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Objectives: This study aims to develop 7×7 machine-learning cross-

combinatorial methods for selecting and classifying radiomic features used to

construct Radiomics Score (RadScore) of predicting the mid-term efficacy and

prognosis in high-risk patients with diffuse large B-cell lymphoma (DLBCL).

Methods: Retrospectively, we recruited 177 high-risk DLBCL patients from two

medical centers between October 2012 and September 2022 and randomly

divided them into a training cohort (n=123) and a validation cohort (n=54). We

finally extracted 110 radiomic features along with SUVmax, MTV, and TLG from

the baseline PET. The 49 features selection-classification pairs were used to

obtain the optimal LASSO-LASSO model with 11 key radiomic features for

RadScore. Logistic regression was employed to identify independent RadScore,

clinical and PET factors. These models were evaluated using receiver operating

characteristic (ROC) curves and calibration curves. Decision curve analysis (DCA)

was conducted to assess the predictive power of the models. The prognostic

power of RadScore was assessed using cox regression (COX) and Kaplan–Meier

plots (KM).

Results: 177 patients (mean age, 63 ± 13 years,129 men) were evaluated.

Multivariate analyses showed that gender (OR,2.760; 95%CI:1.196,6.368);

p=0.017), B symptoms (OR,4.065; 95%CI:1.837,8.955; p=0.001), SUVmax

(OR,2.619; 95%CI:1.107,6.194; p=0.028), and RadScore (OR,7.167; 95%

CI:2.815,18.248; p<0.001) independently contributed to the risk factors for

predicting mid-term outcome. The AUC values of the combined models in the

training and validation groups were 0.846 and 0.724 respectively, outperformed

the clinical model (0.714;0.556), PET based model (0.664; 0.589), NCCN-IPI

model (0.523;0.406) and IPI model (0.510;0.412) in predicting mid-term

treatment outcome. DCA showed that the combined model incorporating
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RadScore, clinical risk factors, and PET metabolic metrics has optimal net clinical

benefit. COX indicated that the high RadScore group had worse prognosis and

survival in progression-free survival (PFS) (HR, 2.1737,95%CI: 1.2983, 3.6392) and

overall survival (OS) (HR,2.1356,95%CI: 1.2561, 3.6309) compared to the low

RadScore group. KM survival analysis also showed the same prognosis prediction

as Cox results.

Conclusion: The combinedmodel incorporating RadScore, sex, B symptoms and

SUVmax demonstrates a significant enhancement in predicting medium-term

efficacy and prognosis in high-risk DLBCL patients. RadScore using 7×7 machine

learning cross-combinatorial methods for selection and classification holds

promise as a potential method for evaluating medium-term treatment

outcome and prognosis in high-risk DLBCL patients.
KEYWORDS

[18F]-FDG PET/CT, diffuse large B-cell lymphoma, machine learning, interim, treatment
outcome, prognosis
Introduction

Diffuse large B-cell lymphoma (DLBCL) is a highly

heterogeneous and aggressive B-cell lymphoma, accounting for

30%-40% of initial diagnosed non-Hodgkin’s lymphomas (NHL)

(1). The first-line immunochemotherapy are R-CHOP (rituximab,

cyclophosphamide, doxorubicin, vincristine and prednisone) or R-

CHOP-like regimens (2, 3). Clinically, 30%-40% of patients

undergoing this therapy experience relapse or refractory (4, 5).

This could be attributed to the tumor heterogeneity, leading to

reduced sensitivity to chemotherapy (6, 7). Patients classified as

high-risk face poorer prognostic survival (8). The gene expression

profiling of DLBCL defined three primary subtypes based on “cell of

origin” (COO): germinal center B cell-like (GCB), activated B cell-

like (ABC), and not otherwise specified (NOS). The molecular

subclassification could account for some of the heterogeneity in

the clinical outcomes of DLBCL (9). Numerous prognostic tools

have been identified through large-scale retrospective studies. The

International Prognostic Index (IPI) was proposed in 1993,

incorporating five risk factors: age, lactate dehydrogenase (LDH),
, Diffuse large B-cell
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the Eastern Cooperative Oncology Group (ECOG) Physical Status

(PS), Ann Arbor stage, and extra-nodal involvement (10). The

National Comprehensive Cancer Network -IPI (NCCN-IPI) was

proposed in 2014, which form four risk groups based on scores

ranging from 0 to 8. The NCCN-IPI provides more accurate

identification of intermediate-high (4, 5) /high-risk (6–8) DLBCL

patients (11). However, the focus of both the IPI and the NCCN-IPI

on clinical and biologic indicators makes it difficult to

comprehensively assess the tumor heterogeneity of DLBCL (12, 13).

18F-fluorodeoxyglucose (FDG)-positron emission tomography/

computed tomography (PET/CT) is widely utilized for early DLBCL

diagnosis, staging, and assessing chemotherapy response (14).

SUVmax, MTV and TLG are commonly used in PET. These

metabolic indicators reflect tumor malignancy and are valuable

for baseline assessment as well as improve response prediction (15).

In the previous research, SUVmax is the most widely used indices

(16). MTV and TLG, are associated with tumor burden, as well as

progression-free survival (PFS) and overall survival (OS) (17).

Vercellino et al. found that the integration of baseline total

metabolic tumor volume (TMTV) with parameters of tumor load

distribution has the potential to enhance the accuracy of risk

stratification for DLBCL patients (18). Nevertheless, these

indicators have limitations on describing tumor heterogeneity.

Radiomics were used to assess tumor heterogeneity and assisted

in the prediction of clinical outcomes. PET radiomics features

present promising biomarkers for predicting treatment outcome

and prognosis in DLBCL (19).

Machine learning is commonly used for radiomic feature

identification and classification (20). Several studies investigated

the risk stratification and efficacy of PET radiomics, Lue et al. used

the least absolute shrinkage and selection operator regression

(LASSO) method and discovered that the baseline 18F-FDG PET
frontiersin.org
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radiomic feature RLNGLRLM is an independent prognostic factor for

survival outcomes (21). But these studies utilized limited machine

learning methods (22, 23). Additionally, other studies reported the

outcome and prognostic value of radiomics features using cross-

combination methods (24). However, these methods have not yet

been applied in high-risk DLBCL patients. In this paper, we

therefore employed a cross-combination of seven machine

learning methods to select and classify PET radiomics features

associated with tumor internal heterogeneity. Furthermore, we

established a tool as early prognostic biomarker that predicts

mid-term treatment outcome and prognosis, also identifies high-

risk DLBCL patients with unresponsive to R-CHOP regimen.
Materials and methods

Patient data collection

This study followed the principles outlined in the Declaration of

Helsinki. Ethical approval for this retrospective analysis was obtained

from the Ethics Committee of two medical centers. Written consent

was not required for this study. A total of 177 patients with DLBCL

classified as intermediate-high/high-risk according to NCCN-IPI

score of 4–8 were enrolled between October 2012 and September

2022. Among them, 125 patients were from Nanjing Drum Tower

Hospital of Nanjing University Medical School, and 52 patients were

from West China Hospital of Sichuan University. The patients were

randomly divided into a training cohort (123) and a validation cohort

(54) using a 7:3 randomization ratio. Inclusion criteria were defined

as follows: (I) patients with confirmed NCCN-IPI ≥4 for DLBCL, (II)

[18F]-FDG PET/CT scan was performed before baseline treatment,

and (III) received R-CHOP-like regimens, and (IV) patients had to be

aged ≥18 years at the time of diagnosis. Exclusion criteria were used:

(I) participants with primary central nervous system lymphoma, (II)
Frontiers in Oncology 03
participants with a history of other tumors, and (III) participants with

incomplete clinical data, and (IV) had undergone previous treatment

such as chemotherapy, radiotherapy, or surgery, and (V) lost to

follow-up.

The datasets included patient clinical data such as gender, age, B

symptoms, ECOG PS, IPI, NCCN-IPI, LDH, Ann Arbor stage,

extranodal involvement, bone marrow involvement. Patient follow-

up data were collected through electronic medical records or

telephone interviews. The mid-term PET scans based on the

Deauville 5-point scale were used as study endpoints for mid-term

efficacy and prognosis in DLBCL patients. A score of 1–3 was defined

as complete metabolic remission (CMR), and 4–5 was defined as

partial metabolic remission (PMR), disease stabilization (SD), or

disease progression (PD) (25). Therefore, the patients were divided

into CR group and non-CR group. Figure 1 illustrates the baseline

and mid-term pet of non-CR and CR patients.
PET/CT scanning protocol

All patients should fast for more than 6 hours before PET/CT

scans, and their fasting blood glucose levels were under 8.7 mmol/L.

Patients were injected with 18F-FDG (3.70–5.18 MBq/kg;

Fludeoxyglucose[18F] Injection; AMS Limited) via a superficial

forearm vein, and rested quietly for 60 minutes before PET/CT.

CT scanning conditions included a tube voltage of 120 kV, tube

current of 100 mA, and layer thickness of 2 mm (Philips). PET

scanning conditions included acquisition of 7–10 beds, with each

bed lasting for 2 minutes (Philips2). At the end of acquisition, a

response line image reconstruction was implemented to obtain

cross-sectional, coronal, and sagittal PET and CT images, which

were later corrected for attenuation. Image reconstruction was

performed using voxels of 4 × 4 × 4 mm³ over three iterations

and 33 subsets.
B C DA

FIGURE 1

show the baseline and mid-term 18F-FDG PET/CT of the patients. Baseline (A) and mid-term image (B) of the patient without complete remission
(Non-CR), and baseline (C) and mid-term image (D) of the patient with complete response (CR).
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VOI drawing and radiomics processing

The PET images were processed using LIFEx (Local Image

Feature Extraction) software(version7.3.0) (26). (I) A voxel

boundary threshold of 41% SUVmax was employed (15). A semi-

automatic segmentation method was used to outline the volume of

interest (VOI), (II) with non-lymphoma 18F-FDG uptake being

manually excluded. In case of disagreement, a senior nuclear

medicine physician was consulted to jointly determine the VOI.

(III) The metabolic metrics, including SUVmax, MTV, and TLG,

were determined for each lesion. SUVmax represented the

maximum standardized uptake value with the highest uptake in

tumor lesions. MTV was the volume of tumor lesion for a single

VOI, and TLG was calculated as the sum of the product of the

SUVmean and the MTV for the lesion (TLG = [SUVmean ×

MTV]). Lesions with MTV smaller than 10 cm³ were not

included. All radiomics features complied with the benchmarks of

the Image Biomarker Standardization Initiative (IBSI) (27).

PET radiomic features were extracted from baseline PET images

by the open-source software package LIFEx (www.lifexsoft.org). For

the original PET image, (I) the Wavelet and Laplacian of Gaussian

(LoG) transform were applied to obtain the corresponding Wavelet

and LoG images. Then, (II) three types of features were extracted:

first-order statistical features (maximum, minimum), shape features

(roundness, extensibility), and texture features. Figure 2 illustrates

the workflow of radiomic analysis.
Radiomics feature selection and
RadScore construction

The extracted radiomic features were screened and classified

using a cross-combination method of seven machine learning

models. These methods are Gradient Boosted Decision Tree
Frontiers in Oncology 04
(GBDT), Extreme Tree (ET), Random Forest (RF), Adaptive

Boosting (AdaBoost), Least Absolute Shrinkage and Selection

Operator (LASSO), Support Vector Machines (SVM) and Logistic

Regression (LR). GBDT (28) utilizes decision trees as its base

learner, with predictions from a series of trees summed together.

RF (29) is an ensemble of decision trees, where the results of all the

decision trees are voted upon or averaged to obtain the final

prediction. ET (30) is the model underlying the feature recursive

elimination algorithm, which selects the dataset and obtains weight

values for each feature. Features with the smallest absolute weight

values are then sequentially removed from the feature set. AdaBoost

(31) adapts to different datasets by adjusting the weights of the

training samples and combines multiple classifiers linearly to

enhance their performance. LASSO (32) is a classical regression

analysis method that minimizes regression coefficients through

shrinkage operations, preserving non-zero variables in the model.

SVM (33) is a powerful method for building classifiers that

establishes a decision boundary between two categories, enabling

label prediction based feature vectors. LR (34) is a generalized linear

model used for classification tasks, analyzing the impact of

independent variables on classification results by quantifying

their effects.

This paper presented a feature selection-classification pairs

from 7×7 possible combinations, such as LASSO-LASSO SVM-

SVM and SVM-LASSO. Seven machine learning methods were

used to select features, and seven machine learning methods were

used to classify features. Subsequently, the optimal candidate pair

were used to build Radiomic Score (RadScore). RadScore was

defined as the sum of the product of the selected radiomic feature

and the corresponding feature weights. The identification of the best

candidate model involved five steps utilizing fivefold cross-

validation: (I) The patient data was randomly divided into

training(n=123) and validation(n=54) cohorts. (II) For the

training cohort, we employed seven feature selection models,
FIGURE 2

Analysis workflow in this study. SVM, support vector machine; GBDT, gradient boosting decision tree; RF, random forest; ET, extra-trees; LASSO,
least absolute shrinkage and selection operator; LR, logistic regression; AdaBoost, adaptive boosting.
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developed 110 PET radiomics features and obtained corresponding

feature weights after dimensionality reduction. Based on these

feature weights, we trained feature selection models by recursively

considering subsets of radiomic features. The feature selection

model with the largest area under curve (AUC) value was

identified as the most important one. Then(III) fivefold cross-

validation was applied to the reduced training cohort that divided

it into approximately equal-sized groups, with four groups used for

training and one group for test. (IV) Four training groups had been

separately developed using the seven feature classification models.

The feature classification model with the largest AUC value was

identified as the most important one. (V) We calculated the AUC of

each feature selection-classification model and outputted the

average AUC. The model with the largest average AUC was

selected as the optimal candidate model. (VI) Finally, we

validated the optimal model in the test group.
Development and validation of the models

Univariate and multivariate logistic regression were utilized to

identify potential independent risk factors in the training group and

construct a predictive model for the mid-term treatment outcome. In

the univariate analysis, statistically significant clinical and PET factors

were included separately in the multivariate analysis. Independent

clinical predictors were employed to develop clinical models, while

independent PET predictors were utilized to create PET-based

models. Subsequently, all independent clinical predictors, PET

predictors, and RadScore were assembled a combined model.

Additionally, NCCN-IPI model and IPI model were also developed.
Clinical benefit analysis based on
the models

All models were assessed in both the training and validation

groups through Receiver operating characteristic (ROC) curves and

calibration curves. Additionally, decision curve analysis (DCA) was

employed to evaluate the net clinical benefits of these models.
Statistical analysis

All data were analyzed using SPSS 25.0 (IBM Corp, Armonk,

NY, USA) and R statistical software (version 4.2.2). A P value less

than 0.05 was considered statistically significant. The c2 test was

used to compare clinical characteristics and PET metabolic metrics

in the training and validation groups. Nomograph were used to

show the score of independent risk factors. ROCcurves were utilized

to determine the optimal thresholds for SUVmax, MTV, TLG, and

RadScore in predicting mid-term efficacy, PFS and OS. Logistic

regression analyses were employed to assess and develop

independent predictors. Calibration curves, ROC, and DCA were

calculated for the model in both the training and validation cohorts.

Survival analysis was conducted by Cox regression and Kaplan-

Meier (KM) analysis.
Frontiers in Oncology 05
Results

Patient characteristics

A total of 177 patients (mean age,63 ± 13 years,129 men) were

included. Table 1 summarized the baseline characteristics for

patients in both the training and validation cohorts. The c2 test

revealed no statistically significant(P<0.05) difference between the

two groups. The median follow-up time for the training and

validation cohorts was 30.5 and 30.8 months, respectively. In the

training cohort, 62 individuals experienced disease relapse or

progression, resulting in 42 deaths. The 1-year, 3-year, and 5-year

PFS rates were 89.6%, 72.2%, and 56.2%, while 1-year, 3-year, and

5-year OS rates were 89.3%, 67.9%, and 63.4%. Likewise, in the

validation cohort, disease relapse or progression occurred in 24

individuals, leading to 13 deaths. 1-year, 3-year, and 5-year PFS

rates were 79.7%, 55.3%, and 38.0%, and 1-year, 3-year, and 5-year

OS rates were 90.9%, 75.8%, and 70.0%.
Radiomics feature selection and
RadScore construction

Based on the 49 features machine learning selection-

classification pairs, we selected 110 radiomics features to

construct the optimal LASSO-LASSO model (AUC=0.74)

(Figure 3). The LASSO-LASSO model screened out 10 key

radiomics features for constructing RadScore (Table 2). We

employed the ROC curves to identify the optimal cut-off for these

dichotomous variables, which corresponds to the point with the

maximum Youden index. The Youden index represents the sum of

sensitivity and specificity and then subtracting 1. Table 3 shows that

RadScore cut-off threshold of 2.0, 2.2 and 2.2 was optimal for

predicting mid-term efficacy, PFS and OS.
Univariate and multivariate analysis results

Table 4 shows the between-group differences in clinical

characteristics, PET metabolic indices regarding mid-term efficacy.

For the clinical variables, we found that gender (OR=2.760 (95%

CI:1.196–6.368), P=0.017) and B symptoms (OR=4.065 (95%

CI:1.837–8.955), P=0.001) were independent risk factors for mid-

term outcomes, as shown in Table 4.

Regarding the PET variables, RadScore (OR=7.167(95%CI:2.815–

18.248), P=0.001) and SUVmax (OR=2.619 (95%CI:1.107–6.194),

P=0.028) were independent risk factors influencing mid-term

outcomes. These results were presented in Table 4.
Assessment and validation of models built
for predicting mid-term efficacy

To predict mid-term efficacy, we developed a combined model

that utilized separate clinical predictors (gender, B-symptoms), PET

predictor (SUVmax) and RadScore (Figure 4; Table 5).
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Additionally, we also created separate clinical models, PET-based

models, IPI model and NCCN-IPI models (Table 5).

Nomograms visualized the score of risk factors on mid-term

efficacy. The calibration curves after 1000 repetitions of bootstrapping

for each model, which showed satisfactory agreement between the

estimated values and the actual observed values in both the training

and validation groups for the combined model (Figure 4).
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The ROC curves of the models for predicting mid-term

response in the training (A) and validation (B) cohorts, which

showed that the AUC values of the combined model (0.846;0.724)of

clinical factors, pet metabolic parameters and RadScore were better

than those of the clinical model (0.714;0.556), PET based model

(0.664; 0.589), NCCN-IPI model (0.523;0.406) and IPI model

(0.510;0.412) (Figure 5).
TABLE 1 Demographics and clinical characteristics of the study population.

Category Characteristic Training
cohort (n=123)

Validation
cohort (n=54)

P value

Clinical predictors Gender
Female
Male

29 (23.6%)
94 (76.4%)

19 (35.2%)
35 (64.8%)

0.110

Age (year)
<60
≥60

52 (42.3%)
71 (57.7%)

29 (53.7%)
25 (46.3%)

0.132

LDH level
normal
elevate(≥245U/L)

102 (82.9%)
21 (17.1%)

40 (74.1%)
14 (25.9%)

0.173

B symptoms

PET predictors

no
yes
ECOG PS
0–1
≥2
IPI
0–2
≥3
NCCN-IPI
4–5
6–8
Ann Abor stage
I-II
III-VI
Extranodal involvement
0–1
≥2
Bone marrow
involvement
no
yes
Bulky disease
no
yes
Pathological type
GCB
Non-GCB
SUVmax
<19.2
≥19.2
MTV (cm3)
<25.6
≥25.6
TLG
<222.0
≥222.0

86 (69.9%)
37 (30.1%)

20 (16.3%)
103 (83.7%)

100 (81.3%)
23 (18.7%)

106(86.2%)
17(13.8%)

13 (10.6%)
110 (89.4%)

91 (74.0%)
32 (26.0%)

29 (23.6%)
94 (76.4%)

77 (62.6%)
46 (37.4%)

71 (57.7%)
52 (42.3%)

74 (61.0%)
49 (39.0%)

33 (26.8%)
90 (73.2%)

43 (35.0%)
80 (65.0%)

33 (61.1%)
21 (38.9%)

12 (22.2%)
42 (77.8%)

40 (74.1%)
14 (25.9%)

46(85.2%)
8(14.8%)

6 (11.1%)
48 (88.9%)

39 (72.2%)
15 (27.8%)

20 (37.0%)
34 (63.0%)

33 (61.1%)
21 (38.9%)

29 (53.7%)
25 (46.3%)

24 (44.4%)
30 (55.6%)

16 (29.6%)
38 (70.4%)

19 (35.2%)
35 (64.8%)

0.250

0.343

0.276

0.861

0.915

0.807

0.065

0.851

0.619

0.053

0.701

0.977

Radiomics predictors RadScore
<2.0
≥2.0

54 (43.9%)
69 (56.1%)

24 (44.4%)
30 (55.6%)

0.947
F, female; M, male; LDH, lactate dehydrogenase; ECOG PS, Eastern Cooperative Oncology Group performance status; IPI, International Prognostic Index; NCCN-IPI, National Comprehensive
Cancer Network International Prognostic Index; GCB, germinal centre B cell; SUVmax, maximum standardized uptake value; MTV, metabolic tumor volume; TLG, total lesion glycolysis;
RadScore, Radiomics Score.P value was derived from the c2 test.
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Performance analysis of the combined
models in clinical use

DCA were shown in Figure 6. These analyses demonstrated that

the combined model consistently outperformed the clinical model,

PET-based model, IPI model and NCCN-IPI model in terms of

overall net benefit for most risk thresholds in both the training and

validation cohorts.
Frontiers in Oncology 07
Survival analysis in the training and
validation cohorts

To confirm the added prognostic value of RadScore, we

evaluated it in low RadScore groups and high RadScore groups.

The low and high-risk groups identified using the RadScore cut-off

threshold demonstrated distinct outcomes in terms of PFS and OS

in both the training and validation cohorts (Figure 7; Table 6). The
BA

FIGURE 3

Heatmaps indicate the AUC performance of the cross-combinations of the feature selection methods (columns) and classification models (rows) in
predicting mid-term response (A). The Histogram demonstrate the selected features (IBSI name) and weights to build the optimal candidate model (B).
TABLE 2 The 110 radiomic features extracted from PET and the 11 key features* for constructing RadScore in this study.

Classification Radiomics feature IBSI name

shape feature Volume; Approximate Volume; Surface Area*; Surface To Volume Ratio;
Compactness1; Compactness2; Spherical Disproportion; Sphericity; Asphericity;

Centre Of Mass Shift; Maximum 3D; Diameter; Integrated Intensity

RNU0; YEKZ; C0JK*; 2PR5; SKGS; BQWJ;
KRCK; QCFX; 25C7; KLMA; L0JK; 99N0

first-order feature Mean; Variance; Skewness; Kurtosis; Median; Minimum Grey Level; 10th
Percentile*; 50th Percentile; 90th Percentile; Maximum Grey Level; Inter quartile

Range; Range; Mean Absolute Deviation; Robust Mean Absolute Deviation; Median
Absolute Deviation; Coefficient Of Variation; Quartile Coefficient Of Dispersion;
Energy; Root Mean Square; Global Intensity Peak*; Intensity Histogram Mean;

Intensity Histogram Variance; Intensity Histogram Skewness; Intensity Histogram
Kurtosis; Intensity Histogram Median; Intensity Histogram Minimum Grey Level;
Intensity Histogram 10th Percentile; Intensity Histogram 90th Percentile*; Intensity
Histogram Maximum Grey Level; Intensity Histogram Mode; Intensity Histogram

Inter quartile Range; Intensity Histogram Range; Intensity Histogram Mean
Absolute Deviation; Intensity Histogram Robust Mean Absolute Deviation;

Intensity Histogram Median Absolute Deviation; Intensity Histogram Coefficient
Of Variation; Intensity Histogram Quartile Coefficient Of Dispersion; Intensity
Histogram EntropyLog2; Uniformity; Maximum Histogram Gradient; Maximum
Histogram Gradient Grey Level*; Minimum Histogram Gradient*; Minimum

Histogram Gradient Grey Level

Q4LE; ECT3;
KE2A; IPH6;
Y12H; 1GSF;

QG58*; Y12H.1;
8DWT; 84IY;
SALO; 2OJQ;
4FUA; 1128;
N72L; 7TET;
9S40; N8CA;

5ZWQ; 0F91*; X6K6; CH89; 88K1; C3I7;
WIFQ; 1PR8; GPMT; OZ0C*; 3NCY; AMMC;
WR0O; 5Z3W; D2ZX; WRZB; 4RNL; CWYJ;

SLWD; TLU2; BJ5W; 12CE; 8E6O*; VQB3*; RHQZ

textural feature (GLCM) Joint Maximum*; Joint Average; Joint Variance; Joint EntropyLog2; Difference
Average*; Difference Variance; Difference Entropy; Sum

Average; Sum Variance; Sum Entropy;
Angular Second Moment; Contrast; Dissimilarity; Inverse Difference; Normalised
Inverse Difference; Inverse Difference Moment*; Normalised Inverse Difference

Moment; Inverse Variance; Correlation; Autocorrelation;
Cluster Tendency*; Cluster Shade; Cluster Prominence*

GYBY*; 60VM;
UR99; TU9B;
TF7R*; D3YU;
NTRS; ZGXS;
OEEB; P6QZ;
8ZQL; ACUI;
8S9J; IB1Z;

NDRX; WF0Z*;
1QCO; E8JP;
NI2N; QWB0;
DG8W*; 7NFM;

AE86*

(Continued)
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prognosis power of the low RadScore group was superior to that of

the high RadScore group.

Cox regression analysis showed that the risk of adverse

prognostic events in the group with high RadScore was higher

than that in the group with low RadScore. Patients with a low

RadScore (n=128) had a better PFS (Median months,50;95%

CI:33.533,77.000) than those with a high RadScore (n=49)

(Median months,17;95%:9.567,39.000). The risk ratio and 95%

confidence interval of high RadScore group (n=49)/low RadScore

group (n=128) were 2.1737 (1.298–3.639), and the P value were

0.003. Patients with a low RadScore (n=80) had a better OS (Mean

months, 85.965;95%CI:72.684,99.246) than those with a high

RadScore (n=97) (Mean months, 62.365;95%CI: 51.938,72.792).

The risk ratio and 95% confidence interval of the high RadScore

group (n=97)/low RadScore group (n=80) were 2.1356 (1.256–

3.6309), and the P value were 0.005 (Table 6).
Frontiers in Oncology 08
Kaplan Meier analysis showed that both in the training cohort

and the validation cohort, the low RadScore group and the high

RadScore group showed the same results in PFS and OS. However,

the probability of adverse prognosis risk events in the low RadScore

group was lower than that in the high RadScore group (Figure 7).
Discussion

In this retrospective study utilizing real-world data, we found

that a combined model, which incorporated RadScore,

outperformed clinical, PET, and NCCN-IPI models in predicting

mid-term efficacy and prognsis of DLBCL patients. This combined

model can serve as a valuable tool for individualized outcome

prediction and guiding treatment decisions for early-stage, high-

risk DLBCL patients.

Accurately predicting the mid-term outcomes of DLBCL patients

is crucial for optimizing treatment strategies. Numerous studies have

endeavored to evaluate the predictive value of PET radiomics features

for DLBCL. Santiago et al (35) demonstrated a models based on

radiomics accurately predicted refractory DLBCL. Their study

employed RF as a classifier, randomly assigning patients to training

(70%) and independent test cohorts (30%). The AUC of the two

cohorts was 0.83 and 0.79, respectively. Coskun et el. found that

texture features extracted from baseline PET predicted chemotherapy

insensitivity to R-CHOP regimens in DLBCL patients with an ROC

accuracy of 0.87 (AUC=0.81). Notably, SUVmax and the differences

in grey-scale covariance matrix played crucial roles in predicting

chemotherapy insensitivity (36). Consistent with prior studies, our

study independently associated the RadScore based on PET radiomic

features with mid-term outcomes in high-risk DLBCL patients

(OR=7.167 (95%CI:2.815–18.248), P=0.001). The RadScore on 11

key radiomic features obtained from PET were valuable in predicting

the mid-term efficacy of high-risk DLBCL patients. This is likely

attributed to the close association between radiomics features and

tumor heterogeneity (37, 38), which serves as a prognostic

determinant of patient survival (39, 40).
TABLE 3 Optimal cut-off thresholds of SUVmax, MTV, TLG and
RadScore area under the curve (AUC) of mid-term outcome,
progression-free survival and overall survival in the training and
validation cohorts.

Variables AUC (95%CI) Optimal
thresholds

Mid-term outcome

SUVmax 0.626 (0.523–0.728) 19.2

MTV 0.604 (0.503–0.705) 25.6

TLG 0.601 (0.500–0.702) 222.0

RadScore 0.753 (0.666–0.839) 2.0

Progression-free survival

RadScore 0.620 (0.518–0.721) 2.2

Overall survival

RadScore 0.627 (0.521–0.734) 2.2
CI, confidence interval; SUVmax, maximum standardized uptake value; MTV, metabolic
tumor volume; TLG, total lesion glycolysis; RadScore, Radiomics Score.
TABLE 2 Continued

Classification Radiomics feature IBSI name

textural feature (GLRLM) Short Runs Emphasis; Long Runs Emphasis; Low Grey Level Run Emphasis; High
Grey Level Run Emphasis; Short Run Low Grey Level Emphasis; Short Run High
Grey Level Emphasis; Long Run Low Grey Level Emphasis; Long Run High Grey

Level Emphasis; Grey Level Non Uniformity;
Run Length Non Uniformity; Run Percentage

22OV; W4KF;
V3SW; G3QZ;
HTZT; GD3A;

IVPO; 3KUM; R5YN; W92Y;
9ZK5

textural feature (NGTDM) Coarseness; Contrast; Busyness; Complexity; Strength QCDE; 65HE;
NQ30; HDEZ;

1X9X;

textural feature (GLSZM) Small Zone Emphasis; Large Zone Emphasis; Low Gray Level Zone Emphasis; High
Gray Level Zone Emphasis; Small Zone Low Grey Level Emphasis; Small Zone
High Grey Level Emphasis; Large Zone Low Grey Level Emphasis; Large Zone

High Grey Level Emphasis; Grey Level Non Uniformity;
Normalised Grey Level Non Uniformity; Zone Size Non Uniformity;

Normalised Zone Size Non Uniformity;
Zone Percentage; Grey Level Variance;
Zone Size Variance; Zone Size Entropy

5QRC; 48P8;
XMSY; 5GN9;
5RAI; HW1V;
YH51; J17V;
JNSA; Y1RO;
4JP3; VB3A;
P30P; BYLV;
3NSA; GU8N
IBSI, Image Biomarker standardization Initiative.
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B C

A

FIGURE 4

Nomogram to predict the patient mid-term efficacy risk (A). Calibration curves of the model for predicting mid-term response in the training (B) and
validation (C) cohorts.
TABLE 4 Univariate and multivariate analyses of factors predictive of mid-term treatment outcome in the training cohort.

Category Variables Univariate analysis Multivariate analysis

OR (95%CI) P value OR (95%CI) P value

Clinical predictors Sex, F/M 2.356 (1.078–5.148) 0.032 2.760 (1.196–6.368) 0.017*

Age, <60/≥60 0.807 (0.374–1.740) 0.584

LDH level, normal/elevated 2.130 (0.823–5.513) 0.119

B symptoms, no/yes 3.647 (1.703–7.813) 0.001 4.065 (1.837–8.955) 0.001*

ECOG PS, 0–1/≥2 0.667 (0.193–2.299) 0.521

IPI, 0–2/≥3 1.148 (0.441–2.985) 0.778

NCCN-IPI, 4–5/6–8 1.467 (0.524–4.109) 0.466

Ann Abor stage, I-II/III-IV 2.368 (0.471–11.909) 0.296

Extranodal involvement, 0–1/≥2 0.515 (0.174–1.526) 0.231

Bone marrow involvement,
no/yes

0.787 (0.305–2.029) 0.620

Bulky disease, no/yes 0.853 (0.268–2.717) 0.788

Pathological type, GCB/non-GCB 0.982 (0.426–2.265) 0.967

PET predictors SUVmax 2.672 (1261–5.659) 0.010 2.619 (1.107–6.194) 0.028*

MTV 3.108 (1.224–7.893) 0.017 2.331 (0.432–12.586) 0.325

(Continued)
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With the increasing utilization of machine learning techniques

in extracting and classifying image features. The LASSO model is a

selection method that effectively narrows down and regresses from a

large pool of potentially multicollinear variables to obtain a set of

relevant predictors (32). Many studies have employed the LASSO to

identify and classify data features. However, existing studies often

employ a single machine learning method for radiomic features

selection and construction. In clinical practice, a machine learning

method that combines feature classification and cross-validation

can enhance the accuracy and generalization of the predicted results

(41). In this study, we developed the cross-combination pairs of

seven machine learning method generate 49 permutations, and

determine the optimal feature selection-classification pairs based on

the maximum AUC results to obtain the final RadScore. Our

research method made RadScore more robust and reproducible

than those studies with single machine learning method. Figure 3

illustrated that the ET-LASSO model had a poor AUC (0.370),

while AUC of the LASSO-LASSO model for predicting mid-term

efficacy were 0.74. Additionally, our study revealed that the best

LASSO-LASSO models selected radiomic features from shape

feature (Surface Area), first-order features (Global Intensity Peak

etc.) and texture features (GLCM), which indicated that main first-

order features and texture features possess good ability to

discriminate high-risk patients.

[18F]-FDG PET/CT can provide information about tumor

biology by measuring cellular glucose metabolism. Our study

demonstrated that SUVmax as an independent predictor of

medium-term efficacy (OR=2.619 (95% CI: 1.107–6.194),

P=0.028). The result were consistent with previous studies (42).

We developed a user-friendly model that integrated RadScore, PET
Frontiers in Oncology 10
metabolic factors, and clinical risk factors and compared it with

other models (e. g. clinical models, PET-based models, IPI model

and NCCN-IPI model). The ROC curves and DCA results

demonstrated that the combined model outperformed the other

models, the performance of IPI model and NCCN-IPI model in the

training cohort and the validation cohort were both unsatisfactory.

Additionally, the combined model exhibited good agreement with

the calibration curve and demonstrated a clear advantage in terms

of AUC. These results indicate that the combined model is more

suitable and practical for predicting medium-term outcome of

DLBCL. Consistent with previous studies (43, 44), our results

suggest that the IPI and NCCN-IPI may require improvement in

identifying intermediate-high/high-risk DLBCL patients who

would benefit from non-first-line treatment. Furthermore, our

results support the RadScore of radiomic features(shape, first-

order and GLCM) with SUVmax and clinical predictors, aligning

with the findings of Jiang et al. (24, 45), to accurately identify

intermediate-high/high-risk DLBCL patients.

One limitation of our study was its retrospective. We collected

patient data from two medical centers, but future studies should

include data from additional centers to ensure clinical

generalizability. Given the specificity of DLBCL, the distribution of

intra- and/or extra-lymph node lesions are highly variable and

heterogeneous. The morphological and textural features of the

lesions are highly sensitive to tumor segmentation methods. Thus,

we employed the 41% of SUVmax tumor segmentation method

recommended by the European Association of Nuclear Medicine.

This method may be more practical and straightforward to

implement in clinical. Additionally, the use of mid-term PET as the

study endpoint in our research may lead to false-positive interpretation

results. To justify therapeutic decisions, complementary studies

utilizing end-stage PET should be conducted in the future. However,

a major strength of our study lies in the homogeneity of the included

patients, as they all had new-onset DLBCL histology and received R-

CHOP-like regimens as standard treatment. The methodology

employed also supports the general applicability of our model.
Conclusion

The RadScore is obtained by the feature selection-classification

crossover combination of 7×7 machine learning method that included

shape feature, first-order features and texture features (GLCM), can

serve as a predictor for both mid-term efficacy and prognosis in
TABLE 4 Continued

Category Variables Univariate analysis Multivariate analysis

OR (95%CI) P value OR (95%CI) P value

TLG 2.503 (1.109–5.649) 0.027 0.698 (0.155–3.156) 0.641

Radiomics
predictors

RadScore 7.931 (3.257–19.314) 0.001 7.167 (2.815–18.248) 0.001*
CI, confidence interval; OR, odds ratio; F, female; M, male; LDH, lactate dehydrogenase; ECOG PS, Eastern Cooperative Oncology Group performance status; IPI, International Prognostic Index;
NCCN-IPI, National Comprehensive Cancer Network International Prognostic Index; GCB, germinal centre B cell; SUVmax, maximum standardized uptake value; MTV, metabolic tumor
volume; TLG, total lesion glycolysis; RadScore, Radiomics Score.
*P < 0.05.
TABLE 5 The mid-term treatment outcome prediction models included
in this study.

Models Included variables

Combined Model Sex; B symptoms;
SUVmax; RadScore;

Clinical model Sex; B symptoms;

PET based model SUVmax;

NCCN-IPI
IPI

NCCN-IPI
IPI
IPI, International Prognostic Index; NCCN-IPI, National Comprehensive Cancer Network
International Prognostic Index; SUVmax, maximum standardized uptake value; RadScore,
Radiomics Score.
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BA

FIGURE 5

Receiver operating characteristic curve of the models for predicting mid-term response in the training (A) and validation (B) cohorts.
BA

FIGURE 6

Decision curve analysis for the models in the training (A) and validation (B) cohorts.
BA

FIGURE 7

Kaplan–Meier plots according to RadScore for patients’ progression-free survival and overall survival in the training (A) and validation cohorts (B).
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DLBCL patients. In addition, the combined model which integrates the

RadScore, PET metabolic indicator (SUVmax), and clinical risk factors

(sex, B symptoms), can aid in rational risk stratification and facilitate

the screening of appropriate treatment regimens for at intermediate-

high/high risk DLBCL patients in the early stages.
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scores do not accurately identify a very high risk population with diffuse large B cell
lymphoma-an analysis of 386 Portuguese patients. Ann Hematol. (2019) 98:1937–46.
doi: 10.1007/s00277–019-03676–0

13. El-Galaly TC, Villa D, Alzahrani M, Hansen JW, Sehn LH, Wilson D, et al.
Outcome prediction by extranodal involvement, IPI, R-IPI, and NCCN-IPI in the PET/
CT and rituximab era: A Danish-Canadian study of 443 patients with diffuse-large B-
cell lymphoma. Am J Hematol. (2015) 90:1041–6. doi: 10.1002/ajh.24169

14. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al.
Recommendations for initial evaluation, staging, and response assessment of Hodgkin
and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. (2014) 32:3059–
68. doi: 10.1200/JCO.2013.54.8800

15. Boellaard R, Delgado-Bolton R, OyenWJG, Giammarile F, Tatsch K, Eschner W,
et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J
Nucl Med Mol Imaging. (2015) 42:328–54. doi: 10.1007/s00259-014-2961-x

16. Chihara D, Oki Y, Onoda H, Taji H, Yamamoto K, Tamaki T, et al. High
maximum standard uptake value (SUVmax) on PET scan is associated with shorter
survival in patients with diffuse large B cell lymphoma. Int J Hematol. (2011) 93:502–8.
doi: 10.1007/s12185-011-0822-y

17. Shagera QA, Cheon GJ, Koh Y, Yoo MY, Kang KW, Lee DS, et al. Prognostic
value of metabolic tumour volume on baseline 18F-FDG PET/CT in addition to
NCCN-IPI in patients with diffuse large B-cell lymphoma: further stratification of the
group with a high-risk NCCN-IPI. Eur J Nucl Med Mol Imaging. (2019) 46:1417–27.
doi: 10.1007/s00259–019-04309–4

18. Vercellino L, Cottereau A-S, Casasnovas O, Tilly H, Feugier P, Chartier L, et al.
High total metabolic tumor volume at baseline predicts survival independent of
response to therapy. Blood. (2020) 135:1396–405. doi: 10.1182/blood.2019003526

19. Eertink JJ, van de Brug T, Wiegers SE, Zwezerijnen GJC, Pfaehler EAG,
Lugtenburg PJ, et al. 18F-FDG PET baseline radiomics features improve the
prediction of treatment outcome in diffuse large B-cell lymphoma. Eur J Nucl Med
Mol Imaging. (2022) 49:932–42. doi: 10.1007/s00259–021-05480–3

20. Zhou Y, Ma X-L, Zhang T, Wang J, Zhang T, Tian R. Use of radiomics based on
18F-FDG PET/CT and machine learning methods to aid clinical decision-making in
the classification of solitary pulmonary lesions: an innovative approach. Eur J Nucl Med
Mol Imaging. (2021) 48:2904–13. doi: 10.1007/s00259–021-05220–7

21. Lue K-H, Wu Y-F, Lin H-H, Hsieh T-C, Liu S-H, Chan S-C, et al. Prognostic
value of baseline radiomic features of 18F-FDG PET in patients with diffuse large B-cell
lymphoma. Diagnostics (Basel). (2020) 11:36. doi: 10.3390/diagnostics11010036

22. Mayerhoefer ME, Riedl CC, Kumar A, Gibbs P, Weber M, Tal I, et al. Radiomic
features of glucose metabolism enable prediction of outcome in mantle cell lymphoma.
Eur J Nucl Med Mol Imaging. (2019) 46:2760–9. doi: 10.1007/s00259–019-04420–6

23. Wang H, Zhao S, Li L, Tian R. Development and validation of an 18F-FDG PET
radiomic model for prognosis prediction in patients with nasal-type extranodal natural
killer/T cell lymphoma. Eur Radiol. (2020) 30:5578–87. doi: 10.1007/s00330–020-
06943–1

24. Jiang C, Li A, Teng Y, Huang X, Ding C, Chen J, et al. Optimal PET-based
radiomic signature construction based on the cross-combination method for predicting
the survival of patients with diffuse large B-cell lymphoma. Eur J Nucl Med Mol
Imaging. (2022) 49:2902–16. doi: 10.1007/s00259–022-05717–9

25. Meignan M, Gallamini A, Meignan M, Gallamini A, Haioun C. Report on the
first international workshop on interim-PET-scan in lymphoma. Leuk Lymphoma.
(2009) 50:1257–60. doi: 10.1080/10428190903040048
Frontiers in Oncology 13
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