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Abstract

Faculty Name

Department of Computer Science

Doctor of Philosophy

by Najim Al-baghdadi

In this thesis, we explore the application of prediction with expert advice algorithms for

investing in the Foreign Exchange (FX) market.

We introduce a data staging algorithm designed to reconstruct multiple time series

databases into a partitioned and regularised database. The Data Aggregation Partition

Reduction Algorithm, or DAPRA for short, was designed to solve the practical issue of

effective and meaningful visualisation of irregularly sampled time series data.

We apply methods of prediction with expert advice to real-world foreign exchange trad-

ing data to find effective investment strategies. We build upon the framework of the

long-short game, introduced by Vovk and Watkins (1998), and propose modifications

aimed at improving the performance with respect to standard portfolio performance

indicators.

We apply the Weak Aggregating Algorithm (WAA) to find optimal risk management

strategies for financial Market Makers (MMs), using hedging strategies as experts. We

combine their hedging decisions to reduce portfolio risk and maximise profitability. We

develop a variation of the WAA using discounting and evaluate the results on commonly

traded FX currency pairs.
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Chapter 1

Introduction

In today’s world, where decision-making is critical in almost every aspect of our lives,

seeking advice from experts has become standard practice. Whether we are placing a

bet on a football match or trying to predict the weather, we often rely on the insights of

others to guide our decision-making process. However, understanding how we process

information to draw meaningful conclusions is still a mystery. The study of prediction

with expert advice is a field that seeks to provide a machine-learning framework, to

enable models to make decisions based on a set of experts’ predictions.

In this thesis, we explore a special case of prediction with expert advice in portfolio

management, namely, finding optimal investment and hedging strategies in the Foreign

Exchange market. This is a challenging problem for several reasons. Our learners must

make decisions in a sequential manner. Where at each time step, a prediction is made

and a subsequent outcome is revealed. The goal is that over time, our learners will be

able to identify those experts providing insightful predictions and use this to guide their

own. This method of learning is advantageous as new data affects a model in real time,

as opposed to a batch algorithm that is dependent on training data. This is particularly

useful in portfolio management, where changes in market conditions can quickly lead to

a model that has been performing well to fail.

The Aggregating Algorithm (AA) developed in [1], is an established prediction with

expert advice algorithm that we will use for much of this thesis. The AA first assigns a

pool of experts with an initial distribution of weights, then based on an expert’s loss at

each trial, their weight is adjusted accordingly. The AA provides a theoretical guarantee

that for a learner following the AA, their loss will be within some bounds of the best

expert, at any given time.

7



Introduction 8

The AA has been used to tackle the problem of investing in financial markets in the

past. Firstly in [2] and later developed in [3]. The work in this thesis builds upon these

papers to improve the practical application of the AA when investing using real-world

market data. This is achieved by looking at the methods used to evaluate experts’ loss

and developing them to find more optimal investment strategies, concerning financial

metrics.

The data used in this thesis is taken from the real world and presents an interesting

problem. The nature of prediction with expert advice is that a learner must be able to

read a prediction from an expert and then make a prediction in the same space. However,

a learner here makes decisions in discrete time and investors in financial markets act

in continuous time. We therefore require a method of taking raw trading data and

converting it into a regularised format, to be used as an expert prediction. To address

this issue we have introduced the Data Aggregation Partition Reduction Algorithm

(DAPRA). This is a method of taking multiple time series data sets a producing one

regularised data set. We will discuss this further in chapter 4.

We also explore the problem of using prediction with expert advice to find optimal

hedging strategies for a broker in the FX market. Namely, apply the Weak Aggregating

Algorithm (WAA), and merge a pool of hedging strategies. To improve the application

of the WAA, we also introduce discounting to the framework of the algorithm.

The work of this thesis not only refines the Aggregating Algorithm, including the use

of experiments on real-world data. That has been shown to significantly improve the

ability of the algorithm to distinguish, profitable trading strategies. But, also introduces

the DAPRA framework, providing a new method of processing time-series data. Whilst

in this thesis, we have used DAPRA primarily for processing data, to facilitate the ap-

plication of the AA of real word data. We must acknowledge the importance of DAPRA

in other areas of data management. This introduction provides the foundational frame-

work, to standardize time series data. We are taking unstructured data, and returning

structured and consistent datasets. This breakthrough opens the door to a diverse range

of potential applications. Moreover, this research contributes significantly to the study

of hedging, particularly in the context of market making. Unlike traditional literature

that often focuses on hedging with derivatives, our exploration involves managing a mar-

ket maker’s overall position open with clients, providing a fresh perspective on effective

hedging strategies.
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1.1 Original Contributions

The key theoretical contributions of the thesis are presented in chapters 5 and 6. Note,

chapter 2 presents an overview of the established theory of prediction with expert advice.

1. The introduction of the Data Aggregation Partition Reduction Algorithm (DAPRA),

is presented in chapter 4. This is a method used to merge multiple time series

datasets, of irregularly sampled data. Into one regularly partitioned dataset.

2. In chapter 5, we study the use of the Aggregating Algorithm for investing in Foreign

Exchange markets. This is explored within the framework of the well-established

Long-Short game, where we see poor performance in real applications. In this

thesis, we introduce modifications to the game that have been shown to improve

the performance in empirical trials. These modifications focus on the evaluation

of experts’ loss, introducing return scaling and downside loss.

3. In chapter 6 we explore the problem of using prediction with expert advice, to

find optimal hedging strategies for Foreign Exchange brokers. We introduce the

framework to use the WAA, to combine a pool of hedging strategies. In Section 6.3

we show the application of discounting loss to the Weak Aggregating Algorithm,

introducing the WAAd.

1.2 Publications

The content of this thesis is based on publications of the following conference proceed-

ings.

• Najim Al-baghdadi, Wojciech Wisniewski, David Lindsay, Sian Lindsay, Yuri

Kalnishkan, and Chris Watkins. Structuring Time Series Data to Gain Insight

into Agent Behaviour. In Proceedings of the 3rd International Workshop on Big

Data for Financial News and Data. IEEE, 2020, pages 5480-5490.

• Najim Al-baghdadi, David Lindsay, Yuri Kalnishkan, and Sian Lindsay. Practical

investment with the long-short game. In The 9th Symposium on Conformal and

Probabilistic Prediction with Applications: COPA 2020, Proceedings of Machine

Learning Research, vol. 128, 2020, pages 209-228.

• Najim Al-baghdadi, David Lindsay, Yuri Kalnishkan, and Sian Lindsay. Online

Portfolio Hedging with the Weak Aggregating Algorithm. In The 11th Sympo-

sium on Conformal and Probabilistic Prediction with Applications: COPA 2022,

Proceedings of Machine Learning Research, vol. 179, 2022, pages 149-168.
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• Najim Al-baghdadi, David Lindsay, Yuri Kalnishkan, and Sian Lindsay. Practi-

cal investment with the long-short game. Annals of Mathematics and Artificial

Intelligence, Springer, 2023.

1.3 Thesis Structure

In Chapter 2 we provide an overview of the existing prediction with expert advice algo-

rithms, that we later develop in the thesis. In Chapter 3, we review the Foreign Exchange

market and the role brokers play within the industry. In chapter 4, we introduce the

ETL algorithm DAPRA and demonstrate its application on multiple datasets. Then

in Chapter 5 we show how the Long-Short game performs on real-world FX data, and

introduce modifications to improve its performance. Chapter 6 introduces the cylinder

hedging model and explores the use of the Weak Aggregating Algorithm to find optimal

hedging strategies.



Chapter 2

Prediction with Expert Advice

2.1 Framework

Consider the following prediction scenario. On every step t = 1, 2, . . ., the learner L

produces a prediction γt ∈ Γ, where Γ is a known prediction space. The nature produces

a loss function λt : Γ → R and the learner suffers loss ℓt = λt(γt). We measure the

performance of L by the cumulative loss over T steps given by

LossT (L) =
T∑
t=1

ℓt .

We want the cumulative loss to be as low as possible.

Now suppose that there are N experts En, n = 1, 2, . . . , N , making prediction in the

same environment as L so that their predictions are available to L before it makes its

own. We will treat the experts as black boxes and will not be concerned with their

internal mechanics. It is an important requirement that their predictions are available

to L before it makes its own and that they will suffer loss according to he same function

λt. The interaction with experts may be described by Protocol 1.

Protocol 1 Prediction with Expert Advice Protocol

for t = 1, 2, . . . do
experts En output predictions γnt ∈ Γ, n = 1, 2, . . . , N
learner L outputs a prediction γt ∈ Γ
nature produces a function λt : Γ→ R
experts En suffer losses ℓnt = λt(γ

n
t ), n = 1, 2, . . . , N

learner L suffers loss ℓt = λt(γt)

end for

11
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We want the cumulative loss LossT (L) to be small compared to the minimum of experts’

losses LossT (En) =
∑T

t=1 ℓ
n
t . Formally one can think of L as a merging strategy

L :
(
(Γ× R)N

)∗ × ΓN → Γ

turning an array of experts’ predictions and a history of their prediction and losses into

its prediction.

We will aim to impose minimal restrictions on the loss functions λt output by the nature;

we will not be assuming that the nature can be modeled in a reasonable sense.

Remark 2.1. A simple scenario covered by Protocol 1 is the one where Γ = [0, 1] and

λt(γ) = |γ − ωt|, where ωt is generated by the nature. Here a predictor aims to output

predictions γt approximating outcomes ωt.

2.2 Aggregating Algorithm

We will introduce the aggregating algorithm following [3].

A game a G is a triple ⟨Ω,Γ, λ⟩ consisting of an outcome space Ω, a prediction space Γ,

and a loss function λ : Ω× Γ→ [0,+∞].

The outcomes ω1, ω2, . . . occur in succession. A prediction strategy S outputs a predic-

tion γt before seeing each outcome ωt and suffers loss λ(ωt, γt) after the outcome ωt is

revealed. The performance of the strategy over T steps is measured by the cumulative

loss LossT (S) =
∑T

t=1 λ(ωt, γt). In the investment scenarios, the semantics is slightly

different. The value γt represents the decision taken on step t and λ(ωt, γt) quantifies

the consequences of γt facing the developments represented by ωt. An investor is not

aiming to make γt “close” to the values of ωt in any sense, but still wants to minimize

the cumulative loss. We will retain the prediction terminology though.

The aggregating algorithm (AA) is a way of making a prediction-based on the predictions

provided by a pool of experts (prediction strategies) Θ, where γt(θ) ∈ Γ denotes the

prediction of expert θ ∈ Θ at trial t. The AA treats experts as black boxes but have

access to their predictions γt(θ) before making its own prediction γt.

The AA takes the following parameters: a learning rate η > 0 and an initial distribution

on experts P0(dθ), which quantifies the initial trust in each expert. We will denote the

prediction strategy using AA with parameters η and P0 by AA(η, P0).
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The AA maintains weights Pt on experts Θ. After each trial t, the experts’ weights are

updated as follows:

Pt(dθ) = e−ηλ(ωt,γt(θ))Pt−1(dθ) .

Therefore the larger the expert’s loss the greater the reduction of its weight. To define

the AA we first will introduce the aggregating pseudo-algorithm (APA), which at trial

t produces a generalized prediction (a function g : Ω → (−∞,+∞]) based on the

normalized weights as follows:

gt(ω) = −
1

η
ln

∫
Θ
e−ηλ(ωt,γt(θ))P ∗

t−1(dθ) ,

where P ∗
t−1 denotes the normalised weights P ∗

t−1 = Pt−1(dθ)/Pt−1(Θ). One can define

the cumulative loss of APA as Loss(APA(η, P0)) =
∑T

t=1 gt(ωt). The following lemma

can be proven by induction.

Lemma 2.2. For any learning rate η > 0, initial distribution P0, and T = 1, 2, ... we

get

LossT (APA(η, P0)) = −
1

η
ln

∫
Θ
e−η LossT (θ)P0(dθ).

for all ω1, ω2, . . . , ωT .

To obtain the AA from the APA, we need to find a permitted prediction Σ(gt), where the

substitution function Σ maps a generalised prediction g : Ω→ (−∞,∞] to a prediction

Σ(g) ∈ Γ while keeping the loss as low as possible. Let GA(η) be the set of all generalised

actions that can be produced by the APA with learning rate η:

GA(η) =

{
g : Ω→ R | ∃P ∀ω : g(ω) = −1

η
ln

∫
Γ
e−ηλ(ω,γ)P (dγ)

}
,

where P ranges over all distributions1 on Γ. For a generalized action g, let

C(g) = inf
γ∈Γ

sup
ω∈Ω

λ(γ, ω)/g(ω) .

Under mild continuity assumptions (namely, if Γ is a compact topological space and

λ(ω, ·) is continuous in the second argument) the value of C(g) is achieved on some

γ ∈ Γ and we can replace g by γ such that λ(ω, γ) ≤ C(g)g(ω) for every ω ∈ Ω.

1We assume that all γt(·) : Θ → Γ are Borel mappings of topological spaces and induce measures on
Γ.
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The mixabthe ility constant Cη is defined as

Cη = sup
g∈GA(η)

C(g) .

There is a substitution function Σ mapping generalized predictions g to Γ satisfying:

∀g ∈ GA(η) ∀ω ∈ Ω : λ(ω,Σ(g)) ≤ Cηg(ω) . (2.1)

Substitution functions satisfying condition (2.1) are the ones allowed to be used in the

AA. Condition (2.1) and Lemma 2.2 imply

LossT (AA(η, P0) ≤ Cη LossT (APA(η, P0)) = −
Cη

η
ln

∫
Θ
e−η LossT (θ)P0(dθ) . (2.2)

A game is said to be η-mixable if Cη = 1 and mixable if it is η-mixable for some η > 0.

For mixable games the learner following the AA can perform almost as well as any expert

from a finite pool, as the following lemma shows.

Lemma 2.3. For a finite pool of experts Θ,

LossT (AA(η, P0)) ≤ Cη LossT (θ) +
Cη

η
ln

1

P0(θ)
(2.3)

for every expert θ ∈ Θ and time T = 1, 2, . . . Moreover, if the game is η-mixable, then

LossT (AA(η, P0)) ≤ LossT (θ) +
1

η
ln

1

P0(θ)
. (2.4)

Indeed, for a finite pool of experts, the integral in (2.2) turns into a sum of non-negative

terms and the sum can be bounded from below by each of its terms.

Bounds (2.3) provided by the AA are optimal in their class for the uniform initial

distribution [4]. If an algorithm provides a guarantee of this type, the AA with some η

can do the same or better; hence the significance of the AA.

Taking η such that Cη = 1 minimizes the first term on the right-hand side of (2.3); this

is important because this term may be growing with T (and would normally grow as a

linear rate). Thus ηs making the game mixable are good choices for practice as long as

they exist. Out of such ηs the maximum value should be chosen because it minimizes

the second term on the right-hand side of (2.4).

Algorithm 1 is the AA for the case of finitely many experts, which is the main case

for this thesis. Here N is the number of experts and Θ is identified with {1, 2, . . . , n}.
In this context, one can think of Σ as a function ΓN × PN−1 → Γ (where PN−1 is the
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(N − 1)-simplex) mapping arrays of experts’ predictions and distributions on them to

predictions.

Algorithm 1 The aggregating algorithm for finitely many experts

Parameters: Learning rate η > 0 and
initial experts’ weights p0(n), n = 1, 2, . . . , N
for t = 1, 2, . . . do

read experts’ predictions γt(n) ∈ Γ, n = 1, 2, . . . , N
normalise the weights: p∗t−1(n) = pt−1(n)/

∑N
n=1 pt−1(n)

produce the generalised prediction

gt(ω) = −
1

η
ln

N∑
n=1

p∗t−1(n)e
−ηλ(ω,γt(n))

calculate and output γt = Σ(gt)
read ωt ∈ Ω
update the weights pt(n) = pt−1(n)e

−ηλ(ωt,γt)

end for

2.2.1 Covers Game

Cover’s game formalizes a basic investment scenario. We include Cover’s game in our

discussion for completeness.

Cover’s game describes investment into a market of M assets. The outcome space Ω

describes the behavior of the market with the non-negative price relative vector ω =

(ω[0], ..., ω[M − 1]) ∈ Ω = [0,∞)M , where ωt[m] represents the ratio of the value of

asset m at trial t to the value at trial t − 1. If St[m] denotes the price of asset m at

time t, then ωt[m] = St+1[m]/St[m]. An investment in this market is represented by the

m-dimensional portfolio vector γ, where γ[m] denotes the proportion of the investor’s

wealth invested in asset m. In Cover’s game, we assume that all wealth is invested

on every step and no short positions or trading on credit is allowed; in other terms,

γ[m] ≥ 0 for m = 0, 1, . . . ,M − 1, and
∑M−1

m=0 γ[m] = 1. The prediction space Γ is the

(M − 1)-simplex PM−1. One can say that the investor partitions the wealth between M

assets.

If an investor invests γ and then outcome ω occurs, the investor’s wealth changes by

a factor of ⟨ω, γ⟩ =
∑M−1

m=1 ω[m]γ[m]. To link this with the additive framework of

prediction games, we define the loss function by λ(ω, γ) := − ln⟨ω, γ⟩. If the investor

starts from wealth of W0 = 1 and follows an investment strategy S, where S represents

any given sequence of predictions. Then the wealth after step T equals

WT =

T∏
t=1

⟨ωt, γt⟩ = e−LossT (S) .
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Let us discuss mixability of Cover’s game. Note that the game does not quite follow

our framework as λ(ω, γ) may take negative values. Indeed, the scalar product ⟨ω, γ⟩
may well exceed 1 leading to negative loss (in this situation the investor actually earns

money). Following [3], consider a modified loss function

λ̃(ω, γ) = λ(ω, γ)− inf
δ
λ(ω, δ) . (2.5)

The new loss function is non-negative by construction. The following lemma describes

the properties of the game.

Lemma 2.4 ([3]). For every η ≤ 1, Cη = 1. Moreover, for every η ≤ 1 and every

g ∈ GA(η), C(g) = 1. The only prediction attaining C(g) = 1 is the average

γ∗ :=

∫
Γ
γP (dγ) , (2.6)

where P is a probability distribution in Γ generating g:

g(ω) = −1

η
ln

∫
Γ
e−ηλ(ω,γ)P (dγ) .

Remark 2.5. Let λ̃(ω, γ) = λ(ω, γ)+f(ω) for some fucntion of ω. Then the weights pt(n)

in Algorithm 1 calculated for these two functions are proportional and the normalized

weights p∗t (n) are identical. Indeed, all experts suffer loss according to the same ω and

f(ω) drops in normalisation.

Remark 2.6. Now let Cη = 1 in (2.1) and a substitution rule Σ (considered as a function

of predictions γ1, . . . , γN and a distribution on them) works w.r.t. the loss function λ̃.

Then the same rule satisfies (2.1) for the original λ, which may take negative values.

Indeed, f(ω) cancels out on both the sides.

The remarks imply that we can apply the AA for Cover’s game with η ∈ (0, 1] using the

weighted average as the substitution rule.

Remark 2.7. When Cη = 1 and (2.4) holds for λ̃, the terms f(ωt) on both the sides of

(2.4) cancel out so we get the bound for cumulative losses in terms of the original loss

function λ.

In the case of η = 1 it is easy to prove that the average of experts’ predictions have the

desired properties directly. Linearity of the scalar product implies

g(ω) = − ln

∫
Γ
e−λ(ω,γ)P (dγ) = − ln

∫
Γ
⟨ω, γ⟩P (dγ) =

− ln

〈
ω,

∫
Γ
γP (dγ)

〉
.
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For larger values of η, we do not get mixability.

Lemma 2.8 ([3]). When η > 1, Cη = η.

We see that η = 1 is the optimal choice of the parameter and the substitution rule

γt =

N∑
n=1

p∗t−1(n)γt(n) (2.7)

should be used with Cover’s game in the finite case.

2.2.2 Long-Short Game

The long-short game is a modification of Cover’s game aimed at a more general and

more realistic trading scenario. A trader is usually allowed to open positions, both

long and short, within certain limits based on their deposit and money they had earned

previously. The limits are aimed to minimize the chances of bankruptcy so that the

intermediary providing access to the market could avoid handling the consequences of

the trader’s default.

In a bounded long-short game with the prudence parameter a > 0 an investment decision

is represented by a vector γ ∈ RM such that

∥γ∥1 = |γ[0]|+ . . .+ |γ[M − 1]| ≤ a ; (2.8)

in other terms, Γ ⊆ RM is a ball w.r.t. the ∥ · ∥1-norm. The intuitive interpretation of

γ is as follows. Suppose that before step t the trader has wealth Wt−1 > 0. Then on

step t the trader opens positions of size Wt−1γt[m], m = 0, 1, 2, . . . ,M −1 (long or short

depending on the sign of γt[m]) in assets 0, 1, . . . ,M − 1. The sum of the sizes of the

positions are bounded by Wta.

It is more convenient to represent outcomes by a vector of returns here, so ωt[m] =

(St[m] − St−1[m])/St−1[m] = St[m]/St−1[m] − 1 ≥ −1. Thus on the position in asset

m the trader gets the profit of Wt−1ωt[m]γt[m] and the overall trader’s wealth changes

according to

Wt = Wt−1(1 + ⟨ωt, γt⟩) .

We let

λ(ω, γ) = − ln(1 + ⟨ω, γ⟩) .

Note that for some values of ω the expression 1 + ⟨ω, γ⟩ can go below zero; the trader

then goes bankrupt and the expression − ln(1+⟨ω, γ⟩) is undefined. In a bounded game,



Prediction with Expert Advice 18

we assume this never happens because all ωs satisfy

∥ω∥∞ = max
m=0,1,...,M−1

|ωm| ≤
1

a
. (2.9)

Thus the outcome space in the a-bounded game is the intersection of [−1,+∞)M with

the ∥ · ∥∞ ball.

For the analysis of mixability, we need to modify the loss function by (2.5). The following

lemma holds for every a-bounded game with λ̃.

Lemma 2.9 ([3]). For any a-bounded game, a > 0, and for every η ≤ 1, Cη = 1.

Moreover, for every η ≤ 1 and every g ∈ GA(η), C(g) = 1. The only prediction

attaining C(g) = 1 is the average (2.6), whereas before P is a probability distribution in

Γ generating g. When η > 1, Cη > 1.

As for Cover’s game, Remarks 2.5–2.7 imply that for η = 1 we can apply the AA with

the original loss function using the weighted average as the substitution rule.

2.2.3 General Long-Short Game

Although [3] restrict their attention to the bounded long-short game, its practical ap-

plications suffer from an important problem. While bound (2.8) on the norm of γ is

realistic (and can be linked to the restrictions imposed by the market access provider),

bound (2.9) on the norm of ω cannot be guaranteed; the market is not under our control

in any way. In this section, we will discuss the general long-short game.

Consider the general long-short game with Γ = Rm, Ω = [−1,+∞)M and the loss

function given by

λLS(ω, γ) =

− ln(1 + ⟨ω, γ⟩), if 1 + ⟨ω, γ⟩ > 0

+∞ otherwise

= − ln(max(1 + ⟨ω, γ⟩, 0)) ,

where ln 0 = −∞. Our earlier analysis suggests that we should apply the AA using

η = 1 and the weighted average of the expert’ predictions as the substitution rule. We

formulate the case for finitely many experts (i.e., with a finite pool of experts Θ of size

N) as Algorithm 2.

Let us formulate its properties.
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Algorithm 2 The aggregating algorithm for the general long-short game

Parameters: initial distribution P0 over experts, p0(n), n = 1, 2, . . . , N
for t = 1, 2, . . . do

read experts’ predictions γt(n) ∈ Γ, n = 1, 2, . . . , N
normalise the weights: p∗t−1(n) = pt−1(n)/

∑N
n=1 pt−1(n)

calculate and output γt =
∑N

n=1 p
∗
t−1(n)γt(n)

read ωt ∈ Ω
update the weights pt(n) = pt−1(n)e

−λLS(ωt,γt)

end for

Lemma 2.10. Suppose that the outcomes ωt and experts’ predictions γt(n) are such

that 1 + ⟨ωt, γt(n)⟩ ≥ 0 for all t = 1, 2, . . . , T , n = 1, 2, . . . , N . Then the predictions

γt =
∑N

n=1 p
∗
t−1(n)γt(n) satisfy 1 + ⟨ωt, γt⟩ ≥ 0 and (2.4) holds with η = 1:

LossT (AA(1, P0)) ≤ LossT (n) + ln
1

p0(n)
(2.10)

for every expert n = 1, 2, . . . , N .

Note that conditions 1 + ⟨ωt, γt(n)⟩ ≥ 0 should hold on to the actual realised sequence

rather than for all possible ω.

The proof is along the same lines as the general analysis of the AA described in the

previous sections. We will give it here for completeness.

Proof. Let us show by induction that

e−Losss(AA) ≥
N∑

n=1

p0(n)e
−Losss(n) (2.11)

(as a matter of fact, this will hold as equality). Dropping all terms from the sum on the

right-hand side except for one and taking the logarithm of this inequality yields (2.10).

Let (2.11) hold for s = t− 1. If 1 + ⟨ωt, γt(n)⟩ ≥ 0 for all n, then

e−λLS(ωt,γt) = max(1 + ⟨ωt, γt⟩, 0) ≥
N∑

n=1

p∗t−1(n)max(1 + ⟨ωt, γt(n)⟩, 0) =
N∑

n=1

p∗t−1(n)e
−λLS(ωt,γt(n))

holds (as an equality) by the linearity of the scalar product.

Multiplying this inequality by (2.11) with s = t− 1 and observing that

p∗t−1(n) =
pt−1(n)∑N
i=1 pt−1(i)

=
p0(n)e

−Losst−1(n)∑N
i=1 p0(i)e

−Losst−1(i)
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completes the inductive step.

Let, however, 1 + ⟨ωt, γt(n)⟩ < 0 for some n with weights p∗t−1(n) > 0 (but let there be

values n such that p∗t−1(n) > 0 and 1 + ⟨ωt, γt(n)⟩ > 0). In this situation the inequality

max (1 + ⟨ωt, γt⟩ , 0) ≥
N∑

n=1

p∗t−1(n)max(1 + ⟨ωt, γt(n)⟩, 0) ,

where γt =
∑N

n=1 p
∗
t−1(n)γt(n), does not hold. Indeed, consider the case 1+ ⟨ωt, γt⟩ ≤ 0.

In this case, we get 0 on the left-hand side and a positive expression on the right. In the

opposite case 1 + ⟨ωt, γt⟩ > 0, we get

1 + ⟨ωt, γt⟩ = 1 +

〈
ωt,

N∑
n=1

p∗t−1(n)γt(n)

〉
=

N∑
n=1

p∗t−1(n)(1 + ⟨ωt, γt(n)⟩)

on the left-hand side and the sum of terms that are the same or greater (by our assump-

tion some are greater) on the right-hand side.

The former case is quite hopeless: the strategy following AA goes bankrupt and suffers

infinite loss, while some of our experts still have finite. The latter case is not. Consider

ct =

∑N
n=1 p

∗
t−1(n)max(1 + ⟨ωt, γt(n)⟩, 0)

1 +
〈
ωt,
∑N

n=1 p
∗
t−1(n)γt(n)

〉 .

We have ct > 1, but arguably not by a lot. Although in principle ct can be arbitrarily

high, it is reasonable to expect that even if 1 + ⟨ωt, γt(n)⟩ is below 0, then not by a lot.

Expert n that suffers a bankruptcy is unlikely to have performed very well previously

and so its weight p∗t−1(n) should also be small, especially if the pool of experts is large.

We then get

cte
−λLS(ωt,γt) = ctmax(1 + ⟨ωt, γt⟩, 0) ≥

N∑
n=1

p∗t−1(n)max(1 + ⟨ωt, γt(n)⟩, 0) =
N∑

n=1

p∗t−1(n)e
−λLS(ωt,γt(n))

and the term ln ct finds its way into the right-hand side of (2.10), which turns into

LossT (AA(1, P0)) ≤ LossT (n) + ln
1

p0(n)
+
∑

′ ln ct , (2.12)

where
∑′ is taken over steps when there are bankrupt experts, as long as the strategy

following the AA is not bankrupt. Note that an expert going bankrupt worsens the
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bound for all other experts. On the other hand, each expert can contribute to
∑′ only

once: after it goes bankrupt, its weight is zeroed.

2.3 Specialist Experts

In this section, we will introduce specialist following [5] after [6].

A specialist expert is an expert who may refrain from predicting any given trial. In the

event an expert makes a prediction the expert is said to be “awake” and if not we say the

expert “sleeps”. This is a particularly useful approach to take when it comes to finding

optimal investment strategies. It is common for investors to have periods without a

position in the market, especially in the case of investors with shorter investment time

horizons. How can we interpret this? First, the investor’s behavior may be understood

as making zero predictions. However, this is not the only possibility. In investment,

“doing nothing” often means making a passive investment into an asset perceived as

riskless and reliable. This asset is often an index portfolio tapping into the wisdom of

the crowd. We thus may think of an expert making no predictions as investing in a kind

of index portfolio based on the behavior of fellow experts.

Specialist experts provide a natural way to implement the later approach. We assume

that a sleeping expert joins the crowd making the same prediction as the learner and

therefore suffering the same loss.

Recall Lemma 2.3 with a bound on the loss the aggregating algorithm guarantees. If

an expert is sleeping and makes the same prediction as the learner on some turn, the

loss terms in (2.4) would cancel out leaving us with the sums over times when experts

are awake to define our learners bound on loss. However, this idea is still hypothetical:

to work out the learner’s prediction one needs to know the expert’s prediction to begin

with. We can solve this by recalling how the learner makes a prediction in AA. The

prediction γt is chosen to satisfy

e−ηλ(ω,γt) ≤
N∑

n=1

pt−1(n)e
−ηλ(ω,γt(n)) ,

where ω ranges over Ω. Assuming that the loss of a sleeping expert is equal to that of

the learner we get

e−ηλ(ω,γt) ≤ ∑
n: En is awake

pt−1(n)e
−ηλ(ω,γt(n)) +

∑
n: En is sleeps

pt−1(n)e
−ηλ(ω,γt). (2.13)
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We can then subtract the second sum from each side getting

e−ηλ(ω,Σ(gt)) ≤ 1

zt

∑
n: En is awake

pt−1(n)e
−ηλ(ω,γt(n)),

where

zt =
∑

n: En is awake

pt−1.

Algorithm 3 Specialist Experts learning protocol

Parameters: Learning rate η > 0 and
initial experts’ weights p0(n), n = 1, 2, . . . , N
for t = 1, 2, . . . do

read awake experts’ predictions γt(n) ∈ Γ, n = 1, 2, . . . , N
normalise awake experts weights:

p∗t−1(n) = pt−1(n)/
∑

n: En is awake

pt−1(n)

produce the generalised prediction:

gt(ω) = −
1

η
ln

∑
n: En is awake

p∗t−1(n)e
−ηλ(ω,γt(n))

calculate and output γt = Σ(gt)
read ωt ∈ Ω
update the awake weights pt(n) = pt−1(n)e

−ηλ(ωt,γt)

update the sleeping weights pt(n) = pt−1(n)e
−ηλ(ω,Σ(gt)

end for

2.4 Aggregating Algorithm with Discounting

Discounting loss is a well-established practice in both on-line and reinforcement learn-

ing. It may be used to account for inflation over time or to reflect changes in market

conditions. In this section, we will explore the use of discounting and how it can be

implemented within the aggregating algorithm. We will follow the approach of [7] and

[5].

Take coefficients α1, α2, ... ∈ [0, 1] and define the cumulative discounted loss for a learner

as

L̃ossT (AA(η, P0)) =

T∑
t=1

λ(ωt, γt)

(
T−1∏
s=t

αs

)
=

αT−1
˜LossT−1(AA(η, P0)) + λ(ωT , γT ) .
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We define the discounted loss of an expert in the same way. In the case where all αi

are equal, α1 = α2 = ... = α and λ(γt, ωt) comes into the formula with the discounting

coefficient αt−1.

Let us calculate experts’ weight as follows

pθt−1 ∝ p0(θ)e
−ηαt−1 ˜Losst−1(θ)

[5] shows by induction that the following bound on the learner’s loss holds

L̃ossT (AA(η, P0)) ≤ L̃ossT (θ) +
1

η
ln

1

P0(θ)
. (2.14)

Algorithm 4 The aggregating algorithm with discounting

Parameters: Learning rate η > 0 and
discounting factors α1, α2, ... and
initial experts’ weights p0(n), n = 1, 2, . . . , N
for t = 1, 2, . . . do

read experts’ predictions γt(n) ∈ Γ, n = 1, 2, . . . , N
normalise the weights:

p∗t−1(n) = P0(n)(pt−1(n))
αt−1/

N∑
n=1

P0(θ)(pt−1(n))
αt−1

produce the generalised prediction

gt(ω) = −
1

η
ln

N∑
n=1

p∗t−1(n)e
−ηλ(ω,γt(n))

calculate and output γt = Σ(gt)
read ωt ∈ Ω
update the weights pt(n) = p

αt−1

t−1 (n)e−ηλ(ωt,γt)

end for

2.5 Weak Aggregating Algorithm

Let Γ be a convex set so that for any γ1, γ2, . . . , γN ∈ Γ and probabilities p1, p2, . . . , pN

(pn ≥ 0 for n = 1, 2, . . . , N and
∑N

n=1 pn = 1) the convex combination γ =
∑N

n=1 pnγn

is defined and belongs to Γ. Then the learner L can use Algorithm 5, which we will call

the Weak Aggregating Algorithm (WAA).

To obtain performance bounds for WAA, one needs to assume convexity of loss functions

λt; this ensures the inequality ℓt ≤
∑N

n=1 p
n
t−1ℓ

n
t . We will also need losses to be bounded.
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Algorithm 5 Weak Aggregating Algorithm

Parameters: Initial distribution q1, q2, . . . , qN , qn ≥ 0 for n = 1, 2, . . . and
∑N

n=1 = 1.
Learning rates ηt > 0, t = 1, 2, . . .
let Ln

0 = 0, n = 1, 2, . . . , N
for t = 1, 2, . . . do

calculate weights wn
t−1 = qne

−ηtLn
t−1 , n = 1, 2, . . . , N

normalise the weights pnt−1 = wn
t−1/

∑N
i=1w

i
t−1, n = 1, 2, . . . , N

read experts’ predictions γnt ∈ Γ, n = 1, 2, . . . , N
output γt =

∑N
n=1 p

n
t−1γ

n
t

read experts losses ℓnt , n = 1, 2, . . . , N
update Ln

t = Ln
t−1 + ℓnt , n = 1, 2, . . . , N

end for

Let L ∈ R be such that

max
n=1,2,...,N

ℓnt − min
n=1,2,...,N

ℓnt ≤ L (2.15)

for every t = 1, 2, . . .. This is guaranteed if, for example, supΓ λt(γ)− infΓ λt(γ) ≤ L for

all t = 1, 2, . . . Sometimes we assume that L is known in advance.

Theorem 2.11. Let the learning rates in WAA be ηt = c/
√
t for every t = 1, 2, . . .,

where c > 0. If all loss functions λt are convex and L satisfies (2.15) for t = 1, 2, . . .

then

LossT (L) ≤ LossT (En) +
√
T ln(1/qn)

c
+

cL2
√
T

4

for all T = 1, 2, . . . and all experts En, n = 1, 2, . . . , N .

Corollary 2.12. Under the conditions of Theorem 2.11, if L satisfying (2.15) is known

in advance, one can take c = 2
√
lnN/L and ensure for equal weights q1 = q2 = . . . =

qN = 1/N the bound

LossT (L) ≤ LossT (En) + L
√
T lnN

for all T = 1, 2, . . . and all experts En, n = 1, 2, . . . , N .

These results improve on both Corollary 14 by [8] and Theorem 2.3 by [9]. An equivalent

result was obtained by [10]. The theorem can be proven along the same lines as the result

for discounted loss below.



Chapter 3

Introduction to Financial Markets

In this thesis we will be applying the prediction with expert advice algorithms devel-

oped, to solve the problem of investing and hedging in Foreign Exchange (FX) markets.

Therefore, before exploring these methods we will first provide an overview of the FX

market and the brokerage industry.

3.1 Foreign Exchange Markets

The FX market is an over-the-counter marketplace where currencies are exchanged for

one another. Whilst the origin of the market was predominately to minimize the risk of

conducting international trade, and still accounts for a large amount of the market. It

is now common for individuals to trade in the market for speculative gains.

Currencies are traded as pairs, giving the value of one currency against another. We

often refer to this value as the rate and represents the value of a base currency against

a counter currency. For example, let us suppose the rate for GBP/USD is 1.2, this

tells us for each pound sterling traded we would receive 1.2 United States dollars. Now

suppose we bought 100,000 GBP/USD, entering a long position, predicting the rate will

rise. In the event the rate did indeed rise to 1.21, this would result in a profit of $1000

(100, 000 × 0.01). If however, the rate fell to 1.195, this would lead to a loss of $500

(100, 000 × 0.005). It is important to note that profit and loss (PnL) is always paid in

the counter currency, in this case, USD. Therefore, if we wish the compare the PnL of

different currency trades we must first account for this difference, we discuss this further

in chapter 4. An investor can equally predict that the value of the base currency will

fall in value compared to the counter currency. In this case, they would sell the pair,

entering into a short position in the hope the rate would fall.

25
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Many factors affect the FX market when trading for speculation. Such as interest rates,

economic growth, inflation, and geopolitical events just to name a few. The FX market is

highly liquid, meaning that traders can easily enter and exit positions at any time. This

liquidity also means that the FX market is highly volatile and can experience sudden

price fluctuations. Traders use various technical and fundamental analysis techniques to

predict market movements and make trading decisions.

3.1.1 Brokerage Industry

The FX brokerage industry provides access to the FX market for individuals and insti-

tutions. FX brokers act as intermediaries between traders and the market, providing a

platform for traders to buy and sell currencies. A broker earns revenue through spreads,

which is the difference between the bid and ask prices of currency pairs. The bid is the

rate at which the broker is willing to sell the currency pair to a trader, and the ask is

the rate at which they are willing to purchase the pair.

This allows the broker to act as a liquidity provider for clients, also known as a Market

Maker (MM). MMs are central to the operation of financial markets, allowing clients to

both buy and sell instruments at any given point in time. If a client wants to trade on

the prices published by a market maker, the client must first place an order which is

defined as a request to trade a given financial instrument. Market makers will compete

for client liquidity by ensuring their spreads are as tight as possible, publishing ask

prices that are competitively low and bid prices that are competitively high. If a market

maker ‘wins’ a client trade, it then takes on the risk associated with that trade and

assumes a position in the market (either ‘long’, ‘short’, or ‘flat’). The market maker can

choose to hedge its position, placing trades to flatten its position to (hopefully) make

money. The market maker can do this by executing trades with tighter price spreads

than those published to the clients or by using a specialized hedging model that makes

more intelligent decisions about when and how to hedge.

3.2 Hedging

The FX brokerage industry is highly competitive, with many brokers offering similar

services and platforms. This competition has led to innovation and the development of

more sophisticated broker hedging methods, facilitating brokers to offer more competi-

tive services to their clients. A financial hedge is a strategy that investors or businesses

use to reduce the risk of adverse price movements in an asset or liability. A hedge can

be used to protect against potential losses, but it can also limit potential gains.
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For example, a company that relies on imports from another country may face the risk

of currency fluctuations that could increase the cost of those imports. To hedge against

this risk, the company could enter into a financial contract, such as a forward contract

or an option, to lock in a specific exchange rate. This way, if the exchange rate moves

unfavorably, the company is protected against potential losses.

In the context of a FX broker risk can be thought of in the following way. When clients

place trades on the broker the summation of said trades pushes the market maker longer

or shorter, to define the position the broker takes in the market. Based on the movement

in the underlying market, this position will result in either a profit or loss, referred to as

the broker’s PnL (profit and loss). Resources are finite so keeping the two elements of

risk in check is important. This can be done by placing “hedge” trades that mitigate the

risk by bringing the net position closer to zero. One can imagine a disastrous scenario

whereby the market maker has a very large position in the market but not enough PnL

to reduce its position to mitigate further loss. Therefore position risk limits must be

put in place. Aside from avoiding position risk limit breaches, knowing when, what,

and how much to hedge is the job of the market maker’s Hedging Model. It is worth

reminding the reader that we can only hedge if we have a long or short position in the

market, we cannot hedge if we are flat.

There are effectively 2 default hedging strategies currently employed by all brokerages

– ‘A-booking’ and ‘B-booking’:

3.2.1 A-Booking

A booking – for every client trade that the market maker executes, the market maker

goes back to their Liquidity Provider (LP – who quoted the prices used in the trade)

and places a trade of an equal amount and opposite side with this LP. For example:

1. Market maker publishes a EUR/USD Ask price of 1.15 – this is an inflated price

offered by LPs (which is 1.14)

2. Client X places a Buy trade with the market maker, buying 1000 EUR/USD at

the rate of 1.15. At the same time, the Market maker goes back to LP and places

a Sell 1000 EUR/USD trade at a rate of 1.15.

3. The market maker instantly makes a profit (1.15-1.14)/1.15*1000= USD 8.69

The rationale for A-booking focuses on speed since we don’t want the LP to re-quote at

a less favorable price. A-booking offers a riskless pass-through with the broker taking
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a small cut in the middle with the inflated price. The profit made on this is almost

guaranteed (depending on how fast the LP fills and whether they reject). Brokers

typically do this for what they deem to be high-risk clients, where they consistently

make money or build up too big a position for them to handle. The market maker

assumes no position, all PnL is realized in milliseconds in small positive amounts based

on the markup added to the client’s prices.

3.2.2 B-Booking

B-booking is the opposite end of the spectrum to A-booking, and this hedging strategy

is typically used for lower-risk clients. With this model, a broker does not flatten a

client’s position imminently but instead allows client positions to accumulate. In the

hope, they will profit from the client trade. In reality, both hedging approaches are

overly simplistic, no client is consistently ‘good’ or ‘bad’ at trading, so a Hedging Model

may employ a hybrid approach, for example:

• The hedging model will place hedge trades when it predicts that the market will

turn against the broker’s position, mitigating any loss in PnL.

• If the position is within the market maker’s global risk limits and predicts that its

position is favorable i.e. where the market is trending, the Hedging Model will not

place any hedges or lift existing hedges.

In Chapter 6 we look at an example of such a model and explore how prediction with

expert advice methods can be used to find the optimal hedging strategy.



Chapter 4

Time Series ETL Algorithm

DAPRA

4.1 Introduction

In the age of information, big data is the resource that makes the difference between fail-

ure and success. Data collection focuses more on the initial task of gathering as much

data as possible and ensuring the robustness of data collection and storage systems.

Yet the significant task of building usable data structures is by comparison somewhat

neglected. The result is that data scientists encounter challenges in producing meaning-

ful visual analyses or implementing machine learning algorithms to predict future data

trends. It has become common practice to store data using online analytical processing

(OLAP) cubes since these structures allow for fast and effective querying and drill-down

analysis. Many commercial products that make use of OLAP cubes are available to

purchase for businesses to help them easily evaluate and manage their data. Studies

such as [11] have proven the concept to be beneficial for financial analysis. Before data

is stored in an OLAP cube, an intermediate process of ETL (Extract, Transform, and

Load) is carried out. This process (also known as cleansing and staging) involves ex-

tracting the raw data from its source to a data staging area (DSA), where the data is

manipulated to suit the requirements of the target data [12]. For example, when dealing

with data that is not synchronized or when a set of events has closed but many are still

in flux, it is useful to first pre-process the data to take into account this. In the context

of time series data, we have identified a need for a generally applicable tool capable of

structuring irregularly-sampled data gathered from multiple sources into a format that

is practically intuitive to understand, and further avoids loss of information because it

29
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is designed “from the ground up”.

Interval analysis of time series data has been widely explored in papers such as [13] &

[14], but we have not been able to find publications showing how to generate interval

data from source data. In this study, we introduce and rationalize a novel DSA process

that manages the challenges associated with irregularly sampled time series. We call

this the Data Aggregation Partition Reduction Algorithm, or DAPRA for short. We

will describe how the DAPRA framework can reformat irregularly sampled data from

two distinct domains (financial and travel). We further illustrate how end-users can use

DAPRA to gain previously “unseen” insights into agent behavior to supplement current

business intelligence and decision-making capabilities.

4.2 Data Aggregation Partition Reduction Algorithm

(DAPRA)

DAPRA is specific to analyzing time series data which is derived from some concept

of “agents” interacting with their environment. Fig.4.1 illustrates this concept across

three distinct time series datasets. The agents are (from left to right) foreign exchange

traders, licensed taxis, or network IP addresses. These agents interact with their respec-

tive environments of an online trading platform, pick-up/drop-off geographical locations

in New York City (NYC), or a computer network. The main requirement for DAPRA is

that each agent’s action has a start time at which that action was started (i.e. the start

time of a network data transmission) and a finish time at which that action was com-

pleted (i.e. the time at which a taxi dropped off a customer and so finished the journey).

Fig. 4.1: Agents interacting with their environment
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Fig. 4.2: Diagram of the main processes in the DAPRA framework

Fig.4.1 shows that the periods of such actions by agents vary according to the problem

domain, ranging from short-lived (i.e. nanoseconds for a network data transmission) to

very large (e.g. a trader could keep a trade open for several months until they speculate

on a favorable price movement that will increase the profit on their trade). Time series

data can easily contain hundreds if not thousands of agents and all agents are free to

carry out as many actions as they are capable of (e.g. an inner-city taxi driver makes

more short-duration journeys than taxi drivers operating on the city outskirts).

The frequency or regularity of actions by a given agent can vary too, for example, a

trader can place hundreds of trades in one day but in the week that follows place none

at all. There is no obligation on a trader to trade, it is entirely their choice as to when

and how often they wish to do so. Similarly, if we imagine our agents are licensed

taxis they cannot be making journeys all the time, as their drivers will need to rest

at predictable periods of the day. Conversely such “dead time” may be unpredictable,

for example, a taxi may have to go into the garage for unexpected repair work. Some

actions can also be completed simultaneously, for example, a trader can place 10 orders

at once. In summary, the problem that DAPRA effectively manages is that of irregu-

larity i.e. irregularity between start and finish times of an agent’s actions, as well as

irregularity in the number and frequency of actions carried out by agents in a time series.

We set out to develop DAPRA to help generate regular time series databases from irreg-

ularly sampled data. Below we explain DAPRA’s design and implementation1 and later

show how DAPRA data-restructuring enables the user to easily discern agent behaviors,

creating regularised data that is simple to visualize using Business Intelligence tools such

1Example DAPRA code can be found at [15]
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as Tableau 2.

Firstly it is important to identify and collect the different streams of time series data that

DAPRA will be applied to (Fig. 4.2). Essentially these are the irregular time series that

describe agents’ actions through time, in addition to some time series of “exogenous”

variables that are deemed useful in helping to explain agent behavior. For example, one

of the case studies used in this thesis - that of taxi journeys around NYC - comprises

irregular time series data about the pick-up and drop-off time stamps of taxi journeys

undertaken by individual taxis. The exogenous data stream in this case describes the

weather in NYC at similar points in time to the taxi journey data stream. It is rational

to assume that the weather will have some effect on the number and frequency of taxi

journeys made. For example, heavy rain is likely to generate greater demand for taxis

and so an increased number of journeys should take place. In addition to the streams

of irregular and exogenous time series, it is possible to derive an extra data stream by

recording the outputs of simple calculations performed on the irregular or exogenous

time series fields. For example, the time distance between the last drop-off and the next

pick-up of a given taxi. Likewise, (as will be discussed later for this chapter’s second case

study on client trades), one can derive extra data by summing the value of individual

trades to produce a trader’s overall profit and loss (PnL) and position in the market

(i.e. long, short or flat). After data collection, Fig.4.2 illustrates that DAPRA follows a

three-step process:

1. Data Aggregation, where data from one or more sources of irregularly sampled

time series data are combined into a regular sampled time series. In particular, we

are focusing on sequences of variable time-length actions and trying to correlate

these actions with other useful time series to explain the agent’s behavior.

2. The aggregated stream is Partitioned into intuitive epoch types which allow us to

re-sample the data into regular time intervals. The size of partitions has an impact

on the effectiveness of reduction and we must take care in selecting an appropriate

resolution to partition our time series into, this will be discussed further in section

4.2.2.

3. Finally this aggregated, partitioned stream of data is Reduced where the aggre-

gated data is grouped depending on the requirements of the application.

The following sections describe the two irregularly sampled time series datasets that

were used as case studies for the application of DAPRA. These are also summarised in

2Tableau, Seattle WA, Tableau Software. Available: https://www.tableau.com
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Table 4.1.

(a) Case Study 1: Retail Foreign Exchange Broker Client Trades

Since the proliferation of mobile computing, a plethora of retail Foreign Exchange

(FX) brokerages have led the way in enabling retail investors (or clients) from

around the world to speculate on the FX market. The FX broker is the ‘middle-

man’ – it links to the best liquidity providers (or LP’s, such as investment banks),

and the LP’s streams ’trade-able’ currency prices to the broker. The FX broker

then passes these prices on to its thousands of clients worldwide all of whom can

trade from their mobile phones or personal computers at the click of a button,

investing as little as $100 or as much as $1,000,000 on each order. To open an

account with the broker, retail clients must deposit initial funds and agree on a

leverage ratio before they are allowed to trade, typically anywhere between 20-100

to 1. Thus an initial deposit of $1000 will allow the clients to place orders and

enter positions up to $100,000. Once an account is live the client is free to spec-

ulate trading as many different currency symbols (e.g. GBP, USD, or EUR) as

they wish provided they remain within the confines of their (leveraged) funds, in

addition to any profit and loss (PnL) amounts. A typical retail broker will provide

their clients with trading platform software such as MetaTrader 4 (MT4)3. Clients

use the trading platform to place trades, monitor positions, track both historic

and live movements in prices, and access the latest world economic news which

influence and drive volatility in the markets. In the publicly available dataset [16]

we apply the DAPRA framework to analyze the trades of 684 clients during Jan-

uary 2017. The client trades are in MT4 format and relate to 30 of the most liquid

FX symbols. Table 4.1 outlines the main features of two data streams about our

case study 1: Client Trades (the irregularly-sampled time series) and Prices (the

‘exogenous’ dataset in this case).

(b) Case Study 2: New York City Taxi Rides

Our second case study describes data about taxi journeys in NYC. The data was

made available by C. Whong, using freedom of information laws to obtain the data

from the NYC Taxi and Limousine Commission (TLC), [17].

The TLC provided data in the form of two separate data streams comprising

information about individual taxi rides and taxi fare data throughout 2013 (NYC

3MetaTrader 4 Trading Platform, Metaquotes Software Corp. Available:
http://www.metaquotes.net/en/metatrader4
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Taxi Rides and NYC Taxi Fares - see Table 4.1). We used these data streams as the

irregularly-sampled time series data for this case study. For practical reasons, we

also chose to extract data from January 2013 only. The exogenous dataset for the

second case study refers to the weather conditions in NYC over the same period.

This data stream was published by D. Beniaguev on Kaggle [18] and provides

an hourly snapshot of the weather conditions featuring the weather classification

(such as “Heavy Rain” or “Clear Skies”) as well as the temperature and humidity.

4.2.1 Aggregation

As previously discussed, the aggregation step of DAPRA involves merging the different

data streams into one large dataset that effectively helps to explain or describe the ac-

tions of agents. Table 4.1 shows some key features of each case study’s data streams

that are aggregated and the derived fields that result. Differences in the number of fields

and rows for each case study data stream illustrate clear differences in the irregularity of

data sampled over the same time horizons. For example, the regularly sampled Market

Prices data has 937,830 rows whereas the irregularly sampled Client Trades data has

only 177,132 rows. This difference is what allows us to gain further insight into the

trading behavior of a client. Furthermore, Table 4.1 shows how many newly derived

fields result from simple computations performed on aggregated data streams. For our

first case study, we can use aggregated Client Trades and Market Prices data to generate

and track derived fields such as PnL and position at varying levels of granularity.

It is important to note the derived fields PnL and position are normalized to a common

currency, in this case, USD. This allows for meaningful comparison between client trades

and analysis of the broker’s position. When a client enters a trade their position is evalu-

ated in the base currency of the symbol they traded. We can therefore use the exchange

rate between the base currency and USD (base multiplier) to calculate the position in

USD. Likewise, PnL is quoted in the contra currency we use a similar method utilising

the exchange rate between the contra currency and USD (contra multiplier) to calculate

the PnL in USD.

4.2.2 Partition

The partitioning step serves to “bucket” the aggregated data into regular time epochs,

allowing for effective analysis of each time epoch in detail. For this, we must decide the

partition size which will vary depending on the data/problem domain. The partition



Time Series ETL Algorithm DAPRA 35

Table 4.1: Case Study Data Types

Case Study
Type of
Data

Number of
Fields

Number of
Rows

Description of
Data

Derived Field

Case Study 1:
Trade Data

Client Trades 9 177,132
Detailed profile
of each client

order.
Profit and
Loss (PnL)

PositionMarket Prices 5 937,830
1 minute price

data sampled for
30 major currency pairs.

Case Study 2:
Taxi Data

NYC
Taxi Rides

9 14.7 mio
Detail of each taxi

ride, with pickup and
dropoff location.

Wait Time

Location Latitude

Location Longitude

Speed

NYC
Taxi Fares

4 14.7 mio
Fare prices for
corresponding

trip data
NYC

Weather
1 8,760

Weather type sampled
each hour.

size is ultimately the choice of the end-user, however, if it is too small there will not

be any meaningful aggregation of the data. Similarly too large a partition size will not

enable sufficient breakdown/analysis of the data.

Fig. 4.3: DAPRA Partition Classification

There are four classifications of epoch partition which we can break each agent’s actions

into, we refer to these as type parameters, τ . Actions of a given agent can span many

epochs depending on the resolution chosen and will affect the number of classification
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types in the resulting partitioned data, as illustrated in Fig.4.3.

The four type parameters can be defined as follows:

• Open: Actions opened in the current epoch.

• Closed: Actions closed in the current epoch.

• Locked: Actions opened and closed in the current epoch.

• Float: Actions that have been opened in a previous epoch and are still open at

the end on the current epoch.

Note, that the definition of these epoch classifications is novel to DAPRA and is not

related to any established data management methodologies.

Over an interval from t to t + ∆ where ∆ is the size of the resolution. Let OT and

CT be the open and close times of an agent’s action. We assign the type parameter, τ ,

using a method similar to Allen’s interval algebra [19]. We can represent this logic in

pseudo-code as follows:

Algorithm 6 DAPRA Pseudo Code

if OT < t then
if CT ⩾ t+∆ then

τ = float
else

τ = close
end if

else
if CT ⩾ t+∆ then

τ = open
else

τ = locked
end if

end if

As Table 4.2 shows, the choice of epoch resolution intuitively influences how each action

breaks down into the different type classifications. For example, if the resolution is too

small most of the actions will be classified as “floating”, and as the resolution increases,

an increasing number of actions are classified as “locked in”.

We can also see how the choice of resolution depends on the problem domain for exam-

ple, in the case of trade data a resolution of 2-2.5 days provides an optimal ratio between
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Table 4.2: Number of epoch types at various resolutions

Case Study Resolution Open Closed Locked Float

Case Study 1:
Trade Data

5 days 42 k 42 k 135 k 29 k
2.5 days 59 k 59 k 118 k 108 k
1 day 70 k 70 k 107 k 330 k
60 min 93 k 93 k 84 k 9.4 mio
5 min 104 k 104 k 73 k 113 mio

Case Study 2:
Taxi Data

1 day 0.1 mio 0.1 mio 14.3 mio 53
60 min 2.7 mio 2.7 mio 11.7 mio 8 k
15 min 9.2 mio 9.2 mio 5.2 mio 1.8 mio
10 min 11.4 mio 11.4 mio 3.0 mio 5.1 mio
5 min 13.6 mio 13.6 mio 0.8 mio 19.4 mio

the type parameters. Whereas for the taxi data, an optimal ratio is found at a resolution

of around 10 minutes. This intuitively makes sense as taxi rides are shorter on average

than trade holding periods. It is also noteworthy that our tolerance for the number

of “locked” classifications varies from one problem domain to the next. For example,

short trades under 10 minutes are fairly typical, whereas taxi rides under 1 minute are

extremely scarce. Therefore, variance in the distribution of the length of agent actions

is a key factor when deciding a sensible resolution to partition the data.

4.2.3 Reduction

Once the staging process is complete, the resulting target data is stored in an OLAP

cube. This is depicted in Fig.4.4 where the Market Prices and Client Trade data are

transformed into an OLAP cube with time, symbols, and clients as its dimensions.

Fig. 4.4: DAPRA storage in an OLAP cube
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The hierarchical dimensions of the OLAP cube allow for straightforward operations to

be executed with relative ease, allowing for effective reduction of the data [20]. This

step involves focusing on a specific discrete field that we use to regroup the data in a

meaningful way. For example, for the taxi case study, we may want to break down the

data by location of where pickups are taking place. Despite longitude and latitude being

real numbers we can bucket them into rough locations rounding to 2 decimal places. We

take the partitioned data and then group it by the relevant statistics that we want to

compute such as fare amount, distance traveled, or weather type. The choice of which

discrete field we want to group by and the resolution determines how many rows DAPRA

finally compresses down to.

Table 4.3: Number of rows in target data using different groupings

Case Study 1: Trade Data

Time
Resolution

Group by client +
symbol (20,520 Unique)

Group by client
(684 Unique)

Group by
symbol

(30 Unique)

5 days 5,0635 4,264 210

2.5 days 99,661 8,799 411

1 day 217,539 20,267 934

60 min 4,780,691 465,308 21,605

5 min 57,095,054 5,571,898 258,778

Case Study 2: Taxi Data

Time
Resolution

Group by Location
to 2 decimal places

(3k unique)

Group by taxi
license plate
(32.5k unique)

Group by weather type
(14 unique)

1 day 18,760 714,959 185

60 min 148,861 5,968,452 2,639

15 min 455,175 18,303,614 10,312

10 min 647,205 25,350,520 15,433

5 min 1,210,543 44,095,732 30,793

Table 4.3 shows the effectiveness of the data reduction step at various resolutions and

with 3 choices of grouping for each case study. For example, grouping by location in the

case of taxi journeys enables us analyse locations as zones rather than individual points

which offers a more practical overview. In addition (and assuming a 1:1 relationship

between taxi driver and taxi licence plate), grouping taxi journeys by license plate allows

us to build a profile for each driver offering insights into their behaviour.
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4.3 Case Studies

4.3.1 Case Study 1: Foreign Exchange Broker Data

We will now define the fields within each of the datasets for the foreign exchange broker

data as described in Table 4.1.

The Client Trades data stream has nine fields defined as follows:

• OT : Open time is the time stamp at the open time of the order.

• ID: Is the unique identification number4 of the client.

• TA: This is the total amount traded in the order, quoted in the base currency.

• SD: This is the side referring to the position the broker takes in the traded, 1 for

long and -1 for short.

• SY : Is the symbol traded.

• ON : Is the number assigned to the order.

• OP : Open price is the price of the symbol at the time of the order.

• CT : Close time is the time stamp of the close time of the order.

• CP : Close price is the price of the symbol at the close time of the order.

An example of this from the source data is shown in table 4.4.

Table 4.4: Example of source client trade data

Next we have the Market Prices data stream, containing:

• TS: This is the time stamp at the time of the sample.

4This is an encrypted identification number.
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• SB: Is the symbol being quoted.

• BM : This is the base multiplier, which refers the the exchange rate from the base

currency to USD, used to calculate position in USD.

• CM : Is the contra Multiplier, referring to the rate between the contra currency

and USD, used the calculate the profit and loss in USD.

• SP : Is the price of the symbol at the time of the observation.

Table 4.5 gives an example of the source market data.

Table 4.5: Example of source market price data

Now we will define the functions used to calculate the derived fields, PnL, and position.

PnLt =



(SPt −OP )× TA× SD × CM if τ = open

(SPt+1 − SPt)× TA× SD × CM if τ = float

(CP − SPt)× TA× SD × CM if τ = close

(CP −OP )× TA× SD × CM if τ = locked

POSt = TA× SD ×BM

It is important to note that the derived fields describe the PnL and position from the

perspective of the broker. Table 4.6 shows an example of data populating the derived

fields following the application of DAPRA to the data in Tables 4.4 and 4.5.

4.3.2 Case Study 2: NYC Taxi Journey Data

In this section, we will define the fields of the second case study as outlined in Table 4.1 .
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Table 4.6: Example of target data after the application of DAPRA for case study 1

The NYC Taxi Ride data stream has nine fields as described below.

• ID: This is the encrypted license plate for each taxi.

• OT : This is the pick-up time of the trip.

• CT : Is the drop off time of the trip.

• TT : Is the total time of the trip.

• TD: Refers to the total distance of the trip.

• PA: The pick up longitude.

• PL: The pick up latitude.

• DA: The drop off longitude.

• DL: The drop off latitude.

Table 4.7: Example of source NYC taxi ride data

The NYC Taxi Fares data stream comprises five fields:

• ID: This is the encrypted license plate for each taxi.
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• OT : This is the pick-up time of the trip.

• FA: This is the fare amount of each trip.

• TP : Is the tip amount giver to the driver.

• TO: This is the amount the passenger paid as a result of tolls encountered during

the journey.

Table 4.8: Example of source NYC taxi fare data

Next, the exogenous NYC Weather data:

• TS: The Time-Stamp of the time the sample was taken.

• WL: This refers the weather conditions at the time of the observation as a Weather

Label.

Table 4.9: Example of source weather data

Following DAPRA we can derive four new fields: (1) wait time, (2) interpolated pick-

up/drop-off latitude, (3) interpolated pick-up/drop-off longitude, and (4) average speed
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for each taxi journey. These can be defined as:

WaitT imet = OTt+1 − CTt

Speedt =
TDt

CTt −OTt

Loclat = PL+ P × (DL− PL)

Loclong = PA× 1− (Loclat− PL)

DL− PL
+DA× Loclat− PL

DL− PL

where P = the fraction of the journey complete.

Table 4.10: Example of target data after application of DAPRA for case study 2

4.4 Discussion of Findings

Here we present and discuss a fraction of interesting findings following the application

of DAPRA to the aforementioned case study datasets. We have purposefully focused on

findings that have practical and commercial implications for end users in the financial

and transport industries and have visually presented these using Tableau.

Our first case study aimed to gain insight into client trading behavior. Using DAPRA

we analysed and compared the trades carried out by 684 clients during January 2017.

Each client was allowed to buy or sell any of the 30 available unique currency pairs (e.g.



Time Series ETL Algorithm DAPRA 44

Fig. 4.5: TOP: Broker’s Net PnL. BOTTOM: Broker’s Net PnL grouped by the
type parameter

EUR/USD) and they could place trades as many times as they wanted, at any time of

day provided they stayed within the confines of their leveraged funds. During this time

the clients’ broker accumulates a position in the currency market which is essentially

an aggregation of all of its client trades with the LP’s. The broker position could be

long (meaning clients are placing more sell trades), short (clients are placing more buy

trades), or flat (the amount of sell and buy trades by clients are equal). Application of

DAPRA enables the broker to visualize how its market position accumulates over time

and then answer specific questions about it, as well as predict its position in the future.

Fig.4.5 shows the broker’s Net PnL in USD over January with an interval time of one

hour. The application of DAPRA allows the broker to track and analyze their PnL at

a high resolution not possible from the source data alone. This strategic information

allows the broker to examine the volatility and draw-down of their PnL, which in turn

helps to inform hedging strategies. Fig.4.5 also shows the Net PnL of the broker grouped

using the type parameter. This provides an interesting insight into client behavior: we

notice the closed Pnl (in green) is negative, meaning the broker lost on the segment of

trades labeled as closed. This pattern is repeated at various interval lengths, suggesting

that in general clients tend to wait for positions to rise in value before closing them

irrespective of the overall performance of the trade. We also see that the PnL of floating

positions far outweighs that of locked positions, suggesting that client trading strategies

have a greater potential to be profitable over a longer holding period.

The storage of the data using an OLAP cube combined with DAPRA staging allows for

dynamic insight into individual client trading behavior and characteristics which were
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Fig. 4.6: Broker’s Net PnL grouped by client

previously unseen. Following DAPRA, Fig.4.6 shows the net PnL of each client (again

from the broker side), for clients with a final PnL of at least 6,000 USD. This allows

the broker to identify clients that pose the greatest risk and those from whom they can

profit. For example, clients 1147 and 1362 contribute significantly larger losses to the

broker than average, thus the broker may decide to use a specific hedging strategy for

all orders placed by these clients. This drilling-down of the data also offers the broker

a comprehensive view of all trades made by their clients, from their open to their close.

By pre-processing the data with DAPRA, we can now examine the variation in floating

(or unrealized PnL) across the lifespan of each client trade and see at which point the

client decided to close the trade and realize their PnL. This behind-the-scenes intuition

into client decision-making is an invaluable resource for the broker that helps identify

and differentiate successful and unsuccessful trading strategies.

Equally important is the broker’s position - as previously discussed DAPRA can be used

to calculate the position of all symbols in one common currency (USD). In Fig.4.7 we ob-

serve the broker’s net position over the sample period, as grouped by symbol. A broker

would undoubtedly find this information invaluable to ensure that it limits its exposure

to unexpected changes in a given currency market. Such information becomes even more

meaningful when it is continually re-evaluated according to the current exchange rate

and at an interval length specified by the broker. This is all made possible with DAPRA.

For example, the net position grouped by GBP/JPY (in blue in Fig.4.7) shows a steady

accumulation over time which would likely compel the broker to flatten its position (to

reduce its market exposure) by hedging against it. In another example, the net position

grouped by EUR/USD (in grey) shows a dramatic switch from long to short during the
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Fig. 4.7: Broker’s Net position grouped by symbol

first 6 hours of 19th Jan 2017. This demonstrates that during this time, the clients’

combined view of the market moved to predict a rise in the value of EUR/USD. This

information would be of great interest to the broker and when combined with individual

client PnL would offer considerable insight into client views of the market and what may

drive them to open and close their positions.

Fig. 4.8 shows the application of DAPRA to data of the NYC taxi journey case study

where 10-minute intervals have been used to partition the data, further grouped by

the type parameter. Grouping of the partitioned data reveals some interesting aspects

regarding taxi journeys which can be visualised by plotting the interpolated location

over a map of NYC. For instance, we can see what appears as a small cluster in the

bottom right corner of the open (green) and closed (blue) maps. This cluster maps to

JFK airport and as the parameters of this cluster are present in open and closed types

we would identify these locations to be airport pick-up/drop-off points (note this finding

supports those of a 2018 study in [21]). This is to be expected however the versatility

of DAPRA can be seen when we analyze the floating data groupings. This reveals a

collection of location points from the island of Manhattan to JFK Airport. This data

not only provides information on the taxis traveling to and from the airport but also

classifies a section of land between Manhattan and JFK airport where a driver would

have little chance of securing a pickup. Finally, the intensity of locked-in trips is highest

in Manhattan. Intuitively this shows that taxi rides under 10 minutes are more common



Time Series ETL Algorithm DAPRA 47

in built-up areas than the surrounding suburbs.

Fig. 4.8: Visualisation of taxi journeys in NYC during January 2013 for each of the
four type parameters

Fig. 4.9 shows the results of grouping 10-minute partitioned taxi journey data with

weather classifications. The groupings are as follows: average waiting around time,

average tip amount, average toll amount, and average speed. Here we gain an intu-

itive insight into how taxi drivers and passengers react to changing weather conditions.

Perhaps the most striking result is the correlation between the weather label and the

average wait time from the last drop-off to the next pick-up. This grouping clearly

shows taxi drivers experience far longer wait times between pickups during dry weather

(“clear sky”) than in wet weather (“wet”). This is probably because passengers are

less inclined to require a taxi when the weather is good, yet demand for taxis increases

when passengers want to avoid getting wet so waiting time between jobs is reduced. An

equally intuitive reason for shorter waiting times is that drivers reduce their speed in

bad weather, this is reflected in the DAPRA data showing a significantly lower speed of

27kph in wet weather.

Continuing with Fig.4.9, the DAPRA framework was used to analyze data about the

tolls paid by passengers with weather condition data. The findings revealed a less intu-

itive story, suggesting that in foggy and misty conditions, taxi drivers are more likely

to choose routes with tolls in place. This is accompanied well by the data on passenger

tips which reveal an interesting finding. When the weather is poor (wet or foggy/misty)

drivers can expect to receive higher tips, despite passengers being charged extra for tolls

in foggy weather. However, in good weather when tips are generally lower, the choice

of a driver to impose a toll charge on a passenger has a detrimental effect on their like-

lihood of receiving a tip. This is demonstrated by the correlations between average toll
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amount / average tip amounts with the broken clouds and clear skies weather groupings.

Finally, we used DAPRA to examine patterns of taxi journeys and their features (e.g.

duration, fare paid) of individual taxi drivers across January 2013. These findings

are illustrated in Fig.4.10. Here we grouped the data by taxi ID and used a bub-

ble diagram to clearly visualise an obvious working pattern throughout time for each

driver. The size of each bubble represents the distance of each trip and the vertical

axis shows the computed fare of the whole trip. This concise representation of each

driver’s week provides valuable insights, not only can we see when a driver was ac-

tive but we can also quickly assess the success of each day. For example, we can see

driver “0A0B39F7A97A6CFAA62F11C4BDA6BBF8” consistently works a six-day week

whereas, driver “0A1A0478120C8A7B0C035A06321D3B91” rarely works more that two

days a week. We can also see which days are good days for drivers. For example, Monday

21st of January was a slow day for driver “0A0B39F7A97A6CFAA62F11C4BDA6BBF8”,

differing from their usual busy days (described by a dense concentration of circles). On

the other hand, driver “0A2A8EB88CDB6F1287C1DC86309DC047” had a fare of over

$200 on Friday 11th of January, which from looking at the size of the circle is clearly a

result of an unusually long trip distance.

4.5 Conclusions

Here we presented DAPRA - Data Aggregation Partition Reduction Algorithm - to

manage, examine, and uncover insights into the time-sequenced actions of agents in an

irregular time series. DAPRA originated from our need to find a framework capable

of regularising data into a format more amenable to visual analysis and machine learn-

ing techniques. We used two case studies to demonstrate the practical application of

DAPRA.

Our first case study applied DAPRA in an attempt to better understand the factors

influencing client trading behaviors and the downstream effects of these on the broker’s

PnL and position. We demonstrated how using DAPRA enabled us to progress from

the painstaking task of wading through millions of irregularly-sampled client trades, to

the generation of a detailed and meaningful data stream that when visualized provided

commercially-valuable information regarding client/broker positions and PnL over time.

DAPRA requires some exogenous data stream and in this study, we referred to a simple

one that described currency prices over the same period as the client trades. However, it
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Fig. 4.9: Grouping taxi journey data by weather

is important to note that many more exogenous data streams could have been aggregated

with. For example, one major driver of intra-day pricing volatility in the FX market is

the economic release calendar [22]. This calendar dataset is known ahead of time and

is essentially a schedule outlining when the world’s major economies will publish their

latest macroeconomic data. Sometimes estimated figures for economic announcements

are provided in the calendar too. For example on the first Friday of every month, most

traders will await the release of so-called “Non-Farm Payrolls” (average earnings) which
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Fig. 4.10: Visualising patterns of taxi journey information for individual taxi drivers

act as a major indicator of the strength of the US economy. The authors have investi-

gated in detail the use of economic release data to provide a deeper understanding of

the underlying market conditions through time, adding features such as counting how

many high-importance USD and EUR economic releases happened in the previous and

next hour. Given such data, we could identify clients that trade in and around specific

economic releases and separate these from clients that are trading based on longer-term

price movements. This would provide even further insights into client trading behavior.
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In our second case study, we looked at NYC taxi journeys during January 2013 and

attempted to correlate this activity with a weather dataset. Intuitively, a taxi company

will want to know the best approaches to allocate its fleet of taxis to avoid too much

downtime, meet demand and thus maximize profitability. Even on an an individual

level, a taxi driver may want to leverage such information for example to know where

best to drive to given specific weather conditions to maximise their chances of getting

follow-on fares in the next hour. It should be noted that we did make a crude assumption

about the taxi journey dataset so that it would fit within the DAPRA framework. This

assumption was to interpolate the location through time linearly between pickup and

drop-off. One improvement to this would be to use a more realistic path through the

city using actual road map data using algorithms such as Google’s Poly Lines service5,

or better still in the future have full telemetry samples of each taxi ride throughout

the journey such as the data used in [23]. It is even conceivable that with smartphone

app-based taxi hailing / booking services such as Uber6 we also could collect and use

encoded customer passenger data and link this with taxi ID and journey data. This

would open up another rich set of agents that we could cross-correlate behaviors with,

perhaps even recording which journeys the taxi drivers had to pick up and which at any

given time they chose to carry out.

One area for future work relates to the choice of optimal time resolution during the

partition step of DAPRA. This choice has to consider: (1) the nature of the raw data

(low/high frequency, origin, and size) and (2) the type of analysis we intend to carry

out, be it forecasting, visualization, or guiding some actions. In each of our case studies

we decided on arbitrary equal width time intervals, indeed other studies such as [24]

and [25] look at methods of using variable width intervals that increase sampling during

more active regions in the time series. In other work such as [26], [27], [28], the bin

intervals are chosen using an iterative process that results in an interval with the lowest

forecast error. Future implementations of DAPRA could look to use such techniques of

variable width time intervals to see if better performance can be achieved.

In future work, we aim to take DAPRA-structured datasets and use them for online

machine-learning tasks. The beauty of the DAPRA approach is that it lends itself

perfectly to training classical online machine learning techniques [29]. Classification or

regression labels can be easily constructed using features of future DAPRA data in-

stances and detailed features can be derived from the Open/Float/Locked In/Closed

5Google Developers, “Geometry Library”, Available: https://developers.google.com/maps/documentation/java
script/geometry

6Uber, Uber Technologies Inc. Available: https://www.uber.com
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formulation of the statistics. For example, in our recent work, we have used DAPRA in

portfolio optimization models. This is achieved by grouping orders by client and treating

each client as an “expert” that predicts the future state of the market. Furthermore,

we are currently researching the use of online machine learning techniques such as the

aggregating algorithm [8] - early results show promising potential to outperform the

market.

By referring to time series data from two distinct and complex domains we have tried to

present DAPRA as a universal framework for all sorts of time series data streams. Time

horizons can be of any size provided agent actions with defined start- and stop-times

can be identified and agents are free to perform their actions as and when they choose

to. Furthermore, agents do not need to relate to human-based behaviors such as trading

or taxi driving. Indeed in other work, we have analysed network traffic data, where the

agents are IP addresses of different machines on a computer network and the duration

of sending data is measured in nanoseconds. In this era of Big Data, there is certainly

no shortage of data streams that DAPRA can be applied to both now and in the future.

As our world becomes increasingly connected with smart devices in homes and cities,

the “sea” of tracked data measurements that results remains ever-expanding. It is an

exciting time to find out how using frameworks such as DAPRA, we will use insights

into agent behavior to our benefit.



Chapter 5

Practical Investment with the

Long-Short Game

5.1 Introduction

Since modern portfolio theory was first introduced by [30], the problem of portfolio selec-

tion has become increasingly prominent. We approach this problem using the framework

of on-line learning and apply methods of prediction with expert advice, where an investor

makes investment decisions based on the observations of a pool of investors’ strategies.

A well-known formalization of the investment process is Cover’s game (section 2.2.1),

where an investor partitions the available money between the assets. [2] construct a

universal investment strategy for Cover’s game: it performs nearly as well as any constant

rebalanced portfolio. This approach is a special case of the more general aggregating

algorithm, which is capable of combining a finite or infinite pool of portfolios.

The aggregating algorithm can be applied to a general problem of prediction with expert

advice and is an evolution of the weighted majority algorithm introduced by [31]. The

aggregating algorithm was developed by [1, 4] to include a more general concept of a

loss, function on prediction and outcome spaces. Given a series of predictions from a

pool of experts, a learner following the aggregating algorithm assigns to each expert

weights quantifying its trust in them and then combines experts’ predictions according

to the weights.

The framework of Cover’s game is popular in mathematical finance, but it is very re-

strictive and does not capture important aspects of trading such as short positions and

investments on a margin. [3] took steps to consider more realistic trading scenarios. A

trader does not partition their money between the assets as in Cover’s game. Instead,

53
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they open positions, long and short, within some limits set by the exchange or the inter-

mediary providing market access. [3] introduce a modification of Cover’s game, namely,

the long-short game (see Section 2.2.2). It admits long positions exceeding the trader’s

capital (within specified limits) and short positions. A major feature of this framework

is the possibility of bankruptcy. While in Cover’s game, the investor may lose all their

capital only in a totally unlikely event of all stocks simultaneously plunging to zero, with

the long-short game losing all the money is a much more realistic prospect.

In this chapter, we apply the aggregating algorithm to the long-short game in the case

of the currency exchange market. The experts are based on the trading activity of 100

clients who used demo trading accounts to trade so-called basket orders of 55 of the

most liquid currency pairs during the period from September 2019 to January 2020. We

describe a method of deriving predictions from raw trade data using the data staging

algorithm DAPRA [32]. We evaluate the performance of the aggregating algorithm at

the long-short game and in Section 5.4 we propose modifications aimed at improving

the practical performance of the resulting portfolio.

Substantial literature exists on applications of prediction with expert investment advice,

but it usually concentrates on Cover’s game with no short positions or uses different

techniques and approaches. [33] and [34] carry out extensive computational experiments

with universal strategies competitive with constantly rebalanced portfolios (no short

positions are allowed). [35, 36] consider portfolio selection methods based on weak ag-

gregating algorithms merging finite and infinite pools of experts. In their computational

experiments, real stock market data is used but without short positions.

[37] consider universal investment strategies involving short positions and carry out com-

putational experiments. The methods used by [37] to construct universal strategies are

based on calibration and defensive forecasting. [38] apply a different class of prediction

with expert advice methods, namely, AdaHedge-type algorithms, to stock trading in a

different context. The algorithms are used to predict stock values and then predictions

are fed to other automated trading algorithms.

The organization of this chapter is as follows. Section 5.2 introduces a novel data set

based on the currency market trades of 100 clients over 4 months. We then describe the

application of the aggregating algorithm on the long-short game, resulting in a portfolio

with unimpressive results and motivates us to propose modifications to the loss function

which are detailed in Section 5.4. In Section 5.5 we apply the modified method to the

data and discuss the improvements made.
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5.2 Data Set

The data we are using is derived from the basket orders of 100 clients using demo

trading accounts over 4 months, from September 2019 to January 2020. The data is

representative of the behavior of investors trading in the currency exchange market over

a relatively calm period. A basket order allows a group of financial market instruments

to be traded simultaneously. Different weighting criteria for different instruments can

be used to tailor the basket according to the client’s needs. Clients can either trade

their baskets manually or use automated models. In this data the clients construct their

baskets from the 55 most liquid Foreign Exchange (FX) pairs, as shown in Table 5.1.

Table 5.1: 55 FX (currency) pairs, the symbol format is a pair of currency codes
delimited by a “/”, where the currency code is in the ISO 4217 format.

AUD/CAD EUR/AUD EUR/SGD HKD/JPY USD/DKK CAD/CHF EUR/JPY GBP/JPY NZD/USD USD/RUB AUD/USD
AUD/CHF EUR/CAD EUR/USD MXN/JPY USD/HKD CAD/JPY EUR/MXN GBP/NZD SGD/JPY USD/SEK EUR/HKD
AUD/JPY EUR/CHF GBP/AUD NZD/CAD USD/JPY CAD/SGD EUR/NZD GBP/SEK USD/CAD USD/SGD GBP/HKD
AUD/NZD EUR/DKK GBP/CAD NZD/CHF USD/MXN CHF/JPY EUR/PLN GBP/SGD USD/CHF USD/TRY NZD/SGD
AUD/SGD EUR/GBP GBP/CHF NZD/JPY USD/NOK CHF/SGD EUR/SEK GBP/USD USD/CNH USD/ZAR USD/PLN

Table 5.2 illustrates raw trade data from the basket orders of four different clients, B1,

B2, B3, and B10. We see client B1 has a basket trading 4 different currency pairs

(NZD/SGD, GBP/SGD, NZD/CAD, and CHF/JPY) where each block of trades all

have the same opening timestamp, for example, 24th Oct 2019 at 07:08 and holds that

position for 3 days. Later that same day at 19:45 we see client B1 trades the same basket

again, so building on their position. “Position” is the summation of the client’s trades

and at a given point in time is described as being long, flat, or short. At 19:45, client

B1’s position goes long in NZD/SGD by 27,000, and short in NZD/CAD by 41,000.

Table 5.2 further demonstrates that clients have the freedom to trade any combination

of currency pairs and with any notional weightings they desire for their baskets (these

can be derived manually or using proprietary algorithms). For example, client B3 trades

a basket of 5 different currency pairs, whereas client B2 trades larger notional preferring

GBP currency crosses. Client B10 solely trades 3 symbols which are all USD crosses.

Before we can apply the AA to this data we must first:

• Normalise client positions into a common currency, in our case we use USD. We do

this because clients trade many different currencies, all of whose notional values

differ through time. Therefore, to compare the positions and derive a price vector

they must be normalized.

• Sample the data at regular time intervals (for this data we chose a resolution of

1 minute) across all clients and currency pairs. This is because whilst clients are

at liberty to trade and hold positions for however long they wish, the AA must

predict the future behavior of the market at regular time intervals.
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Table 5.2: Raw trade data taken from basket orders of four different clients (B1, B2,
B3, and B10) on the 24th Oct 2019. Each trade has an open and close timestamp and
corresponding open and close price. Whether the trade was a buy or sell is denoted by

a 1 or −1 sign, respectively.

Open Time Open Client Amount Sign Symbol Order Close Time Close Mins In
Price Id Price Trade

2019.10.24T07:08:00.000 0.87236 B1 27,000 1 NZD/SGD B1 87 2019.10.27T22:12:00.000 0.86643 5,224
2019.10.24T07:08:00.000 1.76210 B1 6,000 -1 GBP/SGD B1 267 2019.10.30T00:20:00.000 1.75285 8,232
2019.10.24T07:08:00.000 0.83763 B1 41,000 -1 NZD/CAD B1 447 2019.10.30T00:20:00.000 0.83112 8,232
2019.10.24T07:08:00.000 109.76200 B1 8,000 1 CHF/JPY B1 634 2019.10.27T22:12:00.000 109.30400 5,224
2019.10.24T13:36:00.000 9.61360 B3 7,000 -1 USD/SEK B3 64 2019.11.04T10:38:00.000 9.64949 15,662
2019.10.24T13:36:00.000 0.93133 B3 30,000 -1 AUD/SGD B3 230 2019.11.03T22:12:00.000 0.93782 14,916
2019.10.24T13:36:00.000 2.01415 B3 2,000 -1 GBP/NZD B3 397 2019.10.27T22:27:00.000 2.01888 4,851
2019.10.24T13:36:00.000 1.74062 B3 9,000 -1 EUR/NZD B3 573 2019.10.28T03:50:00.000 1.74552 5,174
2019.10.24T13:36:00.000 19.08875 B3 1,000 -1 USD/MXN B3 746 2019.11.05T07:47:00.000 19.13142 16,931
2019.10.24T14:58:00.000 10.07130 B2 451,000 1 GBP/HKD B2 25 2019.11.01T09:23:00.000 10.09472 11,185
2019.10.24T14:58:00.000 8.70289 B2 59,000 -1 EUR/HKD B2 84 2019.10.25T11:04:00.000 8.71086 1,206
2019.10.24T14:58:00.000 1.27429 B2 338,000 -1 GBP/CHF B2 144 2019.10.25T14:54:00.000 1.27440 1,436
2019.10.24T14:58:00.000 12.38930 B2 19,000 -1 GBP/SEK B2 202 2019.10.25T11:19:00.000 12.40480 1,221
2019.10.24T15:03:00.000 0.99168 B10 167,000 -1 USD/CHF B10 22 2019.10.27T22:12:00.000 0.99454 4,749
2019.10.24T15:03:00.000 3.85160 B10 95,000 -1 USD/PLN B10 91 2019.10.27T22:12:00.000 3.85830 4,749
2019.10.24T15:03:00.000 6.72958 B10 749,000 1 USD/DKK B10 161 2019.10.28T08:11:00.000 6.73906 5,348
2019.10.24T19:45:00.000 0.86990 B1 27,000 1 NZD/SGD B1 88 2019.10.27T22:12:00.000 0.86643 4,467
2019.10.24T19:45:00.000 1.75211 B1 5,000 -1 GBP/SGD B1 269 2019.10.30T00:20:00.000 1.75285 7,475
2019.10.24T19:45:00.000 0.83419 B1 41,000 -1 NZD/CAD B1 449 2019.10.30T00:20:00.000 0.83112 7,475
2019.10.24T19:45:00.000 109.47500 B1 9,000 1 CHF/JPY B1 636 2019.10.27T22:12:00.000 109.30400 4,467

[32] introduced the data staging technique DAPRA (Data Aggregation Partition Reduc-

tion Algorithm) which, when applied to data streams about client trades and market

data, allows one to normalize and sample the data as required for this study. DAPRA

follows a three-step process:

1. Data Aggregation, where data from one or more sources of irregularly sampled

time series data are combined into a regular sampled time series. Here this will be

the client trade and market price data.

2. The aggregated stream is Partitioned into regular time intervals. It is also at this

stage where derived fields such as position are calculated, using features from both

data sets.

3. Finally this aggregated, partitioned stream of data is Reduced where the aggre-

gated data is grouped based on client and symbol in this study.

Fig. 5.1 compares the net positions of the first 10 clients in the data set, following

DAPRA transformation over the trial period. We can see here that clients have different

trading strategies and activities through time, some clients build a position steadily over

days and weeks, such as B3 and B4. Whereas others such as B6 and B9, open and close

fixed amounts over short periods. All clients trade different amounts resulting in net

positions between long and short 5 million across all 55 symbols shown in table 5.1.

The positions in Fig. 5.1 show step changes when trades of basket orders are placed.

Returning to our earlier example, we can see the shifts in position related to the trades in
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Table 5.2 on the 24th Oct 2019. Hence, we see that client B10’s basket order comprises a

sell USD/DKK trade which means a position change from flat to short. Importantly we

can see great variability in the notional sizes, basket symbol composition, and holding

periods of the different clients, producing are varied range of investment strategies.

Fig. 5.1: Net positions of first 10 clients in data set from Sept 2019 to Jan 2020.

Until now we have assumed the existence of the portfolio vector γ, describing an expert’s

investment decisions. However, as we can see from the example trading data presented

in Table 5.2, it is not clear how to define a client’s prediction with that on the long-short

game. We must therefore define a method of calculating an investor’s portfolio vector

from raw trade data that describes their investment decision over each time interval. The

portfolio vector γ describes the sizes of investors’ positions in relation to their wealth.

This requires knowledge of the investor’s wealth however, as is common we do not have

access to the total funds available to an investor. Instead, we can assume that at each

trial the investor has invested their total funds across each of the available assets. The

DAPRA data set provides us with the normalized positions an investor held in each

asset at the start of each interval where we will use Posθt [n] to denote the position of

investor θ in asset n at time t. Therefore, a natural method of approximation is to define

the portfolio vector γθt ∈ RM as γθt [m] = Posθt [m]/
∑M−1

m=0 |Pos
θ
t [m]|

The data set is available online [39].
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5.3 Empirical Results

Here we will compare the portfolio performance of an investor following the invest-

ment protocol of the long-short game applied to the 100 clients to give each client a

fixed equal weight. We will make the assumption all assets within our market are ar-

bitrarily indivisible and no transaction costs are present. Naturally, as we are using

historical market data it is implicit our trading behavior does not affect the market.

A practical performance measure of a portfolio is the return on investment (ROI),

assuming no transaction cost we can calculate from the wealth of the investor using

ROI = (WT −W0)/W0× 100 = (WT − 1)× 100. This is equal to e−LossT (AA(η,P0))× 100

where LossT (AA(η, P0)) is the total loss w.r.t the long-short game loss following the AA

with learning rate η and initial distribution P0.

After partitioning our data into 1-minute intervals the result is 123596 trials. In Fig. 5.2

we can see the number of awake experts at each trial. Here an awake expert is defined as

one that has an open position in at least one symbol over a given trial, otherwise, they

are defined as sleeping. We can see it takes around 60,000 trials for the number of awake

experts to stabilize. This is not an uncommon problem to face in the real world in cases

such as an emerging market maker or the introduction of a new investment instrument.

To keep the comparison between the various implementations of the aggregating algo-

rithm fair, we will be ignoring the initial 60,000 trials from our experiments, however,

the full data set has been provided.

The percentage return on investment (ROI) to the portfolio of the long-short game

is 0.6449% as we can see in Fig. 5.3 this is good growth over the investment period.

However, comparing this to assigning all experts equal weights we see an ROI of 0.6447%,

this is a minor change in the ROI. In Fig. 5.4 we plot the excess ROI to the long-short

game compared to equal weights, While the difference is small we do see a clear indication

that AA has the potential superior predictions than simply following each expert equally.

Whilst the long-short game appears to be an improvement over using equal weights the

gains are small with the difference in ROI after 63,596 trials being 0.002%.

The resulting ROI close to 1% is disconcerting compared to the results of the experts.

The returns of the experts range from −2.33% to 4.62% with the mean of 0.64%. Clearly,

AA fails to align itself with the best experts.

In terms of Lemma 2.3 this may be explained as follows. The total losses of the experts

range from −0.05 to 0.020. The extra term in (2.4) with η = 1 and uniform initial

weights of P0(θ) = 1/100 equals 4.6052. The guarantees of Lemma 2.3 are thus very

loose.
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Fig. 5.2: Percentage of Awake Experts Through Time

Fig. 5.3: Long Short Game ROI

In Fig. 5.5 we can see the weight the AA assigns to each client in the long-short game,

at each trial. As client’s weights are updated using their loss at each trial, the weight is

a reflection of the ROI. Therefore, showing there are clients in the pool with returns far

greater than those achieved by the AA. We see the game does differentiate between the

various strategies however, there appears to be insufficient discrimination of weights to

allow above-average strategies to influence the overall investment decisions of the AA.

In this case, the model’s final weights have a mean of 1.01 with a standard deviation of
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Fig. 5.4: Long Short Game Excess ROI

Fig. 5.5: Long-Short Game Client Weights

0.013 and with maximum and minimum weights of 1.04 and 0.98, this may explain the

limited performance improvements of the long-short game. Therefore, it seems logical

the performance of the long-short game may be increased by modifications to the game

that increase the discrimination between the weights of each investment strategy.
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5.4 Long-Short Game Modifications

In this section, we introduce several modifications in order to improve the practical

performance.

The ideas developed here stem from the following intuition. While Cover’s game has

a natural scaling (the components of γ sum to 1), the Long-Short game does not. In

the example we considered above, AA produces vectors γt that lead to a very small

but positive profit. One can multiply these vectors by a factor of A > 1 and the

profit will increase. Where the investor earned the profit of Wt−1⟨ωt, γt⟩, they will earn

Wt−1⟨ωt, Aγt⟩ = AWt−1⟨ωt, γt⟩.

The downside of this is risk. Larger positions can potentially lead to bankruptcy. In

the spirit of prediction with expert advice, we can analyze the possibility w.r.t. the

bankruptcy of experts.

We will call a prediction γ satisfying (2.8) a-bounded.

Definition 5.1. A method of merging experts’ predictions is a-conservative if for all

experts’ predictions γ(θ) if γ(θ) is a-bounded for all θ ∈ θ, then the prediction γ produced

by the method is a-bounded.

Note that in practice being a-bounded is neither necessary nor sufficient for avoiding

bankruptcy. An investor may take a calculated risk and get away with it.

Definition 5.2. A method of merging experts’ predictions is conservative if for all

experts’ predictions γ(θ) the prediction γ produced by the method is such that for all

ω ∈ Ω if the values − ln(1 + ⟨ω, γ(θ)⟩) are uniformly bounded from above by a finite

number, i.e., − ln(1+ ⟨ω, γ(θ)⟩) ≤ C < +∞ for all θ ∈ Θ, then the value − ln(1+ ⟨ω, γ⟩)
is finite, i.e., − ln(1 + ⟨ω, γ⟩) < +∞.

Theorem 5.3. Any merging algorithm outputting an average of experts’ predictions

w.r.t. some distribution, i.e., γ =
∫
Θ γ(θ)P (dθ), where P is some distribution, is con-

servative and a-conservative for all a > 0.

Proof. If − ln(1 + ⟨ω, γ(θ)⟩ ≤ C < +∞ for all θ ∈ Θ, then 1 + ⟨ω, γ(θ)⟩ ≥ 2−C > 0 and

1 + ⟨ω, γ⟩ = 1 +

〈
ω,

∫
Θ
γ(θ)P (dθ)

〉
=

∫
Θ
(1 + ⟨ω, γ(θ)⟩)P (dθ) ≥

∫
Θ
2−CP (dθ) > 0

if ∥γ(θ)∥1 ≤ a, then

∥∥∥∥∫
Θ
γ(θ)P (dθ)

∥∥∥∥
1

=

M−1∑
m=0

∣∣∣∣∫
Θ
γ(θ)[m]P (dθ)

∣∣∣∣ ≤ M−1∑
m=0

∫
Θ
|γt(θ)[m]|P (dθ) ≤

∫
Θ
aP (dθ) = a
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We can see that whenever the experts’ predictions satisfy a broker’s safety require-

ments, so do the AA predictions, and whenever the experts’ predictions do not lead to

bankruptcy, neither does the AA.

In this section, we will introduce a modification of the Long-Short game keeping this

property w.r.t. the original λLS and improving on the practical performance of the AA.

5.4.1 Return Scaling

Take a number ρ > 0 and consider the loss function

λLS,ρ =

− ln(1 + ρ⟨ω, γ⟩) if 1 + ρ⟨ω, γ⟩ > 0

+∞ otherwise
.

One can define the a-bounded and general versions of the game with the same Γ and Ω

as the original Long-short game.

Theorem 5.4. For any ρ > 0, for any a-bounded game, a > 0, and general game with

loss λLS,ρ and for every η ≤ 1 we have Cη = 1. Moreover, for every η ≤ 1 and every

g ∈ GA(η), C(g) = 1. The only prediction attaining C(g) = 1 is the average (2.6),

whereas before P is a probability distribution in Γ generating g. When η > 1, Cη > 1.

The proof is the same as for Lemma 2.9, which is proven by [3].

We will apply the AA in the following fashion. We will use λLS,ρ in the algorithm for

calculating weights and working out the predictions γt. Then we will evaluate w.r.t. the

original λLS.

Of course, the λLS-loss of the resulting algorithm will not satisfy Lemma 2.3. However,

Lemma 2.3 will hold for the loss λLS,ρ. Note that the λLS,ρ-loss of a strategy is the same

as the loss of the strategy with all predictions multiplied by ρ. This strategy suffers a

larger loss and the term 1
η ln

1
P0(θ)

will be small in comparison. Thus the algorithm will

allow better differentiation of the weights, which may result in a better λLS-loss.

As discussed above, there is a danger that the strategy with predictions multiplied by ρ

goes bankrupt. However, this will not propagate to the mixture.

Corollary 5.5. The aggregating algorithm applied w.r.t. the loss λLS,ρ and is conserva-

tive and a-conservative for every a > 0.
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Proof. We still average experts’ predictions with some weights. While the weights may

be different to AA, the argument of Theorem 5.3 stays.

We may be affected by bankruptcy in the following way. If a ρ-multiple of an original

expert goes bankrupt, its weights in the algorithm drop to zero. Its future predictions

disappear from the mixture and the losses do not appear in the comparison. Still, we

do not go bankrupt as per Corollary 5.5.

5.4.2 Downside Loss

The developments of this section are based on the following intuition.

From the practical perspective, the ability of a strategy not to lose money may be more

important than the ability to earn money. Consider a strategy that earns little money,

but does so very consistently and never loses much. This strategy can then be scaled up

and earn more money.

Thus one often wants to minimise the drawdown of a trading strategy. There are various

indicators quantifying it; they are discussed in the next section. One cannot apply AA

directly to this problem because the notion of a drawdown is not local in time. Still,

one can try and modify the loss function to penalize financial losses strongly.

Consider the downside loss function modifying the scaled Long-Short loss:

λLS,down,ρ(ω, γ) = max(− ln(1 + ρ⟨ω, γ⟩), 0) = − ln(1 + ρmin(⟨ω, γ⟩, 0))

This function penalizes financial losses but does not reward gains.

The following statement can be made about its mixability properties.

Theorem 5.6. For λLS,down,ρ the average (2.6) attains C = 1 for every g, where as

before P is a probability distribution in Γ generating g.

Proof Consider a distribution P on Θ, and predictions γ(θ). One has

e−λLS,down,ρ(ω,γ) = 1 + ρmin(⟨ω, γ⟩, 0)

and therefore it is sufficient to prove that

1 + ρmin(⟨ω,
∫
Θ
γ(θ)P (dθ)⟩, 0) ≥

∫
Θ
(1 + ρmin(⟨ω, γ(θ)⟩, 0)P (dθ) .

This follows from the concavity of min(x, 0) in x and Jensen’s inequality.
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It is important to point out that this loss function is really special. There is γ0 = 0

such that 0 = λLS,down,ρ(ω, γ0) ≤ λLS,down,ρ(ω, γ) for any ω and any other γ. Technically

C = 0 and the problem of prediction with expert advice is trivial for this loss function:

the learner only needs to predict 0.

Still applying the AA with λLS,down,ρ and the substitution (2.6) in meaningful and the

losses will satisfy Lemma 2.3.

5.4.3 Combined Loss

One can consider the combined loss function parameterised by scalings ρ1 ≥ 0 and ρ2 ≥ 0

and coefficients u ≥ 0 and v ≥ 0 (we assume that ρ1 + ρ2 > 0 and u+ v > 0):

λ(ω, γ) = − ln(ue−λLS,ρ(ω,γ) + ve−λLS,down,ρ(ω,γ))

= − ln((u+ v) + uρ1⟨ω, γ⟩+ vρ2min(⟨ω, γ⟩, 0))

= − ln(u+ v)− ln

(
1 +

uρ1
u+ v

⟨ω, γ⟩+ vρ2
u+ v

min(⟨ω, γ⟩, 0)
)

Since this loss function is mixable (as we will see in a moment) the additive term − ln(u+

v) makes no difference and can be ignored. One may think of the combined function as

having only two parameters, uρ1/(u+v) and vρ2/(u+v), but speaking of four parameters

may be more convenient.

Theorem 5.7. For any ρ1, ρ2, u, v ≥ 0 such that that ρ1+ρ2 > 0 and u+v > 0, for any

a-bounded game, a > 0, and general game with combined loss λLS,ρ and for η = 1 we

have Cη = 1. This is attained by the average substitution function (2.6), whereas before

P is a probability distribution in Γ generating g.

Corollary 5.8. For any ρ1, ρ2, u, v ≥ 0 such that ρ1 + ρ2 > 0 and u + v > 0, the

aggregating algorithm with the combined loss function in conservative and a-conservative

for every a > 0.

5.5 Experimental Conclusions

Here we evaluate the performance of the proposed modifications to the long-short game

and discuss the advantages of the various investment strategies. We will also be com-

paring the effect of sleeping experts using the same parameters.
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5.6 Portfolio Performance Evaluation

To evaluate the performance we will be using well-established portfolio risk measures.

As the games we are studying use returns over each trial to update the weight assigned

to each expert investor, we will naturally use the ROI of each learner’s portfolio as a

measure of success. However, it is typical to not only evaluate a portfolio based on

return alone but rather on the risk-reward of the portfolio. The Sharpe ratio [40] of a

portfolio P is a measure of the amount of return an investor receives per unit of risk

defined as:

Sharpe(P ) =
RP −Rf

σ(RP )
, (5.1)

where Rp denotes the return to the portfolio p and Rf the return of the risk-free asset.

This allows us to compare the risk of each of the learner’s portfolios, using the standard

deviation of the returns to the portfolio as a measure of volatility.

As we discuss in Section 5.4.2, one may be specifically interested in reducing the financial

losses. The Sortino ratio [41] is a measure of return per unit of downside risk defined as

Sortino(p) =
RP −Rf

σ(Rd)
, (5.2)

where Rd denotes the downside returns to the portfolio P being the returns recorded

less than some target return. In the following, we will assume the return to the risk-free

asset of 0% and a target return of 0%, for performance comparison.

We will also be looking at the Drawdown of investors’ portfolios, which is a metric

commonly used to measure the volatility of the ROI and refers to how much the ROI

retraces from the highest ROI achieved, defined as:

Drawdown(T ) = min
t∈[0,T ]

(0,ROI(T)− ROI(t))

we ideally want to keep the drawdown as small as possible, a useful summary is to track

the so-called ‘maximum drawdown’ which computes the maximum amount of ROI given

away over time:

Max Drawdown(T ) = min
t∈[0,T ]

Drawdown(t)
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5.7 Empirical Results

In Fig. 5.6 we can see the ROI of the learner’s portfolio using various combined loss

coefficients and setting ρ1 = ρ2 increasing from a value of 0-1000 (sampling every 100

intervals). The first thing to note is that for all games there is an improvement in the

ROI up until some point where we begin to see a drop off in the results.

The learner following the investment strategy using a loss function of ρ = 900, u = 1

and v = 0 has an ROI of 3.83%, which is a 5.9 fold increase compared to the ROI of

0.65% resulting from the portfolio with a loss function with parameters of ρ = 1, u = 1

and v = 0. However, whilst a combined loss of u =1 and v = 0 produces the highest

ROI and Sharpe ratio, its Sortino ratio is much lower when compared to games applying

downside loss. This suggested that whilst games without downside loss can provide

high ROI per unit of volatility we can expect to see much higher drawdowns in these

portfolios when compared to those using downside loss. We can see an example of this

represented in Fig. 5.14 comparing the portfolios of two investment strategies in this

case with the implementation of specialist experts. We observe that while the combined

loss coefficients of u = 1 and v = 0 produce a final ROI higher than the strategy using

coefficients u = 2 and v = 1, the drawdowns are far greater seen in Fig. 5.15.

Fig. 5.6: ROI for increasing ρ Fig. 5.7: ROI with Sleeping Experts

We see that the performance of the algorithms at first improves with the growth of ρ and

then starts falling. According to Section 5.2 and 5.4 the improvement in performance is

caused by better differentiation in the experts’ weights and an increase in the significance

of 2.4. This is offset by the growth of the number of bankrupt experts. In Fig. 5.8 we

plot the number of clients with bankrupt trading strategies as the return scaling constant

applied to the expert’s loss increases. We see the number of bankruptcies steadily grow

as ρ → ∞ as we would expect as larger losses force client weights to zero. This may

account for the sharp drop in portfolio performance as ρ1 = ρ2 reaches 1000. This is a
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Fig. 5.8: Bankrupt clients as ρ in-
creases

Fig. 5.9: Max Drawdown as ρ in-
creases

clear representation of why we must increase the return scaling constant with caution

as too large a value will guarantee a portfolio less than optimal performance.

In Fig. 5.9 we can see the maximum drawdown for games without the use of specialist

experts or discounting. Firstly, we see clearly that in the case of u = 1 and v = 0 as we

increase the return scaling constant we increase the maximum drawdown of the portfolio.

This must be looked at alongside the Sharpe ratio that is increasing. This suggests that

while we increase the return per unit of risk of the learner’s portfolio we also increase the

volatility of the portfolio. However, we can see for games where v > 1 the correlation

does not hold. This implies that for investors looking to reduce drawdowns, they can

achieve this using combined loss coefficients where u ≤ v,

Comparing Fig. 5.6 with Fig. 5.7 we can see that while the pattern of the results largely

remains the same, there is a significant increase in the ROI of the portfolios following

the sleeping experts’ decision-making method. Taking the parameters that result in the

highest ROI for non-sleeping experts of ρ = 900, u = 1 and v = 0 and an ROI of 3.83%,

the application of sleeping experts increases this to an ROI of 5% a 1.31 fold increase.

We also see a similar increase in the Sharpe ratios of learners’ portfolios comparing the

same two portfolios we see an increase of 20% from 0.52% to 0.62%. However, whilst for

the same game we saw an increase in the sortino ratio of 0.08%, overall sortino ratios

decreased. The optimal sortino ratio without the use of sleeping experts was achieved

using parameters of ρ = 700, u = 2 and v = 1 of 7.48. With the use of sleeping experts,

the highest sortino ratio was given using ρ = 300, u = 2 and v = 1 of 6.09, a decrease of

18%.

Here we presented the results of discounting taking at α = 0.995. Examining the ROI

of the learner applying discounting whilst we see an increase correlated to the return

scaling constant, the returns are lower and the growth is not as significant as other
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Fig. 5.10: Sharpe Ratio for increasing
ρ

Fig. 5.11: Sharpe Ratio with Sleeping
Experts

Fig. 5.12: Sortino Ratio for increas-
ing ρ

Fig. 5.13: Sortino Ratio with Sleep-
ing Experts

implementations of the AA. However, we do see a notable change in the pattern of

ROI taking the combined loss coefficients u = 0 and v = 1, with stronger performance

than without the use of discounting. Moreover, we see a notable improvement in the

Sortino ratio that one may assume to be a result of an increase in the effectiveness of

downside loss. In Fig 5.19 we can see the ROI with the parameters u = 1, v = 1,

ρ = 1000 and α = 0.995, this is a noteworthy example as we can see whilst the ROI is

less than previous games the learner is still actively investing in the market with minimal

drawdowns. This suggested that if an investor prioritizes reducing drawdowns in their

portfolio at the expense of long-term ROI the use of discounting may be an optimal

strategy for a learner.

In Table 5.3 we can see the parameters and results of some of the AA implementations

with optimal results. We see that for less risk-averse investors looking for high returns,

the use of specialist experts can achieve this. Where in the case of the highest ROI

of any AA it is in fact higher than the ROI of the best expert. However, for more
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Fig. 5.14: ROI of Learner Portfolio
Fig. 5.15: Drawdown of Learner

Portfolio

Fig. 5.16: ROI with Discounting
Fig. 5.17: Sharpe Ratio with Dis-

counting

Table 5.3: Parameters and results of optimal solutions

u v
Return
Scalling
Factor

Specialist
Experts

Alpha ROI Sharpe Sortino
Max

Drawdown

Equal Weights - - - - - 0.64% 0.27 0.40 -0.15

Worst Expert - - - - - -2.34% -0.23 -0.15 -3.04

Best Expert - - - - - 4.52% 0.42 4.03 -0.22

Highest ROI 1 0 900 YES 1 5% 0.62 1.31 -0.28

Highest Sharpe
and

Best Max Drawdown
0 1 900 NO 0.995 1.4% 0.83 4.01 -0.02

Highest Sortino 1 1 1000 NO 0.995 1.33% 0.71 11.28 -0.035

risk-averse investors the use of downside loss and discounting can certainly reduce the

overall volatility of the portfolio. We must also consider the use of specialist experts in

combination with downside loss as this has shown to be a good compromise for investors.
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Fig. 5.18: Sortino Ratio with Dis-
counting

Fig. 5.19: ROI of Learner with Dis-
counting

5.8 Conclusion

We have shown the practical limitations of the long-short game and have introduced

modifications with clear performance benefits in our experimental results.

This study has presented a novel time series data set that describes client trades in

the Foreign Exchange market ([39]) and has used this data to introduce a method of

deriving expert predictions from client positions. Return scaling of the long-short game

has been introduced, aimed to address the practical issue of insufficient discrimination

of expert weights, and has been shown to provide significant performance improvements.

We have also presented the downside long-short game with the motivation of reducing

the downside risk of the investment strategy of the AA, which has proven to be effective

using the Sortino ratio as a measure of downside risk. We have used combined loss

functions to produce optimal performance of AA portfolios both maximising returns

and reducing risk. Finally, we have shown the use of specialist experts can improve

the overall performance of a learner’s portfolio. Whereas, discounting can significantly

reduce the volatility of an investment portfolio when used with downside loss at the

expense of ROI.

Table 5.3 provides the summary of the trials of the study. Whilst we have outlined the

empirical results, we should acknowledge the significance of the results and the impact

they have on both the aggregating algorithm. Notably, we see that whilst the theoretical

bound of the AA is met in empirical testing. We see this in the case of investment, where

the number of experts is not insignificant. The bound provided by the AA is not sufficient

to provide a meaningful limit on loss, in practice. The modifications introduced in this

paper, have been shown to address this, and as table 5.3 shows. Increasing the ROI of

the AA, which performed similarly to equal weights. To outperform the best experts’
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ROI, with the new modifications introduced. However, we should not overlook the fact

that the theoretical bound was of little use in practice. In further work, we would seek

to explore this topic further, to find a more meaningful limit, for the long-short game.

In this chapter, we have shown that by adjusting the relationship between return scaling

and downside loss, an investor can improve both their overall profitability as well as

reduce their drawdown. These contributions made to the Long-Short game give investors

the ability to vary their decision-making process of merging trading strategies, based on

their risk/reward appetite.



Chapter 6

Online Hedging with the Weak

Aggregating Algorithm

6.1 Introduction

Financial Market Makers (MMs) face a challenging online learning problem when it

comes to managing a portfolio of risk. Here we define risk as it relates to market

exposure - effectively represented by an MM’s overall position. In simple terms, the

position is the aggregation of all the buy and sell trades carried out by the MM’s clients

at a given point in time and evolves due to underlying asset price fluctuations and

changes in client trading activity. Profit and Loss (also known as PnL) is a function

of position and asset price movement. The position is described as being long, when

the summation of client sell trades, exceeds those of client buy trades. A short position

indicates a higher summation of client buy trades over sell trades. Roughly speaking,

when a position is long and the price goes up, the PnL will increase, and vice versa

when a position is short and the price goes down, the PnL will decrease. Drawdown is

a metric commonly used to measure the volatility of the PnL and refers to how much

the PnL retraces from the highest PnL achieved, defined as:

Drawdown(T ) = min
t∈[0,T ]

(0,PnL(T)− PnL(t))

MMs would ideally like to keep this drawdown time series as small as possible, a useful

summary is to track the so-called ‘maximum drawdown’ which computes the maximum

amount of PnL given away over time:

72
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Max Drawdown(T ) = min
t∈[0,T ]

Drawdown(t)

An effective risk management strategy ensures that the position is kept within some

predefined bounds and is as flat as possible. If a position is allowed to build up with no

limit, becoming either too long or too short, then any unfavorable asset price movement

will result in the MM incurring greater losses than if its position had been flatter or

neutral. The position is actively maintained (or hedged) when the MM places buy

or sell trades (hedges) when its position is respectively long or short. Strategies that

indicate how much is hedged and when hedge trades are to be placed are known as

hedging strategies. It follows that a hedging strategy that causes a reduction in position

will also impact PnL, yet the nature of this impact will vary based on when and how

much is being hedged. Hedging too much will more likely reduce drawdown but also

reduce any profit. Hedge too little and risk market exposure and being at the mercy of

disadvantageous price movements leading to large drawdowns. We discuss a commonly

used hedging strategy known as the Cylinder Hedging Model in Section 6.2.

In this chapter, we focus on finding optimal hedging strategies by making use of on-line

prediction with expert advice, namely the Weak Aggregating Algorithm or WAA [8, 9].

The problem of finding an optimal hedging strategy follows naturally from that of port-

folio selection, which has itself seen extensive application of both the WAA and the

Aggregating Algorithm (AA). The problem was first introduced by [2] and later devel-

oped by [3] to consider more realistic trading scenarios. In [42] the game was further

developed to improve the application of the AA to find profitable trading strategies

based on the past observations of a pool of investment strategies. The WAA has also

been applied to the problem of finding a universal portfolio by [35] and further developed

by [43] and [44].

As well as presenting a hedging framework for the WAA, we also introduce a method for

applying discounted loss to the WAA. This allows for a learner to more effectively adapt

to changes in market conditions in periods of high volatility. To test the efficacy of the

approaches presented here we conduct experimental trials on real-world market and MM

client data on three major currency pairs, EUR/USD, GBP/USD, and EUR/GBP.

6.2 Cylinder Hedging Model

Here we will describe the Cylinder Hedging Model, an algorithm that provides a hedging

strategy based on the position of assets within a portfolio. The most fundamental
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cylinder model has two main parameters: (1) a pair of long and short limits (typically

specified in US dollars) and (2) a desired hedge fraction specifying how much to hedge if

one of these limits is breached. The limits define a so-called “cylinder” of risk, aiming to

prevent the underlying position from growing too large, i.e., if the long limit is breached,

the MM would place hedge sell trades to reduce the overall net position according to the

hedge fraction (and vice versa short limit breaches). It should be noted, that in other

areas of finance derivatives are a common choice of method of hedging. In the case of a

market maker, a cylinder hedging model has notable benefits. Including the avoidance

of risk exposure, taken from unforeseen movements in the derivative markets. And, the

ability to manage position risk, with sacrificing excess PnL.

In our application of the cylinder model, the position is recorded at set intervals and a

hedge fraction is placed for the duration of the interval. This is a natural hedging model

for an MM where the portfolio being hedged is dictated by the flow of client trades. In

Figures 6.1 and 6.2 we explain this by using a ‘toy’ example of a cylinder model with

symmetrical long and short limits of 50 USD and −50 USD respectively (see red dotted

lines), and a hedge fraction of 50% over 15 trial epochs. Figure 6.1 shows that at Trial

0, the client position (in blue) is at 100 USD. This breaches the long cylinder limit

which in turn triggers the cylinder model to create an offsetting 50 USD hedge position

as indicated by the orange line. This results in an overall net position (green line) of

50 USD. Throughout each trial this basic algorithm is repeated, resulting in the MM’s

overall net position staying within the predefined ±50 USD cylinder limits. Figure 6.2

shows the PnL values that result from trading this basic cylinder model over the 15

trials for the client (in blue), hedge (in orange), and overall net (in green). The raw

client PnL ranges from −20 to +55 USD, yet after hedging, the volatility in the PnL is

reduced between −10 and 45 USD.

Fig. 6.1: Cylinder Model Position Fig. 6.2: Cylinder Model PnL

One natural extension often used to increase the profitability of the cylinder model is

to skew the limits based on the view of the market direction. The motivation for this is
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illustrated in Table 6.1. If the price of the underlying asset is going up, the MM may

want to skew the long cylinder limit upwards to prevent the model from triggering any

hedges, thus permitting the MM to “ride the trend” in its existing long position and

generate even further profit. By making the cylinder limits dynamic and asymmetric,

MMs can hedge more selectively based on their net position and the overall market price

movements.

Table 6.1: MM Optimal Hedge Decision

Market Condition
MM Position Long

(Client Position Short)
MM Position Short

(Client Position Long)

Price Increase

MM PnL Increase
Skew long cylinder

upwards → less likely
to hedge

If MM position breaches
skewed long limit →

place sell hedge

MM PnL Decrease
If MM position breaches
long cylinder limit →

place sell hedge

Price Decrease

MM PnL Decrease
If MM position breaches
long cylinder limit →

place buy hedge

MM PnL Increase
Skew short cylinder

downwards →
less likely to hedge

If MM position breaches
skewed short limit →

place buy hedge

In this study, we use dynamic cylinder models as our experts. To appropriately skew each

model’s cylinder limits, we will make use of the moving averages of the underlying asset

prices as our market directional indicators. Moving averages are computed over various

time windows and are commonly used in technical analysis. Thus when the current

asset price is higher than its moving average counterpart, we forecast the market to

be rising and hence the long cylinder limit can be positively skewed. Likewise, if the

current asset price is lower than its moving average counterpart, then the market is

likely to trend downward and the short cylinder limit can be skewed negatively. This

dynamic adjustment of the cylinder limits can allow the model to both profit from and

hedge against market corrections. Algorithm 7 provides us with the Pseudocode for the

cylinder hedging model.

Figures 6.3 and 6.4 illustrate how the moving average is used to compute such dynamic

skewed cylinder limits. Figures 6.5 and 6.6 show two ways of assessing the performance of

the respective cylinder hedging models, tracking PnL and drawdowns. In these examples

cylinder limits have been computed over the first 10,000 hourly epochs of a real-life

EUR/USD trading dataset (described later in Section 4.1). Figure 6.3 shows the raw

underlying price of the asset (EUR/USD) via the blue line. The moving average of the



Online Hedging with the Weak Aggregating Algorithm 76

asset price computed over a window of 140 hours is shown by the red line. This line is

smoother and lags behind as it is being computed. For each time epoch, we compute the

market directional indicator, which is when the price line is above or below the slower-

moving average line. This indicator skews the cylinder limits up or down respectively.

The results of using the indicator in Figure 6.3 to skew the cylinder limits are shown

in Figure 6.4, where a long limit of 10 million USD and a short limit of −20 million

USD are both being skewed up and down by 70% and 80% respectively throughout.

Figures 6.5 and 6.6 highlight the benefits of the cylinder hedging model in using these

skewed limits. The overall client PnL (blue line) whilst making a profit does suffer

from large drawdowns as shown in Figure 6.6, notably around trials 3000 and 8000. By

observing the effect of hedging (orange line) it is clear that the cylinder hedging model

has significantly reduced these losses, increasing the final net PnL (green line) by 51%

from 538, 024 USD to 813, 484 USD.

Fig. 6.3: Price of Underlying Asset
Fig. 6.4: Client Position with

Skewed Limits

Fig. 6.5: Client, Hedge and Net
PnL

Fig. 6.6: Client, Hedge and Net
Drawdown

We can achieve different risk-reward profiles by varying our main parameters to the

cylinder model, namely the limits and the hedge fraction, but also by varying the window

size of the moving average signal to best capture the main shifts in market price. The
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task of making accurate long-term price movement forecasts is extremely difficult [45]

and whilst moving averages are lagging indicators, our results will later show that using

these to dynamically adjust cylinder limits can give good results over different time

epochs in this study’s historical dataset.

We have made use of moving average market indicators to skew the cylinder limits in

this study, yet there are significant challenges presented by the data flows involved. Both

the market and underlying client flow evolve through time. Market trends can persist or

change rapidly, such that too large a moving average window size could result in signals

not skewing limits in time. Conversely, setting the window size too small could feasibly

result in erratic oscillations failing to capitalize on any trend. In addition, the nature

of client order flow is complex: new clients join and leave, and each client has different

capitals to risk, differing trading time horizons, and risk appetites, all of which can result

in client positions growing and shrinking accordingly. If the cylinder limits are set too

large / too small this could result in hedges being triggered too little / too much. We

can derive rough estimates of what appropriate cylinder limits and moving averages to

use based on historic client and price data, but this offers a limited guarantee for future

success. In this chapter we aim to use the Weak Aggregating Algorithm to combine

the hedge predictions from a pool of dynamic skewed cylinder model experts, each with

differing parameters (i.e. limits, hedge fractions, and moving average windows), to give

an optimal hedging model that attempts to maximize PnL and minimize drawdowns.

Algorithm 7 Cylinder Hedging Model

Parameters: long/short Limit, Hedge fraction and Skew: Ll, Ls, Hl, Hs, Sl, Ss

Directional indicators Idt, t = 1, 2, . . .
for t = 1, 2, . . . do

if PositionCt > Ll + (Ll × Sl × Idt) then
Hedge Fractiont ← Hl

end if
if PositionCt < Ls + (Ls × Ss × Idt) then

Hedge Fractiont ← Hs

else
Hedge Fractiont ← 0

end if
end for

6.3 Weak Aggregating Algorithm With Discounted Loss

In this section, we will introduce WAA for discounted loss. Discounting losses with time

in the context of prediction with expert advice was first considered by [7]; see also a

concise overview of discounting applied to the Aggregating Algorithm by Kalnishkan

[46, Section 9].
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The following argument for discounting can be given. The learner may want to align

himself with the experts that have performed well lately, rather than over the whole

course of history. Distant past may be irrelevant, especially in the context of economics

and finance. Discounting offers a convenient framework for discarding the past.

There is also a purely numerical reason. The cumulative losses Ln
t calculated by the

WAA may grow quite large with time and, correspondingly, the weights wn
t very close

to zero. This problem can be ameliorated by shifting the losses, but to some extent it

is unavoidable if there are experts performing very differently.

Suppose that we are given coefficients α1, α2, . . . ∈ (0, 1]. Let the cumulative discounted

loss for a learner L be given by

L̃ossT (L) =
T∑
t=1

λ(γt)

(
T−1∏
s=t

αs

)
= αT−1

˜LossT−1(L) + λ(γT ) ;

the discounted loss L̃ossT (En) of an expert En is defined in a similar way.

Algorithm 8 is identical to the Weak Aggregating Algorithm except that it uses dis-

counted losses for Ln
t . We will refer to it as Weak Aggregating Algorithm with discount-

ing (WAAd).

Algorithm 8 Weak Aggregating Algorithm with Discounting

Parameters: Initial distribution q1, q2, . . . , qN , qn ≥ 0 for n = 1, 2, . . . and
∑N

n=1 = 1.
Discounting factors α1, α2, . . . ∈ (0, 1].
Learning rates ηt > 0, t = 1, 2, . . .
let Ln

0 = 0, n = 1, 2, . . . , N
for t = 1, 2, . . . do

calculate weights wn
t−1 = qne

−ηtαt−1Ln
t−1 , n = 1, 2, . . . , N

normalise the weights pnt−1 = wn
t−1/

∑N
i=1w

i
t−1, n = 1, 2, . . . , N

read experts’ predictions γnt ∈ Γ, n = 1, 2, . . . , N
output γt =

∑N
n=1 p

n
t−1γ

n
t

read experts losses ℓnt , n = 1, 2, . . . , N
update Ln

t = αt−1L
n
t−1 + ℓnt , n = 1, 2, . . . , N

end for

Theorem 6.1. Let the learning rates in WAAd be positive and non-decreasing, ηt−1 ≥
ηt > 0, t = 1, 2, . . . If all loss functions λt are convex and L satisfies (2.15) for t = 1, 2, . . .

then

LossT (L) ≤ LossT (En) +
ln(1/qn)

ηT
+

L2

8

T∑
t=1

ηT

T∏
s=t

αs (6.1)

for all T = 1, 2, . . . and all experts En, n = 1, 2, . . . , N .

Proof [of Theorem 6.1]
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Without loss of generality one can assume that ℓnt ∈ [0, L] for all n = 1, 2, . . . , N and

t = 1, 2, . . . Indeed, let us change λs to λs + Cs for some constants Cs ∈ R, s = 1, 2, . . .

The discounted cumulative losses Ln
t then shift by some values independent of n. In

the expressions for pnt−1, the shifts cancel out and the value of pnt−1 will be unaffected.

Therefore the predictions γt will not change and ℓt will change by Ct in line with ℓnt . In

inequality (6.1), which we need to prove, the values Cs cancel out.

Lemma A.1 by [9] implies that

ℓt ≤
N∑

n=1

pt−1
n ℓnt ≤ −

1

ηt
ln

N∑
n=1

pt−1
n e−ηtℓnt +

L2

8
ηt , (6.2)

t = 1, 2, . . . , T . Multiplying the inequality for time t by
∏T−1

s=t αs and adding them

together yields

Lt ≤ −
T∑
t=1

1

ηt

T−1∏
s=t

αs ln
N∑

n=1

pnt−1e
−ηtℓnt +

L2

8

T∑
t=1

ηt

T−1∏
s=t

αs . (6.3)

Let us analyse the logarithm in this inequality. Substituting the expression for pnt−1

yields

− 1

ηt
ln

N∑
n=1

pnt−1e
−ηtℓnt = − 1

ηt
ln

N∑
n=1

qne
−ηtαt−1Ln

t−1∑N
m=1 qme−ηtαt−1Lm

t−1
e−ηtℓnt

= − 1

ηt
ln

N∑
n=1

qne
−ηt(αt−1Ln

t−1+ℓnt ) +
1

ηt
ln

N∑
n=1

qne
−ηtαt−1Ln

t−1 .

In the first term, we get αt−1L
n
t−1 + ℓnt = Ln

t . The second term can be upper bounded

using Jensen’s inequality

1

ηt
ln

N∑
n=1

qne
−ηtαt−1Ln

t−1 =
1

ηt
ln

N∑
n=1

qne
−ηt−1(ηtαt−1/ηt−1)Ln

t−1

≤ 1

ηt
ln

(
N∑

n=1

qne
−ηt−1Ln

t−1

)ηtαt−1/ηt−1

=
αt−1

ηt−1

N∑
n=1

qne
−ηt−1Ln

t−1

as long as ηt/ηt−1 ≤ 1.

When we add over t in (6.3), the sum telescopes and we get (6.1).
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Corollary 6.2. Under the conditions of Theorem 2.11, if L satisfying (2.15) is known in

advance and all discounting factors are equal and less than 1, 0 < α1 = α2 = . . . = α < 1,

one can take

ηt = η =
2
√
2(1− α) lnN

L

and ensure for equal weights q1 = q2 = . . . = qN = 1/N the bound

LossT (L) ≤ LossT (En) + L

√
lnN

2(1− α)
(6.4)

for all T = 1, 2, . . . and all experts En, n = 1, 2, . . . , N .

Remark 6.3. The discounted loss would not normally grow with time as regular loss

usually does. If 0 ≤ λt(γ) ≤ L and the discounting factors are constant, then

L̃ossT (L) ≤
L

1− α
.

Our bound will then be meaningful only if the extra term in (6.4) is much less than this

trivial bound, i.e.,

L

√
lnN

2(1− α)
≪ L

1− α
.

This happens if α is close to 1 and the difference 1− α is small compared to 2/ lnN .

6.4 Weak Aggregating Algorithm for Hedging

In this section, we discuss how hedging can be considered within the framework of

prediction with expert advice. The learner aims to find the optimal hedge fraction for

an MM hedging the risk associated with client positions. The pool of experts here is a set

of cylinder models with different input parameters producing different hedge fractions.

Here we consider the case of the client position in a single asset, and a hedging decision is

represented by γ ∈ [−1, 0], where γt = −1 implies hedging out the entire client position

and γt = 0 corresponds to a decision not to hedge over trial t at all.

It is natural to define loss in terms of the MM’s PnL resulting from facilitating client

orders. Note, as PnL represents the MM’s gain, we need to take its inverse when defining

the loss. We can therefore take the loss at time t to be λ(γt) = −PnLtγt. The cumulative

loss over T trials is the negation of PnL over these trials, i.e., the amount MM has lost.

Since PnL ∈ R is linear in the hedge fraction, the loss functions λt are convex. To

establish a bound on loss, we need to see whether we can define limits on the value
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of the MM’s client PnL. As discussed, client PnL is a function of the client’s position

and the price of the underlying asset. Let us first consider the case when the MM’s

client position is long. Here PnL is bounded by the value of the net position because

in the worst possible scenario, the value of the underlying can fall to zero and the loss

in PnL is equal to the value of the net position. In the case where the MM takes a

short position, there is no simple bound on the possible loss. However, based on the

interval of predictions and the historical market volatility we can make assumptions on

the maximum rise in the value of the underlying asset and therefore the bound on loss.

Following [42], we introduce downside and combined losses. We aim to increase the

penalty for losses and reduce the reward for gains. In the context of optimization

of investment portfolios, this has been shown to reduce the drawdown of a portfolio;

combined loss has proven particularly effective. Here we will take a similar approach

considering the loss function with the coefficients u ≥ 0 and v ≥ 0:

λ(γ) = −
(

u

u+ v
PnLγ +

v

u+ v
min(PnLγ, 0)

)
This has the aim of allowing the learner to focus on finding hedging strategies that

minimize drawdown to provide smoother returns. Since −min(−x, 0) is convex in x, the

loss function remains convex.

6.5 Experiments

To empirically evaluate the effectiveness of the WAAd at finding optimal parameters for

the cylinder hedging model, we have conducted experiments with a real-world Foreign

Exchange (FX) dataset drawn from the data flows of trading three currency pairs from

February 2014 to June 2017.

6.5.1 Data Set

The data set we will be using is real-world currency exchange data, based on the trading

behavior of individuals opening positions with a FX MM. The dataset focuses on the net

position of the following three currency pairs - EUR/USD, GBP/USD, and EUR/GBP,

over 41 months (Feb 2014 - June 2017) represented in hourly epochs. Figures 6.7 through

6.15 show the price of each of the currency pairs over this period in addition to the

client position and resulting PnL. Note that client position refers to the MM’s position

resulting from client orders, and similarly, client PnL is the MM’s PnL resulting from the

net client position. To feed expert predictions to the WAAd, the data was partitioned
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into regularised time intervals using a technique known as DAPRA, as outlined in [32].

A copy of the data and WAAd implementation can be found at [47].

Fig. 6.7: EUR/USD Price Fig. 6.8: EUR/USD Position

Fig. 6.9: EUR/USD PnL Fig. 6.10: GBP/USD Price

Fig. 6.11: GBP/USD Position Fig. 6.12: GBP/USD PnL

For each currency pair, 100 unique cylinder model parameter combinations were chosen,

resulting in the Net PnLs shown in Figures 6.16 to 6.18. These are the expert predictions

used by the WAAd to generate a learner prediction. It is important to note that for
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Fig. 6.13: EUR/GBP Price Fig. 6.14: EUR/GBP Position

Fig. 6.15: EUR/GBP PnL Fig. 6.16: EUR/USD Net PnL

Fig. 6.17: GBP/USD Net PnL Fig. 6.18: EUR/GBP Net PnL

each currency pair, there are experts that both improve and worsen the MM’s overall

PnL and drawdown.
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6.5.2 Numerical Analysis

We will now analyze the performance of the WAAd on each of the currency pairs. To

do this we use the Calmar Ratio, which is a well-defined risk metric used to evaluate

the performance of a portfolio, first introduced in [48] and defined as follows:

Calmar(T ) =
Return[0, T ]

|Max Drawdown(T )|
(6.5)

For each currency pair, a scatter plot of Net PnL against maximum drawdown is used

to illustrate how the Calmar ratio of the un-hedged and expert portfolios compares to

that of the WAAds. Tables 6.2 to 6.4 provide the maximum drawdown, total PnL, and

the mean and standard deviation of each epoch’s PnL values. Each table shows the

results of three useful benchmarks to evaluate the performance of each WAAd result:

(1) un-hedged (just client results), (2) the best and (3) the worst of the experts used

in the study. We wish to maximize the Calmar, maximum drawdown, PnL, and mean

PnL measures, whilst minimizing the standard deviation of the PnL.

Figure 6.19 shows a plot of maximum drawdown against the final PnL of un-hedged, ex-

pert, and learner portfolios, all for EUR/USD. We have used different shapes to represent

each of the combined loss parameters for the WAAd, and different colors to represent the

various discount factors. Models with the highest Calmar ratio and therefore optimal,

will by definition be located in the top right of the plot. We can see the worst hedging

strategy produced by the WAAd is with a combined loss of u = 1 and v = 0 and no

discounting. Following this strategy results in a Calmar ratio of 0.58 and a decrease

in PnL of 55% only reducing max drawdown by 6% when compared to the un-hedged

portfolio.

If we refer to Table 6.2 we can see the WAAd learner with the highest Calmar ratio of

3.63, taking combined loss coefficients of u = 0 and v = 1 applying a discount factor of

10%. This results in a 9.7% increase in PnL and a 62.6% decrease in drawdown when

compared to that of the un-hedged portfolio.

As we observed with EUR/USD, all trials of the WAAd hedging GBP/USD reduce the

MM’s drawdown and in this case also increase PnL significantly. The model with the

highest Calmar ratio of 2.86, is that with combined loss coefficients of u = 0 and v = 1

and a discount factor of 2.5%. When comparing this to the MM’s un-hedged portfolio,

we observe that the PnL is increased from a loss of 42, 908 USD to a profit of 1, 123, 464

USD. This is possible due to the significant drawdowns in the client PnL over the initial

1500 trials and is reflected in the reduction of the maximum drawdown from 3, 663, 188

USD to 392, 370 USD.
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Fig. 6.19: EUR/USD Expert and WAA PnL against Max Drawdown.
Discount Key Red: 0%, Cyan: 2.5%, Purple: 5%,
Black: 7.5%, Pink: 10%, Orange: 20%

However, it is important to note that without applying discounting to experts’ loss and

taking combined loss coefficients of u = 1 and v = 1 or u = 2 and v = 1, we can find

solutions with higher PnL at the expense of increased maximum drawdown.

EUR/GBP is an interesting experiment - as is shown in Figure 6.15 the majority of the

PnL is a result of a surge in the underlying currency pair value. Figure 6.21 shows that

the un-hedged portfolio is relatively high, yet has suffered from significant maximum

drawdown. In this case, combined loss coefficients of u = 1 and v = 1 provide the

optimal Calmar ratio, with a decrease in maximum drawdown value of 42% and an

increase in PnL of 6% compared to the un-hedged portfolio.

It may not appear immediately obvious as to why the application of discounted loss on

EUR/USD is more effective at improving the Calmar ratio than its use on GBP/USD

and EUR/GBP. However, some intuition can be gleaned if one compares the results of

the WAAd to the data outlined in section 6.5.1. When examining the accumulation of

the MM’s PnL in EUR/USD there is no clear period of profit or loss. One possible

explanation for this may be found by referring to the price of the currency pair over the

experiment. Excluding the initial quarter of the trial shows there is no dominant trend
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Fig. 6.20: GBP/USD Expert and WAA PnL against Max Drawdown.
Discount Key Red:0%, Cyan: 2.5%, Purple: 5%,
Black: 7.5%:, Pink: 10%, Orange: 20%

in the price. The result of this is that there is no clear optimal hedging strategy for

any sustained period throughout the experiment. If we compare this to the client PnL

of the GBP/USD currency pair, we see there is a clear downward trend over the initial

three quarters, followed by an upward trend for the remainder of the experiment with

the MM netting a small loss. Naturally, if there is a clear trend in the direction of PnL

we can expect that a pool of models will consistently outperform the majority over this

period. Therefore, the benefit of using discounted loss is diminished in such scenarios.

6.6 Conclusions

Building on previous work, we have shown that the Weak Aggregating Algorithm (WAA)

can be used to combine the predictions from a pool of cylinder hedging models to im-

prove key performance metrics - namely the overall profit (PnL) - whilst simultaneously

not compromising on the smoothness of returns by minimizing drawdowns. In this

study, we have further introduced a method for applying discounted loss to the WAA
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Fig. 6.21: EUR/GBP Expert and WAA PnL against Max Drawdown.
Discount Key Red:0%, Cyan: 2.5%, Purple: 5%,
Black: 7.5%, Pink: 10%, Orange: 20%

(WAAd). Using a real-world Foreign Exchange (FX) trading dataset we demonstrate

the empirical efficacy of our approach for three major currency pairs, varying the pa-

rameters of the WAAd namely the use of combined loss and discount factor. Whilst

our analysis was carried out for individual FX currency pairs, a possible extension to

this work would allow combinations of pairs into a single currency risk, allowing one

to focus on individual EUR, USD, and GBP positions that build up across the triad

of currency pairs (i.e. EUR/USD, GBP/USD, EUR/GBP). Due to the nature of these

triangular relationships, there is an enforced correlation between the price movements.

These correlations strengthen and weaken in time and are typically fed in to compute a

Value At Risk (VaR) measure, introduced in 1994 by J. P. Morgan [49].

We have observed that discount loss can be varied in the WAAd to achieve an improved

Calmar ratio and its effectiveness is a product of market conditions and client behavior.

It is worth remembering that the underlying data is a complex combination of two

major factors: (1) the trading activity of the MM clients, and (2) the price movements

of the symbols being traded. The client net position is the aggregate risk across a

dynamic portfolio of trader activity: new traders join, some traders leave over time,
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and each client presents with differing risk appetites, time horizons, and capital that

they can trade with. Market conditions like volatility of the underlying prices and

correlation between different symbols also vary profoundly through time due to various

macroeconomic factors. In future work, we hope to investigate the use of dynamic

discounting based on the observations in fundamental changes of trading and market

activity to capitalize when “regime change” is detected. By varying the discount factor,

the model will be able to react to macroeconomic events, leading to a more practical

method of hedging.
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Table 6.2: EUR/USD WAA Table of results

Hedging Models
Calmar

Max
Drawdown

(10ˆ6)

PnL
(10ˆ6)

Mean
PnL

PnL
Standard
Deviation

u v
Discount

%

Un-hedged 1.22 -1.50 1.90 92 15,988
Best Model 3.63 -0.58 2.10 100 8,448
Worst Model 0.58 -1.40 0.84 40 10,731

1 0 0 0.58 -1.40 0.84 40 10,731
1 0 2.5 2.13 -0.83 1.80 85 10,741
1 0 5 1.64 -1.00 1.60 79 10,856
1 0 7.5 1.6 -1.00 1.70 80 10,897
1 0 10 1.61 -1.10 1.70 83 10,918
1 0 15 1.7 -1.10 1.90 90 10,958
1 0 20 1.8 -1.10 2.00 96 10,997
1 1 0 0.96 -0.46 0.44 21 4,065
1 1 2.5 3.12 -0.49 1.50 74 7,337
1 1 5 3.17 -0.57 1.80 87 8,658
1 1 7.5 2.9 -0.67 1.90 93 9,319
1 1 10 2.53 -0.78 2.00 95 9,698
1 1 15 2.2 -0.92 2.00 97 10,130
1 1 20 2.16 -0.99 2.10 102 10,381
0 1 0 0.85 -0.49 0.41 20 4,029
0 1 2.5 2.57 -0.41 1.10 51 5,646
0 1 5 3.15 -0.50 1.60 75 6,831
0 1 7.5 3.51 -0.54 1.90 91 7,783
0 1 10 3.63 -0.58 2.10 100 8,448
0 1 15 3.36 -0.65 2.20 106 9,248
0 1 20 2.81 -0.80 2.20 108 9,710
2 1 0 2.27 -0.46 1.10 51 4,701
2 1 2.5 3.16 -0.53 1.70 81 8,396
2 1 5 2.65 -0.68 1.80 86 9,404
2 1 7.5 2.33 -0.80 1.90 89 9,856
2 1 10 2.1 -0.89 1.90 90 10,113
2 1 15 1.98 -0.99 2.00 94 10,411
2 1 20 2.01 -1.00 2.10 100 10,591
1 2 0 0.7 -0.53 0.37 18 4,032
1 2 2.5 3.02 -0.46 1.40 66 6,558
1 2 5 3.32 -0.53 1.80 85 7,965
1 2 7.5 3.34 -0.59 2.00 94 8,785
1 2 10 3.1 -0.66 2.00 98 9,279
1 2 15 2.49 -0.84 2.10 100 9,841
1 2 20 2.33 -0.93 2.20 104 10,164
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Table 6.3: GBP/USD WAA Table of results

Hedging Models
Calmar

Max
Drawdown

(10ˆ6)

PnL
(10ˆ6)

Mean
PnL

PnL
Standard
Deviation

u v
Discount

%

Un-hedged -0.01 -3.70 -0.04 -2 12,366
Best Model 2.86 -0.39 1.10 54 4,354
Worst Model 0.11 -1.80 0.19 9 6,922

1 0 0 0.11 -1.80 0.19 9 6,922
1 0 2.5 0.49 -1.70 0.82 39 7,945
1 0 5 0.4 -1.80 0.70 34 8,025
1 0 7.5 0.35 -1.80 0.64 31 8,042
1 0 10 0.32 -1.90 0.60 29 8,050
1 0 15 0.29 -2.00 0.57 28 8,058
1 0 20 0.29 -2.00 0.58 28 8,064
1 1 0 2.12 -0.60 1.30 61 5,531
1 1 2.5 1.24 -0.81 1.00 48 5,749
1 1 5 0.61 -1.20 0.75 36 6,543
1 1 7.5 0.48 -1.40 0.69 33 6,963
1 1 10 0.42 -1.60 0.67 32 7,204
1 1 15 0.37 -1.70 0.64 31 7,467
1 1 20 0.35 -1.80 0.64 31 7,610
0 1 0 1.78 -0.60 1.10 51 5,846
0 1 2.5 2.86 -0.39 1.10 54 4,354
0 1 5 1.13 -0.82 0.93 44 5,075
0 1 7.5 0.7 -1.10 0.76 36 5,670
0 1 10 0.54 -1.30 0.67 32 6,102
0 1 15 0.4 -1.50 0.60 29 6,650
0 1 20 0.36 -1.60 0.59 29 6,981
2 1 0 1.84 -0.70 1.30 62 5,618
2 1 2.5 0.78 -1.10 0.85 41 6,474
2 1 5 0.52 -1.40 0.73 35 7,099
2 1 7.5 0.43 -1.60 0.68 33 7,373
2 1 10 0.39 -1.70 0.65 31 7,522
2 1 15 0.35 -1.80 0.62 30 7,686
2 1 20 0.33 -1.90 0.62 30 7,776
1 2 0 1.85 -0.60 1.10 53 5,611
1 2 2.5 1.77 -0.61 1.10 52 5,118
1 2 5 0.76 -1.10 0.82 39 5,983
1 2 7.5 0.55 -1.30 0.70 34 6,513
1 2 10 0.46 -1.50 0.67 32 6,842
1 2 15 0.39 -1.70 0.64 31 7,215
1 2 20 0.36 -1.80 0.64 31 7,420
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Table 6.4: EUR/GBP WAA Table of results

Hedging Models
Calmar

Max
Drawdown

(10ˆ5)

PnL
(10ˆ6)

Mean
PnL

PnL
Standard
Deviation

u v
Discount

%

Un-hedged 2.11 -7.30 1.50 76 9,194
Best Model 3.68 -4.20 1.60 75 7,273
Worst Model 2.1 -6.00 1.20 60 7,017

1 0 0 3.08 -5.00 1.50 75 7,434
1 0 2.5 2.84 -5.70 1.60 78 7,923
1 0 5 2.71 -5.80 1.60 76 7,985
1 0 7.5 2.63 -5.80 1.50 74 8,009
1 0 10 2.56 -5.90 1.50 73 8,023
1 0 15 2.44 -6.00 1.50 71 8,039
1 0 20 2.36 -6.10 1.40 69 8,049
1 1 0 3.68 -4.20 1.60 75 7,273
1 1 2.5 2.65 -5.00 1.30 64 6,417
1 1 5 2.57 -5.40 1.40 68 6,967
1 1 7.5 2.54 -5.60 1.40 69 7,343
1 1 10 2.48 -5.70 1.40 69 7,520
1 1 15 2.35 -5.90 1.40 67 7,689
1 1 20 2.28 -6.00 1.40 66 7,776
0 1 0 2.87 -4.90 1.40 68 6,882
0 1 2.5 2.87 -4.40 1.30 61 5,700
0 1 5 2.35 -5.10 1.20 58 5,789
0 1 7.5 2.18 -5.40 1.20 57 6,080
0 1 10 2.15 -5.60 1.20 58 6,323
0 1 15 2.12 -5.80 1.20 60 6,719
0 1 20 2.1 -6.00 1.20 60 7,017
2 1 0 3.41 -4.50 1.50 74 7,354
2 1 2.5 2.86 -5.30 1.50 73 7,116
2 1 5 2.79 -5.50 1.50 75 7,585
2 1 7.5 2.66 -5.70 1.50 73 7,719
2 1 10 2.56 -5.80 1.50 72 7,787
2 1 15 2.41 -5.90 1.40 69 7,861
2 1 20 2.32 -6.00 1.40 68 7,903
1 2 0 3.37 -4.40 1.50 72 7,133
1 2 2.5 2.7 -4.80 1.30 63 6,126
1 2 5 2.26 -5.30 1.20 58 6,255
1 2 7.5 2.28 -5.60 1.30 61 6,696
1 2 10 2.3 -5.70 1.30 63 7,024
1 2 15 2.26 -5.90 1.30 64 7,388
1 2 20 2.22 -6.00 1.30 64 7,568



Chapter 7

Conclusion

In this thesis, we have considered the use of prediction with expert advice algorithms for

investment and hedging in the Foreign Exchange market. In Chapter 2 we provided a

review of the existing framework for prediction with expert advice. Including the Aggre-

gating Algorithm and the Weak Aggregating Algorithm. This included the introduction

of the covers game and the Long-Short game, later developed in this thesis. In Chapter

3 we gave an overview of the FX market, specifically the brokerage industry, how a profit

is made trading currency pairs, and the problem of hedging client positions.

In chapter 4 we introduced DAPRA, an ETL algorithm that merges multiple irregularly

sampled time series datasets, into one. We discussed the rationale for DAPRA, walked

through its design, and introduced the theoretical foundation of any DAPRA application.

We reported empirical evidence that demonstrates the practical relevance of DAPRA by

its application with large and complex time series datasets from two distinct domains,

financial and travel. This included showing how it can be used to tackle the issue of

deriving a broker’s PnL and position from client trading data, merged with market data,

vital to the application of client data in the following chapters.

A key area of further work is the expansion of DAPRA into other areas of the financial

markets. For example, this study has focused on using DAPRA to process data from

a foreign exchange broker. However, there is a wealth of data that would adhere to

the framework of the algorithm. Such as combining trading data with markets data,

to calculate financial models in real-time using derived fields. Moreover, the study of

the optimal interval size is also an area of key concern and one that deserves further

research.

In chapter 5 we saw how the performance of the Long-Short game, is poor concerning

financial performance metrics. To improve the performance of the game, in finding
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optimal investment decisions, we introduce modifications to the game’s loss function.

We introduce return scaling and downside loss and show how combined loss can be used

to balance to risk-return ratio depending on an investor’s risk preference. In section 5.7

we see the results of the modifications, with the application of the Aggregating Algorithm

on real-world FX data. Showing a significant increase in performance compared to the

general Long-Short game.

Then in Chapter 6, we explore the application of prediction with expert advice to find

an FX broker’s optimal hedging strategy. We first introduce the cylinder hedging model,

which allows an FX broker to manage client risk. We show how the Weak Aggregating

Algorithm can be used to find optimal hedging strategies and apply discounting loss to

the WAA. In section 6.5, we apply the WAA and WAAd to combine a pool of hedging

strategies, showing a reduction in portfolio drawdowns, whilst retaining PnL.
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[13] Javier Arroyo and Carlos Maté. Introducing interval time series: Accuracy mea-

sures. COMPSTAT 2006, proceedings in computational statistics, pages 1139–1146,

2006.

[14] Paulo MM Rodrigues, Nazarii Salish, et al. Modeling and forecasting interval time

series with threshold models: An application to s&p500 index returns. Banco de

Portugal, Economics and Research Department, Working paper series, (w201128),

2011.

[15] textitDAPRA, github repository. 11 2019. URL https://github.com/

Wisniewskiw/DAPRA.

[16] D. Lindsay. FXClientTrades, london, uk, kaggle. 8 2019. URL https://www.

kaggle.com/davidlindsay1979/toptradingclientdata/kernels.

[17] C. Whong. “foiling nyc’s taxi trip data”. 2014. URL https://chriswhong.com/

open-data/.

[18] D. Beniaguev. Historical Hourly Weather Data 2012-2017, kaggle. 12 2017. URL

https://www.kaggle.com/selfishgene/historical-hourly-weather-data/

version/2.

[19] James F Allen. Maintaining knowledge about temporal intervals. Communications

of the ACM, 26(11):832–843, 1983.
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