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Development of a software
system for surgical robots based
on multimodal image fusion:
study protocol
Shuo Yuan†, Ruiyuan Chen†, Lei Zang*, Aobo Wang, Ning Fan,
Peng Du, Yu Xi and Tianyi Wang

Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China

Background: Surgical robots are gaining increasing popularity because of their
capability to improve the precision of pedicle screw placement. However, current
surgical robots rely on unimodal computed tomography (CT) images as baseline
images, limiting their visualization to vertebral bone structures and excluding soft
tissue structures such as intervertebral discs and nerves. This inherent limitation
significantly restricts the applicability of surgical robots. To address this issue and
further enhance the safety and accuracy of robot-assisted pedicle screw
placement, this study will develop a software system for surgical robots based on
multimodal image fusion. Such a system can extend the application range of
surgical robots, such as surgical channel establishment, nerve decompression,
and other related operations.
Methods: Initially, imaging data of the patients included in the study are collected.
Professional workstations are employed to establish, train, validate, and optimize
algorithms for vertebral bone segmentation in CT and magnetic resonance (MR)
images, intervertebral disc segmentation in MR images, nerve segmentation in MR
images, and registration fusion of CT and MR images. Subsequently, a spine
application model containing independent modules for vertebrae, intervertebral
discs, and nerves is constructed, and a software system for surgical robots based on
multimodal image fusion is designed. Finally, the software system is clinically validated.
Discussion: Wewill develop a software system based onmultimodal image fusion
for surgical robots, which can be applied to surgical access establishment, nerve
decompression, and other operations not only for robot-assisted nail placement.
The development of this software system is important. First, it can improve
the accuracy of pedicle screw placement, percutaneous vertebroplasty,
percutaneous kyphoplasty, and other surgeries. Second, it can reduce the
number of fluoroscopies, shorten the operation time, and reduce surgical
complications. In addition, it would be helpful to expand the application range
of surgical robots by providing key imaging data for surgical robots to realize
surgical channel establishment, nerve decompression, and other operations.

KEYWORDS

multimodal image fusion, surgical robots, software system, image segmentation

algorithm, image registration fusion algorithm

1 Introduction

With the accelerating population aging, the number of patients suffering from spinal

degenerative diseases, such as lumbar disc herniation and lumbar spinal stenosis, is

increasing annually. However, the anatomical structure of the spine is complex and

involves critical components such as the spinal cord, nerve roots, and blood vessels.
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Surgery in this area is unsafe and requires extremely high precision.

Rapid advances in surgical robotics can help spine surgeons improve

the precision and stability of their surgeries. In recent years, surgical

robots employed in spine surgery have been primarily used to assist

in pedicle screw placement, such as the TiRobot (TINAVI Medical

Technologies Co. Ltd., Beijing, China), Mazor (Mazor Robotics

Ltd., Caesarea, Israel), Da Vinci (Intuitive Surgical, Sunnyvale, CA,

USA), ROSA (Zimmer Biomet Robotics, Montpellier, France),

Excelsius GPS (Globus Medical, Inc., Audubon, PA, USA), and

Orthbot (Xin Junte, Shenzhen, China) (1–6). Robotic-assisted

lumbar fusion is more precise in pedicle screw placement, has a

shorter average operative time, less bleeding, faster postoperative

recovery, and reduces radiation injuries to patients and medical

staff than the freehand manipulation (7–11).

Currently, spinal surgical robots are mainly used for pedicle

screw placement. By importing preoperative CT data and using

registration technology to match the actual intraoperative position,

surgeons perform the surgery under robotic guidance (3).

However, surgical robots rely on unimodal CT images as baseline

images, which can only display vertebral bone structure and are

incapable of visualizing soft tissue structures such as intervertebral

discs and nerves. This has led to a relatively limited scope of

application of surgical robots and cannot assist surgeons in the

establishment of surgical channels, nerve decompression, and

other operations (12). With the continuous development of

medical imaging and computer image processing technology,

multimodal image fusion has shown significant advantages in the

medical field. Multimodal fusion images are valuable for disease

diagnosis and preoperative planning (13). In spine surgery, CT/

MR image fusion is particularly practical because fused images can

accurately provide information about the positions of both bones

and soft tissues. However, no studies have reported on

preoperative multimodal spine models that can be used for

intraoperative registration and navigation of spine surgery robots.

With the rapid development of multimodal image fusion

technology and in response to the current limitations in the

application scope of spinal surgical robots, this study aims to

develop a software system for surgical robots based on multimodal

image fusion, which can provide key imaging data for surgical

robots to perform operations such as surgical channel establishment

and nerve decompression. For spine surgeons and patients, the use

of accurate, intuitive, and anatomically rich spine multimodal

fusion images to guide surgery can significantly improve surgical

efficiency, shorten operation time, and reduce intraoperative

complications. Patients will have better postoperative outcomes,

reduced medical costs, and significantly improved quality of life.
2 Methods

The surgical robot software system based on multimodal image

fusion consists of six major modules: a data reading and writing

management platform, an image visualization platform, a vertebral

bone segmentation algorithm platform for CT and MR images, an

intervertebral disc segmentation algorithm platform for MR images,

a nerve segmentation algorithm platform for MR images, and a
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CT/MR image registration fusion algorithm platform. The spinal

model is constructed using the software system, as follows: input

the preoperative spinal CT and MR images of the patient into the

software system, and after sequential processing through the four

modules of vertebral bone segmentation, intervertebral disc

segmentation, nerve segmentation, and CT/MR image registration

fusion, construct a spinal model containing independent structures

such as vertebrae, intervertebral discs, and nerves. Figure 1

illustrates the development and operation process of the system.
2.1 Cases and imaging data

The study will collect preoperative spinal CT and MRI data in

DICOM format in 100 patients. The inclusion criteria are as follows:

age 20–80 years; male and female sex not limited; clinical and

radiological findings consistent with the diagnosis of lumbar disc

herniation or lumbar spinal stenosis; informed consent for the study;

complete clinical and imaging data. The exclusion criteria are as

follows: history of previous spinal surgery; history of spinal

deformity; and current diagnosis of spinal infection, tuberculosis, or

tumor. These criteria are meticulously applied to ensure the

homogeneity and relevance of the patient population involved in our

study. The hospital’s institutional review board and ethics committee

approved this study. Furthermore, all aspects of this study

conformed to the principles outlined in the Declaration of Helsinki.
2.2 Algorithm construction platform

CT and MRI date in DICOM format are imported into the

PYTHON software (version 3.7.0) on the “Chaoyang-Tsinghua

Digital and Artificial Intelligence Orthopedic Research

Laboratory” (Intel (R) Xeon (R) CPU E5-2620 V4, Titan V 12G

GPU, Ubuntu 18.04) for algorithm construction.

2.2.1 Establishment of the vertebral segmentation
algorithm for CT images

Our research team has designed an interactive dual-output

vertebral instance segmentation algorithm (14). This algorithm uses

a self-localization iterative deep neural network approach,

leveraging the spatial relationships formed by the spinal chain

structure for sequential localization and segmentation of vertebrae.

The vertebral segmentation process based on CT images is outlined

below: ① Input the CT images of the patient’s lesion area, use the

initial localization module to determine the localization frame of

the first vertebra at the end of the vertebral chain, and complete the

segmentation of the first vertebra by the established iterative

instance segmentation network. ② Design a self-generating module

for the positioning frame that can automatically determine the

positioning frame for the next vertebra based on the segmentation

result of the first vertebra and then employ the iterative instance

segmentation network again to complete the segmentation of

vertebrae in this segment. Iterate using the high-precision

localization module and the iterative segmentation network to

sequentially segment the remaining vertebrae. ③ Finally, use the
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FIGURE 1

Flow chart showing the development and operation of the system.
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termination detection module to determine the end of the vertebral

chain, stop the iterative segmentation, and complete the instance

segmentation of the entire vertebral chain.

2.2.2 Establishment of the vertebral segmentation
algorithm for MR images

The overall concept of the vertebral segmentation algorithm for

MR images is consistent with that of the iterative vertebral

segmentation algorithm for CT images. Notably, improvements have

been made to the training process of the dual-output instance

segmentation network to enable segmentation and localization on

MR images (15). The training process is improved as follows: ①

generate MRI simulation images that resemble MRI data using CT
FIGURE 2

Flowchart of the active interactive intervertebral disc segmentation fine-tun

Frontiers in Surgery 03
image data, ② use vertebral annotations from CT images to train a

network model capable of vertebral segmentation on MRI

simulation images, and ③ select an MR image sequence with an

appearance similar to the generated MRI data and use the trained

model to perform precise vertebral extraction directly on the specific

MR image sequence, achieving vertebral segmentation in MR images.

2.2.3 Establishment of an intervertebral disc
segmentation algorithm for MR images

In this study, we will develop an active interactive intervertebral

disc segmentation fine-tune algorithm based on deep learning for

the segmentation of intervertebral discs in MR images. The flow

of this algorithm is shown in Figure 2, which is mainly
e algorithm.
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composed of three parts: pre-segmentation, query interaction, and

fine-tune modules. The process of intervertebral disc segmentation

based on MR images is as follows: ① The pre-segmentation

module initially segments the intervertebral discs and locates

their positions from various MR image sequences. ② The

location of possible segmentation errors is queried using the

query interaction module, and the queried laminae are corrected

by clicking using manual interaction. ③ Using this correction

click, the pre-segmentation result and the original MR image are

fed to the correction network for segmentation result correction

and the next query interaction correction until no more laminar

slices that require correction can be queried.

2.2.4 Establishment of a nerve segmentation
algorithm for MR images

This study employs a super-resolution semi-supervised

segmentation algorithm, which is based on the image-processing

techniques of the super-resolution generative adversarial network

proposed by Ledig et al. (16). We applied this algorithm to nerve

segmentation to extract the details of the spinal cord and nerve

root edges from MR images. The algorithm can achieve relatively

accurate nerve segmentation in high-resolution MRI.

2.2.5 Establishment of the CT/MR image
registration fusion algorithm

The current CT/MR image registration fusion algorithms still

face challenges in achieving both accuracy and reliability, and

stability and practicality require further improvement. To

solve these problems, our group has developed a stabilized

self-correcting S-PAC registration algorithm containing a vertebra

prior. In the pre-experiment, the target registration error (TRE)

of this algorithm was measured at 0.91 mm, which met the

millimeter-level precision requirements (≤1 mm) for spinal

robotic surgery. The registration process consists of the following

two steps: ① Establishment of the coarse registration algorithm:

based on the surface distance map of the segmented vertebrae,

the same segments of vertebrae in the segmented images of CT

and MRI vertebrae are matched to avoid segment mismatch. ②

Establishment of the fine registration algorithm: in this step, a

novel mutual information-based method is designed to match

the vertebrae of the same segment after coarse registration for

segmentation-based registration. A robust edge-weighted

similarity measure was designed for binary rigid registration of

individual vertebral to eliminate local minima in the

optimization process and improve the stability of the registration

algorithm. The vertebral information in the CT image is

registered into the MR image as a single vertebra, replacing the

vertebral information in the MR images to generate fused images.
2.3 Training, validation, and optimization
algorithm

Training, validation, and optimization of segmentation

algorithms: ① Using manually segmented results by spine surgeons

as the gold standard, the segmentation algorithms are quantitatively
Frontiers in Surgery 04
evaluated through tenfold cross-validation. All vertebrae were

randomly divided into 10 groups, rotating through 10 cycles of

training and testing, with each cycle reserving one group as the test

set. The remaining nine groups are split into training and validation

sets in an 8:2 ratio. ② Evaluation of the test results. The test results

of vertebral segmentation algorithms for CT and MR images and

nerve segmentation algorithms for MR images were quantitatively

evaluated in terms of accuracy using the Dice coefficient and

average surface distance metrics. Four quantitative evaluation

metrics are used for the test results of intervertebral disc

segmentation algorithms for MR images, which include the values

of Dice coefficients after querying and correcting for the n layers

(In- Dice), Hausdorff distance (HD) 95% value after querying and

correcting n layers (In-HD95%), Dice coefficient value after a single

3D correction (SC-Dice), and HD95% value after a single 3D

correction (SC-HD95%). ③ Finally, spine surgeons assess the

accuracy and practicality of the segmentation results. Twenty-five

vertebrae will be randomly selected from the vertebral labeling

results of the training data as the gold standard and mixed with the

segmentation results. Spine surgeons are unaware of the gold

standard and the results of network segmentation during the

evaluation process. The identified differences between the two sets

were analyzed, providing feedback for further optimization of the

registration algorithm.

The sheep spine specimen is used for the validation and

optimization of the registration fusion algorithm for CT and MR

images. The process is as follows: (I) The sheep spine specimen is

fixed in a plastic container that is not visible in both CT and MR

images. Cod liver oil, which can be visualized by CT and MRI, is

selected as the reference marker, and fixed on the transverse and

spinous processes of the vertebrae. (II) CT is performed on the

specimen, and the body position is divided into the supine group

(y) and prone group (f). The spinal posture is divided into the

upright group (1) and scoliosis group (2), and three scans (1y, 2y,

and 1f) are performed. The scanning layer thickness is changed by

post reconstruction, and the layer thickness is categorized into 0.6

(a), 1.2 (b), and 2.4 mm (c) groups, and further combined with the

above scanning results into five groups (a1y, a2y, a1f, b1y, and c1y).

The CT scan time is counted from the beginning of the CT scan to

its completion. (III) High-resolution MRI is performed on the

specimens, and the MRI scanning time is also counted. The

scanned layer thickness and layer spacing are changed by post

reconstruction, and the layer thickness is categorized into two

groups of 0.8 mm (a) and 2.0 mm (b). The scanned layer spacing is

categorized into 1 (no layer spacing) and 2 (layer spacing = 50%

layer thickness), further combined with the above-mentioned

scanning results, and categorized into three groups (a1, b1, and a2).

(IV) The results of the registration with the benchmark markers are

considered the gold standard, and the algorithms of this study are

then evaluated. ① Accuracy evaluation: TRE and fiducial

registration error (FRE) of the a1y group are calculated using the

benchmark marker registration results as the gold standard. Using a

blinded approach, spinal surgeons assessed the registration

outcomes of both the gold standard algorithm and the proposed

algorithm through a survey questionnaire. ② Stability evaluation:

TRE = 2 mm is used as the threshold for successful registration, and
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the registration is repeated 100 times for the a1y group to calculate the

success rate (%) of the registration.③ Reliability evaluation: using the

benchmark marker registration results as the gold standard, calculate

the TRE and FRE of the fusion images of each group and then

horizontally compare the TRE and FRE between the groups. ④

Practicality evaluation: analyze whether data acquisition,

registration time, and image quality can meet clinical needs. The

evaluation results are analyzed and feed back to further optimize

the registration algorithm. ⑤ Finally, spine surgeons evaluate the

accuracy and practicality of the fused images.
2.4 Integration of the spine model and
software design

On the “Chaoyang-Tsinghua Digitalization and Artificial

Intelligence Orthopedic Research Lab” specialized workstation

[Intel(R) Xeon(R) CPU E5-2620 V4, Titan V 12G GPU, Ubuntu

18.04 operating system], a software system is developed using

PyQt5 5.15.4, SimpleITK 1.2.4, and VTK 9.2.2. This system

integrates fused image models with corresponding vertebrae,

intervertebral discs, and nerve segmentation models.

Subsequently, a comprehensive software platform for spine

modeling is established, comprising a data reading and writing

management platform, an image visualization platform, a vertebral

bone segmentation algorithm platform for CT and MR images, an

intervertebral disc segmentation algorithm platform for MR

images, a nerve segmentation algorithm platform for MR images,

and a CT/MR image registration fusion algorithm platform.

An additional 20 patients who meet the criteria will be included,

and the corresponding spine models will be constructed and

validated using the spine model integration software platform. Spine

surgeons will evaluate the accuracy and practicality of the spine

models. The spinal surgeons will manually segment vertebrae,

intervertebral discs, and nerve structures. Using anatomical

landmark points, they will perform CT/MR image registration and

fusion to construct manually segmented spine models, which will

serve as the gold standard for spine models. The gold standard will

be mixed into the spine models constructed using the software

system. During the evaluation process, they will not be informed

about which ones are the gold standard and which ones are the

results of network segmentation, ultimately comparing the

differences between the two groups.
3 Discussion

This study aims to establish and optimize image segmentation

and registration fusion algorithms and subsequently develop an

integrated software system that includes vertebral segmentation

algorithms for CT and MR images, intervertebral disc

segmentation algorithms for MR images, nerve segmentation

algorithms for MR images, and CT/MR image registration fusion

algorithms. This integrated software system will be used to

construct a multimodal spine model containing independent

modules of vertebral bones, intervertebral discs, and nerves and
Frontiers in Surgery 05
then conduct clinical application research. Developing a software

system for surgical robots based on multimodal image fusion is

important. The clinical application of this software system will

provide key imaging data for surgical robots to perform nerve

decompression and other operations, which will further improve

surgical accuracy and reduce surgical complications. Our group

has made some research progress in the preoperative planning

system, navigation system, and vertebral shaping system, which is

a critical step toward the successful application of this software

system in spinal surgery.

Pedicle screw placement is a critical step in spinal internal

fixation surgery because misplaced screws may lead to

neurological deficits or vascular injury (17, 18). The reported

rates of screw misplacement vary significantly across different

studies. Castro et al. (19) reported a misplacement rate as high as

40%. The complication rate due to misplaced screws ranges from

0% to 54% (20–23). Many studies have confirmed that robot-

assisted pedicle screw placement has significant advantages over

traditional fluoroscopic techniques, with an accuracy rate ranging

from 93% to 100% (10, 11, 24–26). Kantelhardt et al. (27) first

reported an accurate placement rate of 94.5% for robot-guided

pedicle screw placement compared with a 91.4% accuracy rate

for traditional screw placement. Several subsequent studies have

also demonstrated that robot-assisted screw placement is superior

in accuracy to traditional methods and results in less tissue

damage during surgery, thus providing a better prognosis for

patients (28–32). Moreover, undoubtedly, the future of spinal

robotics should not be limited to assisting surgeons in pedicle

screw placement alone. They should also assist in performing

different surgeries for various spinal disorders. Wang et al. (33)

and Lin et al. (34) reported that robot-assisted percutaneous

kyphoplasty has advantages such as higher puncture accuracy,

shorter channel establishment time, reduced radiation exposure,

and lower bone cement leakage. Currently, percutaneous

endoscopic discectomy (PTED) is a commonly used minimally

invasive surgery for the treatment of lumbar disc herniation, and

the difficulty of this surgery lies in the establishment of the

surgical channel, which requires multiple fluoroscopy and

punctures to reach the target position (35). Yang et al. (36)

found that robot-assisted guided PTED, compared with

conventional c-arm fluoroscopy-guided PTED, had fewer

punctures (1.20 ± 0.42 vs. 4.84 ± 1.94), fewer fluoroscopy (10.49 ±

2.16 vs. 17.41 ± 3.23), and shorter surgery time (60.69 ± 5.63 vs.

71.19 ± 5.11 min). Importantly, our surgical robot software

system, through multimodal image fusion technology, achieves

three-dimensional visualization of the surgical area’s anatomical

structures, providing better guidance for surgery and maximizing

the safety of the surgery.

Currently, the localization and navigation functions of spinal

surgery robots are mainly based on CT images. CT images

provide excellent visualization of bone structures but post

challenges in distinguishing soft tissues such as nerves and

ligaments. In contrast, MR images offer good visualization of soft

tissues. Owing to the lack of local anatomical information, the

application scope of robots in spinal surgery is extremely limited

(12). However, some researchers have attempted to address this
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issue using CT/MRI fusion images. Their research results indicate

that fusion images can better present the relationship between the

bony and soft tissue components of lesions (37–39). This can serve

as a valuable tool to enhance the accuracy of surgical planning.

The construction and application of spine models based on CT/

MR image fusion technology involves several key technologies, such

as vertebral bone segmentation, intervertebral disc segmentation,

nerve segmentation, and multimodal image registration and

fusion. ① Vertebral bone segmentation. Previous studies using

traditional CT vertebral segmentation techniques have achieved

precise segmentation of simple vertebral regions. However,

challenges remain in segmenting complex areas such as tightly

connected facet joints. Although some progress has been made in

deep learning-based vertebral segmentation technology, it also

suffers from the problems of long consumption time and poor

accuracy (40–42). To address this issue, our research team designs

an interactive dual-output vertebral instance segmentation

algorithm. The results of algorithm training and optimization

show relatively high overall and local segmentation accuracy.

Compared with existing methods, the training speed of the

algorithm is improved by 2.7 times, and the segmentation speed is

improved by 4 times (14). ② Intervertebral disc segmentation.

Current research on intervertebral disc segmentation technology

requires further investigation. Recently, a research team developed

a fully automated intervertebral disc recognition and segmentation

algorithm based on iterative neural networks (43–46). However,

local accuracy within the surgical area, which is crucial for spinal

robot surgeries, remains unclear. To address this problem, our

group designed an active interactive multimodal intervertebral disc

fine-tune algorithm, which achieved an I9-Dice coefficient of

92.50% ± 1.82% for high-resolution intervertebral disc data in the

pre-experiment. ③ Nerve segmentation. In addition, fewer studies

have focused on nerve segmentation. Existing segmentation

algorithms struggle to achieve complete and high-precision

segmentation of neural tissues in routine clinical images. Although

intraoperative neural automatic extraction algorithms have been

designed, they are not suitable for preoperative planning (47). This

study applies a super-resolution semi-supervised segmentation

algorithm to nerve segmentation to achieve more precise nerve

segmentation. ④ Multimodal image registration and fusion. Many

researchers have explored the possibility of spinal CT/MR image

registration fusion to integrate the anatomical information of bone

and soft tissues. However, the results from these studies have not

been ideal. Challenges include poor accuracy, reliance on manual

vertebral joint matching, and overall long registration times (48,

49). Some scholars have applied the MIND Demons algorithm to

deformably register soft tissues from MRI and fuse them into CT

images; however, its similarity measure is unstable in

multimodality at the time of registration (50). Our group designs a

self-correcting S-PAC registration algorithm with vertebrae prior,

which may help solve the current CT/MR image registration

algorithm, in which combining accuracy, stability, reliability, and

practicality is difficult. In this study, we used sheep spine

specimen to validate and optimize the registration fusion

algorithm for CT and MR images. Although the sheep spine

specimen is a little different from the human body structure, it
Frontiers in Surgery 06
can meet our current study requirements. Certainly, we will

further optimize and validate the algorithm on human cadavers in

the future when conditions permit.

The current study protocol aims to preliminarily develop a

software system based on multimodal image fusion, but its

practical application to spinal surgery robotics still needs to

overcome many challenges. Firstly, we only included patients who

met the diagnosis of lumbar disc herniation or spinal stenosis,

which was aimed at guaranteeing the validity and stability of the

algorithm lightweight. Thereafter, we will further incorporate

various types of patients such as spinal deformity, history of spinal

surgery, spinal fracture, spinal infection, and spinal tumour, to

continuously improve the clinical applicability of the system.

Furthermore, contemporary deep neural network models

commonly employed are characterized by large size and parameter

count, requiring long computing time and high GPU computing

power, which limits the practical application. In recent years,

lightweight of algorithms has become an important optimization

direction. He et al. (51) constructed a lightweight algorithm by

reducing the parameters related to the algorithm, which has the

advantages of fewer parameters, smaller size and faster training

speed. In the future, in addition to upgrading our equipment and

network on time, we plan to use lightweight algorithms to make

our system faster and more clinically applicable. Finally, it’s

noteworthy that currently, no automated or semi-automated spinal

surgery robot capable of soft tissue manipulation has been

developed. Consequently, in the short term, the system will

primarily provide navigation functions for the surgeon’s manual

operation. We believe that this system will play a greater role in

the future with the further development of robotics.

Until now, spinal surgical robots have commonly utilized

single-modal spinal CT images as intraoperative baseline images.

No studies have reported on multimodal, multi-independent

module spine models that can be employed for intraoperative

registration and navigation of spinal surgery robots. This study

faces numerous challenges that must be overcome, with many

issues urgently requiring resolution. Nevertheless, this study has

vast prospects for application. The application of the outcomes of

this study to spinal surgical robots can significantly expand the

scope of their use. It can facilitate robot-assisted operations in

spinal surgery, such as the establishment of surgical channels and

neural decompression. This would notably enhance the precision,

effectiveness, and minimally invasive nature of intraoperative

surgeries. This makes spine surgery robots more clinically

applicable, ultimately benefiting a larger population of patients.
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