ) + 0 . 3 3 2 : ( s ’=3)&( d3 ’=1)&( d2 ’=0)&( d1 ’ = 0 ) ;
end module
r e w a r d s ” H a l l t o i l e t d o o r ”
d1 = 1 : 1 ;
e n d r e w a r d s
r e w a r d s ” T o i l e t f l u s h ”
d2 = 1 : 1 ;
e n d r e w a r d s
r e w a r d s ” H a l l b a t h r o o m d o o r ”
d3 = 1 : 1 ;
e n d r e w a r d s

Three rewards comments are given at the end of Listing 2. For example,
rewards”Hallbathroomdoor”;
d3 = 1 : 1;
endrewards
This reward comment denotes each time d3=1(the sensor is activated), the reward is

incremented by 1.
Listing 3 in Appendix is the PRISM code for the active sensor’s transitions in kitchen. The

initialization of the model is defined in the module section including state transitions. There are
9 states. s is the overall state represents the current state of the jth ( j ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9})
sensor. The interpretation of d j and reward is the same as in Listing 2. Nine examples of reward
are given at the end of Listing 3.

5.2. Simulations in PRISM

After the model is completed, we can simulate and debug the model in the simulator
in PRISM. This paper presents sensors’ state transfer simulation results in the kitchen and
washroom.

Fig. 5 shows the simulation figure of the activated sensor transfer in the kitchen. The value
of d j is 1 when the activation sensor is the jth sensor. This result is as it should be and satisfies
the nature of the binary sensor. For the experiments, we set two kinds of time steps, 100 and
1000. From Fig. 5 (a), we can find that the kitchen’s sensors activated by the inhabitant are
rather scattered, but there is still a regular pattern. For example, the inhabitant activated KS4 and
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(a) (b)

Figure 5: Simulation path for the sensors in kitchen.(a)Simulation step=100;(b)Simulation step=1000;

(a) (b)

Figure 6: Simulation path for the sensors in washroom.(a)Simulation step=100;(b)Simulation step=1000;

KS9 alternately more frequently. And this phenomenon is more pronounced in the experiment
results with time step 1000.

Fig. 6 shows the simulation figure of the activated sensor transfer in the washroom. Similarly,
from the figure, we can notice that the inhabitant alternately activated the Hall-bathroom door
sensor and the Toilet flush sensor more frequently. The observers analyse the inhabitant’s
behaviour from the simulation results of the model and thereby summarize the behaviour habits.

5.3. Temporal logic properties for the inhabitant behaviour

For the model described in the previous section, we encoded and verified several properties
in PCTL. Two kinds of properties may be defined, those to verify the space transition, and sensor
transitions in each space.

5.3.1. Space transitions in the smart home
Property 1. What is the probability to reach the kitchen from bedroom within 5 time steps.

The verification shows the probability is 0.042.

P =?[s = 2 U≤5s = 3]

Alternatively, we can simultaneously consider what is the probability of reaching the outdoor
and the washroom, respectively, from the bedroom within 5 steps. Here it is only necessary to
change ”s=3” to ”s=1” or ”s=4”.

5.3.2. Active sensor transitions in kitchen
Property 2. What is the probability of activating each sensor in turn, in the order of

Cups Cupboard → Fridge sensor → Plates Cupboard sensor → Groceries sensor →
Firdge sensor. The initial state is 2, which means the active sensor is the Cups Cupboard sensor.
The result is 0.00253.
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Figure 7: Verification for behaviour properties in kitchen.

P =?[X((s = 3&d3 = 1)&(X((s = 4&d4 = 1)&(X((s = 9&d9 = 1)&(X(s = 3&d3 = 1)))))))]

Property 3. This property is used to verify that the fridge sensor will be activated more than
or equal to 50 times from the initial state to the eventual transfer to state 5. Verification shows
that this property is false. This property represents the frequency of events and thus determines
if an exception exists for events that should occur rarely but occur more frequently at a particular
time.

R{”Fridge”} >= 50[F s = 5]

Property 4. What is the probability of activating each sensor in turn, in the order of
Fridge sensor → Plates Cupboard sensor → Microwave sensor. The initial state is 3, which
means the active sensor is Fridge sensor.

P =?[X((s = 4&d4 = 1)&(X((s = 1&d1 = 1))))]

Property 5. What is the probability of activating each sensor in turn, in the order of
Fridge sensor → Cups Cupboard sensor → Cups Cupboard sensor. The initial state is 1,
which means the active sensor is Microwave sensor.

P =?[X((s = 2&d2 = 1)&(X((s = 2&d2 = 1))))]

Fig. 7 shows the interface in PRISM verification for the behaviour in kitchen. This interface
shows the four relevant properties listed above and their verification results. For example, the
verification result for property 2 is approximately 0.0047, which means that the probability of
the inhabitant completing the activity in the smart home according to the behavioural sequence
is only 0.0047.

5.3.3. Active sensor transitions in washroom
Property 6. What is the probability of activating each sensor in turn, in the order of

HallBathroom sensor → Toilet Flush sensor → HallBathroom sensor . The initial state is
3, which means the active sensor is Hall-Bathroom door sensor.

16



Figure 8: Verification for behaviour properties in washroom.

P =?[X((s = 2&d2 = 1)&(X((s = 3&d3 = 1))))]

Property 7. Is the number of the Toilet Flush sensor activated greater than or equal to 50?
Verification shows that this property is true.

R{”Toilet f lush”} >= 50[F s = 1]

Fig. 8 shows the interface in PRISM verification for the behaviour in washroom. The
verification results for the two washroom-related properties are also displayed in the verification
interface.

5.4. HMM-based behaviour analyses

Three arbitrary cases were provided at the beginning of this section. Each case has a set
of behavioural sequences that complement it. Here, we will analyse each set of behavioural
sequences.

Behavioural Sequence 1 (BeS1). In the morning, the inhabitant wake up, walked out
of the bedroom (activated Hall-Bedroom Door sensor), entered the washroom (activated
Hall-Bathroom Door sensor), used the toilet flush (activated Toilet Flush sensor), walked out of
the washroom (activated Hall-Bathroom Door sensor), and then walked into the kitchen. After
walking into the kitchen, he opened the fridge (activated the Fridge sensor), took the bread,
opened the plates cupboard (activated Plates Cupboard sensor), took out a plate, put the bread
on the plate, put it in the microwave oven and heated it up (activated Microwave sensor). In this
process, the order of the activated sensors is,

BeS 1 = [HS 1→ BS 1→ TS 2→ BS 1→ KS 3→ KS 4→ KS 1]
17



Fig. 9 shows the structure of the state sequence 1. We can observe that the inhabitant needs
to reach three spaces to complete the sequence of actions. First enter L2, activate the HS1 sensor
in the L2. Then move to the L4 and activate the BS1, TS2, and BS1 sensors in sequence in the
L4. Finally, enter the L3 and activate the KS3, KS4, and KS1 sensors in sequence. There are six
transition probabilities to be considered for moves in this sequence, as shown in the Table 2.

L4L2 L3

HS1 BS1 TS2 BS1 KS3 KS4 KS1

Hidden layer 
(Space) 

Observable state
Sensor/Sensors

P(L2 - L4)

P(L4)

P(L4 - L3)

P(L3)P(L2)

Figure 9: HMM framework for State sequence 1.

Table 2: Probability statistics for BeS1
s0 s1(PL2) s2(PL2−L4) s3(PL4) s4(PL4−L3) s5(PL3) PBeS 1

Value 0.091 1 0.958 0.309 0.274 1/9 * 0.010
∏

si

The probability values can be calculated according to the previously presented transition
matrix and the property verification of behavioural transitions in space. The result of completing
the sequence of behaviours at the end is the cumulative product of all probabilities.

Behavioural Sequence 2 (BeS2). When the inhabitant returned from grocery shopping at
noon (activated the Frontdoor sensor), he first put the vegetable into the fridge (activated the
Fridge sensor), then took out the commonly used cup from the cupboard to drink water (activated
the Cup Cupboard sensor)and put the cup back into the cupboard (activated the Cup Cupboard
sensor). Then walk into the washroom (activated the Hall-Bathroom Door sensor), flush the toilet
(activated the Toilet Flush sensor), and walk out of the washroom (activated Hall-Bathroom Door
sensor). Walk into the kitchen again and use the dishwasher to wash the dinner plates (activated
the Dishwasher sensor). In this process, the order of the activated sensors is,

BeS 2 = [FS 1→ KS 3→ KS 2→ KS 2→ BS 1→ TS 2→ BS 1→ KS 5]

Fig. 10 shows the structure of the BeS 2. We can observe that the inhabitant needs to reach
four spaces to complete the sequence of actions. First enter L1, activate the F1 sensor in the L1.
Next enter L3, trigger the KS3, KS2, and KS2 sensors in sequence. Then move to the L4 and
activate the BS1, TS2, and BS1 sensors in sequence in the L4. Finally, enter the L3 and activate
the KS5 sensor.

L4L3

F1 BS1 TS2 BS1KS3 KS2 KS2

Hidden layer 
(Space) 

Observable state
Sensor/Sensors

P(L1 - L3)

P(L4)

P(L3 - L4)

P(L3)

L1 L3P(L4 - L3)

KS5

P(L3)P(L1)

Figure 10: HMM framework for State sequence 2.

There are eight transition probabilities to be considered for moves in this sequence, as shown
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in the Table 3. The result of completing the sequence of actions at the end is the cumulative
product of all probabilities.

Table 3: Probability statistics for BeS2
s0 s1(PL1) s2(PL1−L3) s3(PL3) s4(PL3−L4) s5(PL4) s6(PL4−L3) s7(PL3) PBeS 2

Value 0.076 1 1/9*0.182 1/9 * 0.0361 0.540 0.309 0.274 1/9
∏

si

Behavioural Sequence 3 (BeS3). In the evening, the inhabitant walks into the bathroom
to take a shower (activated Hall-Bathroom Door sensor), uses the toilet (activated Hall-Toilet
sensor), flushes the toilet (activated Toilet Flush sensor), closes the toilet (activated Hall-Toilet
sensor), walks out of the washroom (activated Hall-Bathroom Door sensor) and enters the
bedroom (activated Hall-Bedroom Door sensor).

BeS 3 = [BS 1→ TS 1→ TS 2→ TS 1→ HS 1]

Fig. 11 shows the structure of the state sequence 3. We can observe that the inhabitant
requires to reach two spaces to complete the sequence of actions. First, he enters L4, activates
the BS1 sensor and takes a shower. Then, he activates the TS1, TS2, and TS1 sensors in sequence
in the L4. Finally, the users enters the L2 and activates the HS1 sensor. There are four transition
probabilities to be considered for moves in this sequence, as shown in the Table 4. The result of
completing the behaviours is same as mentioned previously.

L4

BS1 TS1 TS2 TS1

Hidden layer 
(Space) 

Observable state
Sensor/Sensors

P(L4)

L2P(L4 - L2)

HS1

P(L2)

Figure 11: HMM framework for State sequence 3.

Table 4: Probability statistics for BeS3
s0 PL4 PL4−L2 PL2 PBeS 3

Value 0.456 0.002 0.195 1
∏

si

Our experiments are conducted for datasets that record a single user in a smart home.
When analysing behaviour in the presence of multiple users, the behavioural analysis framework
proposed in this paper can be used as a basis for improvement. The main difference is data
collection and organization. There are two conceptual solutions. The first one is the overall
collection, which considers when there are multiple users, assuming that they are in a long-term
shared relationship. The data from all the sensors in that smart home are collected over some
time for behavioural analysis according to the analysis framework proposed in this paper. This
approach, which is based on human inertia, is proposed. In other words, there is a pattern in
their behaviours over time, whether a single user or multiple users. Even for multiple users,
the overall behavioural habits stay mostly the same in the same environment. The second
method involves collecting and analysing each user’s data separately. This method records
each user’s behavioural data independently over time and analyses each user’s behaviour using
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the methodology suggested in this paper. It uses more intelligent sensors that recognize user
biometric information (such as fingerprints).

6. Discussions with anomaly detection and behaviour guidance

Our comprehensive analysis of human behaviour in the smart home is to provide a reference
for the diagnosis of anomalies in the smart home. The anomalies that exist in a smart home
include sensor anomalies and human physical aberrations. Typically, a person living in a fixed
environment for a long time will have a certain pattern in their behavioural sequence. Therefore,
if the probability of a behavioural sequence occurring in a certain time deviates significantly
from the regular data and exceeds a certain threshold, it can be judged as an anomaly. This
method is similar to supervised learning. It is worth noting that this anomaly can be caused by
a malfunctioning sensor or a change in a person’s health. It is beyond the scope of our research
to trace who it is. We propose behavioural analysis methods that can provide a reference for
anomaly detection. It is also possible to provide behavioural guidance for patients with memory
impairment based on routine behavioural analysis.

6.1. Anomaly Detection

The identification of anomalies in this section encompasses both sensor and human
anomalies. Here, a few intriguing behavioural sequence analysis-based instances are given.

6.1.1. Sensor Fault detection
The most prevalent failures of binary sensors used in smart homes fall into two categories;

one is when the battery is depleted and no data is output. The second category is the daily failure,
where the sensor appears to be reading normally, but the actual data output from the sensor is
abnormal [51]. Here we will only discuss the first scenario. This paper assumes Cups Cupboard
sensor’s battery is exhausted in search of a better explanation. Then, even if the resident triggers
it, it will only display 0 for a while. In the model for sensors’ transfer in the kitchen, we need
to change all of the values of d2 to 0. At this point the KS 3 → KS 2 → KS 2 part of the S S 2 is
verified based on the following PCTL formula,

P =?[X((s = 2&d2 = 1)&(X((s = 2&d2 = 1))))]

The result obtained was 0. If this happens in practice, it can be determined that the sensor’s
battery is depleted. An alarm in the smart home can send an alert so that the inhabitant can
replenish the battery in time.

6.1.2. Health judgement
According to the typical pattern, human behaviour will form certain habits throughout life.

For example, some people will go to the bathroom before the bedroom, while others may drink a
bottle of milk before going to the bedroom. Habits formed over a long time will mostly stay the
same for a short time. Therefore, we can determine whether there are abnormalities in the health
of the inhabitants through the analysis of behavioural drift.

Behavioural drift [52] can be understood as a significant difference between the inhabitant’s
behaviour and daily behaviour over a while. Under the assumption that the sensor network is
fault-free, such behavioural drift may be due to the mechanical abnormality or emotion of the
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inhabitant. Especially for inhabitants with physical disabilities, it will help family members to
give help timely if the abnormal behaviour can be identified.

When determining behavioural drift, a threshold value can be given according to the
conventional practice [52]. Once the probability of state transfer or the frequency of behaviour
occurrence is greater than a certain threshold value, it can be judged as an abnormal event. The
alert system will automatically send an alert prompt to the guardian at this time. Experts usually
select the threshold value based on experience and knowledge. We will thoroughly analyse the
obtained behavioural data and make a judgment based on the threshold value.

We consider that the inhabitant repeatedly performs a certain behaviour over a while,
activating a certain sensor. For example, when the inhabitant suffers a temporary memory loss,
he opens the fridge and then repeats the action of opening and closing it because he forgets the
motivation.

In this case, the currently activated sensor is the Fridge sensor, and the probability that the
next activated sensor will be the Fridge sensor in t ∈ {ti...t j} is 1. The result obtained after
verification of Property 3 at this point is true, which means that he has continuously activated
the Fridge sensor more than 50 times and finally activating the Dishwasher sensor. The sensor
network in a smart home can be set up to alert both the guardian and the inhabitant when a
behaviour drifts and is determined to be abnormal.

6.2. Behavioural guidance

Amnesia is a very common mental illness, with Alzheimer’s disease often occurring among
middle-aged and older adults. The most obvious symptom of the disease is transient amnesia, i.e.,
forgetting the behaviour one is supposed to do at a certain moment [53]. IoT-based smart homes
provide greater convenience for people living alone, and collecting data on the inhabitants’
behaviour in the smart home can provide behavioural guidance in the event of transient amnesia
[54]. In this case, probabilistic model checking provides a great help for what we want to do. Add
the variable i to the logical equation, indicating the missing part of the memory. Experimentally,
calculate the probability of occurrence of the sequence of behaviours under i taking all available
values. Finally, comparing the results, the value with the highest probability of occurrence can
be selected as the value of i taken to perform the corresponding behaviour. For better illustration,
here we list 3 properties with parameters.

Property 8. What is the probability of entering the room x from the initial state (in outdoor),
entering the room y at the next time, and then entering the washroom. The PCTL that represents
the Property 8 is,

P =?[X(s = x&(X(s = y&(X(s = 4)))))]

Table 5 shows the experimental results. Columns 2-5 in the table represent the verification
results when x, y take the corresponding values. It can be seen that the probability is highest
when x=4 and y=3. when the inhabitant is currently in the outdoor that he wants to enter the
washroom after passing through two rooms. Then the most likely order of passage is, outdoor to
washroom to kitchen to washroom. In addition, the following columns 6-9 are the corresponding
time for model checking. It can be found that the verification is very fast. The behaviour analyst
only needs to input the specified behaviour sequence into the model checker after expressing it
with the PCTL formula, the verification is completed automatically, and the whole process is
extremely efficient.
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Table 5: Verification results for property 8 in the PRISM

No Verification Results Time for model checking(seconds)
y=1 y=2 y=3 y=4 y=1 y=2 y=3 y=4

x=1 6.822E-4 8.622E-4 0.00415 0.00853 0.003 0.009 0.004 0.002
x=2 0 0 9.576E-4 0.01078 0.002 0.001 0.009 0.007
x=3 0.00276 0 0.03043 0.05187 0.002 0.008 0.002 0.002
x=4 0.13100 0.11764 0.13538 0.10659 0.002 0.001 0.002 0.002

Property 9. What is the probability of triggering the sensor a (a ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9})
from the initial state, triggering the Dishwasher sensor at next time. The initial state is 3, which
means the active sensor is Fridge sensor.

P =?[X(s = a&(X(s = 5))))]

From the verification results that shown in Table 6, it can be observed that the probability
is the largest when a=3. The model checking times for the relevant properties are also listed in
the table. Simulation experiments were completed in PRISM and Fig. 12 shows the verification
results for this property. Through this, it can be judged that if the actor performs another action
between the Fridge sensor and the Dishwasher sensor, the most likely is that the Fridge sensor is
triggered again. This seems reasonable since we normally close the fridge just in time when we
open it.

Table 6: Verification results for property 9 in the PRISM

No Verification Results Time for model checking
(Seconds)

a=1 0.00269 0.008
a=2 0.00210 0.011
a=3 0.00931 0.006
a=4 0 0.003
a=5 0.00698 0.003
a=6 0 0.004
a=7 0.00451 0.006
a=8 0.00270 0.008
a=9 0.00179 0.021

Property 10. What is the probability of triggering the sensor b (b ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9})
from the initial state, triggering the sensor c (c ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}) at next time, and then
triggering the Dishwasher sensor. The initial state is 3, which means the active sensor is the
Fridge sensor.

P =?[X(s = b&(X(s = c&(X(s = 5)))))]

Table 7 shows the probabilistic model checking for Property 10. Note that this table identifies
the verification time below the corresponding one for each verification result. The results show
that the maximum value is obtained when b=3 and c=3. Fig. 13 shows the simulation that
developed in PRISM. We can assume that this behaviour sequence is most likely to occur.
Therefore, if the inhabitant completes activating the Fridge sensor and activates the Dishwasher
sensor after both behaviours have been completed, consider that the two intermediate behaviours
are both activating the Fridge sensor.
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Figure 12: Experiment for Property 9 in PRISM.

Figure 13: Experiment for Property 10 in PRISM.

7. Conclusions

Based on HMM and probabilistic model checking, this paper proposed a hierarchical
framework for analysing human behaviour. Firstly, the behavioural sequences to be analysed
were stratified according to space and sensors. Where the space location is the state of the hidden
layer, and the sensors’ state is the state included in the observable layer. DTMC models were
developed for the hidden and observable layers and were introduced into PRISM in a specific
format. The constructed models were verified to check whether the models satisfy the required
properties. Finally, the HMM layering and probabilistic model checking results were integrated
to calculate the probability of occurrence of the corresponding behavioural sequence.

Practically, the most difficult part of this study was the hierarchical partitioning of the
behavioural sequence analysis and the combined analysis of HMM and probabilistic model
checking. The proposed framework allows for a clear and effective analysis of the structure
of the behavioural sequences inhabiting a smart home and the occurrence likelihood.

In addition, we also discussed the implications of sound behavioural sequence analysis for
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Table 7: Verification results for the Property 10 in the PRISM

No
Verification Results

(Time for model checking (Seconds))
c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8 c=9

b=1 0.00101 5.645E-5 2.880E-4 0 0.00104 0 2.204E-4 0 2.24E-4
(0.004) (0.005) (0.004) (0.003) (0.004) (0.003) (0.008) (0.003) (0.004)

b=2 1.806E-4 7.581E-4 4.986E-4 0 8.148E − 4 0 5.248E-4 0 2.380E-4
(0.004) (0.005) (0.004) (0.003) (0.01) (0.003) (0.005) (0.002) (0.005)

b=3 0.00139 0.00109 0.00481 0 0.00361 0 0.00233 0.00140 9.265E-4
(0.01) (0.005) (0.004) (0.003) (0.004) (0.004) (0.005) (0.006) (0.005)

b=4 4.114E-4 2.415E-4 3.240E-4 0 0 0 5.412E-5 0 8.260E − 4
(0.005) (0.006) (0.005) (0.002) (0.003) (0.003) (0.005) (0.002) (0.007)

b=5 0 0 1.814E-5 0 0.00271 0 2.465E-4 1.008E-4 2.822E-5
(0.002) (0.002) (0.005) (0.003) (0.004) (0.002) (0.003) (0.004) (0.004)

b=6 1.825E-4 1.213E-4 2.089E − 4 0 0 0 1.173E-4 1.430E-4 2.033E-4
(0.006) (0.008) (0.008) (0.003) (0.003) (0.002) (0.005) (0.005) (0.005)

b=7 0 7.046E-5 1.822E-4 0 0.00175 0 0.00212 0 1.263E-4
(0.003) (0.007) (0.007) (0.003) (0.004) (0.002) (0.003) (0.002) (0.008)

b=8 0 0 4.860E-5 0 0.00105 0 0 0.00189 7.560E-5
(0.003) (0.013) (0.006) (0.002) (0.003) (0.002) (0.002) (0.003) (0.006)

b=9 1.129E-4 3.763E-5 3.571E-4 0 6.953E − 4 0 1.469E-4 0 6.810E-4
(0.007) (0.006) (0.007) (0.003) (0.01) (0.004) (0.004) (0.003) (0.003)

anomaly detection and behavioural guidance at the end of the paper. The objective of the smart
home is to improve human living, particularly for lone inhabitants with inadequate living skills.
Behavioural analysis can explore the behavioural habits of the inhabitants so that abnormalities
can be detected in time. These anomalies could result from malfunctioning sensors or indicate
changes in the person’s health. Abnormalities can be quickly identified by employing excellent
behavioural analysis, maximizing the efficiency of the smart home. On the other hand, we
represented behavioural sequences based on a parametric PCTL formula with parameters instead
of uncertain values in the formula. In the verification, the parameter with the highest probability
value was taken by an ergodic check, which can thus be helpful for inhabitants who want
behavioural guidance.

This paper focused on analysing behaviour sequences, and the extended application discussed
was relatively simple. For example, when considering anomaly detection, the situation of sensor
failure or abnormal human health was considered separately. However, the situation where the
two situations occurred at the same time was not considered. We assumed that the activity was
completed in a specific space to use the transfer of the activity to infer the corresponding space
transfer. These assumptions were idealized scenarios, while the actual sequence of actions is
more complex. Further in-depth analysis is required in future research. The proposed method’s
influence on accurately of anomaly detection and behavioural guidance will be demonstrated
in future research. Furthermore, we will also consider how action recognition of multiple
inhabitants can be accomplished based on behavioural sequence analysis.
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Appendix

Listing 3: The DTMC of the sensor transition in kitchen

dtmc
module s t a t e t r a n s i t i o n i n k i t c h e n
s : [ 1 . . 9 ] i n i t 3 ;
d1 : [ 0 . . 1 ] i n i t 0 ;
d2 : [ 0 . . 1 ] i n i t 0 ;
d3 : [ 0 . . 1 ] i n i t 1 ;
d4 : [ 0 . . 1 ] i n i t 0 ;
d5 : [ 0 . . 1 ] i n i t 0 ;
d6 : [ 0 . . 1 ] i n i t 0 ;
d7 : [ 0 . . 1 ] i n i t 0 ;
d8 : [ 0 . . 1 ] i n i t 0 ;
d9 : [ 0 . . 1 ] i n i t 0 ;
[ ] s =1−>0.374:( d1 ’=1)&( s ’=1)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)
&(d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 4 2 : ( d2 ’=1)&( s ’=2)&( d1 ’=0)&( d3 ’=0)&( d4 ’=0)
&(d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 2 5 0 : ( d3 ’=1)&( s ’=3)&( d2 ’=0)
&(d1 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 4 2 : ( d4 ’=1)
&(s ’=4)&( d2 ’=0)&( d3 ’=0)&( d1 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’=0)
+ 0 . 0 4 2 : ( d5 ’=1)&( s ’=5)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d1 ’=0)&( d6 ’=0)&( d7 ’=0)
&(d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 8 3 : ( d6 ’=1)&( s ’=6)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)
&(d1 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 4 2 : ( d7 ’=1)&( s ’=7)&( d2 ’=0)&( d3 ’=0)
&(d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d1 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 : ( d8 ’=1)&( s ’=8)
&(d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d1 ’=0)&( d9 ’=0)+

0 . 1 2 5 : ( d9 ’=1)&( s ’=9)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)
&(d8 ’=0)&( d1 ’ = 0 ) ;
[ ] s =2−>0.043:( d1 ’=1)&( s ’=1)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)
&(d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 3 6 1 : ( d2 ’=1)&( s ’=2)&( d1 ’=0)&( d3 ’=0)&( d4 ’=0)
&(d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 2 7 7 : ( d3 ’=1)&( s ’=3)&( d2 ’=0)
&(d1 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 1 0 6 : ( d4 ’=1)
&(s ’=4)&( d2 ’=0)&( d3 ’=0)&( d1 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’=0)
+ 0 . 0 2 1 : ( d5 ’=1)&( s ’=5)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d1 ’=0)&( d6 ’=0)&( d7 ’=0)
&(d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 4 3 : ( d6 ’=1)&( s ’=6)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)
&(d1 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 6 4 : ( d7 ’=1)&( s ’=7)&( d2 ’=0)&( d3 ’=0)
&(d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d1 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 : ( d8 ’=1)&( s ’=8)&
( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d1 ’=0)&( d9 ’=0)+

0 . 0 8 5 : ( d9 ’=1)&( s ’=9)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)
&(d8 ’=0)&( d1 ’ = 0 ) ;
[ ] s =3−>0.064:( d1 ’=1)&( s ’=1)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)
&(d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 1 0 0 : ( d2 ’=1)&( s ’=2)&( d1 ’=0)&( d3 ’=0)&( d4 ’=0)
&(d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 5 1 7 : ( d3 ’=1)&( s ’=3)&( d2 ’=0)
&(d1 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 1 0 0 : ( d4 ’=1)
&(s ’=4)&( d2 ’=0)&( d3 ’=0)&( d1 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’=0)
+ 0 . 0 1 8 : ( d5 ’=1)&( s ’=5)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d1 ’=0)&( d6 ’=0)&( d7 ’=0)
&(d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 5 5 : ( d6 ’=1)&( s ’=6)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)
&(d1 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 5 5 : ( d7 ’=1)&( s ’=7)&( d2 ’=0)&( d3 ’=0)
&(d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d1 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 2 7 : ( d8 ’=1)&( s ’=8)
&(d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d1 ’=0)&( d9 ’=0)+

0 . 0 6 4 : ( d9 ’=1)&( s ’=9)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)
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&(d8 ’=0)&( d1 ’ = 0 ) ;
[ ] s =4−>0.098:( d1 ’=1)&( s ’=1)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)
&(d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 1 1 5 : ( d2 ’=1)&( s ’=2)&( d1 ’=0)&( d3 ’=0)&( d4 ’=0)
&(d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 1 8 0 : ( d3 ’=1)&( s ’=3)&( d2 ’=0)
&(d1 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 1 1 5 : ( d4 ’=1)
&(s ’=4)&( d2 ’=0)&( d3 ’=0)&( d1 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’=0)
+0 : ( d5 ’=1)&( s ’=5)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d1 ’=0)&( d6 ’=0)&( d7 ’=0)
&(d8 ’=0)&( d9 ’ = 0 ) + 0 . 1 3 1 : ( d6 ’=1)&( s ’=6)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)
&(d1 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 6 6 : ( d7 ’=1)&( s ’=7)&( d2 ’=0)&( d3 ’=0)
&(d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d1 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 : ( d8 ’=1)&( s ’=8)
&(d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d1 ’=0)&( d9 ’=0)+

0 . 2 9 5 : ( d9 ’=1)&( s ’=9)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)
&(d8 ’=0)&( d1 ’ = 0 ) ;
[ ] s =5−>0:(d1 ’=1)&( s ’=1)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)
&(d8 ’=0)&( d9 ’ = 0 ) + 0 : ( d2 ’=1)&( s ’=2)&( d1 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)
&(d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 5 6 : ( d3 ’=1)&( s ’=3)&( d2 ’=0)&( d1 ’=0)
&(d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 2 7 7 : ( d4 ’=1)&( s ’=4)
&(d2 ’=0)&( d3 ’=0)&( d1 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’=0)
+ 0 . 3 8 8 : ( d5 ’=1)&( s ’=5)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d1 ’=0)&( d6 ’=0)&( d7 ’=0)
&(d8 ’=0)&( d9 ’ = 0 ) + 0 : ( d6 ’=1)&( s ’=6)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)
&(d1 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 1 6 7 : ( d7 ’=1)&( s ’=7)&( d2 ’=0)&( d3 ’=0)
&(d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d1 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 5 6 : ( d8 ’=1)&( s ’=8)
&(d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d1 ’=0)&( d9 ’=0)
+ 0 . 0 5 6 : ( d9 ’=1)&( s ’=9)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)
&(d8 ’=0)& ( d1 ’ = 0 ) ;
[ ] s =6−>0.079:( d1 ’=1)&( s ’=1)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)
&(d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 1 0 5 : ( d2 ’=1)&( s ’=2)&( d1 ’=0)&( d3 ’=0)&( d4 ’=0)
&(d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 2 1 1 : ( d3 ’=1)&( s ’=3)&( d2 ’=0)
&(d1 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 1 8 4 : ( d4 ’=1)
&(s ’=4)&( d2 ’=0)&( d3 ’=0)&( d1 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)
&(d9 ’ = 0 ) + 0 : ( d5 ’=1)&( s ’=5)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d1 ’=0)&( d6 ’=0)
&(d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 2 3 7 : ( d6 ’=1)&( s ’=6)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)
&(d5 ’=0)&( d1 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 2 6 : ( d7 ’=1)&( s ’=7)&( d2 ’=0)
&(d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d1 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 2 6 : ( d8 ’=1)
&(s ’=8)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d1 ’=0)&( d9 ’=0)
+ 0 . 1 3 2 : ( d9 ’=1)&( s ’=9)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)
&(d8 ’=0)&( d1 ’ = 0 ) ;
[ ] s =7−>0:(d1 ’=1)&( s ’=1)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)
&(d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 6 1 : ( d2 ’=1)&( s ’=2)&( d1 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)
&(d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 1 8 4 : ( d3 ’=1)&( s ’=3)&( d2 ’=0)&( d1 ’=0)
&(d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 1 2 2 : ( d4 ’=1)&( s ’=4)
&(d2 ’=0)&( d3 ’=0)&( d1 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’=0)
+ 0 . 0 8 2 : ( d5 ’=1)&( s ’=5)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d1 ’=0)&( d6 ’=0)&( d7 ’=0)
&(d8 ’=0)&( d9 ’ = 0 ) + 0 : ( d6 ’=1)&( s ’=6)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)
&(d1 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 4 6 9 : ( d7 ’=1)&( s ’=7)&( d2 ’=0)&( d3 ’=0)
&(d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d1 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 : ( d8 ’=1)&( s ’=8)
&(d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d1 ’=0)&( d9 ’=0)
+ 0 . 0 8 2 : ( d9 ’=1)&( s ’=9)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)
&(d8 ’=0)&( d1 ’ = 0 ) ;
[ ] s =8−>0:(d1 ’=1)&( s ’=1)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)
&(d8 ’=0)&( d9 ’ = 0 ) + 0 : ( d2 ’=1)&( s ’=2)&( d1 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)
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&(d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 1 0 0 : ( d3 ’=1)&( s ’=3)&( d2 ’=0)&( d1 ’=0)
&(d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 : ( d4 ’=1)&( s ’=4)
&(d2 ’=0)&( d3 ’=0)&( d1 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’=0)
+ 0 . 1 0 0 : ( d5 ’=1)&( s ’=5)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d1 ’=0)&( d6 ’=0)&( d7 ’=0)
&(d8 ’=0)&( d9 ’ = 0 ) + 0 : ( d6 ’=1)&( s ’=6)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)
&(d1 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 : ( d7 ’=1)&( s ’=7)&( d2 ’=0)&( d3 ’=0)
&(d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d1 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 7 0 0 : ( d8 ’=1)&( s ’=8)
&(d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d1 ’=0)&( d9 ’=0)
+ 0 . 1 0 0 : ( d9 ’=1)&( s ’=9)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)
&(d8 ’=0)&( d1 ’ = 0 ) ;
[ ] s =9−>0.042:( d1 ’=1)&( s ’=1)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)
&(d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 2 8 : ( d2 ’=1)&( s ’=2)&( d1 ’=0)&( d3 ’=0)&( d4 ’=0)
&(d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 3 1 0 : ( d3 ’=1)&( s ’=3)&( d2 ’=0)
&(d1 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 8 5 : ( d4 ’=1)
&(s ’=4)&( d2 ’=0)&( d3 ’=0)&( d1 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d8 ’=0)
&(d9 ’ = 0 ) + 0 . 0 2 8 : ( d5 ’=1)&( s ’=5)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d1 ’=0)&( d6 ’=0)
&(d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 9 9 : ( d6 ’=1)&( s ’=6)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)
&(d5 ’=0)&( d1 ’=0)&( d7 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 . 0 2 8 : ( d7 ’=1)&( s ’=7)&( d2 ’=0)
&(d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d1 ’=0)&( d8 ’=0)&( d9 ’ = 0 ) + 0 : ( d8 ’=1)
&(s ’=8)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)&( d1 ’=0)&( d9 ’=0)
+ 0 . 3 8 0 : ( d9 ’=1)&( s ’=9)&( d2 ’=0)&( d3 ’=0)&( d4 ’=0)&( d5 ’=0)&( d6 ’=0)&( d7 ’=0)
&(d8 ’=0)&( d1 ’ = 0 ) ;
endmodule
r e w a r d s ” Microwave ”
d1 = 1 : 1 ;
e n d r e w a r d s
r e w a r d s ” CupsCupboard ”
d2 = 1 : 1 ;
e n d r e w a r d s
r e w a r d s ” F r i d g e ”
d3 = 1 : 1 ;
e n d r e w a r d s
r e w a r d s ” P l a t e s C u p b o a r d ”
d4 = 1 : 1 ;
e n d r e w a r d s
r e w a r d s ” Dishwasher ”
d5 = 1 : 1 ;
e n d r e w a r d s
r e w a r d s ” F r e e z e r ”
d6 = 1 : 1 ;
e n d r e w a r d s
r e w a r d s ” PansCupboard ”
d7 = 1 : 1 ;
e n d r e w a r d s
r e w a r d s ” WashingMachine ”
d8 = 1 : 1 ;
e n d r e w a r d s
r e w a r d s ” G r o c e r i e s C u p b o a r d ”
d9 = 1 : 1 ;
e n d r e w a r d s
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[4] A. A. Chaaraoui, P. Climent-Pérez, F. Flórez-Revuelta, A review on vision techniques applied to human behaviour
analysis for ambient-assisted living, Expert Systems with Applications 39 (12) (2012) 10873–10888.
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