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Abstract. Environmental observations are crucial for under-
standing the state of the environment. However, current ob-
servation networks are limited in their spatial and temporal
resolution due to high costs. For many applications, data ac-
quisition with a higher resolution would be desirable. Re-
cently, Internet of Things (IoT)-enabled low-cost sensor sys-
tems have offered a solution to this problem. While low-cost
sensors may have lower quality than sensors in official mea-
suring networks, they can still provide valuable data. This
study describes the requirements for such a low-cost sen-
sor system, presents two implementations, and evaluates the
quality of the factory calibration for a widely used low-cost
precipitation sensor. Here, 20 sensors have been tested for
an 8-month period against three reference instruments at the
meteorological site of the TU Dresden (Dresden University
of Technology). Furthermore, the factory calibration of 66
rain gauges has been evaluated in the lab. Results show that
the used sensor falls short for the desired out-of-the-box use
case. Nevertheless, it could be shown that the accuracy could
be improved by further calibration.

1 Introduction

Environmental observations are a pillar of environmental sci-
ence. They provide the necessary data to describe and model
the state of the environment and its spatial and temporal
changes. Furthermore, the data collected can be used to iden-
tify and assess possible natural risks and thus warn of poten-
tial natural hazards. Environmental observations also form

the basis of decision-making in environmental policy and of
monitoring the outcome of the resulting measures, which re-
quires reliable and systematically collected data. In line with
this requirement, data on climate, soil, water balance, and air
quality are collected in many countries by authorities that op-
erate permanent monitoring networks (Kaspar et al., 2013).
The stations within these monitoring networks are usually
equipped with professional measuring tools, which, like the
sites themselves, meet certain standards of the respective
international organisations. Furthermore, the operation and
maintenance of such monitoring networks are ensured by a
high level of human resources. And the measured values are
subjected to quality control. The resulting costs lead to obser-
vation networks that cannot be condensed indefinitely, even
if observations in a higher spatial and temporal resolution
would be desirable for many applications, e.g., such as warn-
ings about flash floods or landslides (Lobligeois et al., 2014;
Gamperl et al., 2021).

Developments over the last 2 decades in the field of the In-
ternet of Things (IoT) allow this shortcoming of institutional
measurement networks to be addressed. The availability of
ever smaller, cheaper, and more power-efficient devices and
sensors combined with the ubiquitous availability of connec-
tivity to the internet make it possible to collect and process
data where it is needed. Even if the quality and reliability
of such devices are lower than that of official measuring sta-
tions, the resulting data sets with higher spatial and temporal
resolution can represent added value. For instance, the use
of IoT-enabled sensors allows further automation and fine-
tuning of agricultural processes by collecting data on climate
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(e.g. CO2 emissions; Brown et al., 2020) or soil (e.g. mois-
ture; Adla et al., 2020). In the field of natural hazard research,
low-cost global navigation satellite system (GNSS) and ac-
celerometer devices communicating within an IoT network
are used to monitor boulders (Dini et al., 2021). Another
study illustrates the suitability of IoT devices measuring the
water level and soil moisture to monitor floods during tropi-
cal storms (Mendoza-Cano et al., 2021).

With regard to precipitation monitoring, low-cost weather
stations (PWSs – personal weather stations) fill gaps in mea-
surement networks that were previously interpolated or de-
termined by radar and satellite products (with corresponding
inaccuracies) (Fraga et al., 2019; de Vos et al., 2017). Al-
though many studies have shown that the use of IoT-enabled
low-cost precipitation sensors is possible (Lopez and Vil-
laruz, 2015; Rodríguez et al., 2021), it is necessary to en-
sure that the data generated meet the necessary requirements
for data quality when used in addition to official networks.
This can be achieved through the calibration of low-cost sen-
sors – however, this step is time-consuming (Humphrey et
al., 1997) and hence costly. Therefore, calibration runs are
counter-productive to the intended purpose of low-cost sen-
sor technology. This provokes the question of whether it is
suitable to actually use low-cost sensors relying only on the
factory calibration of the manufacturer. To arrive at a conclu-
sion about the quality of factory calibration, it is thus neces-
sary to evaluate a larger number of sensors of the same type.
In many studies utilising low-cost sensors, only a single or a
very small number of instruments have been used, hence not
yet addressing this question (Fraga et al., 2019; Strigaro et
al., 2019; Sudantha et al., 2019; de Vos et al., 2017).

In this study, we describe the requirements for a low-cost
sensor system and show two implementations using open
hardware. Furthermore, we analyse the quality of factory cal-
ibration for a widely used low-cost precipitation sensor and
thus test its suitability for an out-of-the-box use. Measure-
ment campaigns were conducted both in the laboratory and
in the field.

2 Methods

2.1 Requirements for low-cost sensor systems

To improve the resolution of any official environmental mea-
surement network, the sensor systems have to fulfil different
requirements. When using a high number of sensor systems,
they have to be low cost while maintaining a certain level of
data quality and reliability to ensure an effective application.
Thus, sensors have to be quality-checked before being used.
To further reduce costs, the sensor system should be robust
and low maintenance.

The proposed systems should be energy efficient so that
the systems can operate for long periods of time without
battery replacement or can be charged by solar panels. This

would make the systems independent and not connected to
the power grid, which maximises the possibilities for mea-
suring sites. For real- or near-real-time use of the data, the
use of wireless connectivity is required to transmit the data
from the sensors to the users. This also improves flexibility
in the selection of the measuring sites.

The sensor system should be easy to install, use, and main-
tain, ideally even by people not familiar with the subject.
This also enables the use of volunteers (citizen scientists) to
further reduce costs. Since not all requirements have to be
met at all locations, modularity of the system would be desir-
able, whether it is for the choice of sensors, power supply, or
connectivity. Furthermore, to make the system as applicable
and transferable as possible, open-source hardware should be
used.

2.2 Development of a low-cost sensor system for data
acquisition

When designing a low-cost sensor system, one can either use
hardware specifically designed for the use case or rely on
widely available open-source hardware. The latter has the ad-
vantage of making the system as applicable and transferable
as possible. Two widely used open-source options are either
the Raspberry Pi (RPi) or the Arduino ecosystem.

Raspberry Pi is a single-board computer that is widely
used for a variety of applications such as education, home
media centres, home automation, or IoT projects. The boards
can be connected to a wide range of sensors, actuators, and
other electronic components through 28 digital input/output
(I/O) pins using standard connectors and protocols (serial
peripheral interface (SPI), I2C, serial). Furthermore, cam-
eras can also be connected to RPi and therefore used for en-
vironmental monitoring, e.g., to measure water levels (Elt-
ner et al., 2018) or to detect rockfalls (Blanch et al., 2020).
On RPi, Raspbian, a Linux variant, is used as the operating
system, while the connected sensors can be controlled and
read out, e.g., using Python. Since the RPi devices are real
computers, the sensor data or captured images can also be
processed directly on them. Most RPi boards provide con-
nectivity through an integrated Wi-Fi/Bluetooth module, but
other types of connectivity can be established either via USB
(e.g. universal mobile telecommunications system (UMTS)
dongle) or specific shields connected to the I/O pins.

Arduino is an open-source electronics platform based on
easy-to-use hardware and software. Unlike Raspberry Pi, the
Arduino ecosystem consists of boards featuring different mi-
crocontrollers that are not fully-fledged computers. Never-
theless, they provide almost the same connectivity to sensors
via the same connectors and protocols as used with Rasp-
berry Pi. While the computing abilities on the board are lim-
ited compared to RPi, their energy efficiency is significantly
higher. Arduino boards with different options of integrated
network connectivity (e.g. LoRa, GSM, and narrowband IoT
(Sigfox)) are available (Singh et al., 2020).
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Overall, the choice between Raspberry Pi and Arduino
will depend on the specific requirements of the use case and
the conditions available at the measuring site. If on-site pro-
cessing of images is needed or a power supply is available,
then Raspberry Pi is a good choice. If one needs to read and
broadcast sensor data from remote locations, then Arduino is
a more suitable and hence a more energy-efficient and cost-
effective option. Thus, two different modular sensor systems
are proposed which are based on the two different platforms.

2.2.1 Raspberry Pi

The Raspberry Pi Zero W (RPi0W) was chosen to keep
energy consumption and acquisition costs low. In previous
studies, it has been proven suitable for measuring hydro-
logical parameters, e.g., via a camera gauge (Eltner et al.,
2021). The RPi0W model combines the lowest price (be-
low EUR 10) with the lowest energy consumption (0.75–
1.5 W) within the available Raspberry Pi models while still
being fast enough for, e.g., image acquisition.

The RPi-based model is powered through the mains, al-
lowing it to run constantly, as energy consumption is not a
critical factor. Thus, logging sensor data in a high resolution
and uploading it in a sufficient schedule is possible. While
it is possible to power the Raspberry Pi system using a so-
lar panel and battery, the energy consumption of 0.5 to 5 W
(depending on the performed processes and chosen model)
may require a large panel and battery, thus generating higher
costs.

On RPi, the sensors were connected to the I/O pins and
read out via small Python scripts. For many sensors, libraries
for Python are available, making communication between
the sensor and RPi easy to set up. Readout data were then
written into a SQLite database file. Depending on the use
case, data can be instantly transmitted or read out period-
ically from the database and subsequently uploaded into a
cloud infrastructure. Here, the Message Queuing Telemetry
Transport (MQTT), a lightweight message transport proto-
col, was used. Data transfer was realised either through the
on-board Wi-Fi module, or using a USB UMTS modem util-
ising a dial-up internet connection. This connection is also
used for setting and frequently updating the system time of
the RPi via the internet as the RPi has no built-in real-time
clock (RTC).

2.2.2 Arduino

The proposed Arduino system consists of an Arduino board
from the Arduino MKR series which uses a low-power ARM
Cortex-M0 SAM D21 processor. Specifically, the Arduino
MKR Fox 1200 and the Arduino MKR GSM 1400 were
used; other network options are available. The main benefit
of the proposed system is the reduced energy consumption
compared to the RPi system. As the energy consumption in
the active state (measuring or transmitting sensor data) is al-

ready 80 % lower compared to RPi, the energy consumption
of the whole system can be reduced to fewer than 5 mW by
utilising deep-sleep modes through a low-power library. The
Arduino system can be run directly from two 1.5 V batteries
or a small solar panel. We achieved running times of up to
6 months on a pair of D cells and basically unlimited running
time on a small solar panel and a LiPo cell for buffering.

The Arduino system requires two additional parts, namely
a standard SD card for data storage and an external real-time
clock (RTC) module. For the MKR Fox 1200 version of the
Arduino system, this creates a limitation of the system as the
time cannot be updated online through the Sigfox network.
Thus, the accuracy of the timestamps relies on the drift of the
RTC module. Here the DS3231 was used, which can have a
drift of up to 2 ppm (maxim integrated, 2015), which equals
about 63 s over the course of a year.

Another limitation of the MKR Fox 1200 version is the
bandwidth and message limit that the used ISM band pos-
sesses (this also applies to, e.g., LoRa). Here, only 140 mes-
sages of 12 bytes a day are allowed for transmission, which
might cause a bottleneck if several sensors are used. So,
if data (and transfer) with a high temporal resolution are
needed, then one has to consider a GSM-based solution.

2.2.3 System cost

In this study, the cost for the cheapest monitoring solu-
tion is the described RPi option that is powered through
the mains while transferring the measured data via Wi-Fi
(about EUR 40+ sensors). The cheapest off-grid solution
(a system based on Arduino MKR Fox 1200) costs about
EUR 75+ sensors. A detailed summary of the system con-
figurations and corresponding costs is given in Table 1.

2.2.4 Low-cost environmental sensors

The developed systems are capable of connecting to a vari-
ety of low-cost sensors (e.g. the temperature/humidity sen-
sors DHT22 and SHT31). In this study, a Bosch BME280
weather sensor (i.e. temperature, humidity, and air pressure)
and the semi-professional Davis Vantage Pro2 rain gauge had
been used for demonstration. Furthermore, a RPi-based sys-
tem has been used in conjunction with a SHT31 tempera-
ture/humidity sensor, a pyranometer, and a Davis Vantage
Pro2 rain gauge. The source code for those setups is avail-
able through Zenodo (Krüger, 2024a).

2.2.5 Low-cost rain gauge

The considered rain gauge uses the tipping bucket principle.
It consists of a collector cone with a spherical opening at
the top. The collected precipitation is lead through a debris-
filtering screen into a container with two buckets on a pivot.
When one bucket fills up with water, it eventually tips and
empties the container, bringing the other bucket in position
to be filled. Each time the bucket tips, a contact is triggered
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Table 1. Cost for different sensor systems depending on the use case.

Electricity × × Solar powered Battery Solar powered
powered

Wi-Fi × (×)+ camera

System RPi Zero W RPi Zero W Arduino Arduino RPi Zero W
EUR 10 EUR 10 MKR Fox MKR Fox EUR 10

EUR 45 EUR 45

Power supply Power adapter Power adapter 5 W solar D cells 50 W+ solar
EUR 10 EUR 10 panel+ EUR 5 panel+

battery battery
loading loading
circuit circuit
EUR 30 EUR 100+

Accessories SD card SD card SD card SD card SD card
housing GSM modem RTC module RTC module housing
EUR 20 housing housing housing (GSM modem)

EUR 35 EUR 25 EUR 25 EUR 20/35

Cost total EUR 40 EUR 55 EUR 100 EUR 75 EUR 130+ /145+

which can be counted by a connected microcontroller or sen-
sor system.

Within the time frame of this study, the design of the
Davis rain gauge has been altered by the manufacturer. In
particular, three different models were available in that time
frame. In the first update, the design of the upper part (col-
lector cone) of the device changed. While the old version
(model no. 7852M/7857M) had the shape of a truncated
cone, the new one (model no. 6463M/6465M; further ref-
erenced as Type A) has the shape of a funnel inside the
cone. After the field study described in the next chapter,
the design (model no. 6464M/6466M; further referenced as
Type B) was changed again. This time, the tipping mecha-
nism changed from a two-bucket design to a one-bucket de-
sign. Instead of tipping and bringing the second bucket into
position, the new design uses a counterweight that returns the
bucket to the collection position after emptying upon reach-
ing the given amount of precipitation. The three types can be
seen in Table 2. As the older types are still widely in use, the
results of this study still apply for a wide range of users.

2.3 Quality assessment of a low-cost rain gauge

To benefit from the use of low-cost sensors, these have to pro-
vide a certain level of data quality and reliability. Thus, these
properties have to be assessed and verified for a given sen-
sor type. Two goals were pursued with regard to the perfor-
mance assessment. On the one hand, the accuracy of the rain
gauge was assessed. On the other hand, the quality (spread)
of the factory calibration and thus the suitability in a low-
cost, out-of-the-box use case was examined. Therefore, two
studies have been performed which will be described in the
following sections.

2.3.1 Lab calibration

To assess the quality of the factory calibration, a static cali-
bration was carried out (Marsalek, 1981). Hereby, the volume
of water which is required to tip the bucket is measured using
a syringe and a microscale.

The calibration was carried out in the lab for 37 new tip-
ping gauges of Type A. Furthermore, 20 rain gauges of the
same type used in the field study were also examined directly
at site, i.e. lab-calibrated on site, after carrying out the field
study. As the manufacturer changed the design after the com-
pletion of the field study, another lab calibration with nine
new gauges of Type B was carried out.

In preparation for the lab calibration, the table was levelled
utilising adjustable screws on the table legs. The rain gauges
themselves have been levelled using a built-in bubble level.
Furthermore, slices of paper have been used to account for
the remaining unevenness on the table. During the calibra-
tion, all gauges were oriented in exactly the same direction
on the table. All measurements were taken using a G&G mi-
croscale with an accuracy of 0.01 g. The rain collector has
a diameter of 16.5 cm, which equals to 4.277 mL or 4.269 g
of water (Tanaka et al., 2001) for each tipping of the bucket,
i.e. after 0.2 mm rainwater has been collected, as stated by
the manufacturer. For each gauge, the following process was
executed 20 times:

1. calibrating the microscale using a 100 g calibration
weight;

2. weighing an arbitrarily chosen amount of water (4–7 g)
on the microscale;

3. drawing up water into a syringe directly from the scale;
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Table 2. Different versions of the used low-cost rain gauge. The collector cone and measuring mechanism changed over time.

Model 7852M/7857M 6463M/6465M 6464M/6466M
(Type A) (Type B)

Collector cone

Measuring mechanism

4. dripping water slowly into one chamber of the tipping
bucket (starting on the side of the pole mount) until the
bucket tips;

5. clearing the remaining water in the syringe back onto
the microscale and subsequently taking a weight mea-
surement;

6. calculating the difference between the two measure-
ments;

7. removing the remaining water in the bucket using a pa-
per towel; and

8. going back to step 2.

Each weighing side was triggered 10 times (for mod-
els 6463M/6465M) to minimise the influence of random
measurement inaccuracies. In addition to calculating the
weight differences, an iterated mean value of these differ-
ences was calculated. The deviation of this iterated mean
value from the mean value after 10 measurements provides
information about the number of measurements after which
the mean value calculated up to that point is stable, i.e. con-
verged. This value can help estimate how many measure-
ments are necessary to make a reliable statement about the
weighing properties of the precipitation tipping buckets. Fur-
thermore, the obtained mean allows statements on absolute
accuracy to be made. According to the manufacturer, the
expected value is 0.2 mm. Deviations from this value show

whether over- or undercatch is to be expected in the precipi-
tation measurement.

2.3.2 Field study

A field study was carried out at the meteorological site of the
TU Dresden (Dresden University of Technology). The site is
situated in the valley of the river Wilde Weißeritz (50°59′ N,
13°35′ E; altitude 220 m NN (height above Amsterdam Ord-
nance Datum (NAP)); average annual precipitation in the pe-
riod 1981/2010 was 795.4 mm; Chair of Meteorology, 2023).
Several different professional instruments are measuring pre-
cipitation here, including a traditional Hellmann rain gauge,
an OTT Pluvio gauge, and a Young tipping gauge. These in-
struments are regularly maintained to meet the specifications
of the World Meteorological Organization (WMO).

The Hellmann gauge is made of a steel cylinder and has a
collecting area of 200 mm2. The collected water runs through
a funnel into a small container which is emptied daily at
07:00 CET, and the amount of water in the container is mea-
sured to calculate the precipitation for the last 24 h. The Hell-
mann device has been used as the reference for the climato-
logical measurements taken at this station since 1951 (Fig. 2)
and is thus considered the reference instrument in this study.
The Hellmann gauge requires no mechanical and electronic
parts; thus, the data quality should be stable as the instrument
has been set up properly.
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Figure 1. Scatterplots for the combinations of the three professional gauges depicting daily precipitation values for 2017 to 2019.

The OTT Pluvio is a weighing rain gauge consisting of a
collector cylinder (collecting area of 200 mm2) and weigh-
ing cell. The weight of the water collected in the cylinder is
weighed constantly, and subsequently, a precipitation amount
for each minute is generated. The resolution of the precipita-
tion data is 0.1 mm.

The third professional device is a Young tipping gauge
that utilises the same measurement principle as the low-cost
gauge, i.e. using a tipping bucket. The Young gauge also has
a collecting area of 200 mm2, and it has a measurement res-
olution of 0.1 mm per tip. In contrast to the low-cost gauges,
this device is equipped with a heating, which allows snow
precipitation to be measured.

Even with three professional gauges, the true precipita-
tion remains unknown as each of these devices is also asso-
ciated with uncertainties. Triple collocation analysis (Stof-
felen and Vogelzang, 2012; Stoffelen, 1998) can be used
to estimate the error variances of these three independent
but collocated data sets without requiring knowledge of the
true precipitation amount. We used a longer time series of
the three professional gauges lasting 3 years (from 1 Jan-
uary 2017 to 31 December 2019), consisting of daily ob-
servations, to estimate the uncertainties. Inspection of the
three scatterplots (Fig. 1) with all combinations of reference
gauges led to the assumption that the OTT Pluvio is the best
performing because the scatterplots for the Hellmann and
Young devices revealed lower correlations (Stoffelen and Vo-
gelzang, 2012). Therefore, we used an implementation pro-
vided by Jur Vogelzang (https://github.com/knmiscat/triple_
collocation, last access: 3 January 2024) to estimate the error
variances with the OTT Pluvio as a reference system. Sub-
sequently, the daily error standard deviations (SDs) could
be determined as follows: SDPluvio= 0.150 mm d−1, SD-
Hellmann= 0.183 mm d−1, and SDYoung= 0.278 mm d−1.
These values were used to evaluate the results of the low-cost
gauges when compared with the reference gauges.

The setup of the study was chosen to enable the analysis
of the spread of measurements relying on the factory calibra-
tion. Therefore, an array of 20 identical, new, low-cost rain

Figure 2. Tharandt meteorological site with reference instruments
(in the background on the left-hand side) and field study setup (in
the foreground).

gauges of Type A were set up. The rain gauges were mounted
on a wooden frame in an array of four by five devices, cov-
ering an area of about 1 m2. The frame is levelled and set at
a height of about 1 m above ground to match to the height of
the reference gauges located about 10 m to the south of the
reference instruments. The horizontality of the rain gauges
was ensured by the usage of the built-in bubble level of the
rain gauges and the washers while fixing the gauges to the
(levelled) frame. The setup is shown in Fig. 2. A Raspberry Pi
(RPi Model 3b) sensor system is used to log the precipitation
data (i.e. timestamps of tipping events) of the rain gauges.
To compare the low-cost gauge measurements with the refer-
ence instruments, the number of tipping events is multiplied
by 0.2 mm per tipping, as stated by the manufacturer. The
time synchronisation of the low-cost sensor system with the
reference gauges was ensured by setting the time for both
type of systems through the network time protocol (NTP).
Cumulative rainfall was measured in the months from Au-
gust 2018 to April 2019.
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Figure 3. Comparison between used and new gauges with respect to precipitation needed per tip. The mean for each group depicted with a
cross. The factory calibration claimed by manufacturer is shown with a red line.

Figure 4. Development of relative errors due to difference between the left and right tippings. The relative error decreases with each consec-
utive tipping within a rain event (error is shown with red dots, from left to right; cumulative precipitation is shown with a red line).

Figure 5. Comparison between used and new gauges. The SD of single measurements is given as a percentage of the mean.

3 Results

3.1 Lab calibration

In total, 66 rain gauges have been tested. Of these devices,
37 were new gauges of Type A and 20 had already been used
for about half a year (i.e. in the field study; Type A). A further
nine gauges used the new single tipping bucket mechanism
(Type B). None of the gauges had been recalibrated before
(Krüger, 2024a).

Considering all rain gauges of Type A, the mean wa-
ter amount required for one tip was 0.174 mm with a stan-
dard deviation of 0.013 mm. The mean value for new gauges
was 0.175 mm (SD 0.014 mm), and for the used gauges, it
amounted to a mean of 0.172 mm (SD 0.009 mm) (Fig. 3).
In contrast, the amount of water required for one tip for the
gauges of Type B was 0.194 mm with a standard deviation
of 0.004 mm. The distribution of results in all four groups
(A – new, A – used, and A – all; B) was tested to see if it
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is Gaussian using the Kolmogorov–Smirnov test (α = 0.05).
This could be confirmed for all four groups.

Confidence intervals for a level of 95 % have been calcu-
lated as follows: A – new (0.1680–0.1795 mm); A – used
(0.1699–0.1795 mm); A – all (0.1704–0.1771 mm); and B
(0.1911–0.1972 mm).

The measured average rain amount to tip the bucket is
lower than the stated value of the manufacturer (0.2 mm) for
both types, although the average of Type B is only off by
2.9 % compared to −13.2 % for Type A. The measurements
in the laboratory were taken without the rain collector and
thus are not accounting for loss effects of evaporation and
wind.

The measurements of both Type A groups (used and new
gauges) show large differences between the left- and right-
hand side of the tipping bucket. This leads to larger errors
for small precipitation events (Fig. 4). Nevertheless, the in-
fluence of the different sensitivities of the respective left and
right sides decreases continuously with an increasing number
of tips during a precipitation event and eventually approaches
the mean value of all left and right tips of the gauge. To min-
imise this influence, Marsalek (1981) states that a standard
deviation of smaller than 2 % of the mean is desirable; no
gauge of Type A could satisfy this need.

Although no bias due to tipping bucket sides is an issue for
Type B, differences between individual measurements still
exist. However, this variation is much smaller than the dif-
ferences which could be observed within the Type A group.
While the average SD of the single measurements for Type A
gauges was 5.6 % (new) and 4.7 % (used) of the mean, it was
only 1.6 % for Type B gauges (see Fig. 5). Seven out of nine
tested gauges of Type B fulfilled the threshold of 2 % stated
by Marsalek (1981).

3.2 Field study

Precipitation data were collected for the period from 1 Au-
gust 2018 to 30 April 2019. As there were some gaps in the
data for the professional gauges in August 2018 and at the
end of April 2019, the data for the whole data set were anal-
ysed for the period from 1 September 2018 to 25 April 2019.
Additionally, there were rare occurrences of gaps in the time
series of the Young tipping gauge (28 October 2018 and
21 and 28 February 2019) which could not be explained.
Those days have been removed from the data set for all
gauges.

Figure 6 shows the plot of cumulated precipitation for
the whole investigation period. The Type A rain gauges
show on average less underestimation (385.85 mm;−11.1 %,
SD= 17.0 mm) than the other automatic rain gauges when
compared to the Hellmann gauge (433.9 mm). While the re-
sults of the OTT Pluvio gauge are slightly worse than the
results of the low-cost gauges (353.9 mm; −18.4 %) the re-
sults of the Young tipping gauge are considerably worse than
the low-cost gauges (310.8 mm; −28.4 %).

The measured sums of the 20 low-cost gauges range from
350.4 mm, which is slightly less than the OTT Pluvio gauge,
to 414.0 mm, which is slightly less than the sum of collected
precipitation of the Hellmann gauge. The distribution of the
measurements of the low-cost gauges compared to the pro-
fessional gauges is shown in Fig. 7.

We used the obtained daily error standard deviations (see
Sect. 2.3.2) to run a Monte Carlo simulation (n= 100) with
the daily time series for each professional gauge to obtain a
synthetic distribution of the cumulated values for each gauge.
These distributions were compared with the distribution of
the 20 low-cost gauges utilising a t test. This resulted in a
rejection of the null hypothesis for all professional gauges.
Thus, all reference gauges are significantly outside of the dis-
tribution of low-cost gauges.

Part of the variation in the results of the low-cost gauges
can be explained by the lack of recalibration prior to their us-
age. In the lab analysis, calibration values between 0.159 and
0.185 mm were obtained, which correspond to a range be-
tween −7.6 % and +7.6 % of the mean of all gauges. This
is in the same range as the measured precipitation (−9.3 %
to +7.6 % of the mean of all gauges). Nevertheless, cali-
bration values and observed precipitation totals show only a
moderate negative correlation Fig. 8. For example, gauge 14
recorded the lowest number of tips, and its correlation value
(amount of water needed per tip) was the highest. In contrast,
gauge 10 and gauge 13 measured about the same amount
of precipitation (tippings), but their calibration values are in
completely different ranges.

Multiplying the calibration values of each gauge with the
tippings recorded by the associated gauge would result in a
much lower measured precipitation (due to the lower mean
of 0.172 mm). However, the standard deviation would also
be much smaller (12.5 mm vs. 17.5 mm; Fig. 9). Thus, to im-
prove the issue of the scattered calibration values, one could
then scale the mean of the calibration values to the claimed
value by the manufacturer of 0.2 mm and subsequently all
values by this factor. This would then result in a higher pre-
cision of the obtained precipitation for all gauges. Neverthe-
less, this step is only possible for a larger group of gauges at
hand.

Comparing the cumulated rainfall values of the different
gauges in more detail, two periods of strong deviations of
the low-cost gauges to the professional gauges can be seen.
This observation can be made for all low-cost gauges and
is caused by partial blocking of the funnel with snow on
8 January and 3 February 2019 (see Fig. 10 which shows
the cumulative rainfall with an hourly resolution). On 8 Jan-
uary 2019, rising temperatures led to simultaneous snow
melting in all gauges and a subsequent run off and regis-
tration of the melting snow on 12 January 2019 and on the
following days. On 3 February 2019, a warming of the black
funnel due to solar irradiation led to a slightly different pat-
tern of precipitation measurement. This time, the gauges at
the edge of the array were emptied first (nos.1–5, 10, 15, and
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Figure 6. Cumulative precipitation for all low-cost gauges and three professional gauges for the whole study time.

Figure 7. Distribution of cumulative precipitation of 20 low-cost
and 3 professional gauges.

20), while the ones inside the array were blocked for longer
(e.g. nos.6–9, 11–14, and 16–19) until 8 February 2019.

Although the results of the cumulative precipitation over
the whole testing period are promising, the Pearson cor-
relation coefficient values for shorter time frames are not.
The correlations for daily values between the different low-
cost gauges are high (0.937 . . . 0.997). However, the corre-
lations with the professional gauges are significantly lower
(0.779–0.841 for Hellmann, 0.730–0.784 for Young, and
0.828–0.890 for OTT Pluvio). The low-correlation values
can partly be explained by the circumstance that the low-
cost gauges have no heating to handle snow precipitation.
Removing the days with blockages and the subsequent melt-
ing of water from the data set (9–15 January/3–10 February)
yields a strong increase in the correlation values (daily) with

Figure 8. Calibration values vs. measured precipitation of the
20 gauges used in the field study (Type A).

the professional gauges (0.973–0.990 for Hellmann, 0.897–
0.912 for Young, and 0.973–0.991 for OTT Pluvio). Nev-
ertheless, correlation values within the group of low-cost
gauges are higher compared to the professional gauges, rang-
ing from 0.977 to 0.999 for daily values.

Measuring principles (weighing vs. tipping gauge) and
resolutions (0.1 mm vs. 0.2 mm) differ between OTT Pluvio
and the low-cost gauges. Therefore, correlation values were
calculated for a wide range of accumulation intervals (1 min
to 1 d) to assess which accumulation intervals might be
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Figure 9. Comparison between different calibration values used.

Figure 10. Cumulative rainfall for two selected periods with hourly resolution. Note that hourly data for the Hellmann gauge are not available
and hence are only marked with the daily readings (orange crosses).

Figure 11. Average correlation values for different accumulation intervals (low-cost vs. low-cost and low-cost vs. OTT Pluvio).
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Figure 12. Correlation for average rainfall measured by subset of 1–5 low-cost gauges with OTT Pluvio for three different accumulation
intervals at (a) 1 min, (b) 5 min, and (c) 15 min.

needed for acquiring reliable data. As expected, correlations
increase with an increased accumulation time. As already
shown for the daily values, correlations within the group of
low-cost gauges are higher than correlations between low-
cost gauges and OTT Pluvio. Nevertheless, differences de-
crease with increasing accumulation intervals (Fig. 11).

As the correlation of the low-cost gauge with OTT Pluvio
is very low for accumulation intervals of 15 min and shorter,
one could try to use several low-cost rain gauges to over-
come this problem. We investigated this by randomly choos-
ing a subset of gauges (1 to 5) from the data set and subse-
quently calculating the correlation of their average measure-
ment with the reference gauge for 2000 simulations. Results
for 1, 5, and 15 min can be seen in Fig. 12. It can be shown
that an increase in the used gauges leads to increased corre-
lations. The biggest gain can be seen when changing from
one to two gauges. The effect than diminishes with further
gauges. Nevertheless, the benefit of added gauges is a lot
smaller compared to increasing the accumulation interval.

4 Discussion

In this study, we assessed the suitability of a widely used low-
cost precipitation sensor for an out-of-the-box use, i.e. ap-
plying the sensor in the field without prior calibration. The
results of the lab calibration suggest that it is beneficial to
check the factory calibration for the older type of the sensor
(Type A) for outliers.

4.1 Lab calibration

It could be shown for Type A gauges that the mean of
two consecutive tippings is consistent across all tested
gauges resulting in a mean of 0.174 mm per tip. However,
it also became obvious that some tipping gauges deviated
strongly from this mean value. Utilising the presented analy-
sis scheme outliers from the expected mean can be detected
after approximately four to five tilts per side. Furthermore,

the amount of water required for a tipping of one of the buck-
ets is important. In the case of large differences between both
bucket sides, the measurement accuracy of very small precip-
itation events, in which only a few tilts occur, will be affected
more strongly, resulting in larger relative errors. However,
this is only the case for odd numbers of tipping. A recali-
bration of the gauge is recommended if the difference be-
tween both bucket sides is larger than 0.05 mm of precipita-
tion (25 % of nominal volume). In contrast, Marsalek (1981)
advised continuing the calibration until the mean was within
of 2 % of the nominal volume.

The measured means of the tipping are consistently lower
than 0.2 mm across all gauges (Types A and B), leading to the
assumption that a factory calibration might have been per-
formed. Furthermore, potentially only one side of the mech-
anism (Type A only) had been calibrated until the desired
volume was met, which could have led to the observed dif-
ferences between the two buckets. Due to the design of a
tipping bucket, water is lost when the bucket is tilted, as the
other bucket is not in position again fast enough. This can
lead to an undercatch which increases with the rainfall inten-
sity. These errors can range from 10 % to 30 % (Humphrey
et al., 1997; Marsalek, 1981). Furthermore, error influences
due to evaporation and wind are conceivable.

In contrast to the results of gauges of type A, the measured
mean for Type B (0.194 mm) is considerably closer to the
nominal volume (0.2 mm). Also, the deviations between the
single measurements are much smaller compared to Type A.
These gauges might have been factory calibrated to a higher
volume because the mechanism is less prone to undercatch
at higher-rainfall intensities.

4.2 Field study

In the field study, it could be shown that the gauges of
Type A, on average, show accumulated rainfall results which
are closer to the Hellmann reference gauge than the two other
professional gauges. Nevertheless, the spread of the mea-
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sured precipitation totals is about twice as big as that stated in
the manufacturer’s data sheet (±4 %), with deviations rang-
ing from −9.3 % to +7.6 % compared to the mean of all
gauges. Even the SD for all gauges (4.6 %) is bigger than
that value. The manufacturer is stating that this accuracy is
valid for rain rates up to 100 mm h−1, which have not been
observed by any of the gauges in the study period.

Parts of this variability can be explained by the lack of
calibration before use, as shown above.

Furthermore, other error sources can have an impact on the
measured precipitation. As the 20 gauges have been placed
in a very dense array, some of the gauges are more shielded
from the wind compared to others. This should lead to an un-
dercatch for the exposed gauges when compared to the more
shielded ones (Pollock et al., 2018). Nevertheless, this sys-
tematic behaviour was not observed.

Splashing of raindrops and thus rainfall being diverted to
adjacent gauges might lead to a systematic pattern in the
dense array. However, this was not observed in this study.

The dense array could have an influence on evaporation
behaviour, as some gauges are more exposed to direct sun-
light than others. This is especially true in the winter months,
as the Sun only rises to very low angles, which was al-
ready seen in the behaviour of the melting snow (as described
above).

A further source of error might also be the non-optimal
mount of the gauges. To ensure good readings, the gauges
have to be perfectly levelled (Burt, 2009). While installing
the array, the levelling was done using the provided circular
bubble level, which has limited accuracy. Furthermore, the
frame on which the gauges were installed was made of wood,
which might degrade and thus move over time.

Last, but not least, although the array only covered an
area of about 1 m2, small-scale variability in the rain fields
could also play a role when obtaining different precipitation
readings. Nevertheless, other studies, e.g. the WMO field in-
tercomparison of rain intensity gauges (Lanza and Vuerich,
2009), used similar or bigger sized setups to this study.

5 Conclusions

In this study, two low-cost sensor systems based on the Ar-
duino and Raspberry Pi families have been presented. Here
it could be shown that utilising widely available open-source
hardware allows the user to flexibly create a sensor system
tailored to their needs on a given site while keeping the costs
low. The presented systems are capable of logging sensor
data of various sensors and are able to either log data locally
or transmit the data to the internet.

Furthermore, the factory calibration of the widely used
Davis tipping rain gauge was examined, both in the labo-
ratory and in the field. In the lab, different generations of
the gauge have been tested. Here, the results show a distinct
difference between the old and the newer generation of the

gauge. While for the older type an average of 0.174 mm of
water was needed for a tip, 0.194 mm was needed for the
newer generation, which is less than the amount officially
stated by the manufacturer. For the older type, it was also
found that the gauges are not tipping equally with both buck-
ets. This leads to errors in the precipitation measurements for
small rain events. To minimise this error, gauges should be
checked and calibrated for equal tipping before installation.
This is particularly important for the several tens of thou-
sands of gauges of Type A probably already in use world-
wide. Here, the factory calibration should at least be checked.
For the newer Type B, it could be found that the deviation be-
tween the tippings is much smaller compared to the old type.
Whether this has a positive impact on the accuracy was not
within the scope of this study but has to be further investi-
gated. Nevertheless, for these gauges, the factory calibration
should also be checked before use, as our sample was very
small (n= 9).

Beside the lab calibration, 20 gauges (Type A) have been
tested against professional rain gauges in the field. Here, the
results showed an undercatch when compared to the refer-
ence Hellmann gauge of the climate station where the ar-
ray was installed. Furthermore, it could be shown that the
spread of the factory calibration is larger (by a magnitude
of 2) than stated by the manufacturer. Nevertheless, the re-
sults of the low-cost gauge were closer to the reference than
the Young tipping gauge and OTT Pluvio, respectively. Our
results suggest (high correlation for longer accumulation in-
tervals vs. professional gauges) that the error due to under-
catch could be mitigated by applying a factor for each gauge;
however, this would require measurements against a refer-
ence station either in the field or in the lab.

The study has shown that the tested low-cost sensor is suit-
able for use in the collection of meteorological data. How-
ever, the factory calibration should at least be checked, if not
recalibrated, before use. When paired with a low-cost sensor
system and properly set up, these sensors can be beneficial
for the densification of existing sensor networks. For accurate
results, the desired out-of-the-box use is not recommended.

Data availability. Data sets obtained during the experiments (lab
and field), as well as source code, are available from Zenodo
at https://doi.org/10.5281/zenodo.10838614 (Krüger, 2024a). The
source code will be updated and is available on GitHub (https:
//github.com/kruegertud/tharandt_raingauge/, Krüger, 2024b).
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