
 

Multi-Objective Rule System Based Control Model with Tunable
Parameters for Swarm Robotic Control in Confined Environment

Yuan Wang, Lining Xing, Junde Wang, Tao Xie, and Lidong Chen*

Abstract: Enhancing  the  adaptability  of  Unmanned  Aerial  Vehicle  (UAV)  swarm  control  models  to  cope  with

different  complex working scenarios  is  an important  issue in  this  research field.  To achieve this  goal,  control

model with tunable parameters is a widely adopted approach. In this article, an improved UAV swarm control

model  with  tunable  parameters  namely  Multi-Objective  O-Flocking  (MO O-Flocking)  is  proposed.  The MO O-

Flocking model is a combination of a multi rule control system and a virtual-physical-law based control model

with  tunable  parameters.  To  achieve  multi-objective  parameter  tuning,  a  multi-objective  parameter  tuning

method  namely  Improved  Strength  Pareto  Evolutionary  Algorithm  2  (ISPEA2)  is  designed.  Simulation

experiment  scenarios  include  six  target  orientation  scenarios  with  different  kinds  of  objectives.  Experimental

results show that both the ISPEA2 algorithm and MO O-Flocking control model have good performance in their

experiment scenarios.

Key words: swarm robotics; flocking model; parameter tuning; multi-objective optimization; heuristics

1    Introduction

In  recent  years,  Swarm  Robotics  (SR)  has  attracted
many research interests[1]. In an SR, complex tasks are
executed by several  automatic running robots.  Though
the  SR  concept  seems  to  be  similar  to  multi-robot
system, there are some main differences. According to
Şahin[2],  the  differences  between  multi-robot  systems
and SRs include:

(1)  Robots  must  be  physically  embodied  and
situated.

(2) A minimum robot group size of 10 to 20 must be
satisfied.

(3)  Each  robot  in  SR  must  have  a  simple  structure
and limited functions.

(4) Each robot in SR must be homogenous.
Due  to  Şahin’s[2] SR  design  principles,  there  is  no

explicit leader in an SR. Each robot in an SR embodies
a  homogenous  individual  controller.  Through  this
controller, individuals in SR achieve various behaviors
(target  orientation,  collation  avoidance,  etc.).  Thus,
individual controller design is a crucial issue for an SR.
A  deliberately  designed  individual  controller  can  help
SR achieve its goals efficiently.

Many  studies  have  been  made  on  SR  individual
controller  design.  Reviews  of  these  methods  can  be
seen  in  Refs.  [1, 3].  Among  these  methods,  virtual-
physical-law based  design  is  a  widely  applied  method
for SRs that require a certain formation. The very first
article  that  introduces  virtual-physical  based  design
method is Ref. [4]. In this article, Khatib[4] introduced a
concept  called  artificial  potential  field.  In  works  that
apply  virtual-physical-law  based  design  methods,
robots are subject to at least two main forces: attractive
force  form  targets  (target  orientation)  and  repulsive
force  from  obstacles  (obstacle  avoidance).  According
to  Gazi  and  Passino[5],  virtual-physical-law  based
design methods have three advantages:

(1)  Robot  behaviors  are  decided  by  using  one
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mathematical  rule  instead  of  multiple  rules  or
behaviors.

(2)  The  obtained  behaviors  can  be  combined  by
using vectorial operations.

(3)  The  robustness  and  stability  of  virtual-physical-
law  based  controllers  can  be  analyzed  by  using
theoretical tools.

Studies  about  virtual-physical-law  based  design
method are mostly carried out on physical rule designs.
Spears  et  al.[6] proposed  the  most  general  virtual-
physical-law  based  design  SR  control  model.  Fiorini
and  Shillert[7] proposed  an  important  concept  called
Velocity  Obstacle  (VO).  Berg  et  al.[8] extended  VO
concept  by  taking  account  the  reactions  between
neighbor  individuals.  Following  these  articles,  Santos
et  al.[9] proposed  a  new  concept  called  Virtual  Group
Velocity  Obstacle  (VGVO).  VGVO  concept  defines  a
group of robots as a virtual obstacle. This keeps robots
from  other  groups  mingling  with  current  group  of
robots. La et al.[10] implemented reinforcement learning
method into an artificial potential-field based controller
which enables multiple robots to move together and to
avoid  obstacles.  Woods  and  La[11] proposed  a  new
drone controller for dynamic target tracking mission. In
this  article,  they  extended  formal  potential-field  based
controller with taking relative velocity into account. A
real-world scenario with Parrot ARDrone 2.0 is used to
test the performance of proposed controller. Ha et al.[12]

and Meier et al.[13] extended virtual-physical-law based
design  method  with  velocity  alignment  purpose.  To
achieve  this  goal,  a  power  law  of  reducing  velocity
difference  among  nearby  individuals  is  applied.  Xu
et  al.[14] proposed  an  SR  formation  reconfiguration
model with Dynamic Reference Point (DRP). The DRP
controller  performs  better  on  obstacle  avoidance.
Harder  and Lauderbaugh[15] proposed a  general  model
for  SR  formation  specification.  This  model  enables  to
control variable size of drones. Alfeo et al.[16] proposed
an  evolution-based  flocking  model  to  solve  the  target
search problem. The control model is better in terms of
swarm  formation,  search  efficiency,  and  scalability.
However,  the  emphasis  on  reducing  the  flight  time
results in the lack of simplicity and universality. Li and
Fang[17] proposed  a  pigeons  behavior  based  flocking
model  for  free-flying scenarios  with  different  kinds  of
obstacles.  But  this  method  can  only  deal  with  swarm
formation  control  of  simple  formations,  such  as
V-shape,  linear-shape,  and  circular-shape.  Zhang
et  al.[18] proposed  an  adaptive  control  model  for

Unmanned  Aerial  Vehicle  (UAV)  swarm  formation
control  in  3D space  with  wind  field  disturbances.  The
wind  field  model  is  decoupled  into  time-varying
disturbances  in  three  directions  of  space.  Pyke  and
Stark[19] proposed a UAV swarm control  model called
p-drones,  which  is  a  combination  of  Particle  Swarm
Optimization  (PSO)  and  virtual-physical-law  based
control  model.  This  model  has  better  performance  in
navigation  and  collision  avoidance  compared  with
existing  algorithms.  Li  et  al.[20] introduced  Light
Transmission Model (LTM) into potential field control
model  to  improve  the  collision  avoidance  ability  of
UAV  swarm.  The  new  control  model  has  good
advantages  in  collision  avoidance,  rapid  formation
reconstruction, and formation maintenance.

Though virtual-physical-law based SR controller has
the  advantage  of  easy  implementation,  it  may  lack
robustness in different working scenarios. The reason is
that only one mathematical rule is applied and normally
a  single  objective  fitness  function  is  used  to  evaluate
controller  performance.  On  the  other  hand,  the
expansion  of  the  UAV  swarm  scale  and  the  high
dynamic  environment  inevitably  lead  to  the  growth  of
the  complexity  of  the  working  scenarios[21].  Hence,
improving  the  robustness  of  the  control  model  in
different working scenarios is increasingly crucial.

To  overcome  the  weakness  of  lacking  robustness  in
different  working scenarios,  one way is  to use tunable
parameters  in  SR  control  model.  Using  tunable
parameters  in  SR  control  model  is  an  important
direction  of  improving  the  performance  of  SR  control
model  in  different  working  scenarios.  To  our  best
knowledge,  the  very  first  method  using  SR  control
model  with  tunable  parameters  is  Hettiarachchi[22].  In
this  article,  Hettiarachchi[22] proposed  an  SR  control
model  for  obstacle  avoidance  based  on  Lennard-Jones
potential  function.  An  evolutionary  algorithm  is
implemented  to  tune  parameters  off-line.  Pugh  and
Martinoli[23] proposed an SR control model with an on-
line  parameter  tuning  method  based  on  PSO.  Genetic
Algorithm  (GA)  is  used  as  comparison.  Experiment
results  show  that  SR  control  model  with  PSO
parameter tuning algorithm achieves a better degree of
diversity in the swarm. Folino et al.[24] proposed a self-
adaptive SR controller for decentralized SR clustering.
This approach avoids the sequential search of canonical
clustering  algorithms  and  permits  a  scalable
implementation.  Cetin  et  al.[25] implemented the  fuzzy
logic controller into UAV swarm control model for the
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control  of  the  altitude,  speed,  and  heading.  Yang
et  al.[26] proposed  an  SR  control  model  with  tunable
parameter  for  agent  aggregation behaviors.  The model
in  this  article  is  an  improved  Vicsek  Model  with  a
parameter  that  controls  the  strength  of  influence  of
robots in a swarm. Zhao et al.[27] proposed an improved
adaptive-velocity  self-organized  SR  control  model.
This  model  has better  convergence performance under
high speed.  The  parameter  space  of  this  model  is  also
analyzed  in  this  article.  Very  recently,  Vásárhelyi
et al.[28] proposed a new evolution-based SR controller.
In  this  article,  they  introduced  a  virtual-physical-law
based  SR  individual  controller  with  11  tunable
parameters.  To  achieve  model  optimization,  a  multi-
objective  optimization  algorithm  called  Covariance
Matrix  Adaption  Evolutionary  Strategy  (CMA-ES)  is
applied. Except for the intensive computation cost (2 to
6  days  for  a  single  run  on  the  Atlasz  supercomputer
cluster),  this  controller  has  good  performance  on
scenarios  of  circular  flying,  diagonal  flying,  and  free
flying with multi obstacles.

Apart  from  these  articles,  articles  that  mainly  focus
on  the  UAV  swarm  control  algorithm  with  tunable
parameters  are  rare.  However,  in  complex  practical
working  scenarios,  UAV  swarm  control  model  must
simultaneously  satisfy  different  decision  preferences
and  be  able  to  achieve  multiple  mission  objectives
(target orientation, obstacle avoidance, etc.). Therefore,
it  is  necessary  to  introduce  extensible  UAV  swarm
control model to deal with different working conditions
and  multi-objective  optimization  mechanism to  satisfy
different  decision  preferences.  In  this  article,  we
mainly  focus  on  two  objectives:  first,  a  UAV  swarm
control  structure  which  is  a  combination  of  a  virtual-
physical-law  based  control  model  with  tunable
parameters  and  a  multi-objective  parameter  tuning
algorithm  is  proposed;  second,  the  effectiveness  of
different parameter tuning algorithms is evaluated. The
control  model  is  an  extension  version  of  O-Flocking,
which  is  an  expandable  virtual-physical-law  based
UAV  swarm  control  model  proposed  by  Ma  et  al.[29]

We first  extend the original  O-Flocking control  model
into  a  4-rule  control  model  to  deal  with  different
working  conditions.  The  proposed  algorithm is  named
Multi-Objective  O-Flocking  (MO  O-Flocking).  Then,
we  introduce  a  new  multi-objective  optimization
algorithm  namely  Improved  Strength  Pareto
Evolutionary  Algorithm  2  (ISPEA2)  to  achieve
parameter  tuning  of  MO  O-Flocking.  ISPEA2  is  a
combination  of  Strength  Pareto  Evolutionary

Algorithm 2 (SPEA2) and a dynamic diversity control
strategy  (Dynamic  Diversity  Control  in  Genetic
Algorithm  (DDCGA)).  Two  newly  designed
recombination  heuristics  are  also  implemented  into
ISPEA2  to  improve  the  algorithm  efficiency.  At  last,
experiments  are  designed  to  test  the  performance  of
both  the  ISPPEA2  algorithm  and  the  MO  O-Flocking
control model. Experiment scenarios include six target
orientation  scenarios  with  different  kinds  of  obstacles.
The  ISPEA2  is  compared  with  several  widely  applied
multi-objective  optimization  algorithms  including
SPEA2,  Non-dominated  Sorting  Genetic  Algorithm  II
(NSGA II), Non-dominated Sorting Genetic Algorithm
III  (NSGA  III),  Multi-Objective  Evolutionary
Algorithm  based  on  Decomposition  (MOEA/D),  and
Imperialist Competitive Algorithm (ICA). And the MO
O-Flocking  control  model  with  tuned  parameters  is
compared  with  the  O-Flocking  control  model,
Reynolds  model,  and  two  subversion  of  Artificial
Potential  Field  (APF)  models  to  evaluate  the  target
orientation and obstacle avoidance abilities.

The  rest  of  this  article  is  organized  as  follows.  In
Section  2,  we  give  a  brief  introduction  of  MO  O-
Flocking control model. In Section 3, we introduce the
ISPEA2 algorithm. In Section 4, simulation experiment
designs  are  illustrated,  and  experiment  results  are
discussed.  In  Section  5,  we  give  out  some  crucial
conclusions.

2    SR Control Model

In  this  section,  we  give  a  brief  introduction  about  the
MO  O-Flocking  control  model  applied  in  this  article.
MO  O-Flocking  is  a  virtual-psychical-law  based  SR
control model. This model consists of two parts: one is
a  basic  virtual-physical-law  based  control  model
namely  O-Flocking,  which  controls  the  behavior  of
individuals  under  certain  circumstance;  another  is  a
rule  system  which  helps  individuals  achieve  multi
behaviors  in  different  working  conditions.  The
O-Flocking  control  model  has  been  approved  to  be
efficient  in  target  orientation  and  collision  avoidance
working  scenarios.  In  this  article,  we  extend  the
O-Flocking control model with a 4-rule control system
to  enhance  the  adaptability  of  O-Flocking  in  different
circumstances. The newly designed control model, MO
O-Flocking, is highly flexible because the behaviors of
individuals  controlled  by  MO  O-Flocking  can  be
simply  changed  by  modifying  the  rule  system  of  MO
O-Flocking  controller.  The  introduction  of  MO  O-
Flocking is as follows.
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2.1    Basic assumption

In  this  article,  we  mainly  focus  on  two  basic  SR
missions:  target  orientation  and  collision  avoidance.
Some  basic  assumptions  must  be  followed  to  achieve
these  goals  while  some  crucial  real-world  constraints
are satisfied:

(1)  Individuals  in  SR  must  fly  in  a  bounded  arena,
flying out of this arena is forbidden.

(2)  Collision  with  other  individuals  in  SR  is
forbidden.

(3) Collision with obstacles in SR is forbidden.
(4) The maximum velocity of an individual in SR is

limited.
(5) Mission of the SR is to start at the beginning area,

fly through the arena, and arrive at the target area.

2.2    Practical implementation

To  achieve  MO  O-Flocking  controller,  we  design  a
four-layer  control  architecture. Figure  1 shows  the
architecture of MO O-Flocking.

The  MO  O-Flocking  controller  first  receives
information collected by the onboard sensing hardware
in  sensing  layer.  Then,  the  rule-based  system  in
decision layer decides the flying direction and velocity.
The  action  layer  receives  the  new  direction  and
velocity,  then  the  flying  condition  of  the  UAV  is
changed.  The  evolution  layer  collects  the  flying
information  and  changes  the  parameters  in  the  rule-
based  system  to  find  better  parameter  sets.  The  rule-
based system is updated when a better parameter set is
found.  In  this  section  we  introduce  the  rule-based
system called MO O-Flocking control model. Then, the
multi-objective  optimization  algorithm  called  ISPEA2
in evolution layer is introduced in Section 3.

2.3    Objective detection pattern

The  objective  detection  pattern  of  MO  O-Flocking
includes  two  parts:  detection  pattern  of  other
individuals  in  SR  and  detection  pattern  of  obstacles.
Figure  2 shows  the  detection  pattern  of  other

individuals of MO O-Flocking.
In  MO  O-Flocking,  individuals  receive  three  forces

from  other  individuals,  namely  repulsion,  alignment,
and  attraction.  In Fig.  1,  individuals  detected  in zrep
apply repulsion force to individual i.  The range of zrep
is  described  as R0.  Individuals  detected  in zali apply
alignment  force  to  individual i.  The  range  of zali is
described  as R1.  Individuals  detected  in zatt apply
attraction  force  to  individual i.  The  range  of zatt is
described as R2. Figure 3 shows the obstacle detection
pattern of MO O-Flocking.

In Fig.  3,  obstacles  detected  in zobs apply  obstacle
repulsion  force  to  individual i.  The  range  of zobs is
described as R3.

2.4    Velocity updating rule

The  MO  O-Flocking  model  updates  velocity  of  an
individual  when  different  objectives  are  detected.  The
velocity updating rule is defined as Eq. (1).
 

vi(t+1) = vi(t)+∆vi,
 

∆vi = a∆vrep
i
+b∆vali

i
+ c∆vatt

i
+d∆vtar

i
+ e∆vobs

i
(1)

vi(t) ∆vrepi

∆vali
i

∆vatt
i

∆vtar
i

∆vobs
i

where  is the velocity of individual i at time t. 
is the velocity change brought by repulsion force. 
is the velocity change brought by alignment force. 
is the velocity change brought by attraction force. 
is the velocity change brought by the target orientation
force.  is the velocity change brought by obstacle
repulsion  force.  Five  parameters  (i.e.,  {a, b, c, d, e})
are used to control the importance of each force. With
the  help  of  these  five  forces,  individuals  in  SR  fly
through the arena and avoid collision with obstacles or
each  other.  Detailed  descriptions  of  these  five  forces
are as follows:

∆vrepi

When  individual i detects  individual j in  its zrep,  a
velocity  change  is  applied  to  individual i
following Eq. (2).
 

∆vrepi j = (R0− ri j)×
pi− p j

ri j
(2)

 

Swarm robot
Laser radar, ultrasonic
communication camera

MO O-Flocking rule-based
system

Velocity update formulation

Sensing layer

Decision layer

Action layer

New
parameters

Environment
information

Evolution layer

ISPEA2 Algorithm:
Traveling time,

aggregation, and
death rate

 
Fig. 1    MO O-Flocking practical framework.
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∆vrepi j

where rij is  the  distance  between  individual i and
individual j. pi and pj are  the  current  positions
(represented as vectors) of individual i and individual j,
respectively. Thus,  can be calculated by using Eq.
(3).
 

∆vrepi =

N∑
j=1, j,i

∆vrepi j , for ri j < R0 (3)

where N denotes  the  number  of  individuals  in  an  SR.
The repulsion force prevents individuals from colliding
with each other.

Agent alignment force is a power that minimizes the
velocity direction difference of individuals in range R1.
In  MO  O-Flocking  model,  a  typical  physical  law
introduced  in  previous  work[29] is  applied.  This

physical law is shown as Eq. (4).
 

∆valii =
1

nali

N∑
j=1, j,i

v j∣∣∣v j
∣∣∣ , for R0 < ri j < R1 (4)

where vj is the velocity vector of individual j. nali is the
number of individuals in range R1 of individual i.

The attraction force is a power that keeps individuals
in  SR  moving  in  a  reasonable  range  thus  the  swarm
connection  maintenance  is  achieved.  The  attraction
force is defined by using Eq. (5).
 

∆vatti j =
1

R2− ri j
×

p j− pi

ri j
(5)

And the  total  attraction  effect  of  individual i can  be
calculated by using Eq. (6).
 

∆vatti =

N∑
j=1, j,i

∆vatti j , for R0 < ri j < R1 (6)

The detection of obstacles has some differences from
the  detection  of  other  individuals,  which  is  shown  in
Fig.  2.  When  an  obstacle  is  detected  by  individual i,
virtual  agents  are  assigned  to  the  surface  of  this
obstacle.  And  these  virtual  individuals  repulse
individual i.  Thus,  when  an  obstacle  occurs  in zobs of
individual i,  the  velocity  of  individual i is  affected  by
using Eq. (7).
 

∆vobsi =

M∑
m=1

(R3− rim)× pi− pm

rim
(7)

∆vobsiwhere  is  the  obstacle  repulsion  force  of
individual i. M is the set of virtual individuals observed
by individual i.

Finally,  the  target  orientation  force  is  defined  by
using Eq. (8).
 

∆vtari =
pt − pi

rit
(8)

∆vtariwhere  is  the  target  orientation  force. pt is  the
position  of  the  target. rit is  the  distance  between
individual i and target t.

And,  to  satisfy  the  maximum  velocity  limitation,  a
maximum  velocity  cutoff vmax is  applied.  Thus,  the
final velocity updating rule is defined as Eq. (9).
 

vi (t+1) =
vi (t+1)
|vi (t+1)| ×min

(|vi (t+1)| ,vmax) (9)

In  the  MO O-Flocking control  model,  a  rule  system
is  also  applied  to  help  achieve  multi  behaviors  of
individuals.  In this  article,  4 simple and efficient  rules
are implemented. These 4 rules are listed in Eq. (10).

 

R1

R2 R0

Alignment

Attraction

Repulsion

: UAV

 
Fig. 2    Detection pattern of other individuals.

 

Repulsion

R3

zobs

Virtual individuals : UAV

: Virtual UAV

 
Fig. 3    Detection pattern of obstacles.
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Rule 1 : i = 0, o = 0;
Rule 2 : i = 0, o , 0;
Rule 3 : i , 0, o = 0;
Rule 4 : i , 0, o , 0

(10)

In  rule  system  (Eq.  (10)), i is  the  number  of
individuals in zrep,  and o is  the number of obstacles in
zobs. With these 4 rules, the final velocity updating rules
are defined as Eq. (11).
 

∆vi =

a1∆vrepi +b1∆valii + c1∆vatti +d1∆vtari + e1∆vobsi , if Rule 1;

a2∆vrepi +b2∆valii + c2∆vatti +d2∆vtari + e2∆vobsi , if Rule 2;

a3∆vrepi +b3∆valii + c3∆vatti +d3∆vtari + e3∆vobsi , if Rule 3;

a4∆vrepi +b4∆valii + c4∆vatti +d4∆vtari + e4∆vobsi , if Rule 4
(11)

In Eq. (11), 20 parameters ({a1, b1, c1, d1, e1, a2, b2,
c2, d2, e2,  …, a4, b4, c4, d4, e4})  need  to  be  tuned.
Considering  the  intensiveness  of  computational  time
cost  of  traditional  parameter  tuning  methods
implemented  in  intelligent  swarm  parameter  tuning,
e.g.,  manual  tuning  or  parameter  sweeping,  heuristic
algorithm may be a more suitable way which can find
feasible  solutions  with  acceptable  time  costs.  In  this
article,  several  population-based  multi-objective
heuristics  are  implemented  to  the  control  model.  We
first  introduce an efficient and robust heuristic namely
ISPEA2 which is a sub version of SPEA2.

3    ISPEA2 Algorithm

ISPEA2 algorithm is a subversion of the widely applied
SPEA2  algorithm,  which  is  first  proposed  in  Zitzler
et  al.[30] In  SPEA2,  parents  are  selected  from  both
solutions  in  the  current  iteration  and  Pareto  optimal
solutions  found  in  past  iterations.  It  is  generally
admitted  that  SPEA2  has  an  advantage  of  better
solution  distributions  on  Pareto  Frontier  especially
when the number of objectives increases. And, to avoid
ISPEA2  stuck  in  local  optimum,  a  dynamic  diversity
control  technology  inspired  by  Chang  et  al.[31] is  also
implemented.  The  algorithm  structure  of  IPSEA2  is
shown in Fig. 4.

3.1    Encoding

We extract 20 parameters from our flocking model for
parameter  tuning.  The  ranges  of  these  parameters  are
[0, 1]. Thus, in ISPEA2, each solution is represented as
a  chromosome  containing  20  variables.  Each  variable
in a chromosome is a parameter in the MO O-Flocking
model  described  in  Section  2. Figure  5 shows  an

example of chromosomes used in ISPEA2.

3.2    Recombination

Let poite be the population of iteration ite. poite = {c1, c2,
c3, …, cp}, where {c1, c2, c3, …, cp} are chromosomes,
and p is the maximum size of poite. To help to generate
new  solutions,  recombination  and  mutation  methods
are  applied  to  chromosomes  in  every  iteration’s
population.  Newly  generated  chromosomes  are  called
off-springs and chromosomes that are used to generate
off-springs  are  called  parents.  In  the  recombination
phase, two recombination operators are implemented to
generate  off-springs.  One  operator  is  the  random
exchange  operator.  In  the  random  exchange  operator,
up to 5 genes in Parent 1 are randomly chosen and then
these genes are exchanged with genes on the same loci
of Parent 2. The other is the rule exchange operator. In
this operator, all 5 genes representing the same rule of
the  MO  O-Flocking  model  are  chosen  and  exchanged
between  2  parents. Figure  6 shows  the  random
exchange operator and rule exchange operator. Parents
are selected by using tournament selection.

3.3    Mutation

In  the  mutation  phase,  a  random  mutating  operator  is

 

Encoding Population
initilization
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Artificial
chromosome
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Fig. 4    Algorithm structure of ISPEA2.
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Fig. 5    Chromosome example.
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implemented  to  generate  off-springs.  This  operator
randomly picks up to 3 genes in a chromosome. Then,
these genes are assigned values randomly generated in
[0, 1].

3.4    Environment selection

poite

N

N
poite

In  ISPEA2,  an  external  archive  is  maintained  to
generate  poite+1,  which  is  the  population  of  the  next
generation.  This  external  archive  records  non-
dominated  solutions  found  in  past  iterations.  To
generate  poite+1,  first,  all  Non-Dominated  (ND)
solutions  in  poite,  and  all  off-springs  generated  in
iteration  ite  is  copied  into  poite+1.  If  the  size  of  poite+1
exceeds  a  threshold ,  a  density-based  heuristic  is
applied to reduce the size of poite+1. If the size of poite+1
is  smaller  than ,  then  fill  poite+1 with  dominated
solutions in poite, ,  and off-springs of iteration ite.
The  designs  of  this  external  archive  can  be  seen  in
Zitzler et al.[30]

3.5    Dynamic diversity control

act

act

A  common  hypothesis  is  that  maintaining  a  relatively
high  diversity  is  important  for  avoiding  premature
convergence  and  escaping  from  local  optimum.  In
ISPEA2,  another  external  archive  is  maintained  to
record  solutions  with  acceptable  fitness  and  high
diversity in iteration ite. When the average diversity of
poite drops  down  to  a  certain  threshold,  we  generate
artificial  chromosomes  from  and  inject  these
artificial chromosomes into the mating pool to increase
the average diversity. In this paper, a dynamic diversity
control  method  inspired  by  DDCGA[31] is
implemented.  This  method  first  measures  the
population diversity of poite by using an entropy-based
criterion.  Artificial  chromosomes  are  injected  into
mating  pool  to  increase  the  population  diversity  if  the
population  diversity  reaches  a  threshold dlow.  Detailed

description of this method is described as follows:
Population diversity measure. In each iteration, we

first measure the average diversity of poite by using Eq.
(12).
 

D (P) =
1
|L|ps

ps∑
i=1

√√√ N∑
j=1

(
si j− s j

)2
(12)

|L|

s j

where  is  the  length  of  the  diagonal  of  the  solution
space. ps is the population size. sij is the value of gen j
of chromosome i.  is the average value of gen j.

Theoretically,  the  selection  and  recombination
operators  are  diversity  reduction  operators.  However,
maintaining  a  relatively  high  diversity  can  help
population-based  heuristics  get  better  results.  Thus,
when  the  population  diversity  is  above  a  certain
threshold dlow,  recombination  and  selection  operators
are  implemented.  When  the  population  diversity  is
under dlow,  operators  that  are  designed  to  increase  the
population  diversity  are  applied.  These  operators  are
described as follows:

Chromosome  diversity  contribution  measure.
When  the  population  diversity  is  under dlow,  we  first
measure  the  contribution  to  the  diversity  of  every
single  chromosome  in  poite.  To  achieve  this  goal,  an
entropy-based  diversity  measurement  is  implemented.
In this measurement, the range of each gen (i.e., [0, 1])
is  distributed  into  10  intervals  (from  [0,  0.1)  to  [0.9,
1]).  Then,  Eq.  (13)  is  applied  to  calculate  the
probability that values signed to each gen fall into these
intervals.
 

priv =
naiv

ps
(13)

where priv means the possibility that value on gen i falls
into  interval v.  naiv is  the  number  that  value  on  gen i
falls into interval v. ps is the population size. Then, Eq.
(14) is applied to measure the diversity of gen i.
 

Hi = −
V∑

v=1

priv ln
(
priv
)

(14)

where Hi is  the  diversity  of  gen i. V is  the  set  of
intervals. When the diversities of all gens are available,
the  diversity  of  poite is  then  measured  by  using  the
arithmetic average of Hi, which is shown in Eq. (15).
 

PCDpoite =

Npoite∑
i=1

Hi

Npoite
(15)

PCDpoite
Npoite

where  is the population diversity measured by
entropy  measurement.  is  the  problem
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Fig. 6    Crossover operators.
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dimensionality. Then, Eq. (16) is applied to measure a
single  chromosome’s  contribution  to  the  whole
population.
 

CD (i) = PCDpoite −PCDpoite−i (16)

PCDpoite−i

where CD(i) donates the contribution of chromosome i
to  the  population.  donates  the  population
diversity  measured  by  entropy  measurement  of
population poite without chromosome i.

act act

act

A
act

act A act

Artificial  chromosome  generator. When  the
average diversity of the population drops down to dlow,
artificial  chromosomes are  generated  and injected  into
the  mating  pool  to  increase  the  population  diversity
using  the  Artificial  Chromosome  Generator  (ACG).
ACG  uses  chromosomes  stored  in .  First, 
collects all non-dominated solutions found by ISPEA2.
When  the  number  of  chromosomes  in  exceeds
upper  bound ,  chromosomes  which  have  low
diversity  contribution  are  removed  from  until  the
number of chromosomes in  is equal to . Then, 
follows  a  probabilistic  rule  to  generate  artificial
chromosome by using Eq. (17).
 

Pi j (t) =
Xt

i j

ps
(17)

act

ϑ

ϑ

where Pij(t)  donates  the  probability  that  interval i is
chosen  to  generate  a  new value  on  gen j at  iteration t
for  an  artificial  chromosome. Xij

t is  the  frequency that
value  on  gen j falls  into  interval i in .  When  an
interval  is  chosen,  the  new  value  is  generated  in  this
interval randomly. Then this value is assigned to gen j
of  a  new  artificial  chromosome.  Every  time  ACG
works,  artificial chromosomes are generated by using
Eq.  (17)  and  injected  into  poite.  At  the  same  time, 
chromosomes are picked and removed from the poite by
means of  diversity contribution.  Thus,  the size of  poite
remains unchanged.

3.6    Evaluation criteria

In  this  article,  three  SR  control  evaluation  criteria  are
considered.  The designs of  these criteria  are  described
as follows:

Death  rate. The  death  rate  is  a  criterion  that
evaluates  the  obstacle  avoidance  ability  of  an  SR
control model. We consider an individual in an SR as a
dead  individual  when  it  hits  another  individual,  an
obstacle, or flies out of the arena. The death rate can be
calculated by using Eq. (18).
 

rdeath =
Ndeath

N
(18)

where rdeath is  the  death  rate. Ndeath is  the  number  of
dead individuals during a simulation. It is obvious that
rdeath is a criterion that needs to be minimized.

Aggregation  of  individuals. Individual  aggregation
is a criterion that evaluates the connection maintenance
ability  of  an  SR.  We  use  the  aggregation  index  to
measure  the  aggregation  of  individuals.  To  calculate
the  aggregation  index,  we  first  calculate  the  virtual
centroid of the whole swarm by using Eq. (19).
 

pt
c =

N∑
i=1

pt
i

N
(19)

pt
c

pt
i

where  is the position of the virtual centroid of SR at
simulation  time t.  is  the  position  of  individual i at
simulation  time t.  Then,  we  use  a  Euclidean  distance-
based criterion, which is shown in Eq. (20), to evaluate
the aggregation of an SR during the whole simulation.
 

dagg =

T∑
t=1

N∑
i=1

∥∥∥pt
c− pt

i

∥∥∥
2

NT
(20)

where dagg is  the  aggregation index. T is  the  length  of
the  simulation  experiment.  Thus, dagg donates  the
average  distance  between  individuals  to  the  virtual
centroid of the swarm during the simulation. This is an
objective that needs to be minimized.

Traveling  time. At  last,  the  average  traveling  time
cost is calculated as
 

TC =

N∑
i=1

TCi

N
(21)

TCwhere  is the average traveling time cost. TCi is the
traveling time cost of individual i from starting area to
the finish area. This is a criterion to evaluate the target
orientation ability of an SR control model, and it needs
to be minimized.

4    Simulation Experiment

4.1    Experiment design

To evaluate  the  performances  of  proposed  algorithms,
6 test scenarios are designed. These scenarios include a
basic  target  orientation  scenario  and  target  orientation
scenarios  with  obstacles.  Three  typical  types  of
obstacles  are  included.  These  obstacles  are  square
shape  obstacle,  convex  shape  obstacle,  and  tunnel
shape  obstacle. Figure  7 shows  the  experiment
scenarios.

The experiment configuration details include:
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(1) Every experiment is run 20 times, and the average
performances are reported.

(2) The length of the arena is set to 250 m.
(3) The max speed is 5 m/s for real robots.
(4) The size of the swarm robotic is set to 20.
(5) The communication delay tdel is set to 1 s.
(6) The inaccuracy of onboard sensor rios is set to (0,

0.2) m.
(7) The maximum detection range of a single robot is

set to (95, 105) m.
(8) R3 is equal to the maximum detection range of a

single robot. R0=1/3R3, R1=2/3R3, and R2=R3.
(9) The simulation length is set to 200 s.  In a single

simulation run, 1 step is set to be equal to 1 s.

N

The simulation experiment is divided into two parts.
In  the  first  part,  algorithm  performances  of  6  multi-
objective  optimization  heuristics  (including  ISPEA2,
SPEA2,  NSGA  II[32],  NSGA  III[33],  MOEA/D[34],  and
ICA[35]) are tested and analyzed. In the second part, the
MO  O-Flocking  model  with  tuned  parameters  is
compared  with  some  widely  applied  SR  control
models. In ISPEA2, SPEA2, NSGA II, NSGA III, and
MOEA/D,  crossover  and  mutation  operators  are
exactly  the  same.  The  maximum  iteration  of  each
algorithm is set to 200. The population size  is set to

A
ϑ

30. The mutation rate is set to 30%.  is set to 30. dlow
is set to 0.2.  is set to 10.

All  tests  were  run  on  a  computer  with  an  Intel
CoreTM  i7-6700HQ  central  processing  unit  (4  cores,
2.6  GHz)  with  16  GB  of  memory.  The  code  of  the
experiment  platform,  test  scenarios,  and  all  tested
algorithms  have  been  uploaded  to
https://github.com/Downloadmarktown/Flocking-
experiment-platform.

4.2    Parameter  tunning  algorithm  performance
analysis

In this part,  the performances of all  parameter tunning
algorithms  are  reported.  The  experiment  results  are
listed in Table 1.

In Table  1, “TO” means “target  orientation”,  which
means  scenario  with  mission  of  target  orientation  and
no  obstacle.  MS  means “multi  square”.  SC  means
“square  and  convex”. “DR” means “death  rate”. “AI”
means “aggregation  index”. “TC” means “travelling
cost”.  In Table  1,  the  best  result  of  each  objective  is
shown  with  bold  font.  The  best  and  worst  analysis
shows that in six tested scenarios, ISPEA2 algorithm is
better  at  finding  parameter  sets  with  the  lowest  death
rate  and  the  best  SR  aggregation  performance.  The
NSGA II algorithms has better performance on finding
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parameter sets with the lowest travelling time.
In this paper, we mainly focus on the multi-objective

optimization  ability  of  each  algorithm.  Thus,  we
applied  Hyper  Volume  (HV)  analysis  and  C-metric
analysis.

HV analysis  is  an  important  method  to  measure  the
coverage  ability  of  a  multi-objective  optimization
algorithm in the whole solution space. In this paper, we
applied  a  Monte  Carlo  method  based  HV  indicator
since  the  exact  Pareto  Frontier  of  each  scenario  is
unknown.  This  indicator  can  be  obtained  from
https://ww2.mathworks.cn/matlabcentral/fileexchange/
30785-hypervolume-computation. Figure  8 shows  a
graphic explanation of HV analysis.

In this paper, the upper bound of each scenario is set
to be {1, 1, 1, 1}. The lower bound is set to be equal to
the  best  results  of  each  objective  found  by  all
algorithms, which is shown in Table 2.

Table 3 shows the HV analysis results.
The  HV  analysis  results  show  that  the  ISPEA2

algorithm  has  the  best  performances  in  5  scenarios
(square,  convex,  tunnel,  multi  square,  and  square  and
convex). IPSEA2 is followed by SPEA2 and NSGA III.
In target orientation scenario,  NSGA III algorithm has
the best performance (an average HV value of 0.9898),
and it is followed by ISPEA2 (an average HV value of
0.9647).  The  gap  of  HV  value  is  around  2.5%.  The

 

Table 1    Best/worst analysis results.

Scenario Index
ISPEA2 SPEA2 NSGA II NSGA III ICA MOEA/D

DR AI TC DR AI TC DR AI TC DR AI TC DR AI TC DR AI TC

Square
Best 0.00 0.22 0.34 0.00 0.23 0.34 0.00 0.29 0.34 0.00 0.25 0.34 0.00 0.36 0.34 0.00 0.29 0.33

Worst 0.25 0.66 0.51 0.25 0.69 0.51 0.25 0.67 0.51 0.25 0.53 0.51 0.00 0.40 0.35 0.20 0.66 0.48
Average 0.08 0.29 0.39 0.08 0.32 0.40 0.05 0.38 0.38 0.07 0.35 0.39 0.00 0.41 0.35 0.06 0.36 0.39

Convex
Best 0.00 0.27 0.35 0.00 0.27 0.37 0.00 0.33 0.34 0.00 0.30 0.36 0.00 0.38 0.39 0.00 0.32 0.37

Worst 0.05 0.73 0.42 0.10 0.73 0.47 0.15 0.70 0.49 0.10 0.74 0.45 0.00 0.55 0.40 0.25 0.75 0.54
Average 0.01 0.44 0.39 0.01 0.46 0.40 0.01 0.54 0.39 0.02 0.48 0.39 0.00 0.43 0.39 0.03 0.41 0.41

TO
Best 0.00 0.33 0.31 0.00 0.34 0.32 0.00 0.37 0.31 0.00 0.32 0.31 0.00 0.38 0.31 0.00 0.40 0.31

Worst 0.00 0.33 0.31 0.00 0.34 0.32 0.00 0.34 0.31 0.00 0.32 0.31 0.00 0.41 0.40 0.00 0.40 0.31
Average 0.00 0.35 0.31 0.00 0.38 0.32 0.00 0.37 0.31 0.00 0.33 0.31 0.00 0.43 0.35 0.00 0.43 0.31

Tunnel
Best 0.00 0.26 0.33 0.00 0.28 0.34 0.00 0.30 0.33 0.00 0.27 0.34 0.00 0.35 0.34 0.00 0.29 0.34

Worst 0.15 0.67 0.45 0.05 0.75 0.38 0.00 0.71 0.35 0.05 0.56 0.38 0.00 0.51 0.35 0.20 0.67 0.48
Average 0.01 0.42 0.35 0.01 0.45 0.35 0.01 0.49 0.35 0.02 0.43 0.36 0.00 0.40 0.34 0.06 0.37 0.38

MS
Best 0.00 0.21 0.33 0.00 0.23 0.33 0.00 0.26 0.33 0.00 0.33 0.31 0.00 0.37 0.33 0.00 0.26 0.33

Worst 0.25 0.29 0.50 0.25 0.31 0.50 0.25 0.38 0.50 0.00 0.33 0.31 0.00 0.47 0.33 0.25 0.34 0.50
Average 0.10 0.27 0.40 0.08 0.29 0.39 0.06 0.35 0.37 0.00 0.34 0.32 0.00 0.41 0.33 0.09 0.34 0.39

SC
Best 0.00 0.26 0.38 0.00 0.26 0.36 0.00 0.34 0.34 0.00 0.32 0.31 0.00 0.40 0.38 0.00 0.33 0.38

Worst 0.25 0.57 1.00 0.20 0.68 1.01 0.25 0.69 0.55 0.00 0.32 0.31 0.00 0.52 0.40 0.15 0.67 0.48
Average 0.02 0.35 0.41 0.04 0.42 0.42 0.01 0.47 0.41 0.00 0.33 0.31 0.00 0.44 0.40 0.02 0.42 0.41
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Fig. 8    Example of HV analysis.
 

Table 2    Lower bound of each scenario.

Scenario DR AI TC
Square 0 0.216 0.334
Convex 0 0.268 0.341

Target orientation 0 0.324 0.314
Tunnel 0 0.259 0.330

Multi square 0 0.214 0.314
Square and convex 0 0.256 0.314
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coefficient of variants of ISPEA2 in all tested scenarios
are  between  0.01  to  0.03,  this  means  that  in  all  tested
scenarios ISPEA2 has good robust performance.

C-metric is another tool that helps compare the multi-
objective optimization performances of different multi-
objective  optimization  algorithms.  In  C-metric
analysis,  the  non-dominated  solutions  found  by  all
tested  algorithms  are  compared  with  each  other.  C-
metric analysis helps to find the algorithm which finds
the best  non-dominated solution set. Figure  9 shows a
graphic explanation of C-metric analysis.

Table 4 shows the results of C-metric analysis.
The  C-metric  analysis  shows  that  except  target

orientation  scenario,  the  non-dominate  solution  sets
found  by  ISPEA2  algorithm  are  better  than  solution
sets  found  by  other  algorithms.  In  target  orientation
scenario,  the  best  solution  set  is  found  by  NSGA  III,
and it  is  followed by ISPEA2. In convex scenario and
tunnel  scenario,  17% of  solutions in the non-dominate
solution  set  found  by  ISPEA2 are  dominated  by  other
algorithms  (NSGA  II  and  NSGA  III).  However,  in

convex scenario, 86% solutions found by NSGA II are
dominated  by  solutions  found  by  ISPEA2.  And  in
tunnel scenario, 84% solutions found by NSGA III are
dominated  by  solutions  found  by  ISPEA2.  In  square
scenario,  only  12% solutions  found  by  ISPEA2  are
dominated  by  solutions  found  by  MOEA/D.  But  89%
solutions  found  by  MOEA/D  are  dominated  by

 

Table 3    HV analysis results.

Scenario Index
HV value

ISPEA2 SPEA2 NSGA II NSGA III ICA MOEA/D

Square

Best 0.9676 0.9516 0.8743 0.9298 0.8051 0.8928
Worst 0.9254 0.8632 0.7872 0.6556 0.7296 0.8012

Average 0.9509 0.9198 0.8526 0.8704 0.7541 0.8442
Coefficient of variants 0.0128 0.0201 0.0249 0.0658 0.0258 0.0248

Convex

Best 0.9244 0.9042 0.8459 0.8765 0.7754 0.8496
Worst 0.8486 0.8098 0.7006 0.4479 0.7092 0.7616

Average 0.8937 0.8560 0.7891 0.7673 0.7372 0.8013
Coefficient of variants 0.0216 0.0288 0.0497 0.1439 0.0226 0.0301

TO

Best 0.9892 0.9648 0.9832 1.0000 0.8807 0.8879
Worst 0.9072 0.8428 0.8657 0.8817 0.8253 0.7816

Average 0.9647 0.9047 0.9284 0.9898 0.8560 0.8515
Coefficient of variants 0.0237 0.0367 0.0442 0.0261 0.0170 0.0380

Tunnel

Best 0.9842 0.9574 0.9384 0.9696 0.8554 0.9304
Worst 0.9361 0.9055 0.8216 0.5850 0.7979 0.8274

Average 0.9689 0.9303 0.8899 0.8534 0.8214 0.8868
Coefficient of variants 0.0125 0.0169 0.0333 0.0988 0.0196 0.0332

MS

Best 0.9683 0.9410 0.9032 0.9551 0.7862 0.9032
Worst 0.9031 0.8886 0.7823 0.8336 0.7230 0.7163

Average 0.9437 0.9130 0.8386 0.8865 0.7521 0.8314
Coefficient of variants 0.0162 0.0159 0.0389 0.0419 0.0246 0.0630

SC

Best 0.8713 0.8523 0.7907 0.7975 0.7000 0.7678
Worst 0.7886 0.7318 0.6123 0.4647 0.6506 0.5753

Average 0.8302 0.7794 0.7191 0.7478 0.6802 0.6906
Coefficient of variants 0.0296 0.0354 0.0673 0.0950 0.0225 0.0671
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Fig. 9    Example of C-metric analysis.
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solutions found by ISPEA2. Another thing that should
be  noticed  is  that  in  square  and convex scenario,  only
47% solutions  found  by  SPEA2,  and  68% solutions
found  by  NSGA III  are  dominated  by  solutions  found
by  ISPEA2.  This  means  that  the  convergence
performance  of  ISPEA2  can  be  further  improved  in
complex scenarios.  From all  these tests  above,  we can
tell  that  the  ISPEA2  algorithm  has  the  best
performance in all tested algorithms.

4.3    Controller performance analysis

In this section, MO O-Flocking with tuned parameters
is  compared  with  the  original  O-Flocking  and  three

other  controllers  (the  classic  Reynolds  model[36] and
two APF based model (Kala[37] and Yang et al.[38])). To
choose  a  certain  control  parameter  set  from  the  ND
solutions found by ISPEA2, we use a technique called
linear  weighted  aggregation,  which  means  that  we
evaluate all solutions in non-dominated solution sets by
using Eq. (22):
 

F (s) = w1D
(
rdeaths

)
+w2D

(
daggs

)
+w3D

(
TCs
)

(22)

D ()where  is the normalization function. w1, w2, and w3
are  factors  that  indicate  the  importance  of  each
objective. w1, w2,  and w3 are  all  equal  to  1/3,  which
means  that  we  consider  three  objectives  as  equally
important. Equation (23) is the objective normalization

 

Table 4    C-metric analysis results.
Scenario Algorithm ISPEA2 SPEA2 NSGA II NSGA III ICA MOEA/D

Square

ISPEA2 — 0.97 1.00 1.00 1.00 0.89
SPEA2 0.04 — 0.31 0.57 0.00 0.26

NSGA II 0.00 0.37 — 0.00 1.00 0.26
NSGA III 0.00 0.37 1.00 — 1.00 0.74

ICA 0.00 0.17 0.00 0.00 — 0.00
MOEA/D 0.12 0.37 0.62 0.00 1.00 —

Convex

ISPEA2 — 0.90 0.86 0.78 1.00 1.00
SPEA2 0.00 — 0.81 0.13 1.00 0.55

NSGA II 0.17 0.33 — 0.22 1.00 0.25
NSGA III 0.07 0.57 0.86 — 1.00 0.90

ICA 0.00 0.00 0.00 0.00 — 0.00
MOEA/D 0.00 0.19 0.81 0.03 1.00 —

TO

ISPEA2 — 1.00 1.00 0.00 1.00 1.00
SPEA2 0.00 — 0.00 0.00 0.00 0.00

NSGA II 0.00 1.00 — 0.00 1.00 1.00
NSGA III 1.00 1.00 1.00 — 1.00 1.00

ICA 0.00 0.00 0.00 0.00 — 0.00
MOEA/D 0.00 0.00 0.00 0.00 1.00 —

Tunnel

ISPEA2 — 1.00 1.00 0.84 1.00 1.00
SPEA2 0.00 — 0.00 0.00 0.17 0.26

NSGA II 0.00 0.86 — 0.00 0.83 0.47
NSGA III 0.17 0.79 0.67 — 1.00 1.00

ICA 0.00 0.21 0.00 0.00 — 0.00
MOEA/D 0.00 0.64 0.27 0.00 1.00 —

MS

ISPEA2 — 1.00 1.00 1.00 1.00 1.00
SPEA2 0.00 — 0.56 0.13 0.33 0.60

NSGA II 0.00 0.06 — 0.00 1.00 0.67
NSGA III 0.00 0.82 1.00 — 1.00 1.00

ICA 0.00 0.00 0.00 0.00 — 0.00
MOEA/D 0.00 0.00 0.56 0.00 1.00 —

SC

ISPEA2 — 0.47 0.81 0.68 1.00 1.00
SPEA2 0.07 — 0.75 0.32 0.86 0.86

NSGA II 0.00 0.00 — 0.00 0.57 0.29
NSGA III 0.00 0.58 0.88 — 0.86 1.00

ICA 0.00 0.00 0.06 0.09 — 0.29
MOEA/D 0.00 0.00 0.25 0.00 0.29 —
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function.
 

D (o) =
o−omin

omax−omin
(23)

Table 5 shows the simulation results.
Controller performance analysis shows that in all six

tested  scenarios,  the  tuned  MO  O-Flocking  control
model  has  better  performance  in  both  swarm
aggregation  and  travelling  time  cost.  Compared  with
the  basic  Reynolds  model  and  O-Flocking  control
model,  the  tuned  MO  O-flocking  model  has
improvements  in  all  three  objectives.  Compared  with
two  APF-based  control  models,  the  tuned  MO  O-
Flocking  control  model  has  better  performance  on
travelling time cost and SR aggregation. The two APF-
based  control  models  have  lower  death  rate  compared
with Reynolds model[36], but the travelling time cost is
higher.  One  thing  must  be  noticed  is  that  the  APF  by

Yang et al.[38] seems to have good performance on SR
aggregation  in  4  scenarios  (square,  target  orientation,
tunnel,  and multi  square),  but  it  has  poor  performance
in  scenarios  with  convex  obstacles. Figures  10−15
show the simulation results.

5    Conclusion

In  this  article,  a  virtual-physical-law  based  swarm
robotic control  model with 4 control  rules and tunable
parameters namely MO O-Flocking is proposed. And a
multi-objective optimization algorithm namely ISPEA2
for parameter tuning of MO O-Flocking control model
is  proposed.  Two  recombination  heuristics  are  also
designed  to  improve  the  algorithm  efficiency.  These
two heuristics can also be implemented as local search
operators  by  other  parameter  tuning  methods.

 

Table 5    Controller performance analysis results.

Scenario
Tuned MO O-Flocking Tuned O-Flocking[29] Reynolds model[36] APF by Kala[37] APF by Yang et al.[38]

DR AI TC DR AI TC DR AI TC DR AI TC DR AI TC
Square 0.000 0.251 0.345 0.000 0.394 0.347 0.200 0.790 0.479 0.100 4.748 0.415 0.000 0.550 0.727
Convex 0.000 0.294 0.392 0.000 0.329 0.394 0.050 0.969 0.425 0.000 3.187 1.343 0.000 5.709 0.752

TO 0.000 0.332 0.314 0.000 0.396 0.315 0.000 0.733 0.314 0.000 1.637 0.337 0.000 0.444 0.546
Tunnel 0.000 0.270 0.345 0.000 0.357 0.355 0.100 0.765 0.411 0.000 4.077 1.359 0.000 0.294 0.933

MS 0.000 0.252 0.334 0.000 0.361 0.337 0.200 0.824 0.476 0.200 0.888 0.523 0.000 0.325 0.761
SC 0.000 0.290 0.391 0.000 0.407 0.399 0.150 1.041 0.496 0.000 3.355 1.397 0.000 6.431 0.781
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Fig. 10    Results of square scenario.
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Experiments  are  designed  to  test  the  performance  of
both  the  ISPEA2  algorithm  and  MO  O-Flocking
control  model.  Experiment  results  show  that  the
ISPEA2  algorithm  has  better  performance  on  both
accuracy  and  diversity  respects,  and  MO  O-Flocking

with  tuned  parameters  performs  better  on  target
orientation  and  collision  avoidance  in  all  tested
scenarios.  From the  simulation  experiment  results,  we
can tell  that  the MO O-Flocking control  model can be
applied  to  target  orientation  missions  in  complex
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Fig. 12    Results of target orientation scenario.
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Fig. 13    Results of tunnel scenario.
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Fig. 14    Results of multi square scenario.
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environments,  such  as  battlefield  area  search  and
rescue  of  victims.  The  application  of  MO  O-Flocking
control  model  can  effectively  improve  the  collision
avoidance and formation maintenance abilities of UAV
swarm  in  complex  environments.  In  addition,  the
ISPEA2  can  also  be  applied  separately  to  multi-
objective  parameter  tuning  of  UAV  swarm  control
models  with  multiple  tunable  parameters.  Compared
with  current  state-of-the-art  algorithms,  the  ISPEA2
has significant advantages in terms of solution diversity
performance,  which  means  that  ISPEA2  can
simultaneously  provide  a  feasible  solution  set  that
satisfies multiple decision preferences.

Further  research  can  be  carried  out  on  following
directions:  (1)  More  real-world  experiments  can  be
included;  (2)  Since  ISPEA2  has  been  proved  to  be
efficient on MO O-Flocking, it can be applied on other
control models; (3) More complex missions (e.g., target
orientation  with  moving  obstacles  and  target
orientation with multi obstacles of complicated shapes)
can be tested.
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