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Abstract 
 

Bone disorders affect millions of people worldwide, and available treatments have only a limited 

efficacy and/or bring undesirable side effects. There is therefore the need for novel compounds 

with bone anabolic properties. Due to its technical advantages, fish have been successfully used 

in biomedical and pharmaceutical research to screen for osteogenic compounds. The aim of this 

work was to evaluate mineralogenic/osteogenic performance of semi-purified fractions and 

purified molecules from terrestrial plants (cardoon and eucalyptus) and cyanobacteria. VSa13 

cell line established from gilthead seabream (Sparus aurata) vertebra and capable of in vitro 

mineralization was used to assess the mineralogenic potential of the extracts, while zebrafish 

operculum was used to develop and establish a reliable in vivo model to screen molecules for 

osteogenic activity. Extracts from cardoon, eucalyptus and some cyanobacteria exhibited some 

moderate mineralogenic effect while triterpenic acids purified from eucalyptus strongly 

increased mineral deposition. Pro-mineralogenic compounds were further analysed for their bone 

anabolic action on zebrafish operculum and lipophilic cardoon extract, ursolic acid, oleanolic 

acid and ethyl acetate fraction of cyanobacteria strain #13 were found to promote an osteogenic 

effect. While the osteogenicity of ursolic acid has already been reported in mouse, the action of 

oleanolic acid and cyanobacteria extract on bone formation is revealed here for the first time. 

The use of a double transgenic line expressing fluorescent proteins under the control of 

osterix/sp7 and osteocalcin/oc2 promoters to get insights into mechanisms underlying the 

osteogenic activity of natural compounds has been explored. In vitro and in vivo data generated 

within the scope of this work have not only demonstrated the potential of natural resources to 

provide molecules with mineralogenic/osteogenic activity that may be used in pharmaceuticals 

or nutraceuticals but also the suitability of fish systems to screen for these molecules. 

 

 

 

 

Keywords 

Natural resources; Screening system; Teleost fish; Mineralogenic cell line; Developing 

operculum. 
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Resumo  
 

O tecido ósseo é um tipo especializado de tecido conjuntivo constituído por células e por uma 

matriz extracelular, que possui como característica única a capacidade de promover a sua 

mineralização,, o que confere a este tecido uma extrema dureza, permitindo-lhe desempenhar 

importantes funções quer de suporte mecânico aos músculos, possibilitando o movimento, quer 

de proteção de órgãos internos, constituindo também uma reserva de iões de cálcio e de fosfato. 

As patologias mais importantes que afectam o esqueleto incluem doenças metabólicas, que 

afectam o crescimento através de alterações na formação e remoção óssea, fracturas, 

deformações várias,, infecções bacterianas e tumores. Entre as doenças metabólicas que afectam 

milhões de pessoas em todo o mundo e que resultam do desequilíbrio entre a atividade 

osteoblástica (formação óssea) e a atividade osteoclástica (reabsorção óssea) estão a osteoporose, 

a osteopetrose, o raquitismo e a doença óssea de Paget. No entanto os tratamentos usados são 

ineficazes e/ou estão associados a efeitos secundários indesejáveis existindo a necessidade de 

descobrir novos compostos com a capacidade de reverter os sintomas dessas patologias no osso. 

Os recursos naturais representam uma fonte valiosa de moléculas bioativas, em particular de 

compostos osteogénicos. A análise em grande escala de extratos ou moléculas com potenciais 

efeitos osteogénicos requer o uso de ferramentas in vitro e in vivo optimizadas Organismos 

aquáticos como o peixe-zebra (zebrafish) têm sido utilizados com sucesso nas investigações 

biomédica e farmacêutica devido às suas vantagens técnicas em relação a modelos animais mais 

clássicos, como o ratinho. Por exemplo o peixe-zebra possui um ciclo de vida mais curto, gera 

um elevado número de descendentes, tem o genoma sequenciado, os embriões são transparentes 

e desenvolvem-se externamente. Além disso, os peixe-zebra adultos também podem ser 

facilmente visualizados e manipulados experimentalmente e existem mutantes/transgénicos que 

permitem a análise da expressão de multiplos genes através de microscopia de fluorescência. O 

objectivo principal deste trabalho é avaliar a capacidade mineralogénica/osteogénica de fracções 

semi-purificadas e de moléculas purificadas de plantas terrestres, como o cardo ou o eucalipto, e 

de cianobactérias. A linha celular VSa13 obtida a partir de vértebras de dourada (Sparus aurata), 

que possui a capacidade de mineralização in vitro, foi usada para analisar o potencial 

mineralógenico dos extratos usados, e o opérculo do peixe-zebra foi usado para desenvolver e 

estabelecer um modelo in vivo adequado para analisar os efeitos de moléculas com atividade 

osteogénica (através do uso do calcitriol). Os nossos resultados demostraram a existência de um 

efeito mineralogénico moderado usando concentrações não tóxicas de extratos de cardo, de 
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eucalipto e de algumas cianobactérias, enquanto que ácidos triterpénicos purificados a partir de 

amostras de eucalipto (como por exemplo o ácido betulónico, ursólico e oleanólico) aumentam 

até 6 vezes a deposição de mineral na matrix extracelular da linha celular VSa13. Os nossos 

resultados mostraram ainda que in vitro, a cinaropicrina, uma lactona sesquiterpénica abundante 

nos extratos de cardo, promovia um efeito anti-mineralogénico, o que foi mais tarde comprovado 

utilizando o nosso modelo in vivo. O efeito de compostos pro-mineralogénicos foi 

posteriormente analisado através do estudo do opérculo do peixe-zebra e os nossos resultados 

demonstraram que os extratos lipofílicos do cardo, como o ácido ursólico, o ácido oleanólico e a 

fracção de acetato de etílo da espécie #13 de cianobactérias, possuem efeitos osteogénicos. 

Apesar da capacidade osteogénica do ácido ursólico já ter sido analisada e comprovada por 

outros grupos usando um modelo animal de ratinho, a ação do ácido oleanólico, da cinaropicrina 

e de extratos de cianobactérias na formação óssea nunca tinha sido descrita. O uso de uma linha 

de duplos transgénicos que expressam uma proteína fluorescente sob o controlo dos promotores 

do osterix/sp7 ou da osteocalcina/oc2 tem sido determinante para tentar perceber os mecanismos 

responsáveis por esta atividade osteogénica e sendo a mesma abordagem atualmente aplicada ao 

estudo do efeito dos ácidos triterpenicos. Os dados gerados a partir das ferramentas in vitro e in 

vivo utilizadas neste trabalho não só demonstraram o potencial de recursos naturais (terrestres ou 

marinhos) para a descoberta de moléculas com efeito mineralogénico/osteogénico 

potencialmente relevantes para as indústrias farmacêutica ou alimentar, como também 

evidenciaram a importância do uso de animais modelos como o peixe-zebra para a análise do 

efeito destas moléculas.  
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1 Introduction 
 

1.1 Bone, a major connective tissue of the vertebrate skeleton  
 

The most important function of vertebrate skeleton is to provide structural support to the body, 

but it also serves as a mineral reservoir (calcium and phosphate storage), as a source for blood 

cells (i.e. hematopoiesis in the bone marrow) in mammals, as a protection for internal organs and 

as an anchor point for muscular tissue to sustain locomotion.
1,2

 Among the different tissues 

forming the skeleton, bone is a dense connective tissue composed of a mineralized and 

vascularized collagen matrix and containing four different types of cells: osteoblasts, bone lining 

cells, osteocytes and osteoclasts (Figure 1.1).
3
 Osteoblasts account for 4-6% of the total resident 

cells and are in charge of bone formation. Bone lining cells are quiescent flat shaped osteoblasts 

that cover the bone surfaces preventing the direct interaction between osteoclast and bone matrix 

when bone resorption should not occur. Osteocytes cells are buried in the mineralized bone 

matrix representing 90-95% of the total cell content, they coordinate the response of bone to 

mechanical loading and biological signals.
4
 Osteoclasts are multinucleated cells with an 

important role in bone resorption and bone remodelling.
5,6

 The origin of bone go back to 

approximately 420 million years ago, when the Osteichthyes (bony fish), the first organisms 

exhibiting an ossified endoskeleton with an hard matrix of calcium phosphate, appeared in 

vertebrate evolution.
7
 

 

 

Figure 1.1. Schematic representation of bone cells. Osteoblast (blue cells) are the cells in charge of bone formation. 

Haematopoietic cells of the monocyte/macrophage lineage differentiate to mature osteoclast (purple cells) and 

resorb bone. Bone lining cell (green cells) are quiescent flat shaped osteoblast that cover the bone surface to protect 

it when resorption should not occur. Osteocytes (yellow cells), which are embedded within mineralized bone, 

communicate via ramification of dendritic processes and orchestrate the spatial and temporal recruitment of 

osteoblast and osteoclast. Adapted from Nicholls et al.
8
 



 2 

 

1.2 Bone formation and remodelling 
 

Bone is formed through different processes of ossification, the most common being 

endochondral and intramembranous ossification (Figure 1.2). In the course of endochondral 

ossification bone forms through the replacement of a cartilaginous anlage by an osteoid and 

subsequent mineral deposition, while intramembranous ossification occurs directly from 

mesenchymal cell condensations without the formation of a cartilage matrix.
7
 

 

 

Figure 1.2. Representation of endochondral and intramembranous ossification processes. Endochondral 

ossification begins with the condensation of mesenchymal cells and the differentiation of central cells in 

chondrocytes (light blue) that later become hypertrophic (dark blue). Progression to the mature growth plate and 

formation of a centre of ossification accompanies the development of the perichondrium (yellow), vascular invasion 

(red) and the differentiation of undifferentiated cells of the periosteum into osteoblast (yellow). During 

intramembranous ossification, undifferentiated mesenchymal cells condense and differentiate into osteoprogenitor 

cell (pink), which will originate mature osteoblast (yellow) responsible for the deposition and mineralization of bone 

matrix. Osteoblasts either die by apoptosis or are entrapped in the bone matrix, becoming osteocytes (grey). Adapted 

from Ornitz & Marie.
14 

 

Bone is a dynamic tissue that is constantly remodelled to (1) reshape in order to adapt to 

mechanical loading, (2) heal after fractures or (3) participate in calcium homeostasis.
9
 Bone 

remodelling is a physiological process in which old or damaged bone is removed by osteoclasts 

and replaced by new bone formed by osteoblasts (Figure 1.3). An imbalance between bone 

resorption and bone formation may occur under certain pathological conditions, which leads to 
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abnormal bone structure and the development of skeletal disorders that can alter the quality of 

life.
10

 Bone remodelling is carried out by an anatomical structure (the basic multicellular unit) 

which requires the coordination of the major bone cells type and occurs in four distinct phases. 

When the osteocytes detect a micro damage or a bone deformation, they transmit signals to 

recruit osteoclast precursor to the specific bone site. Osteoclast precursors (i.e. mononuclear cells 

of the monocyte/macrophage lineage) get attached to the bone matrix and differentiate into 

active osteoclast (multinucleated giant cells) in response to elevated concentrations of the 

macrophage colony-stimulating factor and RANK ligand, starting the resorption process.
11,12

 

During this phase, pre-osteoblasts are also recruited from the bone marrow or from nearby 

capillaries, and progressively differentiate and start to produce the osteoid, contributing to bone 

formation and ensuring the equilibrium between bone removal and formation. At the final stage, 

the osteoid becomes mineralized concluding the bone remodelling cycle.
13

 

 

1.3 Human bone disorders 
 

Bone disorders will originate from an incorrect bone remodelling process. In human, the most 

common disorders are the Paget’s disease of bone (PDB), osteopetrosis, rickets, osteopenia and 

osteoporosis. PDB is characterised by a primary increase of osteoclast bone resorption with a 

secondary marked increase in osteoblast activity and new bone formation, resulting in an 

abnormal trabecular bone.
15

 Osteopetrosis refers to a rare heritable bone remodelling disorder 

that is characterized by increased bone density caused by a defect in bone resorption by 

osteoclasts.
16

 Rickets disease is a nutritional vitamin D deficiency that results in enhanced bone 

resorption and increased bone turnover as a consequence of defective mineralization or 

calcification of bones.
17

 Osteopenia and osteoporosis are the most common bone diseases, 

affecting around 200 millions of people worldwide
18

 and are characterised by low bone mass and 

structural deterioration of the bone, causing bone fragility and increasing susceptibility to 

fractures.
19

 Nowadays there is still no cure for osteoporosis (and also for other bone disorders) 

but several treatments and drugs have been developed to strengthen bones or slow down bone 

resorption, increasing the quality of life of aged people.
20,21

 Several strategies have been 

proposed to prevent/limit osteoporosis effects, e.g. follow an active physical activity and take up 

calcium and vitamin D supplements
22

, and several drugs are available to treat osteoporotic 

people with fracture risks. Commonly used anti-osteoporotic drugs are (1) bisphosphonates (e.g. 

Fosamax and Actonel), synthetic compounds with anti-resorptive activity able to decrease bone 
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turnover and increase bone mineral density
23

, (2) RANKL inhibitors (e.g. Denosumab, a human 

monoclonal antibody) to block osteoclast differentiation, activation and survival and therefore 

decrease bone resorption
24

, (3) selective estrogen receptor modulators (e.g. Raloxifene and 

Bazedoxifene), synthetic molecules that bind to the estrogen receptor thereby acting as estrogen 

agonists on bone
25

 and (4) strontium ranelate (e.g. Protelos), a molecule with anti-resorbing and 

bone-forming effects, a dual mechanism that results in an improvement in bone 

microarchitecture and bone strength
26

. 

 

 

Figure 1.3. Schematic representation of bone remodelling. The remodelling process consists of four major distinct 

phases. Phase 1: Osteocytes transmits signals to recruit osteoclast precursors (mononuclear cells of the 

monocyte/macrophage lineage) at sites where bone remodelling should occur. Phase 2: Osteoclast precursors fuse 

into multinucleated active osteoclasts and initiate bone resorption. Mesenchymal stem cells (MSCs) and 

osteoprogenitors are recruited simultaneously. Phase 3: Osteoprogenitors differentiate into active osteoblasts and 

initiate osteoid production. Phase 4: Osteoid undergoes mineralization, ending bone remodelling process. In a 

normal process, bone mass and strength remains the same after each remodelling cycle while in certain pathological 

conditions, such as osteoporosis, bone mass and strength may be gradually reduced. BRC, bone remodelling 

compartment. Adapted from Feng & McDonald.
13
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All the pharmacological treatments mentioned before are approved to be used in osteoporotic 

patients showing good results regarding increase in bone formation. However, they also have 

undesirable side effects such as gastrointestinal and oesophageal irritations, risk of atrial 

fibrillation, osteonecrosis of the jaws, cases of atypical femoral subtrochanteric/diaphyseal 

fractures, risk of thrombotic events, nausea, diarrhea and others.
27

 Consequently, there is a need 

to discover novel molecules and treatments that could successfully play an important role in 

osteoporosis treatments, showing an increase in bone formation with reduced side effects. 

 

1.4 Natural products as source of novel molecules 
 

Throughout the ages humans have relied on natural products not only as nutrients but also as 

medicines for the treatment of a wide spectrum of diseases. Plants have formed the basis of 

sophisticated traditional medicine systems, with the earliest records dating from around 2600 

BC, documenting the uses of approximately 1000 plant-derived substances in Mesopotamia.
28

 

During the last century, with the discovery and establishment of new scientific tools such as 

PCR, bioinformatics, DNA genome sequencing, cell cultures facilities but also with the 

development of oceanographic sampling that allowed the discovery of new resources from the 

ocean, the scientific world has seen a growing interest in the exploration of natural resources 

toward the discovery of molecules with biomedical applications.
29,30

 Natural products have been, 

and will always be, important sources of new pharmaceutical compounds. Crude extracts (or 

substances) extracted from any of these sources typically contains novel, structurally diverse 

chemical compounds that may have important contribution in medicine areas such as: anti-

inflammatory, antibacterial, antifungal, antiparasitic, antiviral, anticancer and neurological, 

immunological, cardiovascular and metabolic related diseases.
31,32

 Particularly in the last decade, 

there is a growing interest to find new drugs with osteogenic or mineralogenic activity with the 

potential to treat the many skeletal disorders that affect today millions of people. 

Despite competition from other drug discovery methods, i.e. chemical synthesis, natural 

resources are still providing new clinical candidates and drugs that do not exhibit the undesirable 

side effects of synthetic drugs. Natural products not only complement synthetic molecules but 

they also exhibit drug relevant features unsurpassable by synthetic compounds.
33

 This concept is 

based on the fact that chemical agents produced by living organisms (particularly the secondary 

metabolites) have evolved throughout millenniums under an evolutionary pressure, and are 

therefore more likely to have a specific biological activity than “randomly” assembled, man-

made synthetic chemicals.
32
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1.5 Drug screening 
 

Drug development is a complex process - identification of candidate molecules, synthesis, 

animal testing of therapeutic efficacy, drug development, clinical trials, approval, manufacturing 

and marketing - that can take 12-15 years.
34

 Screening for compound toxicity has become a 

routine practice in drug discovery and development. In general, cytotoxicity endpoints such as 

membrane integrity, cellular metabolite content, mitochondrial and lysosomal functions are used 

in conjunction with cell lines for the screening of organ-specific toxicity.
35

 Characterizing the 

biological activity and the pharmacological effects of a compound is the most important step to 

resolve in drug discovery after having determined drug properties. In the context of screening for 

compounds with anti-osteoporotic effects, endpoints such as bone mineral density, ratio cortical 

vs trabecular bone, fractures reduction and biomarkers of bone turnover should be evaluated.
36,37

 

Validation techniques regarding extracts properties and pharmacological effects range from in 

vitro tools through the use of whole in vivo animal systems, to modulation of a desired target in 

disease patients. While results from each approach (i.e. in vitro or in vivo) can provide useful 

information, confidence in the observed outcome is significantly increased by a multi-validation 

approach in a complementary system.
34

 

 

1.6 In vivo screening systems  
 

A large variety of mammalian species have been used in bone-related research and drug 

discovery. Rodents (mouse and rat) due to their high definition and experimental reproducibility 

as biological, genetic and immunological models, are by far the most commonly used animal in 

fundamental research.
38

 Recently, there has been an increasing interest in the use of teleost fish 

as an alternative model to complement traditional mammalian systems in biomedical research 

and drug discovery. In fact, fish, and in particular zebrafish (Danio rerio, a small freshwater fish 

from tropical regions of South and Southeast Asia), possess many advantages that allow quick 

and less expensive large scale and high-throughput screening for new molecules with 

pharmacological effects. Zebrafish has a rapid and external embryonic development and 200-300 

eggs can be produced every week by a single female. Furthermore, embryos and larvae can be 

easily accommodated in 96-well plates and they are able to absorb chemicals directly from the 

water and any skeletogenic/osteogenic effect is easily detected since body at these 

developmental stages is transparent and allow the visualization of mineralized tissues after 

proper staining.
39

 Additional features such as robustness, high fecundity, small size and short 
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generation time have reinforced the qualities of zebrafish to become a good laboratory model. In 

addition, 70% of human genes have a zebrafish ortholog and zebrafish genome have been almost 

totally sequenced and annotated
40

 allowing the development of mutant lines mimicking human 

disorders, in particular skeleton/bone disorders.
41

 Finally, despite few differences (e.g. the 

presence of acellular/anosteocytic bone in advanced teleosts
42

), molecular mechanisms, 

pathways underlying the formation and development of skeletal structures are remarkably similar 

in teleost fish and mammals.
43,44

 

Various fish in vivo tools are available to study drugs affects (osteogenic or osteotoxic activities) 

(Figure 1.4) and zebrafish mutants modeling human skeletal disorders (e.g. osteogenesis 

imperfecta, osteoporosis, etc.) are available to contribute to the discovery of therapeutic 

molecules capable of rescuing these pathologies. Increasing of mineralization/osteogenic activity 

can be study through morphological image analysis of teleost caudal fin rays regeneration or 

operculum development
41

. Several zebrafish transgenic lines (expressing fluorescent proteins) 

are also available for skeletal marker genes such as barx1, col2, col10, oc2, osx, runx2, sox9 and 

sox10, providing useful tool to study levels and sites of gene expression and get insights into 

mechanisms underlying molecule osteogenic activity.
45–47

 

 

1.7 In vitro screening systems 
 

Several in vitro systems are available to screen molecules bioactivities such as mineralogenic 

vertebra-derived cell lines and mineralizing scales that after proper staining can be used to detect 

mineralization increment.
41

 Primary cultures or cell lines established from osteoblast or 

osteoclast, provide valuable information about processes involved in skeletal development, bone 

formation and bone resorption. Well established in vitro models can be used to multi-validate 

pharmacological activities from in vivo system or vice versa.
48

 Several bone-derived cell lines of 

mammalian origin are available to screen molecule libraries and natural extracts for osteogenic 

activity.
49–51

 However, very few have been established for teleost fish.
52

 The first cell line of fish 

origin was developed by Wolf and Quimby (1962) from the rainbow trout, Salmo gairdneri and 

since then, numerous other cell lines derived from different species and tissues have been 

described. Most fish lines have been extracted from different tissues such as skin, gill, heart, 

liver, kidney, spleen, swim bladder, brain and ovary, providing important contributions as in 

vitro systems in immunology, toxicology, ecotoxicology, endocrinology, virology biotechnology 

and biomedical research.
53

 Particularly the cell lines VSa13 and VSa16, derived from Sparus 

aurata vertebrae
54

 have been used to study extracellular matrix mineralization effect of various 
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molecules, such as retinoic acid
55,56

, polyunsaturated fatty acids
57

, and vanadate.
58

 Teleost 

elasmoid scales can be used to study cell-cell and cell-matrix interactions but also drugs effects 

on bone formation/resorption since they can be cultured in vitro as a bone unit. Among other 

characteristics (they are easily accessible, translucent and regenerate fast), elasmoid scales 

contain both osteoblasts and osteoclasts that cohabit around the mineralized matrix resembling in 

vivo conditions.
59–61

 

 

 

Figure 1.4. Fish systems available to study or screen drugs affects (osteogenic or osteotoxic activities). (A) Ventral 

view of whole-mount (alizarin red S - alcian blue) stained zebrafish larvae at 11 days post-fertilization (dpf). 

Calcified structures appear in red; notochord (Nc), operculum (Op), parasphenoid (Ps) cleithrum (Cl), 

ceratobranchial 5 (Cb5) and pharyngeal teeth (PT). (B) Lateral view of Tg(oc2:GFP; osx:mCherry) transgenic 

zebrafish at 16 dpf. (C) Lateral view of AR-S stained regenerating caudal fin of a juvenile zebrafish. Black triangle 

indicates the amputation plan; Dotted black line indicates regenerated area; Solid black line indicates area of new 

bone formation. (D) AR-S-stained elasmoid scale from the dorsal region of a juvenile gilthead seabream (Sparus 

aurata L.). (E) AR-S stained mineral nodules deposited within the extracellular matrix of gilthead seabream VSa16 

cell line (osteoblast-like cells). Adapted from Laizé et al.
41
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2 Objectives 
 

The aim of this work is to evaluate the mineralogenic/osteogenic performance of extracts (semi-

purified fractions and purified molecules) from terrestrial plants (cardoon and blue 

gum/eucalyptus) and different strains of cyanobacteria (Figure 2.1). VSa13 cell line established 

from gilthead seabream Sparus aurata vertebra and capable of in vitro mineralization will be 

used to test mineralogenic potential, while zebrafish operculum (Danio rerio) will be used to 

develop and establish a reliable in vivo model to screen molecules for osteogenic activity. 

 

Cardoon (Cynara cardunculus L.var. altilis) and eucalyptus (Eucalyptus nitens) have already 

been widely explored in terms of pharmaceutical possible activities and both plants were shown 

to produce molecules with pharmaceutical potential. In eucalyptus bark, lipophilic extracts 

contain high amounts of triterpenic acids such as betulonic, betulinic, ursolic, and oleanolic,
62,63

 

that have been recognized as promising compounds for the development of new bioactive 

agents.
64,65

 For example, oleanolic and ursolic acids show anti-tumoral
66

 and anti-angiogenic
67

 

properties; betulinic acid is also known for its anti-tumoral properties
68

 and as a precursor for 

anti-HIV drugs, such as bevirimat.
69,70

 In cardoon, cynaropicrin is the most abundant 

sesquiterpene lactone
71

 and has shown great activities such as anti-tumoral
72

, anti-proliferative 

and anti-inflammatory properties.
73,74

  

 

 

Figure 2.1. Semi-purified fractions and purified molecules tested within the scope of this work were obtained from 

(a) the bark of the blue gum Eucalyptus nitens (image retrieved from www.pinterest.com), (b) the leaves of the 

cardoon Cynara cardunculus L.var. altilis (image retrieved from www.en.hortipedia.com) and (c) different strains of 

cyanobacteria (image adapted from Sihvonen et al.
80

 Extracts prepared from cardoon and eucalyptus were kindly 

provided by Fátima Duarte (CEBAL - Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo, Beja) and 

extracts prepared from cyanobacteria by Vitor Vasconcelos and João Morais (CIIMAR - Centro Interdisciplinar de 

Investigação Marinha e Ambiental, Porto). 
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Cyanobacteria are a group of photosynthetic prokaryotes and are among the most successful and 

oldest life forms present on earth.
75

 They inhabit almost all the habitats in earth and they have 

long been known for their ecological and agricultural impact; that is, as the primary colonizers of 

an ecosystem, their ability to fix atmospheric nitrogen and solubilize phosphates.
76

 Numerous 

studies have been recently initiated to better understand intrinsic bioactivities, and anti-

cancerous
77

, anti-bacterial
78

, and anti-HIV
79

 activities have already been discovered. 

It is worth to mention that although some of the compounds tested in this work have shown 

mineralogenic/osteogenic activity in mammalian systems, none of those have been tested in fish 

system or even examined yet. 

 

2.1 Screening fish systems  
 

VSa13 cell line derived from vertebra of the gilthead seabream (Sparus aurata) (Figure 2.2A) 

and capable of in vitro mineralization
54

 will be used to assess mineralogenic activity of selected 

extracts, fractions and molecules but also cytotoxicity and proliferative potential. Mineral 

deposition in extracellular matrix of VSa13 cells occurs within 3 weeks and is easily detected 

through alizarin red S staining and quantified by spectrophotometry.
54

 Zebrafish (Dario rerio) 

larvae undergoing skeletogenesis will be used to assess osteogenic activity of selected extracts 

(Figure 2.2B).  

 

 

Figure 2.2. (A) Micrograph of vertebra-derived gilthead seabream VSa13 cell culture at confluence, in DMEM 

supplemented with 10% FBS. The bar represent 100 μm. (B) Zebrafish larvae undergoing skeletogenesis at 11 dpf. 

Coloration in red (alizarin red s stain) is specific for calcified structures. 

 

Larvae will be exposed chronically for several days (to be determined within the scope of this 

work) to the extracts at concentrations selected from in vitro assays. Changes in the area of the 

operculum will be determined through morphometric analysis of alizarin red fluorescence 

pictures as system tool to detect increments regarding mineralization and osteogenesis. Although 
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both systems cannot be compared to robotic high-throughput screening machines available in 

major pharmaceutical factories, they still present several characteristics that allow the study of a 

great number of molecules. The use of multi-well plates give the possibility to test different 

molecules at the same time and the small dimension of the wells require little extracts quantity, 

reducing the costs and wastes. The experimental design can be planned easily and more than one 

assay can be performed at the same time. 

 

2.2 Endpoints  
 

Cytotoxicity will be first evaluated in confluent and sub-confluent cultures of VSa13 cells 

exposed to 5 different concentrations (chronic exposure for 9 days), then non-toxic 

concentrations will be evaluated for proliferative action (chronic exposure for 9 days) and 

mineralogenic performance (chronic exposure for 21 days). XTT assay will be used to assess 

cytotoxicity and proliferation endpoints while alizarin red S staining will be performed to detect 

extracellular matrix mineralization (Figures 2.3). Regarding the in vivo experiment, fish will be 

exposed to each extract/fraction/molecule (day of exposure to be determined within the scope of 

this work) and stained with alizarin red S staining. Coloration will be imaged and bone formation 

will be assessed through morphometric analysis of the operculum, eye, iris, distance snout-

cleithrum and the head (exact day of image acquisition to be determined). Furthermore, fish 

death/survival will be determined to evaluate the toxicity of the molecules (Figures 2.3 and 2.4). 

 

 

Figure 2.3. Experimental design of the in vitro assay with endpoints and expected outputs. 
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Figure 2.4. Experimental design of the in vivo assay with endpoints and expected outputs. dpf, days post-

fertilization; a, 3 days of drug exposure; b, 6 days of drug exposure; c, 9 days of drug exposure. 
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3 Material and methods 
 

3.1 Maintenance of the cells 
 

VSa13 cell line - previously established from gilthead seabream Sparus aurata vertebra
54

 - was 

maintained at 33°C in a 10% CO2 humidified atmosphere and cultured in Dulbecco’s modified 

Eagle medium (DMEM; Invitrogen) supplemented with 10% FBS (fetal bovine serum; Sigma-

Aldrich), 1% penicillin-streptomycin, 1% L-glutamine and 0.2% fungizone (all from Invitrogen). 

Cell cultures at confluence were divided 1:8 every 3 days using trypsin-EDTA solution (1.1 mM 

EDTA and 0.2% trypsin in PBS; Invitrogen).  

3.2 Semi-purified fractions and purified molecules 
 

Lipophilic (dichloromethane) fractions of cardoon leaves (Cynara cardunculus L. var. altilis) 

and eucalyptus bark (Eucalyptus nitens) and purified triterpenic acids (i.e. betulinic, betulonic, 

ursolic and oleanolic acids) were kindly provided by Fátima Duarte (Centro de Biotecnologia 

Agrícola e Agro-Alimentar do Alentejo (CEBAL) / Instituto Politećnico de Beja (IPBeja), Beja). 

Semi purified fractions of cyanobacteria strains extracted using ethyl acetate (100%) were kindly 

provided by Vitor Vasconcelos and João Morais (Centro Interdisciplinar de Investigação 

Marinha e Ambiental (CIIMAR), Porto). Semi-purified fractions and purified molecules were 

dissolved in appropriate vehicle at a concentration of 100 or 10 mg/mL (stock) then diluted 

directly into culture medium or fish bath at selected concentrations.  

 

3.3 Evaluation of the cytotoxicity and cell proliferation 
 

Cytotoxicity and cell proliferation were measured upon exposure of the cells to different 

concentrations of the extracts using XTT Cell Proliferation kit (AppliChem). VSa13 cells were 

seeded in a 96-well plate (Nunc) at a density of 1 × 10
3 

cells per well (proliferation) or 3 × 10
3 

cells per well (cytotoxicity) and further incubated under regular growth conditions for 24 h 

(proliferation) or until confluence (cytotoxicity). Culture medium was supplemented with the 

extracts from 1000x stocks then filtered (0.2 µm) and applied to the cells. Control cells were 

exposed to vehicle, i.e. dimethyl sulfoxide (DMSO) or ethanol (EtOH), at a concentration of 

0.1%. Treatments were applied for 9 days and renewed every 3.5 days. At the end of the 

treatment, 50 μL of the XTT reaction mixture and 100 μL of fresh medium were added to each 
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well and absorbance was determined at 460 nm and at 620 nm after 2 h of incubation using a 

Synergy 4 multiplate reader (BioTek). 

 

3.4 Evaluation of extracellular matrix mineralization 
 

Extracellular matrix mineralization was determined through alizarin red S staining after 21 days 

of exposure to the different extracts. VSa13 cell were seeded in 12-well plates (Nunc) at a 

density of 2.5 × 10
4
 cells per well and incubated in regular condition until confluency. Then 

extracellular matrix mineralization was induced by supplemented culture medium with 50 g/mL 

of ascorbic acid, 10 mM -glycerophosphate and 4 mM CaCl2. Extracts, molecules or vehicles 

(0.1% DMSO or 0.1% EtOH) were applied at the time of renewal of the mineralogenic medium, 

i.e. every 3.5 days. At the end of the treatment, medium was discarded and cells were washed 3 

times with PBS. Cells were then fixed at 4 ºC for 1 h in 4% formaldehyde (prepared in PBS, pH 

7.4). Fixative was discarded and cells were washed 3 times with Milli-Q water (Millipore). Cells 

were then stained with 40 mM AR-S (pH 4.2) for 15 min at room temperature and unbound dye 

was removed through multiple washes with Milli-Q water (until effluent is clear), then distained 

with 10% cetylpyridinium chloride (CPC; pH 7.0). Crystal-bounded stain was quantified through 

the measurement of the absorbance (540 nm) in CPC suspensions. All chemicals were from 

Sigma-Aldrich unless otherwise  

 

3.5 Establishment and optimization of the zebrafish operculum as a model to 

assess for osteogenic activities 
 

3.5.1 Ethics statement on animal experiments 
 

All the experimental procedures involving animals followed the EU Directive 2010/63/EU and 

National Decreto-Lei 113/2013 legislation for animal experimentation and welfare. Animal 

handling and experiments were performed by qualified operators accredited by the Portuguese 

Direção-Geral de Alimentação e Veterinária (DGAV). 

 

3.5.2 Zebrafish egg production 
 

Sexually mature zebrafish (AB wild-type strain, and Tg(osterix:mCherry) and 

Tg(osteocalcin:EGFP) transgenic lines) were crossed using an in-house breeding programme. 
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Fertilized eggs were transferred into a 1-L container with static water conditions and the 

following parameters: temperature 28 ± 0.1 °C, pH 7.5 ± 0.1, conductivity 700 ± 50 μS, NH3 and 

NO2 lower than 0.5 mg/L, NO3 at 5 mg/L and a photoperiod of 14-10 h light-dark. Methylene 

blue (0.01% stock solution) was added to reduce bacterial and fungal growth. At 5 days post-

fertilization (dpf), water was renewed and larvae fed with Artemia (5 nauplii per mL; strain AF 

from INVE Aquaculture). 

 

3.5.3 Exposure to calcitriol 
 

At appropriate times, larvae were transferred to 6 well-plates (AB larvae, 15 larvae in 10 mL of 

water) or to plastic cups (osx:mCherry/oc2:EGFP double transgenic larvae, 100 larvae in 70 mL 

of water) and exposed to either 0.01 fg/mL of calcitriol (1α,25-dihydroxyvitamin D3; Sigma-

Aldrich) or to 0.1% ethanol (vehicle; Merck). Treatment medium was renewed (70% of the total 

volume) every day until the end of the treatment. At that time, larvae were sacrificed with a 

lethal dose of MS-222 (0.6 mM, pH 7.0, Sigma-Aldrich), stained for 15 min at room temperature 

with 0.01 % alizarin red S (AR-S) prepared in milliQ water (pH 7.4), and washed twice with 

water for 5 min (method adapted from Bensimon-Brito et al.
81

). 

 

3.5.4 Image acquisition and morphometric analysis 
 

AB larvae stained with AR-S were imaged using a MZ 7.5 fluorescence stereomicroscope 

(Leica) equipped with a green light filter (λex = 510-550 nm) and a black-and-white F-View II 

camera (Olympus). Images were acquired using the following parameters: exposure time 1 s, 

gamma 1.00, image format 1376×1035 pixels. Fluorescence images were analyzed using ImageJ 

1.49v software.
82

 For morphometric analysis, color channels of the RGB picture were split. Red 

channel (8-bit) was used for further analyses. Brightness and contrast were optimized to enhance 

the visibility of cranial bones, in particular the operculum. The minimum and maximum 

displayed pixel values were set to 0 and 69 respectively. The area of the head and operculum, the 

length between the snout to the cleithrum, and the width and height of the eye and iris, were 

determined using built-in tools. The areas of the eye and iris were calculated using the ellipse 

area formula (½ width × ½ height × ). Transgenic larvae Tg(osx:mCherry/oc2:EGFP) were 

imaged using a SteREO Lumar.V12 fluorescence stereomicroscope (Zeiss) equipped with GFP 

(λex = 470-440 nm; λem = 525-550 nm) and TxRed (λex = 560-540 nm; λem = 630-675 nm) filters 

and an AxioCam MR3 camera (Zeiss). Photographs were acquired according to the following 



 16 

parameters: 16-bit black-and-white image, exposure time 120 ms (bright field) or 1 s 

(fluorescence), gamma 1.00, image format 692×520 pixel, binning 2x2 and 20 Z-stacks 

(fluorescence). For both red and green channels, Z-stacks were merged and aligned through the 

extended focus built-in tool of the AxioCam software. Fluorescence images (red and green 

channels) were 8-bit transformed in ImageJ and both the number of fluorescent pixels (pixel 

values from 0 to 255 after background subtraction) and the area of fluorescence were determined 

for each operculum using built-in tools (see example in Figure 3.1). The area of the head was 

determined from bright-field acquisitions. 

 

 

Figure 3.1. Morphometric analysis of the fluorescence signals in the operculum of calcitriol-treated larvae of the 

double-transgenic zebrafish line Tg(osx:mCherry/oc2:EGFP). Red (osx:mCherry) and green (oc2:EGFP) channels 

were merged and the following parameters were determined using built-in tools in ImageJ: (A) Total area of red (red 

dashed area) and green (green dashed area) fluorescence, and (B) number of red or green pixels within the 

operculum area after background subtraction (white dashed area). Scale bar represents 50 μm. 

 

3.6 Statistical analysis 
 

Statistical differences were determined through one-way ANOVA followed by Dunnett’s 

multiple comparison test (p < 0.05). Differences between values from vehicle and calcitriol-

treated larvae were analyzed through unpaired t-tests with Welch's correction (p < 0.05). The 

correlation between selected morphometric parameters was evaluated through a simple linear 

regression and the R squared. Statistical analyses were performed using Prism version 6.00 

(GraphPad Software, Inc. La Jolla, CA). 
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4 Results 

4.1 Cytotoxicity and proliferative action of semi-purified fractions and 

related molecules 
 

4.1.1 Extracts from terrestrial plants 
 

Cytotoxic and proliferative effects of semi-purified fractions and related molecules were 

evaluated at 9 days (endpoint to assess toxicity and proliferation) using a wide range of 

concentrations, i.e. 100, 10, 1, 0.1 μg/mL for semi-purified fractions and 10, 1, 0.1, 0.01 μg/mL 

for pure molecules. Cytotoxicity was tested in confluent cell cultures (high cell density), while 

proliferative effect was assessed in sub-confluent cell cultures (low cell density). Vehicles, i.e. 

dimethyl sulfoxide (DMSO) or ethanol (EtOH) were tested at a concentration of 0.1% and shown 

not to affect cell survival (Figure 4.1). 

 

 
Figure 4.1. Cytotoxicity and proliferative effect of dimethyl sulfoxide (DMSO) and ethanol (EtOH), the vehicles 

used to solubilize semi-purified fractions and purified molecules. No vehicle, non-supplemented cell culture medium 

(DMEM); No vehicle value was set at 100%. Asterisks indicate values statistically different from the vehicle (one-

way ANOVA followed by Dunnett’s multiple comparison test (p < 0.05). 

 

Semi-purified fractions (i.e. lipophilic fraction of cardoon extract and dichloromethane fraction 

of eucalyptus extract) exhibited some toxic activity at the highest concentration tested 

(100 μg/mL) with a survival rate below 20%, while other concentrations did not affect cell 

survival. While cynaropicrin, betulonic and ursolic acids affected cell survival at the highest 

concentration (10 μg/mL; survival rate of 65, 70 and 25%, respectively), betulinic and oleanolic 

acids did not show any cytotoxic effects at any of the concentrations tested (Figures 4.2 and 

4.3). None of the semi-purified fractions and purified molecules were found to stimulate cell 

proliferation at any of the concentrations tested. On the contrary, anti-proliferative effects – or 
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most probably cytotoxic effects associated to low cell density – were observed at 100, 10 and 

1 μg/mL for the semi-purified fractions (cardoon and eucalyptus), at 10 and 1 μg/mL for 

cynaropicrin and at 10 μg/mL for triterpenic acids (Figures 4.2 and 4.4).  

 

 
 

Figure 4.2. Cytotoxicity of semi-purified fractions (CA, EU) and purified molecules (BI, BO, UR and OL) assessed 

in confluent VSa13 cell cultures through the XTT cell survival assay. Value of vehicle (DMSO) was set at 100%. 

Asterisks indicate values statistically different from the vehicle (one-way ANOVA followed by Dunnett’s multiple 

comparison test (* p ≤ 0.05; *** p ≤ 0.001; **** p ≤ 0.0001). CA, cardoon; EU, eucalyptus; BI, betulinic acid; BO, 

betulonic acid; UR, ursolic acid; OL, oleanolic acid. 
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Figure 4.3. Proliferative effects of semi-purified fractions (CA, EU) and purified molecules (BI, BO, UR and OL) 

assessed in sub-confluent VSa13 cell cultures through the XTT cell survival assay. Value of the vehicle was set at 

100%. Asterisks indicate values statistically different from the vehicle (one-way ANOVA followed by Dunnett’s 

multiple comparison test (**p ≤ 0.01; **** p ≤ 0.0001). CA, cardoon; EU, eucalyptus; BI, betulinic acid; BO, 

betulonic acid; UR, ursolic acid; OL, oleanolic acid. 
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Figure 4.4. Cytotoxicity (A) and proliferative effect (B) of cynaropicrin assessed in confluent or sub-confluent 

VSa13 cell cultures, respectively, through the XTT cell survival assay. Value of the vehicle was set at 100%. 

Asterisks indicate values statistically different from the vehicle (one-way ANOVA followed by Dunnett’s multiple 

comparison test (** p ≤ 0.01; **** p ≤ 0.0001). 

 

4.1.2 Extracts from cyanobacteria 
 

Because the amount of material received from our collaborators was limited, cytotoxicity and 

proliferative effect of ethyl acetate fractions will be evaluated in the same assay based on low 

density cell cultures. Among the 8 different strains of cyanobacteria, ethyl acetate fractions E9 

and E10 exhibited some cytotoxicity at 10 μg/mL (survival rate of 80%) while E12 fraction 

affected cell survival at both 10 and 1 μg/mL (survival rate of 57% and 80%, respectively). At 

0.01 μg/mL fraction E12 appeared to slightly affect cell number, although this effect may not be 

of biological significance since the higher concentration 0.1 μg/mL did not show any effect 

(Figure 4.5). 
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Figure 4.5. Proliferative effects of ethyl acetate fractions prepared from different cyanobacteria strains assessed in 

sub-confluent VSa13 cell cultures through the XTT cell survival assay. Value of the vehicle was set at 100%. 

Asterisks indicate values statistically different from the vehicle (one-way ANOVA followed by Dunnett’s multiple 

comparison test (**p ≤ 0.01; **** p ≤ 0.0001). 
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4.2 Mineralogenic effects of semi-purified fractions and related molecules 
 

Highest non-toxic concentrations, i.e. 1 and 0.1 μg/mL for semi-purified fractions and purified 

molecules, respectively, were evaluated for their effect on extracellular matrix mineralization 

after 21 days of exposure (endpoint to assess ECM mineralization by alizarin red S staining). 

Vehicles (DMSO and EtOH) did not statistically change the extent of mineral deposition when 

compared with control condition (culture medium supplemented with mineralogenic cocktail) 

(Figure 4.6).  

 

 

Figure 4.6. Mineralogenic effect of the vehicles assessed in mineralizing VSa13 cell cultures through alizarin red S 

staining. No vehicle, non-supplemented cell culture medium (DMEM); MIN: DMEM supplemented with the 

mineralogenic cocktail (ascorbic acid, -glycerophosphate and CaCl2); DMSO, dimethyl sulfoxide; EtOH, ethanol. 

Changes in ECM mineralization are presented as fold change over the control and asterisks indicate values 

statistically different from the vehicle (one-way ANOVA followed by Dunnett’s multiple comparison test (**** p ≤ 

0.0001). 

 

Semi-purified fractions of cardoon (0.1 μg/mL) and eucalyptus (1 μg/mL) were found to slightly 

increased mineralization by 1.56 and 1.96 folds over the respective controls. Because it exhibited 

some apparent cytotoxicity at 1 μg/mL, cardoon fraction was tested again at 0.316 and 

0.0316 μg/mL and the higher concentration (0.316 μg/mL) was found to increase ECM 

mineralization by 3.28 folds over the control. Regarding triterpenic acids, while betulinic acid 

did not affect ECM mineralization, betulonic, oleanolic and ursolic acids strongly increased 

mineral deposition by 4.27, 2.71 and 5.24 folds, respectively, at 1 μg/mL. At a lower 

concentration (0.1 μg/mL), only ursolic acid stimulated ECM mineralization (2.05 folds over the 

control; Figure 4.7).  
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Figure 4.7. Mineralogenic effect of semi-purified fractions (CA, EU) and purified molecules (BI, BO, UR and OL) 

assessed in mineralizing VSa13 cell cultures through alizarin red S staining. Changes in ECM mineralization are 

presented as fold change over the control and asterisks indicate values statistically different from the vehicle (one-

way ANOVA followed by Dunnett’s multiple comparison test (* p ≤ 0.05; **** p ≤ 0.0001). CA, cardoon; EU, 

eucalyptus; BI, betulinic acid; BO, betulonic acid; UR, ursolic acid; OL, oleanolic acid. 
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Interestingly, cynaropicrin was shown to be anti-mineralogenic at both concentrations tested (0.1 

and 0.01 μg/mL), decreasing mineral deposition by 2.13 and 2.32 folds, respectively, over the 

control (Figure 4.8). 

 

 

Figure 4.8. Mineralogenic effect of cynaropicrin assessed in mineralizing VSa13 cell cultures through alizarin red S 

staining. Changes in ECM mineralization are presented as fold change over the control and asterisks indicate values 

statistically different from the vehicle (one-way ANOVA followed by Dunnett’s multiple comparison test (** p ≤ 

0.01; *** p ≤ 0.001). 

 

Mineralogenic effect of ethyl acetate fractions from cyanobacteria was tested at a concentration 

of 1 μg/mL, and only fractions E8, E12 and E13 were found to slightly increase ECM 

mineralization by 1.56, 1.58 and 1.55 folds over the control, respectively (Figure 4.9). 
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Figure 4.9. Mineralogenic effect of semi-purified fractions prepared from cyanobacteria assessed in mineralizing 

VSa13 cells through alizarin red S staining. Changes in ECM mineralization are presented as fold change over the 

control and asterisks indicate values statistically different from the vehicle (one-way ANOVA followed by 

Dunnett’s multiple comparison test (** p ≤ 0.01; *** p ≤ 0.001). 
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4.3 The zebrafish operculum as a model to assess for osteogenic activities 

4.3.1 Time course of operculum formation 
 

Zebrafish larvae (AB line) were sampled every 24 h from 4 to 15 dpf and stained with AR-S to 

reveal mineralized bone structures, in particular the operculum. Fluorescence images of the 

lateral view of the head of each larvae were acquired (Figure 4.10A) and the morphometry of 

the different elements and structures was analyzed (Figure 4.10B). The area of the head (A1) 

and operculum (A2), the length from the snout to the cleithrum (L1), the width and height of 

both eye and iris (L2/L3 and L4/L5, respectively) were determined and the suitability of the 

different measurements to correct for inter-specimen variability in operculum area was assessed 

from simple linear regressions (Figure 4.11). While both the area of the iris and the eye and the 

length between snout and cleithrum exhibited a good correlation with the area of the operculum 

(R
2
 of 0.88, 0.90 and 0.92, respectively), the area of the head appeared to be the most accurate 

parameter to correct for inter-specimen variability of the operculum area (R
2
 = 0.94) (Figure 

20). The time course of operculum formation was monitored from 4 to 15 dpf (Figure 4.12A). 

The operculum area was plotted in function of time either as raw data (Figure 4.12B) or after 

correction for the head area (operculum area divided by the head area, O/H) (Figure 4.12C) and 

the coefficient of variance (CV) was estimated. Averaged CV of all time points was markedly 

reduced upon correction for head size (51.9 ± 24.1 % versus 27.0 ± 9.4 %), indicating that 

variation in operculum area due to inter-specimen variability in sampled population could be 

efficiently corrected. Analysis of corrected operculum area during zebrafish development 

(Figure 4.12C), revealed four different growth phases: 3-6 dpf, 6-9 dpf, 9-13 dpf and 13-15 dpf. 

The operculum area increased during the first and third phase by 208 % and 85% respectively, 

while the other two phases were characterized by a slow growth (10 % and 2 %, respectively). 
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Figure 4.10. (A) Principal bone structures in the cranium of 11-dpf zebrafish after alizarin red staining. Structures 

used in the morphometric analysis, i.e. operculum, snout, eye, iris and cleithrum, are outlined in white, while the 

names of other bony structures are indicated in grey. (B) Schematic representation of the head structures assessed 

through morphometric analysis and parameters measured. A1, area of the skull; A2, area of the operculum; L1, 

length from the snout to the cleithrum; L2, eye width; L3, eye height; L4, iris width; L5, iris height. 
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Figure 4.11. Correlation between the different morphometric parameters: Area of the operculum vs area of the head, 

area of the operculum vs length snout-cleithrum, area of the operculum vs area of the eye and area of the operculum 

vs area of the iris. The coefficient of linear regression, the R squared, is indicated for each correlation. Dashed lines 

indicate confidence intervals at 95% and solid lines indicate the best-fit of the values. 
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Figure 4.12. Time course of zebrafish operculum development. Fluorescence of the opercula stained with alizarin 

red was imaged from 4 to 15 days post-fertilization (A) and area of the operculum and head was determined from 

10-15 fish for each time point (B). Area of the operculum was normalized with the area of the head (ratio O/H, C) 

and insert illustrates the different phases of operculum development with the growth increments expressed in %. The 

coefficient of variance (CV) is indicated in each graph. Values are presented as the mean ± standard deviation. 

White bar represents 100 μm. 

 

4.3.2 Effect of calcitriol on zebrafish operculum mineralization 
 

In order to establish a fast and reliable method to screen for the effects of organic extracts, semi-

purified fractions or molecules with osteogenic activities, zebrafish larvae were treated with 

0.01 fg/mL of calcitriol, a well-known osteogenic drug. Its effect on operculum formation was 

assessed using the morphometric analysis presented previously and compared to that of ethanol 

(0.1%), used as control. Larvae were exposed to calcitriol for different periods (i.e. 3, 6 and 

9 days) and exposure was initiated at different developmental stages (i.e. 3, 5 and 8 dpf; 

Figure 4.13). It is important to mention that calcitriol did not affect the area of the head, the 

parameter used to correct operculum area (Figure 4.14). Exposure to calcitriol during 3 days 

stimulated the operculum formation/mineralization when initiated at 3 or 5 dpf, with an increase 

over control of 41.80 ± 7.83 % and 36.46 ± 6.37 %, respectively (Figures 4.13A, 4.13B). 

However, when the exposure started at 8 dpf no significant effects were observed in the 

operculum size (Figure 4.13C). A longer exposure to calcitriol (6 days) also increased 
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operculum area when initiated at 3 and 5 dpf, with an increase over control of 58.42 ± 23.73 % 

and 74.37 ± 21.68 %, respectively (Figures 4.13D and 4.13E), while onset at 8 dpf did not 

significantly affect operculum size (Figure 4.13F). Operculum area was also increased upon 

exposure to calcitriol for 9 days (Figures 4.13G and 4.13H) but this increase was only 

statistically significant when exposure was initiated at 3 dpf (90.56 ± 30.59 %). Generally, fish 

survival (indicated in Figure 4.13 by n, the number of fish that survived the exposure out of the 

15 larvae initially present) was affected by exposure longer than 3 days and exposure initiated 

after 5 dpf, supporting the suitability of a short and early exposure of the larvae. 

 

Figure 4.13. (A-H) Effect of calcitriol exposure (duration and onset) on the osteogenic development of zebrafish 

operculum. (I) Scheme recapitulating the different parameters of calcitriol exposure. Light grey, operculum area of 

control fish exposed to 0.1% ethanol (vehicle); Dark grey, operculum area of fish exposed to 0.01 fg/mL of 

calcitriol. Number of zebrafish larvae (n) is indicated below each column. Asterisks indicate values statistically 

different according to Student’s t test (* p < 0.05; *** p < 0.001; **** p < 0.0001). Values are presented as the 

mean ± standard deviation. 
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Figure 4.14. (A-H) Effect of calcitriol exposure (duration and onset) on the development of zebrafish head. (I) 

Scheme recapitulating the different parameters of calcitriol exposure. Light grey, operculum area of control fish 

exposed to 0.1% ethanol (vehicle); Dark grey, operculum area of fish exposed to 0.01 fg/mL of calcitriol. Number 

of zebrafish larvae (n) is indicated below each column. EtOH and calcitriol values were not significantly different 

(Student’s t test, p < 0.05). Values are presented as the mean ± standard deviation. 

 

4.4 Osteogenic effects of semi-purified fractions and related molecules 
 

To assess their osteogenic effects, semi-purified fractions and purified molecules were tested in 

vivo at concentrations found to have a mineralogenic effect and using conditions previously 

optimized (see previous sections). Zebrafish larvae at 3 dpf were exposed for 3 days to 

mineralogenic concentrations and treatments were renewed every day until 6 dpf, when larvae 

were imaged and the corrected operculum area was determined. In all experiments, calcitriol at 

0.01 fg/mL was used as a control for positive osteogenic effect. Vehicles (DMSO and EtOH) did 

not significantly affect the area of zebrafish operculum (data not shown). While semi-purified 

fraction from eucalyptus at 1 μg/mL did not exhibit any osteogenic activity, that of cardoon, also 

at 1 μg/mL, stimulated the area of zebrafish operculum by approximately 15% over the area of 

control fish. All purified molecules were tested at 1 μg/mL at the exception of betulonic acid 

which was toxic to zebrafish larvae at this concentration and was therefore tested at 0.5 μg/mL. 
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While betulinic and betulonic acids did not affect operculum growth, ursolic and oleanolic acid 

strongly increased the area of the operculum by 63% and 60%, respectively (Figure 4.15). A 

mixture of the 4 triterpenic acids mimicking the proportion found in crude extracts of the shining 

gum Eucalyptus nitens (i.e. BI 36.2 %, BO 26.6 %, UR 17.88 %, OL 19.32 %) was also tested in 

vivo to evaluate a possible synergic effect, but no significant effect was observed (data not 

showed). In contrast to the osteogenicity of cardoon extract, cynaropicrin exhibited an anti-

osteogenic effect and decreased operculum area by 27% at 0.1 μg/mL and 18% at 0.01 μg/mL 

(Figure 4.16). Among the different ethyl acetate fractions from cyanobacteria, only fractions E8, 

E12 and E13 (those shown to increase ECM mineralization) were tested in vivo, and only E13 

increased the area of the operculum of 23% over control fish at a concentration of 1 μg/mL 

(Figure 4.17).  

 

 

Figure 4.15. Osteogenic effect of semi-purified fractions (CA, EU) and purified molecules (BI, BO, UR and OL) 

assessed in developing zebrafish larvae through alizarin red S staining of the operculum. Changes in operculum area 

are expressed as percentages over the respective control (DMSO or EtOH). Asterisks indicate values statistically 

different from vehicle values (one-way ANOVA followed by Dunnett’s multiple comparison test (** p ≤ 0.01; **** 

p ≤ 0.0001). CA, cardoon; EU, eucalyptus; BI, betulinic acid; BO, betulonic acid; UR, ursolic acid; OL, oleanolic 

acid; Vit. D, calcitriol. 
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Figure 4.16. Osteogenic effect of cynaropicrin assessed in developing zebrafish larvae through alizarin red S 

staining of the operculum. Changes in operculum area are expressed as percentages over the respective control 

(DMSO or EtOH). Asterisks indicate values statistically different from vehicle values (one-way ANOVA followed 

by Dunnett’s multiple comparison test (* p ≤ 0.05; *** p ≤ 0.001; **** p ≤ 0.0001). 

 

 
Figure 4.17. Osteogenic effect of cyanobacteria semi-purified fractions (E8, E12 and E13) assessed in developing 

zebrafish larvae through alizarin red S staining of the operculum. Changes in operculum area are expressed as 

percentages over the respective control (DMSO or EtOH). Asterisks indicate values statistically different from 

vehicle values (one-way ANOVA followed by Dunnett’s multiple comparison test (** p ≤ 0.01; **** p ≤ 0.0001). 

 

4.5 Tg(osx:mCherry/oc2:EGFP) transgenic zebrafish line to get insights into 

mechanisms underlying osteogenic effects 
 

Zebrafish transgenic lines expressing green and red fluorescent proteins under the control of the 

promoters of two osteoblast markers – osterix (osx or sp7), a marker of immature osteoblasts and 

osteocalcin 2 (oc2), a marker of mature osteoblasts – were used to get insights into the cellular 
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dynamics underlying the osteogenic effects of calcitriol observed during operculum formation to 

evaluate the applicability of this system for further molecules screenings. Double transgenic 

larvae Tg(osx:mCherry/oc2:EGFP) at 3 dpf were exposed for 3 days to 0.01 fg/mL of calcitriol 

or to 0.1% ethanol (control) and the effects on osteoblasts were assessed through the analysis of 

fluorescence images at 6 dpf (Figure 4.18A). Exposure to calcitriol increased the operculum area 

positive for osx:mCherry by 32.28 ± 6.76 % over the control (Figure 4.18A and 4.18B), an 

increase similar to the one observed in AR-S-stained wild-type fish exposed to calcitriol in the 

same conditions (Figure 4.18A), suggesting that the density of immature osteoblast was 

probably unaltered by calcitriol. Exposure to calcitriol also increased the operculum area positive 

for oc2:EGFP (Figure 4.18A and 4.18C), although a stronger effect was observed (83.61 ± 

10.69 % over control), indicating that the density of mature osteoblast was stimulated upon 

calcitriol treatment. An analysis of the number of fluorescent pixels per operculum area further 

confirmed the specific effect of calcitriol on mature osteoblast population (515.20 ± 164.50 % 

increase in calcitriol-treated fish over the control; Figure 4.18E), while effect on immature 

osteoblast population was mild (36.43 ± 13.34 % increase in calcitriol-treated fish over the 

control; Figure 4.18D). 

 

 

Figure 4.18. Effects of calcitriol exposure (from 3 to 6 dpf) on the expression of osterix and osteocalcin 2 in the 

operculum of double-transgenic zebrafish larvae Tg(osx:mCherry/oc2:EGFP). (A) Fluorescence stereomicroscopy 

images of the operculum from control (0.1% ethanol; EtOH) and calcitriol-treated (0.01 fg/mL) larvae. Red 

(osx:mCherry) and green (oc2:EGFP) channels were merged. Scale bar represents 50 μm. (B-C) Corrected red and 

green opercular area (percentage over the control). (D-E) Number of red and green pixels per operculum area. 

Asterisks indicate values statistically different according to Student’s t test (* p < 0.05; ** p < 0.01; **** p < 

0.0001). Values are presented as the mean ± standard error of the mean. 
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5 Discussion 
 

The purpose of this work was to evaluate mineralogenic and osteogenic activities in semi-

purified fractions from several natural resources – cardoon, eucalyptus and cyanobacteria – but 

also to test the ability of molecules purified from these fractions – triterpenic acids and a 

sesquiterpene lactone – to increase extracellular matrix mineralization in vitro and operculum 

growth in vivo. Data related to the cytotoxic, proliferative, mineralogenic and osteogenic effects 

of these fractions and molecules were collected. In parallel, a methodology to assess osteogenic 

bioactivities was optimized with calcitriol and the suitability of a double transgenic line 

expressing fluorescent proteins under the control of osterix and osteocalcin 2 promoters to get 

insights in osteogenic effects at cellular level was established. 

 

5.1 The zebrafish operculum: a powerful system to assess osteogenic 

bioactivities 
 

A major objective of this work was to establish a simple, reproducible and reliable zebrafish-

based screening method to assess the effects of extracts, fractions or molecules for osteogenic 

activity. Because they are surface bones that form early during development and can therefore be 

easily monitored in larval stages, opercula represent a skeletal structure with a high potential for 

high-throughput screening. The suitability of zebrafish alizarin red-stained opercula to screen for 

osteogenic compounds was established and the duration and initiation of larval exposure 

optimized. Analysis of the complete data set revealed that the osteogenic effects of calcitriol 

were not statistically different, regardless of duration or onset of exposure, indicating that a short 

(3 days) and early (3 dpf) exposure – a situation favoured in high throughput screening methods 

– was appropriate, although the other conditions were also suitable. In these economically 

favourable conditions (i.e. short exposure synonymous of a limited use of compound and early 

exposure synonymous of high animal turnover), operculum exhibited the highest growth 

increment (208 %), while the mortality associated with the housing conditions (e.g. limited space 

as larvae grow and degraded water quality due to static conditions) was minimal. Increased 

mortality observed for longer exposures or for older larvae has been principally associated with 

housing conditions but it may also be related to the point-of-no-return (PNR), when zebrafish 

larvae, after switching from endogenous nutritional reserves to exogenous feeding (5-7 dpf
83

), 

are not able to feed and recover even if food becomes available
84

. PNR is associated with 

increased mortality and screening should therefore end before this point to minimize stress and 
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avoid mortality not related to molecules or extracts. Accordingly, we propose that the screening, 

or the study, of osteogenic bioactivities in zebrafish should be initiated at 3 dpf and larvae 

exposed to the compounds to be tested for 3 days. 

Alizarin red staining combined with morphometric approaches demonstrated to be an easy and 

accurate way to detect and quantify bone mineral deposition under fluorescence conditions, as 

already shown in previous studies.
81

 Other techniques – e.g. X-rays or micro-computed 

tomography – have been used to image mineralized structures in zebrafish, but their application 

in the context of the methodology presented here may be difficult due to technical limitations, 

such as acquisition time (micro-CT) or low image resolution of poorly mineralized larvae (X-

ray).
85,86

 This study also considered the necessity to correct for inter-specimen variability and, 

while several parameters were deemed appropriate, the area of the head proved to be superior to 

calibrate operculum area measurements, but also to be easily determined from the same set of 

images used to assess operculum area. Several studies have reported the use of alizarin red to 

screen for molecules with osteogenic and mineralogenic bioactivities in zebrafish. They assessed 

the mineralization of cranial bones in larvae exposed from 3 to 9 dpf
87

 or the count of vertebral 

segments at 10 dpf
88

 but none of these studies considered inter-specimen variability nor 

quantified accurately the osteogenic effect. They also failed to provide a high-throughput 

approach with long exposures, late endpoints and a laborious image acquisition, and therefore 

have a limited applicability for large-scale screening of molecules. 

Calcitriol, the bioactive form of vitamin D, was used throughout this study to optimize the 

screening procedure but also to validate the mineralizing operculum as a suitable system to 

monitor osteogenic bioactivities. Calcitriol is a well-known osteogenic and anti-osteoporotic 

compound
27,89,90

 that stimulates osteoblast growth and differentiation, and therefore bone 

formation in vivo
91,92

 and mineralization in vitro.
93,94

 Calcitriol also increases bone formation in 

zebrafish skeletal structures, such as in the perichordal sheath and coracoid processes, after 

exposure from 3 to 9 dpf (at concentration higher than 25 fg/mL)
95

 and in maxilla, 

branchiostegal rays, hyomandibulars, entopterygoids and ceratohyals after exposure from 5 to 

10 dpf (at 200 ng/mL).
96

 A pro-osteogenic effect of calcitriol on zebrafish opercular 

development is reported here for the first time. Remarkably, the concentration used here (i.e. 

0.01 fg/mL) is much lower than those previously tested,
95,96

 suggesting that operculum may be 

more sensitive than other systems to the action of osteogenic compounds. 
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5.2 Cytotoxicity and proliferative effects 
 

This is the first time that semi-purified fractions prepared from cardoon, eucalyptus and 

cyanobacteria, and molecules purified from these extracts (i.e. triterpenic acids and cynaropicrin) 

are tested in a fish cell line (VSa13) for their effects on cell viability and proliferation. Highest 

non-toxic concentrations were identified for each fraction and molecule. At the same 

concentrations, semi-purified fractions were less toxic than molecules purified from the same 

source (e.g. cardoon / cynaropicrin and eucalyptus / triterpenic acids), an observation probably 

related to the lower concentration of the molecules in the fractions combined with the lack of 

synergy in toxic effects. We also observed that, although identical or very similar in formula, 

triterpenic acids exhibited different levels of cytotoxicity, with ursolic acid strongly affecting cell 

survival at concentrations not toxic for other triterpenic acids, showing how subtle changes in 

molecule structure may trigger different biological responses. In this regard, mineralogenic and 

osteogenic effects of triterpenic acids were also found to be different (see below). None of the 

semi-purified fractions and purified molecules stimulated cell proliferation at the concentrations 

tested. On the contrary, an evident decrease of the number of cells upon exposure of sub-

confluent cultures to the highest concentrations of the semi-purified fractions and triterpenic 

acids was observed and while it could suggest an anti-proliferative effect we believe that it is 

most probably related to the toxic effect observed in confluent culture and intensified by the low 

cell density used in this assay (i.e. 1×10
3
 cell/well in proliferation assay versus 3×10

3
 in 

cytotoxicity assay). A microscopic observation of the cell cultures exposed to these 

concentrations showed changes in cell morphology compatible with a toxic effect (data not 

shown). A possible explanation would be that cells at low confluency have a higher surface 

exposed to the toxic action of the molecules, and would be therefore more vulnerable. Several 

studies based on different cancer cells lines have in fact demonstrated that the level of resistance 

to drugs correlates with the degree of cell confluence in monolayer cultures, this phenomena has 

been described as “confluence-dependent resistance”.
97,98

 In particular, it has been proposed that 

an increase in cell confluence alters passive diffusion across the cells membranes, resulting in a 

reduction of drug intake into the cells.
98

 Another study suggested that cells at high confluence 

create a microenvironment (decrease of medium nutrients, changes of pH, oxygen) that may 

conduct to the development of a drug resistant phenotype.
99,100

 Finally, cancer therapeutics were 

found to be more effective on rapidly dividing cells than on cells with a slow or suspended 

growth, e.g. cells in confluent cultures.
101

. Based on the data reported here and collected from the 

literature, we propose to limit the evaluation of fractions/molecules cytotoxic effect to dividing 
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cell cultures when high-throughput and/or material availability is an issue. This principle was 

applied to the evaluation of cyanobacteria extracts that were available in limited amounts. 

Limited data is available on cytotoxic and proliferative effects of the semi-purified fractions and 

purified molecules analysed in this study. While none are available in cells systems of fish 

origin, some data have been collected in several mammalian cell lines although most of them are 

cancer-related cell lines not capable of in vitro mineralization. The lipophilic fraction of 

eucalyptus extract decreased the survival of human colorectal carcinoma cell line HCT116 

(seeded in 24-well plates at 8×10
4 

cells/mL) after 2 days of exposure
102

 at concentrations very 

similar to those reported for seabream bone cells VSa13 (i.e. 1 and 10 μg/mL of extract. Survival 

of human breast cancer cells MDA-MB-231 was reduced by half when exposed for 2 days to 259 

μg/mL of a methanol fraction of cardoon extract
103

, a value higher than the one determined in 

our fish mineralogenic cell system (IC50 was roughly estimated to 63 μg/mL using the formula 

published by Zeidan and Oran (2014)
104

). Differences could be related to the cellular context 

(cancer versus bone-derived cell lines), the duration of the exposure (2 days versus 9 days), the 

cell density in the culture (3×10
5
 versus 3×10

3
 cells/well) and in the case of the cardoon extract, 

the solvent used (methanol versus dichloromethane). The exposure for 2 days to cynaropicrin of 

U937, Eol-1 and Jurkat T human leukocyte cancer cell lines (seeded at 1×10
5
 cell/well) 

decreased cell viability by half at concentrations of 1, 3.46 and 0.8 μg/mL respectively.
105

 

Survival of rat skeletal myoblast (L6-cells) was also reduced by 50% when exposed to 0.76 

μg/mL of cynaropicrin for 3 days.
106

 Although the comparative analysis of the data collected for 

cynaropicrin in fish versus mammalian systems may be difficult due to variable parameters, cell 

viability appeared to be drastically affected by concentrations higher than 1 μg/mL. 

Few studies have reported cytotoxic and proliferative data in a context of in vitro mineralization 

or using cell lines derived from bone tissues (normal or tumor-related): Betulinic
107

, ursolic
108

 

and oleanolic
109

 acids were evaluated in a murine calvaria-derived osteoblastic cell line 

(MC3T3-E1) known to mineralize its extracellular matrix and ethyl acetate fractions of several 

strains of cyanobacteria were tested in a human osteosarcoma cell line (MG-63). A comparative 

analysis of our data versus those from the literature is not easy because conditions – duration of 

the exposure, amount of molecules and density of cultured cells – are highly variable (the 

information related to the species of cyanobacteria used in this work are also not yet available). 

In agreement with the data collected in VSa13 cells, an exposure for 3 days of MC3T3-E1 cells 

(seeded at 5×10
3
 cells/well) to betulinic acid at concentrations ranging from 0.5 to 9 μg/mL did 

not affect cell viability or promoted proliferative effects.
107

 Similarly, oleanolic acid had no 

cytotoxic or proliferative effect in MC3T3-E1 cells at concentrations ranging from 0.05 to 
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4.5 μg/mL.
109

 Ursolic acid was tested in MC3T3-E1 cells at a cell density similar to those of 

VSa13 cells (i.e. 1×10
3
 cells/well) but with a shorter exposure (3 days) and was reported to arrest 

cell-cycle at concentrations higher than 4.5 μg/mL
108

, a result compatible with an IC50 of ursolic 

acid between 1 and 10 μg/mL in VSa13 cells. Toxicity and proliferative effect of betulonic acid 

has not been tested in MC3T3-E1 cells or in any other bone-derived cells of mammalian origin, 

but has been evaluated in 3 prostate cancer cell lines (i.e. LNCaP, DU-145, and PC-3), where a 

concentration of 4.5 μg/mL was found to decrease growth by 75%, 31% and 47%, 

respectively.
110

 Again, a different cellular context, a different duration of the exposure and 

probably a different density of cells initially seeded could possibly explain the different 

sensitivities of fish and human cell lines to betulonic acid. 

Crude extracts and semi-purified fractions of several strains of cyanobacteria have been tested in 

a large selection of human cancer cell lines.
111

 Of particular interest for this work, ethyl acetate 

fractions were tested on the MG-63 osteosarcoma cell line, where they promoted cytotoxicity 

and a high anti-proliferative effect, suggesting the presence of molecules with potential anti-

cancerous activities.
112,113

 In this work, ethyl acetate fraction of strain #12 and to a lesser extent 

of strains #9 and #10 only decreased cell viability at a concentration of 10 μg/mL while no effect 

was observed at a lower concentration found to affect human cancer cells, indicating that VSa13 

cells, which are not cancer cells, are more resistant to cytotoxic effect of the molecules present in 

ethyl acetate fractions. 

 

5.3 Mineralogenic action of extracts/molecules from natural resources 
 

This is also the first time that semi-purified fractions from cardoon, eucalyptus and 

cyanobacteria, and purified molecules are tested in a fish cell line (VSa13) for their effects on 

extracellular matrix mineralization. While eucalyptus fraction and the molecules purified from 

the same extract (i.e. the triterpenic acids) exhibited a pro-mineralogenic effect (or no effect in 

the case of betulinic acid), cardoon fraction and cynaropicrin exhibited opposite mineralogenic 

effects, suggesting that the molecule responsible for the pro-mineralogenic effect of cardoon 

extract is not the cynaropicrin and remains to be identified. Also abundant in the lipophilic 

fraction of cardoon extract, taraxasteryl acetate is a pentacyclic triterpene
71

 that could be the next 

molecule to be tested as a potential candidate for cardoon mineralogenic/osteogenic activity. 

While not mineralogenic in the context of the gilthead seabream VSa13 cells, betulinic acid 

stimulated ECM mineralization of the MC3T3-E1 cells at concentrations higher than 

2.28 μg/mL,
107

 concentrations not tested in our fish cell system (highest concentration tested was 
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1 μg/mL). At a concentration of 1 μg/mL, the mineralogenic potential of the other triterpenic 

acids in VSa13 cells was as followed: ursolic acid > betulonic acid > oleanolic acid. While this is 

the first time that a pro-mineralogenic effect is reported for betulonic acid in vitro, ursolic acid 

has already demonstrated its capacity to mineralize the extracellular matrix of MC3T3-E1 

cells
108

 at a concentration (1.14 μg/mL) and to an extent (6 fold) identical to those observed in 

fish cells. Mineralogenic effect of oleanolic acid has also been demonstrated, although not 

quantified, in MC3T3-E1 cell line at concentrations higher than 2.28 μg/mL
109

. This 

concentration was not tested in our in vitro cell system but 1 μg/mL stimulated ECM 

mineralization in VSa13 cells by more than 2 folds, indicating a similar pro-mineralogenic 

effect. Absence of mineralization in MC3T3-E1 cell exposed to 1.14 μg/mL could be related to 

the shorter exposure time (i.e. 14 days in mammalian cells versus 21 days in fish cells).  

Regarding ethyl acetate fractions of cyanobacteria, only those from strains 8, 12 and 13 were 

found to slightly increase ECM mineralization of VSa13 cells at 1 μg/mL. As for in vitro 

mineralization, data on the osteogenic effect of fractions/molecules derived from cyanobacteria 

are scarce, and only two studies have reported evidences toward a possible mineralogenic effect 

of compounds purified from cyanobacteria. Largazole
114

 was shown to significantly induce the 

expression of alkaline phosphatase and osteopontin genes in murine pluripotent mesenchymal 

precursor C2C12 through the increased expression of Runx2 and BMPs. Biselyngbyaside
115

 was 

found to inhibit osteoclastogenesis and to induces apoptosis of osteoclasts via pathways distinct 

of those from other macrolides that suppress osteoclastogenesis or induce osteoclast apoptosis.   

Similarities between fish and mammalian cell systems regarding in vitro data suggest that 

molecular mechanisms related to extracellular matrix mineralization may have been conserved 

throughout evolution from fish to human, as also suggested in other studies
116–118

. 

 

5.4 Osteogenic action of extracts/molecules from natural resources 
 

The in vivo methodology developed and optimized within the scope of this work was 

successfully applied to the assessment of the osteogenic action of extracts/molecules from 

natural resources. The mineralogenic potential of the semi-purified fraction prepared from the 

cardoon was confirmed in vivo through an increase of zebrafish operculum size in larvae 

exposed to this extract. On the contrary, no osteogenic action of eucalyptus extract was observed, 

indicating that pro-mineralogenic molecules present in eucalyptus are probably not in sufficient 

amount to significantly affect operculum size and mineralization. It is worth to note that 

osteogenic effect of cardoon extract was weaker than its mineralogenic effect, indicating that in 
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vivo system might be less sensitive; in this regard, it is not totally unexpected that the weak 

mineralogenic effect of eucalyptus extract in vitro was not translated into a significant osteogenic 

effect in vivo. While cardoon is a well-known source of bioactivities such as anti-tumoral
72

, anti-

proliferative and anti-inflammatory properties
73,74

, this study show for the first time that it may 

also be used to stimulate bone formation and mineralization. In line with the anti-mineralogenic 

effect identified in vitro, cynaropicrin demonstrated an anti-osteogenic effect in vivo. Although 

this work aims at identifying compounds with bone anabolic potential and not compounds 

decreasing bone formation, cynaropicrin could have an application in pharmaceutics aiming at 

treating bone disorders characterized by an excess of bone formation e.g. osteopetrosis.
13,119

 In 

vivo data collected for cynaropicrin indicated the suitability of the zebrafish operculum system to 

detect anti-osteogenic bioactivities. For example, it could be used to evaluate the osteotoxicity of 

environmental pollutants or anthropogenic chemicals before released in the environment. 

Ursolic acid stimulated operculum formation in zebrafish, confirming the mineralogenic 

potential observed in vitro, and in agreement with the osteogenic effect observed in mouse 

calvaria. 
108

 In this system, ursolic acid was found to increase by 7 folds the formation of new 

woven bone after three weeks of treatment. The similar effect of ursolic acid in both in vivo 

systems indicates that mechanisms underlying its osteogenic action were conserved throughout 

evolution, from fish to mammals. It also confirms the suitability of fish systems to screen for 

osteogenic activities as an alternative or a complement of the classical mammalian systems (e.g. 

rodents). Moreover, osteogenic potential of ursolic acid could be revealed in zebrafish after only 

3 days of exposure (3 weeks in mouse) confirming the high-throughput potential of the 

operculum system. The lack of osteogenic effect by betulonic acid evidenced by in vitro data 

was further confirmed in vivo by its incapacity to increase operculum formation. On the contrary, 

the strong mineralogenic effect of betulonic acid observed in vitro could not be reproduced in 

vivo possibly due to its elevated toxicity at mineralogenic concentration. Lower non-toxic 

concentrations did not show any effect, suggesting that betulonic acid may have a very limited 

range of effective concentrations or a complex mechanism of action. For the first time, oleanolic 

acid was shown to have an osteogenic action to an extent similar to that of the ursolic acid. We 

propose that this similar effect could be related to the chemical structure of the two molecules 

that differ just for the position of a methyl group on the E loop.
66
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5.5 Zebrafish transgenic lines to get insights into the osteogenic effect of 

purified molecules 
 

This study also aimed at testing the suitability of transgenic zebrafish lines to get insights into 

the mechanisms underlying osteogenic effects observed in wild-type larvae stained with alizarin 

red. Among the several transgenic zebrafish lines available to study bone formation and 

skeletogenesis,
45

 Tg(osx:mCherry/oc2:EGFP) has already been successfully used to assess the 

role of immature/mature osteoblasts during de novo bone formation throughout zebrafish 

development
10,39

 and caudal fin regeneration
18

. In the present report, we highlight the positive 

effect of calcitriol on osteoblast maturation in the developing operculum. A stimulation of 

osteocalcin transcription in osteoblasts upon exposure to calcitriol has already been reported in 

vitro in human and murine cell systems
122

 and in vivo in transgenic mice
92

, and has been 

associated with the presence of binding elements for calcitriol receptor within the promoter of 

osteocalcin gene
123,124

. Osteocalcin is a bone matrix protein mainly produced by osteoblasts
5,125

 

involved in calcium
126

 binding and consequently in bone matrix formation and 

mineralization
127,128

. It is probably a critical intermediate in the osteogenic effect of calcitriol on 

zebrafish operculum, as demonstrated by data collected from osteocalcin transgenic line. 

Although the analyses of the fluorescent area and pixel number provided comparable results (i.e. 

a stimulation of osteocalcin-related signal), we believe that area measurements are more 

appropriate to get a fast data acquisition – synonym of high-throughput – while analysis of pixel 

number is more time consuming but deliver more trustworthy data. The use of transgenic 

zebrafish lines – Tg(osx:mCherry/oc2:EGFP) lines or any of the zebrafish lines available to 

study bone marker genes – will certainly provide new insights into the mechanisms underlying 

the osteogenic effect of the molecules evaluated within the scope of this work. 
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6 Conclusions and future perspectives 
 

Cytotoxic, proliferative, mineralogenic and osteogenic activities of semi-purified fractions 

(cardoon, eucalyptus and cyanobacteria) and molecules purified from these extracts (triterpenic 

acids and cynaropicrin) have been established using fish tools already available (i.e. gilthead 

seabream mineralogenic cell line) or developed within the scope of this work (i.e. developing 

zebrafish operculum). In vitro and in vivo data generated within the scope of this work has not 

only demonstrated the potential of natural resources (terrestrial or marine origin) to provide 

molecules with mineralogenic/osteogenic activity that may be used in pharmaceuticals or 

nutraceuticals but also the suitability of fish systems to screen for these molecules. Among the 

extracts/molecules evaluated in this work, several semi-purified fractions and some triterpenic 

acids exhibited pro-mineralogenic/osteogenic effects while cynaropicrin had the opposite effect, 

demonstrating the ability of our approach to uncover molecules with anabolic or catabolic effects 

on bone. Finally, we have developed and optimized a methodology to accurately and rapidly 

assess changes in the zebrafish operculum formation that can be applied to large-scale molecule 

screenings and complemented with the use of bone-specific transgenic zebrafish lines to get 

insights in the mechanisms underlying osteogenic effects. This methodology can be used as a 

pipeline to test more molecules/extracts (Figure 6.1). 

Future work to pursue in order to advance on the screening of natural resources for osteogenic 

molecules could be related to: 

- Test additional concentrations of the osteogenic molecules to determine the most effective 

concentration; 

- Further purify osteogenic fractions toward the identification of novel osteogenic 

molecules; 

- Explore the osteogenic potential of semi-purified fractions prepared from cyanobacteria 

extracts using hexane, methanol and a mixture 50:50 of ethyl acetate/methanol; 

- Identify mechanisms of action of the osteogenic molecules using (1) zebrafish transgenic 

lines to uncover molecular and cellular determinants, (2) the CIGNAL reporter array 

(QIAGEN) to identify signalling pathways involved in molecule activity on bone and (3) 

quantitative real time PCR to evaluate the expression of bone-specific marker genes; 

- Investigate in zebrafish operculum system the action of osteogenic molecules on osteoblast 

function by evaluating alkaline phosphatase (ALP) activity through colorimetric methods; 
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- Evaluate the role of osteoclast activity in the osteogenic effect observed in zebrafish 

operculum through the use of tartrate-resistant acid phosphatase (TRAP) staining or 

cathepsin K (ctsk:GFP) transgenic line; 

- Further confirm the osteogenic potential of identified molecules on de novo bone formation 

using the capacity of zebrafish caudal fin to regenerate and formed new bony rays; 

- Explore commercial applications for these molecules. More tests and data will be needed 

to confirm the potential of these molecules to improved bone status in human patients (e.g. 

tests in rodents then clinical tests in human) and a collaboration with a company 

specialized in the different procedures leading to the marketing of new pharmaceutics will 

be required. An application in the field of farmed animal nutrition may be possible at a 

shorter term as osteogenic extracts/molecules could be used to supplement existing diets 

(nutraceuticals) to improve skeletal status, e.g. reduce skeletal malformations or improve 

bone formation in farmed fish; 

- Explore the applicability of the zebrafish operculum system to evaluate osteotoxicity of 

environmental pollutants. 
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Figure 6.1. Pipeline to assess the mineralogenic/osteogenic potential of extracts/compounds from natural resources. 
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