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Resumo 

A Engenharia de Tecidos é uma área interdisciplinar da Medicina Regenerativa que visa 

criar e desenvolver substitutos biológicos para reparar, manter ou melhorar a função de 

tecidos lesados, com base em princípios da engenharia conjugados às ciências da vida. 

A Engenharia de Tecidos tira partido das propriedades de estruturas tri-dimensionais 

(3D) que combinadas com  células estaminais pretendem recriar um ambiente 

semelhante ao nativo de um tecido. Estas estruturas 3D (scaffolds) são produzidas com 

materiais de origem  natural ou sintéticos, que idealmente terão as propriedades físicas, 

mecânicas e químicas para promoverem o melhor desempenho dessas células e 

portanto a regeneração dos tecidos.  

Na última decada as células estaminais mesenquimais foram amplamente utilizadas na 

Engenharia de Tecidos, pois têm o potencial de proliferarem e se manterem 

indiferenciadas com a capacidade de se auto-renovarem e/ou diferenciarem em 

diferentes tipos de células. Existem várias fontes de células estaminais com 

caracteristicas diferentes utilizadas em TE, em que as que apresentam maior impacto 

são as derivadas da medula espinal, do sangue e do tecido adiposo, entre outras 

localizadas em diferentes zonas do corpo humano. 

A combinação entre scaffolds e células estaminais mesenquimais apresentam algumas 

limitações tais como a indução de uma resposta inflamatória após transplante e o facto 

da grande maioria dos biomateriais utilizados não serem biofuncionais. 

A Engenharia de  Cell sheets é a alternativa, pois utiliza a matriz extracelular depositada 

pelas células como scaffold natural para a regeneração de diferentes tecidos. 

O conceito de cell sheet foi introduzido por Teruo Okano e os seu colaboradores nos 

anos 90 no Japão. Estas cell sheets são produzidas em superficies revestidas com um 

polímero  não iónico sensível à temperatura. Quando a temperatura é inferior a 32ºC a 

superficie fica hidrofílica, promovendo o destacamento das células em folha (cell sheets) 

sem recorrer ao uso do tradicional tratamento enzimático. Assim, esta tecnologia 

permite obter cell sheets com uma organização celular própria e coesiva, dado que as 

interações célula-celula e célula-matriz extracelular são mantidas. 
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Em estudos anteriores no nosso laboratório foram produzidas cell sheets a partir das 

células estaminais humanas derivadas do tecido adiposo (hASCs). As cell sheets de hASCs  

quando transplantadas para feridas excisionais em pele de ratinho, induziram a 

formação de cristas epiteliais, normalmente apenas encontradas em pele humana, e a 

formação de um número significativo de folículos pilosos. 

Tendo em consideração estes resultados e antevendo as possibilidades de ter estas cell 

sheets  disponiveis para uso imediato na clínica (off-the-shelf) a sua criopreservação 

seria vantajosa. Assim, o objectivo deste estudo foi definir um método de 

criopreservação que não só permita a preservação da viabilidade das hASCs mas 

também a integridade da matriz extracelular das cell sheets, que se sabe ser critico para 

garantir a sua funcionalidade, após transplantação. 

De modo a minimizar um potencial efeito adverso do processo de criopreservação, o 

método testado teve como base o método standard slow cooling rate, utilizado na 

criopreservação de células em suspensão. Foram então definidas duas condições de 

criopreservação, a condição standard, com 10% do crioprotector Dimethylsulfoxide 

(DMSO), e a condição exprimental, com 5% DMSO. Com o objectivo reduzir a toxicidade  

para as células criopreservadas.  

O efeito das condições de criopreservação na viabilidade celular foi analisado depois das 

cell sheets serem dissociadas, tendo sido demonstrado que ambas as condições de 

criopreservação não afectam de forma significativa a viabilidade celular. No entanto, 

verificou-se que a organização do citoesqueleto das células na cell sheet sofreu 

alterações depois da criopreservação em ambas as condições, verificando-se uma 

desorganização mais acentuada  na condição standard. Verificou-se ainda que ambas as 

condições de criopreservação afetam a integridade da matriz extracelular das cell 

sheets, embora pareça que a condição standard afecte de um modo mais significativo. 

Mais ainda ambas as condições de criopreservação afectaram a quantidade total de 

proteínas. Potencialmente, este resultado está associado com as proteínas da matriz 

laminina, fibronectina e colagéneo I. De facto, a expressão destas proteínas excepto o 

colagéneo foi afectado tanto a nível molecular e proteico. 

Mais ainda verificamos a expressão dos seus genes por reacção em cadeia da polimerase 

(PCR). Onde a nível molecular o gene da laminina está sobre expressa em ambas as 

condições de criopreservação, o gene da fibronectina apenas na condição exprimental 
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e o gene do colagéneo não sofre alterações significativas em ambas as condições de 

criopreservação.  

Considerando que as propriedades mesenquimais das células que compõe as cell sheets, 

são determinantes nos resultados previamente observados, a expressão dos 

marcadores típicos após a criopreservação  foi analisado a nível genético e proteico, 

usando PCR e citometria de fluxo respectivamente. 

Com base nos resultados obtidos, que demonstram que  a matriz extracelular é 

significativamente afectada pelo processo de criopreservação, será necessário testar 

diferentes protocolos e diferentes métodos de criopreservação, no sentido de se obter 

uma melhor preservação da integridade estrutural da cell sheet, e portanto garantir a 

sua funcionalidade após transplantação. 

 

Palavras-Chave: Cultura de Tecidos, Células Estaminais do tecido Adiposo, Cell Sheets, 

Criopreservação, DMSO, Off-the-Shelf, Engenharia de Tecidos, Medicina Regenerativa. 
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Abstract 

Regenerative Medicine (RM) englobes the multidisciplinary and interdisciplinary field of 

Tissue Engineering (TE) that aims to repair or enhance tissue or organ function. The field 

of TE takes advantage of the properties of three-dimensional (3D) structures that 

combined with different cells allow to recreate the native environment of a tissue. These 

3D structures are produced with synthetic or natural materials, and aimed to have the 

ideal physical, mechanical and chemical proprieties for a better performance of cells, 

thus promoting the tissue regeneration. In context of TE, stem cells (SCs) are combined 

with the 3D structures or scaffolds, allowing the creation of viable and complex 

substitutes for tissue regeneration. The SCs have been largely used in TE due to its high 

proliferative rate, self-renewal capacity, ability to differentiate into different cell 

lineages. In the last decade the mesenchymal stem cells have been widely used in tissue 

engineering, they have the potential to proliferate and maintain undifferentiated with 

the ability to self-renew and / or differentiate into different cell types. There are various 

sources of stem cells with different characteristics used in TE, where they have the 

greatest impact are derived from spinal cord, blood and adipose tissue, among others 

located in different areas of the human body. 

The use of scaffolds, might promote an inflammatory response after transplantation, 

and the major part of used biomaterials are not biofunctional. One of the alternatives 

to solve this problem is the production of constructs without the use of traditional 

biomaterials. The Cell Sheet Engineering is the alternative because it uses the 

extracellular matrix deposited by the cells as a natural scaffold for the regeneration of 

different tissues. 

Cell sheet technology was originally proposed by Okano and co-workers, in early 90’s. 

This technology takes advantage of thermo-responsive culture dishes that enable 

reversible cell adhesion to and detachment from the dish surface by a controllable 

hydrophobicity of the surface. By temperature change, a cell sheet with organized 

cellular entities and cohesive cell-to-cell and cell-ECM interactions is obtained. 
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In previous studies in our laboratory we generated cell sheets from human stem cells 

derived from adipose tissue (hASCs) that after transplantation in mice full-thickness 

excisional skin wounds, induced the formation of rete ridged-like structures and a 

significant number of hair follicles.  Considering these results and envisioning the 

possibility of having cell sheets available off-the-shelf for immediate use in the clinic, to 

have these structures cryopreserved would be advantageous. 

The goal of this work was to define a cryopreservation methodology that allows the 

preservation of both cells viability and the properties of CS extracellular matrix (ECM).  

hASCs obtained from three different donors, were cultured in UP cell thermoresponsive 

dishes, to form hASCs-CS. Different cryopreservation conditions were considered, by 

varying the concentration of DMSO: i) standard condition with 10% of DMSO used to 

cryopreserve cell suspension; and ii) experimental condition with 5% of DMSO to reduce 

the cytotoxicity. 

The effect of cryopreservation conditions over cell viability was analysed after 

dissociation of the CS. The results showed that both cryopreservation conditions do not 

significantly affect cell viability. However the cytoskeleton of cells suffered alterations 

after cryopreservation in both conditions, which were more evident in the standard 

condition. It was also found that both cryopreservation conditions affect the integrity of 

the extracellular matrix of cell sheets, although it appears that a standard condition 

affecting more significantly. Furthermore, after cryopreservation the amount of total 

protein, decreased to half, which indicates that both conditions of cryopreservation 

affects the extracellular matrix content. 

Potentially, this result is associated with matrix proteins laminin, fibronectin and 

collagen type I. In fact, these proteins other than collagen was affected both molecular 

and protein level. 

Moreover we found the expression of their genes by polymerase chain reaction (PCR). 

Where the molecular level, the laminin gene is over expressed in both the 

cryopreservation conditions, the fibronectin gene only in experimental condition and 

collagen gene does not change significantly in both the cryopreservation conditions. 

Whereas the properties of mesenchymal cells that comprise the cell sheets are 

determining the results previously reported, the expression of typical markers following 
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cryopreservation was examined at the genetic and protein level using PCR and flow 

cytometry, respectively. 

Based on the results obtained, showing that extracellular matrix is significantly affected 

by cryopreservation, is to experiment with different protocols and different methods of 

cryopreservation. In order to obtain a better preservation of the structural integrity of 

the cell sheet, and thus ensuring its functionality after transplantation. 

With this thesis, it was possible to open routes to target a suitable cryopreservation 

methodology applied to hASCs-CS, which enables an off-the-shelf TE and RM strategy. 

 

Keywords: Tissue Culture, Adipose Stem Cells, Cell Sheets, Cryopreservation, DMSO, 

Off-the-Shelf, Tissue Engineering, Regenerative Medicine. 
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I. Introduction 

1.1. Regenerative Medicine 

Regenerative Medicine (RM) is area of research which attempts to develop methods to 

regenerate damaged tissues, creating substitutes in the laboratory and safely 

transplanting them into the patient when the  body cannot heal itself 1,2,3,4,5. 

RM is a biomedical technology, aimed at the regeneration and repair of the body. Based 

on biology and inspired in technology RM integrates regenerative, stem cell (SCs) and 

tissue biology. RM involves tissue regeneration, cell proliferation, apoptosis, 

differentiation, dedifferentiation, transdiferentiation and extracellular matrix and not 

only isolation, propagation, directed differentiation and transplantation of embryonic or 

adult SCs.   

A main strategy used in RM is cell-based therapy based on SC, which can  self-replicate 

for undefined periods and under the proper environment can differentiate into mature 

cells that have characteristic and specialized functions of a tissue6.  

RM includes the multi- and inter-disciplinary field of Tissue Engineering (TE) which was 

first defined by Langer and Vacanti in 1993 as “a field that applies the principles of 

engineering and life sciences towards the development of biological substitutes to 

restore, maintain, or improve tissue function”7. In the context of this work, MSC are of 

particular interest for TE applications8–11. 

 

1.2. Mesenchymal Stem Cells and applications 

Mesenchymal Stem Cells (MSCs) were first isolated from bone marrow by Friendenstein 

in 1976. MSCs are tight adherent spindle-like cells which are able to form single-cell 

colonies (Zhao et al). These cells have the ability to differentiate into a number of cell 

types. 

MSC are ubiquitous and have been found in adipose tissue12, muscle13, liver14, lung15, 

umbilical cord blood 16,17, amniotic fluid18, among others 19,20.  

Defining their cellular phenotype has proved problematic. In 1999 Pittenger et al 

proposed that hematopoietic MSCs are positive for CD105, CD166, CD54, CD55, CD13 
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and CD44. Conversely, they must be negative for CD34, CD45, CD14, CD31 and CD13321. 

In 2006 a standardised definition multipotent MSC was by the International Society for 

Cellular Therapy. A MSC the must express the cell surface markers CD105, CD73 and 

CD90, and lack the expression of the cell surface markers CD45, CD34, CD14 or CD11b, 

CD79a or CD19 and HLA-DR. Additionally, MSCs must differentiate into osteoblasts, 

adipocytes and chondroblasts in vitro 22,23. 

However, MSC are highly heterogeneous and have variable expression of surface 

markers.  Therefore, they can be considered as a mix of progenitor cells with varying 

degrees of replicative/differentiation potential24,25. Zhao et al. 26 recently reported the 

existence of a very small subset of MSCs from bone marrow, that are capable of 

extensive self-renewal and possess pluripotency. Collectively, MSC have shown the 

ability to differentiate (in vitro or in vivo) into adipocytes, chondrocytes, osteoblasts, 

myocytes, neurons, hepatocytes, and pancreatic islet cells13,27. 

MSCs are being actively investigated for regenerative medicine purposes due their 

plasticity, multipotentiality, high expansion rates and their immunosuppressive 

properties28,29,30  They can be easily obtained from multiple sources and isolated in 

laboratory31, and hold great promise for treating many diseases and disorders. The 

therapeutic application involves the transplantation of autologous or allogeneic MSCs 

into patients, by local delivery or systemic infusion. Efficiency of delivery remains a 

problem:  in the case of systemic infusion less than 1 % of the total injected cells reach 

and home to the desired location due to the lack of MSCs homing receptors 32. 

MSCs therapy approaches rely on their multilineage differentiation capacity and their 

immunomodulatory characteristics. MScs can secrete cytokines and growth factors that 

are anti-apoptotic, proangiogenic and have the potential to reduce scarring and 

inflammation. The main examples of therapeutic applications with MSCs are related 

with the myocardial infraction33, the osteogenesis imperfecta34, large bone defect35, 

metachromatic leuko dystrophy (MLD) and Hurler syndrome36, and severe idiopathic 

aplastic anemia37. 

MSCs can be combined with biodegradable scaffolds, with desired mechanical 

properties, and cell-biomaterial constructs  further cultured in vitro culturing prior to in 

vivo implantation7,38,39,40. However, biomaterials pose a number of technical challenges. 
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A different and innovative tissue engineering strategy has arisen with the advent of cell 

sheet engineering technology, an approach that avoids the use of scaffolds.  

 

1.2.1. Adipose Stem Cells  

One of the main sources of MSCs is  adipose tissue, which contains a supportive cell rich 

stroma that can be easily isolated through liposuctions procedures from the inferior 

abdomen41,22. Adipose tissue provide a significant number of ASCs, exhibiting a yield 40-

fold greater than bone marrow, and with a stable growth and proliferation kinetics in 

culture42. These MSCs isolated from fat tissue are commonly termed Adipose derived-

Mesenchymal Stem Cells (ASCs). They present the same potential to differentiate in vitro 

under proper conditions, into adipogenic, osteogenic and chondrogenic lineage43. ASCs 

isolated from adipose tissue maintains the similarity with bone marrow MSCs, in terms 

of surface markers. ASCs express CD29, CD44, CD90, and CD105 but are negative for 

CD13, CD31, CD34, CD45, and HLA-II44. They also show an  hypoimmunogenic status that 

enables them to evade immune recognition and thus modulating the immune responses 

after in vivo transplantation45. ASCs are also able to stimulate the recovery of an injured 

or diseased tissue, in paracrine way, secreting cytokines and growth factors46 Thus ASCs 

are promising type of adult SCs for regenerative medicine in cell therapy and TE. 

 

1.3. Cell Sheet engineering technology 

Cell Sheet (CS) engineering , originally proposed by Okano and co-workers, in early 

90’s47,avoids the shortcomings associated with traditional TE approaches which use 

materials to form scaffolds, as it is a scaffold-free approach.  

Scaffold free technology aims to explore the inherent capacity of cells to produce 

extracellular matrix (ECM) to create functional 3D tissues48 and avoids the use of 

exogenous biomaterial scaffolds.  The process can be promoted by exogenous stimuli, 

such as growth factors, enzymes, and mechanical stimulation, and often follows 

standard steps of cell condensation, cell proliferation, cell differentiation, ECM 

production, and tissue maturation.  

This technology takes advantage of thermoresponsive (TR) culture dishes that enable 

cell detachment from the dish surface (Figure 1). This is achieved by coating ordinary 
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polystyrene surfaces such as Petri dishes  with a TR polymer such as poly(N-

isopropylacrylamide) (PIPAAm)49,50. PIPAAm is a temperature-dependent anionic 

reversible polymer with separation phase in aqueous solutions. At 37ᵒC, the isopropyl 

side groups are hydrophobic, improving cell adhesion, proliferation and differentiation. 

At 20ᵒC (below the lower critical solution temperature (LCST) of the polymer) the surface 

becomes hydrophilic. By lowering the temperature to 20ᵒC, cell adhesion is  inhibited 

and the cells detach as a sheet, avoiding the traditional proteolytic enzyme treatment 

(Figure I-1)51,52,53,54. The ECM secreted by the cells in culture is the natural scaffold of CS 

and therefore the use of external materials to create a structure is avoided. This 

procedure allows maintenance of cell-to-cell and cell-ECM junctions to keep the 

structure of the cell sheet intact and artificial tissue-like structures with organized 

cellular entities and cohesive cell-to-cell and cell-ECM interactions can be 

obtained81,81,83. 

Other surfaces engineered with smart polymers which react to different stimulus as 

voltage as gold surfaces55, pH56,57 and Ionic strength58 are being developed. However, 

these surfaces have not reached clinical application. 

 

  

Figure 1 - Features and functioning of surfaces. Adapted from59. 

 

 

 

Hydrophobic Hydrophilic 

VS. 
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1.3.1.1. CS Applications in Regenerative Medicine 

CS have great potential for regenerative medicine applications where cell surfaces are 

required, for example in tissues such as cardiac60, and skin61,62 and corneal epithelium63 

grafts, as well as to regenerate urothelium64 and periodontal ligament65. 

The first example of creation of functional tissue for direct transplantation to host 

tissues53,66–68,69  for clinical application of CS engineering was cornea replacement. 

Corneal ephetilial SCs were isolated from corneal epithelia, expanded in TR dishes and 

recovered by temperature decrease to transplant as a sheet in patients with ocular 

trauma70. Besides improved visual acuity, this alternative strategy avoids the opacity of 

traditional scaffolds or substrate carriers66,63. An autologous strategy for direct 

transplantation has been also proposed for skin71, periodontal ligaments and bladder 

regeneration (Figure 2A)72. 

Three-dimensional constructs are required when thick and cell dense tissues are needed 

in regenerative medicine applications. Therefore, CSs have been manipulated into 

three-dimensional (3D) constructs by layering them (Figure 2). For example, one 

approach used cardiac myocytes CSs  to recreate cardiac tissue60, preserving their 

functionality and synchronized pulsations (Figure 2B). A 3D four-layered CS construct of 

neonatal rat cardiac myocyte was subcutaneously transplanted into rats. Microvascular 

networks developed and the implant was capable of  spontaneous beating66.   
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Figure 2 – Tissue-like substitutes obtained by CS engineering. (A) Application of Single CS 

transplantation for cornea replacement and regeneration of skin, periodontal ligament and 

bladder. (B) Stacking of several CS for the improved performance of cardiac tissue73. (C and D) 

The Liver and the kidney, tissues with laminar and higher-order structures, can also be recreated 

with CS engineering. Adapted from66. 

 

A good example of success was the work of transplantation of CSs into recipients was 

developed by Masayuki Yamato, who developed CS with functional Conexin 43 positive 

gap junctions which mediate the electrical communication through layered cell sheets 

similarly to what happens in the heart54.  In another work T. Shimizu developed a 

construct composed by 30 cardiac myocytes sheets staked (approx. 1mm) was 

successfully implanted in recipients by polysurgery, successfully avoiding hypoxia, 

nutrient insufficiency and/or waste accumulation74. Bone tissue regeneration is another 

area where the CS technology has shown promising results. Pirraco et al. 75 have used 

osteogenic CS to promote the new bone formation when implanted subcutaneously into 

nude mice. Cerqueira et al. showed the use of CS technology to engineer heterotypic 

CSs based human keratinocytes (hKC), dermal fibroblasts (hDFb), and the dermal 

microvascular endothelial cells (hDMEC); the resulting CS can participate in wound re-

epithelialization,  remodulation of the ECM and modulation of angiogenesis within the 

dermal vascular network62.  This author further developed cell sheets from human stem 

cells derived from adipose tissue (hASCs) that after transplantation into mice with full-
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thickness excisional skin wounds, induced the formation of rete ridged-like structures 

and a significant number of hair follicles.   

CS constructs are trending towards greater complexity, vascularization and thickness. As  

the majority of the tissues present within the human body comprise several cell layers 

of parenchyma and epithelia surrounded by ECM,  CSs have the potential to create 

functional structures with proper thickness for cell dense tissues as the heart, the liver, 

the muscle and the kidney68.  The layering of CSs will also allow the creation of 

heterotypic CSs. Further progress may come from combining CS technology with  

nanofabrication techniques, including micropatterning76–79 and biomolecule-

immobilization80,81 to develop new cell culture surfaces. Micropatterning methods allow 

two polymers with different LCSTs to be coated on the same surface, permitting  

selective cell adhesion under temperature controlled environments82. In addition, the 

immobilization of bioactive molecules on TR surfaces of culture dishes may remove 

contaminant components from mammalian sources, allowing the fabrication of CSs 

under serum-free conditions83,84.  

In sum, CS technology holds great promise. However, for this approach to be practical 

in a clinical setting, cryopreservation techniques and procedures must be developed 

that preserve both the cellular and extracellular components of the structure. 
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1.4. Cryopreservation 

Cryopreservation of living cells and tissues basic technology used in biology, 

biotechnology, plant and animal breeding programmes, cell culture, microbiology and 

also in modern medicine85.  

In regenerative medicine approaches the time between tissue construct production and 

clinical application can be long. For the technology to be practical, effective preservation 

methods and off-the-shelf strategies86,87,88,89,90 are crucial. Cryopreservation methods to 

preserve cells in suspension are well established, but the preserve of complex 

multicellular living structures, such as biological tissues, remains a challenge.  

Ideally,  cryopreservation methods should avoid ice crystal formation and cell shrinkage 

inside bulky constructs91.  

Currently, two major cryopreservation processes are in use. The, first  is  freezing 

method based on gradual cooling at variable rates;  the second is vitrification 92.  

 

1.4.1. Cryoprotetants 

Cryoprotetants (CPA) are substances that minimize the formation of ice crystals 

intracellular and/or extracellularly during the freezing process, resulting in increased 

cell viability and metabolic activity, as well as conservation of morphologic structure 

and tissue architecture upon thawing. Cryoprotetants can be used individually or in 

combination122, 93. 

A crucial parameter is the quantity of CPA used in cryosolutions. High concentrations of 

CPA favour glass formation and minimize damage induced by ice crystal formation,  

The presence of solutes in cryosolutions promotes the decrease of the freezing point, 

which increases exposure at low temperatures and consequently decreases cell damage 

during the cryopreservation process.  

Another effect is the direct alteration of the semi-permeability of cell membranes and 

consequently the osmotic equilibrium during the freezing process. 

CPA are divided into two main groups based on permeability:  permeable and non-

permeable. Furthermore, the non-permeable are  classified by their molecular weight 
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(MW): (i) low MW compounds; (ii) intermediate MW compounds (sugars); (iii) and high 

MW compounds (Table1)92. 

Table 1. Cryoprotetants. Adapted from 92. 

Permeable Non-permeable 

Low molecular weight 

MW < 100 Da 

Sugars 

180 < MW < 594 Da 

High molecular weight 

MW >1000 Da 

Ethylene glycol Glucose ɛ-Poly-L-Lysine (ɛ-PLL) 

Dimethyl sulfoxide (DMSO) Fructose Polyvinyl pyrrolidone (PVP) 

Propylene glycol Lactose Dextran 

Glycerol Sucrose Polyethylene glycol (PEG) 

1,2-/2,3-butandiol Trehalose Polymer polyvinyl alcohol (PVA) 

Formamid, acetamid Raffinose Hydroxyethyl starch (HES) 

 

 

1.4.1.1. Permeable Cryoprotetants 

The majority of permeable CPA are hydro-soluble, avoiding the water-to-water 

hydrogen bonding and consequently the ice formation at low temperature122, 23. The 

high concentration of salts is reduced in the presence of permeable CPA, as glycerol, 

which possess high viscosity levels at low temperatures and kinetically retards ice crystal 

growth. Despite all these protective properties, permeable CPA have shown deleterious 

effects to cells, mainly at high concentrations, and it is possible to distinguish between 

the osmotic and the chemical toxicity94. Osmotic toxicity occurs when permeable CPA is 

added in proper concentrations and cross the biological membranes entering at a rate 

largely different to the exit of water. If the CPA enters slower than water exits the cell, 

the osmotic force becomes higher in the extracellular space causing a damage to cell by 

over shrinking. If the CPA enters faster than water, cell cytoplasm will swell until 

disruption of the membrane occurs. Chemical toxicity is more complex due to the large 

range of existing permeable CPA (Table 1) and to the fact that each one of them interacts 

in a different way with different cells. Moreover, permeable CPA are relatively 
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innocuous in comparison to solutes with similar concentrations, causing a time and 

temperature-dependent effects in the majority of cases89,94.   

Examples of permeable CPAs are methanol, ethylene glycol, dimethyl sulfoxide (DMSO), 

propylene glycol and glycerol (Table 1). Among these, the most effective permeable 

CPAs for cryopreservation are glycerol, a small poly-hydroxylated solute, and DMSO, an 

organosulfur compound. Both are highly soluble in water and show low toxicity during 

short-term exposure to living cells95. Dimethyl sulfoxide (DMSO) is the most efficient and 

more frequently used CPA to cryopreserve different types of cells, tissues, organs, as 

well as tissue-engineered constructs. DMSO is a polar solvent that can stabilize cellular 

proteins by increasing the freezing energy of unfolding, via preferential exclusion 

mechanisms, and can also stabilize the plasma membrane through interacting 

electrostatically with the phospholipids bilayer at higher concentrations 96,97. 

Additionally, DMSO was recently shown to scavenge oxygen free radicals, which 

enhances CPA action98. On the other hand, cryopreservation with DMSO may cause gene 

mutation in cells99 and the interaction between the DMSO and the hydrophobic residues 

of cell proteins may promote their denaturation and destruction100. To avoid these 

negative effects the levels of DMSO are reduced in the freezing solutions, thus 

eliminating the need for CPA removal, making the thawed cells available for direct 

implantantion101.  

 

1.4.1.2. Non-permeable Cryoprotectants 

Non-permeable CPA are  mainly used in vitrification protocols due their capability to 

promote a fast dehydration before the direct exposure to liquid nitrogen (LN)92. The 

amount of non-permeable CPA required for dehydration prior to vitrification should be 

carefully dosed in order to avoid an over-dehydration of biological material to a point 

beyond recovery. Non-permeable CPAs act on the extracellular surface of the cell, 

creating a hydrated layer that causes osmotic shrinkage of the cells and join an ice front 

during freezing92. The low presence of intracellular water prevents completion of 

intracellular ice formation, acting as a mechanism of protection during cryopreservation. 

Both non-permeable CPA sugars and polymers have a low toxicity risk since they cannot 

penetrate the cell membrane93,100. The use of high concentrations of non-permeable 
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CPA demands a permanent evaluation of small variations of MW or purity level, because 

these parameters can dramatically alter cell survival and viability during the vitrification 

procedure. Regarding sugars, the principal influence is the alteration of osmotic 

equilibrium of buffers93,92. These small carbohydrate sugars, such as trehalose, sucrose 

and maltose have the capacity to stabilise the bilayer membranes during the hypertonic 

exposure and ice crystals formation since they interact with the polar head of 

phospholipids. In addition, they can  stabilize and preserve proteins, as well as to form 

a stable glassy state92,93.  

Among the sugars, the most effective as non-permeable CPA is trehalose, a non-

reducing disaccharide of glucose that is found at high concentrations in a wide variety 

of organisms that are capable of completely survive to dehydration. Furthermore, when 

trehalose is combined with other permeable CPAs, mainly DMSO, it improves the 

protective capabilities of cryosolutions102.  

Trehalose is a small carbohydrate sugar (a non-reducing dissacharide of glucose) used 

as a non-permeable cryoprotectant in solutions of cryopreservation. It is one of the most 

effective non-permeable CPA. By interacting  with polar head of phospholipids88 it 

stabilises cellular membranes during hypertonic exposure.  

Moreover, trehalose has the ability to stabilize and preserve proteins, viruses, and 

bacteria as well to form a stable glassy state. Trehalose is often used in combination 

with DMSO, resulting in an alteration of osmotic equilibrium of cryopreservation 

buffers92,93. 

In the case of polymers, the hydrogen bonding sites of molecules of water interact with 

the polymer side chains, and their high MW increases the viscosity at low temperatures 

impeding  intracellular ice formation92. A polymer that shows a high efficiency on 

cryopreservation is the carboxylated poly-L-lysine (ɛ-PLL). Ɛ-PLL is a cationic polymer 

that is  adsorbed electrostatically to cell surfaces due to its positively charged hydrophilic 

amino groups 85 . 

ɛ-PLL is a non-permeable CPA used in cryosolutions, due its antifreeze proprieties of low 

toxicity. It is a cationic polymer positively charged by hydrophilic amino groups. In 

presence of water it is adsorbed electrostatically to the surface of cells. The high 

molecular weight increases the viscosity at low temperatures which allow the inhibition 
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of ice recrystallization and a successful protection of cellular membranes during 

cryopreservation92. 

 

 

1.4.2. Methods of Cryopreservation 

1.4.2.1. Freezing 

1.4.2.1.1. Slow Cooling 

The slow cooling rate is the conventional method of cryopreservation that preserves 

cells using liquid nitrogen without notorious damages to the cryopreserved cells98. The 

optimal cooling rate of 1ºC per minute allows a partial frozen state that maintains the 

osmotic equilibrium between the extracellular and intracellular compartments in a 

process called dehydration. The process requires a controlled rate freezer103. However, 

slow cooling has the disadvantage of subjecting the cells to temperature stress and 

unfavourable culture conditions leading to intracellular ice formation, and consequently 

mechanical stresses. All these events increase the possibility of fracture causing 

irreparable damages on the cryopreserved cells/tissues104.  

 

1.4.2.1.2. Rapid Cooling 

The rapid cooling method appears as a profitable procedure to optimize the process of 

cryopreservation. However, the rapid rate of cooling enables the permeation of water 

inside the cells, leading to intracellular ice formation and eventually cell damage and 

death105. The thawing process can also result in extracellular ice formation, due the 

insufficient solute concentration 92. The cryopreservation with rapid cooling method of 

living cells is more efficient supported by adding cryopreservation solution to prevent 

ice formation during the entire procedure but it still leads to significant cell damage106.   
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1.4.2.2. Vitrification 

Vitrification is defined as glass-like solidification that is achieved by partial replacement 

of water by penetrating agents which are easy glass formers and subsequent fast 

dehydration of biological material by non-penetrating cryoprotectant92. It is an 

alternative method to  traditional cryoprotetant based freezing 107. This method does 

not require the use of specialized material to control freezing rate and the solutions do 

not crystalize, thus preserving in a more effective way the cells and tissues during the 

cooling process. Contrarily to what happens in the slow cooling rate, the high 

concentration of intracellular solutes during dehydration is avoided107. Despite this, 

improvements to this cryopreservation are needed in order to maintain a constant 

physiological temperature along the entire procedure, including in the equilibration and 

dilution processes.  

 

1.4.3. Cryopreservation in Tissue Engineering 

Cryopreservation is a tenable solution for the maintenance of “living” biomaterials being 

produced and applied in TE. The major obstacle found in TE is the preservation and the 

storage for long-term without the loss of the desirable properties that constructs have 

prior cryopreservation85. 
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1.5. Objective 

The goal of this work was to develop a cryopreservation methodology that would allow 

the preservation of both cell viability and extracellular matrix (ECM) properties in CS.  

 

1.6. Experimental Strategy 

hASCs obtained from three different donors, were cultured in UP cell thermoresponsive 

dishes, to form hASCs-CS. Two cryopreservation conditions were tested, by varying the 

concentration of the cryoprotectant DMSO: i) a standard condition with 10% of DMSO, 

commonly used to cryopreserve cell suspensions; and ii) an experimental condition with 

5% of DMSO to reduce the cytotoxicity. 
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II. Materials and Methods 

Materials 

2.1. Tissue Culture Polystyrene Surfaces 

Tissue Culture Polystyrene Surfaces (TCPS) T150 cm2 flasks, were used for isolation and 

expansion of hASCs. 

 

2.2. Thermoresponsive Dishes 

Thermoresponsive dishes, grafted with poly (N-isopropylacrylamide), were used to 

generate cell sheets of ASCs. This technology avoids proteolytic enzyme treatment allowing 

the harvesting of confluent cells as intact CS along with their deposited Extracellular Matrix 

(ECM). A poly(vinylidene difluoride) (PVDF) membrane (Milipore, U.S.A.), with 2 cm of 

diameter to carrier the cell sheets. 

 

2.3. Cryopreservation 

Cryopreservation of hASCs-CS by slow cooling rate was possible due the Controlled-rate 

freezing container alcohol-free CoolCell (BioCision LLC, USA), freezing at – 1 ºC per minute, 

and successful cryopreservation. The paten-pending Cool Cell technology utilizes a thermo-

conductive alloy and highly-isolative outer materials to control the rate of heat removal and 

make cell cryopreservation reproducible. 

To retain optimal viability of cell sheets, cryopreserved during 7 days at -196ºC, was used 

the Liquid Nitrogen (LN) tank.  

During all process of cryopreservation cell sheets were kept in 2mL cryovials (Nunc,U.S.A.). 
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2.4. Characterization 

2.4.1. Flow Cytometry 

All assays of flow cytometry were performed on FACSCalibur flow cytometer (BD Biosciences, 

Belgium) and data was analyzed using Cell Quest Pro version 4.0.2 (BD Biosciences, Belgium) 

software. 

 

2.4.2. Quantification of Total Protein 

For quantification of total protein were used the Commercial Kit BCA DCTM Protein Assay 

(Bio-Rad/USA). 

2.4.3. Complementary Deoxyribonucleic acid synthesis 

The purity of Ribonucleic acid (RNA) of the different samples was assessed using Nanodrop” 

ND-1000 spectrophotometer (NanoDrop Technologies, U.S.A.). 

This was carried out with the qScript cDNA synthesis kit (Quanta Biosciences, U.S.A.), 

according to the manufacturer’s instructions in a MJ MiniOpticon Real-Time PCR Detection 

System (Bio Rad, U.S.A.). 

 

2.4.4. Microscopy Analysis 

All samples were observed under AxioImager Z1M microscope (Zeiss, Germany) and images 

were acquired and processed with Zen Blue 2012 software (Zeiss, Germany). 

 

2.4.5. Transmission Electron Microscopy  

TEM was performed on Institute for Molecular and Cell Biology (IBMC) facilities, following 
the standard protocol.  

Ultrathin sections (40-60 nm thickness) were prepared on a LKB 2188 NOVA Ultramicrotome 

(LKB NOVA, Bromma, Sweden) using diamond knives (DDK, Wilmington, DE, USA). The 

sections were mounted on 300 mesh nickel grids, stained with uranyl acetate and lead 

citrate, and examined under a JEOL JEM 1400 TEM (Tokyo, Japan). Images were digitally 

recorded using a Gatan SC 1000 ORIUS CCD camera (Warrendale, PA, USA). 
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Methodologies 

2.5. Stem Cells isolation and culture from adipose tissue 

Human subcutaneous adipose tissue samples were obtained from liposuction 

procedures at Hospital da Prelada (Porto, Portugal). Samples were obtained after 

informed consent and under a collaboration protocol with 3B’s Research Group. That 

was approved by the ethical committees of both institutions, ensuring the patient’s 

agreement for the collection of samples, as well as patient’s anonymity.  

Human subcutaneous adipose tissue samples were transported under controlled 

temperature conditions in Phosphate Buffer Saline (PBS) with 10% (v/v) Antibiotic (AB) 

(Alfagene, Lifetecnhologies, U.S.A.), and processed within 24 hours after collection.  

Samples were washed with PBS to make sure that the majority of the blood was 

removed, and digested with 0.05% (v/v) collagenase type II (Sigma, U.S.A.) under 

agitation, for 45 minutes at 37ᵒC 108. After that, samples were filtered and centrifuged 

at 800g during 10 minutes to obtain a pellet corresponding to the stromal vascular 

fraction (SVF). Red blood cells in the SVF were lysed by incubation with blood cell lysis. 

The buffer were composed by 155mM of ammonium chloride, 12mM of potassium 

bicarbonate and 0.1M of ethylenediaminetetraacetic acid (all the reagents were 

supplied by Sigma-Aldrich, Germany) in deionized water, for 10 minutes at room 

temperature (RT). After centrifugation at 300g for 5 minutes, the red blood cells-free 

SVF was resuspended in Minimum Essential Medium Eagle (α-MEM) (Lifetecnhologies, 

U.S.A.) supplemented with 10% (v/v) Fetal Bovine Serum (FBS) and 1% (v/v) AB 

(Alfagene, Lifetecnhologies, U.S.A.), and plated in tissue culture polystyrene (TCPS) 

flasks. The cell medium was replaced every 48 hours of culture. Adherent human 

adipose stem cells (hASCs) were selected after 5 days of culture and harvested at 90% 

(v/v) confluence along the passages. All the experiments were independently performed 

with 3 donor samples (Table 2).  

Table 2. Donor information. 

Sex Age 

Female 55 

Female 59 

Female 68 
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2.6. Cell sheets Fabrication 

hASCs, at passage 2 , were plated in UP cell 35mm TR dishes (Nunc, Thermo Scientific, 

Denmark) or six well plates (Falcon, Corning, U.S.A.) at a cell density of 3x105 cells/cm20, 

and cultured for 5 days in α-MEM medium, supplemented with 10% (v/v) FBS, 1% (v/v) 

AB and 50µg/ml of ascorbic acid (WAKO, Japan) at 37ᵒC, in a humidified atmosphere 

with 5% CO2, according to what was previously described71. Culture medium was 

replaced after 3 days of culture. 

After 5 days, CSs were recovered from TR dishes by temperature decrease. hASCs were 

washed twice with fresh culture medium and then left in 100µL of PBS.  

A poly (vinylidene difluoride) membrane (Milipore, U.S.A.), with 2cm of diameter was 

placed on top of CS-hASCs and maintained for 20 minutes at RT. After this time, CS 

border was carefully folded onto the membrane and CS was recovered. Protocol was 

replicated for cells cultured in six-well plates and recovered mechanically. 

 

2.7. Cell Sheets Cryopreservation 

Cryopreservation of cells in suspension commonly performed using solutions with 

Dimethyl Sulfoxide (DMSO) as principal cryoprotetant at a concentration of 10% (v/v), 

using the slow freezing method.  

For cryopreservation was used two different cryosolutions, the condition commonly 

adopted for cryopreservation of cellular suspensions, namely 90% (v/v) FBS and 10% 

(v/v) DMSO (90/10). Alongside, envisioning a decrease of DMSO amount, other solution 

composed by 95% (v/v) FBS and 5% (v/v) DMSO (95/5) was also investigated. 

The CSs were retrieved, and then carefully placed into 1.5mL of cryopreservation 

solution in 2 mL cryotubeTM vials (Thermoscientific, Denmark). Cryotubes were then 

placed in a controlled-rate freezing container CoolCell (BioCision LLC, U.S.A.), which was 

then quickly placed in a –80ᵒC freezer allowing a slow cool rate freezing at –1ᵒC per 

minute overnight.  Cryotubes were transferred to a Liquid Nitrogen (LN) tank at -196ᵒC 

and left for 7 days before thawing and analysis of CS. 
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2.8. Cell Sheets thawing  

After 7 days of cryopreservation in LN, cryotubes were placed on ice until be thawed at 

37ºC following the rapid-thawing methodology. This principle of a quick heat shock 

avoids major damages to hASCs-CS. 

The recovery process was performed by washing and rehydrating, mainly consisting on 

CS removal with the carrier from the cryotube and rinsed 3 times in α-MEM. The CSs 

were incubated within α-MEM in three different temperatures, each taking 30 minutes, 

including RT, followed by an increasing of temperature up to 37ᵒC, and a stabilization 

period at the same temperature. All the samples were collected after 3 hours (3H) of 

equilibrium.  

 

2.9. Flow Cytometry Analysis 

Flow cytometry allows to characterize the phenotype of any cell population through the 

quantification of expression of surface and intracellular characteristic markers. Single 

cells flow in a fluid stream through a beam of laser light to analyse and simultaneously 

measure the relative size, internal complexity and fluorescence intensity109. 

 In this study, this technique allowed the characterization of several surface markers 

related with the mesenchymal phenotype after isolation of the different hASCs 

populations, selection and expansion at different passages. To perform flow cytometry 

analysis, hASCs (section II-2.5) cultured in complete α-MEM were trypsinized and 

dispensed 1.5x105 of cells per each flow cytometry tube (Falcon, U.S.A.). 

 

2.9.1. Preparation of cellular suspension from Cell Sheets 

Before and after cryopreservation CS were transferred to 15mL tubes containing 400µL 

of Collagenase Type II (Sigma, U.S.A.) 7µg/mL (Pzactivity0.9LU/mL) diluted in α-MEM 

and incubated for 20 minutes at 37ᵒC under agitation. Afterwards, 0.25% (v/v) Trypsin-

EDTA were added and the CS was further incubated for 10 minutes at 37ᵒC with 

agitation.  
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The activity of collagenase and trypsin was inactivated using PBS with 10% (v/v) FBS, and 

the obtained cell suspension was centrifuged for 5 minutes at 1300 rpm. The 

supernatant was discarded, and the pellet was re-suspended in 500µL of PBS with 10% 

(v/v) FBS to obtain a single cell suspension. 

 

2.9.2. Cells Labelling 

2.9.2.1. Surface marker labelling 

In order to confirm a mesenchymal phenotype, the expression of mesenchymal markers 

CD105, CD73, CD90 and of hematopoietic markers CD45, CD34 and CD31 was assessed. 

Moreover, it was evaluated the expression of human leukocyte antigen-DR (HLA-DR). 

For direct staining, different primary fluorophore-conjugated antibodies were used 

(Table 3). Antibodies were added to a 100µL cell suspension of 150000 cells, dissociated 

hASCs-CS, and incubated for 20 minutes at RT in the dark. After the incubation time, 

2mL of PBS were added to each flow cytometry tube which were then centrifuged at 

1800 rpm for 5 minutes at RT. Supernatant was carefully removed and the cell pellet 

was re-suspended in 500 µL of Acquisition Buffer (1% (v/v) paraformaldehyde in PBS).  

 

2.9.2.2. 7AAD/Draq5 Stainning 

7-AAD is a non-permeable cell membrane dye, thus generally excluded from viable cells, 

that binds to double stranded DNA by intercalating between base pairs in G-C-rich 

regions. Aiming at assessing the viability of the cells forming a CS before and after 

cryopreservation, cell suspension obtained after dissociation of the CS (section II-2.9.1) 

were incubated with a 7-amino actinomycin D (7-AAD) viability staining solution. In this 

case, 3µL of 7AAD viability staining solution was added to a 3x105 cells in PBS 10% (v/v) 

FBS and incubated during 10 minutes at RT. In order to gate adequately the nucleated 

cells, fluorescent probe DRAQ5TM Far-Red Fluorescent Live Cell Permeant DNA Dye 

(eBioscience, Germany) was used. This reagent stains specifically DNA, to distinguish the 

nucleated cells from cellular debris. All assays were performed on FACSCalibur flow 

cytometer (BD Biosciences, Belgium) and data was analysed using Cell Quest Pro version 

4.0.2 (BD Biosciences, Belgium) software. 
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Table 3. List of antibodies and dilutions used to perform Flow cytometry. 

Cells Antibody/Host/Brand 
Antibody 
Dilution 

hASCs 

CD105-FITC, Rabbit          
(BD Biosciences, Germany) 

1:25 

CD73-PE, Rabbit                 
(BD Biosciences, Germany) 

CD90-APC, Rabbit               
(BD Biosciences, Germany) 

HLA-DR-FITC, Rabbit          
(BD Biosciences, Germany) 

CD31-APC, Rabbit            
(BD Biosciences, Germany) 

CD45-FITC, Rabbit           
(BD Biosciences, Germany) 
CD34-PE, Rabbit             (BD 

Biosciences, Germany) 

 

2.10. Quantification of Total Protein 

Before and after cryopreservation (section II-2.8) CS was stored in 150 µl of RIPA Buffer 

[187 mL dH2O; 50 mM Tris – 1.1725 g; 150 mM NaCl – 2.1915 g (dissolve); pH= 7.4 (with 

HCl 6M); 1% Triton X-100 – 2.5 mL; 0.5% Sodium deoxycholate – 1.25 g; 0.1% SDS – 0.25 

g; Add dH2O until 250 mL; filter with 0,22 µm], supplemented with Protease Inhibitor 

Cocktail (Sigma, USA) in a 1:100 proportion. 

Total protein was extracted by ultrasonication in an ice bath. After 3 minutes of 

centrifugation at 13000 rpm, 75 µl of the supernatant containing the total protein 

extract was diluted with 75 µl of Lamelli buffer in a 1:1 proportion and stored at -80ºC.  

The quantification of total protein was performed with a colorimetric method based on 

the use of Bicinchoninic Acid (BCA), using a commercial Kit BCA DCTMProtein Assay (Bio-

Rad, USA).  The method is based on the ability of proteins, in an alkaline medium, to 

reduce Cu2+ to Cu1+, forming a purple complex. BCA assay was performed in a 96 well 

plate with remaining 75 µl supernatant of samples, mixed with 200 µl of the working 

reagent from commercial Kit BCA DCTM Protein Assay (Bio-Rad/USA). Working reagent 

was composed by BCA Reagent A [sodium carbonate, sodium bicarbonate, bicinchoninic 

acid and sodium tartrate in 0.1M sodium hydroxide] and BCA Reagent B [4% cupric 
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Ratio=     (Etarget) ΔCT, target (calibrator – test)  
 (Eref) ΔCT, ref (calibrator – test) 

sulfate] in a 50:1 proportion. The optical density was measured at 562 nm. A standard 

curve of OD vs protein concentration was obtained using Bovine Serum Albumin (BSA) 

solutions in the range of 0 to 2000 mg/ml. 

 

2.11. Real time reverse-transcriptase- Polymerase Chain Reaction      (RT-

PCR) 

Real time RT-PCR provides a sensitive, reproducible, and accurate method for 

determining small quantities of RNA targets 110. The principle is based on two principal 

finding, first the discovery of Taq polymerase that possess 5’-3’ exonuclease activity. 

Second, the discovery of dual-labelled fluorogenic oligonucleotide probes, which emit a 

fluorescent signal only upon cleavage, where the amount of fluorescence released is 

directly proportional to the amount of product generated in each PCR110. 

The standard protocol is based on five steps: initial denaturation; denaturation; 

annealing; extension; and data acquisition. To analyse the data, the software of 

instruments of RT-PCR calculates the variation of fluorescence emission (ΔRn), which is 

plotted against cycle number, determined as a threshold value (Ct). To normalize this 

quantification the choice of a reliable housekeeping gene is very important110. In our 

case, to calculate the relative gene expression the method proposed by Pfaffl (Equation 

1)111 was used, which is valid only when the amplification efficiencies of target and 

reference genes are similar. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Equation 1. Method of Pfaffl. 
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2.11.1. Total RNA isolation 

RNA of hASCs-CS was extracted using TRIzol® reagent to maintain the integrity of RNA 

during cellular components disruption. Therefore, 1.5mL of TRI® reagent (Sigma, 

Germany) was added to each hASCS-CS, prior and after cryopreservation. Samples was 

homogenized, kept overnight at -80ᵒC and then, chloroform (200µl/mL TRIzol®) was 

added. Samples were centrifuged at 13000 rpm for 15 minutes at 4ᵒC, and the aqueous 

phase of each tube containing the RNA was transferred to a new Eppendorf. The 

precipitation of the nucleic acids was achieved by adding 750µl of isopropanol after 

homogenization and incubation at RT. The suspension was centrifuged for 10 minutes 

at 13000 rpm and 4ᵒC in order to remove the isopropanol. The pellets were further 

washed by vortexing with RNAse-free 70% ethanol, at a 1:1 ratio to the volume of trizol. 

Once dried, the pellets were resuspended in a volume ranging between 10-50 ul of 

deionized water – RNAse free, depending on the size of the pellet. 

 

2.11.2. Complementary Deoxyribonucleic acid synthesis 

The purity of Ribonucleic acid (RNA) of the different samples was assessed using 

“Nanodrop” ND-1000 spectrophotometer (NanoDrop Technologies, U.S.A.). Only 

samples with a 260/280 ratio between 1.6 and 2.0 were used for complementary 

Deoxyribonucleic acid (cDNA) synthesis.  

cDNA synthesis was performed from 2µg of RNA in a final volume of 40µL of samples 

before and after cryopreservation . For samples cryopreserved with 95/5 condition, 

125ng of RNA in a final volume of 7.5µL were used, due the short amount of extracted 

RNA. This was carried out with the qScript cDNA synthesis kit (Quanta Biosciences, 

U.S.A.), according to the manufacturer’s instructions in a MJ MiniOpticon Real-Time PCR 

Detection System (Bio Rad, U.S.A.). 
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2.11.3. Quantitative PCR (qPCR) 

The expression of the genes of interest was measured by qPCR on system Real-Time PCR 

Mastercycler (Eppendorf, Germany) in 96-well plates, using the Perfecta SYBR® Green 

Fast Mix (Quanta Biosciences, U.S.A.). This method allows the amplification 

quantification of a target gene, through the emission of fluorescent dye that intercalates 

into DNA strands. Previously, all samples and primers were diluted in a proportion of 

1:201 in water RNA-free. For the amplification reaction a mixture composed by 10μL of 

SYBR® Green (Quanta Biosciences, U.S.A.), 1.2µL forward (FW) and reverse (RV) primers, 

6.6µL of H2O sterile and 1μL of cDNA was prepared per well for each gene of interest 

(Table 4). The specificity of the amplified fragments was confirmed by analysing the 

melting curves that were obtained by an increase of temperature from 55 to 95ᵒC (0.033 

ᵒC/s). The relative expression of ECM genes and mesenchymal gene markers, between 

samples prior and after cryopreservation was calculated using the comparative method 

proposed by Pfaffl. Normalization of the results was performed with the internal control 

Beta-2-Microglobulin mRNA expression.  
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Table 4. Sequence of specific Primers and annealing temperatures used in Real-Time 
PCR for Amplification. 

 

2.12. Cacein and Propidium Iodide Staining 

Calcein-AM and Propidium Iodide (PI) assay are fluorescent dyes that enable to 

distinguish live from dead cells113. Calcein-AM is highly lipophilic and it is easily 

transported into living cells through the cell membrane. After entering a living cell is 

activated through an enzymatic reaction by the enzyme esterase, giving rise to another 

molecular product, Calcein-AM. In this form, Calcein-AM emits green fluorescence with 

excitation of 490nm and emission wavelength of 515nm, respectively visualization in 

live cells113. PI as a membrane impermeant dye binds to DNA by intercalating between 

the bases with little or no sequence preference and with a stoichiometry of one dye per 

4–5 base pairs of DNA, when cellular membrane are disrupted. Because PI emits red 

Gene and accession number  Sequence (5’-3’) 

Annealing 

temperature 

(ᵒC) 

CD90; NM_006288.3 FW 
RV 

CAGCATCGCTCTCCTGCTAA 
ACTGGATGGGTGAACTGCTG 

59 

CD105; NM_001114753.2 FW 
RV 

CTCCCTCTGGCTGTTGCC 

ATATGTCACCTCGCCCCTCT 

60 

CD45; XM_006711474.1 FW 
RV 

TTGTGGCTTAAACTCTTGGCA 
GGCTTTGCCCTGTCACAAAT 

57 

CD34; NM_001025109.1 FW 
RV 

ACCCTGATTGCACTGGTCAC 
ATAAGGGTCTTCGCCCAGC 

59 

CD73; NM_001204813.1 FW 
RV 

TTTTGCACACCAACGACGTG 

GAACCTTGGTGAAGAGCCGA 

58 

HLA-DRA; NM_019111.4 
 

FW 
RV 

CCTGTCACCACAGGAGTGTC 
TCCACCCTGCAGTCGTAAAC 

60 

Beta-2-Micra; 

XM_005254549.1 

FW 
RV 

TGGAGGCTATCCAGCGT 

CGGATGGATGAAACCCA 

60 

Collagen; XM_006719242.1 FW 
RV 

GTTCACGTACACTGCCCTGA 

TCCACACCGAATTCCTGCTC 

59 

Fibronectin; 

XM_005246417.1 

FW 
RV 

CTGGCCAGTCCTACAACCAG 
CATGAAGCACTCAATTGGGCA 

60 

Laminin; NM_005559.3 FW 
RV 

TCACGGTGAACAGGTGCTAC 
AGAGCTGCATATCCGCTTCC 

59 
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flourescense with an excitation between ~30-40 nm is commonly used as a counterstain 

to identify dead cells114. 

To assess cell viability, Calcein AM (Invitrogen, U.S.A.) (1µg/ml) and PI (Invitrogen, 

U.S.A.) (1µg/ml) were dissolved in α-MEM without FBS. The solution was then incubated 

with cells sheets of hASCs for 30 minutes at 37ᵒC in the dark. hASCs-CS were observed 

under an AxioImager Z1M microscope (Zeiss, Germany) and the images were acquired 

and processed with Zen Blue 2012 software (Zeiss, Germany). 

 

2.13. Phalloidin Staining 

Phalloidin-Tetramethylrhodamine B isothiocyanate (Sigma, U.S.A.) was used to stain 

cytoskeleton F-actin fibers of hASCs-CS. Phalloidin conjugates have similar affinity for 

both large and small filaments and bind in a stoichiometric ratio of about one phallotoxin 

per actin subunit and do not bind to monomeric G-actin. After fixation with formalin, CS 

prior and after cryopreservation were incubated with Phalloidin-TRITC (1:100 in PBS) for 

1 hour at RT and washed 3 times with PBS. Nuclei were counterstained with DAPI. 

Samples were then observed under AxioImager Z1M microscope (Zeiss, Germany) and 

images were acquired and processed with Zen Blue 2012 software (Zeiss, Germany). 

 

2.14. Immunocytochemistry 

This method follows the principle of antigenic antibody binding. The binding of specific 

antibodies allows the identification and localization of a specific protein in a cell 

structure or tissue. In this work, specific antibodies were used to target proteins present 

in the ECM and mesenchymal markers of hASCs-CS in order to confirm the maintenance 

of matrix organization before and after cryopreservation and demonstrate 

mesenchymal phenotype. 

CS were washed and fixed with 10% (v/v) buffered formalin for 30 minutes at RT, washed 

with PBS and if necessary stored in PBS at 4ᵒC. To avoid non-specific binding cells were 

incubated with a freshly prepared 3% (v/v) bovine serum albumin (BSA, Sigma, Canada) 

solution in PBS (BSA/PBS) for 40 minutes at RT. After this, CS were washed with PBS and 

then incubated with primary antibodies diluted in 1% (v/v) BSA/PBS for 1 hour at RT or 
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overnight at 4ᵒC, at a concentration defined as optimal for each antibody (Table 5). Cells 

were washed 3 times with PBS and incubated for 1 hour at RT with AlexaFlour 488 

(AF488) conjugated secondary antibody (Molecular Probes, U.S.A.) diluted 1:500 in 1% 

(v/v) BSA in PBS. After the final PBS washing, cell nuclei were counterstained with 

3µg/mL DAPI solution for 30 minutes at RT. Samples were then observed in an 

AxioImager Z1M microscope (Zeiss, Germany) and images were acquired and processed 

whith Zen Blue 2012 software (Zeiss, Germany). 

 

Table 5. List of antibodies used to perform immuno staining on CSs. 

 
 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primary Antibody 
(Dilution) 

Secondary Antibody  
(Dilution) 

Anti-Fibronectin, Rabbit (abcam, U.K.) 
(1:1000) 

AlexaFlour 488 anti-Rabbit 
(Molecular Probes, U.S.A.) 

(1:500) 

Anti-Laminin, Rabbit (abcam, U.K.) 
(1:100) 

AlexaFlour 488 anti-Rabbit 
(Molecular Probes, U.S.A.) 

(1:500) 

Anti-Collagen I, Rabbit (abcam, U.K.) 
(1:100) 

AlexaFlour 488 anti-Rabbit 
(Molecular Probes, U.S.A.) 

(1:500) 

CD105, Mouse 
(eBiosciences, Germany) 

(1:100) 

AlexaFlour 488 anti-Mouse 
(Molecular Probes, U.S.A.) 

(1:500) 

CD90, Mouse (Biolegend, U.S.A.) 
(1:100) 

AlexaFlour 488 anti-Mouse 
(Molecular Probes, U.S.A.) 

(1:500) 

CD73-PE, Rabbit 
(BD Biosciences, Germany) 

(1:10) 

_ 

CD45, Mouse 
(BD Biosciences, Germany) 

(1:100) 

AlexaFlour 488 anti-Mouse 
(Molecular Probes, U.S.A.) 

(1:500) 

CD34, Mouse (Biolegend, U.S.A.) 
(1:100) 

AlexaFlour 488 anti-Mouse 
(Molecular Probes, U.S.A.) 

(1:500) 

CD31, Mouse (eBiosciences, Germany) 
(1:100) 

AlexaFlour 488 anti-Mouse 
(Molecular Probes, U.S.A.) 

(1:500) 

HLA-DR-FITC, Rabbit 
(BD Biosciences, Germany) 

(1:10) 

_ 
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2.15. Transmission Electron Microscopy  

Transmission Electron Microscopy (TEM) was used to observe fine details of the internal 

structure of the hASCS-CSs prior and after cryopreservation. This technique is based on 

light phenomena, creating a field of electrons, when the beam passes through the 

sample leading to an image. This results in one image, where the dense structures are 

black (scattered electrons) and non-dense structures are bright (unscattered electrons).  

To analyse hASCs-CS by TEM, we fixed in 2% glutaraldehyde and 1% paraformaldehyde 

overnight at RT115. The remaining protocol was performed at HEMS (Histology and 

Electron Microscopy Service) - Institute for Molecular and Cell Biology (IBMC), following 

this steps: hASCs-CSs dehydration with acetone solutions; embedding the material 

within an epoxy resin; Ultrathin sections (40-60 nm thickness) were prepared on a LKB 

2188 NOVA Ultramicrotome (LKB NOVA, Bromma, Sweden) using diamond knives (DDK, 

Wilmington, DE, USA). The sections were mounted on 300 mesh nickel grids, stained 

with uranyl acetate and lead citrate, and examined under a JEOL JEM 1400 TEM (Tokyo, 

Japan). Images were digitally recorded using a Gatan SC 1000 ORIUS CCD camera 

(Warrendale, PA, USA). 

 

2.16. Statistical analysis 

Statistical analysis of all results was performed with GraphPad® Prism 4.02 software. All 

measurements were obtained from three different donors (n=3) with at least triplicates 

per donor.  Variation is reported as standard error.  Results that showed a normal 

distribution were analysed by one and two-way ANOVA, or unpaired two-tailed t-

Student tests, as indicated.  For results did not follow a Gaussian distribution, unpaired 

two-tailed Mann Whitney t-test was used.  Normal distribution was tested using the 

D’Agostino&Pearson test. The post hock test Bonferroni was used to determine if the 

difference between the cryopreserved samples (90/10 and 95/5 conditions) and the not-

cryopreserved samples was significant through an analysis of the variance setting. The 

significance levels were set at: *p<0.05, **p<0.01, and ***p<0.001. 
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III. Results 

3.1. Effect of cryopreservation on viability and cytoskeleton 

organization for permeable condition of cryopreservation. 

As a first step, it was important to determine the effects of cryopreservation under 

different conditions on cell viability and cytoskeletal integrity. The viability of the cells 

composing the CS prior and after cryopreservation was assessed by live/dead staining 

followed by flow cytometry. CS were subjected to two cryopreservation conditions: 5% 

DMSO in FBS or 10% DMSO in FBS and stored for 7 days at -80ᴼC. Samples were retrieved 

form storage, and immediately thawed in a 37ᴼC water bath until the last frozen crystal 

disappeared. Samples were then transferred to a culture dish and equilibrated in culture 

media for either 3 hours (3H) or overnight (ON). Results are presented in Table 6.  

 

Table 6:  Flow cytometry analysis with 7AAD staining to evaluate the cell viability of 
hASCs-CS prior cryopreservation and after cryopreservation with conditions 95/5 and 
90/10 followed 3 Hours and ON of equilibration time. A decrease on viability for 
samples cryopreserved with condition 90/10 and equilibrated during ON. *p<0.05 for 
differences between samples Prior Cryopreservation and samples cryopreserved with 
condition 90/10.  

Condition No. of 
Samples 
(3Donors) 

Equilibration Time 
(after thawing) 

Cell Viability 
(%±SD) 

Prior Cryopreservation n=4 0 Hours 90,16±6,31** 
95/5 n=4 3 Hours 91,32±2,79 

n=4 ON 75,24±4,44** 
90/10 n=4 3 Hours 82,41±5,46 

n=4 ON 77,19±1,96** 

 
Our results indicate no difference in cell viability between treatments; however, 

equilibration times affected viability. These results were confirmed by live dead assays 

on samples equilibrated for 3H (Figure 3A). 

 

We then evaluated preservation of organization the cytoskeleton by phalloidin staining 

(Figure 3B). A higher disorganization of actin filaments was observed in samples 

cryopreserved in 10% DMSO in FBS than in 5% DMSO in FBS (Figure 6B). All samples 

equilibrated for 3H. 
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Figure 3: hASCs-CS prior cryopreservation and after 7 days of cryopreservation (90/10; 95/5). 
(A) Live/Dead assay with Calcein (green) Propidium Idodide(PI-red). Scale bar=200µm. (B) 
Analysis of cytoskeleton organization of hASC-CS prior and after cryopreservation. Staining of 
actin filaments by Phalloidin–TRITC (red) and nucleis by Dapi (blue). Samples prior 
cryopreservation scale bar=200µm.  95/5 and 90/10 samples scale bar=50µm. 

 

3.2. Effect of cryopreservation over ECM. 

In order to determine the effect of cryopreservation on expression of ECM proteins, we 

analysed the expression of collagen type-I, fibronectin and laminin before and after 

cryopreservation. 

 

3.2.1. Gene expression analysis. 

Our analysis revealed that expression of ECM related genes fibronectin and laminin was 

upregulated significantly (**p<0.01) when cryopreserved in 5% DMSO. The expression 

of laminin was significantly increased (*p<0.05) when cryopreserved in 10% DMSO. 

Collagen type-I and fibronectin seemed upregulated in both conditions, but the 

difference was not statistically significant (Figure 4).  

 

 

Prior Cryopreservation 95/5 90/10 

P
h

a
lo

id
in

/D
A

P
I 

C
a

lc
ei

n
/P

I 

A 

B 



CHAPTER III – RESULTS 

 

37 
 

95
/5

90
/1

0

0

2

4

6

8
Collagen
Fibronectin
Laminin

*

**

**

P<0.05

P<0.01
*

**Conditons

F
o

ld
 c

h
a
n

g
e

 
Figure 4: Real time qRT-PCR to determine relative expression of principal proteins in 
Extracellular Matrix Collagen type-I (COL1), Fibronectin (FN1) and Laminin (LAMA1) in hASC-
CS. The Y-axis shows fold-change difference in relative expression of principal proteins in ECM 
between 95/5 and 90/10 conditions of cryopreservation compared with hASC-CS prior 
cryopreservation. * p<0.05 for differences between samples Prior Cryopreservation and samples 
cryopreserved with condition 90/10; **p<0.01 for differences between samples Prior 
Cryopreservation and samples cryopreserved with condition 95/5.The measurements are the 
result of 3 biological replicates (with 3 technical replicate). 

 

 

3.2.2. ECM protein secretion. 

In order to study how the cryopreservation protocol affected protein stability, we 

performed a BCA protein assay to determine total levels of protein before and after the 

procedure.  

As shown in Figure 5, we observed a significant decrease of total protein (***p<0.001) 

after 7 days of cryopreservation in both conditions.  
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Figure 5:  Quantification and comparison of total protein extract in RIPA Buffer, between 
hASC-CS prior cryopreservation and cryopreserved during 7 days in conditions 90/10 and 95/5. 
***p<0.001 for differences between samples Prior Cryopreservation and samples cryopreserved 
with conditions 90/10 and 95/5. 

 

To determine the condition of ECM proteins in the hASCs-CS, we performed 

immunocytochemistry against collagen type-1, fibronectin and laminin. Collagen type-I 

was well maintained in the cryopreserved samples, while laminin was severely affected 

by cryopreservation in both conditions. Fibronectin was better maintained in 90/10 than 

in 95/5 (Figure 6). 
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Figure 6: Analysis of ECM in hASCs-CS. Immunocytochemistry analysis of principal proteins of 
Extracellular Matrix of hASC-CS. Staining with anti-Collagen Type I; anti-Fibronectin; anti-
Laminin. All samples are marked with Dapi for nucleis (blue) and anti-rabbit Alexa 488 as 
secondary antibody (green). Scale bar = 50µm.  

 

 

We then evaluated the effect of our cryopreservation protocols on the CS morphology 

at the ultrastructural level. TEM revealed major disorganization of nuclei and matrix in 

hASCs-CS cryopreserved within 10% DMSO (Figure 7). In contrast, CS cryopreserved in 

5% DMSO maintained similar and regular morphology in comparison with samples prior 

cryopreservation (Figure 7). 
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Figure 7:  Structural morphology of haverested hASCs-CS by TEM for analysis of maintenance 
of Cell sheets morphology. hASC-CS prior cryopreservation;  hASC-CS in condition 90/10; hASC-
CS in condition 95/5. Scale bar from 2 µm to 0.2 µm. 

 

We the sought to understand how our cryopreservation protocols affected the 

mesenchymal phenotype of the cells in the CS. 
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3.3. Effect of cryopreservation over mesenchymal phenotype. 

It was important to determine whether cryopreservation preserved the minimal 

phenotypic criteria defined by ISCT for mesenchymal stem cells71,22.  

To do so we characterized the expression of surface mesenchymal markers by flow-

cytometry using CS obtained and cryopreserved from 3 different donors. 95% of the cells 

were positive for markers Thy-1 (CD90), ecto-5'-nucleotidase (CD73) and Endoglin 

(CD105).  

The hematopoietic markers CD45 (Protein tyrosine phosphatase, receptor type C) and 

CD31 (Platelet endothelial cell adhesion molecule or cluster of differentiation 31) were 

under 2%, as expected. CD34 (Cluster of differentiation 34) shows a percentage above 

the 2% defined as minimal criteria, but this value was the result of an abnormally high 

value in one of our donors (data not shown). Our results showed our samples to be 

immune-privileged, as they were negative for marker HLA-DRA (Major 

histocompatibility complex, class II, DR alpha) across all three donors    (Table 7). 

 
Table 7: Flow-cytometry analysis of the Mesenchymal markers among 3 different population 
of hASC, CD90; CD73; CD105; CD34; CD45; CD31; HLA-DRA. 

All Populations (n=3) Markers (%±SD) 

hASCs 

CD90 98,26± 2,90 
CD73 95,89±6,62 

CD105 96,95±4,98 
CD34 8,67±12,80 
CD45 1,07±1,03 
CD31 0,6±0,30 

HLA-DR 0,66±0,38 

 

 

Overall, our results showed the expected mesenchymal immunophenotype. To confirm 

our results, we performed qPCR analysis for mesenchymal surface markers of hASCs-CS 

before and after cryopreservation for 7 days in both conditions across 3 donor samples. 

We analysed the expression of positive genetic markers CD90, CD73 and CD105 and 

verified no significant difference in expression before and after cryopreservation, 

comparing with samples prior cryopreservation. As housekeeping we use the same Beta-

2-Microglobulin (β2M), as previously described. Our results are shown in Figure 8.  
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Figure 8: Analysis of principal surfaces Mesenchymal Markers of hASCs-CS. (A) Real time qRT-
PCR to determine relative expression of positive mesenchymal markers  Thy-1 (CD90); ecto-5'-
nucleotidase (CD73); Endoglin (CD105), in hASC-CS. The Y-axis shows fold-change difference in 
relative expression of mesenchymal markers between 95/5 and 90/10 conditions of 
cryopreservation compared with hASC-CS prior cryopreservation. All results were statistically 
non-significant.  

 

We further confirmed these results by immunocytochemistry (ICC) on samples 

cryopreserved for 7 days under both selected conditions (5 % and 10% DMSO). Our 

results show that cells remained positive for CD90, CD73 and CD105, (Figure 9) while 

being negative for hematopoietic markers CD34, CD31, CD45 and HLA-DR (Figures 10). 
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Figure 9: Analysis of principal surfaces Mesenchymal Markers of hASCs-CS. (B) 
Immunocytochemistry analysis of principal mesenchymal markers of hASC-CS. Indirect 
staining with anti-CD90, anti-CD105 and direct staining with PE CD73. 
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Figure 10: Analysis of principal surfaces Mesenchymal Markers of hASCs-CS. (C) 
Immunocytochemistry analysis of hematopoietic markers of hASC-CS. Indirect staining 
with anti-CD34, anti-CD45, anti-CD31 and direct staining with FITC HLA-DR.  All samples 
are marked with DAPI for nuclei and anti-mouse Alexa 488 as secondary antibody. Scale 
bar=50µm. 
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IV. Discussion & Conclusions 

hASCs are a very attractive cell type for RM applications, in part because they  present 

immune-privileged features, as they lack the expression of human leukocyte antigen-DR 

and stimulate the production of anti-inflammatory cytokines. hASCs have the capacity 

to form a cell sheets, constituting a promising research area for development of wound 

healing and other potential applications in TE71.  

The present work has focused on the development of a protocol for cryopreservation of 

hASCs-CS with the goal of decreasing the production time of hASCs-CS and offering an 

off-the-shelf solution for future TE applications. 

Integrity of the ECM is critical for a good functional outcome of CS transplants. Using 

standard cryopreservation procedures as a starting point, our main objective was on the 

maintenance of viability, morphology and mesenchymal phenotype after 7 days of 

cryopreservation.  We wanted to evaluate if the standard condition (10%DMSO) usually 

used for cryopreservation of hASCs cell suspensions would also work in the same way in 

our hASCs-CS. Moreover, we intended to decrease the percentage of DMSO from 10% 

to 5%, in order to reduce possible cytotoxic effects on our hASCs-CS.  

Our goal was to maintain cell viability while decreasing cell cytotoxicity during 

cryopreservation. These conditions with DMSO (90/10 and 95/5) enabled the 

maintenance of over 70% cell viability of hASCs-CS when cryopreserved for 7 days (Table 

6 and Figure 3A).  

In view of these results, these two conditions were used for further study: the 90/10 as 

standard condition and 95/5 as experimental condition. 

We first produced and characterized hASCs-CS in terms of mesenchymal phenotype, 

cellular viability and morphological stability.  We isolated hASCs from the stromal 

vascular fraction (SVF) of human subcutaneous adipose tissue, following the protocol  

previously reported71. Prior to the creation of cell sheets, we confirmed the 

maintenance of the mesenchymal nature of hASCs among three isolated populations by 

determining presence or absence of the mesenchymal markers CD90, CD73, CD105, and 

the hematopoietic markers CD45, CD34, CD31, HLA-DR, as established by the 

International Society for Cellular Therapy22. 



CHAPTER IV – DISCUSSION & CONCLUSIONS 

 

48 
 

Previous work in our group71 confirmed that the human adipose derived stem cells 

(hASCs) are immunologically compatible and multipotent. Moreover they show a high 

growth rate in culture, and produce their own extracellular matrix (ECM). They formed 

a functional cell sheet scaffold-free in only 5 days of culture.  

A critical aspect of creating hASCs cell sheets is that secretion of ECM has to be sufficient 

to confer the ideal robustness and organization to allow cell sheet detachment. The 

hASCs cultured for 5 days on TR dishes using a standard medium gave rise to a fragile 

monolayer of cells, with an ECM composed by collagen type-I, fibronectin and laminin 

that was not sufficient to allow the cell sheet manipulation71. It was therefore necessary 

to stimulate the proliferation rate of ECM, adding ascorbic acid to the culture 

media71,116. The use of high concentrations of ascorbic acid resulted in an increase of 

contractibility of the cell sheets after detachment; however, this is not expected to have 

any consequences in clinical application, which involves the use of PVDF membrane or 

gelatin coated manipulators to avoid the shrinkage, and that are removed after cell 

sheet adheres to host tissues.  

Cryopreservation of cellular suspensions of hASCs in 10% of DMSO showing high viability 

when thawed has been previously reported101. The optimal condition for cellular 

suspension’s cryopreservation is the combination with 90% of Fetal Bovine Serum (FBS) 

and 10% of DMSO, used as the standard condition in our laboratory. The FBS component 

works as a buffer of osmotic pressure and as a cell membrane protector, reducing the 

risks of damage by ice crystal formation during cryopreservation and thawing process85. 

DMSO is the most efficient cryoprotective agent used in cryopreservation of many types 

of cells and tissues. However it is cytotoxic in a time, temperature, and concentration 

dependent manner. It permeates cells and can cause osmotic stress or chemical toxicity 

when used in high concentrations90,95.  

The first condition tested was the standard condition composed with 90% of FBS and 

10% of DMSO (condition 90/10). The second condition tested was composed of   only 

5% DMSO, combined with 95% of FBS (condition 95/5), with the intention of reducing 

DMSO cytotoxicity. The hASCs-CS cryopreservation was performed using the slow 

cooling method in  the rate of -1ºC/min until reach -80ºC ON, followed of 7 days at -

196ºC in liquid nitrogen for both conditions.  
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In storage of cells at low temperatures the lethal interval of temperature is between 

15ºC and -60ºC. Between these temperatures the damage and the loss of the 

cryopreserved cells viability is maximal. To avoid this situation we used the previously 

referred to slow cooling rate which allows a progressive dehydration of cells passing the 

critical interval slowly enough to avoid intracellular ice formation95. Once -80ºC was 

reached the cryovials were transferred to the liquid nitrogen (LN) tank at -196ºC. After 

the 7 days of cryopreservation in LN with both conditions, samples were rapidly thawed 

in water bath at 37ºC, and transferred into culture dishes for equilibration of samples, 

in order to avoid the cell damage from osmotic stress and removing the DMSO. The 

equilibration of samples was performed during 3 hours and ON for both conditions. 

We observed that cell viability of hASCs-CS after ON equilibration of the samples 

decreased (although in in a non-significant manner) in the case of cryopreservation 

condition 95/5. In the case of cryopreservation condition 90/10 we observed a 

significant decrease of cell viability when compared to hASCs-CS viability prior to 

cryopreservation (Table 6). The cell viability of hASCs-CS was not significantly affected 

with 3 hours of sample equilibration for both conditions.  

These first observations were sustained by the Cal/PI assay which sustained (Figures 3A). 

Thus, these results reveal a clear influence of the equilibration time on cell viability and 

based on that we perform all the subsequent assays with samples equilibrated for 3 

hours. In general, our results follows the normal criteria of cell viability that is applied in 

clinical approaches of cryopreservation118, as  more over 60% of cell viability after 

cryopreservation is obtained. 

Despite both conditions of cryopreservation not affecting cell viability after 3h of 

equilibration, evaluation of cytoskeleton organization revealed some disorganization in 

samples cryopreserved with both conditions comparing with hASCs-CS prior to 

cryopreservation. Our results reveal a major incidence of disorganized cytoskeleton in 

hASCs-CS cryopreserved with condition 90/10. These results indicate that the process of 

cryopreservation of the cytoskeleton is sensitive to the % of DMSO used (Figures 3B)119. 

The observation that 10% DMSO affected cytoskeletal organization may explain the 

lower cell viability obtained after ON of equilibration time.  

We verified a better organization of cytoskeleton of cryopreserved hASCs-CS (Figures 

3B) using only 5% of DMSO. This agreed with a study performed by Xu et al.2012, on 
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effects of cryopreservation in cell suspension of adherent mesenchymal stem cells which 

suggested that cooling rates are a critical factor in preservation of cytoskeletal 

organization during cryopreservation. We conclude that the -1ºC/min used in our study 

is the optimal cooling rate120.  

However, the rate -1°C / minute is not ideal for cells in cell sheets. The equilibrium time 

is also a stress factor for hASCs-CS, since hASCs are adherent cells and equilibration is 

done in suspension. The distribution of cells is not affected, as shown by DAPI staining53.  

In the scaffold-free CS engineering-based approach, the organization of ECM is of crucial 

importance, as it works as a construct in CS technology. This is due ECM proteins such 

as collagen, laminin and fibronectin that form networks on the surface of the cells. The 

organization of the matrix can also influence the organization of the cell cytoskeleton, 

as well that can mechanically influence cell behaviour by the activation of intracellular 

signalling pathways, interacting with cell-surface receptors121.   

In hASCs-CS the maintenance of ECM is crucial and we intended to understand how 

cryopreservation alters the expression of ECM proteins. The expression of collagen, 

fibronectin and laminin was analyzed the levels prior cryopreservation comparing with 

cryopreserved samples. Our results revealed a clear decrease of the total quantity of 

protein after 7 days of cryopreservation that is statistically significant in both conditions 

when compared to samples prior cryopreservation (Figure 5). However at the molecular 

level cryopreservation appears to promote an up-regulation in the principal genes that 

code for ECM proteins as collagen type-I, fibronectin and laminin. Nevertheless not all 

these genes presented a statistically significant up-regulation (Figure 4).  

In a study performed by Rodriguez-Ares et al. 2009 with frozen tissue-suspension 

obtained from processed human amniotic membrane, a reduction of total amount of 

protein after cryopreservation was verified122, due to the dehydration promoted by 

DMSO during process of cryopreservation122,123. In the condition 95/5 the up-regulation 

was significant for fibronectin and laminin genes (Figure 4). In the condition 90/10 only 

laminin gene suffer a significant up-regulation with a p < 0.05 (Figure 4). However, at the 

molecular level, the mRNA of collagen type-I does not undergo significant upregulation 

in either conditions of cryopreservation.  

We analyzed levels of collagen, laminin and fibronectin by ICC. The protein most affected 

by cryopreservation was laminin, which revealed a weak and punctuated signal (Figure 
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6) in ICC images for both cryopreservation methods. ICC also revealed some levels of 

disorganization of fibronectin in both cryopreservation conditions (Figure 6). However, 

hASCs-CS preserved in condition 95/5 seemed more affected then those cryopreserved 

in condition 90/10 (Figure 6). The only protein apparently not affected by 

cryopreservation in either condition was collagen type-I (Figure 6). 

We then analyzed mRNA levels of these 3 proteins (Figure 4). mRNA of fibronectin was 

significantly upregulated in condition 95/5. Laminin mRNA, on the other hand, was 

significantly upregulated in both condition of cryopreservation. In contrast, collagen 

type 1 mRNA was not significantly upregulated in either cryopreservation condition. 

These results could suggest interruption of a negative feedback loop for fibronectin and 

laminin genes after cryopreservation and thawing. Overall our results are similar to 

those of the Rodriguez-Ares et al. 2009122. 

The organization of the ECM before and after cryopreservation was evaluated by TEM 

in order to determine potential effects of the method over matrix composition and 

integrity. After thawing the structure of cell sheet was lost for hASCs-CS cryopreserved 

with both conditions in comparison with samples prior to cryopreservation. However 

comparing the results obtained in both conditions of cryopreservation, the condition 

95/5 appears to promote a better preservation than condition 90/10 (Figure 7). 

Moreover, aggregates of proteins were observed along all the structure of hASCs-CS 

cryopreserved with both conditions (Figure 7). The loss of cell sheet structure after 

thawing and cryopreserved with 10% of DMSO was already observed by Kito K. et al. 

200595 in cryopreservation of cultured corneal epithelial cell sheet in Rabbit.  

 As we intended to understand if our process of cryopreservation alters the 

mesenchymal phenotype of cryopreserved hASCs-CS, we proceed to analyse molecular 

markers and did not verify any significant alteration of mesenchymal markers for 

cryopreserved hASCs-CS in comparison with samples prior to cryopreservation. We also 

confirmed the maintenance of mesenchymal phenotype by ICC (Figures 9 and 10). 

Overall, the process of cryopreservation did not affect the expression of mesenchymal 

phenotype of our hASCs-CS at P1 with both conditions of cryopreservation during 7 days 

in LN. After the rapid thawing process and 3H of equilibration, the hematopoietic 

markers remained negative throughout all the procedure.  
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In this sense, an off-the-shelf hASCs-CS was achieved after cryopreserving with DMSO at 

5% DMSO. However the cryopreserved hASCs-CS still fall short of ideal conditions for a 

real clinical application. Therefore, further optimizations need to be performed to better 

preserve the hASCs-CS ECM. To achieve this, less aggressive compounds of 

cryopreservation, such as Poly-L-Lysine, should be investigated. Furthermore, the use of 

adequate cooling rates to cryopreserve hASCs-CS is crucial. Finally, their functionality 

needs to be characterized in vivo after transplantation to better characterize the CS final 

structure and functionality. 
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