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To fully explore the potential low-carbon and economic advantages of a virtual
power plant (VPP) that aggregates multiple distributed resources, the paper
proposes a VPP scheduling model that considers the carbon emission flow
(CEF) and demand response (DR), which is characterized by electro-carbon
coupling and source-load interaction. First, the electric-carbon characteristics
of each distributed resource under VPP are modeled, and the source-load
electric-carbon coupling characteristic model is modeled through the CEF
theory. On this basis, a load-side multi-type DR model is established to
achieve the purpose of source-load synergy to reduce carbon emissions from
VPP. To this end, a two-stage scheduling model of VPP considering the source-
load electro-carbon coupling relationship is established, and the implementation
of themodel can reduce power generation costs, carbon emissions and promote
clean energy, and the simulation results of the improved IEEE-14 node system
verify the effectiveness of the proposed model.
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1 Introduction

In the face of growing global awareness surrounding environmental preservation, the
shift towards a low-carbon economy and sustainable development has emerged as a
predominant global trend. Within the energy sector, conventional fossil energy sources
like coal-fired and fuel oil have evolved into significant contributors to environmental
pollution (Li et al., 2020). Therefore, in the context of low-carbon power, the increasing
development of distributed resources has become an unavoidable trend, and the scale of
development is expanding and the level of utilization is increasing (Li et al., 2019; Li et al.,
2021). How to ensure the safe and stable operation of the power grid while realizing the
access and optimal operation of distributed resources is a problem that needs to be solved at
present (Huang et al., 2022). The virtual power plant (VPP) is a new type of energy supply
model that can effectively aggregate multiple distributed resources with the advantages of
low carbon, high efficiency and flexibility. Therefore, virtual power plants have received
extensive attention in both theoretical and practical research areas in recent years.

The VPP achieves the synergy and complementarity of diverse energy types through the
integration of multiple energy sources. This not only caters to the energy demands of

OPEN ACCESS

EDITED BY

Yushuai Li,
Aalborg University, Denmark

REVIEWED BY

Dawei Gong,
University of Electronic Science and
Technology of China, China
Cheng Zhang,
Hunan University, China
Ruizhuo Song,
University of Science and Technology Beijing,
China

*CORRESPONDENCE

Jiantie Xu,
8275876@qq.com

RECEIVED 10 March 2024
ACCEPTED 08 April 2024
PUBLISHED 23 May 2024

CITATION

Wang Y, Xu J, Pei W, Wang H and Zhang Z
(2024), Low-carbon economic scheduling of
virtual power plant considering carbon
emission flow and demand response.
Front. Energy Res. 12:1398655.
doi: 10.3389/fenrg.2024.1398655

COPYRIGHT

© 2024 Wang, Xu, Pei, Wang and Zhang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 23 May 2024
DOI 10.3389/fenrg.2024.1398655

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1398655/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1398655/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1398655/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1398655/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1398655&domain=pdf&date_stamp=2024-05-23
mailto:8275876@qq.com
mailto:8275876@qq.com
https://doi.org/10.3389/fenrg.2024.1398655
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1398655


various load types but also significantly diminishes the carbon
footprint of the system. The scheduling problem of the VPP is
one of the keys and bases to realizing its efficient operation and
optimal control, and its main purpose is to formulate a reasonable
scheduling strategy to improve its operation efficiency and economic
benefits (Liu et al., 2023). Extensive research efforts have been
dedicated to this issue. For example, in (Naughton et al., 2021;
Nguyen and Nguyen, 2021; Wang andWu, 2021), a VPP scheduling
model considering distributed resources aggregation such as
distributed wind power (WT), photovoltaic (PV) and energy
storage constructed, (Cao et al., 2016), established a VPP
economic scheduling model, with the objective function being to
minimize the cost of power generation. (Wang and Teng, 2023)
established a VPP economic scheduling model incorporating the
carbon trading mechanism. Based on this, (Sun et al., 2023; Tang
et al., 2023) proposed a demand response (DR) taking into account
the carbon trading mechanism and the low-carbon economic
scheduling method for VPP, which improves the capacity of
renewable energy consumption. It is worth noting that these
references seldom analyze the electro-carbon coupling
relationship of distributed resources, and there is a single means
of carbon reduction and a lack of effective interaction between low-
carbon means on both the source and load sides. As an effective
analytical tool for the development of low-carbon electricity, the
carbon flow emission (CEF) theory has been further developed and
improved. (Zhou et al., 2012; Kang et al., 2015) elaborated on the
concept of CEF theory, improving its theoretical framework and
proposing corresponding calculation methods. (Cheng et al., 2019;
Cheng et al., 2019; Cheng et al., 2020) applied the CEF theory to the
integrated energy system, which significantly reduces the carbon
emission of the system, and offers a fresh perspective and guiding
principle for the virtual power plant to realize the low-carbon
scheduling.

To further improve the low-carbon properties of VPPs, enhance
the usage of clean energy sources and decrease energy expenses,
research on load-side DR under VPPs has attracted increasing
interest. For example, in (Li et al., 2022), flexible resources were
designated as controllable units extensively situated on the
distribution grid side. These units can be agilely controlled and
regulated, facilitating a bidirectional and synergistic interaction
between the main grid and the distribution grid. (Liu et al., 2022)
conducted further research on electricity trading methods for
electric vehicles. (Zahra et al., 2021) proposed an optimal VPP
scheduling method taking DR into account, which coordinates the
utilization of VPP storage and DR resources through a time-sharing
tariff strategy to improve energy consumption while achieving peak-
to-valley regulation. (Li et al., 2022) introduced a demand-side
satisfaction coefficient, which significantly improves the
motivation of users to participate in DR. (Li et al., 2020; Zhang
et al., 2022) further classified loads into transferable loads and
curtailable loads, and established a scheduling model for multiple
types of loads to participate in DR. The above research works have
achieved significant results in improving the motivation of users to
participate in DR. However, the time period division of traditional
time-sharing tariffs is relatively rigid and lacks sufficient flexibility,
which has limited incentives for users. There are few tariff models
that take into account the differences in carbon emissions of
electricity consumption at different nodes, and few studies that

classify loads according to their characteristics and develop DR
models accordingly.

Addressing the issues above, this study centers on the electric-
carbon coupling problem under VPP scheduling, proposes a source-
load electric-carbon coupling relationship model founded on the
principles of CEF theory, and subsequently establishes a two-stage
VPP scheduling model incorporating participation in the carbon
trading market and DR. Its main contributions and salient features
are summarized below.

1) To comprehensively analyze the effect of electricity demand on
carbon emissions, the CEF theory is utilized to track the
carbon emissions from power generation measurement up
to power consumption measurement. Additionally, investigate
the potential low-carbon capacity of the load side to gain a
better understanding of its contribution towards carbon
reduction efforts.

2) To effectively integrate low-carbon means into both the supply
and demand sides, and to promote the deep interaction and
synergy between supply and demand, a multi-type load DR
model that considers the relationship between load electricity
consumption and carbon emissions is established.

3) A two-stage optimized scheduling model for VPP is established,
based on a designed low-carbon dispatch strategy. The model
takes into account both economic and low-carbon factors in
making system operation decisions. The optimal scheduling
results were obtained by iteratively optimizing the upper
economic model and the lower low-carbon model.

The remaining portion of this paper is structured in the
following manner. Section 2 introduces the structure of VPP and
the CEF theory. In Section 3, the electric-carbon relation of
distributed resources is modeled, and in Section 4, a multi-type
DR model is based on the relationship between load electricity use
and carbon emissions and develops a two-stage scheduling model
for VPP. Section 5 presents a case study that illustrates the proposed
model’s effectiveness, while Section VI provides a concluding
summary of the entire paper.

2 VPP basic structure and CEF theory

2.1 VPP physical structure

The structure of the VPP is illustrated in Figure 1 and it
consolidates four resource types, controllable distributed power
supply, new energy, energy storage, and load. Each resource type
functions as a subsystem, allowing for optimal resource allocation
across a broad spectrum through information transmission and
energy interaction. This facilitates the reduction of carbon
emissions, enhancing the system’s new energy consumption
capacity and increasing overall revenue (Kang et al., 2022).

2.2 Definition and calculation of CEF

Due to the consumption characteristics of power resources,
the carbon emissions generated by the power system are
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commonly referred to as off-site carbon emissions. Specifically,
the loads themselves do not produce carbon emissions,
electricity production is often accompanied by the release
of carbon dioxide resulting from the utilization of non-
renewable energy sources. To better track the carbon
footprint of the load side and analyze the carbon
characteristics of electricity from this perspective, it is
necessary to introduce the concept of CEF. This allows for
tracing the transfer of carbon emissions from power
generation to the load side, providing a more accurate
understanding of carbon emissions. As depicted in Figure 2,
this model can calculate carbon flow indicators, such as
emission flow rate and flow density, for each node and time
period based on the existing distribution.

2.2.1 Carbon emission flow rate
Define the carbon emission resulting from the flow of energy

through the network’s nodes or branches per unit of time as the
carbon flow emission rate R in •CO2/h , and the computational
expression is Eq. (1).

R � dC

dt
(1)

Where C is the carbon flow emission rate of the network node or
branch and t is the time.

2.2.2 Carbon density
Branch carbon density refers to the amount of carbon emissions

produced by a single unit of electricity transmitted through a branch

FIGURE 1
Physical structure diagram of VPP.

FIGURE 2
Schematic diagram of power system currents and CEF.
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of a power system, i.e., it is the ratio of branch carbon flow emission
rate to the active tidal current streaming through that branch and is
denoted by ρ.

ρ � R

P
(2)

Where P donates the active current of the associated network.

2.2.3 Nodal carbon intensity
The nodal carbon flow density encompasses both the carbon

flow density at generator nodes and the carbon flow density at load
nodes. The generator node carbon flow density, referred to as carbon
intensity, is denoted by EG. Meanwhile, the load node carbon flow
density, known as load node carbon intensity, describes the carbon
emission associated with the load’s consumption unit of electrical

energy and is represented by en. Therefore, the carbon intensity at
the node can be utilized for analyzing the relationship between
electricity consumption and carbon emissions of the load side.

3 Modeling the electro-carbon
characteristics of distributed resources

The “electric-carbon characteristic” is defined as the correlation
between the net external power output and the net carbon emissions
of a distributed generating unit. Presently, the prevailing approach
in studies involves utilizing carbon intensity to articulate the
electric-carbon characteristic of a unit. Carbon intensity
quantifies the emissions produced per unit of electricity supplied
to the grid by a unit.

FIGURE 3
Schematic diagram of the steps in the coupled electro-carbon price modeling.
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FIGURE 4
VPP two-stage optimized scheduling flowchart.

FIGURE 5
Schematic diagram of dichotomous iteration.
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3.1 Unit electro-carbon
characterization model

The fuel carbon emissions of fossil fuel producing units are the
main source of carbon emissions from the VPP’s power generation
source. Carbon emissions from the operation and production
processes of clean energy generating units, such WT and PV, are
estimated to be zero. As such, in research investigations, their carbon
intensity is usually set to 0.

EWT,PV � 0 (3)
Where EWT,PV is the carbon intensity of WT and PV.
The electrical carbon characteristics of a fuel unit are influenced

by several factors, and its carbon intensity can usually be obtained
from Eq. (4). Eq. (5).

δi � aiP
2
g,j + biPg,i + ci( )hi/Pg,j × 103 (4)

EG,i � ηiki
MCOi

MC

δi
103

(5)

Where δi and ai, bi, ci are the fuel consumption per
unit of electrical energy and the characteristic parameters of
the unit i, respectively, EG,i is the carbon intensity of the fuel
unit, hi is the correction factor, MCO2, MC are the molar mass of
carbon dioxide and carbon, ηi and ki are the carbon content
of the unit’s fuel and carbon oxidation rate, respectively.

The above model applies to coal-fired, gas-fired, and other fuel-
fired units, and the size of the parameters varies among different
types of units.

3.2 Energy storage electro-carbon
characterization model

The energy storage device operates in two concurrent states:
charging and discharging. When in the charging state, it
functions like a special load that can absorb a portion of carbon

FIGURE 6
IEEE-14 system node diagram.

TABLE 1 Multi-type load distribution.

Form Nodal load

Type Commercial load Industrial load Residential load

Nodal 6, 11–14 2–5 8–10
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emissions. On the other hand, when in the discharging state, it
operates like special power generation equipment, resulting in the
release of some carbon emissions. In conclusion, based on the CEF
model, the electric-carbon characteristic model can be outlined
as follows.

When the energy storage device is being charged, carbon
emissions accompany the electrical energy charged into the
energy storage device, at this time the energy storage charging
carbon intensity is equivalent to the carbon intensity of the node
where the element is located.

echa � ej (6)

When the energy storage device is in a discharged state, carbon
emissions are released from the energy storage device along with
electricity.

Qcha
e,t � Pcha

e,t echa,tΔt

Qdis
e,t � Pdis

e,t ej,tΔt �
Pdis
e,t

ηdise

edis,t−1Δt

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (7)

Where Qcha
e,t , Qdis

e,t represents the amounts of carbon
emission changes during the period of charging and discharging
the energy storage device, Pcha

e,t , P
dis
e,t represents the power associated

with the charging and discharging, and ηdise is the
discharging efficiency.

The carbon intensity of discharge emissions from energy storage
devices is expressed as:

edis � edis,t−1SOC t − 1( ) + Qcha
e,t − Qdis

e,t

SOC t( ) (8)

Where SOC(t) is the values of the capacity of the energy storage
equipment at moment t.

3.3 Load electro-carbon
characterization model

Carbon emissions from electricity consumption by power users
are closely related to the quality and amount of the electricity they
consume, where “quality” refers to the carbon content of the source
of electricity, and “amount” as the name implies, pertains to the
amount of electricity.

Reference (Da, 2016; Yang et al., 2023) demonstrates that the
load node carbon intensity size is equivalent to the sum of all
tributary carbon flow densities streaming into the node and the
carbon intensity of the generators connected to the node concerning
the tidal current weighted average. therefore, the load node CEF
model is in Eq. (9).

ej �
∑N

i�1,j ≠ j
Pi−jρi−j + PGjEGj

∑N
i�1,i ≠ j

Pi−j + PGj

(9)

where ej represent the carbon intensity of load node j, Pi−j , ρi−j
are the power and carbon flow density of the branches
connected to node i and node j, respectively, PGj and EGj are
the generating power and carbon intensity of the generators
connected to the node j, respectively, and N is the number of
network nodes.

The definition of load carbon intensity is the same as that of
generating unit carbon intensity. Consequently, nodal carbon
intensity can be used to express the electrical carbon properties
of the load. As the load uses power per unit of time, the higher
the carbon intensity of a load node, the more output the high
carbon intensity unit produces relative to the load, increasing the
value of carbon emissions. Users can independently participate in
low-carbon DR by evaluating the variations in nodal carbon
intensity throughout the day, as long as they stay within the

FIGURE 7
WT and PV forecast data.
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FIGURE 8
Scheduling results for different Scenarios. (A) Scenario A scheduling result. (B) Scenario B scheduling result. (C) Scenario C scheduling result.
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parameters of load control capacity. They can then choose to
individually increase or decrease loads and actively participate in
low-carbon emission reduction activities, modifying their power
consumption behaviors accordingly.

4 Low-carbon scheduling strategy
considering source-load electro-
carbon characteristics

4.1 Carbon market trading model

The carbon trading market system is currently the
mainstream market mechanism to limit carbon emissions
from the system at source by trading the carbon emission

rights formulated. In the carbon trading market, it is
necessary to determine the carbon trading volume of the
VPP participating in the market based on the initial carbon
emission amount, combined with the actual carbon emissions
of the VPP (Lei et al., 2020). Among them, there are
various ways to determine the initial carbon emission
amount, such as the annual power generation method,
baseline historical emissions and power generation intensity.
For the output of the VPP units, the intensity of power
generation is utilized to define the initial carbon quota of the
VPP as in Eq. (10).

Ec � ηhPGj,t (10)

Where Ec is the given unit carbon allowance, ηh is the carbon
emission rights allocation factor.

FIGURE 9
Clean energy consumption rates for different scenarios.

TABLE 2 Scheduling costs for each scenario.

Scheduling result Generation cost/¥ Carbon trading cost/¥ Total cost/¥ Carbon emission/t

A 32,740 1,520 34,260 12.46

B 33,821 1,644 35,465 13.52

C 35,103 1912 37,015 15.23
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4.2 DR modeling based on load electro-
carbon characteristics

As the carbon intensity of each load node increases, the value of
carbon emissions associated with its unit of power consumption also
increases. Leveraging this insight can optimize load scheduling to
increase electricity consumption during low carbon intensity
periods and decrease consumption during high carbon intensity
periods. This strategic load scheduling can diminish the carbon

emission value per unit of electricity over a cycle, resulting in energy
savings and emission reduction.

According to the principle of consumer psychology, price-based
DR guides users to carry out reasonable electricity consumption
behavior through the change of electricity price (Liu et al., 2023), and
China has achieved remarkable results in guiding users to peak
shaving and valley filling through the establishment of DR model of
peak-valley leveling time-sharing electricity price. However, the
traditional electricity pricing strategy is usually based on

FIGURE 10
Comparison of carbon emissions by partition under different scenarios.

FIGURE 11
Scenario 1 load comparison before and after DR.
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electricity supply and demand and cost considerations, and its
pricing mechanism is relatively fixed, often without sufficient
consideration of carbon emissions in the process of electricity
production and use. Such strategies are usually simple and
straightforward to implement, but may lack incentives for energy
efficiency and environmental protection. In this paper, with
reference to the time-sharing electricity pricing model, we
analyze it from a low-carbon perspective, divide the low, medium
and high carbon responsibility zones according to the carbon
intensity, and establish the time-sharing electricity-carbon
coupling price model for different carbon responsibility zones.
The steps of the electricity-carbon coupling price model are
shown in Figures 3A,B.

The specific steps are as follows:

1) As shown in Figure 3A, following the load node carbon
intensity solution formula in Eq (9), the magnitude of
carbon intensity at each load node at the current t time is
calculated, and the low, medium and high carbon
responsibility intervals are divided. The specific division
method is shown in Eq. (11).

ej t( ) ∈

emin ≤ ej t( )≤ 1
2

emin + eave( ), low carbon responsibility zone

1
2

emin + eave( )< ej t( )≤ 1
2

emax + eave( ),medium carbon responsibility zone

1
2

emax + eave( )< ej t( )≤ emax , high carbon responsibility zone

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

where emin and emax are the minimum and maximum load node
carbon intensity at time t, eave is the average of all load node carbon
intensity at time t, and ej is the carbon intensity of load node j.

2) As shown in Figure 3B, the low, medium and high time-
sharing carbon prices are set with reference to the peak, valley
and level time-sharing prices, and the specific carbon price is
shown in Eq. (12).

qj,c t( ) �
−1
2
λ, ej t( ) ∈ Low carbon responsibility zone

0, ej t( ) ∈ Μedium carbon responsibility zone

1
2
λ, ej t( ) ∈ Ηigh carbon responsibility zone

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(12)

where λ is the carbon price difference between loads in the high and
low responsibility zones, qj,c is the carbon value of load j.

qj t( ) �
q0 − 1

2
λ, ej t( ) ∈ Low carbon responsibility zone

q0, ej t( ) ∈ Μedium carbon responsibility zone

q0 + 1
2
λ, ej t( ) ∈ Ηigh carbon responsibility zone

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(13)

where q0 is the basic price.

4.3 Multi-type load DR modeling

Within a defined time frame, industrial and residential load
users have the flexibility to shift a portion of their load without

disrupting overall production plans and daily life demands. The
primary aim is to execute load shedding during specific scheduling
periods to mitigate demand peaks. To realize this goal, this paper
introduces two forms of load-side DR through the electro-carbon
coupling price acting as the pricing signal. This is achieved through
the development of segmented prices, facilitating load transfer.
Subsequent to implementation, the load of industrial and
residential users for each time period can be represented using
Eq. (14).

Ptri,t � Pexp ,t + Pdr,t (14)

Where Pexp ,t is the load value of the node before the response at
the moment t, Ptri,t is the load value of the node after the response at
the moment t, Pdr,t is the response value of the load.

During demand response implementation, the two load types
previously mentioned need to adhere to the following restrictions: 1)
the user’s total electricity consumption stays constant during the
entire scheduling cycle; 2) the user’s load adjustment during each
scheduling time period must fall within a predefined permissible
range. The permitted range for demand response, given the context
of this study, is [-12.5%, +7.5%] of the predicted load for the relevant
time period.

∑24
t�1
Pexp ,i,t � ∑24

t�1
Ptri,i,t

−0.125Pexp ,i,t ≤Pdet ,t ≤ 0.075Pexp ,i,t

⎧⎪⎪⎨⎪⎪⎩ (15)

Commercial loads including large shopping malls, schools and
hospitals, are deemed rigid in this paper due to inherent industry
limitations. These loads possess limited capacity for load transfer
and face challenges in utilizing time-sharing prices for load shifting.
In operational scenarios, users of such loads can receive instructions
for load reduction, empowering them to voluntarily cut a portion of
their load. In exchange for their responsive actions, users receive
compensation. The load reduction model is depicted in Eqs. 16, 17.

Pcut,t ≤Pcut,t,max, t ∈ Tout (16)
Pcut,t,max ≤ 0.1Pexp ,j,t (17)

Where Pcut,t is the commercial load reduction at the time t,
Pcut,t,max is the maximum value of reduction at the time t, and Tcut is
the time period that can be reduced, and during the time span that
allows for reduction, the maximum value of reduction at time t is set
to be no more than 10% of the load in that time period.

4.4 Two-stage VPP low-carbon economic
scheduling model

4.4.1 First stage scheduling model
The primary objective of the first stage economic scheduling

model is to reduce the generation cost of the VPP to its minimum.
This objective function includes the power generation costs of
thermal, WT and PV, along with the start-up (shut-down) cost
of thermal units and the associated carbon trading costs. The
detailed expression is depicted in Eq. (18).

f1 � min fg + fw + fv + fk + fs + fc( ) (18)
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Where fg denotes the fuel cost of thermal power units, fw is the
generation cost of WT, fv is the generation cost of PV, fk is the
start-up (shut-down) cost of thermal power units, fs refers to the
operation and maintenance cost of energy storage equipment, and
fc is the cost of carbon trading.

fg � ∑T
t�0
∑H
h�1

ahP2
G,h,t + bhPG,h,t + ch( )

fw � ∑T
t�0
∑K
k�0

bkPW,k,t( )
fv � ∑T

t�0
∑L
l�0

bvPV,l,t( )
fk � ∑T

t�0
∑H
h�1

Uh,t+1 1 − Uh,t( ) + Uh,t 1 − Uh,t+1( )CU,h( )
fsoc � ∑T

t�0
ωsoc Psoc,t

∣∣∣∣ ∣∣∣∣
fc � ∑T

t�0
ε Ed,t − Ec,t( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

Where ah, bh, ch signifies the cost coefficients of coal
consumption for the unit, bk, bv are the cost coefficients of
WT and PV, PG,h,t, PW,k,t, PV,k,t are the output power of
thermal power, WT and PV in the time period t. Uh,t is the
start-up (shut-down) variable of the thermal power unit h in the
time period t, which takes the values of 0 and 1, CU,h is the start-
up (shut-down) cost of the unit h, H, K, L are the numbers of
various types of units, ωSOC is the cost coefficient of operation and
maintenance of the storage equipment, PSOC,t is the power of the
storage energy in time period t, and ε is the price of the carbon
trade, Ed,t is the carbon emission.

The constraints are as follows:

1) Thermal unit capacity and ramping constraints.

PG,min ≤PG,t ≤PG,max

Rdown ≤PG,t − PG,t−1 ≤Rup t≥ 2( ){ (20)

Where PG,min, PG,max are the maximum and minimum values of
active output from thermal power units, Rup and Rdown represent the
maximum and minimum values of climbing power.

2) WT and PV capacity constraints.

PW,min ≤PW,t ≤PW,max

PV,min ≤PV,t ≤PV,max
{ (21)

Where PW,max, PV,max and PW,min, PV,min represent the
maximum and minimum values of the active output of WT and
PV, respectively.

3) Energy storage capacity and charge/discharge state constraints.

SOCmin ≤ SOC t( )≤ SOCmax (22)
Xcha,t +Xdis,t � 1, echa t( ) ≠ edis t( )
Xcha,t +Xdis,t � 0, echa t( ) � edis t( ){ (23)

Where SOCmin and SOCmax are the maximum and minimum
values of the capacity of the energy storage equipment, suggest that
the energy storage is undergoing a charging process, and similarly

Xdis,t � 1 suggest that the energy storage is undergoing a
discharging process.

4) Power balance constraints.

∑H
h�1

PG,t +∑K
k�1

PW,t +∑L
l�1
PV,t � PL,t (24)

Where PL,t denotes the load power.

4.4.2 Second stage scheduling model
This paper employs the first stage model to derive the start-up

(shut-down) plan and unit output for generating units within the
carbon trading market. The resulting data, encompassing both start-
up (shut-down) plans and unit outputs, are subsequently
transmitted to the second stage model. In the second stage, the
load-side electricity and carbon coupling price function as the
pricing signal, accounting for multiple load types in DR. The
load amounts for responsive nodes are fed into the first stage
scheduling model, and these steps are iteratively executed until
the discrepancy in load-side DR changes falls below the critical
value. The second stage low-carbon scheduling model is designed to
minimize the combined cost of customer power purchases and DR,
as depicted in Eq. (25).

f2 � min fdr + fcut + fq( ) (25)

Where fdr is the industrial and residential load node price DR
cost, fcut is the commercial load node load curtailment
compensation cost, and fq is the customer’s power purchase cost.

fdr � ∑24
t�1

∑GIP+GRP

i�1
Pdr,tcdr

fcut � ∑Tcut

t�1
∑GCP

i�1
Pcut,tccut

fq � ∑T
t�0
∑G
j�1
Pj,tqj t( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(26)

Where G is the number of load nodes, GIP, GCP and GRP are
industrial loads, commercial loads, residential loads node-set, cdr is
the industrial and residential loads DR cost price per unit of load
volume, ccut is the commercial and residential loads to cut down the
cost of compensation per unit of load volume, and Pj,t is the power
consumption of j node at t moment.

4.4.3 Flowchart for solving the two-stage
scheduling model

Figure 4 displays the flowchart outlining the two-stage VPP low-
carbon economic scheduling model.

The model workstream is as follows:

1) Commence the process by inputting unit node parameters,
load forecast data, carbon quota parameters and other essential
example-based data.

2) Solve the first stage VPP economic scheduling model to obtain
the output, carbon emissions, active power data transmitted by
each line during the unit scheduling cycle. Simultaneously,
calculate the carbon intensity of each node by utilizing the
CEF method.
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3) Develop electric-carbon coupling prices grounded in the
carbon intensity for each node.

4) Enter the second stage virtual power plant low carbon
scheduling model to solve for the optimized loadings.

5) The optimized load quantity is resubstituted into the upper
model to re-do the day-ahead scheduling. The above process is
repeated until the difference in the load-side demand response
change between the two processes is less than the critical value,
then the optimal scheduling scheme and results are outputted.

In this particular instance, the dichotomy is employed as a
means of imposing constraints that effectively prevent the
emergence of oscillatory non-convergence. Dichotomous iteration
addresses oscillation issues by adopting a heuristic strategy known as
equipartitioning. Its core principle lies in establishing a practical
load-interval that consistently encompasses the optimal operational
state. Subsequently, through iterative adjustments to either the lower
or upper bounds, this interval range is progressively narrowed, until
it converges to or falls below the predefined convergence threshold.
This methodical narrowing process ensures that the system
stabilizes and converges to an optimal solution. To further clarify
the process, Figure 5 provides a schematic diagram that illustrates
the steps involved in the dichotomous iteration process.

The detailed procedure for the dichotomy method is outlined
below: if the kth iteration oscillates, the load corresponding to the
electricity demand is Pbuy

φ,t , set as the maximum value of the power
demand at time t as Pbuy,max

φ,t , Pbuy,max
φ,t � max Pbuy

φ,t , P
buy
φ−1,t{ }, and the

minimum value of the electricity demand at time t as
Pbuy,min
φ,t , Pbuy,min

φ,t � min Pbuy
φ,t , P

buy
φ−1,t{ }, which will be set to be the

load operation interval, and the optimal operational condition lies
within this range.

Step 1: The average value of electricity consumption at moment t
is Pbuy

t,ave, P
buy
t,ave � (Pbuy,max

φ,t + Pbuy,min
φ,t )/2.

Step 2: Adding constraints: Pbuy
t � Pbuy

t,ave, solving the two-layer
model. This step splits the current running interval into
two-halves and terminates the iteration if the convergence
condition is satisfied. Otherwise φ � φ + 1, perform step 3.

Step 3: Adding constraints: Pbuy,min
φ,t ≤Pbuy

t ≤Pbuy,max
φ,t , solving the

two-layer model. This step obtains a new run interval
containing the optimal state. If the convergence condition
is satisfied, the iteration is terminated. Otherwise,
perform step 4.

Step 4: If Pbuy
t � Pbuy,max

φ,t , the optimal state is within
[Pbuy

t,ave, P
buy,max
φ,t ], Update the lower bound, let

Pbuy,min
φ,t � Pbuy

t,ave; if Pbuy,min
φ,t � Pbuy

t , update the upper
bound, let Pbuy,max

φ,t � Pbuy
t,ave. Then return to step 1 until

the convergence condition is satisfied.

5 Case study

5.1 Basic data

The improved IEEE-14 node system is used for the arithmetic
example analysis, the distribution of units is shown in Figure 6, and
the distribution of multiple types of load nodes is shown in Table 1.
The predicted power ofWT and PV is shown in Figure 7. A period of

24 h and a step size of 1 h is set to solve the problem using the
CPLEX simulation platform.

5.2 Simulation results analysis

To confirm the efficacy of the proposed low-carbon economy
scheduling model, sets up and analyzes three operational scenarios
through simulation. Scenario A is the two-stage low-carbon
economic scheduling of VPP proposed in this paper. Scenario B
adopts the traditional time-sharing price DR modeling in (Zhao
et al., 2022) for VPP scheduling. Scenario C does not consider DR
modeling for VPP scheduling.

By contrasting the carbon emissions and economical operating
expenses of the previously discussed scenarios. Figures 8, 9 show that
the main factor affecting the variation in carbon emissions is the
amount of clean energy used during the scheduling period. The
quantity of clean energy used determines how much displacement
the thermal power unit can produce. As the use of renewable energy
increases, thermal power output decreases, resulting in lower carbon
emissions. Based on a combined analysis of Table 2 and Figures
8A,C, gas turbine power has a higher proportion and the clean
energy consumption rate is lower when DR is ignored. In Scenario
C, there is an increase in gas turbine output during peak load hours,
which raises generation costs and carbon emissions. On the other
hand, in Scenario A, consumers engage in DR by allocating a portion
of the load to the clean energy unit that has a higher output. This
lowers generation costs and carbon emissions while simultaneously
encouraging the use of clean energy.

Through a comprehensive analysis involving Table 2 and Figures
8A,B, it becomes evident that the clean energy consumption rate is
higher in the scheduling model proposed in this paper, leading to a
reduction in gas turbine output. This is because, compared with
conventional time-sharing tariffs, the electric-carbon coupling price
based on load electric-carbon characteristics takes into account the
differences in carbon emissions at the nodes to reasonably calculate the
carbon price at different nodes, to formulate a reasonable price, which
enables the users to be more actively involved in the DR, promotes the
clean energy consumption and reduces carbon emissions.

The comparison of clean energy consumption rates under
different scenarios in Figure 9 shows that the multi-type demand
response improves the low-carbon incentive effect for the system.
The time-sharing load-side electricity-carbon coupling price signal
guides the users to consciously carry out low-carbon electricity
consumption behaviors and thus reduces the amount of
abandoned wind and light, the carbon emission and system
operation cost, which demonstrates that the multi-type demand
response model proposed in this paper can enhance the low-carbon
economic benefit. Figures 9, 10 reveal that, in comparison to
Scenario B and Scenario C, the new energy units in Scenario A
are fully utilized, the carbon emissions of the three types of regions
are all reduced, and the carbon emissions of the industrial regions in
the three types of regions are greatly restricted, which is in line with
the priority requirement of carbon restriction in the industrial and
commercial regions in the context of the dual-carbon mechanism.

As seen in Figure 11, Scenario A contrasts the system load change
curves before and after DR. During the 2 hours of the midday and
evening peaks, the commercial load is somewhat reduced by the
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electric power load. At the same time, a portion of the peak load is
transferred to the load side valley by the DR model, which uses the
linked price of carbon and electric power as the price signal. The
results of the scheduling without DR indicate that the gas turbine
production rises between 11:00 and 20:00, which raises the system’s
generating costs and carbon emissions. After DR, part of the peak
shortfall load is shifted and curtailed to the 5:00–10:00 and 20:00–23:
00 valley hours, where the load is mostly supplied by clean energy,
thus reducing both carbon emissions and operating costs.

6 Conclusion

Based on the electric-carbon coupling relationship of distributed
resources and the theory of CEF, this paper proposes a low-carbon
optimal scheduling method for VPP considering the CEF and DR,
making full use of the adjustable resources to enhance the low-
carbon economic advantages of VPP as well as facilitating the
utilization of clean energy sources, which is verified by the
simulation of the improved IEEE-14 node system example. the
following conclusions can be obtained:

The proposed two-stage optimal scheduling model for VPP
considers both the cost of generation and carbon emissions in a
comprehensive manner. Through the source-load-storage cooperative
scheduling strategy, the load side consumes a higher proportion of
renewable energy, leading to a significant reduction in carbon emissions.
Additionally, the establishment of a DR model, which is based on the
coupled price of electricity and carbon, and considers multiple types of
loads, holds significant practical value for reducing emissions. This
model not only meets the carbon reduction needs of diverse user
categories but also addresses the dual requirements of low carbon
and economy aligned with the dual carbon objective. Furthermore, it
provides innovative ways to explore low-carbon measures tailored to
specific load categories within the carbon trading market.
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