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Abstract. The constant curvature spacetimes of 3d gravity and their associated symmetry
algebras are shown to arise from the 6d Drinfel’d double that underlies the two-parametric
‘hybrid’ quantum deformation of the sl(2, R) algebra. Moreover, the quantum deformation
supplies the additional structures (star structure and pairing) that enter in the Chern–Simons
formulation of the theory, thus establishing a direct link between quantum sl(2, R) algebras and
3d gravity models. In this approach the flat spacetimes and Newtonian models arise as Lie
algebra contractions that are governed by two dimensionful sl(2, R) deformation parameters,
which are directly related to the cosmological constant and to the speed of light.

1. Introduction
Several arguments suggest that the low energy limit of a quantum theory of gravity could be
invariant under a certain quantum deformation of the Poincaré group (see [1] and references
therein). In the particular case of 3d gravity this viewpoint is strongly supported by the fact
that Poisson–Lie groups (which are just the semiclassical limit of quantum groups) arise as
relevant symmetries of the classical theory [2, 3, 4]. There is evidence [6, 4] suggesting that the
relevant symmetries in 3d quantum gravity are certain quantum doubles associated with the
isometry groups of Lorentzian and Euclidean constant curvature spacetimes (see [5, 6, 7, 8, 9]).

Nevertheless, so far only quantum deformations based on a single deformation parameter
have been explored in this context. However, multiparametric quantum deformations do exist
(see [10] for a generic discussion and [11] for the specific quantum gl(2) classification) and they
are canonically associated to multiparametric classical Drinfel’d doubles.

In this contribution we show that the two-parametric (η, z) quantum sl(2,R) approach
presented in [12] provides a common framework for the Chern–Simons formulation of 3d gravity,
since all the possible constant curvature spacetimes and isometry groups relevant in the theory
arise naturally from the classical Drinfel’d double that characterizes the semiclassical limit of this
‘hybrid’ deformation. In fact, the two deformation parameters have a direct physical meaning:
η corresponds to the cosmological constant, while z is related to the speed of light. Moreover,
both the nonrelativistic [13] and the flat limit can be obtained as Lie algebra contractions.

2. Spacetimes and symmetries in 3d gravity
Due to the absence of local gravitational degrees of freedom, any solution of the 3d vacuum
Einstein equations is locally isometric to one of six standard spacetimes (see Table 1), where the
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Table 1. Constant curvature spacetimes and isometry groups in 3d gravity.

Λ > 0 Λ = 0 Λ < 0

Lorentzian dS2+1 = SO(3, 1)/SO(2, 1) M2+1 = ISO(2, 1)/SO(2, 1) AdS2+1 = SO(2, 2)/SO(2, 1)
Isom(dS2+1) = SO(3, 1) Isom(M2+1) = ISO(2, 1) Isom(AdS2+1) = SO(2, 2)

Euclidean S3 = SO(4)/SO(3) E3 = ISO(3)/SO(3) H3 = SO(3, 1)/SO(3)
Isom(S3) = SO(4) Isom(E3) = ISO(3) Isom(H3) = SO(3, 1)

cosmological constant is Λ. For Euclidean signature these are the three-sphere S3 (Λ > 0), 3d
hyperbolic space H3 (Λ < 0) and 3d Euclidean space E3 (Λ = 0). The Lorentzian cases are the
3d dS space dS2+1 (Λ > 0), AdS space AdS2+1 (Λ < 0) and Minkowski space M2+1 (Λ = 0).

Moreover, 3d gravity can be formulated as a Chern–Simons (CS) gauge theory [14, 15] with
gauge group given by the isometry group of the associated standard spacetime. This requires
the choice of a symmetric, non-degenerate, Ad-invariant bilinear form 〈 , 〉 on the corresponding
Lie algebra. The Lie algebras of the six isometry groups of 3d gravity can be written as [15]

[Ja, Jb] = εabcJ
c, [Ja, Pb] = εabcP

c, [Pa, Pb] = λεabcJ
c, (1)

where a = 0, 1, 2 and indices are raised with either the 3d Minkowskian or the 3d Euclidean
metric. Note that both the signature and the cosmological constant arise as structure constants
(λ = Λ for Euclidean signature and λ = −Λ for the Lorentzian one). As shown in [15] (see also
[8, 16]), the relevant bilinear form for the Chern-Simons formulation of 3d gravity is

〈Ja, Pb〉 = gab, 〈Ja, Jb〉 = 〈Pa, Pb〉 = 0, (2)

where gab is either the Euclidean or the Minkowskian metric. With this bilinear form, the
Einstein-Hilbert action for 3d gravity can be written as a Chern-Simons action by combining
the triad e and the spin connection ω into a CS gauge field A = eaPa+ωaJa. This is a connection
with values in the Lie algebra (1), which has to be equipped with the star structure

J∗a = −Ja, P ∗a = −Pa. (3)

As we shall see in the sequel (see [12] for details), all the spacetimes and the symmetry algebras
(1) of 3d gravity, together with the specific bilinear form (2) can be straightforwardly related to
a two-parametric quantum deformation of the real Lie algebra sl(2,R) ' so(2, 1).

3. The ‘hybrid’ quantum deformation of sl(2,R)
The sl(2,R) Lie bracket and undeformed coproduct ∆(0) : sl(2,R)→ sl(2,R)⊗ sl(2,R) are

[J3, J±] = ±2J±, [J+, J−] = J3, (4)
∆(0)(Ji) = Ji ⊗ 1 + 1⊗ Ji, i = 3,±, (5)

and we assume the star structure J∗3 = −J3, J
∗
± = −J±. A quantum sl(2,R) algebra is a

power series deformation of the previous commutation rules and coproduct map (see [10]). If
we expand the deformed coproduct map ∆ϕ in the quantum deformation parameter(s) ϕ we
get ∆ϕ =

∑∞
k=0 ϕ

k δ(k) = ∆(0) + ϕ δ(1) + o[ϕ2] and each quantum deformation is uniquely
characterized (see [10]) by the skew-symmetric part δ of the first-order deformation δ(1). As
this cocommutator δ always generates a Lie bialgebra structure, the classification of quantum
deformations of a given Lie algebra reduces to the classification of its Lie bialgebra structures.
In the case of sl(2,R) such classification is well-known (see [10, 11, 17]).
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In particular, the so-called ‘hybrid’ quantum algebra slη,z(2,R) is a two-parametric quantum
deformation generated by the two-parametric classical r-matrix

r = rη + rz = η J+ ∧ J− +
z

2
J3 ∧ J+, (6)

which is a solution of the modified classical Yang–Baxter equation. The associated δ is

δ(J+) = ηJ+ ∧ J3, δ(J3) = zJ3 ∧ J+, δ(J−) = ηJ− ∧ J3 + zJ− ∧ J+. (7)

As we will show in the following, in the context of 3d gravity both parameters η and z play
essential roles and have a clear physical interpretation.

4. 3d AdS gravity from the ‘hybrid’ Drinfel’d double
Each coboundary Lie bialgebra gives rise to a Drinfel’d double Lie algebra [17, 18]. In our case
the classical Drinfel’d double Dη,z(sl(2,R), δ) is the 6d Lie algebra spanned by {Ji}i=3,± and its
dual basis {ji}i=3,±, with Lie brackets given by (4) and dual brackets induced from δ (7)

[j3, j+] = −ηj+ + zj3, [j3, j−] = −ηj−, [j+, j−] = −zj−. (8)

The remaining brackets are the “crossed” or “mixed” Lie brackets, which read

[J3, j
3] = zJ+, [J3, j

+] = −zJ3 − 2j+, [J3, j
−] = 2j−,

[J+, j
3] = −ηJ+ − j−, [J+, j

+] = ηJ3 + 2j3, [J+, j
−] = 0,

[J−, j3] = −ηJ− + j+, [J−, j+] = −zJ−, [J−, j−] = ηJ3 + zJ+ − 2j3.
(9)

The pairing between the basis {Ji}i=3,± and the dual basis {ji}i=3,± is

〈Ji, jk〉 = 〈jk, Ji〉 = δki , 〈Ji, Jk〉 = 〈ji, jk〉 = 0, i, k = 3,±. (10)

If both deformation parameters are real, Dη,z(sl(2,R), δ) inherits the star structure

J∗3 = −J3, J∗± = −J±, j3∗ = −j3, j±∗ = −j±. (11)

Now we introduce in Dη,z(sl(2,R), δ) the ‘Chern–Simons basis’ [12] Ja, Pa (a = 0, 1, 2) through

J0 =
1
2

(J+−J−), J1 =
z

2
J3, J2 =

z

2
(J++J−), (12)

P0 =η(J++J−)− z
2
J3+j−−j+, P1 =−z2J++2zj3, P2 =ηz(J+−J−)+

z2

2
J3+z(j++j−),

and we find that the Lie brackets of Dη,z(sl(2,R), δ) in the CS basis are just

[J0, J1] = −J2, [J0, J2] = J1, [J1, J2] = z2J0,

[J0, P0] = 0, [J0, P1] = −P2, [J0, P2] = P1,

[J1, P0] = P2, [J1, P1] = 0, [J1, P2] = z2P0,

[J2, P0] = −P1, [J2, P1] = −z2P0, [J2, P2] = 0,
[P0, P1] = −4η2J2, [P0, P2] = 4η2J1, [P1, P2] = 4η2z2J0.

(13)

This means that Dη,z(sl(2,R), δ) ' so(2, 2), provided that η, z are non-zero real numbers. If
J0, Jb, P0, Pb, (b = 1, 2) are interpreted as the generators of rotations, boosts, time translations
and spatial translations, then so(2, 2) is the symmetry algebra of the 3d AdS space, in which
J0, J1, J2 span the so(2, 1) subalgebra and the AdS spacetime is AdS2+1=SO(2, 2)/SO(2, 1).

Thus, the deformation parameters of the hybrid deformation slη,z(2,R) are directly related
to the cosmological constant Λ = −λ and the speed of light c through λ = 4η2 and c2 = 1/z2,
which means that the signature of the metric is g = diag(−1, z2, z2). Moreover, by using the
relations (12), we find the star structure (3) and the pairing (10) (z2 can be rescaled to 1)

〈J0, P0〉 = −1, 〈J1, P1〉 = z2, 〈J2, P2〉 = z2. (14)
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5. Analytic continuation and contractions
The previous results can be straightforwardly generalized to other signatures and values of the
cosmological constant by considering imaginary values of η, z as well as the limits η, z → 0 (which
can be understood, respectively, as the “flat” and “non-relativistic” Inönü–Wigner contractions).
In this way we obtain nine 3d homogenous spaces Xη,z, which are a subfamily of the Cayley–
Klein spaces [19] defined through Xη,z = 〈Dη,z(sl(2,R), δ)〉/〈J0, J1, J2〉. In this way, the quantum
algebra slη,z(2,R) gives rise in a unified way to the following nine homogeneous spaces:
• The Riemannian spaces for z ∈ iR∗: the three-sphere, the 3d hyperbolic space and the 3d
Euclidean space, with Λ = λ = 4η2 = ±1/R2, where R is the radius (R→∞ for E3).
• The Lorentzian spaces for z ∈ R∗: 3d AdS, dS and Minkowski space. Now Λ = −λ with
λ = 4η2 = ±1/τ2, where τ is the (time) universe radius (τ →∞ for M2+1).
• The non-relativistic or Galilean limits of 3d gravity [13] when z = 0 (c → ∞): the two
Newton–Hooke spacetimes and the Galilean one, both with degenerate pairing and metrics.

6. Concluding remarks
We emphasize that our approach is obtained from the first order (i.e. the one containing the
semiclassical information) of the ‘hybrid’ quantum deformation. Therefore, the construction and
analysis of the complete quantum counterpart of Dη,z(sl(2,R), δ) is worth further investigation.
The explicit construction of the quantum algebra slη,z(2,R) can be traced back to [11]. A
nonlinear change of basis connecting this deformation with the Drinfel’d–Jimbo one [20, 21] was
found in [22]. Note also that the dual viewpoint is equally tractable: the ‘hybrid’ Poisson–Lie
group structure on SL(2) can be obtained through the Sklyanin bracket for the classical r-matrix
(6), and its quantization gives rise to the ‘hybrid’ quantum SL(2) group [11, 23].
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